Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reciprocally-rotating Velocity Obstacles

    Thumbnail
    View/Open
    GIESE-THESIS-2014.pdf (1.057Mb)
    Date
    2014-04-18
    Author
    Giese, Andrew W
    Metadata
    Show full item record
    Abstract
    Modern multi-agent systems frequently use high-level planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Colli- sion Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcom- ing, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO extends ORCA by introducing a notion of rotation. This extension permits more realistic motion than ORCA for polygonally-shaped agents and does not suffer from as much deadlock. In this thesis, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, that it permits agents to reach goals faster, and that it has a comparable collision rate at the cost of some performance overhead.
    URI
    http://hdl.handle.net/1969.1/152671
    Subject
    Multi-agent systems
    Local Collision Avoidance
    Autonomous Agents
    Crowd Simulation
    Velocity Obstacles
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Giese, Andrew W (2014). Reciprocally-rotating Velocity Obstacles. Master's thesis, Texas A & M University. Available electronically from http : / /hdl .handle .net /1969 .1 /152671.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV