Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design, optimization, and selectivity of inorganic ion-exchangers for radioactive waste remediation

    Thumbnail
    View/Open
    etd-tamu-2004B-NUEN-Medvedev.pdf (11.51Mb)
    Date
    2005-11-01
    Author
    Medvedev, Dmitry Gennadievich
    Metadata
    Show full item record
    Abstract
    The processes of development of nuclear weapons resulted in accumulation of thousands of curies of high-level radioactive waste. Liquid waste produced in the US has been stored in carbon steel tanks in highly alkaline (1-3 M NaOH, 6 M sodium salts) media for fifty years and leakage has occurred. One of the approaches to the solution of the problem of radioactive waste is to adsorb the nuclides on highly selective ion-exchange material, solidify in a glass matrix and dispose in a geological formation. The use of the ion-exchange technology is limited by the time of the sorbent-solution contact required to reduce the activity of the streams to acceptable levels. Inorganic ion-exchangers are promising materials due to their high radiation stability, extreme selectivity, and compatibility with the glass matrix. The contact time can be reduced by improving selectivities, kinetics, and capacities of the materials towards the target ions. This can be accomplished in part through understanding of the origin of ion-exchange selectivity. Crystalline zeotypes with minerals sitinakite (ideal formula Na2Ti2O3SiO4??2H2O) and pharmacosiderite (HM3(TO)4(GeO4)x(SiO4)3-x M = Cs+, Na+, K+, T=Nb5+, Ge4+, Ti4+) structures are excellent candidates for selectivity studies because of their ion-exchange properties tunable by alterations of synthetic procedures, and isomorphous framework substitution. The Nb-substitution in titanium sites reduces the framework charge, whereas Ge substitution decreases the unit cell size if in titanium sites and increases if it in silicon sites. The compounds were hydrothermally synthesized in Ti/Si, Ti/Nb/Si, Ti/Ge/Si forms and characterized by structural and ion-exchange studies. The 25% Nb substitution in titanosilicate sitinakite resulted in enhanced selectivity for cesium and additional bond formation of cesium within the channel. The selectivity for cesium in germanium substituted pharmacosiderite also was correlated with the coordination environment within the channel. In the advanced stages of this study semi-crystalline (sodium nonatitanate) and amorphous (monosodium titanate) materials also were considered because of their remarkable strontium selectivity. In situ X-ray diffraction techniques revealed that the sodium nonatitanate precedes the formation of the TS phase in hydrothermal synthesis. This knowledge allowed us to design and synthesize material for combined cesium and strontium removal.
    URI
    http://hdl.handle.net/1969.1/2789
    Subject
    ion-exchange
    titanosilicate
    pharmacosiderite
    sodium titanate
    selectivity
    radioactive waste
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Medvedev, Dmitry Gennadievich (2004). Design, optimization, and selectivity of inorganic ion-exchangers for radioactive waste remediation. Doctoral dissertation, Texas A&M University. Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /2789.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV