Show simple item record

dc.contributor.advisorAmato, Nancy M.
dc.creatorVargas Estrada, Aimee
dc.date.accessioned2006-04-12T16:05:25Z
dc.date.available2006-04-12T16:05:25Z
dc.date.created2005-12
dc.date.issued2006-04-12
dc.identifier.urihttps://hdl.handle.net/1969.1/3264
dc.description.abstractIn this work we describe the design and implementation of a general framework for visualizing and editing motion planning environments, problem instances, and their solutions. The motion planning problem consists of finding a valid path between a start and a goal configuration for a movable object. The workspace is, in traditional robotics and animation applications, composed of one or more objects (called obstacles) that cannot overlap with the robot. As even the simplest motion planning problems have been shown to be in- tractable, most practical approaches to motion planning use randomization and/or compute approximate solutions. While the tool we present allows the manipulation and evaluation of planner solutions and the animation of any path found by any plan- ner, it is specialized for a class of randomized planners called probabilistic roadmap methods (PRMs). PRMs are roadmap-based methods that generate a graph or roadmap where the nodes represent collision-free configurations and the edges represent feasible paths between those configurations. PRMs typically consist of two phases: roadmap con- struction, where a roadmap is built, and query, where the start and goal configura- tions are connected to the roadmap and then a path is extracted using graph search techniques.en
dc.format.extent1001248 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectVisualizationen
dc.subjectMotion Planningen
dc.subjectComputer Graphicsen
dc.titleVisualization tools for moving objectsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentComputer Scienceen
thesis.degree.disciplineComputer Scienceen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberHouse, Donald H.
dc.contributor.committeeMemberKeyser, John
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record