Show simple item record

dc.contributor.advisorMercer, M. Ray
dc.creatorCobb, Bradley Douglas
dc.date.accessioned2004-09-30T02:05:34Z
dc.date.available2004-09-30T02:05:34Z
dc.date.created2003-12
dc.date.issued2004-09-30
dc.identifier.urihttps://hdl.handle.net/1969.1/498
dc.description.abstractBecause of limited tester time and memory, a primary goal of digital circuit manufacture test generation is to create compact test sets. Test generation programs that use Ordered Binary Decision Diagrams (OBDDs) as their primary functional representation excel at this task. Unfortunately, the use of OBDDs limits the application of these test generation programs to small circuits. This is because the size of the OBDD used to represent a function can be exponential in the number of the function's switching variables. Working with these functions can cause OBDD-based programs to exceed acceptable time and memory limits. This research proposes using Ordered Partial Decision Diagrams (OPDDs) instead as the primary functional representation for test generation systems. By limiting the number of vertices allowed in a single OPDD, complex functions can be partially represented in order to save time and memory. An OPDD-based test generation system is developed and techniques which improve its performance are evaluated on a small benchmark circuit. The new system is then demonstrated on larger and more complex circuits than its OBDD-based counterpart allows.en
dc.format.extent174418 bytesen
dc.format.extent97642 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectbinary decision diagramsen
dc.subjectordered partial decision diagramsen
dc.subjectmanufacture test generationen
dc.titleUsing ordered partial decision diagrams for manufacture test generationen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentElectrical Engineeringen
thesis.degree.disciplineComputer Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberReddy, A. L. Narasimha
dc.contributor.committeeMemberGrimaila, Michael
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record