Show simple item record

dc.contributor.advisorEverett, Marken_US
dc.creatorLong, Zachary Ryanen_US
dc.date.accessioned2005-11-01T15:46:40Z
dc.date.available2005-11-01T15:46:40Z
dc.date.created2005-08en_US
dc.date.issued2005-11-01
dc.identifier.urihttp://hdl.handle.net/1969.1/2588
dc.description.abstractA geophysical survey presents many challenges. A scientist must be able to not only understand the theory and nature of the geophysics being applied but must also be able to identify features of interest in a dataset. It is also of extreme importance to be able to determine where, in the subsurface, the features identified in the data occur. This research is designed in an attempt to identify the locations of subsurface heterogeneities that affect geophysical instrument response. An experiment was conducted in which topography, magnetics, ground-penetrating radar (GPR), and electromagnetic induction (EM) data were collected over a defined survey line. An excavator with a modified flat-bladed bucket was used to remove, or skim, a 5 to 10 cm thick layer of material from the survey line. Upon removal of the material, datasets from the above mentioned instruments were again collected along the same survey line. This process was repeated for 10 skims, resulting in a total of 11 sets of data for each instrument. Having collected data with various instruments in the same location as material was progressively removed allowed for an empirical study with the goal of noting how the response of each instrument changed with respect to the removal of material. By observing how the anomalies changed in the data from one skim to the next, a better understanding of the location of the causative heterogeneities could be had. Data for each instrument was compared to the equivalent data collected from each subsequent skim to determine how similar or different the data appeared as the depth of the trench increased. The experiment also sought to determine if the topographic variations, or roughness, along the survey line had any impact of the geophysical signals. The data collected from each instrument were compared to the topographic roughness of the survey line for the corresponding skim.en_US
dc.format.extent931147 bytes
dc.format.mediumelectronicen_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.publisherTexas A&M Universityen_US
dc.subjectgeophysicsen_US
dc.subjectnear-surfaceen_US
dc.titleA near-surface geophysical investigation of the effects of measured and repeated removal of overlying soil on instrument responseen_US
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentGeology and Geophysicsen_US
thesis.degree.disciplineGeophysicsen_US
thesis.degree.grantorTexas A&M Universityen_US
thesis.degree.nameMaster of Scienceen_US
thesis.degree.levelMastersen_US
dc.contributor.committeeMemberBriaud, Jean-Louisen_US
dc.contributor.committeeMemberZhan, Hongbinen_US
dc.type.genreElectronic Thesisen_US
dc.type.materialtexten_US
dc.format.digitalOriginborn digitalen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record