INTERNSHIP EXPERIENCE AT

WALTER P. MOORE \& ASSOCIATES, CONSULTING ENGINEERS

A Report
 by

FRANCISCO XAVIER ARGUELLO CARAZO

Submitted to the College of Engineering
 of Texas A \& M University
 in partial fulfillment of the requirement for the degree of DOCTOR OF ENGINEERING

August 1979

Major Subject: Interdisciplinary Engineering

WALTER P. MOORE \& ASSOCIATES, CONSULTING ENGINEERS

A Report
by
FRANCISCO XAVIER ARGUELLO CARAZO

Approved as to style and content by:

August 1979

ABSTRACT

A report on an Internship Experience at
Walter P. Moore \& Associates, Consulting Engineers. (August 1979)
Francisco Xavier Arguello Carazo, C.E., National University of Nicaragua;
M.S., Rice University

Chairman of Advisory Committee: Dr. Richard E. Thomas

An internship at Walter P. Moore \& Associates, Consulting Engineers was completed over a period slightly in excess of one year. During this time, the intern worked in the structural division and was assigned numerous projects involving the various phases of the structural design of buildings. His involvement in fifty projects enabled him to perform structural analyses and designs ranging from complex multistory structures to simple structures. While contributing with his technical knowledge to the performance of such tasks, he was also in communication with project architects during the design of some of the buildings, and in various occasions had draftpersons working for him. In addition to the experience accumulated as a consulting structural engineer, the intern was involved in other professional development activities such as conducting a seminar for the office staff on earthquake damage.

ACKNOWLEDGEMENTS

Many individuals assisted me in the completion of my Doctor of Engineering program, with their help I was able to surpass all problems; to all I am greatful.

Special thanks goes to Dr. Richard E. Thomas, who was my committee chairman and who advised and guided me, both in academic and personal matters.

To Dr. Donald McDonald, who as member of my committee and also as my professor, greatly counseled and guided me through the program.

To all the other members of my committee, who provided guidance and timely advise, especially to Mr. Ken Zimmerman.

To Dr. Chi Wu, whose technical expertise and advise, greatly enhanced the quality of my internship.

To Lee Synan, whose constant assistance and cooperation made this report a reality.

To my parents, to my brother Felipe, and to Mr. Julio Arellano, who encouraged and financially supported me throughout my graduate studies; I thank them for their faith.

To my wife and children, who cheerfully supported me throughout my graduate studies, lifting my spirits in troubled days.

TABLE OF CONTENTS

I. Introduction. 1
II. An Internship at Walter P. Moore \& Associates 4
A. Organization of the Firm and Intern's Position. 4
B. Internship Overview 6
III. Projects Performed. 8
A. Preliminary Design. 8

1. Feasibility and Pricing 10
a. WEST LOOP OFFICE BUILDING 10
b. BAY DESIGN GARAGE 14
c. BLOCK 130, HOUSTON CENTER 17
d. TEN-TEN GARAGE INFORMATION. 20
2. Basis for Final Design: THREE RIVERWAY 24
B. Complete Structural Design of Buildings 29
3. Science and Mathematics Center/Junior College - COMMONS BUILDING. 30
4. SMITH PARK PAVILION 36
C. Design of Special Structural Systems in Major Buildings 39
THREE RIVERWAY 39
D. Field Inspection: CARRIAGE PARK APARTMENT COMPLEX. 44
E. Structural Additions and Remodeling of Existing Buildings 48
F. Revision of Design and Shop Drawings 50
IV. Other Professional Development Activities 52
V. Conclusion. 55
VI. Appendices:
APPENDIX I: Feasibility and Pricing. 57
APPENDIX II: Basis for Final Design 106
APPENDIX III: Complete Structural Design of Buildings 116
APPENDIX IV: Design of Special Structural Systems in Major Buildings 146
APPENDIX V: Field Inspection 178
APPENDIX VI: Structural Additions and Remodeling of Exis- ting Buildings 185
APPENDIX VII: Revision of Design and Shop Drawings 192

TABLE OF CONTENTS (continued)

APPENDIX VIII: Other Professional Development Activities 198
VII. Vita 213

I. Introduction.

When admitted to the Doctor of Engineering program of Texas A \& M University, I held the degrees of Civil Engineer and of Master of Science. I also had some work experience related to the design and supervision of structures. This, coupled with the fact that I was currently working for a Houston-based consulting engineering firm, Walter P. Moore \& Associates, was decisive in arranging my internship at that firm.

The objectives of the Doctor of Engineering Internship have been well established by the College of Engineering; these are:

To enable the student to demonstrate his ability to apply his knowledge and technical training by making an identifiable contribution in an area of practical concern to the organization or industry in which the internship is served, and

To enable the student to function in a non-academic environment
in a position where he will become aware of the organizational approach to problems in addition to traditional engineering design or analysis. These may include, but are not limited to, problems of management, labor relations, public relations, environmental protection or economics.

In order to establish my contribution to the area of practical concern in which I was involved and also my exposure to the organizational approach to problems in the non-academic environment, it is necessary to outline in detail the basic services offered by a consulting structural engineer as presented by the American Society of Civil Engineers.* The services marked by an asterisk in the enclosed outline, represent those in which I have had some degree of exposure; the ASCE outline of services is as follows:

[^0]Services in the Preliminary Phase

* 1. Conferences with architects, other engineers engaged on the project, owner's representatives, building officials, and regulatory agencies, to establish the scope of the project and requirements of alternate structural systems;
* 2. Participation in the formulation of a soils and foundation investigation, and counseling on data needed;
* 3. Preparation of economic studies of alternate structural systems, including foundations;
* 4. Preparation of preliminary structural designs required to define space needs of the structural elements, as well as to accommodate the space needs of the architectural, mechanical, and electrical facilities;
* 5. Preparing design criteria and outlining specifications for structural aspects of the project; and
* 6. Counseling on building form, materials, and methods of construction as related to the structure, costs suitability to the site foundation conditions, building code requirements, etc.

Services in the Design Phase

* 1. Conferences with the architect and with others to plan and coordinate the structure into the building project;
* 2. Consultation on the need for foundation investigations to supplement those that may have been made in the preliminary phase;
* 3. Preparation of structural calculations in reproducible form for normal design loads;
* 4. Preparation of structural contract drawings (in pencil on tracing paper unless otherwise agreed) in sufficient detail to define the construc-
tion work explicitly, and to keep the professional responsibility for the structural design, including details, with the Consulting Structural Engineer;
* 5. Preparation of structural specifications in a form as agreed, for incorporation in the project specifications;
* 6. Provision of a reasonable number of prints of the work in progress for coordination of the project design; and

7. Participation in establishing the materials testing, fabrication inspection, and construction inspection programs for the project.

Services in the Construction Phase

1. Preparation of structural addenda as may be required during the bid period, and other assistance in the procurement of bids;
2. Provision of consultation and advice on structural aspects of the project construction;
3. Preparation of supplementary structural sketches and details needed to resolve field problems that may be encountered;

* 4. Review of detailed construction drawings and shop and erection drawings submitted by the contractor;

5. Review of laboratory, shop, and mill test reports of materials, fabrication, and equipment, and reports of these reviews in writing to the Prime Professional; and
6. Observations of construction in progress and provision of appropriate reports to the Prime Professional.

In this report through a detailed coverage of my experience at Walter P. Moore \& Associates, where my involvement in the above mentioned services was demonstrated, I establish the fulfillment of the internship's objectives.

II. An Internship at Walter P. Moore \& Associates

A. Organization of the Firm and Intern's Position

Walter P. Moore \& Associates is a consulting engineering firm, presently engaged in both structural and civil engineering projects. Since its creation in 1931, it has grown to occupy a prestigeous position in the nation, being involved in both national and international projects. The firm was listed by Engineering News Record among the top 500 consulting engineering firms in the United States for the year 1977.

With respect to its organization, it is divided into two major divisions: the Project Division, of recent creation, in charge of Civil Engineering projects, and the Structural Division. The Structural Division has been the pillar of the firm through the years; it is further subdivided into self-sufficient design groups, each of which is headed by a group leader and an assistant group leader in charge of a staff of engineers and draftpersons. The projects are assigned by management to the group leaders, who in turn assign them to an engineer or engineers within the group, depending upon the size of the project.

In addition to the design of buildings, having conventional structures, the division has designed numerous outstanding non-typical structures which makes it a highly desirable place for a young engineer to acquire experience.

I was a design engineer under Mr. Larry Griffis and Mr. Chi Wu, group leader and assistant group leader respectively,* both registered professional engineers, in what was known as Group No. 1 of the Structural Divi -

[^1]sion during the great majority of my internship. My internship supervisor was Mr. Ken Zimmerman, a registered professional engineer and president of the company.
B. Internship Overview

Walter P. Moore \& Associates has been heavily involved in the structural design of buildings for the construction industry in the past fortyseven years. In the construction industry, three broad areas of construction can be classified, namely: building construction, engineering construction, and industrial construction. The firm's involvement has been mainly in the building construction area where the bulk of buildings are those to be erected for habitational, institutional, educational and commercial purposes. All these buildings were designed by architectural firms; the relationship with the consulting structural engineer was one wherein he serves the owner indirectly through an architect responsible as the Prime Professional. Walter P. Moore \& Associates' major clients throughout the years have been architectural and development firms for whom the firm performs what is known as "Professional-not-prime" type services.

During the period of fifteen months in which I worked for Walter P. Moore \& Associates, I was involved, with varying degree of responsibility, in fifty projects which represented a fairly complete cross section of the type of projects in which the firm was involved. I have classified these projects into six distinct categories according to the type of work performed; each project category, with the percentage of time dedicated to it, and the number of projects actually worked, is indicated in the following list:
Project Categories \%
No.

1. Preliminary Structural Design 23 19
2. Complete Structural Design of Buildings 30 4
3. Design of Special Structural Systems 33 8
Project Categories (cont.) \% No.
4. Field Inspection of Structures 1 1
5. Structural Additions \& Remodeling of Existing
Buildings 9 16
6. Revision of Design and Shop Drawings 4 2
100 50

My involvement in the projects classified in the above mentioned categories has broadened my education by providing me with exposure to the actual practice of engineering and by being a positive step in my professional development; one of the implied objectives of the internship.

The relevant codes of practice prevalent at the time of my internship were used in the execution of all the projects, these codes were: the American Concrete Institute's ACI 318-71, and the American Institute of Steel Construction, Manual of Steel Construction, seventh edition.

In the following sections, a detailed description of relevant projects within each of the six categories mentioned is presented.

III. Projects Performed

A. Preliminary Design

In structural design, the preliminary phase has an important role; it provides the initial description of a real structure with known member sizes and subjected to known loads. The following flow diagram of a structural analysis and design sequence is included here to establish the position of the preliminary phase in the design process.*

From the nature of the preliminary designs in which I was involved, two classifications can be made: a. Preliminary design to establish feasibility and preliminary pricing and, b. Preliminary design as a basis for final design. Among the projects in which I worked I have considered appropriate to include in this section five which are representative of this important phase of structural design. These particular projects are presented in the following list:

[^2]1. Feasibility and Pricing
a. WEST LOOP OFFICE BUILDING
b. BAY DESIGN GARAGE
c. BLOCK 130, HOUSTON CENTER
d. TEN-TEN GARAGE INVESTIGATION
2. Basis for Final Design: THREE RIVERWAY
3. Feasibility and Pricing
a. WEST LOOP OFFICE BUILDING

Task Description

In this particular assignment I was in charge of preparing the preliminary design for an eight-story office building with a long truncated pyramid-shaped plan, to be constructed in the Houston area and which was being developed by Al Keller, a Houston developer. A sketch of this building's typical floor outline with its dimensions is presented in section a. 1 of appendix I.

The objectives to be accomplished is this task were: 1. to establish the general structural layout to fit the functional requirements of the building, and 2. to consider and size the several possible solutions that satisfied the functional requirements. Specificly I was to consider four different schemes combining reinforced concrete and structural steel.

Due to the relatively low-rise nature of this building, wind forces were not considered in this preliminary analysis; for the purpose of establishing the relative advantages of the alternatives considered, a gravity load analysis of a typical floor was considered appropriate.

Task Planning

The first step involved in the execution of the assignment consisted of a careful examination of the set of preliminary architectural plans that mere available from the architect's office. After a complete acquaintance with the architectural requirements, the next steps in the planning process were: 1. the establishment of the loading conditions and of the materials' properties, 2. the identification of a representative interior bay of the typical floor to be analyzed, and 3. the review and study of a new cons-
truction system which was being introduced in the Houston area and which was to be used as one of the alternatives.

Task Execution

I isolated and analyzed a typical $30^{\prime} \times 100^{\prime}$ interior bay extending throughout the width of the building. Four alternatives involving different construction systems and materials were considered, and I carried out a complete structural design for each alternative. The four alternatives considered were (1) Grade 50 steel joists, beams and columns,(2) Grade 50 steel composite beams and steel columns,(3) Reinforced lightweight concrete beams and joists with normal weight reinforced concrete columns, and (4) Grade 50 steel composite joists and beams with grade 50 steel columns. This last alternative, with trade name of "Hambro" system, was being introduced in the Houston area at that time its main feature being the composite action developed both with joists and beams. A set of the relevant calculations for each alternative is included in section a.2. of appendix I.

Once the design was completed, I conveyed all the relevant information to one of the group's draftpersons who was assigned to work with me in this particular job. After agreeing on the format for the drawings, the last step in the task was to prepare the structural specifications for each alternative presented, these were to be included in the drawings.

Task Results

After completion of the design and drafting of the preliminary proposal, I met with my immediate supervisor in order to review the proposal. After I explained the assumptions and procedure used to accomplish the assignment, and after his approval, copies of our drawings were submitted
to the firm's client.
The objectives set for this assignment were fully accomplished; an appropriate structural layout, fitting the functional requirements of the building was devised, and a complete design was provided for each of the four alternatives considered.

A copy of the completed drawings with the four different alternatives analyzed, as submitted to the client, is presented in section a.3. of appendix I.

Comments

The information embodied in the drawings, which were being provided by our firm to the client, was of decisive importance in making the decision as to what system of construction to employ in order to minimize the initial cost of the investment. The decision as to which particular scheme would have a least-cost effect was made by the developer after the contractor had reviewed our proposal and had determined, based on availability and prices of materials at that time, which would actually be cheaper to build. It turned out that the scheme chosen was the "Hambro" system.

Several months after I had completed the preliminary analysis for this building, the complete set of architectural plans were submitted to our office in order to proceed with the final design and draft for the structure. At that time, I was heavily involved in another project and couldn't participate in its final design.

Review
I had obtained most of the technical knowledge required to carry-on this assignment from basic reinforced concrete and structural steel design courses. The consideration of a new composite construction system for one
of the alternatives, required investigation and study of the new system on my part at that time. This proved to be an interesting learning experience since the new floor system represented, from the design point of view, a definite improvement, by providing composite action with both beams and joists, over the conventional bar joist system. For the sake of completeness, I am enclosing in section a.4. of appendix I a brief description of the "Hambro" system as presented in the manufacturer's brochure.

The contribution of this assignment to the fulfillment of the internship's objectives was: (1) the basic academic knowledge dealing with the analysis and design of reinforced concrete and structural steel elements was applied in the creation of structural systems satisfying the functional requirements of the structure, and (2) the interaction with both the group leader and the draftperson assigned to the project, represented an important aspect of functioning in a non-academic environment.

b. BAY DESIGN GARAGE

Task Description

In this assignment I was to perform the preliminary design of a typical floor for a parking garage structure. The firm's client in this project was Bellows Construction Company, a contractor who was to utilize our design for pricing purposes.

The objective to be accomplished in this task was to provide the client with detailed structural information of three different floor layouts for two different loading conditions in a minimum amount of time.

I was to design three interior bays for a parking garage structure, all with the same column spacing in the longitudinal direction of 30^{\prime}. The column spacing in the transverse direction varied for each layout: a. 45' $-60^{\prime}-45^{\prime}$ continuous interior spans with 15^{\prime} cantilevers at both ends, b. 60' - 60' - 60' continuous spans, and c. 30' - 30' - 30^{\prime} continuous interior spans with 15' cantilevers at both ends. Layouts "a" and "b" were to be designed with a one-way postentioned lightweight concrete joist system and layout " c " was to be designed with normal weight conventionally reinforced concrete joist system. This last layout was to be analyzed also for a special concentrated loading condition due to an AASHTO HS 20-44 truck loading.

Task Planning

The information provided to me in this particular project was conveyed by the group leader who had obtained it in a telephone conversation with the client. Since a parking garage structure is close to being a "pure" engineering project without architectural requirements, the column spacings and materials' required were about all I needed to get started; this was the information I obtained.

There were two steps involved in the planning process for this project: 7. establishment of the loading conditions and materials' information, and 2. acquaintarce with a commercially available computer program which had the capability of analyzing and designing prestressed concrete structures.

Task Execution

I performed a hand analysis and design of the conventional reinforced concrete joist system; the prestressed schemes consisting of postensioned one-way lightweight joists were analyzed and designed by the commercially available "Posten" computer program to which I had to submit the input data only. At the office, we had a computer terminal with operators to whom the engineers would submit the data and they would key-punch it in.

In addition to this "Posten" program I also used to a major extent the "Stress" program, both were available in-house and greatly expanded our capabilities. Typical data sheets with the input for the "Posten" program is presented in section b.l. of appendix I.

Once the design was completed, the next step in the execution of the assignment was to prepare the structural specifications and provide appropriate drawings for the schemes analyzed; since all of the draftpersons in our group were involved in other projects, I personally prepared the required drawings.

Task Results

When I completed both the design and the drafting of the required schemes, I met with my immediate supervisor to review my work. After discussing the procedure employed in carrying out the assignment and reviewing the specifications and drawings, copies of these were sent to the
client. The structural drawings with specifications which I prepared for each scheme analyzed, are presented in sections b.2. and b.3. of appendix I.

The objective to be accomplished in this task was fulfilled; the detailed structural information required by the client was provided within a short period of time. In addition, I was introduced to the use of the "Posten" computer program which demonstrated to have powerful capabilities.

Comments

It is worthwhile to note that the firm's client was a contracting company. Based on relatively sketchy information with which to start, we provided information that could be used in a multitude of different building schemes. This demonstrated the fast-pace of the construction industry these days, when structural designs, based on phone requests, are needed to remain competitive.

Review

In the execution of this task, I utilized basic reinforced and prestressed concrete principles learned in school. The utilization of the "Posten" computer program certainly contributed to expand my capabilities as a structural designer.

The main contribution of this assignment to the fulfillment of the internship's objectives is directly related to the application of my technical knowledge in producing an identifiable contribution to the firm's interests.

c. BLOCK 130 , HOUSTON CENTER

Task Description

An architectural firm from Houston, Pierce-Goodwin-Alexander, had proposed several schemes for a multi-story building to be constructed in downtown Houston. Our firm was contacted to perform a preliminary estimate of materials required for the structure. There was a very special feature of this task, it was to be completed within forty-eight hours.

This project consisted of designing three different schemes, (1) a twenty-seven - story structure with rectangular plan dimensions of $90^{\prime} \mathrm{x}$ 240', (2) an eighteen - story structure with rectangular plan dimensions of $90^{\prime} \times 184^{\prime}$, and (3) an eighteen - story structure with rectangular plan dimensions of $100^{\prime} \times 184^{\prime}$. All three buildings were to have reinforced concrete structures.

The objective to be attained in this task was to provide estimates of the materials required for the three structures in a minimum amount of time.

Task Planning

I was provided with a standard plan to be modified according to the particular requirements of each scheme. (see section c.1. of appendix I). Since the task demanded rapid action, the time spent in planning it was minimum. It consisted in dividing the project into three phases: (1) the design of the typical floor for gravity loads with minor modifications, (2) the sizing of the lateral load-resisting elements, and (3) an estimate of the materials required for the different schemes.

Task Execution

I carried out the design of the reinforced concrete one-way joist
system for the typical floor in a very short period of time; in doing this I utilized the short-cuts available from ACI 318 - 71 in its chapter 8: "Analysis and Design-General Considerations".

The analysis of the lateral force-resisting elements required an oversimplification due to the time constraint. I isolated three levels within the height of each structure, one level close to the roof, one at midheight and the third one at ground level. These isolated substructures were analyzed and designed and the results were used to establish average column and beam sizes. This oversimplified analysis is presented in section c.2. of appendix I for the twenty-seven - story building; the foundation investigation for this building is also included in that section of the appendix.

Task Results

In this project, the review of my work by my supervisor was done on a step-by-step basis; as soon as I had some information, he would discuss its relevance with me and would convey it to the client by telephone.

The objective set for this task was fully accomplished, within the time limits imposed by the client, I was able to supply the relevant information requested.

Comments

By far, the most important aspect of this task was the limitation imposed by the time requirement. This limitation forced me to make a rapid decision as to how to simplify the analysis. The computer programs available were useless under the circumstances because of the relatively long
time involved in preparing the input data.
Throughout the period of time in which I worked at Walter P. Moore \& Assoc. I could notice the increasing time limitations being imposed by the firm's clients upon each project, but this particular one was certainly the most restricted of all.

Review

The basic knowledge of structural analysis and of concrete design acquired in school was sufficient to carry on this assignment. The relevant aspect of it was the need of applying that knowledge in making a judgement as to simplify the analysis and still provide results within "the ballpark".

The main contribution of this assignment to the fulfillment of the internship's objectives is that in addition to contributing to the firm's interests, it gave me a first-hand view of the ever increasing fast-pace which the construction industry is going through today; this certainly represented a view which could only be obtained outside of the academic world.

d. TEN-TEN GARAGE INVESTIGATION

Task Description

The Tenneco corporation was considering the construction of a twentyfour - story building to be located in the downtown area of Houston, and on the site of an existing seven - story parking garage structure. This project had a very special feature: the parking garage building was not to be demolished and was to remain operational; our firm was contacted to carry out the preliminary design and feasibility study.

In order to comply with such a request, it was proposed to construct a platform 115' high providing a surface of $209^{\prime} \times 240^{\prime}$ at the top, and completely independent of the existing garage structure. Such a platform would serve as the supporting structure for the twenty-four - story building that would then be erected on top of it.

In charge of this unususal project was Dr. H.R. Horn, who at the time was vice-president of the firm. He subdivided the project into two different tasks, the preliminary design of the twenty-four - story building and the preliminary design of the supporting platform structure. I was assigned to perform the preliminary design of the tower, while two other engineers worked on the supporting platform. A schematic drawing giving an idea of the proposed structure is presented in section d.l. of appendix I.

Since we had to establish the feasibility of constructing the platform, the main requirement on my assignment was to establish the loading conditions that the twenty-four - story building would impose on the platform.

The specific objectives that I was to accomplish in this task were: 1. to design a complete typical floor for the tower, and 2. to compute the reactions at the transfer level with the platform due to gravity and
wind loads.

Task Planning

Once I was informed on the nature of the project and became acquainted with the architectural requirements, I proceeded to establish the floor gravity loads and the wind loads.

At this stage, I was instructed to consider a composite steel and concrete system for the floor structure. Since this was the first "real world" job in which I was to perform a design of such a system, I proceeded to review both my steel design class notes and the current AISC requirements for composite construction presented in the Manual of Steel Construction.

Task Execution

The execution of the assignment was straight-forward; after completing the gravity load analysis and design of the composite floor system, I submitted the design results to the draftperson assigned to the project in order to transfer them to the drawings. A copy of the working drawings for the typical floor plan is included in section d.2. of appendix I as well as a copy of the gravity load calculations. Once the floor design was completed, I proceeded to collect the column loads in order to establish reactions at the base and for future use in the actual column design. The load collection for the columns is also included with the gravity load calculations. It was important at that time because this building was the first multistory structure which I analyzed in actual practice. The standard format employed in the office to record loads proved to be very practical.

The wind loading used in this building was established from the

American National Standards Institute's (ANSI) provisions for a one hundred year storm. The initial lateral load resisting systems proposed for the building consisted in five X-braced systems and two portal frames resisting the wind loading applied to the broad face of the building. The two exterior portals in the longitudinal direction were to resist the wind loading applied to the short face of the building. The wind loading for both faces, as well as the reactions at the base are included in section d.3. of appendix I.

Task Results

After completion of my assignment, I provided the reactions at the base of the building to the team working on the platform, and I also reviewed the typical floor design with the engineer in charge of the project, this had been executed to his satisfaction.

The specific objectives set for this assignment were fully attained; I produced a complete design of the floor system as well as provided the input, in the form of the applied loads, to the design of the platform.

Conments

The critical element of this job was certainly the supporting platform, since the project depended on its feasibility. Once the platform had been geometrically modeled and analyzed for the applied loads, it became apparent that the member sizes required were too large. Our results were submitted to the client and I never heard of the project again.

Review

This project was probably the most unusual one in which I ever participated. From the initial stages I realized that even if we could devise
a feasible structure to support the twenty-four - story building, the problems to be encountered in the area of soil mechanics and foundations would have been great; nevertheless it was a great challenge.

To perform this assignment, I utilized basic knowledge obtained from courses in structural analysis and in design of steel structures.

This assignment greatly contributed to my development and understanding of office practices as concerned with practical design and recordkeeping of design notes. The contribution of it to the fulfillment of the objectives of the internship is mainly in what is concerned with my practical contribution to the firm's interests, and to the interaction developed with peers while working as a team.

2. Basis for Final Design: THREE RIVERWAY

Task Description

A Houston-based developer: John Hanson Investments, was planning to build a multistory office building for the Houston area which was to have architectural features very similar to the Allied Chemical building, an existing structure which he had also developed in the area. Our firm was to conduct a preliminary design for the new building.

The new building was planned to be twenty-one stories high and to have a hexagonal-shaped floor plan with a first-floor overall longitudinal dimension of 273^{\prime} with a width of 100^{\prime} (see the floor plan sketches in section 1 of appendix II). The building had an unusual architectural feature consisting of a series of irregularly patterned stepped-in upper floors which made it necessary to provide a transfer system of load from axially loaded elements to flexural elements at those levels.

Due to the time limitations imposed by the client, the project was divided by Dr. Chi Wu, who was in charge of it, among two additional design engineers including me. The objective of my particular assignment was to perform the preliminary design of the lateral force resisting elements and of the transfer girders for both a structural steel scheme and a reinforced concrete scheme.

The difference of this preliminary design from the others in which I had worked, was that for this particular building the complete final design would follow immediately after a decision was made as to which scheme would be appropriate. The preliminary sizes would then be used as an input to a refined analysis and design process.

Task Planning

In addition to a thorough review of the architectural requirements which by far were the most complex of all the buildings I worked on during my internship, the major item requiring sound judgement and planning was related to the distribution of wind loading among the resisting elements. The wind loading considered for this building was a $100-y e a r$ storm as provided for by the ANSI (American National Standards Institute) code. To give an idea of the complexity of the resisting system, I am including in section 2 of appendix II, elevations of each of the rigid frames, numbered with reference to the previously presented flcor plan sketches, which in conjunction with the shear walls (in the reinforced concrete scheme) or the k-braces (in the structural steel scheme) were providing the lateral resistance.

Task Execution

After I thoroughly reviewed, with the valuable input of Dr. Wu, the structural problem posed both by the shear wall-frame interaction, or the k-brace-frame interaction, and by the geometry of the frames themselves, we came to an agreement as to the wind load distribution. The procedure to be followed was simply to assign percentages of loading according to the relative stiffness of the frames and walls. The distribution of load between the bracing system and the frames was done arbitrarily by intuition and judgement and the distribution of loading among the frames themselves was done according to an approximate portal analysis-type stiffness distribution. It is of interest to mention at this point that, when the complete final design was done by using a sophisticated three dimensional computer analysis, our intuitive base shear distribution cane within 10% of the so
called "exact" results.
Once the lateral loading was established for this preliminary stage, I proceeded to perform a portal analysis of the frames and a design of the members in both schemes. I also designed the transfer girder system which basically consisted in one and two span girders carrying a concentrated load due to a column at a stepped-in floor.

When working on the structural steel scheme, due to its relative flexibility, I considered the effect of drift due to the wind loading. The application of the method proposed by F. Cheong-Siat-Moy, "Stiffness Design of Unbraced Frames", Engineering Journal/American Institute of Steel Construction, First Quarter 1976, was of great assistance. The method was capable of providing rapid means for modifying member sizes meeting pre-selected story defection constraints which made it a valuable practical design aid. Also of interest to mention here is the fact that, about two months later, while attending an American Institute of Steel Construction Seminar (see section IV, "Other Professional Development Activities", of this report) this particular procedure was very much highlighted as a very recent design aid for the practicing structural consultant; needless to say, I felt very satisfied of just having applied it.

Task Results

After the completion of the design and drafting of the preliminary schemes, the task force working on the project met and discussed the results obtained; these results embodied in the drawings were to the satisfaction of the group leader. Our preliminary drawings as presented to the client for both the structural steel scheme and the reinforced concrete scheme are presented in section 3 of appendix II.

The objectives set for this assignment were fully accomplished; I contributed with my technical knowledge to the preliminary solution of a relatively complex problem. The analysis and design performed was done within the time limitations imposed by the client.

Corments

The information provided in our preliminary drawings was conveyed to the client, who in conjunction with the contractor decided to proceed with the reinforced concrete scheme for the complete final design.

The response by the client was almost immediate, so that I was assigned to work on the complete final design of this building right after the completion of the preliminary proposal. I cover my involvement in that stage of design in section III C; "Design of Special Structural Systems in Major Buildings", of this report.

Review
I had acquired most of the technical knowledge required to conduct this assignment in adyanced structural analysis courses and in basic reinforced concrete and structural steel design courses. The input provided by Dr. Wu was extremely valuable in carrying-on the assignment, both when advising as to practical methods of structural analysis and when recommending to review appropriate and recent technical literature.

This assignment contributed greatly to the fulfillment of the internship's objectives by providing me with the opportunity of making an identifiable contribution to the firm's interests in a relatively complex problen. This building certainly was an outstanding non-typical structure and as such, represented an interesting challenge which contributed to my
overall professional development. Since the task required a close team work, the interaction with peers in developing the project was of great value, this was reflected in the constant exchange of information among the team members.

B. Complete Structural Design of Buildings

Within the framework of the general flow diagram describing the structural analysis and design sequence, presented earlier in the preliminary design section of this report, the complete design of a structure is likely to involve the following stages*:

1. Establishing the general layout to fit the functional requirements of the structure,
2. Consideration of the several possible solutions that may satisfy the functional requirements,
3. Preliminary structural design of the various possible solutions,
4. Selection of the most satisfactory solution, and
5. Detailed structural design of the most satisfactory solution.

The final product of the detailed structural design is the complete set of constructive drawings which are to be utilized in the actual construction of the building. These drawings represent the source by which consulting engineers convey information to the contractor who will build the building. In preparing drawings, including framing plans and details, the preparation of structural details are very much the function of the engineer who must be aware of construction practices in order to perform an efficient job.

For inclusion in this section, I chose two representative projects:
a. Science \& Mathematics Center/Junior College - COMMONS BUILDING
b. SMITH PARK PAVILION

[^3]
a. Science \& Mathematics Center/Junior College - COMMONS BUILDING

Task Description

In the decade of the 70's the construction industry of the free world experienced an involvement in projects of unparalleled scale in the Middle East. Within a major plan to gain self-reliance, based on ambitious programs of development where education was to play an important role, the kingdom of Saudi Arabia launched a program to develop large educational facilities. In 1976, the Houston-based architectural firm of James M. Sink Associates was contracted by the government of Saudi Arabia to provide programming and design services, in the creation of a Science and Mathematics College to be located in the city of Riyadh.

Walter P. Moore \& Associates was contacted by J.M. Sink Associates to provide the civil and structural engineering services for such a facility. The project was divided into two phases, the initial phase would provide facilities for 3500 students with a second phase increasing the facilities to service 6500 students. Our firm was to provide the complete contract drawings for phase 1 effective immediately while phase 2 drawings would be done at a later time. The initial phase of the project was to provide 1.5 million square feet of construction with the capability for expansion to 2.2 million square feet; the phase 1 development plan is included in section a.l. of appendix III.

The facilities to be built were organized into four categories: academic, academic support, housing and campus support. The housing category was subdivided into married student housing and single student housing. Initially, two neighborhoods accommodating a total of 1008 single students were to be built. Each neighborhood consisted of seven halls for 72 students and a one-story Commons building containing all facilities shared by
the halls. The single student housing site plan is also included in section a.l. of appendix III.

I was assigned the task of performing the complete structural design, detailing, and drafting of the Commons building which was to be used repetitively. The Commons building locations are highlighted in the single student housing site plan.

The objective set for this task was to provide complete contract drawings reflecting the structural design for the Commons building within the time limitations imposed by the deadlines set by the client.

Task Planning

Of all the projects in which I was involved during my internship, this particular one required the maximum amount of time in the planning stage. I subdivided this stage into three broad phases (1) acquaintance with the conditions prevalent in Saudi Arabia, (2) acquaintance with the overall project, and (3) acquaintance and impact of the particular architectural requirements for the building I was in charge.

Among the information relevant to construction obtained about the conditions prevalent in Saudi Arabia, the following were of interest: the great majority of construction materials were imported; labor was scarce and it was necessary to import labor; ports were so overcrowded that a 1 year duration in line for cargo ships was very common; potable water was a scarce commodity, a gallon of water would sell much higher than a gallon of gasoline; temperature changes of over 100 F in a short period of time made it one of the most inclement environments for construction.

The most outstanding features to consider in the planning of this task with respect to the overall project were: the use of metric dimen-
sioning and reinforcing steel bar sizes, and the standarization and coordination of design specifications and drawings. The coordination was handled rather well by Mr. Lee Jones, the group leader in charge of the overall project; the group held weekly meetings where general information about the project were discussed. All the written communication occurring with the architect's office was kept available to the group's staff.

As far as the Commons building itself, this was a one-story building with three areas having different roof elevations, and with plan dimensions of roughly $140^{\prime} \times 180^{\prime}$. The information available from the architect at the initial stages was still of a preliminary nature; in fact, I started to work on the building with only a preliminary architectural flour plan. Information pertaining to loading and code provisions, and to the structural systems to be utilized, were the items that I investigated in this planning stage.

Task Execution

From the preliminary architectural floor plan, I initially prepared a structural layout for the roof in the form of a roof framing plan. Through almost daily telephone communication, I kept in touch with the architect in charge of the Commons building, with whom I would exchange information. Through this process, and by timely exchange of working drawings we were able to complete the design of the building and to meet the deadlines set for the preliminary reproduction and review of the drawings. The final architectural plan with building sections is included also in section a.l. of appendix III.

The structural system which I designed, consisted in pretensioned precast concrete elements and one-way slabs for the roof system, supported on
reinforced concrete walls and columns. The complete design calculations are presented in section a.2. of appendix III.

Task Results

After completion of the design and drafting for the Commons building which I did slightly ahead of schedule, I helped out other engineers within the group, who were also working on the Saudi project, both in the design of structural elements and in preparing structural element's schedules.

While the project was sent out for reproduction, I was transfered to group No. 1 where I remained the rest of my internship. When the full set of drawings were returned to the office for revision, I was temporarily transfered back to my original group to make the appropriate changes; this step proved very useful since my supervisor provided great input with respect to improving and correcting my structural details.

Once all the drawings were in a final form, they were submitted to the architect's office who provided them to the Saudi government for bidding.

The objectives set for this assignment were fully accomplished; I produced a complete set of contract drawings which were the product of a detailed structural design. In addition, I contributed towards meeting the deadlines imposed by the firm's client by helping out in the design and draft of various other buildings within the overall project.

Copies of the complete contract drawings with some of the structural details as submitted to the client are included in section a.3. of appendix IV.
Conments
All of the information which I provided to the client through the
contract drawings was a result of careful structural design. These drawings were to be used in the bidding and in the construction process, which made them very important.

In my particular assignment, I had enough time to carry it out, but it was apparent to me that with the overall project the deadline was very restrictive; in order to get the project on time large amounts of overtime were necessary from the group's staff.

Review

While working on this project, I had the great opportunity of getting a first-hand look at the so publiziced large projects being developed in the Middle East, and I also had the opportunity of reviewing the conditions prevalent in that area of the world where the largest engineering projects of modern times are being executed.

I had obtained the technical knowledge required to complete my assignment in basic reinforced and prestressed concrete courses; the organization and coordination required to develop the complete structural drawings were a matter of experience which I had acquired through my previous work at Walter P. Moore. In developing structural details, common sense and consulting with more experienced engineers within the group proved very useful; in school, little attention is given to structural detailing, I believe that greater emphasis should be given to this important area.

The contribution of this assignment to the fulfillment of the internship's objectives is as follows: 1. I was fully responsible for carrying out the complete design of the building, from the initial preliminary phase to the production of complete structural drawings within a time
limitation imposed by a deadline, 2. I was in direct contact with the architect in charge of the design of the Commons building, with whom I developed a great professional relationship, 3. the overall task was by all means a group effort, the interaction with peers proved very rewarding as well as the interaction with the group leader, 4. the exposure to such a task, especially in that area of the world gave me a great insight into the execution of a large and complex project. All in all, the involvement in this particular project gave me exposure to the organizational approach to problems in the "real world". My contribution to the firm's interests was certainly a major part of this task.
b. SMITH PARK PAVILION

Task Description

This project consisted in designing, detailing, and drafting a structure for a pavilion to be erected in the city of Jacinto, Texas; our client, the architecture firm in charge of the project, was The Architecture Company from Houston.

The pavilion was a very simple open facility consisting of a 401 x 102' flat roof supported on concrete-encased steel columns, and of a 90' x 94 ' concrete slab on grade. The roof structure consisted in steel joists supported on steel joist girders.

The objective to be accomplished in this project was to provide the complete contract drawings for the construction of the pavilion.

Task Planning

Since the execution of this project was to be of a straight forward nature, the amount of time spent in the planning of it was limited to the establishment of the loading conditions and to gathering information from the manufacturers of the joist girder systems.

The joist girders are open-web steel flexural elements that are shopfabricated on a special order basis according to the special loading conditions of each particular job, and that meet the specifications of the American Institute of Steel Construction. They are normally used when long spans are to be cleared in buildings, which was the reason for using them in this job, where a span of 90^{\prime} had to be cleared.

Task Execution

After establishing the loading conditions for the roof structure, I analyzed and designed it. During the design process, I was in contact with
the architect who requested several alternatives for the column design; mainly to check the use of concrete-encased steel sections as opposed to an only-steel section alternative.

When the design of the elements was completed, I proceeded to perform a detailed design of the connections and to write the structural specifications pertaining to the job. Once this was completed, I proceeded to perform the complete drafting of the contract drawings.

Task Results

When the drawings were completed, I met with my supervisor to whom I explained the procedure followed in the execution of the project; after his review I sent out the copies of our plans to the architect's office. Copies of those drawings are enclosed in section b of appendix III.

The objective set for this task was fully accomplished; I had completed the project, which was under my responsibility, and had sent out the contract drawings within the architect's time frame.

Comments

The structural drawings conveyed to the client represented the complete contract plans to be utilized in the construction of the facility. This certainly is the objective of the structural design process; its end result being the drawings from which the building is actually constructed.

Immediately after I had finished working on this project, our firm was contacted to do the design for another facility very similar to this one: Irvington Park Pavilion, I was assigned the project in my last day at the office, before returning to school, and that same day I completed the design of it.

Review

The knowledge required to design the structural members and the connections was obtained in basic structural steel courses.

Even though the execution of this project was straight forward, it contributed to the fulfillment of the internship's objectives due to the fact that I was fully responsible for it, no matter how small, and worked on it from start to finish being in direct contact with the architect.

C. Design of Special Structural Systems in Major Buildings

The design of buildings in today's competitive world has been greatly accelerated due to the time limitations imposed by investors seeking to maximize their returns. Through my involvement in the actual practice of consulting structural engineering at Walter P. Moore \& Associates, I experienced this situation on a first-hand basis. Structures which normally could be designed by one engineer had to be broken down into different design tasks and several engineers would be responsible for each task. This section of my report is a reflection of this trend, where I describe my involvement in the design of important structural systems within the overall structure of a building.

As representative of this type of task, I have chosen the Three Riverway project.

THREE RIVERWAY

Task Description

Our firm had submitted a preliminary structural design proposal on a twenty-one story building planned for the Houston area; I had participated in that phase of the design, (refer to section III A.2. of this report), and now that the decision had been made by the developer to proceed with a final design, I was assigned to work with the team who was to perform that task.

In the preliminary proposal, we had presented two alternatives: a structural steel scheme and a reinforced concrete scheme. The reinforced concrete scheme consisting in a one-way joist floor system was chosen by the developer for the actual construction of the building. Some minor
architectural changes had been made to the originally proposed building, including a reduction in the number of stories from twenty-one to twenty.

The analysis to be done at this stage in the design process was to be performed by modeling the structure and carrying out a computer-aided analysis of lateral forces by using a commercially available computer program. Due to the complexity of the building it was decided to use a three-dimensional computer model. Dr. Chi Nu, who was in charge of the structural team that was to work on this project, divided it into several well defined tasks.

I was resoponsible for the complete design of the wind-resisting rigid frames, also I was to provide the input of member sizes to the model and was responsible for the revision of the computer model and output. My objective was to do this within the short time-frame available.

Task Planning

With the time limitations imposed by the client; we were to supply the complete set of final drawings in one month, the planning of my particular assignment was performed on a continuous basis. My particular task was clearly divided into an analysis phase and a design phase, the work in both phases was very much interrelated with the work being done by the rest of the team. The first step in the planning process was a thorough review of the new architectural requirements and their impact on the structure.

From these requirements, we established the column locations throughout the height of the building; a plan presenting the column locations is included in section 1. of appendix IV, the architectural elevations of the building are also enclosed in that section.

The next step in the planning of this task was the establishment of the basic assumptions to be made in the generation of the model; namely the floor behavior which we agreed to be rigid in its plane, the establishment of support conditions, and of the loading conditions. The wind loading conditions and the computer-generated geometric display of the modeled structure is presented in section 2. of appendix IV.

Once the analysis phase was completed, the next step in the planning process was to prepare the design procedure to be followed. In order to produce systematic design notes, which were necessary due to the large number of elements to be designed, I devised a simple standard format for the design of the beams. This standard format is presented in section 3. of appendix IV.

Task Execution

The actual task of modeling the structure was done by using the commercially available "ECES 2" computer program being marketed by the McDonnell Douglas Automation company; this task was carried out by a member of the design team who towards the end of the modeling process was transfered to another project leaving me with the task of making some minor adjustments, and doing the complete revision of the output. In carrying out the adjustments to the model, I made several trips to the McDonnell Douglas office in downtown Houston, since our office terminal was not tiedin with their system.

The revision of the output consisted mainly in checking floor displacements at selected locations and loading conditions and verifying the modeled behavior, and of checking the base shears and comparing them to the applied loading. The lateral deformation behavior expected, consisted
mainly in a cantilevered beam-type deflection accounting for the strong contribution of the shear walls in resisting the wind load acting on the broad face, and in a shear-type deformation accounting for the strong contribution of the frames in resisting the wind load acting on the narrow face. A copy of the relevant revisions performed is included in section 4. of appendix IV.

After the completion of the analysis phase, including the revision of the computer output, I proceeded with the design phase which was of a straight-forward nature, but extremely lengthy (only the wind beams numbered over 400). At this stage, due to the time limitations, the column design was carried-out by another member of the team while I completed the design of the wind beams and their detailing and scheduling. The general design information for the wind beams is presented in section 5 . of appendix IV:

An important aspect of the project execution which was of a non-technical nature was related to the production of the complete set of drawings. Due to the ever-binding time limitations, the design team worked large amounts of overtime, which was certainly to be expected from the engineers; but the crucial point was in using the personal relationships developed with the draftpersons working on the project, in order to have them working also long hours of overtime and complete the project in time.

Task Results

After the completion of the task, I met with Dr. Wu and discussed the results obtained, which were to his satisfaction. Our set of drawings was submitted to the client right on schedule. Copies of some of the relevant floor framing plans and of the beam schedules as presented to the client
are enclosed in section 6. of appendix IV.
The objectives set for this assignment were accomplished; I contributed with my technical training to the completion of a major project within the time limitation.

Comments

Our complete set of drawings was sent out to the architect's office for revision and for use by the contractor. After this, I was assigned to a new project and when the revisions were to be made, I was already back in school.

As of today, the Three Riverway building is under construction. The experienced gained in my involvement in its design was very rewarding.

Review

I had obtained the technical knowledge required to conduct this assignment in structural analysis courses and in basic reinforced concrete design. The interaction with the engineers in the design team was very valuable in the execution of my task and in gaining insight into the problems encountered by them in their particular assignments.

This task contributed greatly to the fulfillment of the objectives of the internship by allowing me to contribute, with my technical knowledge, to the solution of a practical problem for the firm. Also of great relevance was my interaction with both the engineers and draftpersons within the design team; with the engineers, by acquiring experience through their involvement in the project and with the draftpersons, by developing friendly relationships which in tight deadline situations were very useful and could count on their assistance in meeting the deadlines.

D. Field Inspection
 CARRIAGE PARK APARTMENT COMPLEX

Task Description

Walter P. Moore \& Associates was contacted by a Chicago-based company, requesting information concerning the integrity of an existing apartment complex located in the south-east area of Houston. Our firm was to be responsible for a complete survey of the apartment complex, including all building systems and site evaluation.

Since our firm was acting as the Prime Professional in this job, and our responsibility was to perform a complete survey of the complex, the services of two outside consultants were employed to inspect all of the complex's systems, with the exception of the structural systems which we had the capability of inspecting. Jochen \& Henderson, Inc. was contracted to inspect the plumbing, electrical, and mechanical systems, while Stewart Construction Consultants, Inc. were contracted to conduct a survey of the site condition and site structures, special purpose buildings, building exteriors and building interiors.

I was assigned the job of performing the structural inspection of the buildings in the complex, and to report back to Mr. Terry Shipman, a registered professional engineer who was my immediate supervisor at that time. The two consultants that our firm had contracted were to report also to him.

The objective of the task entrusted to me, was to perform an inspection of the structural systems of the existing buildings in the apartment complex and to prepare a report on my findings. The on-site coordination with the representatives of the outside consultants was under my responsibility, and was an important item in the attainment of the task objective.

Task Planning

Having had some experience in structural supervision, and in the evaluation of earthquake-damaged buildings in Nicaragua, Central America; I felt well prepared to carry-on the assignment, even though I realized that the construction practice I would be facing would be quite different.

Upon request, I was furnished with a site plan of the apartment complex; from it I could determine the size of the complex which was relatively large. Since no additional plans were available I realized I would have to relay mainly on my field observations.

Since the apartment complex was currently in operation, the inspection of building interiors was the item that required coordination both with the representatives of our two consultants and with the manager of the complex, as to minimize discomfort to the tenants. In our first meeting conducted at the premises, we decided to concurrently perform the inspection of building interiors as the first step in our survey, so that afterwards each inspector could proceed independently. At that time we decided to inspect a representative sample of building interiors which we agreed to be around 10%.

Task Execution

The apartment complex had a total of 25 buildings, consisting of 22 two-story apartment buildings, 1 three-story apartment building, and 2 one-story nechanical equipment buildings. After the team-inspection of the randomly selected building interiors, I proceeded on my own with the inspection of all building exteriors. Typically all exterior walls at ground level were found to be brick veneer and the second level exteriors were of wood construction.

I was mainly concerned with establishing apparent building distortions and patterns of wall cracking; I found no evidence of structural damage.

Task Results

The objective of this task was fully attained: the survey was conducted with minimum discomfort to tenants, which was due mainly to the onsite coordination with the complex's manager and the firm's consultants' representatives. The task was performed in a minimum amount of time, an important consideration in all projects.

While no evidence of structural damage was found, the major problems observed were wall cracking at ground level and corrosion of metal components. My complete findings are embodied in the report I prepared for my supervisor, which is enclosed in appendix V.

Upon submission of my report to Mr. Terry Shipman, we discussed the reasons and consequences of my findings. We reviewed my report and made a step-by-step analysis of the items listed; from this analysis, explanations for the problems observed were formulated. Wall cracking was determined to be caused both by temperature stresses and by the presence of expansive clays, a prevalent soil condition in the Houston area. The corrosion of metal components in the duildings was most likely caused by the proximity of the complex to the Houston ship channel, an area where air pollution is rather concentrated. After our discussion, a final report was produced and directed to the firm's client; a copy of this is also included in appendix V.

Corments

Arnong the services that a consulting structural engineering firm is capable of performing, that one of inspection and evaluation of buildings is an important one. The opinion of a structural engineer with respect to the soundness of an existing structure will influence the decision of a potential investor considering its purchase. In this particular case, after the inspection was conducted and the complete reports were submitted to the client, we found out that the Chicago-based company had proceeded with the purchase of the apartment complex.

Review

The task of inspecting the apartment complex was particularly interesting since this type of project was not a common one considering that the firm was acting as the prime professional in charge.

Personally it was of interest to get acquainted with the type of construction widely used in the area for low-rise buildings, namely the use of brick veneer and wood framing. The review with Mr. Shipman of my observations embodied in the report presented to him, proved very rewarding since the causes of the majority of the problems observed were mainly due to prevalent special conditions in the Houston area.

The main contribution of this task to the attainment of the internship objectives, was twofold: the interaction with the consultlants hired by our firm, and the public relation involvement which was an important feature of the task. The knowledge required to perform this task was not obtained from classroom lectures, it was obtained through previous experience both in supervision of construction and in general personal interaction.

E. Structural Additions and Remodeling of Existing Buildings

While large and complex buildings attract the attention of all people involved in their planning and design, very simple additions and remodeling of existing buildings are a fact of life for the practicing structural consultant and consequently deserve attention.

During the period of time in which I worked at Walter P. Moore \& Assoc, I had the opportunity of working in numerous additions and remodeling of existing buildings. These type of projects were very small and their coverage in this report will vary in format from all of the ones presented in previous sections.

The different projects in which I worked involved the following tasks: strengthening existing floor structures, eliminating and adding walls, modifying grade beams and foundations, and providing the structure required by mechanical additions. All of these projects required the examination of the drawings available for the existing building and extracting the necessary information from it.

As an example of this, I will mention a project in which I was to provide the structure required by mechanical additions to be made in one of the floors of the One Houston Center building in downtown Houston. The structure required consisted in the framing for two "catwalks" to be located in the mechanical area of a floor system. From the mechanical drawings submitted to our office, I identified the location of the addition and proceeded to revise the plans of the existing structure. From these, I was able to locate existing members to be used as supports for the addition. A copy of my final drawing with the pertinent details as presented to the client is included in section 1. of appendix VI.

From my involvement in these small projects, I gained some insight in-
to the problem of working with existing buildings such as dependence in field measurements for dimensioning, revision of old drawings, and most important, the precautions that should be taken when welding to existing stressed elements. To this effect, I sent a memorandum to Mr. Zimmerman concerning this matter; a copy of it is presented in section 2. of appendix VI, as well as the response I got which is self explanatory.

As can be seen, there are lessons to be learned even from the smallest project. The contribution of my involvement in this type of project to the internship's objectives is related not so much as to my contribution to the firm's interest, but mostly towards the insight gained from exposure to a practical problem.

F. Revision of Design and Shop Drawings

Additional tasks that a consulting structural engineer routinely performs are: revision of design done by other engineers, both outside the firm or within the firm; and the revision of shop drawings.

Due to the simple nature of these tasks, their coverage will be similar in format to the coverage previously presented for the topic of section III E. in this report.

The revision of design performed by others, outside of the consulting engineering firm occurs in many cases involving the use of precast concrete elements in buildings. These elements are normally designed by the precast supplier whom after designing the elements and connections, submitts his drawings and design notes to the consulting structural engineer in charge of the overall structural design, for their revision and approval.

Shop drawings are prepared and used by the contractor as instruments to sequence his work and to facilitate fabrication and erection. These drawings are done by the contractor from the structural drawings prepared by the consulting structural engineer. After preparing the shop drawings, the contractor subinitts them back to the structural engineer for their revision. As to their approval, it is of interest to quote the ASCE - Manuals and Reports on Engineering Practice - No. 45, "Consulting Engineering, a Guide for the Engagement of Engineering Services": "Their approval (of the shop drawings) by the Consulting Structural Engineer is not to be construed as a waiver of construction contract requirements or responsibilities unless the contractor has requested a deviation from the contract documents in writing".

I was involved in a project where I had to revise both the design and
the shop drawings for a garage structure with a precast concrete system. The building in case was a two-story parking garage facility to be constructed in Greenspoint plaza, Houston. A copy of a working drawing presenting the framing plan and sections is enclosed in section 1 of appendix VII. The objective of the revision of shop drawings is to verify their general conformance with structural requirements and this was my objective in revising these particular ones. My general comments on this revision are enclosed in section 1 of appendix VII. I made a basic revision of the main precast prestressed elements and found them satisfactory, a copy of the revision of the prestressed double tees is also included in section 1 of appendix VII.

The contribution of my involvement in this type of task to the internship's objectives is basically related to the insight gained from my exposure to the way contractors, who after all, are the ones who have the field experience in construction, envision how to "put the building together".
IV. Other Professional Development Activities

What I have termed as "Other Professional Development Activities", encompass those activities in which I was involved during the period of time covered by my internship, but outside of the firm's assignment; that is, professional-related activities in which I was involved on my spare time.

The membership in professional societies is of great importance in the development of a professional engineer; during my internship, I became a member of the following societies: American Society of Civil Engineers, American Concrete Institute, and the Nicaraguan Association of Engineers and Architects. In Nicaragua, the degree of Civil Engineer is a professional degree; having gone directly after graduation into graduate school in the United States, I had not been able to register as such, but while on vacation from the office, I became a registered engineer in Nicaragua.

In addition to the above mentioned involvements, I have considered for inclusion with greater detail in this report two additional professional development actitities: 1. A seminar on earthquake damage which I conducted at the office, and 2. Attendance to a continuing education seminar on steel structures which was conducted by the American Institute of Steel Construction.

A. Earthquake Seminar

The creation at the office of informal in-house seminars; "sack-7unch" seminars, conducted in large by the firm's staff, gave me the opportunity, not only to share in the technical experiences and interests of the various engineers working for the firm, but also I contributed to the in-house seminar program by conducting one myself.

Having been involved in earthquake-resistant structural design and inspection in Nicaragua, Central Anierica, after the December 1972, Managua
earthquake, I had interesting information on the subject. The main body of the seminar I conducted, consisted of a slide presentation on some aspects of the structural damage caused by the earthquake. The photographs presented were taken during a survey of damage performed by a team of engineers in January 1973.* I participated as a guide in the team's survey; at the time I was a third-year student of Civil Engineering. Since then, I had had the opportunity to review the vast literature available on the Managua earthquake, and had developed explanations concerning of the damage shown in the photographs.

For inclusion in this report, I have reduced the number of photographs from the ones actually presented in the seminar; close to 150 slides were shown then, only some of the relevant slides are included in this report. Excerpts of the presentation with the photographs are included in this section's appendix.

This presentation to the firm's engineers represented a positive contribution to fulfilling my internship's objectives, not only in providing some insight into seismic problems to my peers, but also it gave me the opportunity to make a semi-formal presentation in a non-academic environment.

B. AISC Seminar

Towards the end of my internship, the American Institute of Steel Construction sponsered a seminar consisting of a 2-day lecture series on practical steel design for buildings from 2 to 20 stories. Since at the time when the seminar was offered in Houston I was heavily involved in the completion of a project at the office and didn't have the spare time, I decid-

[^4]ed to attend the one offered in the Dallas - Fort Worth area offered at a convenient date.

The lectures in the seminar included topics such as braced and unbraced frame design, floor systems, fire protection, earthquake design, special framing systems, and high strength bolting. It was of interest to note that in the unbraced frame design lecture, the speaker highlighted two very recent methods developed in the adjustment for drift control, one of which I had just applied at the office in my last project there.

Upon completion of the lecture series, a certificate of completion with 0.9 continuing education units was awarded to all participants; a copy of my certificate is also included in the appendix to this section.

Attendance to this seminar contributed to the fulfillment of the internship's objectives, mainly because of the exposure it gave me to state-of-the-art in steel design of buildings as viewed by outstanding practicing engineers; it certainly contributed towards my professional development.
V. Conclusion

During my internship at Walter P. Moore \& Associates, Consulting Engineers, I fulfilled the objectives of the Doctor of Engineering program. These objectives are:

> To enable the student to demonstrate his ability to apply his knowledge and technical training by making an identifiable contribution in an area of practical concern to the organization or industry in which the internship is served, and
> To enable the student to function in a non-academic environment in a position where he will become aware of the organizational approach to problems in addition to traditional engineering design or analysis. These may include, but are not limited to, problems of management, labor relations, public relations, environmental protection or economics.

My involvement in fifty projects which covered a wide range of the services performed by a consulting structural engineer, allowed me to demonstrate my ability in applying my knowledge and technical training, especially when I dealt with complex structures such as the one involved in the Three Riverway project. Also, In several occasions, I had the responsibility of executing a project from the initial conception by the architect to the completion of full contract drawings as was the case in the Conmons Building for the Science and Mathematics Center to be constructed in Saudi Arabia. All in all, no matter how simple a project, I made identifiable contributions to the area of practical concern of the firm.

While performing the technical tasks assigned, I was very much functioning in a non-academic environment. Through my involvement with project architects, with peers and supervisors, and with draftpersons working for me in some projects, I became very much aware of the organizational approach to problems.

The time limitations imposed on the consulting structural engineer,
which are a reflection of the fast-pace of the construction industry these days and which mainly originate from the investor's economic constraints, was a major non-academic experience to which I was thoroughly exposed. As a direct consequence of this, the search for short-cut methods in the analysis and design of structures as well as the use of judgement and intuition, based on academic knowledge, in order to meet the deadlines, was an important feature of my internship.

In addition to the above mentioned, my involvement in activities such as the earthquake seminar, greatly contributed towards my professional development, an implied objective of the internship.

APPENDIX I
 Feasibility and Pricing

a. WEST LOOP OFFICE BUILDING

1. Typical floor sketch
2. Design calculations
3. Preliminary structural proposal
4. "Hambro" composite floor system
b. BAY DESIGN GARAGE
5. "Posten" computer input sheets
6. Postensioned concrete joist scheme
7. Reinforced concrete joist scheme
c. BLOCK 130, HOUSTON CENTER
8. Typical floor plan
9. Design calculations
d. TEN-TEN GARAGE INVESTIGATION
10. Sketch of proposed system
11. Floor framing and calculations
12. Wind reactions

a.1. Typical floor sketch

WALTER P. MORE \& ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Socket Houston, Texas 77006

Job: 10018

1

a.2. Design calculations

WALTER P. GORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Sackers
Houston, Texas 77006

Job Name \qquad
Architect \qquad

PRELIMINARY TYPICAL FLOOR Job: 10018
SCHEME. 1 ; STEEL OMS. F BAR JOISTS $F_{y}=50 \mathrm{KS}{ }^{\circ}$
(1)

$$
\text { LOADS: }(L T N T)
$$

30^{\prime}

1015T5:

$$
\begin{array}{ll}
\text { SPAN } 20^{\prime}, & \angle O A D \\
\text { SPAN } 40^{\prime}, & \angle O A D \\
& =306 P P F \times 3=306 P L F
\end{array}
$$

$$
\begin{aligned}
& \therefore(91.8)^{*} \\
& T L=70.7 \mathrm{~K} ; M=3180 \\
& f_{6}=20 \mathrm{k}: \\
& W=24 \times 5.5
\end{aligned}
$$

NOTE: () T UNREDUCED LIE LOGO

$$
\begin{aligned}
& \text { BEAMS: } \\
& \text { A): } 1-2 ; \text { SPAN: } 30^{\prime}, \quad 2: 47 \% \text { D } 1040+15=1055 ;(2055)^{*} \\
& B, / 2 ; \quad \text { SPAN: } 30^{\prime \prime} R=47 \%, 21560 ;(1500)^{*} 795 ; 2355 P L F
\end{aligned}
$$

WALTER P. BORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Sachet
Houston, Texas 77006

Job Name WEST LOOP OFFICE PEOS.
Architect AI KELLEX
\qquad

SCHEME 1 (CONT); COLUMN DESIGN
Job \# 10018
$F_{y}=50 k s i$
MARE

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006

Job Name \qquad

PRELIMINARY TYPICAL FLOOR
Job \# 10018
SCHEME 2 ; COMPOSITE. BM. $5^{4} 4$ LTW. CONC.
$F_{y}=50 \mathrm{ksi}$

LOADS:

Check deck to SPAn 10'; USE 3. SPAN condition

$$
M=0.1 \omega l^{2}
$$

$$
\Delta_{\text {max }}=0.0069 w \ell^{4} / E I
$$

$$
\Delta=0.0069 \times 45 \times \frac{10^{4} \times 1728}{29 \times 10^{6} \times 0.419}=0.442
$$

$$
\begin{aligned}
& L / 180=0.67^{H} ; 0.442<0.67 .0 .1 \\
& +f_{b}=\frac{\left(0.96 \times 45 \times 10^{2}\right)+(485.2)(10)}{0.397}=23100 \mathrm{psi}
\end{aligned}
$$

$$
-f_{b}=\frac{\left(1.2 \times 45 \times 10^{2}\right)+(246.33)(10)}{0.363}=21,662 \mathrm{ps}
$$

$$
-f_{b}=\frac{1.2 \times 65 \times 10^{2}}{0.363}=21,488 \mathrm{psi}
$$

PURLIN A-B

PURLIN BC

GIRDER A-(1-2)
$\frac{\text { GIRDER } B-(1-2)}{\angle P A N ~ 30^{\prime}-0^{\prime \prime}} 1=48 \% ~ L O A D: 40$

$$
\begin{aligned}
& M_{T}=2434^{\mathrm{k-n}} \\
& f_{6}=32.5 \mathrm{ksi} 31< \\
& \text { WIG. }
\end{aligned}
$$

i 015 x

$$
507.2
$$

$$
L(15) * 7,8 k
$$

$$
\text { SD } 7.2 \mathrm{~L}
$$

$$
\begin{aligned}
& M_{r}=3582^{\mathrm{k}-11} \\
& f_{b}=32,5^{\mathrm{ksi}} \mathrm{~W} / \mathrm{W}
\end{aligned}
$$

$$
\begin{aligned}
& \angle L \text { tN. } 5^{4} \text { CONC CLoG. } \\
& \left.50+20+45+\begin{array}{ccc}
C L G & 50 \\
\hline & 45
\end{array}\right\} 119 \text { PF }
\end{aligned}
$$

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Sackeit
Houston, Texas 77006

Job Name \qquad WEST LOOP OFFICE PLDG.
Architect \qquad AL KELLER
\qquad

SCHEME 2 (LONT): COLUMTN DESIGN Job \# 10018 $F_{y}=50 \mathrm{ks}{ }^{\circ}$.
MARK

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Sockets
Houston, Texas 77006

Job Name WEST LOOP OFFICE ELRET.
Architect AL KELLER 65

LT. WT. CONC.
PAN JOISTS $\quad f_{c}^{\prime}=3 \mathrm{KSi}$ Job: 10018

> LOADS:
> $\left.\begin{array}{l}\angle L \text { TN } \text { STSBROG SLAB } C L G G \quad \angle 50 \\ 50+20+40+48+4 \quad D 112\end{array}\right\}_{162}$

For $C B$:

$$
\begin{aligned}
& x=0.5 l \\
&+M_{\text {max }}=0.25 \mathrm{wl}^{2}-0.322 \omega l^{2}-.125 \omega \\
& M_{\text {max }}=-0.197 \ldots l^{2}
\end{aligned}
$$

WAI.TER P. MORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006

Job Name \qquad WEST LOOP OFFICE FIDGE

66
Architect \qquad Lh, CONC.
GKHEME 3 (CONT) $t^{\prime}=3 k s i \quad f_{4}=60^{+5}$ si Job $\# 100 / \mathrm{x}$

Span' - 40'0"' Load $=\begin{aligned} & \text { D } \\ & L 3 \\ & L\end{aligned} 150$

$$
k=176
$$

$$
\rho=0.33^{\circ} 2
$$

$A_{S}=0.96 \mathrm{ln}^{2}$
HG BOT
$H M=0.0711 \times 125,40 \times 12=970^{\mathrm{k}}$
TAPER WTETIOR END, 5 FROM FARE TAPER
OF ESP POET

$$
-M=1120.6^{k-m}
$$

$$
\begin{aligned}
& x=498 \\
& P=1.5 \%
\end{aligned} \quad-A_{s}=1.74 \mathrm{~m}^{2}
$$

ULT.

$$
12,20^{34}, d=19^{38}
$$

Span - 20'0' Load $=\begin{aligned} & 0336 \\ & L 150\end{aligned}$

$$
r=7250 \#
$$

125 PLF

$$
v=54 \text { psi } \quad 2 \# 9 \times 43 T
$$

$$
r=70700 \not \approx
$$

$$
v=157 \text { psi }
$$

2 \# 110

$$
M=W l^{2} / 16=4713 \times 30^{2} \times 12 / 16=3182^{k-4 \quad 6=51 \quad k=176 \quad A_{5}=3.161^{2} .33 \%} \quad{ }_{k}
$$

 $V=96754$ \#

Span -

$$
\begin{aligned}
& A_{s}= \\
& -A_{s}=
\end{aligned}
$$

WAITER P. MORE \& ASSOCIATES, INC.
COASULTHG ENGINEERS
2905 Socket
Houston, Texas 77006

Job Name KIEST LOOP OFFICE BLDG. \qquad
67
Architect AL KELLEE
ASSUME h HoLT Col.; mine

MAKE

MALTER P. MOORE \& ASSOCIATES, IRC. COMSULTING EHGINEERS 2905 Sackett Houston, Texas 77006

Job Name \qquad NEST LOOP OFFICE BLDG.

Architect \qquad AL KELLER 68
\qquad HAMBRO SUSTEM Job: 10018
SCHEME $4 ;$

$$
f_{4}=50 \mathrm{ksi}
$$

(1)
(2)

LOADS:… . . $L W$.

$$
\left.\begin{array}{l}
\angle L . P T N .3^{4} S L A B+ \\
50+20+30+2+4=\begin{array}{l}
\text { IST }
\end{array}+50
\end{array}\right\} 106
$$

CONSTR. STAGE:

$$
14+\ldots 30+11=2.41\} 55
$$

$$
\begin{aligned}
& \begin{array}{ll}
f_{6}=29.8^{k s i} \quad \begin{array}{l}
\text { s.c: } 20 \\
W
\end{array} 18 \times 35
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f_{6}=29.0^{\circ 5 i} \quad 5.21 \times 44
\end{aligned}
$$

halter p. moore \& associates, inc. COWSULTING ENGIMEERS
2905 Sockett
Mouston, Texas 77006

Job Name WUEST LOOP OFFICE FUSV. Archisect $A L$ KELLER 69
\qquad SCHEME 4 (CONT.): COLUMN DESIGN $F_{j}=50 \mathrm{ksi}$.
HIACK

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline A-1 \& $$
\begin{aligned}
& \angle E V E L \\
& \text { COL.SPTO. }
\end{aligned}
$$ \& $$
\begin{aligned}
& D E A D \\
& (K I P S)
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { LIVE } \\
& (k \mid P S)
\end{aligned}
$$ \& $$
\begin{gathered}
\text { L.L. FEOV } \\
(\%)
\end{gathered}
$$ \& $$
\begin{aligned}
& R E D . L L \\
& (K ; P S)
\end{aligned}
$$ \& $$
\begin{gathered}
D+100 \| \\
\text { (Kifs) }
\end{gathered}
$$ \& S1EE \&

\hline \& AOF
8
7
6
5
4
3
2
1 \& 27.8
39.2

67.8
67.0
106.2
145.4
184.6
223.8
263.0
302.2

341.4 \& \begin{tabular}{|cc}
13.7

34.1

13.7

47.8

81.9

116.0

150.1

184.2

218.3

252.4

286.5

 \& 60 \&

13.7

19.1

32,8.

$4.6,4$

60.0

73.7

87.3

101

114.6

 \&

41.5

86.1

139.0

191.8

244,6

297.5

350.3

403.2

$$
456.0
$$

\end{tabular} \& \& BASE R $20.200^{\circ}{ }^{\circ}$

\hline 6-1 \& $$
\begin{aligned}
& \angle E: E L \\
& \operatorname{CoL}, \operatorname{sit} G .
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& D E A_{0} D \\
& \left(k, p_{s}\right) .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { LIVE } \\
& (K \mid P S)
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\because p_{E D U C} . \\
(\%)
\end{gathered}
$$
\] \& EEG:C \& Dr Fidel \& 讵 \&

\hline \& ROOF
8
7
6
5
4
3
2
1 \& 41.8
58.7
41.8
100.5
159.2
217.9
276.6
335.3
394
452.7
511.4 \& $\begin{array}{cc}20.4 & 20,4 \\ 51.1 \\ 71,5 \\ 122,6 \\ 173.7 \\ 224.8 \\ 275.9 \\ 327 \\ 378.1 \\ 429.2\end{array}$ \& 60

\qquad \& | 20.4 |
| :--- |
| 28.6 |
| 49 |
| 69.5 |
| 90.0 |
| 110.4 |
| 130.8 |
| 151.2 |
| 171.7 | \& | 62.2 |
| :--- |
| 129.1 |
| 208,2 |
| 287.4 |
| 366.6 |
| 445.7 |
| 524.8 |
| 603.9 |
| 683.1 | \& \& BASE 喪 $24^{\prime \prime} 24^{\prime \prime}$:

\hline
\end{tabular}

a.3. Preliminary structural proposal

a.4. "Hambro" composite floor system
 \section*{\title{
A SICNIFICANT
 \section*{\title{
A SICNIFICANT DEVELOPMENTM DEVELOPMENTM FLOORCONSTRUCTION
}} FLOORCONSTRUCTION
}}

- NO STEEL DECK

Thus eliminating the source of vibration and noise transmission

- NO BRIDGING

Thus eliminating a continuous connection, a major source of sound and vibration transmission

- NO ON-SITE WELDING
\square NO HIGH-CHAIRS
正
b.1. "Posten" computer input sheets

b.2. Postensioned concrete joist scheme

b.3. Reinforced concrete joist scheme

c.l. Typical floor plan

SLAB		SCHEDULE			
mark	thickness	reinforcing ste			[1
		rop	TOP 1	T00 +	80t
TS-1	6		-3a\|で		
Ts-2	6		*3012	${ }^{\text {amo }}$	4006
Ts-3	- 5°	${ }^{30110}$			3×15
TS-4	$5{ }^{\circ}$	3 xal			3atr
T5-5	5	${ }^{3 \times 11}$			* 3 elr
T3-6	6°		-3atre		40×6

c.2. Design calculations

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006

Job Name BloCK 130 HOUSTON CHUTE:
Architect \quad P, G, A, 87
\qquad

$+\cdots \quad 90^{\prime} \cdot 1$

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006

27 STOPS BLDG.
Job \#
PORTAL ASSUMPIONS FOR MOMENTS \& SHEARS

$$
\text { LEVEL } 22]
$$

EH. DESIGNS: $M=5875{ }^{\mathrm{K}-11}$, $M_{m}=7880^{\mathrm{K}-4}$

$$
\begin{array}{ll}
b=12^{\prime \prime} \\
d=33^{\prime \prime} & k=603 \\
& f=1.26 \% \\
& A s_{s}=549 \mathrm{in}
\end{array}
$$

BM, DESIGN: $M=14496^{K}-4, M_{M}=14496 \times 1.3+269 \times 0.9=19087 \mathrm{~K}-4$

$$
\begin{array}{ll}
b=30^{\prime \prime} \quad & k=584 \\
d=33^{\prime \prime} \quad & c=1.21 \% \\
& A_{s}=12 \mathrm{sqin}
\end{array}
$$

LEVEL 2

BM DESIGN
 TOTAL SHEAR 1606.5 K

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Sackeír
Houston, Texas 77008
\qquad
Job Name P,G,A
Architect 27 STORY BLDG. $f_{c}^{\prime}=5 \mathrm{ks,i} \quad$ Job $\#$
CANTILEVER ASSUMPTIONS FOR AXIAL LOAD IN COLUMNS:
LEVEL 22

$M_{4}=8218^{k-n}$
$P_{\mu}=\left(466.2 K+100.7^{k} 1.7\right) 0.75=478 \mathrm{k}$
$e=17.2^{*}$
$24^{\prime \prime} \times 24^{\circ}-8^{\# 11}$
23.22; $H=1526.0 .05$;
$F_{A}=109^{k} ; F_{B}=72.7^{k} ; F_{C}=2 x$
22-21 $\quad M=21136$.;
$F_{A}=151^{k}, F_{B}=10.27^{k}, F_{c}=F_{0}$

LEVEL 12

$H_{\mu}=(14736) \times 1.3=19157 \mathrm{~F}-4$
$P_{\mu}=(1243 k+613 \times 1.7) 0.75=1714 k$
$e=11.2^{\prime \prime}$
$30^{4} \times 30^{\circ}-20^{\# 14}$

LEVEL 2

$M_{\mu}=4!777 \times 13=54310 \times-4$
$P_{\mu}=(2078 k+15191.7) 0.75=3510 \mathrm{~K}$
$e=15,5^{-}$
$40^{\prime \prime} \times 40^{\prime \prime} \quad 32$ \#14

AUG. Coc. SIZE: $24^{\prime \prime} \times 24$
AVG. COL PEINF: 126 POUNOS PETC 'LIWEAE FT. lof cokvats 2,2 Pound \leq FEK SjAKE FOT F Floor Acent

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006

Architect \qquad PGA.

27 STORY BLDG, MAT INVESICOATION Job \#

$$
26.8\left(11.33 d+4 d^{2}\right)=4131-8\left(8+5.66 d+d^{2}\right)
$$

$$
303.6 d+107.2 d^{2}=4131-64-45.28 d-8 d^{2}
$$

$$
115.2 d^{2}+348.88 d-4061=0
$$

$$
d^{2}+3.03 d-35.3=0
$$

$$
-\frac{3.03 \pm \sqrt{9.18+141.2}}{2}=4.61^{\prime}=5^{\prime 5.4^{\prime}} \rightarrow t=60^{\prime \prime}
$$

CONEIDET2 INT. COL STRIP AS CPIDCAC:

$$
\begin{aligned}
& f_{c}^{\prime}=3 k s i \\
& f_{y}=60 \mathrm{si}
\end{aligned}
$$

$$
H_{+}=\frac{6 Q^{2}}{15}=8 \times 30^{2} \times 12 / 15=5760 k-4
$$

$$
\begin{array}{ll}
b=12 \% & P=.30 \% \\
d=56^{\circ} \\
F=153 &
\end{array}
$$

$$
1-\frac{w 1^{2}}{10}=8 \times 30^{2} \times 12 / 10=8640 \mathrm{k-4}
$$

$$
\begin{aligned}
& 6=12^{4} \\
& d=50^{\circ} .
\end{aligned}
$$

$$
C=.45 \%
$$

$$
\dot{A}_{s}=3.0 \mathrm{~m}^{2} / \mathrm{FT}
$$

REIVE:
3.4 POUNDS OF KETNF STEEL PER G. FT. OF inc.
d.1. Sketch of proposed system

d.2. Floor framing and calculations

HALTER P. MORE \& ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Socket Houston, Texas 77006

Job Name TEN-TEN GARAGE INV.
Architect TEHNECD REMLYY

Job \#

MALTER P. MDDRE \& ASSOCIATES, INC. COWSULTHG EIHGIPEEERS
2905 Sockett
Housion, Texas 77006

Job Nome TEN-TEN GACACE INVESTGATION Archifect TENHECO REALTY 96

GRAVITY LOADS
Job: 14016
$\operatorname{LN} 5^{\prime \prime} 4^{\prime \prime}$
LOAD:
GROUND $100+42$. CONC. PAVER $+.20=162$
D $62 \neq / 0^{\prime}$
L. 100

TYPICAL PUELINS $=65+42+20+6=133 \leq 68$

ROOF
$\therefore 50+42+20+6=118 \quad 168$

BLDGT. FACE
4"BRICK +WINDOW USE 50 PST

HALTER P. MOORE \& ASSOCIATES, INC.
CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006

Job Name \qquad
97
Architect \qquad 1

$$
\begin{aligned}
& 1.0 \\
& 6 \\
& \hline
\end{aligned}
$$

14.5 .7
44.3

SpAn $30^{\prime} \cdot U^{\prime \prime}$ \& $5 \begin{gathered}B M \\ 50\end{gathered}$

WALTEN P. MOORE \& ASSOCIATES, INC. CONSULTIKG ENGINEERS
2905 Sackett
Houston, Texas 77006

Job Name \qquad
98
Architect \qquad

Job \#

d.3. Wind reactions

WNLTER P. UOORE \& ASSOCIATES, INC. COMSULTING E:HGINEERS 2905 Sackett
Housion, Texas 77006

Job Nome TEN-TEN GARAGE INVESTIGATION Achilect - TENNECO REACTY
looye, ANSI

\qquad
WALTER P. MORE \& ASSOCIATES, INC.
Architect \qquad TEMHECO REDLY 101

WALTER P. AOORE \& ASSOCIATES, INC. CONSULTIMG ENGINEERS
2905 Sackelt
Houston, Texas 77006

Job Name

Architect Therlin that?
(21,

WALTEDP. MOOPE \& ASSOCIATES, INC. COHSULTING ENGINEERS
2905 Sackett
Houston, Texas 77008

103
Architect \qquad

TYP. WEAK avis porethl

$$
\begin{gathered}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{gathered}
$$

$$
3 V=R+164
$$

$$
v=2: 59+1
$$

$$
\begin{aligned}
& \Sigma H_{A}=0 \\
& (677.6)(172.1)+\frac{1}{5}+40 \\
& \frac{F_{A B}}{5} \times 6-100 F_{1,2}=10
\end{aligned}
$$

WALTER P. MORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Sackett
Houston, Texas 77006

104
Architect \qquad

Job \#

$8 v=7515+254$

$y=97.1 \mathrm{k}$

$F_{i B}=288.8 \mathrm{t}$

WALTER P. MOORE \& ASSOCIATES, INC. COWSULTHOG ENGINEERS
2905 Socket
Houston, Texas 77006

Job Nome \qquad TEN-TEN GARAGE INV Architect - TENNECO REALTY 105

Job *

APPENDIX II

Basis for Final Design: THREE RIVERWAY

1. Typical floor plan sketches
2. Rigid frame elevations
3. Preliminary proposals
4. Typical floor plan sketches

WALTER P. MOORE \& ASSOCIATES, INC.
Job Name THEE E CIVEPMAY CONSULTING ENGINEERS

Architect =.I. Mopers \qquad Houston, Texas 77006

STEEL SCHEME

(1)
2. Rigid frame elevations

HALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Sacker
Houston, Texas 77006

Job Name THREE RIUERWAY

Architect \qquad So. MOREL,

Job \#
APPROX, 'SAME RELATIVE STIFFNESS
Fining (1) . (WIND IN MARos FACE)
FKAINE (2)

$$
26^{\prime} 8^{\prime} \quad 2 \ddot{b^{\prime}} 8^{\prime \prime} \quad 26^{\prime}-7^{\prime \prime}=6-3^{\prime} \cdot 24^{\prime} \cdot 8^{\prime \prime}
$$

$$
26^{\prime} 8=25^{\prime \prime} 8^{\prime \prime} 26^{\prime}-8^{\prime}=6^{\prime \prime}=4^{\prime} 8^{\prime \prime}=A^{\prime}
$$

| WALTER P. MORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006

FRAME RELATUE STFFHESS
Job \#
(VIVID APPLIED IN. BROAD FACE).

$31.5^{\prime}, 18.05^{\prime} 18.85^{\prime} 22^{\prime}$

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006

Job Name \qquad
Architect \qquad S.1. MORRIS

FRAME RELATIVE STIFFIIESS
Job:
(WIND APPLIED. IN BROAD FACE)

FRAME (5: FRAME (G)

30^{\prime}

$$
\left\{\begin{array}{c}
1.0 \\
0.67 \cdots \\
0.67 \\
0.5 \\
0.5 \\
0.44 \ldots \\
0.44 \\
0.4 \\
0.4 \\
\cdots
\end{array}\right.
$$

$26^{\prime} 26^{\prime} 24^{\prime}$

[^5]

Corovzat	W24.55	W24,8
	W24,55	N24
$3^{4}{ }^{2}$	W24,61	W27,
(890,	W24,76	ws
\% ${ }^{59}$	W27,44	wso

APPENDIX III

Complete Structural Design of Buildings
a. Science and Mathematics Center/Junior College - COMMONS BUILDING

1. Development, site, and architectural plans
2. Design calculations
3. Structural drawings
b. SMITH PARK PAVILION: Structural drawings
a.1. Development, site, and architectural plans

KINGDOM OF SAUDI ARABIA
MINISTRY OF EDUCATION

SCIENCE AND MATHIEMATICS CENTIER/ UNNIOR COUREGE Riyadh

Phase One

JAMES M. SINK ASSOCIATES
Planners and Architects

المملكة المربية المّة المودبية وز ارة الممارفّ

a.2. Design calculations

Torstonv- WEE RENFF: EEG:

$$
\text { combrue DRINON \&HEAR SENF.: } \frac{A_{t}}{5}+\frac{1}{2} \frac{A_{v}}{5}=0.013, \frac{1.024}{2}=0.027 \text { 51/A in }
$$

 CLOSED STIRRUPS: $40012 \mathrm{~mm} 050 / 190180 /$

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006

Job Name \qquad SMC/JC

Architect JAMES M. SINK 1 SOC.
$\begin{gathered}\text { COLUMNS: } f_{c}^{\prime}=4000 i^{\prime 3} \\ \text { foopNG: } f_{c}^{\prime}=300015 i \\ 100 \$ 13025\end{gathered}$
COMMONS COLUMN f FDOTISO

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006
COMMONS COLUMN \& FOOMNE

Job Name =NC/JC

 $\therefore 450$

HALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Sackett
Houston, Texas 77006

Job Name SHC/JT COMMONS COLUMN \& FOOTIE FOOTNGS: $\angle=3000 \mathrm{psi}$ Job 13025

a.3. Structural drawings

notion
1 framing plan -odukdectn and ground level

solence a matmenatics cemter / d PRYOH - KHGOOM OF EAUDI ABAMLA

 Biyadh - Kifgdots of sbudr ribagia

[^6]

RIYADH - KINGDOAA OF SAUDI GDEBLA

SCENCE 2 WATHERATCS GGMTER / UUWOR COLEGEPRODOB BMYDH - kincoon of sald araga

b. SMITH PARK PAVILION: Structural drawings

TYPICAL COLUMN-GIRDER CONNECTOW

APPENDIX IV

Design of Special Structural Systems in Major Buildings: THREE RIVERWAY

1. Column location and architectural elevations
2. Wind loading and computer-generated display
3. Standard format for wind beam design
4. Computer output revision
5. Wind beam design information
6. Structural floor plans and beam schedules
7. Column location and architectural elevations

Pramememes NOT FOR COMSTAUCIION
S. I. rinaris : $:=$:ociatas
s. I. Morris Associates

2. Wind loading and computer-generated display

WALTER P. FMOORE \& LSSOCIATES, INC. CONSULTIHG ENGINEERS
2905 Sackett
Houston, Texas 77006

Job Name THAET PIFFシ!

Architoct \qquad 51 MOP?

3_{3}^{3-D} DISPLAY MODE

\therefore "

THETR $\mathrm{Z}=18 \mathrm{E}$. THETA Y. 143. THETA $\mathrm{X}=180$.

3. Standard format for wind beam design
\qquad

-.....................

Sparn - Load $=$
$+M_{D}=\omega_{0} A^{2}$
$+M_{2}=\omega_{1} H^{2}$
 $-M_{D}=\omega_{0} P^{2}$
$-M_{L}=\omega_{L} \eta^{2}$
$+M_{w}=$
$-M_{1 v}=$
4. Computer output revision

HELTER P．MOORE \＆ASSOCIATES，INC． COKSULTING ENGINEERS

2905 Sackett
Houston，Texas 77006

Job Name そればリン！Y
Architect \qquad 3さ RUN Clerr．

WIN BLOWMG SOVIH（LOACMM CASE：Z）
LEVEL 15

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Socket
Houston, Texas 77006

Job Name \qquad 166
Architect \qquad
\qquad $\angle O A D / A Y G$
$\operatorname{COL}, 5)$

WALTER P. MORE \& ASSOCIATES, INC. CONSULTING ENGINEERS
2905 Tacket
Houston, Texas 77006

Job Name \qquad
Architect \qquad

cOL. (E)

WALTER P. MOORE \& ASSOCIATES, INC. CONSULTING EnGINEERS
2905 Socket

Job Name \qquad
Architect \qquad Houston, Texas 77006
5. Wind beam design information

WALTER P. FORE \& ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sacker
'Houston, Texas 77006

Job Name \qquad そRUにFWAY
\qquad
KIIID FRAME DESIGN:-
BEAMS

INTERIOR SPANS

		$-M=\frac{W^{2}}{11}$

$$
\begin{aligned}
& +M=\frac{\omega l^{2}}{16} \\
& -M=\frac{\omega 2^{2}}{11} \\
& +M=\frac{\omega \rho^{2}}{12} \\
& -M=\frac{\omega \rho^{2}}{10}
\end{aligned}
$$

FROM COMPUTER OUTPUT

$$
(t)
$$

\qquad

COMBINATIONS:

$$
\begin{gathered}
1.7 L+1.4 D \\
3 / 4(1.7 L+1.7 D+1.7 W)
\end{gathered}
$$

\qquad

$$
(1.7 L+1.7 D+1.1 W) \quad \rightarrow(\text { FOR JSSINE MOMENT oUSE sUPpoRT })
$$

\qquad
\qquad MOTE: CHECK MAX POSITIVE MOMENT PEND SPANS

LIMInG wIND MONEAT:
a) NEGLTTIVE HOME TT:
b). MaSsive Moment e support: \qquad

$$
-0.9 D+1.3 w=0
$$

$$
\begin{aligned}
1.3 w & =0.90 \\
w & =0.692 D
\end{aligned}
$$

$$
\text { GR } W>0.692 D \rightarrow(t) \text { moncur occurs } Q \text { support. }
$$

$$
\begin{aligned}
& \frac{3}{4}(1.7 L+1.40+17 W)=1.7 L+1.4 D \\
& \text { MAKE: }(1.72+1.4 D)=\mathbb{E} \\
& 0.75 E+1.275 W=Z \\
& W=\frac{0.55}{1.275}=0.135
\end{aligned}
$$

6. Structural floor plans and beam schedules

THREE RIVERWAY

JOVN HANEN
INVESTMENT BUILDER

Rexaters													
Ex／100	mbt	36	33	$2-7$			$\therefore 1$	1． $2 \cdot 6$	12	$1{ }^{4}$	0	$0 \times \mathrm{x}, 5$	ce
－	ve／7	36	3	A0				＜＊＊	12			6／5： $51 /$	42，
FRe 7°	Ms／7	36	33	4%		＂	3．011	4014	－			6190：512：31	
KRe，${ }^{\text {ax }}$	186	36	33	s－＂	2．990		3．41	－401	／a			Smastant	～
Fuem	msio	36	3	＋411			s－＂	4	48			$6 / 17.8 / 2 \times 4$	等
	－1810	3\％	33	－9			2.9	$42 \varepsilon^{*} e$	20				$=2$
Futise	－3／18	36	33	2－9		$\because "$	2．99	22\％	： 8			4／tsentis	\％
ELe ican	we19	86	35	1\％ 40				सach	12			6／52，5	he
＝Re／3	－819	36	33	2.09			2\％9	k2\％	＂		＇	$\cdots 17215$	\％
fueiov	mb／	30	24	8			｜ $1 \times$｜	Late	／		\square	67541	
Feis	1320	36	23	3.7				－2：9	8		\pm	$4 \leq E /$	
FRe．70	W820	36	33	2\％$\%$			\％＂9		2		2 T3）	cife $\quad 258$	
sue e＊＊	$1 / 320$	－	24	， 3 \％			s	k2\％C	26		\square	$4116 \times 12 c 4$	
$22^{10^{2}}$	：321	\％	33	2：\％			1290	［2\％${ }^{\text {a }}$	$1 /$		IT	［／5 $515 / 24$	
紧＂	\％$\% 22$	36	33	3\％			12．99	$42 . \%$	${ }^{20}$	，	源	2766／624	

\qquad

	（13）	130	243	2\％＂1／			2＂		2．01		4×1	2］	i／40， $8 /$ i 284
	NB2	30	24.	2．711		2．\％1			22，\％\％	\cdots	2		$4 / 8$ E，0／2 $547 /$
	233	30	23^{3}	2 2.4			1×7		－2．09	2	－		
	W34	30	248	\％ F		9，59			［2\％\％	22	2		$4 / 2 \pi / 4 /=532$
	W95	$3 c$	284	2.6					＜2\％	2	：		
	MB6	so	24：	2．\％／		2\％＂1／			43．010	30			6／1324／4／5
	w／ 7	30	$24{ }^{2}$	$2 . \%$					k3：11	3	＋		6／1／： 111
	NAB	30	$2 x^{3}$	3＂1					－3－1／	26			13.81
	－ 7 ？	so	24		E\％\％z_{2}				43：1／1	：6			${ }^{5} 266$
	nsio	130	24	2－6					［2\％00	28			61.3814
	＂311	$3{ }^{\text {c }}$	－4t	2－9		＊＊9			＜2\％	22	2		c／e $50 / 2 \mathrm{~L} 2 \times 4 /$
		30	248	2．as					－2：\％0	22			$619817 / 24$
	－46／3	30	285	2010		2\％0	1200		2\％\％10	34			
	\％31／7	30	123	12．99			1\％		＋2900				$41050 / 25$
	w6，5	130	$12 \cdot$	［2\％1					＜210	$: 2$			6／960／24
cie 1364	$13 / 4$	50	est	2．99					＜2\％\％	22		9	－ 24
	N8：7	36	33	2．＂\％			－\％		－2．00	－		四	－－istizec
F2e： 50	ms／7	36	33	3．0110				2\％	－3512	22		\pm	－6／5
aratic	m／8	36	33	4\％			－＊＊		${ }^{23-4,1 / 36}$	36		\＃	14＝153040
cres－	wB／8	26	33	4．＂11		2．99	5－6／1／		－3－6／36	36		Tis	$141 \% 36006$
？rotic	ms9	36	33	3－4，0			2－4／00		［5－4，	16			$\therefore 2 \therefore 2+1$
二 4 S 5	w3）	36	${ }_{3}$	3－\％			20\％\％．		43.7014	＂			－
zuer，	ws 20	56	33	\％9			1\％10］		$4{ }^{4} \mathrm{CO}$	$1 /$			
Feiso	4 ms	36	\％	2．a			1\％		2\％\％c	4			6168151
TEEt，	mz	36	33	3\％			－10		－2＂\％	14			4168151
ARe－	n821	36	33	3\％			－		L2\％\％	4		相	$6 / 60151$
E，	W9 22	30	24.	270	gt				$2_{2}=2=12$	26		7	
Fesm	rez2	30	28	2.0	2＊9＋				－2\％\％ 26	26	12	It	41080178
F F2R 15^{m}	wes	30	24：	20					$-\%$	22	10	\bigcirc	6／900／27e！

ws，	so	28.3	2\％1		［2：＂1	4	：	${ }^{4} 15$	t／up 0 ofere
N8z	30	23.	＂	\because		4%	\because		

w 67	30		：	\％					33：314	2	\square		L1／20101
W88	30	24		＂					43：＂11	$=$	－		3.8
m69	30	24		\％					（3－\％	2	2		13241

Tamers														1］							
	s，2t												$\frac{912 z}{9.0}$	－ rex		$\frac{1}{\text { ORCING }}$					
	$\omega^{-2} 0^{-1}$		Jo	Proed	Poros	${ }^{\text {aot }}$［	［ex	vo prea	emm	mef sacing EA											
	$5 \times z=5$											－2000	oxs 5	＝							
C8，	Pem				．	1．．．n		\because		emerinole		W3．	130	209 $=\ldots$			！\％	\cdots	－	\bigcirc	0 \％ $1 / 0.6 / 2$
Pez	Ps：$=:<$			10.1	\cdots	\cdots		＇				W32	20 20			2：＂1		2：\％	\％		6romere
283	$12+184$			re，	$2 \cdot 6$	\％		＇		4.		wis ${ }^{\text {w }}$	3020	20			9	2\％	，		\％o
$P_{\text {PG }}$			．．．er		\cdots	\cdots		，				$4{ }^{4.3}$				2\％\％					c／rew／s cut
C85			：			：\cdot		$\because \square$		\％／8i¢／29	n， 2.2	－ 78.	${ }_{\text {cos }}^{36}$		\％						5）
PS：	：$: 12 i z$			com				$2 \cdot$		C，	为	me 6	${ }_{30}^{30}$		－－	\ldots		c	c 6		\％
\cdots					，m：	：＂		－		－4／2m／izes／		ws7．	$3{ }^{30} 22$	2fi $=0$				［3＊1	＂		C14．and
Ss			，		i＋10 5	5．40｜		－				ws	3024	246］					＂		
						2000		$\stackrel{3}{4}$		$4.2077,41$	Re2\％			24，\％${ }^{2}$				＂	＂		3／15
2 B	［ $]^{46}$	2.0						－		cloeral	S0， 3.5	W99	${ }_{30}{ }^{24}$	24： $5 \cdot 4$				4s？	＂	－	190911
\％5，		： 0				$3 \cdot 6$		．			＝ $\mathrm{c}^{2 \mathrm{~m}}$	48.10	3 O	$23=.4$				\％	，		1／500／2
e3，${ }^{\text {c }}$		$2 \cdot 5$									－ 4	4810	so ${ }^{4} 4$	40， $2 \times$							civasol
Re，3	${ }_{60}{ }^{36}$	$6-4$				\cdots		20		$49 \mathrm{el} \mathrm{\prime} \mathrm{\prime}$	${ }^{210.5}$	W810	35					\％		0	－ $61 / 8 \mathrm{~mol}$
	20										$\frac{515}{103}$	m＂1	${ }^{36} 8$	83 3\％11	\％			$6{ }^{6}$	； 36	\％	
				\cdots		$\frac{3.1}{8 . \%}$		${ }_{66}{ }^{36}$			LR3	wenl	${ }^{36}{ }^{33}$	83＝$=.4$			3\％0		2136	\square	
		＋		\％				\because			${ }^{\text {Eu }}$ 4	we＂1	${ }^{3} 20$	0					\％ 22		21900／1024
								，		C－5，	fus	MEs	$3 \mathrm{cc} 29^{2}$	9\％$=$ \％$\%$				4	20		4peomilizet
						$\frac{1.9}{2 / 2}$				Cseto	Fex 4	xs／12	$36{ }^{35}$	\％ 5×4			0	3－4， 3 S，	＂		4／7056／4 2 2et
	292					${ }_{\text {2ma }}^{2 / 4}$		${ }_{2}{ }^{\text {\％}}$		${ }_{\text {cter }}$	${ }_{245}$	4812	2	4a $2=1$				2%			$4 / 7 \mathrm{com}$
												${ }^{4}{ }^{\text {a }}$	${ }^{6} 6$	$33{ }^{2 \times 5}$		：\％		\％	，		
	20.20					2.88				$6 / 8 \mathrm{ct/1/3s/}$	Ere 4	， 814	30 242			2	2－7		\％ 30		\％14． $20 / 2$ 206t
1.382			$44 t$	4.9						s／［ $6.5 / \mathrm{sel/I}$		no．s						2，70	\％		4／90．0／1824／
1983	36 24：			\％				，				werb	30	240，		2，${ }^{\text {P }}$		\％	\％o		（1／904）
1984	2%					\％ 8		\because		c／seli／ a／		wen	30.24^{4}	＋4，2－4		2．711		2，0	\cdots		4／980／1／2ut
18， 5		C\％						${ }^{26}$		cImea／		neis	$\pm 24^{4}$			$2 \cdot 102$	240	\％	＂		
1986	as $\mathrm{l} \mathrm{z}^{\text {a }}$						$14 \cdot 9$			re＂1		wsh	3． $3^{22^{2}}$								41980／2
（127		＂				．				6／98\％1／		${ }^{6820}$							0		$1 / 8.41 /$
928	： $1: 8$			3				\cdots		$6,87 / 2 /$		$w^{6} 22$	$x 2{ }^{24}$	4		2×4		－＂10	＂		
	\％									－ 5820		m？${ }^{\text {a }}$	${ }^{20} 2{ }^{24}$	$4^{4 *}$		2＊＂			，		cliobler
	\％ $6=5$	＋．．9				${ }_{20}^{20.0}$							${ }^{3}{ }^{3} 24$.	4．							2／20．0／／D＊
Erace											tre．	w3／3	Sc 44	\％			\％				6／P $26 / 2 / 2,24$
	z $=17 \% 1$			2	\％ 12	28		，	2	$6 / 25$ Et／	－mes	\％8／3									4／4．
， 882	\％ 150					4．a）		1．1．31			pees	［43／4）	30 240	4			\％	1	${ }^{0151} 1$		（1／200／2
883	$z=z z^{\text {z }}$			S						${ }^{6,264,34,9 \%}$											
			$8 t$			2\％															
$\frac{1865}{1865}$					3\％ $3 \times \times$	\％		\cdots		$0,760 / 12041 /$											
	r^{2}							30． 3		$4,564 / 1 / 6.50 /$			SR FiPS	ST	\cdots				24		C／1／en／397
												${ }^{132}$	3554.454	${ }_{4}{ }_{2}=0$							
Faxe												${ }^{83}{ }^{3}$									
						4．411													$\%$	\because	
				＂11						c，cellisol											
$\frac{1083}{72 \pi}$	30－ 3 2＊					\％ 8														$\stackrel{3}{3}$	${ }^{1 / E 64 / 4 /}$
nes				${ }^{2} 8.9$	3.9					\％		$\frac{183}{203}$	$\frac{4}{26}$		－						recom
280				40		＊		1218		c．cell 3 ，		${ }^{2} 8$	${ }^{24}$	\cdots			$2 \cdot 8$	：			1464146
\％ 18.8	20.28			\％${ }^{2 *}$		－＂		${ }^{29}+3$				ess	${ }^{4}$								${ }^{6 / 24 / 24}$
（1088										c．isf 214		cat									3ec， 2 es37／
178					2．4．4．0							${ }_{-288}^{288}$	${ }^{2+}$	s．							
¢， 602												289	24.4		北						${ }^{46} 0.98 \%$
（182）	20．24＊					$\stackrel{ }{9}$		$\stackrel{3}{3}$				C8io							$1{ }^{12}$		． 6.63$\}$
1682	20． 86	$10 \cdot 8$			－820			P 3		$6^{6} / 3 \times 2 / 1$		：\because	： 2							，	$460 \cdot 397$
		2\％8			－8808			\％ 8.8													\％301／
1465	＊ 20			\％\％	3．006．．00	号		$4 \cdot 3$		c／reefireall		1884	22^{20}	\％ 2	2ept				$6{ }_{6} / 3$	3	175．ene
686	30.84	3．9			8 c	\％		－ 3				184＋5	18.24							${ }^{3} \mathrm{~B}$	［10．＂1
1687			2\％e			4		$20 \cdot 3$		¢fRell／zi		1800							${ }^{2} \%$	＊	\％erto
													为 30.36						－	\％	
												16493	30 2\％					$\%$	\cdots	3	\％／2ens डiv
178．1	${ }^{30}$｜ $24+$				88.9			－		c．enir											
1882	28.8	3：8			4828			＂		cset／		ane	Ho ooce	cexes	sta						
1569	30.28	3＊9			$\cdots 5$	9				60.6 ／1／besen			－3）	1：$:$					\because	－	c／a－0，
1564	30.812			50．0）${ }^{\text {a }}$	\％\％） 3.0	\％ol		$5 \cdot$													（10／7o／Pesel
， 1585			1278t，		1.824	\％		${ }^{2} \cdot 1.8$		Cumilicic											
$\frac{586}{15897}$							$\begin{aligned} & 24 \\ & \hline 18 \end{aligned}$			6／＂e／z／											

 SPANDREL REAMS AT GRID 53
SPAIIREL (OPAMS AT GRIO A25 (OPAMO)

bar flacement cirgram

-
 \qquad

bar placement diagrams

wo murto mes a sell it neto in wo unt

Waller P. Moore 8 Assochates.inc. Chenauti a Associates, he

THREE

JoYN HANSEN
INVESTMENT BUILDER
bEAM \& JOIST SCHEDULE

APPENDIX V
Field Inspection

CARRIAGE PARK APARTMENT COMPLEX

1. Inter-office report to T. Shipman from X. Arguello
2. Report to R.A. Tash, Ltd. from Walter P. Moore \& Assoc.
3. Inter-office report to T. Shipman from X. Argueilo

WALTER P. MOORE \& ASSOCIATES, MC. CONSULTING ENGINEERS
2905 Sacker
Houston, Texas 77006

Job Nome \qquad APARTMENT INGRES $\frac{180}{180}$
Architect R(O)IADD A. TASA, LTO.

TO: TERRY SHIPMAN.
FROM: XAVIER ARGUELLO.
SUBJECT: REPORT ON STRUCTURAL SURVEY PERFORMED AUGUST $4^{\text {th }}$ AND $5^{\text {th }}, 1977$ AT. CARRIAGE. PARK APARTMENT COMPLEX

THE COMPLEX HAS A TOTAL OF 25 BUILDINGS, INCLUDING
22 TWO-STORY APARTMENT BUILDINGS, I THREE - STORY
APARTMENT BUILDING, AND 2 ONE -STORY MECHANIC ROOMS. IT IS DIVIDES INTO NORTH CARRIAGE PACK. (16 BLOGS.) ANE SOUTH CARRIAGE PARK. (9 BLOGS.).

THE EXTERIOR OF ALL BUILDINGS AND SOME OF THE UTEXXIORS INERE INSPECTED. TYPICALlY: ALL EXTERIOR WALLS AT GRUM LEVEL ARE BRICK VENEER, THE SECOND LEVEL EXTERIORS A: OF WOOD CONSTRUCTOR:

OBSERVATIONS:

A: WALLS
NORTH SIDE: MODERATE CRACKING IS ISTLE IN MOST OF THE BRICK WALLS; THE CRACKS. ARE BASICALLY. OF TIU TYPES:

1. VERTICAL CRACKING LOCATED. IN MIDULE OF WALL.
2. DIAGONAL AND HORIZONTALL CRACKS AT WINDOIU OPENINGS EXTENDING TO NEAREST. CORNER.
ONE OF THE BUILDINGS PRESENTS A PELATIVELY LARGE NUMBER OF THESE CRACKS (IO). THE REST HAVE NH AVERAGE OF . 2 . CRACKS PER BUILDING.

SOUTH SIDE: TWO BUILDINGS PRESENT MODERATE CRACKS
AT THE LOCATION OF. ELECTRICAL. PANELS.
IN THE. THREE-STORY BUILDING, VLNMCAL MODERATE CRACKS ARE VISIBLE IN WALLS AXOURID ELEVATOR AND STARS. B. SLABS NORTH SIDE: MODERATE CRACKING OBSERVED AT

WALTER P. ROORE \& ASSOCIATES, INC. COWSULTMG EAGINEERS
2905 Sackett
Houston, Texas 77006

Job Name \qquad
Architect \qquad P1, 10 1 14 181

CORNERS OF SLAMS ON GRADE.
IN FEW PLACES. EROSION DVE TO RAIAFALL WAS OBSETVEL ON THE GROUND, EXPOSNG BOTOM OF SLAR ON GODE.

GOUTH SIDE: GENEPAL CRACKMGI (MUEEAFIE) M
SLABS AT COPRIDORS. WTHE THREE-STORY BUNDING WERE OBSERVED.

NO VISIPAE GPACKIMG? OF SLATBS ON GKRHEE.
C. STAIRS

A/I STAIRS. ARE OF THE LIGHA METAGL ANO CONCRETE THPE THROUGHOUT. THE COMPCEX; ALL STAIRT EXPOSEO TO WETTHEA. PRESENT. A. HIGH LEVEZ OF COKNOSON.

POOR WORKMAMSHIP: WAS. OESERUED AT. PIPE CWUNO SWPA.

D. ROOF

EUIDENEE OF LEAKING WAS FOUND N ALMOST. ALL IAJEFIGA: NSPECTED... THE EXTETNT OF . POSSMGE DATAGE TO TIE WOODEN STRUCTUE SUPPORMNG THE ROCF COUCD NOT EE DETEKANU DUE TO. 175 CONCFALEO NATUKE:

E: GENERAL
PIPE COLUMNS SUPPORTMNG COKADORS WNTHE THEEE-STI:
 ARE HEAVILY COMIODED AT BHSE.

RETAWING WALL AT DRIVENAT, WEST OF NOKIT SIDE SWIMMING POOL WAS OBSEXVED iN POCR COWDHTON.

CONCLUSION:
Al/ CRACKS OBSEXIEO. N WHLCS AND SLABS ATE OF NON- STXUCTURAC CHATHCTER.

FROM WHAT COULD BE OESERUSD, THE BULDMG:ANE STRUCTURH LY SAFE.

PRESENCE OF TERMITES WAS REPORTEO, BUT NO FHDEALI OF STAVCTUNAL DAMAGE WAS FOWND.
2. Report to R.A. Tash, Ltd from Walter P. Moore \& Assoc.

SUBJECT: Report on Structural Survey Performed August 4th and Eth, 1977 at Carriage Park Apartment Complex, Houston, Texas

The complex has a total of 25 buildings, consisting of 22 two-story apartment buildings, 1 three-story apartment building, and 2 one-story mechanical buildings. It is divided into North Carriage Park (76 Buildings) and South Carriage Park (9 buildings).

The exterior of all buildings and some of the interiors were inspected. Typically all exterior walls at ground level are brick veneer.

The following observations were made:

1. Walls
A. Northside - Moderate cracking is visible in most of the brick walls. The cracks are basically vertical cracks located in the middle of the wall, and diagonal and horizontal cracks at window openings. One of the buildings has a relatively large number of these cracks (10). The remainder have an average of two cracks per building.
B. Southside - Two buildings have moderate cracks at the location of the electrical panels. The three-story building has cracks in the walls around the elevator and stairs.

The cracks in the brick indicate some foundation movement. These cracks are probably caused by expansion of the clay soils due to seasonal changes in the moisture content of the soil. This condition is quite prevalent in many parts of Houston that have expansive clays. The cracks could also be due in part to temperature stresses.

The cracks do not indicate any serious structural damage and are only cosmetic in nature. The cracks should be patched to prevent moisture penetration and can be done at a small cost. In general, the brick and mortar appear to be in good condition.
2. Slabs and Grade Beams
A. Northside - Moderate cracking was observed at the corners of slab on grade and grade beams. These cracks are due to the placement of the reinforcing bars. They are cosmetic in nature and do not affect the structural integrity of the foundation system. They can be repaired at a small cost.

