Show simple item record

dc.contributor.advisorHouse, Donald H.
dc.creatorRoach, Matthew Douglas
dc.date.accessioned2005-08-29T14:41:01Z
dc.date.available2005-08-29T14:41:01Z
dc.date.created2005-05
dc.date.issued2005-08-29
dc.identifier.urihttps://hdl.handle.net/1969.1/2409
dc.description.abstractThis thesis describes a method for using physically based techniques to model an explosion and the resulting side effects. Explosions are some of the most visually exciting phenomena known to humankind and have become nearly ubiquitous in action films. A realistic computer simulation of this powerful event would be cheaper, quicker, and much less complicated than safely creating the real thing. The immense energy released by a detonation creates a discontinuous localized increase in pressure and temperature. Physicists and engineers have shown that the dissipation of this concentration of energy, which creates all the visible effects, adheres closely to the compressible Navier-Stokes equation. This program models the most noticeable of these results. In order to simulate the pressure and temperature changes in the environment, a three dimensional grid is placed throughout the area around the detonation and a discretized version of the Navier-Stokes equation is applied to the resulting voxels. Objects in the scene are represented as rigid bodies that are animated by the forces created by varying pressure on their hulls. Fireballs, perhaps the most awe-inspiring side effects of an explosion, are simulated using massless particles that flow out from the center of the blast and follow the currents created by the dissipating pressure. The results can then be brought into Maya for evaluation and tweaking.en
dc.format.extent537762 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectAnimationen
dc.subjectAtmospheric Effectsen
dc.subjectComputational Fluid Dynamicsen
dc.subjectExplosionsen
dc.subjectNatural Phenomenaen
dc.subjectPhysically Based Animationen
dc.titlePhysically based simulation of explosionsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentArchitectureen
thesis.degree.disciplineVisualization Sciencesen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberMarlow, William H.
dc.contributor.committeeMemberParke, Frederic I.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record