```
INTERN EXPERIENCE AT
AL-RAHA ESTABLISHMENT
AN INTERNSHIP REPORT
by
Roger Elias Zard Aboujaoude
Submitted to the College of Engineering of Texas A\&M University
in partial fulfillment of the requirement for the degree of DOCTOR OF ENGINEERING
```

August 1983

Major Subject: Mechanical Engineering

INTERN EXPERIENCE AT

AL-RAHA ESTABLISHMENT

AN INTERNSHIP REPORT

by

Roger Elias Card Aboujaoude

Chairman of Advisory Committee

Member

Member

Phertw. Burch

Robert Z. Burch, Ph.D.
Member

Zahi E. Abou Mansour, M.S. Norman C. Griswold, Ph.D. Representative of College of Engineering

ABSTRACT
Intern Experience at A1-Raha Establishment. (August 1983)

Roger Elias Zard Aboujaoude, B.S.M.E., Texas A\&M University M. Engr. M.E., Texas A\&M University Chairman of Advisory Committee: Dr. Don E. Bray., Ph.D., P.E.

This report describes the author's major activities and accomplishments during his nine months' internship at Al-Raha Establishment in Riyadh, Saudi Arabia. During this period, he started working on a major project as a mechanical design engineer, and then was promoted to the position of assistant project manager for the same project.

The internship objectives were set by the author to provide him with an internship experience that would fulfill the requirements of the Doctor of Engineering Program at Texas A\&M University. These objectives were (1) to become familiar with the organizational characteristics of the company and functions of the various departments; (2) to make an identifiable contribution in the mechanical engineering field; and (3) to gain practical experience in the non-academic activities and business environment.

During the internship period, the author was involved in
designing the whole irrigation system of a major residential area which is comprised of one main palace, eleven guest villas, servants' quarters, a conference hall, a mosque, and recreational facilities. He also was involved in the selection of materials and equipment suitable to the requirements of the irrigation networks. Furthermore, as assistant project manager, the author had the opportunity to develop interpersonal and management skills by participating in all aspects of daily business activities, and by interacting with managers, engineers, and clients.

The author candidly believes that the internship experience fulfilled his personal objectives as well as the internship requirements for the degree of Doctor of Engineering at Texas A\&M University.

ACKNOWLEDGEMENTS

With all candor and appreciation, the author would like to extend his sincere thanks to all the people who have contributed to making the internship a meaningful experience and have assisted him in the completion of his Doctor of Engineering Degree.

Special thanks go to Dr. Don E. Bray, the author's committee chairman during both his master's and doctor's degree programs, for his valuable advice and guidance through the author's graduate studies. The author would also like to thank the other members of the committee, Dr. Sherif T. Noah, Dr. William E. Murphy, and Dr. Robert W. Burch for their support and timely advice.

The author wishes to express his gratitude to his internship supervisor, Mr. Zahi E. Abou Mansour, for helping and supervising him throughout his assignments and duties during the internship period. The author is indebted to Al-Raha Establishment, especially Mr. Roger Azzam, for providing this internship.

The assistance and help of Mrs. Carmen Lanning in making this report a reality is greatly appreciated. The author also acknowledges the enthusiastic support and encouragement of Mrs. Kathy Shearer.

The author would like to extend his appreciation and thanks to his very special friend, Ms. Angela C. Stiner for typing this report despite the author's handwriting.

MY DEAREST PARENTS WHO HAVE GIVEN ME SO MUCH

TABLEOFCONTENTS

PACE
ABSTRACT iii
ACKNOWLEDGEMENTS v
DEDICATION vii
TABLE OF CONTENTS viii
LIST OF FIGURES x
CHAPTER I - INTRODUCTION 1
CHAPTER II - THE AUTHOR'S INTERNSHIP PROJECT AND WORK POSITION 4
A. The Internship Project 5
B. The Design Process 11
C. The Author's Internship Position 14
CHAPTER III - THE FIRM 17
A. History 18
B. The Organization of the Firm 21
C. Departmental Responsibilities and Functions 23
D. Employee's Performance, Evaluation, and Motivation 30
E. Future Goals 32
CHAPTER IV - THE AUTHOR'S ENGINEERING WORK 34
A. Introduction 35
B. The Gassim Emirate Palace Complex: Guest Villa Site 37
C. The Gassim Emirate Palace Complex: Main Site 39
D. The Irrigation Design Procedure 40
E. Other Engineering Work 65

```
TABLE OFCONTENTS (CONTIN U E D)
```


PAGE

CHAPTER V - THE AUTHOR'S NON-TECHNICAL EXPERIENCE 67
A. Introduction 68
B. The Author's Experience as Softscaping Division Head 70
C. The Author's Experience as Assistant Project Manager 76
D. Other Non-Academic Experience 81
CHAPTER VI - SUMMARY AND CONCLUSIONS 84
REFERENCES 86
APPENDICES 87
Appendix A Resume of Mr. Zahi Abou-Mansour (Intern Supervisor) 88
Appendix B Main Site Hardscaping Layout Main Site Overall Picture, May 1983 92
Appendix C Water Requirement and Irrigation Time: Guest Villa Site and Main Site 96
Appendix D Head Loss and Design Calculations: Main Site Design Calculations: Guest Villa Site 102
Appendix E Irrigation Drawings: Guest Villa Site and Main Site 141
Appendix F Subcontract Document Between Al-Raha Establishment and Obal Establishment 164
GLOSSARY 180
VITA 183

LISTOFFIGURES

FIGURE PAGE

1. Abdullah Fahd A1 Kraidees Establishment Organizational Chart 10
2. The Design Process 12
3. Al-Raha Establishment Organizational Chart 22
4. Main Site Water Sources 47
5. Square vs. Triangular Spacing 52

CHAPTER I. INTRODUCTION

INTRODUCTION

This report presents a survey of the author's nine months' Doctor of Engineering internship experience with Al-Raha Establishment in Riyadh, Saudi Arabia. According to the guidelines set forth by the College of Engineering the purpose of this report is to certify that the objectives of the internship have been met. "The objectives of the Doctor of Engineering Internship Program are:
a. to enable the student to demonstrate his or her ability to apply his or her knowledge and technical training by making an identifiable engineering contribution in an area of practical concern to the organization or industry in which the internship is served, and
b. to enable the student to function in a non-academic environment in a position where he or she will become aware of the organizational approach to problems in addition to traditional engineering design or analysis." (1)

The first critical objective was met with the intern performing as a mechanical engineer, designing irrigation systems. The author had to use his education and knowledge in thermodynamics and fluid mechanics in order to design irrigation networks.

The second critical requirement of the internship was fulfilled when the intern served as assistant project manager. This experience provided the author with an excellent opportunity to participate in all forms of daily business activities, observing and interacting with managers and clients, and, most importantly, the opportunity to practice managerial skills such as decision making, organizing, and scheduling. The intent of this report is to show that the author's Enternship experience with Al-Raha Establishment satisfies the internship requirement of the Doctor of Engineering Program at Texas A\&M University. This will be shown by describing the author's activities during the internship period and demonstrating that each of the internship objectives has been met.

The following chapter describes the author's internship project and work position. Then, the report elaborates on the organizational structure of the firm and the functions of its various parts. Chapters IV and V discuss the author's engineering assignments as well as his experience in the nonacademic and business environment. The last chapter consists of a summary of the report and the author's self-evaluation and conclusions. A glossary of terms used in the report is included after the Appendices.
II. A. THE INTERNSHIP PROJECT

Prior to the discussion and explanation of the author's internship position and engineering assignments, a description of the internship project is necessary. The project consisted of the design and execution of the Gassim Emirate Palace to be living accomodations for His Royal Highness (H. R. H.) the Prince of the Emirate, Abdulilah Bin Abdulaziz, in the city of Bureidah. Bureidah, the capital of the Gassim region in Saudi Arabia, is located three hundred miles northwest of Riyadh.

The general contract between the client and the main contractor, Woochang Construction Co., LTD., states that the Emirate of Gassim is willing to fund the study, Design, Construction, and Execution of its Palace Accomodation Project at Bureidah for His Highness the Prince of the Emirate, together with demolishing, renovation works, construction of new housing and service buildings, repair of attached houses including all required modifications and additions thereto, and the execution of public utilities with the required networks on the site of work. Furthermore, the Client appointed the Saud Consult as the consulting engineering firm for the Project, the duties of which are to carry out all responsibilities pertinent to the supervision of works, setting up
specifications, and checking on-site work as well as granting approvals to the contracting or subcontracting firms.

As a whole, the project is comprised of two sites, located approximately two miles apart. The first site consists of eight guest villas, supplemented by a recreation area which includes a tennis court, swimming pool and a recreation building. The total area for the site described above is approximately $120,000 \mathrm{ft}^{2}$.

The second site, the main site or the Emirate Palace Complex, consists of the Palace Building; the Majlis and Guest rooms; the Palace Mosque; the Conference Hall; three main Guest villas; Servant Quarters consisting of several buildings; Leisure and recreational facilities, including tennis court, swimming pool and sports area; a Power Plant; a Water Treatment Plant with all related buildings, as well as a Palace Warehouse, Stores, and a Main Kitchen. The total area of the main site is approximately one million square feet.

The total value of works under this contract is one hundred-seventy-five million Saudi Riyals, or approximately fifty million U.S. dollars. This amount includes the consultant fees for project supervision, the main contractor's portion for the design and construction of all buildings and facilities, the subcontractor in charge of the interior design and installation of the whole complex, and finally, the landscape
subcontractor's part of the project.
The Landscape portion of the sites was subcontracted to Abdullah Fahd Al Kraidees Establishment (AFK). The total value of the landscape work amounted to thirty million Saudi Riyals, or eight-and-a-half million U.S. dollars. The scope of work of the Landscape Contractor may be summarized as follows:

1. Execution of all fountains shown on specific drawings at the main palace, the conference hall, the pool-leisure building, the support buildings and the guest villas, including installation of piping network and equipment in the corresponding mechanical rooms.
2. Execution of all tiling works needed for the walkways as well as installation of pergolas at particular locations in the complex.
3. Planting in all exterior areas and inside planters around all the buildings.
4. Supply and installation of all exterior lighting including fountains, walkways pavers, and plants.
5. Design and installation of the irrigation water system for the entire project.

The landscaping works could be divided into four major activities: a) Hardscaping or civil works; b) Softscaping or planting; c) Electrical works, consisting of installation of light poles, cabling, and panel boards; and d) Irrigation. Al Kraidees Establishment, the Landscape Contractor, subcontracted all four activities to Al-Raha Estab1ishment. In turn, the latter subcontracted the hardscaping and electrical works to Modern Design Establishment, and the irrigation activities to Obal Establishment, while keeping the softscaping portion under its own supervision and execution.

In order to better coordinate the works of all subcontractors, Al-Raha Establishment required that each subcontractor appoints for the project a company manager to run the affairs of his own firm as well as to report to the Landscaping Project Manager appointed by the Landscape Contractor. Obal Establishment appointed Mr . Luigi Amico as on-site manager responsible for all irrigation activities; Modern Design Establishment assigned the responsibilities of the hardscaping and electrical works to Mr. Wajeeh Wehbe and Mr. Charbel Nemr, respectively. These two activities were to be headed by Mr. Zahi Abou Mansour. It is to be noted that Mr. Mansour was also chosen by Al-Raha Establishment to be Project Manager of all the landscaping works; Al-Raha Establishment also entrusted the management duties of its portion of the landscaping works to the author
himself. Hence, the latter assumed the duties of a mechanical design engineer as well as a manager responsible of the softscaping portion of the project. This expanded role provided the author with the privilege of participating in non-engineering and administrative tasks - a great opportunity to fulfill the second main internship objective set forth by the Doctor of Engineering Program.

A chart of AFK's organization - the company under the name of which Al-Raha Est. runs the works - for this particular project is shown in Figure 1. Every division is directed by a Division Head. Each division head is totally independent of the others. However, they all report directly to the project manager; whose duties are to plan, organize, and coordinate the various activities of all departments.

Following is a description of the design process of the project from the preliminary design stages to the execution of the tasks. The author's role and responsibilities while serving his internship at Al-Raha Establishment will then be elaborated.

ABDULLAH FAHD AL-KRAIDEES ESTABLISHMENT - ORGANIZATIONAL CHART
II. B. THE DESIGN PROCESS

The preliminary design for all landscaping works including hardscape, softscape, electrical, and irrigation was performed during the stages of the contract negotiations. After the signing of the contract, each subcontracting company was responsible for submitting working drawings or shop drawings to the consultant for final approval. Modern Design Establishment had the civil and electrical designs done by an engineering company in Lebanon, managed by Mr. Habib Salame, a highly reputable Lebanese architect. On the other hand, Al-Raha Est. performed the softscaping design in its own main office in Riyadh, while Obal Est. designed the irrigation system for the project in its office in Riyadh. The sequence of design works was the following: firstly, performing the hardscaping portion; secondly, designing the softscaping part. Thirdly and fourthly, designing the electrical and irrigation systems followed since these two activities are meant to complement the softscaping portion of the project. All landscaping shop drawings are checked, reviewed, and coordinated together at Al-Raha Est., Riyadh office, before their final submittal to the consultant's head office in Riyadh for approval. The design process is illustrated in Figure 2. Once the approval is granted, the execution phase commences. In the event where minor modifications and adjustments are necessary to fit specific

Figure 2
THE DESIGN PROCESS
situations, the consultant's office on site will take charge of approving or disapproving these particular changes.

II. C. THE AUTHOR'S INTERNSHIP POSITION

The author commenced his internship experience with Al-Raha Establishment in October, 1982. He was recruited by the company as a mechanical engineer, a position which he maintained throughout his nine months' internship period. The position requires an engineer with four or more years of experience. However, his bachelor's and master's degrees, and four semesters into the Doctor of Engineering Degree Program, qualified the author for the position.

The author was hired by the company during the final stages of the Gassim Emirate Palace Complex Contract negotiations with Woo Chang Construction Co., the main contractor. At that time, the latter has been performing the construction work for almost one year. The author's duties were to study, learn, and become familiar with the technical aspects of designing and executing an irrigation network since a major portion of the landscaping activities consisted of designing and installing an irrigation system of the whole site.

After the contract was signed, Al-Raha Est. subcontracted the irrigation portion of the landscaping works to Obal Establishment, provided that the author would work in close contact with the irrigation company, gain experience in learning the design process and all the technical aspects needed to
design an irrigation system. As an engineer working for the Landscape Contractor, the author not only had the responsibility of participating in the irrigation design process, but to supervise the execution and installation of the piping network being performed by the subcontracting company. These responsibilities enhanced the author's learning process, and gave him the excellent opportunity to experience all aspects of the design stages, on-site mobilization, and execution and installation of irrigation systems.

During the first five months of the internship, the author was primarily involved in the design of the irrigation network for the project, coordination of works on site between the softscaping and irrigation activities, and directing the Softscaping division of the project.

During the remaining period of the internship, Al-Raha Est. promoted the author to the position of assistant project manager. This was a major and very challenging task for the author. He had to assume all the duties and responsibilities of the project manager during his absence. The author had to participate in all meetings with the Client, Consultant, and Main Contractor, in addition to many different activities in the engineering as well as the non-academic and business fields. An in-depth discussion of these activities will be provided later in the report.

The intern supervisor under whom the author served his nine months internship was Mr. Zahi Abou Mansour himself, the project manager. Mr. Mansour received his Master of Engineering Degree from the University of California at Davis in Civil Engineering. His work experience in the United States, Lebanon, and Saudi Arabia enabled him to qualify fully for his technical and managerial positions in the project. Mr. Mansour's brief resume is included in Appendix A. The author maintained a close contact with the project manager, directly reported to him, and, most importantly, gained an enriching experience and learned from observing how Mr. Mansour managed, organized, and ran the entire project.
III. A. HISTORY

A1-Raha Establishment was founded in October, 1981, by His Royal Highness, Prince Faisal Bin Fahd Al Faisal. This company is located in Riyadh, Saudi Arabia. The founder is also the honorary chairman of Al-Raha's board of directors, which consists of five business men: Messrs Beshr Haffar, Bassam Malhass, Malek Mahamassani, John Edde, and Roger Azzam. Because of these men, the company is built on solid ground which will help it to survive the competition during its first years of operation.

The internship company commenced its operations with a work force of about 18 persons, including 8 salaried employeas, and 10 hourly workers. The managing director was Mr . Roger Azzam who is now general manager in charge of the daily operations of the company. All of the administrative and financial duties of the organization were relegated to Mr. Elie Kassab. The remaining employees fulfilled the positions of project managers, foreman, accountant, secretary, and others.

The firm was primarily engaged in the execution of softscaping projects inthe city of Riyadh, Saudi Arabia. To this end, the establishment of a plant nursery was necessary. This nursery has provided the company with a flexible and effective backup sustem to all its ongoing projects. At the birth of
the firm, the projects were fairly small, involving the landscaping design and works of local residential areas and commercial centers. The money realized from the first few projects was barely sufficient to cover all the costs and expenses incurred by the company. However, due to the board of directors' contacts in the area, the firm started acquiring more and larger projects. The great needs in the field of landscaping in Saudi Arabia have helped the company to grow at a rapid, steady pace.

In order to handle this growth, the organization needed more financing, which the board of directors were not ready to provide. This lead the general manager, Mr. Azzam, to come up with an alternative solution that would alleviate some of the financial leverage and cash flow problems of the company. The first expansion move was to establish a new division in the company. This division is solely involved in producing and selling Agroumousse, an organic material which is mixed with the agricultural soil to improve its water retention capacities and, thus, its quality. This product proved to be a wery successful and salable one. However, like all products, it required organized and effective marketing. As a consequence, a marketing manager was hired to help promote and sell the new product as well as to create an expanded marketing department. One of the new duties of marketing is to be
responsible for ensuring further contacts with and securing new projects from other companies for Al-Raha.

The spectrum of the clientele grew from individual home owners to include the residential, comercial, and industrial sectors, as well as the government itself. Within a very brief time span, the company has built a good reputation for providing professional services in the fields cited above. The best example of this is receiving the contract for the landscaping portion of the Gassim Emirate Palace Complex. The value for the work to be executed in the project totalled approximately 9 million U.S. dollars.

