INTERNSHIP EXPERIENCE AT

WALTER P. MOORE & ASSOCIATES, CONSULTING ENGINEERS

A Report

by

FRANCISCO XAVIER ARGUELLO CARAZO

Submitted to the College of Engineering of Texas A & M University in partial fulfillment of the requirement for the degree of

DOCTOR OF ENGINEERING

August 1979

Major Subject: Interdisciplinary Engineering

INTERNSHIP EXPERIENCE AT

WALTER P. MOORE & ASSOCIATES, CONSULTING ENGINEERS

A Report

by

FRANCISCO XAVIER ARGUELLO CARAZO

Approved as to style and content by:

Chairman) Commi

of Depar

Clin - (Member 43

D (Member

lter Σ. (Member)

(Member)

(Member)

Callodulu (Member)

August 1979

ABSTRACT

A report on an Internship Experience at

Walter P. Moore & Associates, Consulting Engineers. (August 1979) Francisco Xavier Arguello Carazo, C.E., National University of Nicaragua;

M.S., Rice University

Chairman of Advisory Committee: Dr. Richard E. Thomas

An internship at Walter P. Moore & Associates, Consulting Engineers was completed over a period slightly in excess of one year. During this time, the intern worked in the structural division and was assigned numerous projects involving the various phases of the structural design of buildings. His involvement in fifty projects enabled him to perform structural analyses and designs ranging from complex multistory structures to simple structures. While contributing with his technical knowledge to the performance of such tasks, he was also in communication with project architects during the design of some of the buildings, and in various occasions had draftpersons working for him. In addition to the experience accumulated as a consulting structural engineer, the intern was involved in other professional development activities such as conducting a seminar for the office staff on earthquake damage. TO OLGA

iv

ACKNOWLEDGEMENTS

Many individuals assisted me in the completion of my Doctor of Engineering program, with their help I was able to surpass all problems; to all I am greatful.

Special thanks goes to Dr. Richard E. Thomas, who was my committee chairman and who advised and guided me, both in academic and personal matters.

To Dr. Donald McDonald, who as member of my committee and also as my professor, greatly counseled and guided me through the program.

To all the other members of my committee, who provided guidance and timely advise, especially to Mr. Ken Zimmerman.

To Dr. Chi Wu, whose technical expertise and advise, greatly enhanced the quality of my internship.

To Lee Synan, whose constant assistance and cooperation made this report a reality.

To my parents, to my brother Felipe, and to Mr. Julio Arellano, who encouraged and financially supported me throughout my graduate studies; I thank them for their faith.

To my wife and children, who cheerfully supported me throughout my graduate studies, lifting my spirits in troubled days.

TABLE OF CONTENTS

<pre>1. Feasibility and Pricing</pre>	Ι.	Introduction	1
 B. Internship Overview	II.	An Internship at Walter P. Moore & Associates	4
III. Projects Performed. A. Preliminary Design. 1. Feasibility and Pricing		A. Organization of the Firm and Intern's Position	4
 A. Preliminary Design. 1. Feasibility and Pricing. a. WEST LOOP OFFICE BUILDING. b. BAY DESIGN GARAGE. c. BLOCK 130, HOUSTON CENTER. d. TEN-TEN GARAGE INFORMATION. 2. Basis for Final Design: THREE RIVERWAY 2. Basis for Final Design of Buildings 2. Science and Mathematics Center/Junior College - COMMONS BUILDING. 2. SMITH PARK PAVILION 3. C. Design of Special Structural Systems in Major Buildings 3. C. Design of Special Structural Systems in Major Buildings 4. Structural Additions and Remodeling of Existing Buildings 4. Structural Development Activities 5. V. Conclusion. 5. APPENDIX I: Feasibility and Pricing. Appendices: APPENDIX II: Basis for Final Design of Suiddings. 11 APPENDIX II: Complete Structural Design of Buildings. 11 APPENDIX IV: Design of Special Structural Systems in Major 11 APPENDIX IV: Design of Special Structural Systems in Major 12 13 14 APPENDIX V: Field Inspection. 14 		B. Internship Overview	6
<pre>1. Feasibility and Pricing</pre>	III.	Projects Performed	8
 a. WEST LÖOP OFFICE BÜLLDING b. BAY DESIGN GARAGE c. BLOCK 130, HOUSTON CENTER d. TEN-TEN GARAGE INFORMATION. 2. Basis for Final Design: THREE RIVERWAY 2. Basis for Final Design of Buildings 2. Science and Mathematics Center/Junior College - COMMONS BUILDING. 2. SMITH PARK PAVILION 3. C. Design of Special Structural Systems in Major Buildings 3. THREE RIVERWAY. 3. Field Inspection: CARRIAGE PARK APARTMENT COMPLEX. 4. E. Structural Additions and Remodeling of Existing Buildings 4. Revision of Design and Shop Drawings. 5. V. Conclusion. 5. V. Conclusion. 5. V. Conclusion. 5. Suppendices: APPENDIX I: Feasibility and Pricing. 5. APPENDIX II: Basis for Final Design of Buildings. 5. APPENDIX II: Complete Structural Design of Buildings. 7. Appendices: APPENDIX II: Design of Special Structural Systems in Major Buildings. 4. APPENDIX IV: Design of Special Structural Design of Buildings. 4. APPENDIX V: Field Inspection. 4. APPENDIX V: Field Inspection. 		A. Preliminary Design	8
 Science and Mathematics Center/Junior College - COMMONS BUILDING. SMITH PARK PAVILION SMITH PARK PAVILION Obesign of Special Structural Systems in Major Buildings THREE RIVERWAY. THREE RIVERWAY. Field Inspection: CARRIAGE PARK APARTMENT COMPLEX. Field Inspection: CARRIAGE PARK APARTMENT COMPLEX. F. Revision of Design and Remodeling of Existing Buildings F. Revision of Design and Shop Drawings. Other Professional Development Activities Conclusion. Final Design . Appendices: APPENDIX I: Feasibility and Pricing. AppenDIX II: Basis for Final Design of Buildings. II APPENDIX IV: Design of Special Structural Systems in Major Buildings. Major 		 a. WEST LOOP OFFICE BUILDING b. BAY DESIGN GARAGE c. BLOCK 130, HOUSTON CENTER d. TEN-TEN GARAGE INFORMATION 	10 10 14 17 20 24
COMMONS BUILDING		B. Complete Structural Design of Buildings	29
THREĔ RIVERWAY. 3 D. Field Inspection: CARRIAGE PARK APARTMENT COMPLEX. 4 E. Structural Additions and Remodeling of Existing Buildings 4 F. Revision of Design and Shop Drawings. 5 IV. Other Professional Development Activities 5 V. Conclusion. 5 V. Conclusion. 5 VI. Appendices: 5 APPENDIX I: Feasibility and Pricing. 5 APPENDIX II: Basis for Final Design 10 APPENDIX III: Complete Structural Design of Buildings. 11 APPENDIX IV: Design of Special Structural Systems in Major 14 APPENDIX V: Field Inspection 14		COMMONS BUILDING	30 36
 E. Structural Additions and Remodeling of Existing Buildings F. Revision of Design and Shop Drawings			39 39
F. Revision of Design and Shop Drawings. 5 IV. Other Professional Development Activities 5 V. Conclusion. 5 VI. Appendices: 5 APPENDIX 1: Feasibility and Pricing. 5 APPENDIX 1: Basis for Final Design 5 APPENDIX 11: Boxis for Final Design of Buildings. 10 APPENDIX 11: Complete Structural Design of Buildings. 11 APPENDIX 1V: Design of Special Structural Systems in Major 14 APPENDIX V: Field Inspection 17		D. Field Inspection: CARRIAGE PARK APARTMENT COMPLEX	44
IV. Other Professional Development Activities		E. Structural Additions and Remodeling of Existing Buildings	48
V. Conclusion		F. Revision of Design and Shop Drawings	50
VI. Appendices: APPENDIX I: Feasibility and Pricing	IV.	Other Professional Development Activities	52
APPENDIXI:Feasibility and Pricing.5APPENDIXII:Basis for Final Design10APPENDIXIII:Complete Structural Design of Buildings.11APPENDIXIV:Design of Special Structural Systems in Major14APPENDIXV:Field Inspection17	۷.	Conclusion	55
APPENDIX VI. Structural Additions and Romodeling of Exis	VI.	APPENDIXI:Feasibility and Pricing.APPENDIXII:Basis for Final DesignAPPENDIXIII:Complete Structural Design of Buildings.APPENDIXIV:Design of Special Structural Systems in Major Buildings.APPENDIXV:Field Inspection	57 106 116 146 178
ting Buildings		APPENDIX VI: Structural Additions and Remodeling of Exis- ting Buildings	185 192

TABLE OF CONTENTS (continued)

APPENDIX VIII: Other Professional Development Activities 198
VII. Vita
structures. This, coupled with the fact that I was currently working for
was destrive in erranging by internation at that firm.
The objectives of the Doctor of Engineering internship have been well
established by the College of Englemening. these are:
To enable the student to demonstrate his ability to apply his knowledge and technical training by making an identifiable contribution in an area of practical concern to the organiza- tion or industry in which the internship is served, and
To enable the student to function in a non-academic environment in a position where he will become aware of the organizational approach to problems in addition to traditional engineering decion or analysis. These may include, but are not limited to, problems of management, labor relations, public relations, en- vironmental protection or economics.
In order to establish by contribution to the area of practical con-
serv is which I wen involved and also my exposure to the organizational
outline in delati the batic services offered by a consulting structural
 ASCE - Manuals and Reports on Engineering Practice - No. 45, "Con- suiting Engineering, a Guide for the Engagement of Engineering Ser- vices."

I. Introduction.

When admitted to the Doctor of Engineering program of Texas A & M University, I held the degrees of Civil Engineer and of Master of Science. I also had some work experience related to the design and supervision of structures. This, coupled with the fact that I was currently working for a Houston-based consulting engineering firm, Walter P. Moore & Associates, was decisive in arranging my internship at that firm.

The objectives of the Doctor of Engineering Internship have been well established by the College of Engineering; these are:

To enable the student to demonstrate his ability to apply his knowledge and technical training by making an identifiable contribution in an area of practical concern to the organization or industry in which the internship is served, and

To enable the student to function in a non-academic environment in a position where he will become aware of the organizational approach to problems in addition to traditional engineering design or analysis. These may include, but are not limited to, problems of management, labor relations, public relations, environmental protection or economics.

In order to establish my contribution to the area of practical concern in which I was involved and also my exposure to the organizational approach to problems in the non-academic environment, it is necessary to outline in detail the basic services offered by a consulting structural engineer as presented by the American Society of Civil Engineers.* The services marked by an asterisk in the enclosed outline, represent those in which I have had some degree of exposure; the ASCE outline of services is as follows:

^{*} ASCE - Manuals and Reports on Engineering Practice - No. 45, "Consulting Engineering, a Guide for the Engagement of Engineering Services."

Services in the Preliminary Phase

* 1. Conferences with architects, other engineers engaged on the project, owner's representatives, building officials, and regulatory agencies, to establish the scope of the project and requirements of alternate structural systems;

 * 2. Participation in the formulation of a soils and foundation investigation, and counseling on data needed;

* 3. Preparation of economic studies of alternate structural systems,
 including foundations;

* 4. Preparation of preliminary structural designs required to define
 space needs of the structural elements, as well as to accommodate the space
 needs of the architectural, mechanical, and electrical facilities;

 * 5. Preparing design criteria and outlining specifications for structural aspects of the project; and

* 6. Counseling on building form, materials, and methods of construction as related to the structure, costs suitability to the site foundation conditions, building code requirements, etc.

Services in the Design Phase

* 1. Conferences with the architect and with others to plan and coordinate the structure into the building project;

* 2. Consultation on the need for foundation investigations to supplement those that may have been made in the preliminary phase;

* 3. Preparation of structural calculations in reproducible form for normal design loads;

* 4. Preparation of structural contract drawings (in pencil on tracing paper unless otherwise agreed) in sufficient detail to define the construc-

tion work explicitly, and to keep the professional responsibility for the structural design, including details, with the Consulting Structural Engineer;

 * 5. Preparation of structural specifications in a form as agreed, for incorporation in the project specifications;

* 6. Provision of a reasonable number of prints of the work in progress for coordination of the project design; and

7. Participation in establishing the materials testing, fabrication inspection, and construction inspection programs for the project.

Services in the Construction Phase

 Preparation of structural addenda as may be required during the bid period, and other assistance in the procurement of bids;

 Provision of consultation and advice on structural aspects of the project construction;

Preparation of supplementary structural sketches and details needed
 to resolve field problems that may be encountered;

* 4. Review of detailed construction drawings and shop and erection
 drawings submitted by the contractor;

5. Review of laboratory, shop, and mill test reports of materials, fabrication, and equipment, and reports of these reviews in writing to the Prime Professional; and

 Observations of construction in progress and provision of appropriate reports to the Prime Professional.

In this report through a detailed coverage of my experience at Walter P. Moore & Associates, where my involvement in the above mentioned services was demonstrated, I establish the fulfillment of the internship's objectives.

II. An Internship at Walter P. Moore & Associates

A. Organization of the Firm and Intern's Position

Walter P. Moore & Associates is a consulting engineering firm, presently engaged in both structural and civil engineering projects. Since its creation in 1931, it has grown to occupy a prestigeous position in the nation, being involved in both national and international projects. The firm was listed by Engineering News Record among the top 500 consulting engineering firms in the United States for the year 1977.

With respect to its organization, it is divided into two major divisions: the Project Division, of recent creation, in charge of Civil Engineering projects, and the Structural Division. The Structural Division has been the pillar of the firm through the years; it is further subdivided into self-sufficient design groups, each of which is headed by a group leader and an assistant group leader in charge of a staff of engineers and draftpersons. The projects are assigned by management to the group leaders, who in turn assign them to an engineer or engineers within the group, depending upon the size of the project.

In addition to the design of buildings, having conventional structures, the division has designed numerous outstanding non-typical structures which makes it a highly desirable place for a young engineer to acquire experience.

I was a design engineer under Mr. Larry Griffis and Mr. Chi Wu, group leader and assistant group leader respectively,* both registered professional engineers, in what was known as Group No. 1 of the Structural Divi-

^{*} In the following sections, when particular projects are described, the name of my immediate supervisor is given if other than Mr. Griffis and Mr. Wu.

sion during the great majority of my internship. My internship supervisor was Mr. Ken Zimmerman, a registered professional engineer and president of the company.

. .

B. Internship Overview

Walter P. Moore & Associates has been heavily involved in the structural design of buildings for the construction industry in the past fortyseven years. In the construction industry, three broad areas of construction can be classified, namely: building construction, engineering construction, and industrial construction. The firm's involvement has been mainly in the building construction area where the bulk of buildings are those to be erected for habitational, institutional, educational and commercial purposes. All these buildings were designed by architectural firms; the relationship with the consulting structural engineer was one wherein he serves the owner indirectly through an architect responsible as the Prime Professional. Walter P. Moore & Associates' major clients throughout the years have been architectural and development firms for whom the firm performs what is known as "Professional-not-prime" type services.

During the period of fifteen months in which I worked for Walter P. Moore & Associates, I was involved, with varying degree of responsibility, in fifty projects which represented a fairly complete cross section of the type of projects in which the firm was involved. I have classified these projects into six distinct categories according to the type of work performed; each project category, with the percentage of time dedicated to it, and the number of projects actually worked, is indicated in the following list:

Project Categories		<u>No.</u>
1. Preliminary Structural Design	23	19
2. Complete Structural Design of Buildings	30	4
3. Design of Special Structural Systems	33	8

Project Categories (cont.)		<u>%</u>	<u>No.</u>
4.	Field Inspection of Structures	۱	1
5.	Structural Additions & Remodeling of Existing		
	Buildings	9	16
6.	Revision of Design and Shop Drawings	4	2
		100	50

My involvement in the projects classified in the above mentioned categories has broadened my education by providing me with exposure to the actual practice of engineering and by being a positive step in my professional development; one of the implied objectives of the internship.

The relevant codes of practice prevalent at the time of my internship were used in the execution of all the projects, these codes were: the American Concrete Institute's ACI 318 - 71, and the American Institute of Steel Construction, Manual of Steel Construction, seventh edition.

In the following sections, a detailed description of relevant projects within each of the six categories mentioned is presented.

· III. Projects Performed

A. Preliminary Design

In structural design, the preliminary phase has an important role; it provides the initial description of a real structure with known member sizes and subjected to known loads. The following flow diagram of a structural analysis and design sequence is included here to establish the position of the preliminary phase in the design process.*

From the nature of the preliminary designs in which I was involved, two classifications can be made: a. Preliminary design to establish feasibility and preliminary pricing and, b. Preliminary design as a basis for final design. Among the projects in which I worked I have considered appropriate to include in this section five which are representative of this important phase of structural design. These particular projects are presented in the following list:

^{*} From: "Matrix Structural Analysis", by M.D. Vanderbilt, Quantum Publishers, 1974.

1. Feasibility and Pricing

a. WEST LOOP OFFICE BUILDING

b. BAY DESIGN GARAGE

- c. BLOCK 130, HOUSTON CENTER
- d. TEN-TEN GARAGE INVESTIGATION

2. Basis for Final Design: THREE RIVERWAY

1. Feasibility and Pricing

a. WEST LOOP OFFICE BUILDING

Task Description

In this particular assignment I was in charge of preparing the preliminary design for an eight-story office building with a long truncated pyramid-shaped plan, to be constructed in the Houston area and which was being developed by Al Keller, a Houston developer. A sketch of this building's typical floor outline with its dimensions is presented in section a.l of appendix I.

The objectives to be accomplished is this task were: 1. to establish the general structural layout to fit the functional requirements of the building, and 2. to consider and size the several possible solutions that satisfied the functional requirements. Specificly I was to consider four different schemes combining reinforced concrete and structural steel.

Due to the relatively low-rise nature of this building, wind forces were not considered in this preliminary analysis; for the purpose of establishing the relative advantages of the alternatives considered, a gravity load analysis of a typical floor was considered appropriate.

Task Planning

The first step involved in the execution of the assignment consisted of a careful examination of the set of preliminary architectural plans that were available from the architect's office. After a complete acquaintance with the architectural requirements, the next steps in the planning process were: 1. the establishment of the loading conditions and of the materials' properties, 2. the identification of a representative interior bay of the typical floor to be analyzed, and 3. the review and study of a new construction system which was being introduced in the Houston area and which was to be used as one of the alternatives.

Task Execution

I isolated and analyzed a typical 30' x 100' interior bay extending throughout the width of the building. Four alternatives involving different construction systems and materials were considered, and I carried out a complete structural design for each alternative. The four alternatives considered were (1) Grade 50 steel joists, beams and columns,(2) Grade 50 steel composite beams and steel columns,(3) Reinforced lightweight concrete beams and joists with normal weight reinforced concrete columns, and (4) Grade 50 steel composite joists and beams with grade 50 steel columns. This last alternative, with trade name of "Hambro" system, was being introduced in the Houston area at that time its main feature being the composite action developed both with joists and beams. A set of the relevant calculations for each alternative is included in section a.2. of appendix I.

Once the design was completed, I conveyed all the relevant information to one of the group's draftpersons who was assigned to work with me in this particular job. After agreeing on the format for the drawings, the last step in the task was to prepare the structural specifications for each alternative presented, these were to be included in the drawings.

Task Results

After completion of the design and drafting of the preliminary proposal, I met with my immediate supervisor in order to review the proposal. After I explained the assumptions and procedure used to accomplish the assignment, and after his approval, copies of our drawings were submitted to the firm's client.

The objectives set for this assignment were fully accomplished; an appropriate structural layout, fitting the functional requirements of the building was devised, and a complete design was provided for each of the four alternatives considered.

A copy of the completed drawings with the four different alternatives analyzed, as submitted to the client, is presented in section a.3. of appendix I.

Comments

The information embodied in the drawings, which were being provided by our firm to the client, was of decisive importance in making the decision as to what system of construction to employ in order to minimize the initial cost of the investment. The decision as to which particular scheme would have a least-cost effect was made by the developer after the contractor had reviewed our proposal and had determined, based on availability and prices of materials at that time, which would actually be cheaper to build. It turned out that the scheme chosen was the "Hambro" system.

Several months after I had completed the preliminary analysis for this building, the complete set of architectural plans were submitted to our office in order to proceed with the final design and draft for the structure. At that time, I was heavily involved in another project and couldn't participate in its final design.

Review

I had obtained most of the technical knowledge required to carry-on this assignment from basic reinforced concrete and structural steel design courses. The consideration of a new composite construction system for one of the alternatives, required investigation and study of the new system on my part at that time. This proved to be an interesting learning experience since the new floor system represented, from the design point of view, a definite improvement, by providing composite action with both beams and joists, over the conventional bar joist system. For the sake of completeness, I am enclosing in section a.4. of appendix I a brief description of the "Hambro" system as presented in the manufacturer's brochure.

The contribution of this assignment to the fulfillment of the internship's objectives was: (1) the basic academic knowledge dealing with the analysis and design of reinforced concrete and structural steel elements was applied in the creation of structural systems satisfying the functional requirements of the structure, and (2) the interaction with both the group leader and the draftperson assigned to the project, represented an important aspect of functioning in a non-academic environment.

b. BAY DESIGN GARAGE

Task Description

In this assignment I was to perform the preliminary design of a typical floor for a parking garage structure. The firm's client in this project was Bellows Construction Company, a contractor who was to utilize our design for pricing purposes.

The objective to be accomplished in this task was to provide the client with detailed structural information of three different floor layouts for two different loading conditions in a minimum amount of time.

I was to design three interior bays for a parking garage structure, all with the same column spacing in the longitudinal direction of 30'. The column spacing in the transverse direction varied for each layout: a. 45' - 60' - 45' continuous interior spans with 15' cantilevers at both ends, b. 60' - 60' - 60' continuous spans, and c. 30' - 30' - 30' continuous interior spans with 15' cantilevers at both ends. Layouts "a" and "b" were to be designed with a one-way postentioned lightweight concrete joist system and layout "c" was to be designed with normal weight conventionally reinforced concrete joist system. This last layout was to be analyzed also for a special concentrated loading condition due to an AASHTO HS 20-44 truck loading.

Task Planning

The information provided to me in this particular project was conveyed by the group leader who had obtained it in a telephone conversation with the client. Since a parking garage structure is close to being a "pure" engineering project without architectural requirements, the column spacings and materials' required were about all I needed to get started; this was the information I obtained.

There were two steps involved in the planning process for this project: 1. establishment of the loading conditions and materials' information, and 2. acquaintance with a commercially available computer program which had the capability of analyzing and designing prestressed concrete structures.

Task Execution

I performed a hand analysis and design of the conventional reinforced concrete joist system; the prestressed schemes consisting of postensioned one-way lightweight joists were analyzed and designed by the commercially available "Posten" computer program to which I had to submit the input data only. At the office, we had a computer terminal with operators to whom the engineers would submit the data and they would key-punch it in.

In addition to this "Posten" program I also used to a major extent the "Stress" program, both were available in-house and greatly expanded our capabilities. Typical data sheets with the input for the "Posten" program is presented in section b.1. of appendix I.

Once the design was completed, the next step in the execution of the assignment was to prepare the structural specifications and provide appropriate drawings for the schemes analyzed; since all of the draftpersons in our group were involved in other projects, I personally prepared the required drawings.

Task Results

When I completed both the design and the drafting of the required schemes, I met with my immediate supervisor to review my work. After discussing the procedure employed in carrying out the assignment and reviewing the specifications and drawings, copies of these were sent to the client. The structural drawings with specifications which I prepared for each scheme analyzed, are presented in sections b.2. and b.3. of appendix I.

The objective to be accomplished in this task was fulfilled; the detailed structural information required by the client was provided within a short period of time. In addition, I was introduced to the use of the "Posten" computer program which demonstrated to have powerful capabilities.

Comments

It is worthwhile to note that the firm's client was a contracting company. Based on relatively sketchy information with which to start, we provided information that could be used in a multitude of different building schemes. This demonstrated the fast-pace of the construction industry these days, when structural designs, based on phone requests, are needed to remain competitive.

Review

In the execution of this task, I utilized basic reinforced and prestressed concrete principles learned in school. The utilization of the "Posten" computer program certainly contributed to expand my capabilities as a structural designer.

The main contribution of this assignment to the fulfillment of the internship's objectives is directly related to the application of my technical knowledge in producing an identifiable contribution to the firm's interests.

c. BLOCK 130, HOUSTON CENTER

Task Description

An architectural firm from Houston, Pierce-Goodwin-Alexander, had proposed several schemes for a multi-story building to be constructed in downtown Houston. Our firm was contacted to perform a preliminary estimate of materials required for the structure. There was a very special feature of this task, it was to be completed within forty-eight hours.

This project consisted of designing three different schemes, (1) a twenty-seven - story structure with rectangular plan dimensions of 90' x 240', (2) an eighteen - story structure with rectangular plan dimensions of 90' x 184', and (3) an eighteen - story structure with rectangular plan dimensions of 100' x 184'. All three buildings were to have reinforced concrete structures.

The objective to be attained in this task was to provide estimates of the materials required for the three structures in a minimum amount of time.

Task Planning

I was provided with a standard plan to be modified according to the particular requirements of each scheme. (see section c.l. of appendix I). Since the task demanded rapid action, the time spent in planning it was minimum. It consisted in dividing the project into three phases: (1) the design of the typical floor for gravity loads with minor modifications, (2) the sizing of the lateral load-resisting elements, and (3) an estimate of the materials required for the different schemes.

Task Execution

I carried out the design of the reinforced concrete one-way joist

system for the typical floor in a very short period of time; in doing this
I utilized the short-cuts available from ACI 318 - 71 in its chapter 8:
"Analysis and Design-General Considerations".

The analysis of the lateral force-resisting elements required an oversimplification due to the time constraint. I isolated three levels within the height of each structure, one level close to the roof, one at midheight and the third one at ground level. These isolated substructures were analyzed and designed and the results were used to establish average column and beam sizes. This oversimplified analysis is presented in section c.2. of appendix I for the twenty-seven - story building; the foundation investigation for this building is also included in that section of the appendix.

Task Results

In this project, the review of my work by my supervisor was done on a step-by-step basis; as soon as I had some information, he would discuss its relevance with me and would convey it to the client by telephone.

The objective set for this task was fully accomplished, within the time limits imposed by the client, I was able to supply the relevant in-formation requested.

Comments

By far, the most important aspect of this task was the limitation imposed by the time requirement. This limitation forced me to make a rapid decision as to how to simplify the analysis. The computer programs available were useless under the circumstances because of the relatively long time involved in preparing the input data.

Throughout the period of time in which I worked at Walter P. Moore & Assoc. I could notice the increasing time limitations being imposed by the firm's clients upon each project, but this particular one was certainly the most restricted of all.

Review

The basic knowledge of structural analysis and of concrete design acquired in school was sufficient to carry on this assignment. The relevant aspect of it was the need of applying that knowledge in making a judgement as to simplify the analysis and still provide results within "the ballpark".

The main contribution of this assignment to the fulfillment of the internship's objectives is that in addition to contributing to the firm's interests, it gave me a first-hand view of the ever increasing fast-pace which the construction industry is going through today; this certainly represented a view which could only be obtained outside of the academic world.

d. TEN-TEN GARAGE INVESTIGATION

Task Description

The Tenneco corporation was considering the construction of a twentyfour - story building to be located in the downtown area of Houston, and on the site of an existing seven - story parking garage structure. This project had a very special feature: the parking garage building was not to be demolished and was to remain operational; our firm was contacted to carry out the preliminary design and feasibility study.

In order to comply with such a request, it was proposed to construct a platform 115' high providing a surface of 209' x 240' at the top, and completely independent of the existing garage structure. Such a platform would serve as the supporting structure for the twenty-four - story building that would then be erected on top of it.

In charge of this unususal project was Dr. H.R. Horn, who at the time was vice-president of the firm. He subdivided the project into two different tasks, the preliminary design of the twenty-four - story building and the preliminary design of the supporting platform structure. I was assigned to perform the preliminary design of the tower, while two other engineers worked on the supporting platform. A schematic drawing giving an idea of the proposed structure is presented in section d.l. of appendix I.

Since we had to establish the feasibility of constructing the platform, the main requirement on my assignment was to establish the loading conditions that the twenty-four - story building would impose on the platform.

The specific objectives that I was to accomplish in this task were: 1. to design a complete typical floor for the tower, and 2. to compute the reactions at the transfer level with the platform due to gravity and wind loads.

Task Planning

Once I was informed on the nature of the project and became acquainted with the architectural requirements, I proceeded to establish the floor gravity loads and the wind loads.

At this stage, I was instructed to consider a composite steel and concrete system for the floor structure. Since this was the first "real world" job in which I was to perform a design of such a system, I proceeded to review both my steel design class notes and the current AISC requirements for composite construction presented in the Manual of Steel Construction.

Task Execution

The execution of the assignment was straight-forward; after completing the gravity load analysis and design of the composite floor system, I submitted the design results to the draftperson assigned to the project in order to transfer them to the drawings. A copy of the working drawings for the typical floor plan is included in section d.2. of appendix I as well as a copy of the gravity load calculations. Once the floor design was completed, I proceeded to collect the column loads in order to establish reactions at the base and for future use in the actual column design. The load collection for the columns is also included with the gravity load calculations. It was important at that time because this building was the first multistory structure which I analyzed in actual practice. The standard format employed in the office to record loads proved to be very practical.

The wind loading used in this building was established from the

American National Standards Institute's (ANSI) provisions for a one hundred year storm. The initial lateral load resisting systems proposed for the building consisted in five X-braced systems and two portal frames resisting the wind loading applied to the broad face of the building. The two exterior portals in the longitudinal direction were to resist the wind loading applied to the short face of the building. The wind loading for both faces, as well as the reactions at the base are included in section d.3. of appendix I.

Task Results

After completion of my assignment, I provided the reactions at the base of the building to the team working on the platform, and I also reviewed the typical floor design with the engineer in charge of the project, this had been executed to his satisfaction.

The specific objectives set for this assignment were fully attained; I produced a complete design of the floor system as well as provided the input, in the form of the applied loads, to the design of the platform.

Comments

The critical element of this job was certainly the supporting platform, since the project depended on its feasibility. Once the platform had been geometrically modeled and analyzed for the applied loads, it became apparent that the member sizes required were too large. Our results were submitted to the client and I never heard of the project again.

Review

This project was probably the most unusual one in which I ever participated. From the initial stages I realized that even if we could devise a feasible structure to support the twenty-four - story building, the problems to be encountered in the area of soil mechanics and foundations would have been great; nevertheless it was a great challenge.

To perform this assignment, I utilized basic knowledge obtained from courses in structural analysis and in design of steel structures.

This assignment greatly contributed to my development and understanding of office practices as concerned with practical design and recordkeeping of design notes. The contribution of it to the fulfillment of the objectives of the internship is mainly in what is concerned with my practical contribution to the firm's interests, and to the interaction developed with peers while working as a team.

2. Basis for Final Design: THREE RIVERWAY

Task Description

A Houston-based developer: John Hanson Investments, was planning to build a multistory office building for the Houston area which was to have architectural features very similar to the Allied Chemical building, an existing structure which he had also developed in the area. Our firm was to conduct a preliminary design for the new building.

The new building was planned to be twenty-one stories high and to have a hexagonal-shaped floor plan with a first-floor overall longitudinal dimension of 273' with a width of 100' (see the floor plan sketches in section 1 of appendix II). The building had an unusual architectural feature consisting of a series of irregularly patterned stepped-in upper floors which made it necessary to provide a transfer system of load from axially loaded elements to flexural elements at those levels.

Due to the time limitations imposed by the client, the project was divided by Dr. Chi Wu, who was in charge of it, among two additional design engineers including me. The objective of my particular assignment was to perform the preliminary design of the lateral force resisting elements and of the transfer girders for both a structural steel scheme and a reinforced concrete scheme.

The difference of this preliminary design from the others in which I had worked, was that for this particular building the complete final design would follow immediately after a decision was made as to which scheme would be appropriate. The preliminary sizes would then be used as an input to a refined analysis and design process.

Task Planning

In addition to a thorough review of the architectural requirements which by far were the most complex of all the buildings I worked on during my internship, the major item requiring sound judgement and planning was related to the distribution of wind loading among the resisting elements. The wind loading considered for this building was a 100-year storm as provided for by the ANSI (American National Standards Institute) code. To give an idea of the complexity of the resisting system, I am including in section 2 of appendix II, elevations of each of the rigid frames, numbered with reference to the previously presented floor plan sketches, which in conjunction with the shear walls (in the reinforced concrete scheme) or the k-braces (in the structural steel scheme) were providing the lateral resistance.

Task Execution

After I thoroughly reviewed, with the valuable input of Dr. Wu, the structural problem posed both by the shear wall-frame interaction, or the k-brace-frame interaction, and by the geometry of the frames themselves, we came to an agreement as to the wind load distribution. The procedure to be followed was simply to assign percentages of loading according to the relative stiffness of the frames and walls. The distribution of load between the bracing system and the frames was done arbitrarily by intuition and judgement and the distribution of loading among the frames themselves was done according to an approximate portal analysis-type stiffness distribution. It is of interest to mention at this point that, when the complete final design was done by using a sophisticated three dimensional computer analysis, our intuitive base shear distribution came within 10% of the so

called "exact" results.

Once the lateral loading was established for this preliminary stage, I proceeded to perform a portal analysis of the frames and a design of the members in both schemes. I also designed the transfer girder system which basically consisted in one and two span girders carrying a concentrated load due to a column at a stepped-in floor.

When working on the structural steel scheme, due to its relative flexibility, I considered the effect of drift due to the wind loading. The application of the method proposed by F. Cheong-Siat-Moy, "Stiffness Design of Unbraced Frames", Engineering Journal/American Institute of Steel Construction, First Quarter 1976, was of great assistance. The method was capable of providing rapid means for modifying member sizes meeting pre-selected story defection constraints which made it a valuable practical design aid. Also of interest to mention here is the fact that, about two months later, while attending an American Institute of Steel Construction Seminar (see section IV, "Other Professional Development Activities", of this report) this particular procedure was very much highlighted as a very recent design aid for the practicing structural consultant; needless to say, I felt very satisfied of just having applied it.

Task Results

After the completion of the design and drafting of the preliminary schemes, the task force working on the project met and discussed the results obtained; these results embodied in the drawings were to the satisfaction of the group leader. Our preliminary drawings as presented to the client for both the structural steel scheme and the reinforced concrete scheme are presented in section 3 of appendix II. The objectives set for this assignment were fully accomplished; I contributed with my technical knowledge to the preliminary solution of a relatively complex problem. The analysis and design performed was done within the time limitations imposed by the client.

Comments

The information provided in our preliminary drawings was conveyed to the client, who in conjunction with the contractor decided to proceed with the reinforced concrete scheme for the complete final design.

The response by the client was almost immediate, so that I was assigned to work on the complete final design of this building right after the completion of the preliminary proposal. I cover my involvement in that stage of design in section III C; "Design of Special Structural Systems in Major Buildings", of this report.

Review

I had acquired most of the technical knowledge required to conduct this assignment in advanced structural analysis courses and in basic reinforced concrete and structural steel design courses. The input provided by Dr. Wu was extremely valuable in carrying-on the assignment, both when advising as to practical methods of structural analysis and when recommending to review appropriate and recent technical literature.

This assignment contributed greatly to the fulfillment of the internship's objectives by providing me with the opportunity of making an identifiable contribution to the firm's interests in a relatively complex problem. This building certainly was an outstanding non-typical structure and as such, represented an interesting challenge which contributed to my overall professional development. Since the task required a close team work, the interaction with peers in developing the project was of great value, this was reflected in the constant exchange of information among the team members.

B. Complete Structural Design of Buildings

Within the framework of the general flow diagram describing the structural analysis and design sequence, presented earlier in the preliminary design section of this report, the complete design of a structure is likely to involve the following stages*:

Establishing the general layout to fit the functional requirements
 of the structure ,

 Consideration of the several possible solutions that may satisfy the functional requirements,

3. Preliminary structural design of the various possible solutions,

4. Selection of the most satisfactory solution, and

5. Detailed structural design of the most satisfactory solution.

The final product of the detailed structural design is the complete set of constructive drawings which are to be utilized in the actual construction of the building. These drawings represent the source by which consulting engineers convey information to the contractor who will build the building. In preparing drawings, including framing plans and details, the preparation of structural details are very much the function of the engineer who must be aware of construction practices in order to perform an efficient job.

For inclusion in this section, I chose two representative projects:

a. Science & Mathematics Center/Junior College - COMMONS BUILDING

b. SMITH PARK PAVILION

* From: "Elementary Structural Analysis" by C.H. Norris and J.B. Wilbur, McGraw-Hill Book Co., 1960.

a. Science & Mathematics Center/Junior College - COMMONS BUILDING
 Task Description

In the decade of the 70's the construction industry of the free world experienced an involvement in projects of unparalleled scale in the Middle East. Within a major plan to gain self-reliance, based on ambitious programs of development where education was to play an important role, the kingdom of Saudi Arabia launched a program to develop large educational facilities. In 1976, the Houston-based architectural firm of James M. Sink Associates was contracted by the government of Saudi Arabia to provide programming and design services, in the creation of a Science and Mathematics College to be located in the city of Riyadh.

Walter P. Moore & Associates was contacted by J.M. Sink Associates to provide the civil and structural engineering services for such a facility. The project was divided into two phases, the initial phase would provide facilities for 3500 students with a second phase increasing the facilities to service 6500 students. Our firm was to provide the complete contract drawings for phase 1 effective immediately while phase 2 drawings would be done at a later time. The initial phase of the project was to provide 1.5 million square feet of construction with the capability for expansion to 2.2 million square feet; the phase 1 development plan is included in section a.l. of appendix III.

The facilities to be built were organized into four categories: academic, academic support, housing and campus support. The housing category was subdivided into married student housing and single student housing. Initially, two neighborhoods accommodating a total of 1008 single students were to be built. Each neighborhood consisted of seven halls for 72 students and a one-story Commons building containing all facilities shared by the halls. The single student housing site plan is also included in section a.l. of appendix III.

I was assigned the task of performing the complete structural design, detailing, and drafting of the Commons building which was to be used repetitively. The Commons building locations are highlighted in the single student housing site plan.

The objective set for this task was to provide complete contract drawings reflecting the structural design for the Commons building within the time limitations imposed by the deadlines set by the client.

Task Planning

Of all the projects in which I was involved during my internship, this particular one required the maximum amount of time in the planning stage. I subdivided this stage into three broad phases (1) acquaintance with the conditions prevalent in Saudi Arabia, (2) acquaintance with the overall project, and (3) acquaintance and impact of the particular architectural requirements for the building I was in charge.

Among the information relevant to construction obtained about the conditions prevalent in Saudi Arabia, the following were of interest: the great majority of construction materials were imported; labor was scarce and it was necessary to import labor; ports were so overcrowded that a 1 year duration in line for cargo ships was very common; potable water was a scarce commodity, a gallon of water would sell much higher than a gallon of gasoline; temperature changes of over 100 F in a short period of time made it one of the most inclement environments for construction.

The most outstanding features to consider in the planning of this task with respect to the overall project were: the use of metric dimen-

sioning and reinforcing steel bar sizes, and the standarization and coordination of design specifications and drawings. The coordination was handled rather well by Mr. Lee Jones, the group leader in charge of the overall project; the group held weekly meetings where general information about the project were discussed. All the written communication occurring with the architect's office was kept available to the group's staff.

As far as the Commons building itself, this was a one-story building with three areas having different roof elevations, and with plan dimensions of roughly 140' x 180'. The information available from the architect at the initial stages was still of a preliminary nature; in fact, I started to work on the building with only a preliminary architectural floor plan. Information pertaining to loading and code provisions, and to the structural systems to be utilized, were the items that I investigated in this planning stage.

Task Execution

From the preliminary architectural floor plan, I initially prepared a structural layout for the roof in the form of a roof framing plan. Through almost daily telephone communication, I kept in touch with the architect in charge of the Commons building, with whom I would exchange information. Through this process, and by timely exchange of working drawings we were able to complete the design of the building and to meet the deadlines set for the preliminary reproduction and review of the drawings. The final architectural plan with building sections is included also in section a.l. of appendix III.

The structural system which I designed, consisted in pretensioned precast concrete elements and one-way slabs for the roof system, supported on

reinforced concrete walls and columns. The complete design calculations are presented in section a.2. of appendix III.

Task Results

After completion of the design and drafting for the Commons building which I did slightly ahead of schedule, I helped out other engineers within the group, who were also working on the Saudi project, both in the design of structural elements and in preparing structural element's schedules.

While the project was sent out for reproduction, I was transferred to group No. 1 where I remained the rest of my internship. When the full set of drawings were returned to the office for revision, I was temporarily transferred back to my original group to make the appropriate changes; this step proved very useful since my supervisor provided great input with respect to improving and correcting my structural details.

Once all the drawings were in a final form, they were submitted to the architect's office who provided them to the Saudi government for bidding.

The objectives set for this assignment were fully accomplished; I produced a complete set of contract drawings which were the product of a detailed structural design. In addition, I contributed towards meeting the deadlines imposed by the firm's client by helping out in the design and draft of various other buildings within the overall project.

Copies of the complete contract drawings with some of the structural details as submitted to the client are included in section a.3. of appendix IV. Comments

All of the information which I provided to the client through the

contract drawings was a result of careful structural design. These drawings were to be used in the bidding and in the construction process, which made them very important.

In my particular assignment, I had enough time to carry it out, but it was apparent to me that with the overall project the deadline was very restrictive; in order to get the project on time large amounts of overtime were necessary from the group's staff.

Review

While working on this project, I had the great opportunity of getting a first-hand look at the so publiziced large projects being developed in the Middle East, and I also had the opportunity of reviewing the conditions prevalent in that area of the world where the largest engineering projects of modern times are being executed.

I had obtained the technical knowledge required to complete my assignment in basic reinforced and prestressed concrete courses; the organization and coordination required to develop the complete structural drawings were a matter of experience which I had acquired through my previous work at Walter P. Moore. In developing structural details, common sense and consulting with more experienced engineers within the group proved very useful; in school, little attention is given to structural detailing, I believe that greater emphasis should be given to this important area.

The contribution of this assignment to the fulfillment of the internship's objectives is as follows: 1. I was fully responsible for carrying out the complete design of the building, from the initial preliminary phase to the production of complete structural drawings within a time

limitation imposed by a deadline, 2. I was in direct contact with the architect in charge of the design of the Commons building, with whom I developed a great professional relationship, 3. the overall task was by all means a group effort, the interaction with peers proved very rewarding as well as the interaction with the group leader, 4. the exposure to such a task, especially in that area of the world gave me a great insight into the execution of a large and complex project. All in all, the involvement in this particular project gave me exposure to the organizational approach to problems in the "real world". My contribution to the firm's interests was certainly a major part of this task.

b. SMITH PARK PAVILION

Task Description

This project consisted in designing, detailing, and drafting a structure for a pavilion to be erected in the city of Jacinto, Texas; our client, the architecture firm in charge of the project, was The Architecture Company from Houston.

The pavilion was a very simple open facility consisting of a 40' x 102' flat roof supported on concrete-encased steel columns, and of a 90' x 94' concrete slab on grade. The roof structure consisted in steel joists supported on steel joist girders.

The objective to be accomplished in this project was to provide the complete contract drawings for the construction of the pavilion.

Task Planning

Since the execution of this project was to be of a straight forward nature, the amount of time spent in the planning of it was limited to the establishment of the loading conditions and to gathering information from the manufacturers of the joist girder systems.

The joist girders are open-web steel flexural elements that are shopfabricated on a special order basis according to the special loading conditions of each particular job, and that meet the specifications of the American Institute of Steel Construction. They are normally used when long spans are to be cleared in buildings, which was the reason for using them in this job, where a span of 90' had to be cleared.

Task Execution

After establishing the loading conditions for the roof structure, I analyzed and designed it. During the design process, I was in contact with the architect who requested several alternatives for the column design; mainly to check the use of concrete-encased steel sections as opposed to an only-steel section alternative.

When the design of the elements was completed, I proceeded to perform a detailed design of the connections and to write the structural specifications pertaining to the job. Once this was completed, I proceeded to perform the complete drafting of the contract drawings.

Task Results

When the drawings were completed, I met with my supervisor to whom I explained the procedure followed in the execution of the project; after his review I sent out the copies of our plans to the architect's office. Copies of those drawings are enclosed in section b of appendix III.

The objective set for this task was fully accomplished; I had completed the project, which was under my responsibility, and had sent out the contract drawings within the architect's time frame.

Comments

The structural drawings conveyed to the client represented the complete contract plans to be utilized in the construction of the facility. This certainly is the objective of the structural design process; its end result being the drawings from which the building is actually constructed.

Immediately after I had finished working on this project, our firm was contacted to do the design for another facility very similar to this one: Irvington Park Pavilion, I was assigned the project in my last day at the office, before returning to school, and that same day I completed the design of it.

Review

The knowledge required to design the structural members and the connections was obtained in basic structural steel courses.

Even though the execution of this project was straight forward, it contributed to the fulfillment of the internship's objectives due to the fact that I was fully responsible for it, no matter how small, and worked on it from start to finish being in direct contact with the architect.

C. Design of Special Structural Systems in Major Buildings

The design of buildings in today's competitive world has been greatly accelerated due to the time limitations imposed by investors seeking to maximize their returns. Through my involvement in the actual practice of consulting structural engineering at Walter P. Moore & Associates, I experienced this situation on a first-hand basis. Structures which normally could be designed by one engineer had to be broken down into different design tasks and several engineers would be responsible for each task. This section of my report is a reflection of this trend, where I describe my involvement in the design of important structural systems within the overall structure of a building.

As representative of this type of task, I have chosen the Three Riverway project.

THREE RIVERWAY

Task Description

Our firm had submitted a preliminary structural design proposal on a twenty-one story building planned for the Houston area; I had participated in that phase of the design, (refer to section III A.2. of this report), and now that the decision had been made by the developer to proceed with a final design, I was assigned to work with the team who was to perform that task.

In the preliminary proposal, we had presented two alternatives: a structural steel scheme and a reinforced concrete scheme. The reinforced concrete scheme consisting in a one-way joist floor system was chosen by the developer for the actual construction of the building. Some minor

architectural changes had been made to the originally proposed building, including a reduction in the number of stories from twenty-one to twenty.

The analysis to be done at this stage in the design process was to be performed by modeling the structure and carrying out a computer-aided analysis of lateral forces by using a commercially available computer program. Due to the complexity of the building it was decided to use a three-dimensional computer model. Dr. Chi Wu, who was in charge of the structural team that was to work on this project, divided it into several well defined tasks.

I was resoponsible for the complete design of the wind-resisting rigid frames, also I was to provide the input of member sizes to the model and was responsible for the revision of the computer model and output. My objective was to do this within the short time-frame available.

Task Planning

With the time limitations imposed by the client; we were to supply the complete set of final drawings in one month, the planning of my particular assignment was performed on a continuous basis. My particular task was clearly divided into an analysis phase and a design phase, the work in both phases was very much interrelated with the work being done by the rest of the team. The first step in the planning process was a thorough review of the new architectural requirements and their impact on the structure.

From these requirements, we established the column locations throughout the height of the building; a plan presenting the column locations is included in section 1. of appendix IV, the architectural elevations of the building are also enclosed in that section.

The next step in the planning of this task was the establishment of the basic assumptions to be made in the generation of the model; namely the floor behavior which we agreed to be rigid in its plane, the establishment of support conditions, and of the loading conditions. The wind loading conditions and the computer-generated geometric display of the modeled structure is presented in section 2. of appendix IV.

Once the analysis phase was completed, the next step in the planning process was to prepare the design procedure to be followed. In order to produce systematic design notes, which were necessary due to the large number of elements to be designed, I devised a simple standard format for the design of the beams. This standard format is presented in section 3. of appendix IV.

Task Execution

The actual task of modeling the structure was done by using the commercially available "ECES 2" computer program being marketed by the Mc-Donnell Douglas Automation company; this task was carried out by a member of the design team who towards the end of the modeling process was transfered to another project leaving me with the task of making some minor adjustments, and doing the complete revision of the output. In carrying out the adjustments to the model, I made several trips to the McDonnell Douglas office in downtown Houston, since our office terminal was not tiedin with their system.

The revision of the output consisted mainly in checking floor displacements at selected locations and loading conditions and verifying the modeled behavior, and of checking the base shears and comparing them to the applied loading. The lateral deformation behavior expected, consisted mainly in a cantilevered beam-type deflection accounting for the strong contribution of the shear walls in resisting the wind load acting on the broad face, and in a shear-type deformation accounting for the strong contribution of the frames in resisting the wind load acting on the narrow face. A copy of the relevant revisions performed is included in section 4. of appendix IV.

After the completion of the analysis phase, including the revision of the computer output, I proceeded with the design phase which was of a straight-forward nature, but extremely lengthy (only the wind beams numbered over 400). At this stage, due to the time limitations, the column design was carried-out by another member of the team while I completed the design of the wind beams and their detailing and scheduling. The general design information for the wind beams is presented in section 5. of appendix IV.

An important aspect of the project execution which was of a non-technical nature was related to the production of the complete set of drawings. Due to the ever-binding time limitations, the design team worked large amounts of overtime, which was certainly to be expected from the engineers; but the crucial point was in using the personal relationships developed with the draftpersons working on the project, in order to have them working also long hours of overtime and complete the project in time.

Task Results

After the completion of the task, I met with Dr. Wu and discussed the results obtained, which were to his satisfaction. Our set of drawings was submitted to the client right on schedule. Copies of some of the relevant floor framing plans and of the beam schedules as presented to the client

are enclosed in section 6. of appendix IV.

The objectives set for this assignment were accomplished; I contributed with my technical training to the completion of a major project within the time limitation.

Comments

Our complete set of drawings was sent out to the architect's office for revision and for use by the contractor. After this, I was assigned to a new project and when the revisions were to be made, I was already back in school.

As of today, the Three Riverway building is under construction. The experienced gained in my involvement in its design was very rewarding.

Review

I had obtained the technical knowledge required to conduct this assignment in structural analysis courses and in basic reinforced concrete design. The interaction with the engineers in the design team was very valuable in the execution of my task and in gaining insight into the problems encountered by them in their particular assignments.

This task contributed greatly to the fulfillment of the objectives of the internship by allowing me to contribute, with my technical knowledge, to the solution of a practical problem for the firm. Also of great relevance was my interaction with both the engineers and draftpersons within the design team; with the engineers, by acquiring experience through their involvement in the project and with the draftpersons, by developing friendly relationships which in tight deadline situations were very useful and could count on their assistance in meeting the deadlines.

D. Field Inspection

CARRIAGE PARK APARTMENT COMPLEX

Task Description

Walter P. Moore & Associates was contacted by a Chicago-based company, requesting information concerning the integrity of an existing apartment complex located in the south-east area of Houston. Our firm was to be responsible for a complete survey of the apartment complex, including all building systems and site evaluation.

Since our firm was acting as the Prime Professional in this job, and our responsibility was to perform a complete survey of the complex, the services of two outside consultants were employed to inspect all of the complex's systems, with the exception of the structural systems which we had the capability of inspecting. Jochen & Henderson, Inc. was contracted to inspect the plumbing, electrical, and mechanical systems, while Stewart Construction Consultants, Inc. were contracted to conduct a survey of the site condition and site structures, special purpose buildings, building exteriors and building interiors.

I was assigned the job of performing the structural inspection of the buildings in the complex, and to report back to Mr. Terry Shipman, a registered professional engineer who was my immediate supervisor at that time. The two consultants that our firm had contracted were to report also to him.

The objective of the task entrusted to me, was to perform an inspection of the structural systems of the existing buildings in the apartment complex and to prepare a report on my findings. The on-site coordination with the representatives of the outside consultants was under my responsibility, and was an important item in the attainment of the task objective.

Task Planning

Having had some experience in structural supervision, and in the evaluation of earthquake-damaged buildings in Nicaragua, Central America; I felt well prepared to carry-on the assignment, even though I realized that the construction practice I would be facing would be quite different.

Upon request, I was furnished with a site plan of the apartment complex; from it I could determine the size of the complex which was relatively large. Since no additional plans were available I realized I would have to relay mainly on my field observations.

Since the apartment complex was currently in operation, the inspection of building interiors was the item that required coordination both with the representatives of our two consultants and with the manager of the complex, as to minimize discomfort to the tenants. In our first meeting conducted at the premises, we decided to concurrently perform the inspection of building interiors as the first step in our survey, so that afterwards each inspector could proceed independently. At that time we decided to inspect a representative sample of building interiors which we agreed to be around 10 %.

Task Execution

The apartment complex had a total of 25 buildings, consisting of 22 two-story apartment buildings, 1 three-story apartment building, and 2 one-story mechanical equipment buildings. After the team-inspection of the randomly selected building interiors, I proceeded on my own with the inspection of all building exteriors. Typically all exterior walls at ground level were found to be brick veneer and the second level exteriors were of wood construction.

I was mainly concerned with establishing apparent building distortions and patterns of wall cracking; I found no evidence of structural damage.

Task Results

The objective of this task was fully attained: the survey was conducted with minimum discomfort to tenants, which was due mainly to the onsite coordination with the complex's manager and the firm's consultants' representatives. The task was performed in a minimum amount of time, an important consideration in all projects.

While no evidence of structural damage was found, the major problems observed were wall cracking at ground level and corrosion of metal components. My complete findings are embodied in the report I prepared for my supervisor, which is enclosed in appendix V.

Upon submission of my report to Mr. Terry Shipman, we discussed the reasons and consequences of my findings. We reviewed my report and made a step-by-step analysis of the items listed; from this analysis, explanations for the problems observed were formulated. Wall cracking was determined to be caused both by temperature stresses and by the presence of expansive clays, a prevalent soil condition in the Houston area. The corrosion of metal components in the buildings was most likely caused by the proximity of the complex to the Houston ship channel, an area where air pollution is rather concentrated. After our discussion, a final report was produced and directed to the firm's client; a copy of this is also included in appendix V.

Comments

Among the services that a consulting structural engineering firm is capable of performing, that one of inspection and evaluation of buildings is an important one. The opinion of a structural engineer with respect to the soundness of an existing structure will influence the decision of a potential investor considering its purchase. In this particular case, after the inspection was conducted and the complete reports were submitted to the client, we found out that the Chicago-based company had proceeded with the purchase of the apartment complex.

Review

The task of inspecting the apartment complex was particularly interesting since this type of project was not a common one considering that the firm was acting as the prime professional in charge.

Personally it was of interest to get acquainted with the type of construction widely used in the area for low-rise buildings, namely the use of brick veneer and wood framing. The review with Mr. Shipman of my observations embodied in the report presented to him, proved very rewarding since the causes of the majority of the problems observed were mainly due to prevalent special conditions in the Houston area.

The main contribution of this task to the attainment of the internship objectives, was twofold: the interaction with the consultlants hired by our firm, and the public relation involvement which was an important feature of the task. The knowledge required to perform this task was not obtained from classroom lectures, it was obtained through previous experience both in supervision of construction and in general personal interaction.

E. Structural Additions and Remodeling of Existing Buildings

While large and complex buildings attract the attention of all people involved in their planning and design, very simple additions and remodeling of existing buildings are a fact of life for the practicing structural consultant and consequently deserve attention.

During the period of time in which I worked at Walter P. Moore & Assoc, I had the opportunity of working in numerous additions and remodeling of existing buildings. These type of projects were very small and their coverage in this report will vary in format from all of the ones presented in previous sections.

The different projects in which I worked involved the following tasks: strengthening existing floor structures, eliminating and adding walls, modifying grade beams and foundations, and providing the structure required by mechanical additions. All of these projects required the examination of the drawings available for the existing building and extracting the necessary information from it.

As an example of this, I will mention a project in which I was to provide the structure required by mechanical additions to be made in one of the floors of the One Houston Center building in downtown Houston. The structure required consisted in the framing for two "catwalks" to be located in the mechanical area of a floor system. From the mechanical drawings submitted to our office, I identified the location of the addition and proceeded to revise the plans of the existing structure. From these, I was able to locate existing members to be used as supports for the addition. A copy of my final drawing with the pertinent details as presented to the client is included in section 1. of appendix VI.

From my involvement in these small projects, I gained some insight in-

to the problem of working with existing buildings such as dependence in field measurements for dimensioning, revision of old drawings, and most important, the precautions that should be taken when welding to existing stressed elements. To this effect, I sent a memorandum to Mr. Zimmerman concerning this matter; a copy of it is presented in section 2. of appendix VI, as well as the response I got which is self explanatory.

As can be seen, there are lessons to be learned even from the smallest project. The contribution of my involvement in this type of project to the internship's objectives is related not so much as to my contribution to the firm's interest, but mostly towards the insight gained from exposure to a practical problem.

F. Revision of Design and Shop Drawings

Additional tasks that a consulting structural engineer routinely performs are:revision of design done by other engineers, both outside the firm or within the firm; and the revision of shop drawings.

Due to the simple nature of these tasks, their coverage will be similar in format to the coverage previously presented for the topic of section III E. in this report.

The revision of design performed by others, outside of the consulting engineering firm occurs in many cases involving the use of precast concrete elements in buildings. These elements are normally designed by the precast supplier whom after designing the elements and connections, submitts his drawings and design notes to the consulting structural engineer in charge of the overall structural design, for their revision and approval.

Shop drawings are prepared and used by the contractor as instruments to sequence his work and to facilitate fabrication and erection. These drawings are done by the contractor from the structural drawings prepared by the consulting structural engineer. After preparing the shop drawings, the contractor submitts them back to the structural engineer for their revision. As to their approval, it is of interest to quote the ASCE - Manuals and Reports on Engineering Practice - No. 45, "Consulting Engineering, a Guide for the Engagement of Engineering Services": "Their approval (of the shop drawings) by the Consulting Structural Engineer is not to be construed as a waiver of construction contract requirements or responsibilities unless the contractor has requested a deviation from the contract documents in writing".

I was involved in a project where I had to revise both the design and

the shop drawings for a garage structure with a precast concrete system. The building in case was a two-story parking garage facility to be constructed in Greenspoint plaza, Houston. A copy of a working drawing presenting the framing plan and sections is enclosed in section 1 of appendix VII. The objective of the revision of shop drawings is to verify their general conformance with structural requirements and this was my objective in revising these particular ones. My general comments on this revision are enclosed in section 1 of appendix VII. I made a basic revision of the main precast prestressed elements and found them satisfactory, a copy of the revision of the prestressed double tees is also included in section 1 of appendix VII.

The contribution of my involvement in this type of task to the internship's objectives is basically related to the insight gained from my exposure to the way contractors, who after all, are the ones who have the field experience in construction, envision how to "put the building together".

IV. Other Professional Development Activities

What I have termed as "Other Professional Development Activities", encompass those activities in which I was involved during the period of time covered by my internship, but outside of the firm's assignment; that is, professional-related activities in which I was involved on my spare time.

