Show simple item record

dc.contributor.advisorMiller, Soctt L.
dc.contributor.advisorNarayanan, Krishna R
dc.creatorPeiris, Bemini Hennadige Janath
dc.date.accessioned2007-04-25T20:15:57Z
dc.date.available2007-04-25T20:15:57Z
dc.date.created2006-12
dc.date.issued2007-04-25
dc.identifier.urihttps://hdl.handle.net/1969.1/5004
dc.description.abstractIn a multiuser DS-CDMA system with frequency selectivity, each user’s spreading sequence is transmitted through a different channel and the autocorrelation and the cross correlation properties of the received sequences will not be the same as that of the transmitted sequences. The best way of designing spreading sequences for frequency selective channels is to design them at the receiver exploiting the users’ channel characteristics. By doing so, we can show that the designed sequences outperform single user AWGN performance. In existing sequence design algorithms for frequency selective channels, the design is done in the time domain and the connection to frequency domain properties is not established. We approach the design of spreading sequences based on their frequency domain characteristics. Based on the frequency domain characteristics of the spreading sequences with unconstrained amplitudes and phases, we propose a reduced-rank sequence design algorithm that reduces the computational complexity, feedback bandwidth and improves the performance of some existing sequence design algorithms proposed for frequency selective channels. We propose several different approaches to design the spreading sequences with constrained amplitudes and phases for frequency selective channels. First, we use the frequency domain characteristics of the unconstrained spreading sequences to find a set of constrained amplitude sequences for a given set of channels. This is done either by carefully assigning an already existing set of sequences for a given set of users or by mapping unconstrained sequences onto a unit circle. Secondly, we use an information theoretic approach to design the spreading sequences by matching the spectrum of each user’s sequence to the water-filling spectrum of the user’s channel. Finally, the design of inner shaping codes for single-head and multi-head magnetic recoding channels is discussed. The shaping sequences are designed considering them as short spreading codes matched to the recoding channels. The outer channel code is matched to the inner shaping code using the extrinsic information transfer chart analysis. In this dissertation we introduce a new frequency domain approach to design spreading sequences for frequency selective channels. We also extend this proposed technique to design inner shaping codes for partial response channels.en
dc.format.extent548402 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectDS-CDMAen
dc.subjectSpreadingen
dc.subjectFrequency Selectiveen
dc.subjectSpectrum Matchingen
dc.titleResource allocation in DS-CDMA systems with side information at the transmitteren
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberAllen, G. Donald
dc.contributor.committeeMemberGeorghiades, Costas N.
dc.contributor.committeeMemberReddy, Narasimha R.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record