Report on Structural Survey - Carriage Park Apartment Complex Page - two-

In a few locations, erosion due to rainfall has exposed the bottom of the grade beam. This does not affect the grade beam but should be filled in to prevent further erosion.
B. Southside - In the three-story building, moderate cracks in the slab on grade were observed in the corridors. The corridors are exposed to the weather, and these cracks are only cosmetic in nature and do not present any serious structural consequence.
3. Stairs

All stairs are of the light metal and concrete type. Stairs exposed to the weather exhibit a high level of corrosion. This is quite normal for areas of Houston where air pollution tends to be a little more concentrated than normal. The project is in such an area because of its proximity to the ship charnel. The stairs should be repaired and probably can be done by the maintenance staff.
4. Roof

Evidence of leaking was found in almost all interiors inspected. The extent of possible damage to the wooden structure supporting the roof could not be determined due to its concealed nature. It is our opinion that any structural darnage would be minor.
5. General

Some pipe columns supporting the corridors in the three-story building and the cooling tower in the North Mechanical Room are corroded. This could be repaired by the maintenance staff.

The presence of termites was reported in six buildings, but there was no evidence of structural damage.
6. Conclusion

In general, the buildings are structurally sound and should not present any major structural problems in the near future. The stairs and pipe column that are corroded should be repaired.

Submitted by:
WALTER P. MOORE AND ASSOCIATES, INC.
Jour ISthmian
Terry G. Shipman, P.E.

APPENDIX VI

Structural Additions and Remodeling of Existing Buildings

1. Structural drawings
2. Memorandum to K. Zimmerman and response
3. Structural drawings

4. Memorandum to K. Zimmerman and response

IMRORADUS

Lhay/2/73
TO: Kon Zimmeman
FRGA: Xavier Arstiello
RE: Sugestions for inprovenent in oum methods of design and detailins.
A. Tre number of jobs involving additions, nepains and revisions oi existins wimotures reprosent not a small pencentace oithe total jojs our fim sets. I vould Inie to present a sugeeston demivec from ny involvenent in several jobs of tion tyee: It is quite comen to specify in our drawinco. Weldan of cover plates, hanecrs, wtemen natos, comection plates, ctc. to ewsung stmetural elowezts tiat are stressed. We siould inciuge in our "Coci- Istot of problca Itens" a grovision celising to tise ettention of oni encineens the potentan peonens that haj ocour due to the reanciton an eqcotive anea cansed by wa aine tompeatumes in tue avaeraed nenber. (i. c. Ueidine stifner plates on micsom of a simply wir orted bean conla crowto a collanse mecheniman . Comections to cristme strozed newbens can be performed without problems if one sis amare or this and apolies sound encineenine judconent.
E. In oun typical sticl-on detain: "quoicen zociz

- Inter Details", the note foa the vo counse blocis Iinter reads: "openings 5 ft. vice or cieater". I reconnend including in the note an uogen bound liniting tive opening lengtio. I Recl that tios will clarify our detail paventine nisintompetaitons.

Walter P. Moore and Associates, Inc.
 Consulting Engineers and Planners

K. E. Zimmerman, P.E.

Vice Chairman of the Board

May 19, 1978

Mr. Xavier Arguello
2905 Sackett Street
Houston, Texas 77098
Dear Xavier:
Your suggestions of May 2 were presented to the Executive Committee on May 10 and discussed. While the content of your suggestions are items that have heretofore been orally brought to the attention of our group leaders, your comments suggested that if it really gets effective it should be put in written form. Lee Jones will have a memorandum regarding the items out shortly.

The Committee appreciated your concern regarding the items mentioned, and thanks you for submitting them. The enclosed check is a token of appreciation for your thoughtfulness.

Yours very truly,
WALTER P. MOORE AND ASSOCIATES, INC.

KEZ: md

Walter P. Moore and Associates, Inc.
 Consulting Engineers and Planners

MEMO

DATE: MAY 25, 1978
TO: ALL STRUCTURAL PERSONNEL
FROM: LEE W. JONES
Xavier Arguello has made several suggestions that all of us should have been aware of, but they are worthy reminders.

1. Caution should be used when welding to existing steel members. Sound engineering judgement should be exercised when welding to stressed members since the welding temperatures may reduce the member capacity.
2. Our typical two course block lintel detail reads "For openings 5 Ft. wide or greater." With various loading conditions it is not appropriate to set an upper span limit for this lintel. We should however insure that the larger openings on each project are provided with adequate lintels.

APPENDIX VII

Revision of Design and Shop Drawings

1. Framing plan and sections
2. Revision of precast system
3. Framing plan and sections

4. Revision of precast system

WALTER P. MORE \& ASSOCIATES, INC.
CONSULTING ENGINEERS
2905 Socket 1
Houston, Texas 77006

Job Nome
GREENSDOL GARAGE
196
Architect \qquad

PRECAST DESIGN - REVISION
Job:

- ICE LIGHTWEIGHT. TOPPING. ON DOUBLE TEE

$$
\checkmark \quad 0, k
$$

$D L 20$ PSF

- $f_{C}^{\prime}=5500$ PSI WAS USED N DESIGN FOR DT'S (OUR NOTES CALL FOQ 5000) \therefore

Notes:
(1) IT SHIFTED $1 / 2^{n}$
(2) IT SHIFTED $2^{1 / 2} 2^{2}$ OM. (SEE (1))

-. DIMENSIONS. OIK. -

- DIFFERENT ARRANGEMENT.. OF.. DTS.... OIK -
- STAIRWELL DIMENSIONS ..AND. LOCATOR . OIK
- NOTE: PANELS SUPPORTS ON IT NOT SHOWN ON. SHOP DRAWINGS AS DESIGNED, PLATES AT ENDS. ONLY: WHEN BUMPER LOAD ACTS, \therefore THE. FLEXURAL ACTION WILL. BEHAVE. WITH $d \cong Z^{4}-$

- MOTE: ON. L BEAM, SHEAR STRESS DUE TO TORSION R TO DIRECT SHEAR. WERE NOT. COMPUTED PROPERLY.

$$
x=\frac{85.4 \times 7.5}{13.75}=47 . p 3 i
$$

WALTER P. MOODE \& ASSOCIATES, MC. CONSULTIBG EHGHEERS
2905 Sackett
Houston, Texas 77006
\qquad
Architect \qquad

DOUPiE TEE REVISIOM Job \#

$$
L=60.8 ?^{\prime}
$$

(A) WITAC PRESSTRES : (AT MIDDLE)
loss due to plaretic shortewin'
(B) INITAL PRESSMES PLUS BM, CETGHT

$$
M_{D u}=418 \times 60,83^{2} \times 12 / 8=2320,000 \#-4
$$

$$
\sigma_{T P P}=-513.7+\frac{2320000}{3063.5}=24366 \text { PS } 0^{\circ} \text { (compression) }
$$

$$
\sigma_{B O T}=4014.0-\frac{2320000}{1223.6}=2118 . \mathrm{ps} 0^{\circ}
$$ (compression)

Allownble compression (AC1. 18.4.1) :

$$
0.6 f_{6}^{\prime} \cdot 0.6 \times 3500=2100 \quad 0 k
$$

$$
\sigma_{\text {pror }}=(4460)(0.78)-[2320000 / 1223.6]-[888070 / 1223.6]=857 \mathrm{psi}
$$

(D) STRESSES DUE TO L.L. (composite section)

$$
\sigma_{T P P(\text { compesi, })}=\frac{M_{L}}{S_{\text {pp }}(\text { menp })}=\frac{320 \times 60.93^{2} \times 12 / 8}{4042.1}=435.3
$$

$$
\begin{aligned}
& \sigma_{\text {TPP }}=(2) \frac{(173460)}{401}-(2)(173460) \times \frac{12.68}{3063.5}=(-570.8,1510)(0.9)=-513,7 \text { (rews) } \\
& \sigma_{\text {mot }}=(2)(173460)+(2)(173460) \times \frac{12.63}{401}+4223.6 \quad 460 \text { psi } 0.7=4014.0 \text { (comprecsic. }
\end{aligned}
$$

APPENDIX VIII
 Other Professional Development Activities

A. Excerpts of a seminar conducted at Walter P. Moore \& Assoc.
B. AISC seminar, certificate of completion
A. Excerpts of a seminar conducted at Walter P. Moore As\$oc.

Some Aspects of the Structural Damage Caused by the 1972 Managua, Nicaragua Earthquake

The Structural Engineers Association of California (SEAOC), establishes provisions for earthquake-resistant structures in their "Recommended Lateral Force Requirements and Commentary", which are adopted by most of the major building codes in the Western Hemisphere. They state that: "With regard to earthquakes, structures designed in conformance with the provisions and principles set forth herein should, in general, be able to: 1. Resist minor earthquakes without damage, 2. Resist moderate earthquakes without structural damage, but with some non-structural damage, and 3. Resist major earthquakes, of the intensity of severity of the strongest experienced in California, without collapse, but with some structural as well as non-structural damage."

The 1972 Managua earthquake can be classified as a moderate earthquake. The intensity of shaking in the city was established to be around VII to VIII in the Modified Mercalli scale with high shaking zones of IX to X (out of a maximum of XII). Maximum accelerations recorded were of 0.39 g East-West, 0.34 g North-South, and 0.33 g vertical; it was established that at least in one zone the vertical acceleration reached the value of gravity (l g.) (see: Saint-Amand, Pierre; "The Seismicity and Geologic Structure of the Managua, Nicaragua Area"; Managua, Nicaragua earthquake of December 23, 1972 Earthquake Engineering Research Institute conference proceedings).

It was established that the total damage caused by the earthquake amounted to about 30% of the nation's gross national product. Around 8000 people were killed, 20,000 injured, and the property damage exceeded a
billion U.S. dollars (see: Duke, Martin C.; "Impact of Managua on Earthquake Engineering"; Managua, Nicaragua earthquake of December 23, 1972, Earthquake Engineering Research Institute, conference proceedings).

Damage in Managua was related to the type and quality of construction, to the intensity of shaking, and to fault lines. In Photos 1, 2, and 3, we can appreciate obvious examples of neglect of provisions for resistance to lateral forces.

In Photos 4 and 5 permanent deformations are observed due entirely to first floor distortions beyond the elastic limit. The upper floors are undistorted due to the fact that once the strength of the "weak" first floor is reached, the upper floors are isolated to a great extent from the ground-induced forces. Notice in Photo 4 that the failure actually occurred in the direction of the weak axis of the portal frames. In photo 5, notice how the second and third floors are intact, even the glass pa es are in place!

Weak parts of a structure may be attributable to underdesign of that part of the structure, and/or overdesign of other parts of the structure. In earthquake-prone areas, danger exists both from understrong and overstrong elements. Photo 6 presents a close-up of one of the failed first floor columns of the building shown in photo 5. The effective length of this column has been reduced by the presence of the masonry walls, confining its lower half portion, this creates an unnoticed stiffer element which attracts greater forces and which doesn't have the strength to resist them; notice the far spacing of the stirrups and their size.

The occurrance of the type of failure caused by understrong elements in structures has been thoroughly studied, a proposed design taking advantage of the weak first floor has been set forth by M. Fintel and
F. Khan: "Shock-Absorbing Soft Story Concept for Multistory Earthquake Structures", Portland Cement Association.

The author had the opportunity of participating in the structural inspection of the repairs performed on the building shown on Photo 5; it consisted basically of carrying reinforced concrete piers from the foundation to the roof in the same location of existing columns. This way the structure was strengthend without creating additional weak spots.

Photo 7 presents the damage caused to a building which had been repaired from previous earthquake damage (1968). The new damage occurred at the abrupt change in stiffness in the second floor level, up to where strengthening had been carried when repairing the 1968 damage. After the 1968 earthquake, the first floor which was damaged then, was strengthened by forming reinforced concrete piers carried to the second floor; and thus inadvertedly transfering the original weakness to that floor. Photo 8 shows a close-up of the abrupt change of stiffness and the damage concentrated there.

In Photo 9, overturning failure in the strong axis of the portals can be observed, this view presents the failed tension-side, Photo 10 shows a crushed column on the failed compression-side. This building obviously had no provision for resistence of large lateral forces.

An example of damage due to inadverted stiffness provided by infills in frames, without the sufficient strength to resist the forces induced, is presented in Photo 11. The main structure of this building, a reinforced concrete frame system did not suffer major damage but the "nonstructural" damage was rather high. In seismic areas, due consideration has to be given to the behavior and interaction of non-structural elements, as well of course to the structural elements.

Conditions such as the one presented in Photo 12 are quite prevalent in building-congested downtown areas; in this particular case an adjacent building stiffened the bottom story levels of the six story building causing.damage at the externally-originated abrupt change in stiffness.

Photo 13 presents an example of poor detailing and/or poor workmanship. The connections of the heavy precast concrete roof slabs failed in each and every dwelling of this housing project; upon close examination of the failed slabs, only tack welds were observed to have been provided as connection to the walls.

Finally, Photo 14 presents two medium-rise buildings, both of reinforced concrete but the one to the left, the "Banco de America" building withstood the earthquake very well while the one to the right, the "Banco Central" building fared poorly. The "Banco de America" building had a much stiffer structure which relied on shear wall-frame interaction for the resistance to lateral forces, in addition to having a sysmmetric plan. The "Banco Central" building had a flexible frame system resisting lateral forces, when the frames deformed, most of the "non-structural" partitions were damaged; in fact damage was so heavy that even though the main structure was undamaged it was determined that the cost involved in its repair would exceed the benefits of putting it back in operation. This building also had an unsymetric distribution of stiffness in-plan; as of today it has already been demolished.

Photo 1

Photo 2

Photo 3

Photo 5

Photo 6

Photo 7

Photo 8

Photo 9

Photo 10

Photo 11

Photo 13

Photo 14

AISC Seminar, Certificate of Completion

VII. Vita

Francisco Xavier Arguello Carazo was born on August 6, 1953 in Guatemala, Central America; his parents being Felipe and Lola Arguello Bolanos, he is married to 01ga A. Arguello and has four children. He received the degree of Civil Engineer in August of 1975 from the National University of Nicaragua, Central America, and a Master of Science degree in May of 1977 from Rice University in Houston, Texas, with a major emphasis in structural engineering. While in Nicaragua, he acquired three years of experience in engineering, working one and a half years for a consulting engineering firm: Federico Fiedler \& Assoc., and one and a half years for an agricultural development firm: Arrocera Venllano S.A. He has fifteen months consulting engineering experience at Walter P. Moore \& Associates, in Houston, Texas. His permanent mailing address is: P.0. Box 645, San Pedro Sula, Honduras, Central America.

[^0]: * ASCE - Manuals and Reports on Engineering Practice - No. 45, "Consulting Engineering, a Guide for the Engagement of Engineering Services."

[^1]: * In the following sections, when particular projects are described, the name of my immediate supervisor is given if other than Mr. Griffis and Mr. Wu.

[^2]: * From: "Matrix Structural Analysis", by M.D. Vanderbilt, Quantum Publishers, 1974.

[^3]: * From: "Elementary Structural Analysis" by C.H. Norris and J.B. Wilbur, McGraw-Hill Book Co., 1960.

[^4]: * The photographs were furnished to me by Mr. Felipe Arguello, the engineer heading the survey team.

[^5]: Preliminary proposals

[^6]:

