Show simple item record

dc.contributor.advisorLoh, Douglas
dc.contributor.advisorZhao,Wei
dc.creatorWu, Jianjia
dc.date.accessioned2007-09-17T19:35:23Z
dc.date.available2007-09-17T19:35:23Z
dc.date.created2003-05
dc.date.issued2007-09-17
dc.identifier.urihttps://hdl.handle.net/1969.1/5854
dc.description.abstractReal-time system refers to the computing, communication, and information system with deadline requirements. To meet these deadline requirements, most systems use a mechanism known as the schedulability test which determines whether each of the admitted tasks can meet its deadline. A new task will not be admitted unless it passes the schedulability test. Schedulability tests can be either direct or indirect. The utilization based schedulability test is the most common schedulability test approach, in which a task can be admitted only if the total system utilization is lower than a pre-derived bound. While the utilization bound based schedulability test is simple and effective, it is often difficult to derive the bound. For its analytical complexity, utilization bound results are usually obtained on a case-by-case basis. In this dissertation, we develop a general framework that allows effective derivation of schedulability bounds for different workload patterns and schedulers. We introduce an analytical model that is capable of describing a wide range of tasks' and schedulers'€™ behaviors. We propose a new definition of utilization, called workload rate. While similar to utilization, workload rate enables flexible representation of different scheduling and workload scenarios and leads to uniform proof of schedulability bounds. We introduce two types of workload constraint functions, s-shaped and r-shaped, for flexible and accurate characterization of the task workloads. We derive parameterized schedulability bounds for arbitrary static priority schedulers, weighted round robin schedulers, and timed token ring schedulers. Existing utilization bounds for these schedulers are obtained from the closed-form formula by direct assignment of proper parameters. Some of these results are applied to a cluster computing environment. The results developed in this dissertation will help future schedulability bound analysis by supplying a unified modeling framework and will ease the implementation practical real-time systems by providing a set of ready to use bound results.en
dc.format.extent1436100 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectReal-time systemsen
dc.subjectSchedulability Bounden
dc.subjectUtilizationen
dc.subjectNetwork Calculusen
dc.subjectStatic Priority Scheduleren
dc.subjectWeighted Round Robin Scheduleren
dc.titleGeneral schedulability bound analysis and its applications in real-time systemsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentComputer Scienceen
thesis.degree.disciplineComputer Scienceen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberLiu, Jyh-Charn
dc.contributor.committeeMemberMahapatra, Rabi
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record