At the present time, less than 2 years after the birth of the firm - the company's work force consists of 70 persons, including 30 salaried employees and 40 hourly workers. Furthermore, the firm's range of operations has extended beyond the Riyadh area, to include other projects in different areas, including the one located in Gassim. As a matter of fact, the organization has recently completed an important project involving the landscaping renovation and maintenance of King Fahd Bin Abdulaziz's residence Palace in the city of Taif, Saudi Arabia. Currently, Al-Raha is beginning a new project in the city of Al Medina, which involves designing and executing the softscaping and irrigation works at the Al Medina Sports Complex.

III. B. THE ORGANIZATION OF THE FIRM

One of the main objectives of the Doctor of Engineering Internship is to become familiar with the structure of the organization, its various departments, and how they interact and function with each other and with the external environment. Accordingly, the study of the internship organization was made a major and continuous activity throughout the course of the internship.

The basic organization chart of the company is presented in Figure 3. The firm consists of four major divisions: Project Operations, Marketing, Nursery, and Agromousse Production. Each one of these primary divisions consists of one or more departments. All divisions report directly to the Administrative and Finance department, which is, in turn, supported by other divisions including the personnel, accounts, purchasing and secretariate areas.

Figure 3
AL-RAHA ESTABLISHMENT ORGANIZATIONAL CHART

III. C. DEPARTMENTAL RESPONSIBILITIES AND FUNCTIONS

A more detailed description of the responsibilities and functions of each division is presented in this section, as well as how they have all functioned together to produce results.

PROJECT OPERATIONS DIVISION
The Project Division of Al-Raha Est. is directed by Mr. Tumair Savache. He is a landscape architect with extensive experience in the design, execution, and management of projects involving engineering tasks dealing with construction work as well as irrigation activities. The Project Division is the company heart for contracting operations in the Kingdom of Saudi Arabia. All projects secured by the organization are studied, designed, and executed by this Department. The latter is comprised of three other components through which its services are provided: (1) the Project Management Department, (2) the Design Department, and (3) the Cost Department. Although the opportunity to work practically in all areas did not present itself, the author achieved familiarity with most of the functions of these departments through attending various meetings and dealings with their employees during the normal course of employment.
(1) The Project Management Department

The Project Management Department, headed by the project coordinator, Mr. Tumair Savache, consists of several project managers directing various projects. Very seldom is one project manager in charge of more than one project at a time, unless the particular ongoing projects are fairly small. The project managers perform their duties independently from each other. They are responsible for planning, organizing and executing the sites assigned to them either by the project coordinator or the administrative manager of the company.
"The role of the project manager is a two-fold organizer manager type role. As an organizer he establishes the project objectives to be achieved, while as manager he is responsible for the project, from the time of project initiation through project completion. The project objectives are both technical and financial. That is to say that the project manager sets objectives for the quality of the professional services to be provided, project deadline, and budget. The project manager is given authority in order to carry out his responsibilities and prosecute his duties." (2)

As a matter of fact, the project manager in Al-Raha Est. is responsible for all activities needed to accomplish his project. These involve mobilization on the site; purchasing of materials and equipment; informing the project coordinator about the client's requirements for addition to or modifications of the
original design; meetings with the main contractor and consultant to resolve pending issues in order to expedite the works, scheduling of works, labor, and materials; and the complete management of all the accounting and financial aspects of the project. As mentioned previously, the author was assigned such responsibilities in addition to his engineering design duties by managing the softscaping portion of the Gassim Emirate Palace Complex Project. The learning process was enhanced especially in the last four months of the internship when the author was assigned the responsibilities of assistant project manager for the whole project undertaken by the company.
(2) The Design Department

The Design Department is actually headed by Mr. Toni Stenholm, the architect. It is the center of all studies, designs, and analysis of the services provided by the company through its Project Management Department. In this division Mr. Stenholm directs several draftsmen. The design division must provide the project managers with the necessary shop drawings for the consultant's final approval. If any changes or adjustments are required, whether they are upon the Consultant's or the client's requests, the Design Department has the obligation to perform such modifications and feed the Project Management Division with the necessary information and drawings. Hence, the Design Department through the project
coordinator, is in continuous interaction with the Project Management Department throughout the course of the project execution.
(3) The Cost Department

The function of this department is to perform cost-estimations and feasibility studies for potential projects. The pre-evaluation of such projects during the bidding phase determines whether or not the company should undertake the project. Once the project is awarded to the firm, the duty of the Cost Department would be to constantly compare estimated expenses with actual costs incurred during the project. It is the project manager's responsibility to provide the Cost Department with detailed information pertinent to the accounts allocated to each activity of the work being performed. Then, the Cost Department takes advantage of the company computer facilities to review, study, and file such information so that it can evaluate future projects in a more professional, accurate manner. By acquiring a better working knowledge of the company expenses during each project, the firm can adjust, control, and reallocate its resources to have more profitable operations, and can become more competitive in the market. MARKETING DIVISION

The need for a marketing department at A1-Raha Est. became essential after the "Agromousse" was put into production. The

Marketing Division, headed by Mr. Charles Abi Nader, has the responsibilities to perform market research and analysis pertinent to the selling of Agromousse as well as other commodities which are thought to be high1y demanded in the Saudi Market; also this division attempts to establish contacts with new and potential clients. The Marketing Department has been very effective in promoting the company's new product, by using sound marketing principles and practical techniques. Al-Raha's Marketing Department has participated in major annual industrial exhibitions in the city of Riyadh, Saudi Arabia. Through its contacts established with a wide range of clientele including contractors, clients, suppliers, and customers from all business sectors the Marketing Division has been able to secure several projects to the company which involve design as well as execution.

NURSERY DIVISION
The Nursery Division was established at the inception of the company. It is located approximately 60 miles away from the firm's main office. This Division consists of a plant nursery, headed by Mr. Imad Al-Jizi and operated by ten salaried employees. These include 2 foremen, and 8 workers. The nursery is used as a temporary storage and maintenance area for all the plants to be used in the softscaping part of the landscaping projects undertaken by the company. The Nursery Division
receives its plant orders from the Project Operations Division as Bills of Quantities of the plants needed for a specific project. Then, the Nursery Division attempts to place its orders and secure the requested quantities by contacting its agents in Saudi Arabia, Lebanon, France, Spain, and Holland, depending on the particular type of plants needed.

During the internship, the author had the opprotunity to visit the nursery on several occasions and learn how the management and operations were being performed in that Division. On the second visit to the nursery, the author was accompanied by 2 horticultural experts from the consultant's part to check whether the quality and quantity of the plants to be used in the Gassim Emirate Palace Complex Project met the specifications agreed upon in the contract.

AGROMOUSSE PRODUCTION DIVISION
As mentioned previously in the report, Agromousse is an organic agent similar in appearance to white foam, which is mixed with agricultural soil in order to improve its water retention characteristics. The factory producing this material is located in the same private area as the plant nursery. Mr. Al-Jizi is also responsible for the production of the Agromousse However, the management of its sales, and delivery is handled by Mr. Charles Abi Nader, the marketing manager. It is to be noted that all four major divisions consti-
tuting the company operate as profit centers, independent in management and operations from one another. Each division has its own financial and accounting system which reports directly to the Administration and Finance body through its division manager.

III. D. EMPLOYEE'S PERFORMANCE, EVALUATION, AND MOTIVATION

Employees' performance is the most important element to determine the overall performance and effectiveness of an organization. Through the evaluation of employee performance, a firm can identify the deficiencies in the system and correct them, as well as recognize good performance and maintain it. Hence, one of the major advantages of an employee performance evaluation is that it provides the company with a feedback system that can allow it to improve its overall effectiveness.

The performance of an employee is highly dependent on the motivational aspects in an organization. Motivation is defined as "the condition responsible for variation in the intensity, quality, and direction of ongoing behavior." (3) It can be enhanced through several means at Al-Raha Est. : a) pay raises; b) bonuses; and c) promotions.

Once every year, the company's upper management conducts an official employee performance evaluation. In this process, department and project managers fill out individual forms corresponding to each employee under their line of authority and submit the information to the upper management committee. Based on such information as well as their own personal observations, the committee authorizes the appropriate rewards
to the respective employees. Pay raises result in an increase of the employee's monthly salary. Bonuses also occur at the end of the year; however, they are lump sums of money, and in multiple amounts of the person's monthly salary. Promotions may take place any time during the year depending on the merit and performance of the individual.

While this method does motivate, employees can be more effectively motivated by other methods. The author believes that the managers ought to discuss the available information with their subordinates before submitting recommendations to the special committee. This would provide the employees with a feedback concerning their performances, as well as help all parties to clarify some discrepencies and misunderstandings. The author also believes that the performance evaluation process should take place more than once a year. As a matter of fact, employees in the Project Operations Division should have their performance evaluated at the end of every project they complete, and be rewarded accordingly.

III. E. FUTURE GOALS

Al-Raha Establishment is a fast growing company. Even though it has not yet achieved a solid ground for its financial security, the firm is characterized by its good reputation as well as its influential contacts. The company's goals for the future are:
(1) To expand in size and operations to cover all potential areas in the Kingdom of Saudi Arabia and the rest of the Middle East. Such a goal is being tested at the present time with the organization's involvement in several projects outside the Riyadh area- namely, Gassim, Taif, and Al Medina.
(2) To be engaged in a more diverse spectrum of operations. As a matter of fact, the company intends to establish a new irrigation division which will study, design, and execute irrigation projects. When he returns, the author will be assigned a new position with the firm. He will plan, direct, and manage such a department in the very near future. Also, the company is determined to establish another division which will handle all landscaping projects involving both such civłl and electrical activities as: fountains, artificial lakes, walkways, outdoor lighting,
and others.
The author candidly believes that Al-Raha Est. has a very promising future. The constant support of an influential and reputable board of directors, along with a competent and professional personnel, is a guarantee to the company's continuous growth and success.

CHAPTER IV. THE AUTHOR'S ENGINEERING WORK
IV. A. INTRODUCTION

The author joined Al-Raha Establishment while the latter was involved in the bidding for and negotiations on the Gassim Emirate Palace Complex contract. Since the project consisted of designing and executing landscaping activities which involved large irrigation networks, the company assigned to the author the responsibilities of learning about and participating in the design as well as executing processes of the entire irrigation system, to be created by Obal Establishment, the irrigation subcontractor for Al-Raha.

During the first few weeks of the internship (one month before the contract was signed), the author devoted himself wholly to learning about irrigation system design. This was accomplished through reviewing irrigation literature and by closely interacting with Obal Est.'s irrigation design engineers. This interaction provided the author with the opportunity to study and review the general irrigation layout for the Gassim project before it was submitted to the consultant during the bidding phase.

During the first five months after the contract was signed, the author's major involvement was in the detailed design of the project's irrigation system. Working very closely with Mr. Mahmoud Saleh and Mr. Luigi Amico, Obal Establishment's irrigation designers, he learned a great deal from their
experiences in the irrigation field, and assisted them in designing all the irrigation networks of the project. The author was also appointed by his company to review and supervise the execution of the irrigation activities on site. This task included (1) constantly checking whether the work was being performed according to specifications agreed upon in the contract, and (2) obtaining thorough information about the types of materials and equipment used for irrigation purposes. During the remaining period of the internship, the author's major contributions to the company in the mechanical engineering field were the studying and checking of irrigation design systems which were performed by the company's various subcontractors on different irrigation projects. This chapter primarily deals with the design of irrigation networks and the author's contribution to the entire Gassim project irrigation system design.
IV. B. GASSIM EMIRATE PALACE COMPLEX: GUEST VILLA SITE

As described in Chapter II, the Gassim Emirate Palace Complex project is divided into two sites: the guest villa site and the main site. The landscaping area at the guest villa site is about $6,500 \mathrm{~m}^{2}$, or approximately $60,500 \mathrm{ft}^{2}{ }^{2}$ The irrigation activities in this particular site cover more than $4,500 \mathrm{~m}^{2}$, or $40,500 \mathrm{ft}^{2}$ of the area to landscape.

The execution of the irrigation works at the guest villa site commenced two weeks after the contract was signed. At that time, no irrigation shop drawings were yet ready. They were still being designed by Mr. Saleh, Mr. Amico, and the author, himself. Unfortunately the client desired to expedite matters himself. As a consequence of the client's order, the consultant verbally instructed A1-Raha Est. to resume all landscaping activities at that site. As a consequence of this unexpected incident, a portion of the irrigation work was executed without any detailed design - an error which resulted in poor quality of work and the installation of a faulty irrigation network. The system had to be redesigned and executed correctly. This experience taught the company a lesson: not to execute any work without the written approval of the consultant - no matter what the circumstances are.

All irrigation working drawings and design calculations
for the guest villa site were performed within one month. Then, the plans were submitted to the consultant for approval. Mr. Saleh and the author met with the consultant on three occasions to discuss and finalize the pending issues leading to the consultant's final approval. However, due to construction and architectural interferences, minor modifications and adjustments proved to be necessary even during the execution phase.

IV. C. GASSIM EMIRATE PALACE COMPLEX: MAIN SITE

The Main Site of the project encompasses the living accomodations of H.R.H., Prince of the Gassim Emirate, including all the support buildings discussed previously. The landscaping area at the main site is about $57,000 \mathrm{~m}^{2}$, or approximately $570,000 \mathrm{ft}^{2}$. The irrigation activities in this specific area consist of approximately $40,000 \mathrm{~m}^{2}$ or $400,000 \mathrm{ft}^{2}$. An overall picture of the main site, taken in May, 1983 is shown in Appendix B.

The irrigation design calculations and drawings for the main site were also performed by Messrs Saleh and Amico and the author. The design phase started four months after the contract was signed. Meanwhile, the ongoing irrigation works at the guest villa site were being completed.

After a month and a half of design work by the previously mentioned team, the consultant reviewed and checked the plans; then he gave final approval of all main site irrigation shop drawings and design calculations. However, due to work delays in the construction phase executed by the main contractor, the irrigation mobilization and works have not yet started, at the main site.

Following is an elaboration of the irrigation design procedure used to design the irrigation systems of both the guest villa and main sites.

IV. D. THE IRRIGATION DESIGN PROCEDURE

Irrigation generally is defined as "the application of water to soil for the purpose of supplying the moisture essential for plant growth." (4) However, a more comprehensive definition holds true for any number of the following eight purposes:

1. To add water to soil to supply the moisture essential for plant growth.
2. To provide crop insurance against short duration droughts.
3. To cool the soil and atmosphere, thereby making more favorable environment for plant growth.
4. To reduce the hazard of frost.
5. To wash out or dilute salts in the soil.
6. To reduce the hazard of soil piping.
7. To soften tillage pans and clods.
8. To delay bud formation by evaporative cooling." (5)

Since the Middle East is generally characterized by arid and semi arid climates, most planting schemes necessitate supplements to the natural moisture supplies. Hence, irrigation is an integral part of the vast majority of landscape projects. No matter how good the landscape design, without carefully designed irrigation, the scheme will not be successful.

In order to design the sprinkler system properly for the guest villa and main sites of the Gassim project, the following
procedure was necessary: (It is to be noted that the individual steps of the design procedure were taken from Rain Bird Irrigation Systems Design Manual as general guidelines.)

1. Obtain site information.
2. Determine the system irrigation requirements.
3. Determine water and power supplies.
4. Select sprinklers and determine spacing ranges.
5. Circuit sprinklers; locate valves and mainlines.
6. Size pipe and valves, and calculate total system pressure requirements.
7. Estimate potential mainline surge pressure.
8. Locate controllers and size wire.
9. Prepare the final irrigation plan.
10. Prepare a Bill of Materials.

Following is an elaboration of the steps mentioned above and how the author made use of each one of them while designing the irrigation system for the Gassim Project.

STEP NO. I: OBTAIN SITE INFORMATION
It is very important to secure complete and accurate field information on the actual site that is to be sprinkled. Some of the major information that was desired while designing the entire irrigation system is listed below.
A. PLOT PLAN

The first phase of sprinkler system design is the preparation
of a plot plan of the property. This phase is extremely important and should be done accurately to avoid errors in the head layout and cost estimate. However, no plot plan was made for either site. Instead, hardscaping layouts were provided to Al-Raha Est. by the main contractor. In turn, the former supplied Obal Est. with the available information on the basis of which Mr. Saleh, Mr. Amico, and the author performed the irrigation design. The main site hardscaping layout is presented in Appendix B. As shown on this drawing, the main site was divided into seven major zones which, in turn, were subdivided to encompass seventeen different sectors. The guest villa site was also divided into separate areas. All landscaping shop drawings for both sites were based on these divisions. This method proved to be advantageous in many respects: (1) it helped the designers to work on larger scale drawings; (2) the drawings were more clear, readable, and easy to work with;
(3) it made the task easier for the team executing and insta11ing the irrigation system; and (4) provided a practical scheme to schedule the work according to regions and zones compatible with the existing drawings.

The need for accurate plotplans was hence overlooked by Obal Est. and the author as well. As a consequence, errors committed during the execution phase resulted in cost overruns and loss of profit; several heads had to be added, extra
piping was required, and additional fittings needed to be installed. These errors compounded the costly time delays and extra costs in manpower and equipment on the site.

B. TYPE OF PLANTINGS

Al-Raha Establishment supplied Obal Est. with its softscaping drawings showing the type of plants and their locations. These plans enabled irrigation designers to indicate all areas with different types of plantings that would require separate control valves and different sprinklers for special control of watering. Then, all areas requiring a different frequency of irrigation than the normal turf areas were noted so that they might have separate control valves and be placed on separate stations of the controller to be programmed differently. C. OTHER CONSIDERATIONS

Various factors were also considered before designing the irrigation system: (1) the type of soil that was to be used, in addition to the information available on the type of plants, was determined in order to provide the designers and the author with a guide as to the length and frequency of each irrigation; (2) the amount of prevailing wind velocity and direction of the wind were also required to determine the maximum spacing of sprinklers to assure proper coverage; and (3) the various elevations on the site were recorded to enable the determination of the pressure gains and losses throughout the system
due to elevation differences. Each foot of elevation difference is equal to 0.433 psi pressure loss or gain in the system.

STEP NO. 2: DETERMINING THE SYSTEM IRRIGATION REQUIREMENTS
Several factors affect the overall requirement of an irrigation system. Among these are terrain, water supplies, and climate.
A. TERRAIN

Both areas to be sprinkler irrigated at the guest villa site and the main site involved slopes and various contours. In general, as the slope increased, the intake/ infiltration rate decreased so the chances for erosion were greatly increased. Therefore, the designers had to specify that more than one irrigation cycle was necessary to apply the sufficient water for the plants at these sites.
B. PLANT WATER REQUIREMENTS

To design an irrigation system properly, the designer must understand the water requirements of the different types of grasses, ground covers, shrubs, and trees. Since such information was in the field of Al-Raha's expertise, it was provided to Mr. Saleh, Mr. Amico, and the author by Al-Raha. It is to be noted that the presence of ground cover will mechanically increase the "ability" of the soil to take in water without run-off. Thus, ground cover has been planted at both sites.
C. CLIMATE

The climate of the irrigated area will directly affect the total irrigation requirement. During the summer season, the Gassim region is characterized with a hot climate which requires more water for irrigation; during the winter a cooler climate prevails, requiring less water and less frequent irrigation. Adverse wind conditions will also influence the total irrigation requirement. Strong winds will tend to dry out the irrigated areas and thus require additional water to be added. These factors were taken into account in the designing of the irrigation system: different watering programs were set up for different seasons of the year and different type of plants, and sprinkler heads were spaced to minimize the effects of wind on sprinkler distribution.

STEP NO. 3: DETERMINING WATER AND POWER SUPPLIES
To determine the available water supply and power supply requires several specific steps in selecting new equipment or estimating the capacity of any existing equipment. The author will not discuss all these steps in this report. However, information relevant to the Gassim project will be elaborated upon.
A. WATER SUPPLY

The importance of acquiring correct, detailed information on the water source should be emphasized since this data is
required to determine the following:

1. Amount of gallonage that can be used for each circuit; - this sum determines the total number of circuits in the system.
2. The amount of time that will be required to irrigate the area.
3. The type of sprinklers that may be used on the system.
4. The gallons per minute and pressure available at the sprinkler heads.

The sources of water supply at the guest villa site were one tank and one pump. According to the contract, the main contractor is responsible for building the irrigation water tank and supplying it with sufficient daily municipal water to irrigate the designated area. On the other hand, it is Al-Raha's responsibility to provide the appropriate size of pump for the irrigation design. The consultant designated as the sources of water supply at the main site as one well, one tank, and two pumps. Figure 4 shows a schematic of the main site water sources.
B. POWER SUPPLY

The power supply at both sites was to be provided by the main contractor. Fortunately, there were no restrictions on the power availability or the cost. Thus, there was no need for any adjustments in the programming of the controller or of

Figure 4
MAIN SITE WATER SOURCES
the sprinkler control valves to make available enough voltage to properly operate the system. However, the location of the $120-\mathrm{V}$ AC power for the automatic controller, as well as the capability of the power source to maintain a stable $120-\mathrm{V}$ AC power, were determined and checked by the designers.

STEP NO. 4: SELECTING SPRINKLERS AND DETERMINING SPACING RANGES One of the most important steps in designing a sprinkler system is determining the proper sprinkler and the proper spacing for that sprinkler. This step is not so easy as it may seem. It requires expertise in the various types of sprinkler; their characteristics including range of operating pressure, diameter of coverage, cost, and other important features; and their availability in the market. Also, the designer has to acquire the basics of the sprinkler spacing theory before getting involved in any kind of irrigation system design. The author spent a great deal of his time while serving on his internship learning about the types of sprinklers available and their respective theoretical distribution profiles as well as their practical applications in anirrigation design. This was accomplished through the review of various irrigation manuals, manufacturers' product manuals, and other literature pertinent to the design of an irrigation system. From this review, the author acquired very extensive and enriching information on sprinkler systems. However, he will limit himself
to discussing only the basic points pertinent to the proper selection of sprinklers and their respective spacing in the following sections.
A. TYPES OF SPRINKLERS

There are two basic types of sprinklers available for use in a system. These types are:

1. Sprayhead sprinklers
a. Surface type - which do not pop.
b. Pop-up type - available in standard and High-pop models.
c. Shrub spray - fixed pattern.
d. Bubble type - used to flood flower bed or Basins.
2. Impact sprinklers
a. Permanent riser, mounted above ground.
b. Used with portable key and quickcoupling valve.
c. Rotor pop-up type submerged to ground level.

B. SPRINKLER FEATURES

1. Sprayhead sprinklers
a. Emit single or double sheets or fans of water.
b. Operate well in low pressure range of 15 to 30 psi .
c. Cover small areas of 10 to 20 feet radius.
d. Apply water at a relatively high rate - from one to two inches or greater per hour.
2. Impact Sprinklers
a. Single or double nozzle, with water streams revolving over the area of coverage.
b. Operating at high pressures - 30 to 80 psi. range.
c. Covering large areas of 40 to 100 feet radius.
d. Applying water at a low rate, generally from 0.20 inches to 0.50 inches per hour.
e. Most economical for large, open turf areas - reduces the number of sprinkler heads, fittings, amount of pipe and trenching, installation, etc.
f. Not distorted so easily by the wind because of sending a larger, more compact stream of water.
C. SELECTING SPRINKLERS

Selection of sprinklers and their spacing is usually
affected by any one or all of the following factors:

1. General factors
a. Type of sprinklers required. The choices include sprayhead or impact pop-up versus stationary.
b. Size and shape of the areas to be irrigated. The engineers designing the sprinkler system should always take into account one of the most important economic factors - to cover the area with the least number of sprinklers without sacrificing water coverage on any area.
c. The type and mixture of turf, shrub, and flower bed areas. As was the case in the Gassim project, the use of smaller sprinklers was necessary to water randomly mixed areas.
d. The available water supply. This may influence which sprinkler is selected. However, this factor was irrelevant for the Gassim project because the availability of water for the Emirate was well secured.
e. The local environmental conditions such as wind, rain, and temperature, as well as the type of soil and its ability to accept water. These will also affect the type of sprinkler selected. All these factors were taken into consideration by the project irrigation design engineers.
2. Special factors

Special factors to properly design the sprinkler system at the
Gassim Emirate Palace Complex project were taken into account.
Adequate consideration was given to the following factors:
a. Different types of sprinkler heads should not be mixed together on the same circuit; the application rate must be nearly the same. Even with the same type of sprinklers on a circuit, half circle and quarter circle models must be selected at one-half and one-fourth the gpm discharge from that of the full circle heads.
b. The operating pressures should be nearly the

> same for all sprinklers on a circuit. Furthermore, within the circuit of compatible sprinklers, the operating pressure at the various heads must be within certain limits for proper performance. Pressure variation between extreme heads on a given circuit should be within a 20 percent variation for good design and proper operation of a system.
D. BASICS OF SPRINKLER SPACING PATTERNS AND HEAD LAYOUT

A brief discussion of the principles of sprinkler head layout is presented in this section.

There are two basic types of sprinkler spacing patterns: triangular and square spacing. Their shape and dimensions will depend upon the diameters of coverage by the individual sprinklers and the wind velocities apparent at the time of sprinkling.
"In square spacing (Shown in Figure 5) heads are located at each of the four corners formed by a square. And in triangular spacing, heads fall at each of three points formed by an equilateral triangle in which the included angles are 60 degrees.

Square spacing is largely obsolescent because it does not provide the relatively uniform distribution of water characteristic to triangular spacing. This is due to the excess amount of overlap that occurs between heads to provide sufficient water at the center of the square where the four circles of coverage must overlap. With triangular spacing, heads can be spaced further apart as compared to square spacing; thus, fewer heads perform better at less cost." (5)

Very few areas will be of an exact size to accomodate a

Square Spacing

Equilateral Triangular Spacing

```
SD= Square Spacing of heads
S\Delta = Equilateral triangular spacing of meads
S/2 = Equilateral triangular 1/2 spacing of heads
AS = Spacing between rows of hewas
O = Diameter of coverage
MC = Mean coverage
```

Figure 5
SOUARE VS. TRIANGULAR SPACING
true equilateral triangular sprinkler pattern. However, the same quality of layout may be obtained with an equal spacing triangle pattern. This type pattern is produced by compressing an equilateral triangular pattern from one or both sides. It can easily be plotted if the following rules are followed:

1. Use the same spacing for all heads on all rows of heads.
2. Use the same spacing between all rows of heads.

Modifications of the two basic triangular and square patterns are often necessary to fit particular areas. Such modified patterns include the sliding pattern and the rectangular, staggered pattern - which represents a mixture of rectangular and triangular patterns.

Having obtained relevant knowledge of sprinkler head layout principles, Mr. Saleh, Mr. Amico, and the author proceeded with the project irrigation design by locating sprinkler heads so that they would water the lawn and all other plantings properly.

First, all sprinklers in trouble areas were located. Second, the designers proceeded to the open areas and located all sprinklers using the pattern of spacing which best suited that area. Finally, adjustment of sprinkler locations was made to fit into the overall system by compressing the pattern of heads. Special methods were used to locate sprinklers properly at special areas such as, strip areas, hedge row
areas, rounded corners, and inside and outside curves.
After the sprinklers had been spotted in all areas and the entire system checked for good coverage, the design system was ready for circuiting, pipe sizing, and programming. STEP NO. 5: CIRCUITING SPRINKLERS AND LOCATING VALVES AND MAINLINES

To determine the sprinkler circuits the designers had to discuss such previously mentioned factors as the type of plants in each area, the type of sprinklers needed to water the particular plants, and the compatibility of the sprinklers in that area. Compatibility includes flow requirement and operating pressure. To determine the approximate gpm needed in each separate area of landscape, the designers added together the individual gpms for each sprinkler at that particular area. The sum of the gpm needed in each area equals the total system demand for water as if all sprinklers were turned on at once. The next important step in designing the sprinkler circuit was to locate the control valves and the mainline pipe, and calculate the circuit operating time.
A. LOCATING VALVES

Some of the factors determining their location are:

1. Valves should be located in areas where they are accessible for adjustment and maintenance;
2. Valves should be located in areas where the presence
of an exposed valve box cover will not interfere with normal traffic;
3. Valves should, when possible, be located between the extreme ends of the lateral line.

B. LOCATING MAINLINES

The location of the mainlines is done after balancing the size and arrangement of the lateral circuits by arranging each circuit to flow approximately the same flow rate. The mainline pipe should be located in such areas as - during and after installation - maintenance, and/or repair will create minimum interruption to the landscaped areas. In general, mainlines are located at the contours of the irrigated areas, and the circuits for lateral routings are selected in such a manner as to create the least possible total pressure loss.
C. CALCULATING CIRCUIT OPERATING TIME (PROGRAMMING)

At this stage of the design phase, a very important feature of the system design - the operating time for each type of sprinkler being used to distribute water to different types of plant material - should be determined. First, the rate of precipitation of sprinkler systems should be defined. "Rate of precipitation describes the length of time required to deposit a given depth of water on an area. System precipitation can be thought of as an equivalent amount of rainfall: both are measured in inches of depth water, would cover an
area." (5) The following formulas provided average precipitation for a system of full-circle and half-circle sprinklers:

1. full-circle sprinklers

$$
\begin{aligned}
& P_{r}=\frac{\text { one head (gpm) } \times 96.25}{\text { head spacing on row (ft) } x}=\text { in/hr precipitation } \\
& \text { row spacing (ft) }
\end{aligned}
$$

(eq. 1)
2. half-circle sprinklers

$$
P_{r}=\frac{\text { one head (gpm) } \times 192.50}{\text { head spacing on row (ft) } x}=\text { in/hr precipitation }
$$

To calculate the effects of the irrigation requirement for the system, sprinkler flow rate, and circuit precipitation rate on the circuit operating time requires the use of the following simple formula:

$$
T_{0}=\frac{I_{0} \times 60}{P_{r} \times D_{a}}
$$

where:

$$
\left.\begin{array}{rl}
\mathrm{T}_{0}= & \text { Circuit operating time in minutes per day (min/day) } \\
\mathrm{I}_{0}= & \text { System irrigation requirement in inches of water } \\
& \text { required per week (inch/week) }
\end{array}\right\}
$$

However, Mr. Saleh and Mr. Amico chose not to use the
method explained above. Instead, they calculated the irrigation time required for the various circuits by simply dividing the total water required by a circuit with the actual circuit flow rate. The author believes that the former method is a more accurate one and entails less adjustments after the system is installed.

The irrigation time for all circuits at the guest villa site and the main site of the Gassim project, along with the circuit total flow rate and water requirements, are shown in Appendix C.

STEP NO. 6: SIZING PIPE, VALVES, AND CALCULATING TOTAL SYSTEM PRESSURE REQUIRED

Sizing lateral pipes, mainline pipes, and valves, as well as calculating the total system pressure requirement constitute the heart of an irrigation system design. In this section, the author will describe the procedure and method he followed while designing the irrigation system of the Gassim project. A. SIZING PIPE - Friction Factor Method

The Friction Factor Method provides for the calculation of a numerical guideline called the "friction factor." "The friction factor is an indicator of the allowable pressure loss (psi) or pressure variation between specific points in a sprinkler circuit." (6)

The friction factor method enables the designer to select
pipe sizes which will not exceed the allowable pressure variation over the length of the sprinkler lateral and or mainline.

The Friction Factor is calculated as:
$F_{f}=\frac{\text { Sprinkler operating pressure } x \text { percent variation }}{\text { Critical length of circuit in hundreds of feet }}$
(eq. 4)
where:
Sprinkler operating pressure (P_{o}) equals the specified base or nozzle pressure at the last sprinkler head on the lateral line.

Percent variation (P, v) is the allowable variation in pressure between the extreme ends of the critical circuit. This value should be between 10 percent and 20 percent for optimum pipe sizing and system performance

Critical length of the circuit in hundreds of feet ($L_{\text {) }}$) is the length over which the allowable pressure variáion is measured.

Hence, to select the appropriate critical pipe lengths and friction factors. The following step by step procedure was used.

1. Calculate the lateral critical length. This length is the longest distance from the circuit control valve to the sprinkler at the end of the lateral pipe.
2. Calculate the lateral friction factor using the formula explained above:

(eq. 4a)
The result is the average amount of pressure (psi)
loss per 100 feet of pipe, regardless of pipe size.
3. Select the individual pipe section sizes. By entering the appropriate friction loss chart opposite required gpm flow, and reading horizontally, the designer finds a nominal pipe diameter for a particular PVC type.
4. Calculate the actual lateral pressure requirement. First, the decimal equivalent of the actual length of each pipe section is multiplied by the "actual friction factor" for that section. The result is the actual pressure loss. Second, all the actual pipe pressure losses are added together. Third, added to this quantity are the sprinkler operating pressure, a quantity of pressure to compensate for fitting losses which may be approximated at 10 percent of the total pipe friction loss - and the pressure loss through the control valve.

The total of all the above pressure of friction losses now becomes the actual lateral pressure requirement.
5. Size the mainline pipe. Using the actual lateral pressure requirement from step 4 , the mainline friction factor is calculated as follows:
$\mathrm{F}_{\mathrm{fm}}=\frac{\text { Allowable Mainline Pressure Variation }}{\text { Length of Mainline (hundreds of feet) }}$
(eq. 5)
The "Allowable Mainline Pressure Variation" is determined by multiplying the pressure required at the inlet of the most
distant valve by 10 to 20 percent. The selection of mainline pipe sizes from the appropriate friction loss charts is done in the same manner as the one used to select lateral pipe sizes.

To calculate the actual mainline friction loss, the actual mainline friction factor is multiplied by the decimal equivalent of the mainline pipe length.
B. SIZING VALVES

Control valves are sized and selected for the amount of water which they must deliver to the sprinklers. They are selected so that the pressure loss through the valves remains less than 10 percent of the available pressure of the total flow.

From the valve performance chart, the appropriate valve sizes in inches opposite the gpm and approximate pressure loss rating are determined.
C. CALCULATING THE TOTAL SYSTEM PRESSURE REQUIREMENT

The total system pressure requirement is the accumulation of all losses incurred between the pump and the most distant sprinkler on a lateral pipe. These losses include sprinkler operating pressure, control valve pressure loss, elevation pressure loss, mainline and lateral pressure losses, etc.

The design calculations to determine the friction losses for both sites of the Gassim project irrigation systems are shown in Appendix D. Using the Al-Raha computer, Mr. Saleh and the
author programmed the calculations, using the Hazen and Williams empirical formula. The assumptions and elaboration of the formulas used are also presented in Appendix D.

At this stage of the design process, the designers were able to select the pumps for the project irrigation systems. Knowing the total required flow rate and the total pump head enabled the designers to determine the pump horsepower by the following formula (7):

$$
\begin{equation*}
\text { Brake } h p=\frac{g p m \times H \text { (in feet) } \times \text { spgr }}{3960 \times \text { efficiency }} \tag{eq.6}
\end{equation*}
$$

where:

```
gpm = U.S. gallons per minute delivered
H = total head in feet of liquid - differential
    sp gr = specific gravity
```

STEP NO. 7: ESTIMATING POTENTIAL MAINLINE SURGE PRESSURE When designing a sprinkler system the designers must consider surge pressures which may damage the mainline piping system. Surge pressure or 'water hammer" occurs in a mainline pipe when the flow of water in that pipe is suddenly stopped. The magnitude of the surge pressure depends upon several factors: (1) the initial velocity of flow, and/or the quantity of water flowing through the pipe; (2) the amount of time it took to stop the flow of water in the pipe; and (3) the length of the mainline pipe between the point where the flow first stopped and the first entrance connection into the source of water.

However, the designers did not use a particular formula or nomograph to estimate the magnitude of potential surge pressures in this project. Instead, they took account of such problems by maintaining a fairly low velocity - $4 \mathrm{ft} / \mathrm{sec}$ - and selecting plastic (PVC) pipes with safe burst pressure ratings.

STEP NO. 8: LOCATING CONTROLLERS AND SIZE WIRE
The location of the electric controllers is dependent on several factors, which were all taken into consideration while designing the project's sprinkler system: (1) the location of adequate power - 120 VAC - (2) the extreme locations of sprinkler circuit control valves; and (3) the requirement to place controllers inside a protective structure rather than to install them outside of the structure.

At the Gassim project, the electric controllers were located inside the irrigation pump room and very close to the source of power provided by the main contractor.

SIZING VALVE CONTROL WIRE AND CONTROLLER POWER WIRE
Valve control wire sizing charts are provided in every manufacturet's equipment catalog and for different operating pressure ranges. The procedure in sizing the wires for control valves in the case where there is only one valve per controller station is fairly simple. Knowing the distance from the controller out to each valve, the designer considers the longest distance and then uses the appropriate wire sizing chart
to select a ground and control wire size combination which meets the requirements of that specific valve. Since the longest wire circuit was selected, the largest wire size automatically must accompany it.

However, a more complicated problem was present in the Gassim project. More than one valve per controller station, and several controllers at one location, posed a different problem requiring a special design procedure. This procedure was accomplished by using several charts, the "equivalent length" method, the " F " wire factor, and a few relevant fromulas from electrical engineering.

The author acquired his knowledge of designing the electrical phase of an irrigation system through studying and reviewing literature pertinent to that subject, and learning from Mr. Saleh and Mr. Amico while closely interacting with them during the design process.

STEP NO. 9: PREPARING THE FINAL IRRIGATION PLAN
At this point, the design engineers should be able to present the final irrigation, plan including the general layout, legend, and all working drawings of the sprinkler system. All irrigation drawings for the guest villa site and the main site of the Gassim project are shown in Appendix E. These shop drawings were submitted to and approved by the Saud Consult,
the consulting firm for the project.

STEP NO. 10: PREPARING A BILL OF MATERIALS

Preparing a bill of materials of a system design is an important factor that helps the designers to estimate the system costs as well as the approximate amount of different types of materials that need to be ordered to execute the work.

Accurate accounts of the number of sprinkler heads, valves, controllers, etc. are taken. Reasonable estimates of the number of fittings, quantities of pipe and wire are also determined. Then, a bill of material format is used to include all of this information.
IV. E. OTHER ENGINEERING WORK

One of the responsibilities assigned to the author while serving on his internship, other than designing the irrigation system for the Gassim project, was to supervise the execution and installation of the entire irrigation system at both the guest villa site and the main site. The author had to inspect the irrigation work to see if it was in accordance with codes and specifications set by the consultant; the piping network was performed according to the design shop drawings, and the type of materials being used for the irrigation networks were of good quality.

The author had the opportunity to supervise and experience the execution, operation, and maintenance of the entire irrigation system at the guest villa site. Unfortunately, only the design phase was accomplished for the main site. Free access to this site was not possible due to the main contractor's heavy works and time delays.

Furthermore, the author took advantage of every opportunity to learn about and contribute to the company in the field of mechanical engineering. He studied, reviewed, and supervised the design and execution of the mechanical systems of the fountains which were designed and executed by Modern Design Establishment, Al-Raha's subcontractor.

Having participated in all the phases of irrigation
system - including design, execution and supervision - the author feels that he gained enriching experience, through which he was given the opportunity to contribute much to the company in the technical aspect of his mechanical engineering field.

V. A. INTRODUCTION

This chapter describes the author's involvement and experience in the non-academic, business environment while serving on his internship at Al-Raha Establishment in Riyadh, Saudi Arabia.

As mentioned previously, the author was assigned the duties of project manager over the softscaping portion of the project at the commencement of the work. The author was responsible for organizing and recruiting the members of the softscaping team, scheduling and budgeting the works, purchasing equipment and materials, and most importantly, effectively managing his team to produce satisfactory results.

During the fifth month of the internship, A1-Raha Establishment promoted the author to the position of assistant project manager for all the landscaping activities while permitting him to keep his position as project manager for the softscaping work. Assuming these two managerial positions was the most challenging and interesting task of the internship. In this dual role, through constant interaction with technical and administrative managers, the author learned much about decision making, human relations, planning, and organizing.

Following are the sections discussing the various activities in which the author was involved as activity manager and then as assistant project manager while serving on his internship at
the Gassim Emirate Palace Complex in Gassim, Saudi Arabia.
v. B. THE AUTHOR'S EXPERIENCE AS SOFTSCAPING DIVISION HEAD

The purpose of this section is to present the author's internship activities as company manager of the softscaping portion of the Gassim project.

1. Planning, Organizing, and Scheduling

Planning, organizing, and scheduling constitute the most important roles of a manager. The author was continuously involved in these actvities throughout the period of the internship. At the commencement of the project, he had to set the primary objectives pertinent to the execution of the softscaping work and then devise methods and procedures to implement those objectives. During this process, the author was in constant interaction with other more experienced project managers in the company - learning, discussing, and observing how they were running their projects. First, the author had to determine and secure his team to perform the works effectively. This involved the establishment of a group of engineers, foreman, secretary, and laborers. Second, he had to determine the type, quality, and quantity of materials and equipment needed for the project. Finally the author had the responsibility of organizing and utilizing the available manpower and material resources to execute the works.

The softscaping works involved several activities such as rough grading, excavation for trees, backfilling with agricul-
tural soil, soil spreading, and planting. Because these activities could upset the time tables for such other work as irrigation, electrical, and hardscaping, the author had to coordinate schedules with the other company managers to avoid interfering with their work. The author took advantage of the services Spectronics - Al-Raha's management consulting firm - is providing to his company to devise one schedule encompassing all the landscaping activities of the project and combining them in a way that is agreed upon by all division managers. Each activity manager is responsible for the execution of his work while cooperating with the other managers to complete all the works within a specified time span. This required constant organization, scheduling, reviewing, checking, and follow-up on the part of the author to effectively accomplish his task.
2. Personnel Recruitment

The author felt highly gratified that the general manager and administrative manager of the company asked him on many occasions to meet and interview job applicants. Interviewing each applicant was a new, interesting experience in itself. Some applicants were able to travel to Gassim and visit the site with the author while the latter explained to them the various activities involved in the project; and the author interviewed others at the main office in Riyadh. On several
occasions, the candidates resided outside of Saudi Arabia. In these cases, the author would carefully read their resumes and then contact the highly potential applicants either by phone, telex, or letter depending on the situation or location of the applicant.

Based on the author's interviews and evaluations, the higher management would make a decision whether or not the applicant receive an offer. Conversing with the potential employees was an enriching and illuminating experience during the course of the internship.
3. Purchasing and Accounting

As a director managing A1-Raha's softscaping work in the project, the author also had the duties of deciding and approving the purchase of all materials and equipment required by this division. The regular procedure was that the responsible engineer on the site would report to the author about the materials needed for the project, and then the author would decide whether or not to order these. One of the author's major involvements in this activity was when he suggested to the administrative financial manager the purchasing of a new loader and a new excavator-totaling to forty thousand dollars in valueto be used for the project and other ongoing ones. This suggestion was a result of numerous meetings between heavy equipment agents and the author to discuss equipment characteris-
tics and prices, and finally performing a cost - benefit analysis on purchasing a new equipment versus renting one or using laborers to accomplish the job.

Furthermore, the author was responsible for all the accounting and financial aspects of the work under his authority. Almost every week, he had to travel to Riyadh and meet with the financial manager in order to keep him up to date with the costs and expenses incurred or to be incurred in the project. He filled and signed all the payment vouchers for all purchase orders, and performed the monthly financial statements pertinent to the project. By constantly interacting with the financial manager and the company accountants throughout the course of the internship, the author acquired excellent experience in the financial and accounting fields. It is to be noted that the core required courses of the Doctor of Engineering Program in accounting and finance provided the intern with a good background to understand and perform the financial practices of the company.

4. Meetings

Among the managers at Al-Raha Establishment, the business, technical, and coordination meetings are common features of almost every business day. It soon became a very important task for the author to learn how to conduct an effective business meeting.

With all the managerial responsibilities assigned to him, the intern had little choice but to develop this fundamental skill as rapidly as possible. To meet this challenge, the author had to attend as many meetings as possible and actively participate in all of them. These meetings included weekly meetings among company department heads and the top management, as well as meetings between the administrative and financial manager and other company managers. The intern also attended numerous other meetings involving managers, engineers, materials supply agents, and salesmen whenever the opportunity arose. The attendance of these meetings not only helped to develop a feel for the characteristics of a good meeting but to provide the intern with a valuable insight into the events taking place throughout the firm.

From observing these many meetings, the intern was able to establish the following guidelines for conducting his own meetings effectively.
(1) Prepare in advance for the meeting and keep it moving once it has started.
(2) Avoid being led off the subject or having the meeting dominated by any person.
(3) Follow an agenda as closely as possible.

The author has learned that following the above keeps a meeting precise and concise.

The author organized and chaired all the meetings involving the softscaping team of the project and various other business meetings in connection with non-technical activities. Serving in the chair position presented a great chance for the intern to learn, experience, and then improve his ability in conducting business and technical meetings.

v. C. THE AUTHOR'S EXPERIENCE AS ASSISTANT PROJECT MANAGER

The promotion to the new position of assistant project manager for all the landscaping activities of the Gassim project constituted the most important, challenging event during the internship. The results were more responsibilities and challenges, which were soon to be translated into even harder work longer working hours. However, there was nothing the intern did not want or enjoy:

The following is an elaboration of the internship activities providing the intern with an opportunity to develop his own interpersonal and management skills. Some of these activities consisted of actual participation, while others were limited to observation only.

1. Project Coordination

Only through effective cooperation and coordination among all four activities of the landscaping work could good performance and meeting of deadlines be ensured. One of the responsibilities of the intern as assistant project manager was to coordinate the execution of the on-site work in order to ensure smooth operation, and to prevent disputes and time delays. It was also essential to create a good working atmosphere with the main contractor and the consultant as well.

At the request of the project manager, meetings including the heads of each landscaping activities were to be held at
the end of every working day. It was the intern's responsibility to organize and chair these daily meetings. A daily report of the accomplished work during that day was requested by the project manager to be submitted to the main contractor and, in turn, to the consultant for records. Hence, the intern had to fill out the daily report, based on the information and input of the different activity heads as well as his own observations of on-site progress. During those meetings, the work to be executed the following day was discussed, coordinated, and recorded for follow up and checking purposes. On many occasions, disputes due to lack of cooperation and work interference were translated into complaints. It was the intern's job to settle these disputes, stop any interference, and ensure better coordination among all activities. As the internship progressed, the chairing of these meetings became a pleasurable experience and a source of pride.

Project coordination not only involved the coordination among the various subcontractors but also encompassed dealing with the main contractor as well. Daily informal meetings with the main contractor's technical managers and often times its project manager were inevitable. These meetings were held for many different reasons depending on the circumstances. They consisted of daily on-site problems, requiring mainly cooperation and coordination of works.

A weekly meeting between the main contractor and the subcontractors was held at the main contractor's office on site. These meetings were generally attended by the project managers, the author, and the main contractor's engineering department heads. They were meant to be coordination meetings in which all pending issues and problems would be discussed and resolved. A typical agenda included such topics as checking the joint working schedule and how the work could be expedited to meet the deadines; providing free access to a new area with no joint accupancy for the subcontractor to work in; and clarifying shop drawings.
2. Daily Correspondence

Most of the dealing with the main contractor and consultant was done in writing. As assistant project manager, the intern had the responsibility to read, review, and check all incoming correspondence as well as respond to it through either memorandums or letters. The most interesting part of this activity was to ensure constantly that the interest of the company was always protected. Claims charging the company with the responsibilities for time delays were to be defended, because soon these delays will be translated into financial liabilities to the company.

With the valuable help of the project manager, the intern was successful in protecting the firm's interests in the project;
he took weekly photographs of the work in progress and filed them, and effectively responded to all incoming correspondence from either the main contractor or consultant.

3. Month1y Progress Payments

The four major activities of the landscaping work were divided into several secondary ones varying in type and amount of work from one sector to another. They consisted of such activities as layout, concreting, trenching, cabling, soil spreading, pipe installation and testing. At the end of every month, the intern was responsible for accurately estimating the percentages of work accomplished during that particular period. This information was the basis on which the project manager and the author determined the company's monthly progress payment to include it in the monthly progress report. The monthly report shows the value of all the work accomplished to date as well as the value of the work performed during the last period. This report is then submitted to the consultant through the main contractor for final review before submitting it to the client for the monthly settlement of accounts.

Conducting and participating in all phases of work progress payments, from the estimation phase to the receipt of the check provided the intern with a rare and enriching experience, 4. Meetings

In addition to all the meetings discussed previously, the
author had the opportunity of attending the weekly meetings chaired by the consultant's project manager; these meetings involved only the main contractor's and subcontractor's project managers. Furthermore, the intern attended monthly meetings at the consultant's headquarters in Riyadh; these encompassed only project managers and top technical managers.

During all of these meetings, the intern carefully
observed the managers' responses to highly complicated and critical issues.

For the intern, this activity was not only a skill to be learned; it gave him exposure to many key people in various companies and allowed him to observe how they interacted with each other.

V. D. OTHER NON-ACADEMIC EXPERIENCE

Numerous other internship activities contributed to the development of interpersonal and management skills. Interactions with many different people about various subjects took place every day. As a result, the author was able to develop further communication skills and more effective techniques of dealing with people.

The following two sections describe some of the different activities in which the intern was involved while serving on his internship.

1. Contract Writing

After the Gassim contract was signed, the intern was asked to write the contract between Al-Raha Establishment and Obal Est., the irrigation subcontracting company . At that time, the author had little knowledge and no practical experience in this field. To compensate, the intern made a very thorough study of previously signed contracts in the company as well as other contracts from different firms. After several weeks of preparation, the author was able to produce the required contract. It was then signed by both parties. A portion of this contract is included in Appendix F.

The learning process of contract writing was most interesting and valuable to the author. Not only had he the opportunity to learn how to write a contract but to be exposed to the
financial and banking aspects of securing a project. These include bank guarantees, performance bonds, and advance payments.
2. Seminars and Exhibitions

In addition to the previously mentioned involvements, the intern was careful to be constantly alert for the opportunity to participate in professional development activities beyond his duties for Al-Raha. Several seminars and annual exhibitions took place in Riyadh during the internship. The author attended all of these that fitted into his schedule.

The most important ones were the Rain Bird seminar and the annual exhibition of the Ministry of Agriculture. Rain Bird is the largest and most reputable irrigation company in the United States. Its seminar was chaired by the Rain Bird division manager in Saudi Arabia, and conducted by the company director of product development in the United States. Other than being a promotion session of Rain Bird products, the lectures in the seminar included topics such as irrigation design principles and techniques, new products, and the advantages of using specific products for particular applications.

The Annual Exhibition of the Ministry of Agriculture was an even bigger event. Local and international companies involved in the business of designing, manufacturing, and selling agricultural products or equipment and materials to be
used for agricultural practices participated in that exhibition. Getting acquainted with companies involved in the irrigation design and equipment manufacturing provided valuable experience to the intern. He had first-hand opportunity to inspect pumps, sprinklers, valves, and controllers, and meet with the representatives displaying these products.

Attendance at such seminars and exhibitions contributed to the fulfillment of the internship objectives, mainly because of the exposure it gave the intern to the up-to-date technology and engineering practices; it certainly contributed toward the intern's professional development.

SUMMARY AND CONCLUSIONS

This report served the purpose of elaborating on the various aspects of the author's internship experience with Al-Raha Establishment in Riyadh, Saudi Arabia. In evaluating the internship, the author feels that it fulfilled all the objectives of the Doctor of Engineering program. The intern had the opportunity to study and gain exposure to practically every part of the organization; acquired an excellent experience in engineering design; and significantly increased his interpersonal and management skills by participating in all project management activities

The internship experience has been most challenging, productive, and rewarding. The positive attitude of the internship supervisor, Mr. Zahi A. Mansour, and all of my colleages helped to make the internship even more enjoyable and successful.

REFERENCES

1. Texas A\&M University. Doctor of Engineering Program Manual, 1982-83.
2. Hajeck, Victor G., 'Management of Engineering Projects", McGraw-Hill Book Co., New York, 1977.
3. Huse, Edgar F., "The Modern Manager", West Publishing Co., St. Paul, Minnesota, 1979.
4. Vaughn, Hansen E.; Orson, Israelsen W.; and Glen, Stringham E., "Irrigation Principles and Practices", John Wiley \& Sons, 1979.
5. James, Watkins A., "Turf Irrigation Manual", Telsco Industries, Dallas, Tx, 1981.
6. Rain Bird Company "Design Guide for Turf and Ornamental Irrigation Systems", Ca, 1982.
7. Ingersoll - Rand Company "Cameron Hydraulic Data", 1979.

APPENDICES

APPENDIX A
Resume of Mr. Zahi Abou-Mansour (Intern Supervisor)

(2)

-

 ALRAHA EST. FDR TRADINS
 LANDSCAPING DIVISION

RESUME

Personal Data

Zama : Zahi Emile Abدu-Yansour
'ationality : Lebanese
Birch Date : August 5, 1955
Height : $6^{\prime \prime} 0^{\prime \prime}$
Marital Status : Single

Ecucation:
Master of Engineering Degree, June 1979,
University of California at Davis, Civil Engineering.
Major in structural-engineering with a minor in business
management, including marketing and decision making policies.

Master Thesis : A computer aided report on wind effect on portable guyed towers.

Bachelor of Science Degree, May 1978,
Iowa State University, Civil Engineering

Hork Experi-nca
 Work as a Project Manager on a Ten Million U.S. Dollar jer. The work encompasses all landscaping (i.e. ireigation, plantinis, walkways, Eouncains, pergolas, Ewimming poois and external iighting) for the Gassim Emirate Palace Complex in Gassim, Saudi Arabia.
B. Sept. 1, 1980 - Sept. 30, 1982; Saudi geer Ltd., Riyadh, Saudi Arabia.

- I startec Jur as a Site Engineer in the Depertment of Private Villas. I was directly invoived in the site problems (i.e. technical, materials, coordination between subcontractors). The site consisted or an approximate 8000 m 2 of built area located in three different areas of Riyadh. The duration of the job was ten months and it was handed over on time.
C. - In September 1981, I was promoted to the position of Assistanc Resident Engineer Eor a Forty Million U.S. Dollar job, consisting of a sophisticated palace of an approximate area of 15000 m .
D. - In December $\mathbf{i} 981$, I was promoted to the position of Resident Engineer on the s ame job and was responsiole for all the management and coordination of the site.
E. - In April 1982, Saudi Oger Led. established a new branch office in London, and I was transfered there as a procurement manager for projects performed in Saudi Arabia.
E. - In Seprember 1982, I resigned from Saudi Oger and joined Al Raha Est. as a Project Man. for their Gassim Emirate palace Compiex Project.
G. - July 1980 - June 1981; California Department of Transportation (Caltrans), Sridge Division. I held the position of an assistant Engineer and worked on the design of two overpasses. The first one was a regular reinforced slab and the second one was designed on a prestressed box girdle basis. Boch designs were finished in six months, then I was transiered to the construction field to supervise the erection of five overpasses and two ramps in Oakland, California.
H. - March 1981 - June 1981 : Worked as a reader for an undergraducte Structural Engineering course at the University of California at Davis.

"rork Experience cont.
I. Summer of 1978 : ฟorked on the $\operatorname{structural}$ desizn ai a seven stor: building at the Bureau $\{\dot{f}$ Eechnical Studies ia Sitiont, Lebanor
J. - Summers of 1973 chri $: 977$: Worki: in the logistics department of the Lebanese Organization for International Commerce (LORICO) in Beirut, Lebanon.

Languages :
Ability to read, speak and write English, French and Arabic Eluently.

Hobbies :
Music and volley-ball.

APPENDIX B

Main Site Hardscaping Layout Main Site Overall Picture, May 1983

Figure B. 2a

APPENDIX C
Water Requirement and Irrigation Time:
Guest Villa Site and Main Site

PAGE NO. 00001
hater requifement and iarigation time e guest villa site

E.V.	$\begin{gathered} \text { SIZE } \\ \text { E.V. } \end{gathered}$	SYSTEM GPM	SYSTEM L/MIN	GR.COVA AREA	WATR REO	TOT. MATER REQUIRED	tree NOS	WATR REQ	tot. waten AEQUIAED	IA.TIME.MIN GR.COVA.	IR.TIME.HIN TREES
:= =											
1	$2 "$	33.0	924.740	225.00	18	4050.00	0	0	0	32.467	0.000
2	${ }^{\prime \prime}$	26.0	98.280	136.50	18	2457.00	0	0	0	25.000	0.000
2 A	11/4"	16.8	63.504	0.00	0	0.00	12	75	900	0.000	14.172
3	$2 "$	38.0	143.640	246.50	18	4437.00	0	0	0	30.889	0.000
3 A	11/4"	14.0	52.920	0.00	0	0.00	10	75	750	0.000	14.172
4	11/4"	15.2	57.456	109.00	98	1962.00	0	0	0	34,147	0.000
4 A	$2{ }^{\prime \prime}$	32.2	121.716	0.00	0	0.00	23	75	1725	0.000	14.172
5	${ }^{\prime \prime}$	41.0	154.980	273.25	18	4918.50	0	0	0	31.736	0.000
6	1312"	17.0	64.260	112.50	18	2025.00	0	0	0	31.512	0.000
6 A	11/4"	11.2	42.338	0.00	0	0.00	8	75	600	0.000	14.172
7	21/2"	58.4	213.192	555.25	18	9994.50	0	0	0	46.880	0.000
8	11/2"	22.2	83.916	91.50	18	1647.00	0	0	0	19.626	0.000
日A	11/4"	16.8	63.504	0.00	0	0.00	12	75	900	0.000	14.172
9A	11/2"	25.2	95.256	0.00	0	0.00	18	75	1350	0.000	14.172
10	$2 "$	28.5	107.730	288.50	18	5193.00	0	0	0	48.203	0.000
10 A	$2 "$	35.0	132.300	0.00	0	0.00	25	75	1875	0.000	14.172
11	$1{ }^{17}$	8.8	33.284	88.00	18	1584.00	0	0	0	47.619	0.000
12	11/2"	33.5	128.630	179.00	18	3222.00	0	0	0	25.444	0.000
12A	11/2"	14.0	52.920	0.00	0	0.00	10	75	750	0.000	14.172
13	$2 "$	33.3	125.874	235.25	18	4234.50	0	0	0	33.640	0.000
13 A	$2 "$	36.4	137.592	0.00	0	0.00	26	75	1950	0.000	14.172
14	$2 "$	32.7	123.806	265.00	18	4770.00	0	0	0	38.590	0.000
15	11/2 ${ }^{11}$	24.6	92.988	62.00	18	1116.00	0	0	0	12.001	0.000
15A	11/2"	25.2	95.256	0.00	0	0.00	18	75	1350	0.000	14.172
16	$2 "$	38.1	144.018	248.50	18	4473.00	0	0	0	31.058	0.000
17	11/2"	25.0	94.500	136.50	18	2457.00	0	0	0	25.000	0.000
17 A	11/2"	22.4	84.672	0.00	0	0.00	17	75	1275	0.000	15.058
18	${ }^{\prime \prime}$	26.0	98.280	210.50	18	3789.00	0	0	0	38.553	0.000
18A	11/4"	15.4	58.212	0.00	0	0.00	11	75	825	0.000	14.172
19	2"	33.0	124.740	144.25	18	2596.50	0	0	0	20.815	0.000
20	11/2"	26.0	98.280	212.25	18	3820.50	0	0	0	38.873	0.000
20A	19/4"	12.6	47.628	0.00	0	0.00	9	75	675	0.000	14.172
21	11/2"	12.5	47.250	60.00	18	1080.00	0	0	0	22.857	0.000
214	11/4"	12.6	47.628	0.00	0	0.00	9	75	675	0.000	14.172
22	$2 "$	32.0	120.960	157.50	18	2835.00	0	0	0	23.437	0.000
23	2"	37.5	147.750	371.25	18	6682.50	0	0	0	47.142	0.000
23^	$2 "$	30.8	116.424	0.00	0	0.00	22	75	1650	0.000	14.172
24	11/2"	18.0	68.040	102.50	18	1845.00	0	0	0	27.116	0.000
24A	11/2"	23.8	89.964	0.00	0	0.00	18	75	1350	0.000	15.006
25	11/2"	17.4	65.772	75.00	18	1350.00	0	0	0	20.525	0.000
25A	$2{ }^{\prime \prime}$	30.8	116.424	0.00	0	0.00	22	75	1550	0.000	14.172
26	$2 "$	40.0	151.200	327.00	18	5886.00	0	0	0	38.928	0.000
27	11/2"	25.0	94.500	115.75	18	2083.50	0	0	0	22.047	0.000
27A	11/2"	21.0	79.380	0.00	0	0.00	15	75	1125	0.000	14.172
28	2"	50.0	189.000	141.50	18	2547.00	0	0	0	13.476	0.000
29	$2 "$	50.0	189.000	141.50	18	2547.00	0	0	0	13.476	0.000
** TOTAL ** $1236.94675 .4825311 .25 \quad 504 \quad 95602.50 \quad 21375$											

	= ELECTRIC VALVE NUMBER AS PER dRAwINGS			
EE E.V	- ELECTRIC VALVE SIZE (INCH)			
SYSTEM GPM	= AMOUNT OF WATER DELIVERD BY THE SYSTEM (GPM)			
SYSTEM L/MIN	= " " " " "			
GR.COVER AREA				
WATER REQ	$=$ GR. COVER WATER REQUIRMENTS (L/SM,			
TOT. MATER REQUIRED	= GR.COVERD TOTAL WATER REQUIRHENTS (L/DAY)			
TREE NOS	= NUMBER OF TREES			
UATER REQ	= TREES WATER REQUIRMENTS (L/TREE/DAY)			
TOT. WATER REQUIRED	= TREES TOTAL MATER REQUIRMENTS (L/DAY)			
TR.TIME.MIN GR.COV	$=$ TOTAL IRRIGATION TIME FOR GROUND			
	COVER(MIN)TOTAL IRRIGATION TIME FOR TREES (MIN)			
R.time.min trees				

0 OOO

E.V
HO
$==$

[^0][^1]

"
No

N
N
N

00004
PAGE NO.
$04 / 24 / 83$

WATEA REQUINEMENT AHD IAHIGAIIOH TIHF * HAIH PALACE AREA
SYSTEA

$E . V .$ 140	$\begin{gathered} \text { SIZE } \\ \text { E.V. } \end{gathered}$	$\begin{aligned} & \text { SYGYEH } \\ & \text { AC./GPH } \end{aligned}$	SYETEA ACTL/HIH	$\begin{aligned} & \text { GO. COVF } \\ & \text { AHEA } \end{aligned}$	WATR BEQ	TOT. HATEA REOUIDED	TAEE NOS	HATI REO	TOT. WATER AEOUJAED	IR. YIHE.MIM Gn.COVR.	IA.TIME.MIII TAEES
110	2	33.0	124.740	0.00	0	0.00	22	75	1650	0.000	13.227
120	$2 "$	37.7	142.506	330.00	18	5940.00	0	0	0	41.602	0. 000
134	11/4"	19.0	71.820	173.00	18	3114.00	0	0	0	43.358	0.000
136	2^{*}	33.1	125.118	326.00	18	5060.00	0	0	0	46.899	0.000
151 A	$2{ }^{\prime \prime}$	40.0	151.200	360.00	18	6300.00	0	0	0	41.666	0.000
153	$2{ }^{4}$	34.5	130.410	0.00	0	0.00	23	75	1725	0.000	13.227
- TO	TAL *										
		5144.4	19445.032	30730.50	1998	716149.00			58425		

APPENDIX D

Head Loss and Design Calculations: Main Site Design Calculations: Guest Villa Site

	gassir eminates		palace＊liead l		OSS Calculations＊hain p		E SITE
OESCRIPTION	EOL	nulltity	F1	F／C150	F／Ci40	HL／PSI	IL／A．TR：
＊head loss for	AREA	COHTROLED－	ELEC．	VALVE RO：			
2＂PYC．fire	1.0	100.0	1.00	2.83	1.14	3.22520000	0.21933150000
11／4＂PVC．PIPE	1.0	32.0	1.00	2.50	1.11	0.94112400	0.06400051200
$1 "$ PVC．PIPE	1.0	14.0	1.00	1.89	1.14	0.30104400	0.02051179200
3／4＂PVC．PIPE	1.0	13.0	1.00	1.07	1.14	0.15857400	0.01078303200
1／2＂PVC．PIFE	1.0	94.0	1.00	1.19	1.14	1．27520400	0.08671387200
2＂ELEC．VALVE ＊＊suctotal＊＊	2.2	1.0	1.00	2.33	1.14	0.07097640	0.00432630520
						5．973フセ200	C．406297？0320
＊head loss for	ARFA 2.2	contmalen ey 1.0	Elec．Valve no： 2				
2＂PVCPIPE	2.2 1.0	27.0	1.00	2．83	1.14 1.14	0.07097640 0.87107400	$\begin{aligned} & 0.00482530520 \\ & 0.05023303200 \end{aligned}$
11／E＂PVC．PIPE	1.0	23.0	1.00	2.65	1.14	0.09403000	C．04724E44000
11：4＂PVC．PIPE	1.0	30.0	1.00	2．58	1.94	0.80230000	0.00000048000
1＂PVC．PIPE	1.0	7.0	1.00	1．E®	1.14	0.150 EE 200	$0.010255 c 9600$
3／4＂PVC．PIPE	1.0	16.0	1.00	1.07	1.14	0.19516000	0.01327942400
1:2" PVC.PIRE ＊＊surtital．＊＊	1.0	26.0	1.00	1.19	1.14	0.35279600	0．02？ 08462800
						3.29794540	0.21882035580
－head loss for	Afuea	cohtroled gy	ELEC．VALVE Ho： 3				
2＂Elec．valve	2.2	1.0	1.00	2.83	1.14	0.07097540	0.00402039520
2＂PVC．PIPE	1.0	40.0	1.00	2．80	i． 14	1.29040000	0.08775204000
11／こ＂PVE PIPE	1.0	10.0	1.00	2．65	1.14	0.20210200	
1：／A＂PVC．PIPE	1.0	17.0	1.00	2．58	1.14	0.50000400	0.03400027200
1＂PVC．FIPE	1.0	$\varepsilon .0$	1.00	1． E g	1.14	3． 17236800	0.0117 c102400
3／4＂PVC．PIPE	1.0	10.0	1.00	1.07	1.14	0.12198000	0.00829464000
$\begin{aligned} & \text { 1/Z" PVC.PIPE } \\ & \text { * SUQTDTAL } \end{aligned}$	1.0	47.0	1.30	1.15	1.14	0.63760200	0.04235603600
						こ．09554090	0.21045470720
＊HEAD LOSS for	AFEA	COHTAOLED BY	Elec．valve no： 4				
2＂Elec．valve	2.2	1.0	1.00	2.83	1.14	0.07097840	0.00402639520
2＂PVC．PIPE	1.0	10.0	1.00	2.83	1.14	0.32252000	0.02193816000
1＂PVC．PIPE	1.0	24.0	1.00	1．89	1.14	0.51710400	0.03516307 ¢0
3／4＂PVC．PIPE	1.0	12.0	1.00	1.07	1.14	$0.14 E 37600$	0.00955356800
$\begin{aligned} & 1 / 2^{\prime \prime} \text { FVC.PIPE } \\ & \text { * SUQTOTAL } \end{aligned}$	1.0	65.0	1.00	1.19	1.14	0． 08179000	0.05996172700
						1．93606840	0.13184291520
＊HEAO LOSE FOR	AREA	coitfoleo by	elec．valve mo： 5				
	2.2	1.0	1.00	2．85	1.14	0.07087640	0．004E2639520
2＂PYC．PIPE	9.0	6.0	1.00	2.83	1.14	0.19357200	0.01316289600
11／2＂PVC．PIPE	9.0	4.0	1.00	2.65	1.11	0.12084000	0.00821712000
11／4＂PVC．PIPE	1.0	34.0	1.00	2.50	1.14	1.00000800	0.06200054400

PAGE NO. 00002

* heao loss fop	area	cniti:oled	BY ClEC	E	7		
11/2"ELEC.VALVE	1.7	1.0	1.00	2.55	1.14	0.05135700	0.00549227500
2" PVC. PIPE	1.0	[4.0	1.00	2.83	1.14	2.71000800	0.18420054400
19/2"PVC.FIPE	1.0	13.0	1.00	2.65	1.14	0.39273000	0.02670564000
11/4"PVC.PIPE	1.0	38.0	1.00	2.59	1.14	1.11765600	0.07500060800
$1 "$ PVC.PIPE	1.0	30.0	1.00	1.89	1.14	0.64638000	0.04395284000
J/4" PVC.PIPE	1.0	10.0	1.00	1.07	1.14	0.12198000	0.00829464000
1/2" PVC.PIPE	1.0	57.0	1.00	1.19	1.14	0.50194200	c. 03413205500
** suetotal **							
						5.54205300	0.37685960100

* HEAO LOSS FDR	AREA	contaulel		ELCC	.VALVE 1:0:	ε			
c" ELEC.VALVE	E. 2	1.0		1.00	2.22		1.14	0.07097640	0.004c2rsc5co
2" PVC.PIPE	1.0	13.0		1.00	2.83		1.14	0.11940500	0.02851960000
11/2" PVC.PIPE	1.0	0.0		1.00	2.65		1.14	0.24169000	0.01043424000
11/4" PVC.PIPE	1.0	4.0		1.00	2.50		1.14	0.11764800	0.00800006400
1" PVC.PIPE	1.0	10.0		1.00	1.89		1.14	c. 21546000	0.01465128000
3/4" PVC.PIPE	1.0	5.0		1.00	1.07		1.14	0.0609 .900	0.00414732000
1/?" PVC.PIPE * suBTOTAL : *	1.0	8\%.0		1.00	1.19		1.14	1.180242 UU	¢.00025.54600
								2.30540240	0.15663536320
- head loss fon	AREA	cohtroled	8Y	ELEC	. valve fiu:	\bigcirc			
?" ELEC.VALVE	2. 2	1.0		1.00	c. 23		1.14	0.07097040	0.00482539520
2" PVC, PIPE	1.0	3 E .0		1.00	2.82		1.14	1.12917000	0.07578351000
11/4" PVC.PIPE	1.0	20.0		1.00	2.58		1.14	0.50824000	0.04000032000
1" PVC.PIPE	1.0	37.0		1.00	1.89		1.14	0.79720200	0.05420973800
3/4" PVC.PIPE	1.0	18.0		1.00	1.07		1.14	0.21956400	0.01493035200

PAEE 10.00003

* head loss fon	AREA	controleo	gy ELEC	. Valve 10:			
11/2"ELEC.VALVE	1.7	1.0	1.00	2.65	1.94	0.05135700	0.00349227800
2" PVC.PIPE	1.0	5.0	1.00	2.E3	1.14	0.16131000	0.01096900000
1" PVC.PIPE	1.0	18.0	1.00	1.39	1.14	0.38782800	0.02637230400
3/4" PVC.PIPE	1.0	18.0	1.00	1.07	1.14	0.21956400	0.01492035200
1/2" PVC.PIPE	1.0	32.0	1.00	1.19	1.14	0.43411200	0.02951981500
** Sugtotal **							

PAGE NO. 00004

- head loss for area controled by elec.valve no: 15

2" ELEC.VALVE	2.2	1.0	1.00	2.83	1.14	0.07097640	0.00482 E 39520
	$1 . J$	5.0	1.00	2.83	1.14	0.16139000	0.01096008000
11/2"PVC.PIPE	1.0	17.0	1.00	2.65	1.14	0.51357000	0.03492275000
11/4"PVC.PIPE	1.0	7.0	1.00	2.58	1.14	0.20588400	0.09400011200
1 P PVC.PIPE	1.0	24.0	1.00	1.89	1.14	0.51710400	0.03516307200
3/4" PVC.PIPE	1.0	13.0	1.00	1.07	1.14	0.15857400	0.01070303200
1/2" FVC.PIPE	1.0	39.0	1.00	1.19	1.14	0.52907400	0.03597703200
* sußtotal **							
						2.15649240	0.14664148320

* head loss for area controled gy elec. valve no: 1 e

2" elec.valve	2.2	1.0	1.00	2.83	1.14	0.07097640	0.00482529520
2" PVC.PIPE	1.0	11.0	1.00	2.83	1. 14	0.35488200	0.02413197600
1/2" FVC.PIPE	1.0	64.0	1.00	1.19	1.14	0.86022400	0.05003923200
** Sudtotal **							

* head loss for	AHEA	CONTROLED	gY ELEC	. VALVE HO:	18		
19/E"ELEC.VALVE	1.7	1.0	1.00	2. 65	1.14	0.05135700	0.00349227600
11/2" PVC.PIPE	1.0	6.0	1.00	2.65	1.14	0.18126000	0.01232568000
11/4" FVC.PIPE	1.0	21.0	1.00	2.50	1.11	0.61755200	0.04200033600
1" PVC.PIPE	1.0	10.0	1.00	1.89	1.14	0.21546000	0.01465125000
3/4" PVC.PIPE	1.0	6.0	1.00	1.07	1.14	0.07318800	0.00497678400
1/E" PVC.PIPE	1.0	50.0	1.00	1.19	1.14	0.67020000	0.04612440000
** Suatotal **							

PAGE NO. 00005

* HEAD LOSS FOR	APEA 3.7	TROLE	ELEC 1.00	2.65	1.14	0.05135700	0.00349227000
11/ว" PVC.PIPE	9.0	6.0	1.00	2.65	1.16	0.12126000	0.01232568000
11/4" PVC.PIPE	1.0	8.0	1.00	2. 58	1.14	0. 23523600	0.01600012000
1" PVC.fiPE	1.0	53.0	1.00	1.80	1.14	1.14193800	0.07765179400
3/4" FVC.PIPE	1.0	40.0	1.00	1.07	1.14	0.48792000	0.03317856000
1/2" PVC.PIPE	1.0	100.0	1.00	1.15	1.14	1.35660000	0.09224890000
** suctotal **						3.45437100	0.23489722800

- HEAD LOSS FOR	AREA	COHTROLED	ELEC 1.00	E NO 2.82	1.14	0.07097640	0.00482039520
?" ELEC.VALVE	2. 2						
2" PVC.PIPE	1.0	6.0	1.00	2. 23	1.14	0.19357200	0.01316289600 0.0122256000
11/2" PVC.PIPE	1.0	6.0	1.00	2.65	1.14	0.1812 EOOO	0.01222568000
11/4" PVC.PIPE	1.0	13.0	1.00	2.58	1.14	0.38235600	0.02600020800
1" PVC.PIPE	1.0	3.0	1.00	9.89	1.14	0.06483800	0.00439538400

PAGE NO. 00000
GASSIM EMIRATES PALACE HFAD LOSS CALCULATIOHS HAIN PALACE SITE

- head loss for area contfoled gy elec.valve mo: 25

2" ELEC.VALVE	2.2	1.0	1.00	2.83
2" FVC.PIPE	1.0	78.0	1.00	2.03
11:4" PVC.fIPE	1.0	6.0	1.00	c. 38
10 PVC.PIPE	1.0	32.0	1.00	1.89
G/A" PVC.PIPE	1.0	31.0	1.00	1.07
1/?" PVC.PIPE	1.0	150.0	1.00	1.19

0.07097040	0.00482639520
2.51643000	0.17111764800
0.17647200	0.01200009600
0.68947200	0.04688409600
0.37813800	0.02571338400
2.03490000	0.13837320000
5.06520440	0.3980 .1481920

- hend logs for area cortroled by elec.valve ilo: 25
a" ELEC.VBLVE 2.2 1.0 $1.00 \quad 2.83$
$\begin{array}{lllll}\text { PVC.PIPE } & 1.0 & 125.0 & 1.00 & \text { 2.EC }\end{array}$
11.20 PVCPIPE 100 20.0 000 2. 05
$11 /$ " PVC.PIPE $^{1 / 2}$
1" PVC.PIPE

1.0	29.0	1.00	2.50	1.14
1.0	20.0	1.00	1.09	1.14
1.0	32.0	1.00	1.07	1.14
1.0	190.0	1.00	1.19	1.14

1/E" PVC.PIPE
$9.0199 .0 \quad 1.00$
$1.19 \quad 1.14$

40	0.
4.05501200	0.27542081600
0.n4E0E000	0.05751504000
0.85 ¢.aneuo	0.05000046400
0.6052 CBOO	0.04102558400
0.39033600	0.02654284000
1.61435400	0.10977607200
8.14279440	0.57491001920

- HEAD loSs for	area	controled	GY ELEC	No	27		
11/2"ELEC.VALVE	1.7	1.0	1.00	2. 5.5	1.14	0.05135700	0.00349227600
2" PVC.PIPE	1.0	5.0	1.00	2. 83	1.14	0.16131000	0.01096900000
11/2" PVC.PIPE	1.0	6.0	1.00	2.65	1.14	0.18128000	0.01232568000
11/4" PVC.PIPE	1.0	9.0	1.00	2.58	1.94	0.20470800	0.01800014400
1" PVC.PIPE	1.0	2.0	1.00	1.89	1.94	0.04309200	0.00293025600
3/4" PVC.PIPE	1.0	20.0	1.00	1.07	1.14	0.24396000	0.01658928000
1/2" PVC.FIPE	1.0	60.0	1.00	1.19	1.14	0.81396000	0.05534924000
** subtotal **						1.75964700	0.11965599600

PAGE NO. OOOO7
GASSIM EMIRATES PALACE HEAD LDSS CALCULATIONS MAIM PALACE SITE

PAGE RO. 00000
gassim emirates palace * head loss calculations * main palace site

- head loss fon	AREA	COMTROLED	ELEC	E NO			
2" ELEC.VALVE	2.2	1.0	1.00	2.83	1.14	0.07097640	0.00482639520
2" PVC.PIPE	1.0	42.0	1.00	2.83	1.14	1.35500400	0.09214027200
11/2" PVC.PIPE	1.0	10.0	1.00	2.65	1.14	0.30210000	0.02054200000 0.03369794400
$1 "$ PVC.PIPE	1.0	23.0	1.00	1.83	1.14	0.49555800 0.12198000	0.03369794400 0.00829464000
3/4" PVE.PIPE	1.0	10.0	1.00	1.07	1.14	0.12198000 0.47481000	0.03220708000
$1 / 2^{\prime \prime}$ PVC.PIPE	9.0	35.0	1.00	1.19	1.14	0.47481000	0.03220708000
* subtotal ***						2.82042840	0.19178913120

PAGE NO. OOOOG
gassim emirates palace mead loss calculations maif palace site

PAGE NO. 00010
gassim emirates palace mead loss calculations main palace site

- head loss fof area controled ay elec. valve no: 14

2" ELEC.VALVE	$2 . \varepsilon$	1.0	1.00	2.83	1.14	0.07097640	0.00482639520
2" PVC.PIPE	1.0	6.0	9.00	2.83	1.14	0.19357200	0.01316289500
11/4" PVC.PIPE	1.0	25.0	1.00	2.50	1.14	0.73530000	0.05000040000
;" PVC.PIPE	1.0	8.0	1.00	1.89	1.14	0.17236800	0.01972102400
3/4" PVC.PIPE	1.0	28.0	1.00	1.07	1. 14	0.34154400	0.02322459200
9/2" PVC.PIPE	1.0	67.0	1.00	1.10	1.14	0.90892200	0.06180069600
						2.42268240	0.16474240320
* head loss fon	AnEA	CONTAOLED	ELEC.	F H0:			
2" Elec.valve	2.2	1.0	1.00	2.83	1.14	0.07007640	0.00682639520
2" PVC.PIPE	1.0	5.0	1.00	2.83	1.14	0.16131000	0.01096500000
4" PVC.PIPE	1.0	3.0	1.00	1.35	1.14	0.17236800	0.01172102400
3/4" PVC.PIPE	1.0	7.0	1.00	1.07	1.14	0.08538600	0.00580624800
1/2" PVC.PIPE	1.0	49.0	1.00	1.19	1.14	0.66473400	0.04520191200
						1.15477440	0.07852465920
- head loss for	AREA	controled	ELEC.	E NO:			
2" ELEC.VALVE	$2 . \bar{c}$	1.0	1.00	2.83	1.14	0.07097640	0.00492639520
2" PVC.fipe	1.0	23.0	1.00	2.83	1.14	0.74202600	0.05045776800
1" PVC.PIPE	1.0	29.0	1.00	1.89	1.14	0.62483400	0.04248871200
3/4" PVC.PIFE	1.0	12.0	1.00	1.07	1.14	0.15857400	0.01078303200
1/2" PVC.PIPE	1.0	22.0	1.00	1.19	1.14	0.43411200	0.02051969500
* subtotal *						2.03052240	0.13807552320

PAGE NO. OOO12
GASSIM EMIRATES PALACE HEAD LOSS CALCULATIONS HAIH PALACE SITE

- head loss for	AREA	CONTROLED	ELEC	E N			
2" elec.valve	2.2	1.0	9.00	2.83	1.14	0.07097540	0.00482639520
2" PVC.PIPE	1.0	55.0	1.00	2.82	1.14	1.77449000	0.12065988000
$1^{\prime \prime}$ PVC.PIPE	1.0	16.0	1.00	1.89	1.14	0.34473600	0.02344204600
3/4" PVC.PIPE	1.0	17.0	1.00	1.07	1.14	0.20736600	0.01410088000
1/E" PVC.PIPE	1.0	71.0	1.00	1. 19	1.14	0.96318500	0.06549664800
* sugtotal **						3.35087440	0.22852585920

pace no. 00013

- head loss fon area coitroleg ey elec.valve ho: eo

2" ELEC.VALVE	2.2	1.0	1.00	2.33
2" PVC PIPE	1.0	20.0	9.00	2.83

$\varepsilon^{\prime \prime}$ PVC.PIPE	1.0	20.0	1.00	2.83	1.14

$0.07097 E 40$	0.00482635520
0.64524000	0.04307632000
0.42204000	0.02875592900
0.06010400	0.00506051200
0.45093000	0.02905124000
0.94962000	0.06457415000
2.60100040	0.17692554720

Mead logs for	AREA	culitroled	ELEC	E 110:			
2" Elec.valve	2.2	1.0	1.00	2.82	1.14	0.07057840	0.00482639520
2" PVC.PIPE	1. C	59.0	1.00	2.83	1.14	1.90345E00	C.12943514400
11/4" PVC.PIPF	1.0	14.0	1.00	2. 50	1.14	0.41176800	$0.02 c 0002.200$

PAGE NO. 00094

PAGE NO． 00029

	P			PALACE	－head l	LOSS CALCU	＊main palace site	
DESCRIPTION	EQL	QUHTITY		F_{1}	F／C150	$F / C 140$	HL／PSI	HL／ATi：
$=$＝＝＝＝＝＝＝＝＝	$==\sim$	＝ニニニニニニ＝	＝	$=$＝	＝＝＝＝＝＝＝	＝＝＝＝＝＝＝	$\pm-=-$ ：	＝＝＝＝＝＝＝＝＝＝＝＝＝
－head loss for	AREA	CONTAOLED BY		Elec．Valve no： 93			0.61765200	0.04200033600
19／4＂PVC．PIPE	1.0	21.0		1.00	2.51	1.14		
1＂PVC．PIPE	1.0	50.0		1.00	1.83	1.14	1.07730000	0.07325840000
3／4＂FVC．PIPE	1.0	11.0		1.00	1.07	1.14	0.13417800	0.00912410400
1／2＂PVC．PIPE	1.0	33.0		1.00	1.19	1.14	0.44767800	0.03044210400
＊＊subtotal＊＊							5．40012500	0.36720836400
＊head loss fon	anea controled gy			Elec．Valve mo： 94			0.05935700	0.00240227600
11／2＂ELEC．VALVE	1.7	1.0		1.00	2.65	1.14		
2＂PVC．PIPE	1.0	5.0		1.00	2.83	1.14	0.18131000	0.01006908000
11／2＂PVC．PIPE	1.0	15.0		1.00	2.65	1.14	0.45315000	0.03081420000
$1 " P V C . T I P E$	1.0	7.0		1.00	1.89	1.14	0．150ع2200	0.01025589600
3／4＂PVC．PIPE	1.0	8.0		1.00	1.07	1． 14	0.09756400	0.00662571200
1／2＂FVC．PIFE	1.0	27.0		1.00	1.19	1.14	0.36620600	0.02490717600
＊suctotal＊＊								
							1．20050500	0.08707434000

－head loss for	AREA	COIITAOLED	Elec	E 110			
2＂ELEC．VALVE	2.2	1.0	1.00	E． 83	1.14	0.07097540	0.00482659520
：＂VE．「If		$\because .0$	1.00	2． 83	1.14	0.74202600	0.05045775000
－1／E＂Fi．．．．	1.0	12.0	1.00	c． 65	1.14	0.36252000	0.02465136000
11／4＂PVC．PIPE	1.0	8.0	1.00	2．5E	1.14	0.23529600	0.01600012500
$11{ }^{11}$ PVC．PIPE	1.0	6.0	1.00	1.89	1.14	0.12927800	0.00879076000

	gassim emirates		palace * heao los		ss calculations * main pala		SITE
OESCRIPTIOA	EQL	Quntity	F1	F/C150	F/C140	HL/PSI	HL/ATH
- head loss for	AREA	COHTROLED 8 Y	ELEC.VA	VALVE HO:	: 97		
3/4" PVC.PIPE	9.0	11.0	1.00	1.07	1.14	0.13417900	0.00912410400
1/2" PVC.PIPE	1.0	88.0	1.00	1.10	1.14	1.10300800	0.00117094400
subtotal						2. 06000040	0.19502346720
* head loss for	AREA	CONTHOLED EY	ELEC.	VALVE Ho:	: 98		
2" elec.valve	2. 2	1.0	1.00	2.c3	1.14	0.07097640	0.00452639560
2" PVC.PIPE	1.0	10.0	1.00	2.82	9.14	0.32 coseof	0.02193016000
11/2" FVC.PIPE	1.0	5.0	1.00	2.65	1. 14	0.15105000	0.01027140000
1" PVC.PIPE	1.0	63.0	1.00	1.09	4.14	1.35739800	0.09230306400
3/4" PVC.PIPE	1.0	29.0	1.00	1.07	1.14	0.35374200	0.02405445600
$\begin{aligned} & 1 / \varepsilon^{\prime \prime} \text { PVC.PIPE } \\ & \text { ** SUCTOTAL } \end{aligned}$	1.0	59.0	1.00	1.19	1.14	0.20039400	0.05442679200
						3.05618040	0.20782026720
- head loss fot	AREA	Controled oy	elec.valve no: 9 O				
2" ELEC.VALVE	2.2	1.0	1.00	2.83	1.14	0.07097640	0.00402539520
2" PVC.PIPE	1.0	27.0	1.00	2.83	1.94	0.87107400	0.05923303200
1" PVC.PIPE	1.0	30.0	1.00	1.85	1.14	0.64638000	0.04205384000
3/4" PVC.PIPE	1.0	32.0	1.00	1.07	1.14	0.46352400	0.03151963200
$\begin{aligned} & 1 / 2 " \text { FVC.PIPE } \\ & \text { ** SUETOTAL } \end{aligned}$	1.0	50.0	1.00	1.19	1.14	0.67 e 30000	0.046124 .40000
						2.73025440	0.18565729920
- HEAC LOSS for	area	contioleled ey	elec.valve fic: 100				
2" ELEC.VALVE	2.2	1.0	1.00	2.02	1.14	0.07097640	0.00482639520
2" PVC.PIPE	1.0	34.0	1.00	2.83	1.14	1.09690000	0.07458974400
1" PVC.PIPE	1.0	4.0	1.00	1.89	1.14	0.90618400	0.00586051200
3/4" SVC.PIPE	1.3	7.0	1.00	1.07	1.14	0.08538600	0.00580024000
$\begin{aligned} & 1 / 2 " \text { PVC.PIPE } \\ & \text { * SUQTOTAL } \end{aligned}$	1.0	$=5.0$	1.00	1.15	1.14	0.47461000	0.03228708000
						1.81426440	0.12336997920
* HEAD.LOSS FOM2" ELEC.VALVE	AREA	COHTROLEO by	elec. Val.ve Ho: 101				
	2.2	1.0	1.00	$2 . \mathrm{e} 3$	1.14	0.07097640	0.00422639520
$2 "$ PVC.PIPE	1.0	6.0	1.00	2.83	1.14	0.19357200	0.01216289600
11/2" PVC.PIPE	1.0	20.0	1.00	2.65	1.14	0.60420000	0.04100550000
11/4" PVC.PIPE	1.0	49.0	1.00	2.58	1.14	1.20589200	0.08200065600
1" PVC.PIPE	1.0	45.0	1.00	1.89	1.14	0.96957000	0.06533076000
3/4" PVC.PIPE	1.0	11.0	1.00	1.07	1.14	0.13417800	0.00912410400
$\begin{aligned} & 1 / ? " \text { PVC.PIPE } \\ & \text { * SUQTOTAL ** } \end{aligned}$	1.0	29.0	1.00	1.99	1.14	0.39341400	0.02075215200
						3.57180240	0.24280256320

PAGE NO. OOO23
GASSIH EMIRATES PALACE HEAD LQSS CALCULATIOHS * MAIH PALACE GITE

- HEAD LOSS FOA	AREA	CONTAOLEO BY	ELEC	E NO	103		
2" ELEC.VALVE	2.2	1.0	1.00	2.83	1.14	0.07097600	0.00462639520
2" PVC.PIPE	1.0	60.0	1.00	2.83	1.14	1.93572000	0.13162896000
11/2" PVC.PTPE	1.0	20.0	1.00	2.65	1.14	0.60420000	0.04106560000
11/4" PVC.PIPE	1.0	7.0	1.00	2.58	1.14	$0.205 c 2400$	0.0140001 inco
$1^{\prime \prime} \mathrm{FVC.PIPE}$	1.0	12.0	1.00	1.89	1.14	0.25055200	0.01750 .153600
3/4" PVC.PIPE	1.0	13.0	1.00	1.07	1.14	0.15057400	0.01070303200
1/2" PVC.PIPE	1.0	30.0	1.00	1.19	1.14	$0.40 E 98000$	0.02767464000
* SURTOTAL**						3.6408P640	0.24758027500

- head loss foii	AREA	CONTROLED BY	ELEC	N NO:	104		
$2^{\prime \prime}$ ELEC.VALVE	C. 2	1.0	1.00	2.83	1.14	0.07097640	0.00482639520
2" PVC.PIPE	1.0	97.0	1.00	2.83	1.14	3.12941400	0.21280015200
11/2" FVC.PIPE	1.0	23.0	1.00	2.65	1.14	C.694E3000	0.04724044000
1" PVC.PIPE	1.0	4.0	1.00	1.83	1.14	0.08618400	$0.0050605120 c$
3/4' PVC.PIFE	1.0	6.0	1.00	1.07	1.14	0.07316300	0.00497676400
1/2" PVC.PIPE	1.0	58.0	1.00	1.19	1.14	0.78682800	0.05350430400
* SUETOTAL						4.94142040	0.3292965720

- IIEAO LOSS FOA	AREA	COHTROLED BY	ELEC	E 110	105		
$2^{\prime \prime}$ ELEC.VALVE	2. 2	1.0	1.00	2.83	1.14	0.07097640	0.00462639520
$1^{\prime \prime}$ PVC.PIPE	1.0	27.0	1.00	1.89	1.14	0.58174200	0.03955845600
3/4" OVC.PIPE	1.0	42.0	1.00	1.07	1.14	0.51531500	0.03483748800
1/2" PVC.PIPE	1.0	77.0	1.00	1.19	1.14	1.0445 E200	0.07103157600
* SUCTOTAL *						E.20981640	0.15025391580

- HEAD LOSS FOR	AREA	CONTROLED $9 Y$	ELEC	E 110	106		
19/4"ELEC.VALVE	1.5	1.0	1.00	2. 16	1.14	0.03695600	0.00c51164800
2" PVC.PIPE	1.0	46.5	1.00	2.83	1.14	1.50018300	0.10201244400
91/ ${ }^{\prime \prime}$ " PVC.PIPE	1.0	9.0	1.00	2.65	1.14	0.27189000	0.01848852000
11/4" PVC.PIPE	1.0	13.0	1.00	2.58	1.14	0.38225600	0.02600020800
1" PVC.PIPE	1.0	13.0	1.00	1.89	1.14	0.28009000	0.01904666400
3/4" PVC.PIPE	1.0	7.0	1.00	1.07	1.14	0.08538600	0.00500624800

PAGE NO. 00025

* head loss for	AREA	COntroled	BY ELEC	E HO	113		
2" ELEC.VALVE	2.2	1.0	1.00	2.83	1.14	0.07097640	0.00482639520
2" PVC.PIPE	1.0	9.0	1.00	2.83	1.14	0.29035800	0.01974434400
11,'¢" PVC.PIPE	1.0	3.0	1.00	2.55	1.14	0.09065000	0.00616284000
11/4" PVC.PIPE	1.0	47.0	1.00	2.58	1.14	1.30236400	0.09400075200
1" FVC.PIPE	1.0	20.9	1.00	1.80	1.14	$0.6032 E E C O$	0.04102358400
3/4" PVC.PIPE	1.0	17.0	1.00	1.07	1.14	0.20736600	0.01410088800
1; ${ }^{\prime \prime}$ PVC.PIPE	1.0	80.0	1.00	1.10	1.14	1.00523000	0.07379904000
* subtotal **						3.73020240	0.25365784320

page no. 00026

GASSIM EMIAATES PALACE HEAD LOSS CALCULATIOMS MAIN PALACE SITE

PAGE NO. DOO27

PAGE NO．DOO2B
GASSIM EMIRATES PALACE HEAD LOSS CALCULATIONS MAIN PALACE SITE

－HEAO LOSS FOP	AREA	controled	ELEC	110			
2＂ELEC．VALVE	2.2	1.0	1.00	2.83	1.14	0.07097640	0.00482639520
2＂PVC．PIPE	1.0	4.0	1.00	2.83	1.14	0.12904800	0.00077526400
11／9＂PVC．PIPE	1.0	9.0	1.00	2． 58	1.14	0.26470800	0.01800014400
1＂PVC．PIPE	1.0	32.0	1.00	1.89	1．14	9．68947200	0．04688409600
3／4＂PVC．PIPE	1.0	11.0	1.00	1.07	1.14	0.13417800	0.00912410400
1／2＂FYC．PIPE	1.0	45.0	1.00	1.19	1.14	0.61047000	0.04151196000
＊suetotal							0.12092198

HEAO LOSS FOR	AREA	controled	ELEC	E 1	125		
2＂ELEC．VALVE	2.2	9.0	1.00	2.83	1.14	0.07097640	0.00422639520
2＂PVC．PIPE	1.0	14.0	1.00	2.83	1.14	0.45166800	0.03071342400
11／4＂PVC．PIPE	1.0	C4．0	1.00	2.50	1.14	0.70588800	0.04600038400
$1{ }^{11}$ PVC．pIPE	1.0	3.0	1.00	1.89	1.14	0.06463800	0.00433538400
3／4＂PVC．FIPE	1.0	23.0	1.00	1.07	1.14	O．2cos5400	0.07907767200
1／2＂PVC．fiPE	1.0	58.0	1.00	1.19	9． 14	0.78 g 2800	0.05350430400
＊＊SUETOTAL						2.36055200	0.16051756320

－head loss for	AREA	coittroled	ELEC	E 110			
2＂ELEC．VALVE	2.2	1.0	1.00	2.83	1.14	0.07097640	0.00482559520
2＂PVC．PIPE	1.0	8.0	1.00	2.83	1.14	0.25809600	0.01755052600
11／2＂PVC．PIPE	1.0	4.0	1.00	2.55	1.14	0.12084000	082171200j
11／4＂PVC．PIPE	1.0	14.0	1.00	2.58	1.14	0.41178800	0.02800022400
1＂PVC．PIPE	1.0	10.0	1.00	1.89	1.14	0.21546000	0.01465128000
3／4＂PVC．PIPE	1.0	20.0	1．c0	1.07	1.14	0.24396000	$0.01 E 58528000$
1／2＂PVC．PIPE	1.0	57.0	1.00	1.19	1.14	¢． 7 ¢J2¢20	し．0うとうとすOTE0
＊＊SUOTOTAL＊＊						2.09436240	0.14241664320

＊head loss fon area contioled by elec．valve no： 12ε
＂

$2 " P V C . P I P E$	9.0	29.0	1.00	2.03	1.14
$11 / 2 "$ PVC．PIPE	1.0	9.0	1.00	2.65	1.14
$11 / 4 " P V C . P I P E$	1.0	14.0	1.00	2.58	1.14

0.07007840	0.00482639520
0.03550000	0.06362066400
0.27189000	0.01848852000
0.41175000	0.02800022400
0.23700600	0.04614640000

PAGE NO. ODO2G
GASSIH EMIRATES PALACE HEAD LOSS CALCULATIOHS MAIN PALACE SITE

* head loss for.	AREA	colltroled	EY ELEC	110	130		
2" elec.valve	2.2	1.0	1.00	2.03	1.14	0.07097640	0.00482639520
2" PVC.PIPE	1.0	7.0	1.00	2.83	1.14	0.22503400	0.01535679200
11/て" PVC.PIPE	1.0	18.0	1.00	2.65	1.14	0.54378000	0.02597704000
11/4" PVC.PIPE	1.0	16.0	1.00	2.58	1.14	0.47059200	0.02200025000
1" PVC.PIPE	1.0	22.0	1.00	1.00	1.14	0.47401200	0.03223291600
3/4" PVC.PIPE	1.0	11.0	1.00	1.07	1.14	0.13417800	0.00512410400
1/2" PVC.PIPE	1.0	09.0	1.00	1.19	1.14	1.09884600	0.07472952800
** SUETOTAL **						3.01821840	0.20523885120

PAGE NO. 00032
gassim emirates palace e heao loss calculatiofis m main palace site

* HEAD LOSS FOR	AREA 1.7	contrioleo 1.0	ELEC 1.00	2.65	1.14	0.05135700	0.00349227500
2" PVCPIPE	1.0	2.0	1.00	2.83	1. 14	0.06452400	0.00438763200
11/2" PVC PIPE	1.0	11.0	1.00	2.65	1.14	0.33231000	0.02259708000
3/4" PVC PIPE	1.0	9.0	1.00	1.07	1.14	0.10979200	0.00746517500
1/2" FVC PIPE	1.0	50.0	1.00	1.19	1.14	0.67030000	0.04612440000
** sugtotal **							- 0840655640

- llead lose for	AREA	cositnoled	Elec	E : 10	150		
2" ELEC.VAlve	2.2	1.0	1.00	2.83	1.14	0.070 ¢5E40	0.00462639520
2" PVC PIPE	1.0	5.0	1.00	2.83	1.14	0.19257200	0.01316289600
11/4"PVC PIPE	1.0	17.0	1.00	2.58	1.14	0.50000400	0.03400027200
1" PVC PIPE	1.0	5.0	1.00	1.89	1.14	0.10773000	0.00732564000
3/4" PVC PIPE	1.0	9.0	1.00	1.07	1.14	0.00758400	0.00663571200
1/E" PVC PIPE	1.0	55.0	1.00	1.19	1.14	0.74013000	0.05073684000
* sugtotal **						1.74555540	0.11650775520

page 10.00009


```
GASSIM EMIRATES PALACE COHPLEX PROJECT * MAIN SITE
    HEAD LOSS CALCULATUONS
USIfIG THE ATTACHED DETAILED HEADLOSS CALCULATIOHS.
HEAD LOSS DUE TO FAICTION:
1- APEA COITTACLED EY ELEC.VALVE HO:35=.673
2- i:AIH LIME = .4E5
3- FITTIHGS 100: =1.13E
TOTAL 2.276 ATH
ELL = EQUIVALEHT LENGTH OF PIPE IN FEET
F1 = FACTOR TO CONVERT OASE FOOTAGE TO FOOTAGE EQUIVALENT TO
    PVC PIPE
F/C150 = HEAO LOSS PEP 100 FEET:PSI FOF C=150
F/C\\triangleO = FACTOA TO CHANCE HEAD LOSS FROI: C=150 TO C=140
HL/PSI = HEAD LCSS IH PSI
HL/ATI: = HEAD LOSS IN ATMOSPHEFE
```


FOR:1ㄴ녈

```
HL/PSI = ELL*OT*F1*(HL:C150/100)*HL:C140
HL/ATM = HL/PSI*O.06E
DESIG:: DATA
V=6 f:/sec
C=140
HL=.2053(100/C)1.85*C1.85/c4.8E 55
Q =kVa (TAClES atTAChED SASED O| THESE fori:ULAS)
Q F FLON (gpm)
V= INITIAL VELOCITY ft/sec
A= crossectIonal area (square icmm)
K= FACTOR
g= INSIDE DIAI:ETER (inch)
```


PUR:P DESIGN

DATA
$V=100 \mathrm{gpm}=442 \mathrm{qm} / \mathrm{hr}$
Fi=2.276atm
$F 2=.5$ atm
$F 3=30 \%$ F1 $+F 2+F 4$
$F 4=2$ atm
PUHP HEAD REGUIRED $=(F 1+F 2)+F 4$
$=2.275+.5+2$
$=4.776$

F3
$=1.434$

TOTAL HEAD
$=4.78+1.44$
= 6. 22 (atm)
USE PUHP WITH FLO: $=100$ qri/hr and HEAD $=7$ [ATH)
F1 = TOTAL HEAD LOSS DUE TO FRICTIOH
F2 = TOTAL HEAD LOSS DUE TO ELEVATIOM
F3 $=$ SAFTEY FACTOR.
F4 = NOZZLE PESSUPE

mater requirement data

```
PALM TREES : 80 L/TREE/DAY
SHADE TREES : 60 L/TREE/DAY
SHRUBS : 20 L/SM/DAY
GROUND COVER : 18 L/SH/DAY
GRASS : 12 L/SM/OAY
FGR DESIGII THE GATER REQUIREMEMT USED.
TREES : 75 L/TREE/DAY
SHRUBS AND
GROUND COVER : }18\textrm{L}/\textrm{SM}/DA
```

PIPE SIZIMG AND HEADLOSS DATA

```
* TOTAL MATER REQUIREMENT PER DAY = 116 cm PER DAY
    IRAIGATION TIME = E HOURS
INITIAL VELOCITY MAIN LIME = 4 FEET PER SECON!D
G (friction coefficient) = 140
```

FOR PIPE SIZIMG ANO HEADLOSS CALCULATIONG HAZEM AHD MILLIAMG
FORMULAS ARE USED OR THE ATTACHED TABLES
SAMPLE CALCULATIONS:
$Q(f(0 w)=590 / 8=64 \mathrm{gpm}$
$C \quad=140$
V (velocity) $=4 \mathrm{fps}$
L (length of pipe)=1584 ft
USING TABLE 4, NE GET
3" PIPE
f [headtoss per 100 ftl=. 512 Lb/sq.in. FOR C=150
TOTAL HEADLOSS $=1584 / 100^{*} .512=8.11 \mathrm{bb} / \mathrm{sq} . \mathrm{in}$. FOR $C=150$
USIMG TABLE 4b,
TOTAL HEADLOSS $=8.11^{* 1.14}=9.24 \mathrm{lb} / \mathrm{sq} . \mathrm{in}$. FOR $\mathrm{C}=140$
TOTAL HEADLOSS $=9.24 * 0.068=.628 \mathrm{~atm}$

Table Losses Same for all Controlled OD
TABLE 4
SDR 13.5 thermoplastic pipe. For PE pipe.
PRESSURE LOSS
$C=150$
315 psi PR SDR 13.5 PVC PIPE

Pipe Sizes: Nominal									Losses per 100 ft : $\mathrm{lb} / \mathrm{in}^{2}$		
gpom	$1 / 2$ n	$3 / 4$ in	1 in	1.1/4 in	1.1/2 in	2 in	gpm	2.1/2 in	3 n	4 in	6 in
1	0.248	0.082	0.027	0.008	0.004	0.001	105	3.15	121	0.356	0.054
2	0.896	296	096	031	016	005	110	3.44	132	388	059
3	1.90	0.626	204	065	. 033	011	115	3.73	143	421	064
4	3.23	107	347	110	057	019	120	4.04	1.55	455	069
5	4.88	1.61	524	116	086	029	125	435	167	491	075
6	6.84	2.26	134	233	120	040	130	468	1.79	528	081
7	9.09	3.00	0.976	310	159	053	135	5.02	192	566	086
8	1164	3.84	125	397	204	068	140	5.37	2.06	606	092
9	14.48	478	155	493	254	085	145	5.73	2.19	646	099
10	1759	5.81	1.89	0.599	0.308	0.103	150	6.10	2.34	0.688	0.105
11	2098	6.93	2.25	715	368	123	160		2.63	175	118
12	24.65	8.14	2.65	840	432	144	170		2.95	867	132
13		9.44	3.07	0.974	501	167	180		3.27	0.964	147
14		10.82	3.52	112	575	192	190		3.62	1.07	163
15		12.30	400	127	653	218	200		3.98	1.17	179
16		13.86	451	1.43	136	246	210		435	1.28	196
17		15.50	5.04	160	823	275	220		475	1.40	213
18		1723	5.60	1.78	0.915	305	230			152	231
19		1904	6.19	196	101	338	240			1.64	250
20		20.94	6.81	2.16	111	0.371	250			1.77	0.270
22			8.12	2.58	133	443	260			1.90	290
24			9.54	3.03	156	520	270			2.04	311
26			1106	3.51	1.81	603	280			2.18	333
28	$2.1 / 2 \mathrm{in}$		12.69	4.03	2.07	692	290			2.33	355
30	0.311		1442	4.57	2.35	786	300			2.48	378
32	350			5.15	2.65	886	325			2.88	439
34	391			5.77	2.97	0.991	350			3.30	503
36	435	3 n		6.41	3.30	1.10	375			3.75	572
38	481	3 in		108	3.64	i. 22	400				544
+0)	529	0.203		7.79	401	134	425				721
42	579	222		8.52	439	1.46	450				801
44	631	242		9.29	4.78	1.60	475				895
46	685	262	4 in	10.09	5.19	1.73	500				0.973
48	741	284		10.91	5.61	188	550				116
50	0.799	0.306	0.090		6.05	2.02	600				1.36
52	. 859	329	. 097		6.51	2.17	650				1.58
54	921	353	104		6.98	2.33	700				1.81
56	0.985	. 378	111		7.47	2.49	800				2.32
58	1.05	403	. 119		7.97	2.66	900				
60	1.12	429	. 126		8.48	2.83	1000				
62	1.19	456	134		9.01	3.01	1100				
64	1.26	483	142			3.19	1200				
66	1.34	512	151		!	3.38	1300				
68	1.41	541	159			3.57	1400				
70	1.49	0.571	0.168			3.77	1500				
75	1.69	848	. 191			4.28	2000				
80	1.91	730,	215			4.82	2500				
85	2.13	817	241			5.40	3000				
90	2.37	0.908	267			6.00	3500				
95	2.62	1.00	296			6.63	4000				
100	2.88	1.10	0.325			7.29	5000				

APPENDIX E
Irrigation Drawings: Guest Villa Site and Main Site

NOIE: Ste drawing no ila for legeno

BUREAU DTARCTHTECTU相

Service entrance-2

ELECTRICAL LEGEND \begin{tabular}{|c|c|}
\hline Control stando \& ELECTRO Valves

\hline

\hline STATION \& 1

\hline \& $79-80-92$

\hline

\hline$-00-2$ \& $81-88-88 \mathrm{~A}$

\hline$-00-3$ \& $83-89-894$

\hline

\hline$-00-3$ \& $83-89-89 \mathrm{~A}$

\hline$-00-4$ \& $84-85-91.94$

\hline

\hline$-00-4$ \& $84-85-9194$

\hline$-\infty 0-5$ \& $06-86 \mathrm{~A}$

\hline

\hline$-00-6$ \& $87-90-93$

\hline$-00-7$ \& $109-119$

\hline

\hline$-00-8$ \& $111-112-115-118$

\hline-20 \&

\hline

\hline$-D 0-9$ \& $1146-116-1664-120$

\hline$-\infty-10$ \& 117

\hline$-\infty-11$ \& 113

\hline

\hline$-00-12$ \& 108

\hline
\end{tabular}

gUREAU D ARCHITECTURE
IRRIGATION

consultant	saudconsult
title	GASGIM M SITE
location	ZONE 4 SECTDR B
$\wedge \mathrm{V}$	

APPENDIX F
 Subcontract Document Between
 Al-Raha Establishment and Obal Establishment

SUBCONT：ACT DOCUMENT：

This contract is nade and entered into effect on
－407H，ここrェesponding 50 \qquad 1982 by and berween A1 Jana Estajlishment Eor Zrading，2．0．Box 15374，Riyadn，represented by Mr．

anci 3bȧ Irrigation Est．，P．J．Box 16220，Piyadh，represented ror che gurpose งE Ehis contract by Mr． ， hereina玉Est referved to as ME SECOND PARTY＂．

ARTIGLE－：DREAMBIE
The hereabove greamble is sonsidered as an integral gart of this
cェッモェact．

ARTICE ：：SCOPE OF THE CONTRACT

The Second Party undertakes to execute，complete and maintann tie irrigation works Eor the Project to the satisiaction of the Eirst Party，zhe consuitant and the Gı上ent，and in accozdance with the sondisions，spewiझications and drawings set oy the cilent，and the terns of this contract．

ARITCEE 3：SECOND PARMY＇S OBLIGATICNS

3－1 The Second Party undertakes to provide，upon fie oreceding and following conditions，everything which is necessary for the com－

4×5	ALRAMA EsT．FQR TiNDING
	LANDSCAPING DIVISION
Tei．：4760840－4778676	
P．O．Box ： 15374	10rva ：－
Teiex ：200692 ALRAHA SJ	تنكـ＿：

ミミrニ゙ is instuctec to proceed，and are to be zompleted jy the＝ime
or $=$ ines stated，the works are to be executed in such ordez，hanner．
ot zie works under the Orincipal Contract by the zompietion isee or
むiats Ehereof or scch extended date or cates（i三 an？！as may＝e
Eixec $\partial \%$ the Architeec or Engineer．If the Eecond Eartif faris so
compiete the works，or any section therecif，witinin the pericc or
zeriods specified or any extended period or zeriod hereinierare
mentioned，he shai：pay to the zirst Parचig any loss or damage suf－
Eered or incurred by the first party and sumsed oy the failure of
the Second Party is aforesaid．The Biast Pa＝ty snain Give reasonabla
notice to the seconc party at the earliest zpoorzunity that su＝h loss
or iamage is being os nas been su＝fered or incuryed．
3－3 The Second Parry ：ncertakes（a）to maineain ot his own expense，
the works，both during the progress of the works and until the
Arcincect or Encineer has passed these finaliy and ib）to rake good
at his own expense，to the Arehitect＇s or Engineer＂s jatisiaction，
any derects of other Eaults arising therein，ar \exists Eıme to be decided
by the First Parcy，but berore the expiry of the Defects ijaoility
period of the Srincipal こontract．
3－4 The Second ？arty will be permitted the Eree use of any temporary
weifare accomodation andor services（inciucing First Aid facijities
and ereatment）wich the First Party or Employer may provide on the
site in connection with the works，provided that any such use or
treatment shall be at the sole risk of tie Second Party，who shall
indemify the Eirst Parcy and Employer and／or cheir employees
against any Glaim for loss，damage，or personal injury arising
therefrom．
3－5 In no circumstances whatsoever shall any eutting away be done
without the prior written authority of the Eizst parfy＇s Ap̣ent or
General Foreman．The Second Paryy shall be responsibie for any
damage occasioned as a result of any cutting away sarried out without
this prior authoricy having been obeained．

Abstract

 and builui．：a：：＝＝－e Seconc ？arcy，the subject of or used $:-$ of loss or Jamage（cther than that excepted uncier Clause i i：ezené） and the seccnc Jarty shall ze responsible for and shali $\%=: \vdots$ ail possible speec nuike good at nis own expense（except as provicied in Clause 7 nereoz）any loss or camage that may occur，andincemainy the First ？art\％and Znpioyer against all claims．The Second ？arty shall 31so indemnjジ the Fi＝st parry and the employer against all liaims and／cr costs in respect of：

（i）ary injury，loss or damage to persors，or to tie new End／or＝ld and adjoining premises，or meir occupanes，or to Etee Eirst Party＇s or orher Second zarty＇s plant or mat－ erials aused by the second Party＇s works or by the exection therecミ by his workmen；
（ii）any breach，non－observance，non－perfomance，seqliaence， by こhe second Part\％，nis servants，er ager．ts of the ？eovisions of the Principal Contract or any of them：
（iiis；any act，omission，deizult，or neqlect of the second Party， Ai s servants，or agents，which involves the First Party in any liability under the principal contraet．

3－7 The Second party shall not be responsible for loss or damage caused by fire to the works or to any materials icther thar the temporary buiidings，planc，eools．scafEolding and machinery pro－ vided by the Second Party，or any scaffolding or other plant which is loaned to him by the Eirst partyl，properly upon the site and in sonnection with and for the purpose of this sub－contract．In tie event of any such loss or damage，the Second Party shall，if and when directed by che Eirst party ir．writing，proceed inmediately with the zectiEica－ tions or replacement of the damaged work and materials，and the erection and completion of the wozks in full accordance with the terms． provisions and conditions hereof．

ALRAHA EST FOR TMADINE Landscaping division

2. ₹ The Eirst Parri …: sumarily deremmine this Sub-Contract
 Eor:ractor, other shat: zize to whom it may be enticled u.iner tie
 if the Second Par:y:
a) Eails witnin seven days' nctice in writing Erom Gine First Party to proceed ailigently with the Works to the reasonable setisfaction sf the first Party and at all times in such a manner as will not, in the opinion of the First Partip, prejudice the sompletion of the vioie or any porsion of the work under the Princ:pal contract is accortance =herewith.
b) rerinses, deiays, or Eails wi=nin similay notice orother oxtenced time nctizied by tie Eirst Parry in writing torymon..is te rectiEv an:: defective workmansnip and/or naterials so cis m Architects's or Engineer's satisiaction.
c) Eails to complete and deliver up the whole or "invésorition $\theta=$ the works by the time or times specified, or by such extended Eime or Eimes as may be allowed by the Eirst party.
(3) Eails to ditharaw intrediately ar the request of tie Eirst party, any one or more of his employees to wiom che Eirst party objects or whose presence on the vorks may soncravene the conditions of inis or the Principal Contract, or may cause labor disputes in the second Parry's or any other trade, and to replace such employees immediately by otiers against whom there is :o such objection.
e) makes any arrangements with hus creditors, has a Receiving Order made açanst im, execures a $3 i l l$ of saie, or comits an act of bankruptcy; or, being a iimited company, goes into liquidation, or ias a Receiver appointed.

f) Eails within seven days' notice in writing Excm the First party to comply with any of the obligations on the pars of the second 2asty herein contained.
f-ris dauserghand fereg clain damages against the Second Farty in respecy in ant $b y$ erace ot aher ypuisions of sub-clauses, (a), (b), (c), (d), heraok IfALIN:

Tel．：4760840－4778676
P．O．Box ： 15374
Telex：20069：ALRAHA SJ

نصـيبا ：الأبر فبصل ين بد انبصل

 works such Encreases or ̇eezミEses in quanci＝ies andor alcerations in the details of the rorks，inish he may fini to be necessary $=$－ desirabie．Such incroases se izereases anc aiferations shall no＝ invalidate the contract and si：e 三econd Parzy zgrees to accept and execute sie works as alterei．is．the other iand，any additional works Gone by the Seconc ？ミrri without the orior approval of the First Party and the consultant shall not be zaken into consideration and the Second Party shall have no right so siaim for it．

3－1j The Second Party must have the work started and performed unce＝ his personal superrision and coes not have cin sight to slb－let any part of the works to any ocher suicontractor except after the written arproval of the ĖErst Party．

3－14 The timaly delivery of the works completed in accorcance with．Ene intemediate and Einal deadiines stated in the scredule of works．is an essential element in this contract THEREFORE in case of celay in any phase of the program the E：zst party will have the rignt to act directly with his own personnel and equipment and／or with personnel of another company to expedite the works in order to regain the celay， charging the cost of such operations to the Second Party on the current payment certificates and on any ocher due Eor any reason．

3－15 When the works subject of this contract is complete，the works will be provisionally handed over to the First Party who will issue a report in which possible defects will be incicared，as well as the ways to eliminate them．The report＇s only Eask is to deternine the completion date．Subsequentiy，within 360 days from the greyious
 sinformordered acceptance of work unless any deffcts have－jeen

［8］	
－+8	ALRAHA EST FOR TRADINE LANDSCAPING DIVISION
Tel．： $47668840-477866^{6}$	
P O．Box： $159 \% 4$	صars：：
Telex ： 200692 ALR．AHA SJ	نِّهـ，：

ラーiを The Second ミニrニ̈ must fumish samp ies oz workmans＇：ip and or
mater゙ミis as recuesced by the Eirst $\Xi \therefore=\because \because$ ．Euch sameies will be
stanges because oE any occuring EIuctuation whether in the wages of the workers or material prices．

3－：8 ： 0 overtime is so ce worked with \ddagger ：e Jecond Earty＇s Eirst di＝三nning the consent in writing of the Eirst Party．in gaymant for authorizec overtume or aignework wili be made uniess tie Seconc Part：is so advised in writing by the Eirst pa＝sy，anci，if the Secons Party is so acivised，he will be remoursec oni？the net addiEional rate or time incurred，inciuding any net aiEivional cost of Employer＇s Eiability and Third Earcy insurances．

3－i9 ：ic variations shall vitiate this Suecontract，bu＝tie Second Par＝y shall not whertake work involvirg a va＝iatiun or extra work without previous wricten authority Ezom the Eirst parti．

Yariations or extra wozk so authorized shali be assessed on ine basis of the Scineciule of Rate attached nereto or referred to hereln， or，where no Schedule exists，at a rate 5 r ralue to be agreed between Ehe Second zarty and the Eirst zar：andior the Employer＇s Surveyor．
：lo day work will be permitted except where，in the opinion of the Finst party or the mployer＇s Surveyor，it would jo unfair to value such work at other than daywork＝aees．

Where work is agreed to be carriec out on a jaywork basis， payments for such work will be made upon the ner cost of waces and／or allowances properly payable $=0$ workmen actualiy and necessarily engaged upon the work，pius the percentage additior Eor labor stared overleaf，and upon the net cost of materials provided by the second Party，plus the percentage addition stated overleaf．If no percentiz is stated，the addition to labor and to materials shall be agteed between the First party and the second Farty，and Eaiiink agoemapter， shall，subject to any provision to the contrary in the principati
supervision and overhead and profit charges．


```
ccns=aこtors and the% may :.ot ooject tc it.
```



```
jecisions taken sy Ete Elrs= ?arcy within the framework oE =nas
contract. The Second ?arti shall present a detalled weekly procram
of his attended works at the last day of the preceeding week.
```



```
j=awincs shall de proviced by the Jeconc Party to the Finst ?arty.
Ecr approval.
3-33 The Fifst Party may exercise the same gowers over the Second party's planc, materials, and property on the site, or on any materials or fanricated work lying at the Second Parey's works jr workshops which have been bought or Eabricated for the purpose cit tiis sub-contracs, as are given to. the Employer under fie principal contract over the Contractor's plant, materials and property, in like circumstances.
3-34 The second shase or work amounts to S.R. 1,050,000.00 (0niy One Million zifey Thousand Saudi Riyals) and shali not commence until written notice is received Erom the Eirst Party. It is underscood that in the event that the expenditure under this piase of she works is not authorized, the Second ?arty will have no alaim for recompensation or remmbursement of any nature.
```

During the preparation of these prices, the Second Part; was aware if all the decails and specifications required by the Eizst Party for a rery high standard job.
dny nodifications thereafter, in the details, specificatacns and materials for the contracted items described in the proposal are already included in ehese prices, and the total eost of works snaln por

ALRAHA EST．FOR TRADINE

 LANDSCAPING DIVISIONلصـاسب ：الأمبر فبهـ بـ مبد المبيـــ

Tel．：4760844－ 4778676
P．O．Box ： 15374
Tilex ： 200692 ALRAHA S．J

．．．． $10 \ldots$

```
3-3ミ Iten:z0e ミョ:ment divisions
    - \aこeri\equiv-s deliverec to site =0q
    - E<cコ\becauseヨヒミon 3nd backジili sor ミlping
        i=!out a,:d ralve boxes \0%
            - Instaliction of pipes and vaives 20%
            - Installation or irrigarion heads and
                Funp assembly203
－Enstaliation of automitic contzol system LOs
－Manntenance and Juarantee on all materiais and equipments fiund jefective sor a period of one year jos
```

The 1 temazec payment iivision mentioned iereabove shouid je developed in more details within one week after signing the contract．

3－36 The maintenance Feriod is one fill year－ 265 days－The main－ Eenance whici will be performed by the Second garty，will commence after the completion and acceprance of works execused．

3－3．A detailed scnedule of works siould be sumatted by the second ？arty to the Eirst ？aryy within one week of signing the contract．

3－38 The Second ？arty is requested to insert his fuliy inclusive hourly daywork rates as detailed below．
（i）Zabor
Craytmen（ 95 S．R．per hour
Iaborers／Mates \ddagger \qquad 5．8．per：hour
（ii）Materials and Plant
Materials Invoice Cost＋ \qquad $\underbrace{20}$

Plant Charges＋ \qquad $+$

T－4	
Psixe	ALRAHA EST FOR TRADINE LANDSCAPING DIVISION
Tet．： $4760840-1778676$	－
P．O．Bex 19374	
Teiex ：sumpuz alrahasj	\therefore ．$\quad .$.

＝c 三̛oid inter末̈erenae zr intermuption．

ミーシ
 Ericed $2 i 11$ of zuantiEtes is 3．R．3，000．000．00．（Only zhree Million Sauci Rivaisj．This amount snail be the $=$ teal dues to sife Jecond ？ary Eor executing，ecmoieting，and maircaining the works in Fiestion in accoriance with tie main concract conditions jetween the First Earty and Ehe Client．
（il）The whole groject is firided into＝wo grases．The jotal prise of

 is ミ．R．L，OE0，000．00（One million EiEty Thousand Saudi Rivals）．

うー？
エEEMS OE PAYMENT
（a）20я Advance jayment against bank gaurantee．
（：）60\％Yonthiy progressive payment divisions versus executed stated $1 n$ the contract Annex．

Ley Eind gavment to te छaid one month after the on Eertanceathich starts upon completion and acceptance －execars．

$$
\text { } 10
$$

SAUDI ARABTA ATYADH ．C．R． 18934

.

Tel. : 4760840-4778676
P. O. Box: : 9574

Telex : 200692 ALRAHASJ

ANDSCAPING DIVISION
 -
 ALRAHA EST FDR TRADINS

 = zorks executed.

In Ene event of Second Farey Ealiing to EuiÊill iEs contractual obiiçarions as cefined in ArEicla 3 دbove, the Second Farey will be linale Eor a penalty of́:
 works jejaned. However, the amount zit such zeralty shoi- - in no case -

Any ur.justifiad delay in Eavment will give tie fignt so zhe Second Farz: $=0$:lalm Eor incennities accordingly.

T-1 This contract shall become ineffective as from the date of its sicnature by authorized signatories of both parties and until the full oonsumation of the raghts and obilgations of both garties herein stated.

7-2 In ase the second Party breaches any of its contractual obligations in a way which will te zonsidered by the Eirst Party as reinecting an mability to complete the said obligations, the First Party reserves the right:
(i) Either to cancel this contract ar soie zesponsibility of second Sarty,
(ii) Or to carry out the above-mentioned obligations at the Second २arcy's responsibili=y and expense.

象	
$5 \text { in }$	ASTAMP 5si Fin Tintile
	LANDSCAPING DIVISION
Tel．： $7760840-47780^{-6}$	！ทั：
P O．Box ：15．774	＇دF＊t：ب．
Fiar＝9009？ALRAHASj	－

\qquad

AEMELE ？：AREMES

Эーi Fineranes．
ラーラ ミrice bres：iown．

2－3 Deriormance Bond Guarantee
$\ddot{y-}$ Acvance Paymen：Guarantee
コー：－？ower of AtEzrney of the zepresentanive of the Secend zart？．

بسمنارٌ8!

\qquad

G L O S S A R Y

Al Kraidees Establishment	The landscape contractor of the project.
Abou-Mansour, Zahi	Project manager of all the landscaping activities of the Gassim Emirate Palace Complex project.
Agromousse	An organic material similar in appearance to white foam, which is mixed with agricultural soil in order to improve its water retention capacities.
Al-Raha Establishment	The internship company. The landscape subcontractor of the project, responsible for the design and execution of all the project's landscaping activities.
Amico, Luigi	Obal Establishment irrigation design engineer.
Gassim	A region in Saudi Arabia which is approximately three hundred miles Northwest of Riyadh, Saudi Arabia.
Gassim Emirate Palace Complex	The internship project. It consists of two sites which are two miles apart: the Guest Villa Site and the Main Site.
Guest Villa Site	It consists of eight guest villas and a recreation area which is comprised of one tennis court, one swimming pool, and a recreational building. The area of the guest villa site is approximately $12,000 \mathrm{~m}^{2}$ or 120,000 $\mathrm{ft}{ }^{2}$.

\(\left.$$
\begin{array}{ll}\text { Hardscaping } & \begin{array}{l}\text { A landscaping activity which } \\
\text { consists of all the exterior } \\
\text { civil works of the project - }\end{array}
$$

namely, the design and construc-

tion of fountains, pergolas,

and walkways.\end{array}\right\}\)| They consist of four major |
| :--- |
| activities: Hardscaping, Soft- |
| scaping, Electrical, and |
| Irrigation. |

Woochang Construction Company	The main contractor in charge
of the study, design, and	
	construction of the Gassim Emirate
	Palace Complex.

V I T A

Name:	Roger Elias Zard Aboujaoude
Born:	May 6, 1958 Ghanta, Liberia
Parents:	Mr. Elias Georges and Mrs. Juliette Zard Aboujaoude
Education:	B.S., Mechanical Engineering, Texas A\&M University, August 1980.
	M. Eng., Mechanical Engineering, Texas A\&M University, August 1981.
Experience:	October 1982 - June 1983 Engineer (Doctor of Engineering Internship) Al-Raha Establishment Riyadh, Saudi Arabia.
	January 1982 - May 1982 Graduate Teaching Assistant Mechanical Engineering Department Texas A\&M University.
	September 1980 - December 1981 Graduate Research Assistant Mechanical Engineering Department Texas A\&M University..

[^0]:

[^1]:

