Show simple item record

dc.contributor.advisorIkelle, Luc T.
dc.creatorBailey, Zhanar Alpysbaevna
dc.date.accessioned2006-04-12T16:01:48Z
dc.date.available2006-04-12T16:01:48Z
dc.date.created2004-12
dc.date.issued2006-04-12
dc.identifier.urihttps://hdl.handle.net/1969.1/3064
dc.description.abstractThe North Caspian Basin (NCB) contains a significant number of major oil fields, some of which are yet to be put into production. The reason why some of these fields are not yet put into production is the exploration challenge that the NCB poses. In particular, the complex geological structure of this region makes it quite difficult to image its oil fields with conventional seismic techniques. This thesis sheds more light on difficulties associated with acquiring and processing seismic data in the NCB. The two central tools for investigation of these imaging challenges were the construction of a geological model of the NCB and the use of an accurate elastic wave-propagation technique to analyze the capability of seismic to illuminate the geological structures of the NCB. Using all available regional and local studies and my knowledge gained with oil companies, where I worked on subsalt and suprasalt 2D and 3D seismic data from the North Caspian Basin, I constructed a 2D elastic isotropic 10-by-6 km geological model of a typical oil field located on the shelf of the Caspian Sea in the southeastern part of the North Caspian Basin, which has the largest oil fields. We have propagated seismic waves through this model. The technique we used to compute wave propagation is known as the Finite-Difference Modeling (FDM) technique. Generating 314 shot gathers with stationary multicomponent OBS receivers that were spread over 10 km took two weeks of CPU time using two parallel computers (8 CPU V880 Sun Microsystems and 24 CPU Sun Enterprise). We have made the data available to the public. The dataset can be uploaded at http://casp.tamu.edu in the SEGY format. The key conclusions of the analysis of these data are as follows: - Combined usage of P- and S-waves allows us to illuminate subsalt reef, clastics and complex salt structures despite the 4-km overburden. - Free-surface multiples and guided waves are one of the key processing challenges in NCB, despite relatively shallow (less than 15 m) shelf water.en
dc.format.extent17880106 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectCaspianen
dc.subject2Den
dc.subjectelasticen
dc.subjectmulticomponenten
dc.subjectfinite-differenceen
dc.subjectmodelingen
dc.subjectsubsalten
dc.subjectsalten
dc.titleNorth Caspian Basin: 2D elastic modeling for seismic imaging of salt and subsalten
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentGeology and Geophysicsen
thesis.degree.disciplineGeophysicsen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberMamora, Daulat
dc.contributor.committeeMemberZhan, Hongbin
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record