Show simple item record

dc.contributor.advisorMamora, Daulat D.
dc.creatorSandoval Munoz, Jorge Eduardo
dc.date.accessioned2004-11-15T19:45:23Z
dc.date.available2004-11-15T19:45:23Z
dc.date.created2004-08
dc.date.issued2004-11-15
dc.identifier.urihttps://hdl.handle.net/1969.1/1063
dc.description.abstractA 3D 8-component thermal compositional simulation study has been performed to evaluate the merits of steam-propane injection and a novel vertical-smart horizontal well system for the Lombardi reservoir in the San Ardo field, California. The novel well system consists of a vertical steam injector and a horizontal producer, whose horizontal section is fully open initially, and after steam breakthrough, only one-third (heel-end) is kept open. A 16x16x20 Cartesian model was used that represented a quarter of a typical 10acre 9-spot inverted steamflood pattern in the field. The prediction cases studied assume prior natural depletion to reservoir pressure of about 415 psia. Main results of the simulation study may be summarized as follows. First, under steam injection, oil recovery is significantly higher with the novel vertical-smart horizontal well system (45.5-58.7% OOIP at 150-300 BPDCWE) compared to the vertical well system (33.6-32.2% OOIP at 150-300 BPDCWE). Second, oil recovery increases with steam injection rate in the vertical-smart horizontal well system but appears to reach a maximum at about 150 BPDCWE in the vertical well system (due to severe bypassing of oil). Third, under steam-propane injection, oil recovery for the vertical-smart horizontal well system increases to 46.1% OOIP at 150 BPDCWE but decreases to 51.6% OOIP at 300 PDCWE due to earlier steam breakthrough that resulted in reduced sweep efficiency. Fourth, for the vertical well system, steam-propane injection results in an increase of oil recovery to 35.4-32.6% OOIP at 150-300 BPDCWE. Fifth, with steam-propane injection, for both well systems, oil production acceleration increases with lower injection rates. Sixth, the second oil production peak in the vertical-smart horizontal well system is accelerated by 24-50% in time for 150-300 BPDCWE compared to that with pure steam injection.en
dc.format.extent2565855 bytesen
dc.format.extent231059 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectSteam injectionen
dc.subjectSteam-propane injectionen
dc.subjectThermal simulationen
dc.titleA simulation study of steam and steam-propane injection using a novel smart horizontal producer to enhance oil productionen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentPetroleum Engineeringen
thesis.degree.disciplineEngineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberDatta-Gupta, Akhil
dc.contributor.committeeMemberIkelle, Luc T.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record