Show simple item record

dc.contributor.advisorXiong, Zixiang
dc.creatorSun, Yong
dc.date.accessioned2007-04-25T20:08:21Z
dc.date.available2007-04-25T20:08:21Z
dc.date.created2005-12
dc.date.issued2007-04-25
dc.identifier.urihttps://hdl.handle.net/1969.1/4800
dc.description.abstractIn this dissertation, we studied two seemingly uncorrelated, but conceptually related problems in terms of source-channel coding: 1) wireless image transmission and 2) Costa ("dirty-paper") code design. In the first part of the dissertation, we consider progressive image transmission over a wireless system employing space-time coded OFDM. The space-time coded OFDM system based on a newly built broadband MIMO fading model is theoretically evaluated by assuming perfect channel state information (CSI) at the receiver for coherent detection. Then an adaptive modulation scheme is proposed to pick the constellation size that offers the best reconstructed image quality for each average signal-to-noise ratio (SNR). A more practical scenario is also considered without the assumption of perfect CSI. We employ low-complexity decision-feedback decoding for differentially space- time coded OFDM systems to exploit transmitter diversity. For JSCC, we adopt a product channel code structure that is proven to provide powerful error protection and bursty error correction. To further improve the system performance, we also apply the powerful iterative (turbo) coding techniques and propose the iterative decoding of differentially space-time coded multiple descriptions of images. The second part of the dissertation deals with practical dirty-paper code designs. We first invoke an information-theoretical interpretation of algebraic binning and motivate the code design guidelines in terms of source-channel coding. Then two dirty-paper code designs are proposed. The first is a nested turbo construction based on soft-output trellis-coded quantization (SOTCQ) for source coding and turbo trellis- coded modulation (TTCM) for channel coding. A novel procedure is devised to balance the dimensionalities of the equivalent lattice codes corresponding to SOTCQ and TTCM. The second dirty-paper code design employs TCQ and IRA codes for near-capacity performance. This is done by synergistically combining TCQ with IRA codes so that they work together as well as they do individually. Our TCQ/IRA design approaches the dirty-paper capacity limit at the low rate regime (e.g., < 1:0 bit/sample), while our nested SOTCQ/TTCM scheme provides the best performs so far at medium-to-high rates (e.g., >= 1:0 bit/sample). Thus the two proposed practical code designs are complementary to each other.en
dc.format.extent1602539 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectsource-channel codingen
dc.subjectrobust image transmissionen
dc.subjectdirty-paper codingen
dc.titleSource-channel coding for robust image transmission and for dirty-paper codingen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberChan, Andrew K.
dc.contributor.committeeMemberGeorghiades, Costas N.
dc.contributor.committeeMemberKlappenecker, Andreas
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record