The membership in professional societies is of great importance in the development of a professional engineer; during my internship, I became a member of the following societies: American Society of Civil Engineers, American Concrete Institute, and the Nicaraguan Association of Engineers and Architects. In Nicaragua, the degree of Civil Engineer is a professional degree; having gone directly after graduation into graduate school in the United States, I had not been able to register as such, but while on vacation from the office, I became a registered engineer in Nicaragua.

In addition to the above mentioned involvements, I have considered for inclusion with greater detail in this report two additional professional development actitities: 1. A seminar on earthquake damage which I conducted at the office, and 2. Attendance to a continuing education seminar on steel structures which was conducted by the American Institute of Steel Construction.

A. Earthquake Seminar

The creation at the office of informal in-house seminars; "sack-lunch" seminars, conducted in large by the firm's staff, gave me the opportunity, not only to share in the technical experiences and interests of the various engineers working for the firm, but also I contributed to the in-house seminar program by conducting one myself.

Having been involved in earthquake-resistant structural design and inspection in Nicaragua, Central America, after the December 1972, Managua

earthquake, I had interesting information on the subject. The main body of the seminar I conducted, consisted of a slide presentation on some aspects of the structural damage caused by the earthquake. The photographs presented were taken during a survey of damage performed by a team of engineers in January 1973.* I participated as a guide in the team's survey; at the time I was a third-year student of Civil Engineering. Since then, I had had the opportunity to review the vast literature available on the Managua earthquake, and had developed explanations concerning of the damage shown in the photographs.

For inclusion in this report, I have reduced the number of photographs from the ones actually presented in the seminar; close to 150 slides were shown then, only some of the relevant slides are included in this report. Excerpts of the presentation with the photographs are included in this section's appendix.

This presentation to the firm's engineers represented a positive contribution to fulfilling my internship's objectives, not only in providing some insight into seismic problems to my peers, but also it gave me the opportunity to make a semi-formal presentation in a non-academic environment.

B. AISC Seminar

Towards the end of my internship, the American Institute of Steel Construction sponsered a seminar consisting of a 2-day lecture series on practical steel design for buildings from 2 to 20 stories. Since at the time when the seminar was offered in Houston I was heavily involved in the completion of a project at the office and didn't have the spare time, I decid-

^{*} The photographs were furnished to me by Mr. Felipe Arguello, the engineer heading the survey team.

ed to attend the one offered in the Dallas - Fort Worth area offered at a convenient date.

The lectures in the seminar included topics such as braced and unbraced frame design, floor systems, fire protection, earthquake design, special framing systems, and high strength bolting. It was of interest to note that in the unbraced frame design lecture, the speaker highlighted two very recent methods developed in the adjustment for drift control, one of which I had just applied at the office in my last project there.

Upon completion of the lecture series, a certificate of completion with 0.9 continuing education units was awarded to all participants; a copy of my certificate is also included in the appendix to this section.

Attendance to this seminar contributed to the fulfillment of the internship's objectives, mainly because of the exposure it gave me to stateof-the-art in steel design of buildings as viewed by outstanding practicing engineers; it certainly contributed towards my professional development.

V. Conclusion

During my internship at Walter P. Moore & Associates, Consulting Engineers, I fulfilled the objectives of the Doctor of Engineering program. These objectives are:

To enable the student to demonstrate his ability to apply his knowledge and technical training by making an identifiable contribution in an area of practical concern to the organization or industry in which the internship is served, and

To enable the student to function in a non-academic environment in a position where he will become aware of the organizational approach to problems in addition to traditional engineering design or analysis. These may include, but are not limited to, problems of management, labor relations, public relations, environmental protection or economics.

My involvement in fifty projects which covered a wide range of the services performed by a consulting structural engineer, allowed me to demonstrate my ability in applying my knowledge and technical training, especially when I dealt with complex structures such as the one involved in the Three Riverway project. Also, In several occasions, I had the responsibility of executing a project from the initial conception by the architect to the completion of full contract drawings as was the case in the Commons Building for the Science and Mathematics Center to be constructed in Saudi Arabia. All in all, no matter how simple a project, I made identifiable contributions to the area of practical concern of the firm.

While performing the technical tasks assigned, I was very much functioning in a non-academic environment. Through my involvement with project architects, with peers and supervisors, and with draftpersons working for me in some projects, I became very much aware of the organizational approach to problems.

The time limitations imposed on the consulting structural engineer,

which are a reflection of the fast-pace of the construction industry these days and which mainly originate from the investor's economic constraints, was a major non-academic experience to which I was thoroughly exposed. As a direct consequence of this, the search for short-cut methods in the analysis and design of structures as well as the use of judgement and intuition, based on academic knowledge, in order to meet the deadlines, was an important feature of my internship.

In addition to the above mentioned, my involvement in activities such as the earthquake seminar, greatly contributed towards my professional development, an implied objective of the internship.

APPENDIX I

Feasibility and Pricing

a.	WEST	LOOP	OFFICE	BUILDING

1. Typical floor sketch

2. Design calculations

- 3. Preliminary structural proposal
- 4. "Hambro" composite floor system

b. BAY DESIGN GARAGE

- 1. "Posten" computer input sheets
- 2. Postensioned concrete joist scheme
- 3. Reinforced concrete joist scheme
- c. BLOCK 130, HOUSTON CENTER
 - 1. Typical floor plan
 - 2. Design calculations
- d. TEN-TEN GARAGE INVESTIGATION
 - 1. Sketch of proposed system
 - 2. Floor framing and calculations
 - 3. Wind reactions

a.l. Typical floor sketch

	WALTER P. MOORE & ASSOCIATES, INC.	Job Nome_	WEST LOOP OFFICE	BLDGI.
	CONSULTING ENGINEERS 2905 Sackett	Architect		59
	Houston, Texas 77006			
				Job # 10018
			**	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	• • • •	8	
			• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
	n na serie de la serie de l No		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	· · · · · · · · · · · · · · · · · · ·	-		· · · · · ·
•			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
.			···	- · · · ·
•••			8	
•	2			
			····	· · · · · · · · ·
-	· · · · · · · · · · · · · · · · · · ·		<u>,</u> <u>8</u> <u>+</u>	
				· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·
•				
			210	·
1" 				
-				
·•• -			1. 30'	
· ·		_		
•				
·		· · ·	×	
	· · · · · · · · · · · · · · · · · · ·			
.			<u>%</u>	
-		· · · · · · · · · · · · · · · · · · ·		
- '		- +		····
•			······	• • •
		0	R	······································
	· · · · · · · · · · · · · · · · · · ·			
		• • • • • • • • •		•

Sector of Sector Party

-

.

おきまず あわざいたい キャー・ステレスト ちょう

•

•

a.2. Design calculations

1

.

.

Job Name _ WEST LOOP OFFICE BLDG. WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 61 Architect ____ AL_KELLER 2905 Sackett Houston, Texas 77006 PRELIMINARY TYPICAL FLOOR Job # 10018 SCHEME 1 ; STEEL BMS, & BAR JOISTS $F_{\gamma} = 50 \text{ ksi}$ \mathcal{O} (2)LOADS : (LTINT.) 11-26HB 11 Ptn, 22 DECK, JST. CIG. L. 50 1 102 50+20+25 + 3 + 4 D 52 4 SPANDRELS! 15 PLF (GLASS WALL) B 2 11-14H4 (C)11-26 H8 2 ID EQ. -SPACES= 301 (D)30' JOISTS : SPAN 20', LOAD = 102 PSF , 3 = 306 PLF 14 114 47AN 40; LOAD = 306 PLF 26 48 BEAMS : A, 1-2 ; SPAN: 30', LOAD : L (1000)* 530 ; 1585 PLF TL= 47.6K : M=2140^K BEAMS : fb= 31.3 Ksi W 18x 40 B, 1-2; SPAN: 30; R=47% D 1560 (3060)* (91.8)* LOAD: L(1500)* 795; 2355 PLF TL= 70.7K; M=3180" 16= 28 KSi W-24,55 NOTE : ()* - UNREDUCED LIVE LOAD

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett Houston, Texas 77006 Job Name WEST LOOP OFFICE BLDG. 62

Architect AL KELLER

		· · · · · · · · · · · · · · · · · · ·	C,	CHEME1	(CONT.)	; COLUM	N DESIG	~	Job # 10018
	MARK		F	ý = 50 K	<i>si</i>				
	A -1	LEVEL COL, SPIG	DEAD (KIPS)	LIVE (KIPS)	L.L. REDUCT. (%)	RED. LL (KIPS)	D + REDU. (KIPS)	617E	
		and the second second	13.2 34.8 34.8 34.8 82.8	13.2 33 - 46.2	47	13.2 17.5 24.5	26,4 72,5	28 W8.17	
	· · · · · · · · · · · · · · · · · · ·	765	117.6	79.2 112.2		42.0 59.5	124.8	N BY	
		4	152,4 187,2 222	145,2 173,2 21/.2		77.0 94.5 112	229.4 2 <i>8</i> 1.7 334.0	W10,49 W8,40	
		2	256.3 291.6	244.2 271.2		129,4 146,9	386.2	W12x58 W1	
						· · · · · · · · · · · · · · · · · · ·		FIG, 9'6", 9'6" t=28" 8#8 E.W.	BASE P. 20, 20, C
	<u>B-1</u>	LEVEL COL. SPIG,	DEAD (KIPS)	LIVE (KIPS)	L.L. REDUG. (%)	RED, LL (KIPS)	D+RED,LL (KIPS)	617E	
		ROOF 8		19.8 41.5 69.3	47	19,8 36,7	39,6 108 . 1	31 W8 17	
		7 6 5	 	I I I I I I I I I I		63 89.2		× 8 8	
		4	277,8 329,4	217.8		11.5.4 141.7 167.9	419,5	W12,79 W12,472 W12,53	
· · · · · · · · · · · · · · · · · · ·		2	381 432.6	×06.3 415.8		194.2 220.4	575,2	W12.79 W	
						· · · · · ·		FTG, 11:6", 11:6" t=33" 9#9E,W.	BASE 12 24, 24
				· · · · · · · · · · · · · · · · · · ·					
								· · · · · · · · · · · ·	
						• • • • • • • • • • • • • • • • • • •	•••·····		

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett Houston, Texas 77006

Job Nan	eK	EST	LOOP	OFFICE	BLDG.
---------	----	-----	------	--------	-------

Architect <u>AL KELLER</u>

63

.

	PRELIMINA	RY TYPICAL FLOOR	Job # 10018
	SCHEME	2; COMPOSITE BM, 514 LTW. CONC	· · · · · ·
	Fy = 50	Ksi	
		LOAOS:	· · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	LL PTN. 54 CONC CIG.	50)
40	3.0.2		0 45 { 119 PSF
	18×1	Check deck to spAn 10'; USE 3	
	2	CONDITION.	
		$M = 0.1 \omega \beta^2$	
,07	200	$\Delta max = 0.0069 \ \omega 2^4 / EI$	
	52 77	$\Delta = 0.0069 \times 45 \times \frac{10^4 \times 1728}{10^6} = 0$), 44 2
		29x10 \$ 0.419 L/180 = 0.67"; 0.442 < 0.67	1 0,1 -
		$+ f_b = \frac{(0.96 \times 45 \times 10^2) + (435, 2)(10)}{0.302}$	= 23 100 psi .
4		0,397	· · · · · · ·
· · · · · · · · · · · · · · · · · · ·		$-f_{b} = (1.2 \cdot 45 \cdot 10^{2}) + (246.33)(10)$	= 21,662 Psi
		0,363	
	30'	$-f_b = \frac{1.2 \times 65 \times 10^2}{0.363} = 21,488 \text{ Psi}$	
PURLIN A-B	D 450+35	-485 ", · · · · · · · · · · · · · · · · · ·	fh: 31 # 31 54
5PAN 40'-0	D 450+35 D" LOAD L 500 SD 240	=485; 1225 #/1 TL= 49 K M7 = 2940 K-"	$\Delta_L = 1^{3}4^{+} W18 \times$
PURLIN B-C	• • • • • • • • •		
SPAN 20'-0	" LOAD 1 500 ;	1210#1. TL = 24.2 K Mr = 726 K-M	$f_{b} = 25 \neq si$ $22 \neq si$ $h = \frac{1}{2}$ W_{12}
··· .			
GIRDER A -C.	$\frac{1-2}{R=48\%}$ D 40	P = 55 P = 55 P = 55 P = 50 = 50 = 50 = 50 = 50 = 50 = 50 = 5	
SPA~ =0-0	LOAD	D10,5KA 10' 10' 10' A D10.5K	$M_{T} = 2434^{K-1}$ $f_{6} = 32.5^{Kr} = 31$ W/6
· · · · · ·	• • • • • • • • • • • • • • • • • •	5D 4.8K L (10) = 5.2K L (10) = 5.2K	J6- 32.5 W/6
GIRDER B-1	(1-2)	p (D14,4 ⊮	
GIRDER B-1 6PAN 30'-0"	R= 48% LOAD D40	P P L (15,0) = 7.8K	Mr = 3582 +-
		DI5 K 10' 10' 10' DI5 K L(15)+ 7,8K 10' 10' L(15)* 7,8K	f6= 32,5 " W
		50 7.2 50 7.2 L	- · · · ·
			· · · · ·

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS

2905 Sack	eft		
Houston,	Texas	77006	

Ь	Name	K/EST	LOOP	OFFICE	P.LDG.

Architect AL KELLER 64

.

	110051011,	1exus // 000			0	1	-			
					- (CONT.); COLUM	IN DESI	GN	Job # 10013	
		, .	, ,	= 50 Ksi				· · · ·		
,	MARK	.			•		: • •		•	
	• •	· ·	· .						· ,	
	A-1	LEVEL	DEAD	LIVE	L.L. FEDUC.	RED. LL	D+RED [L	SIZE	•	
		COL. SPTG.	(KIPS)	(KIPS)	(%)	(KIPS)	(KIPS)			
		ROOF	³² 32	/2	-	12	.44.0	L1×		
	· · · · ·	8	45,1	30 42	60	16,8	93.9	W.S.	• • • •	
••		7	/22,2			28.8	151.0	W8,31 W5,17		
		6	167,3	102	•	40,8	208,1	WS.		
• • •		5	1 1				· ·	×45		
···· · · · · · · · · · · · · · · · · ·			212,4	132		52.8	265,2	W12×45		
		4	257.5	1	• •	64.8	322.3	W12+58		
	• · · · · · · · · · ·	3	302.6			76.8	379.4	MIS	· · · · · · · · · · · · · · · · · · ·	• 1
· · ·	· ··· · ·	2	347.7	222		88.8	436,5	W12x65		
	i di na s		392,8	252	¥	100,8	493.6			
								FTG.	BASE # 21,21,2	
		• •						10:0° 10:0" +29"		
				ļ_,			1	9#8E,W.		
	B-1	LEVEL	DEAD	LIVE	IL REDUC.	REDIL	D+ PEDLL	512E		
		CUL, SPTG				1				
		ROOF	47	18 18		18	65	8		
		8	66 113	45 63	60	25,2		W8 . 40 W5, 20		
		7	179	103	60	43.2		4 04		
-		6	245	153	60	61.2	1	1 3		
• •• ·	· · · · · · · · · · · · · · · · · · ·	5	311	198	59	79.2		W12 _x 58		
		4	377	243	59	97,2		M		
		3	443	1 1	.58	115,2		W/4×78		
		2	509		58	133.2		W/		
	• • •			333		[W/4~87		
•••••	: -	· · ·	\$75	378	58	151.2	, , , , , , , , , , , , , , , , , , , 	FTG,	BASE that of	~
· · · •	• •					•		12'0" 12'-0	BASE # 25,25,0	-
						· · · ·		×34"		
	- •							10#9E,K	· · · · ·	
				المنبة التاريخانيات. المنبة التاريخانيات			•••• • ••••			
•		•			1 .			• • •		
		• • • •••					• • 1 • • •	: : ·		
1										
									1	
			I I			2 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 .	
1										
								· · · · · · · · · · · · · · · · · · ·		

Job Name WEST LOOP OFFICE BLPGT. WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 65 Architect AL KELLER 2905 Sockett Houston, Texas 77006 LT. WE. CONC. fc = 3Ksi Job # 10018 SCHEME 3 PAN JOISTS \mathcal{O} (2)BI (A) LOADS : LL PTN. JST & BROG. SLAB CL 61. D 112 162 1 501 50+20+40 +48 5 4 0 JOIST : J, J_2 B2 B A × Δ 6=28 L=28 l 20 .322 wl2 ,322 wl2 82 \bigcirc -) (-沋 1.839 WR 1,839wl 1.66 WR 1.66 WR $M_{\rm X} = ,839 \ \omega P \times - \ \omega \times^2$ FOR DC : J $\frac{dM_{x}}{dx} = ,839wP - WX = 0$ %, x = .839R+ Mmy = 0,2844 w 2 = 0,0711 w 2 BI c≈ 14 (wl/14) $(\mathcal{D}$ FOR CB ; 30 X= 0.5f + Mmax = 0.25 wl - 0.322 wl - ,125 wi M max = -0.197 wp2 989.7 16 - 11 981; TUTTI hillin 685 1120.64 120.64

	WALTER P. MOORE & ASSOCIATES, INC.	Job Name WEST LOOP OFFICE BLDG1.
	CONSULTING ENGINEERS	F (
	2905 Sackett Houston, Texas 77006 (KHEME 3 (co.	Architect AL KELLER 66 LW, CONC. $JL = 3KII + f_1 = 60 + 51 \text{ Job # 10018}$
	11 00 34 1- 1938"	
	Span - $40'-0''$ Load = D^{336} D 470 . L 255	4 725 plf
	V= 14720 # (at & from face) (112	v = lndPsi
	$+M = 0.0711_{x}.725_{x}.40_{x}12 = 990^{k-n}$ 'L4.3K $L = 5.9^{1}_{x}$	$b = 15 p = 0.3372$ As = $0.96 \mu^2 1.46 BoT$
	OF SUPPORT -M= 1/20,6 K-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$J2, 20^{34}, d = 19^{38}$ D336 ULT.	· · · · · · · · · · · · · · · · · · ·
-	$Span - 20'-0^*$ Load = 2150 2255	125 PLF
	V = 7250 # 1120 - ($v = 54 P_{2i}$ 2 # 9,437
	L7.5K L2.5K	$min A_{s} = 0.38 / M^{2} # 6 BOT$ $E = 498$
	-H=1120.6k-m	k = 448 $l = 1.5\%$ $-A_s = 1.74 \text{ i} \text{ J}^2$
	BI, 24", 2034, d= 18.75" FLOOR + WALL + BM D 2240 15 480 =	R=48% 2735 D 3829 4713 PLF
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000)* L 884
	Y = 70700 #	$v = 157psi 2\#1170^{10}$
	$M = W^{2}/16 = 4713 \times 30^{-12}/16 = 3182$	$\mu - \mu = 51'' = 176$ $\ell = .35''_{L} A_{s} = 3,16 m^{2} 2#9 B0$
	STIREUPS 50-#3, 10@4/14@7/1@36/ -M=	
	$52, 30, 20^{34}, d = 18.75^{\circ}$ Floor BH D 3360 + 519 = 3879	R= 60% ULT P 5430 6450 PLF 2# 10 TOP-
	$Span - 30'-0 - Load = \frac{12002}{1500} + 519 = 3879'$	
	V= 96754 #	=70", K=176 V = 172 Psi 2#10 TOP
	$M = 6450 \times 30^{2} \times 12/16 = 4354$	$\begin{array}{ccc} P & 0.73^{\circ} L_{0} & A_{s} = 4,33 \text{IW}^{2} & 2 \text{# II BOT} \\ P & -4 \text{He} = 600 \end{array}$
	UU STIRRUPS 46.#3, 1986/389/1836/ -M= WP/11=	$(333) \begin{array}{c} -A_{s} = 7,43 \\ (333) \end{array} \begin{array}{c} + 11 \\ (337) \end{array} \begin{array}{c} Bot \end{array}$
	Span - Load =	
		· · · · · · · · · · · · · · · · · · ·
		A _s =
		-A _s =
	i i i i i i i i i i i i i i i i i i i	
	Span - Load =	
		v =
		A _s =
		A _s =
	Span - Load =	
		$\mathbf{v} = \mathbf{v}$
		A _s =
		-A _s =
· · ·		
	Span - Load =	
		v =
- i i i		
		A _s =

-

. • . • .

かままや あわざい たいしょう 一手 きたい 日本 ちゅうかい

.

.

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett Houston, Texas 77006

Job Name <u>KIEST LOOP OFFICE BLDG</u>.

Architect AL KELLER

ASSUME SHOCT COL.; Min e

				SCHEI	1E3 (CO	NT.) , 6	OLUMNS	$f_c'=4$	rs;	lob # 1001
	· .			•	· · • •	· · ·	: . • • •		• • • •	
	MAKK	• . •		• · •· •	-	1		• • • •	· ; ·
	A-1	LEVEL	DEAD	LIVE	LL RED,	REPLL	D+RED, IL.	517E	REINF	TIES
	•	COL, SPTG.	(400)	(KIPS)	26	(KIPS)	(KIPS)			
	•	ROOF	72,1.4=	13 x/,7=22 22		22	123	14 . 14	4#7	#3@14"
	• •	8	87.7 1,4=1223	32.5 + /17= 55.3	60	30.9	254.7	14 . 14	4#7	#3@14"
		. 7	223.8 346.6	132.6		53,0	399.6	14 × 14"	4#7	#3C 14"
		6	469.4	187,9		75,0	544,4	18×18"	8#6	#3@12"
	• •	5	592.2			97,3	689.5	18 . 18"	8#6	# 3@ 12"
		4	715.0	293.5		120,0	835.0	20.20	8#7	# 3@14 ⁴
	•	3	837.8			141.5	979.3	20,20	8#1	# 3 @13"
	• ••	2	960.6			163.6	1124.2	20"x 20"	8#11	#4020
	•	- /	/083.4	1 1	. Y	186,0	1269.2		·. :	
			F, C, JUL	404.4	• •• • • • •		1-01	FTG.		
						• • • •	• • • •	13-6", 13-6"	• • •	· · ·
	• ·		· · ·		•• • •			×38" 10#10EW		
	B-1	LEVEL	DEAD	LIVE	IL RED	RED LL	D+ REO LL	SIZE	REINF.	TIES
-		SPTG	(KIPS)	(ICIPS)	%	(KIPS)	(1485)	JIZE	1 - Chitis	
		ROOF	104,8,1.4:	20+1,7=34	-	34	180.7	16" 16"	4#8	# 3@ 16"
	- •	8	127.6, 1A: 178;	50 + 1.7 = 85	60	47.6	373	16.16"	4#8	#3016
		7	325.4			81.6	585.7	16 16	4 * 8	#3@16
		6	50.4.1		•	115.6	718.4	20:20	4#9	# 3 @ 2.0
		5	861.5		• •	149.6	1011.1	20,20	8#10	#3 C 18
	-	4	1040,2			183.6	1223,8	24,24	8#10	# 3@13
		. 3			· -	217.6	1436.5	24,24	8#11	# 4022
		2	1218.9	. 544		251.6	1649.2	24:24	12#11	#4022
	·		1576,3			285.6	1861.9	24 (-1	12.11	
			1510,3	714	• •	20516	10011	FTG.		
	· ·		•		.	· · ·		17:0,17:0		
	• • •							*46" 16#10 EM		· • •
						- L	-	·· I . <u>`</u>	- J	
		- ·		•	.a 4-100 - 1840-0	inana inana inana. Pilipi k	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · ·
		•	• • • •	•	• • •••	•- • • • •	• • • •	•• ••		•
				· · ·	• • • •	•	· · ·	· · · ·		
•			•	•	• •	· · ·		•. • •••	ina an is is i i ti	• • •
			· · . ·	•		· •	н . .	• • • • • •	• • • •	,
	· ·		•					• • •	· ·	

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett Houston, Texas 77006

Job	Nome	WEST	LOOP	OFFICE	BLPG.	
		KI V	FILEP	6	58	

. .

「東京が、東方がしたした」、「東京にたん」という

Architect <u>AL KELLER</u>

	Housi		SCH	EME 4 ; HAMBRD SYSTEM	Job # 10018
	•			$F_4 = 50 \text{ ksi}$	
	· · ·			\mathcal{D}	
	-	- @ '			
-	• • • •		HAMBLO JOISTS SPACING = 4'-14"	LOADS : LW.	
-	40,	_ •	3PACING = 2-14	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 50 106
			·	50 + 20 + 30 + 2 + 4 = 0	56 106 56
		•	• •	CONSTR. STAGE :	
	د .	- 6 -	+	14 + 30 + 11 = D	41 55
-	20,	• · · •	• • • • • • • •		· · ·
·	د	@			· · · · ·
-			· · · · · · ·		· · · · · · ·
-	. 4		· · · · ·		· · · · ·
	1				· · · · · · · · · ·
		* Ø-			
		: 	* 30'	*	• • • •
-			· · · · · · · · · · · · · · · · · · ·		
	-	JOISTS			
·			•	$106 \cdot 4.1' = 435 PLF$ H12	
		SPA~ :	40, 6090 =	106 . 4 1' = 435 PLF RH24	15
	•	BMS :	Po doel	D 640+35=675	
· ••• · · ·			N: 30' LOAD;	SD 180 ; 1675 PLF TL= 50.3 ; M=	2261.3 56.20
· •				$f_b = 2^c$	7.8 KSI W18,35
	B. 1-	2 ; SPA	N:30 LAAD:	- (1500) * 705 ; 2429 PLF TI= 72.9K : M	= 3279.2
				$5D - 72D$ $f_i = 29$	rsi 5.6, 44 0 W21 × 44
•		• • •	··· · · ·	·····	• • • •
-	:	•	• • • • • •		
		•	· ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sockett Houston, Texas 77006

.

Job Name WEST LOOP OFFICE ELDON _____ 69

.

Architect AL KELLER

SCHEME 4 (CONT.); COLUMN DESIGN Fg = 50 KSi

Job # 10018

MACK

					· . ·			
A-1	I.EVEL	DEAD	LIVE	LIL, FEDUC.	RED. LL	D+ LED 11	SIEE	
•	COL. SPTG.	(KIPS)	(κRS)	(%)	(KIPS)	(r.:Ps)		
	F. WF	27,8 27.8	13,7 13,7	·	13.7	41.5	2.17	
	8	39.2 67.0	34,1	60	19.1	86,1	Z Z	
	7	106.2	81.9		32,8	139.0	W8, 23, W8, 17	
	6	145,4	116,0		4.6,4	191.8		
	5	184.6	150,1		60.0	244,6	W3x40	
	4	223,8	184.2		73.7	2.97.5		
	3	263.0	218,3		87,3	350.3	10"60 MID"24	·
•	2	302.2	252,4		101	403.2	100	
	1	341,4	Z\$6,5	Y	114,6	456.0		
	-							BASE # 20, 20, 2
		-			2 - -		9'-6", 9'-6" x28" 8#8EW	
B-1	LEVEL	DERD	LIVE	IL PEDUC.	REGIL	Dr FEDLL		
· ·	CUL, SPTG.	(KIPS)	IKIPS)	(0/0)				
• •	ROOF.	41.8 41.8	20.4 20.4	-	20,4	62.2	W8,20	
	8	58.7 100.5	51.1 71.5	60	28,6	129.1	1 ¥	
	7	159.2	122,6		49	208,2	W8, 35	
	6	217.9	L'123'L		69.5	287,4	1 5	
	5	276.6	224.8		90.0	366.6	W4, 84 W14,78 W14,61	
	4	335.3	275,9		110.4	445.7	00 M.I	
		394	327		130,8	524.8	L.411	
	2	452.7	378,1		151.2	603.9	Z X	
		511,4	429.2	*	171.7	683.1	44	
							FTG.	BASE # 24 24
							12:0 x 12:0 x 34	
			<u> </u>	<u> </u>	<u> </u>		10#9EW	

a.3. Preliminary structural proposal

a.4. "Hambro" composite floor system

b.l. "Posten" computer input sheets

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Math
where instant on links 1. If 11 11 11 11 11 11 11 11 11 11 11 11 11	00 MOI UNIT ANY OF LINES \$ 10 20 RELOW 100 FILLING 1 POUL 10.2010 (2010 VALUES 700 CANO 10.2011 20 RAVA 2012 ANY 10.2011 20 RAVA 2010 VALUES . 10.2011 10.2010 A BLAAK CANO WAY BE 10.2011 10.2011 A BLAAK CANO WAY BE	DHS	DESIGN DATA	924A MARES 924A MA

NOTE: OMIT THIS PAGE IF THERE ARE NO CANTILEVE	
	11 2 3 4 5 6 1 16 19 10 16 16 10 15 16<
LEFT CANTILEVER	
2 RIGHT CANTILEVER	
	UNIFORM LOAF NUMBER OF RATIO LLI. TO FRACTION OF LI (1bs/lin ft) CLORENTERED TOTAL LOAD (Free deflection (1bs/lin ft) CLORENTERED * 00(y) (1bs/lin ft) CLORENTERES T_ 60(y)
3 LEFT CANTILEVER	
A RIGHT CANTILEVER	7
	SW AND & MAY BE NEGATIVE
	CONCENTRATED LOADS, P, (pounds.) INSERT ACTUAL LOADS AND DISTANCES ONLY. LEAVE OTHER SPACES BLANK.
	P ₂ P ₃ P ₄ P ₅ P ₆ P ₇ P ₆ P ₉
LEFT CANTILEVER	
6 RIGHT CANTILEVER	
	DISTANCES FROM CENTER OF END COLUMN TO CONCENTRATED LOADS (FL.)
	C ₂ C ₃ C ₄ C ₅ C ₆ C ₇ C ₆ C ₉
LEFT CANTILEVER	1 2 3 4 5 6 7 1 8 9 10 11 1213 14 15 0 11 1213 14 12 5 0 11 22133 24 25 15 213 23 23 24 25 15 2 13 23 23 24 25 15 21 25 15 15 15 15 15 15 15 15 15 15 15 15 15
B RIGHT CANTILEVER	

FOR REDESIGN ONLY (Omit if not a redesign)

PLOTE CONTRACTOR

6 0

76

1-2/17/44 1-2/17/44 1-2/17/44 1-2/17/44 1-2/17/44 1-1/14 1-2/17/44 1-1/14 1-1/14 1-1/14 1-1/14 1-1/14 1-2/17/44 1-1/14 1-1/14 1-1/14 1-1/14 1-1/14 1-2/17/44 1-1/14 1-1/14 1-1/14 1-1/14 1-1/14 1-2/17/44 1-1/14 1-1/14 1-1/14 1-1/14 1-1/14 1-2/17/44 1-1/14 1-1/14 1-1/14 1-1/14 1-1/14 1-2/17/17/44 1-1/14 1-1/14 1-1/14 1-1/14 1-1/14 1-2/17/17/17/17 1-1/14 1-1/14 1-1/14 1-1/14 1-1/14 1-2/17/17 1-1/14 1-1/14 1-1/14 1-1/14 1-1/14 1-2/17/17 1-2/14 1-1/14 1-1/14 1-1/14 1-1/14 1-2/17 1-2/14 1-1/14 1-1/14 1-1/14 1-1/14 1-2/17 1-2/14 1-2/14 1-1/14 1-1/14 1-1/14 1-2/17 1-2/14 1-2/14 1-1/14 1-1/14 1-1/14 1-2/17 1-2/14 1-2/14 1-1/14 1-1/14 1-1/14 1-2/17 1-2/14 1-2/14 1-2/14 1-1/14 </th <th>083 GENTILIO INOT 011 METRIA I HI MU 011 METRIA I HI MU <</th> <th>The second seco</th>	083 GENTILIO INOT 011 METRIA I HI MU 011 METRIA I HI MU <	The second seco
1 1		A): INSERT ALL ZERD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	In most retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroits In mile In mile In mile It mout for retroit In mile In mile In mile It mout for retroit In mile In mile In mile It mout for retroit In mile In mile In mile It mout for retroit In mile In mile In mile It mout for retroit </td <td>дгежа из гистератов и не зем дела сринка ор социма и произ от инститствов и прома стали и прима стали и п икцира социальство и меня остана гасством раз ингида соизпрас L.L. REUD </td>	дгежа из гистератов и не зем дела сринка ор социма и произ от инститствов и прома стали и прима стали и п икцира социальство и меня остана гасством раз ингида соизпрас L.L. REUD
	5 (- 311 MANL FOR BELMIS) 	ALPHA IS THE FRACTION OF THE : INCLUDING SELF-ELIGHT OF WINBER.

b.2. Postensioned concrete joist scheme

.........

..........

b.3. Reinforced concrete joist scheme

..........

c.l. Typical floor plan

BEAM SCHEDULE BEAM SCHEDULE SUZE REINFORCING STEEL REINFORCING STEEL STIRRUPS OR REMARKS SIZE STIRRUPS OR REMARKS MARK MARX TOP TOP TOP TOP + BOT BOT W D TOP NO SIZE TYPE SPACING FA FND TOP + TOP + BOT BOT ND SIZE TYPE 26 ^{#4} 26 ^{#4} H 8 6 2.*5 8 -3 0 80 24 243 2. 5 6/12/2 at 18/ 4-"10 1-"9 2-"9-8 5 2.95 84 24 244 12 2-*5 6 "3 6/12/16/ 2-**8 3-**10 2-*9 3-*9 8 °3 20 °3 63 6 15 2-85 2-5 6/3 at 12/ BB 24 244 38 *4 8 6 28 4 24 2.#5 2-*5 86 24 244 7 or 16/2 or 12/1 or 18/ 2-#5 2-#7 10° 20° 8 3 **25** 2-5 6/6 mt 9/2 mt 12/ _ 8 3 চা সা 2-5 86 6/6 of 9/2 of 12/ 2-#5 8 3 87 ರೆ ಶೆ 2-*5 JOIST SCHEDULE 6/6 of 9/2 of 12/ 8 **3** 8 15 2-#5 REINFORCING STEEL STIRRUPS OR REMARKS 86 6/3 at 12/ SIZE MARK N 20 2-*5 2-#5 W D TOP TOP 1 TOP + BOT. BOT. NO SIZE TYPE 6/6 at 9/2 at 12/ 2-**"6** 2-9 <u>3-</u>9~ I-#7 / I-*7 -I-#9 12 **4**3 10 244 2-"5 1-*6 6.20 4 4 4 80 6/2 at 12/3 at 18/ i-#5-21 213 847 2-8 3 6/3 of 9/8 of 11/2 of 15/ TJ-2 6:20 43 TJ-3 5x20+44 3-5 1... 38 4 4 82 2 2434 6-10 2-9 5-5 1-"5+ 4 of 6/4 of 9/9 of 11/2 of 18 . مربع در سود ٠., : • . : 2 . П wΒ . <u>┟┚└╌┘└╶┘└╶┘└╶┘└╶╵</u>└╶┘└─┤└╶┤└╶┤└─┤ 70770770 . . . 31 12 16 1 H H H H H 11 11 Ħ 11 10 10 11 11 16 .: : ⁻⁻ ' ┤└╴┥┝╴┥┝ ╌┥┝╼┥┝╸ ╡╞╴╡╞═╺╵ ┽⊢ᡪᡃ╒ 计计计 TJ-2 -,* ~ . 7#J 111 11 JOISTS T. -1) 11 11 45 JOISTS TJ-1 1 1 N. A. 1111 · _ # • ÷. ┟╠┙┝ 거는 귀는-┥╘╶╬╴╡ ╧╠╴╧┝╴ -11 11 11 12 ji ti G 11 11 11 НИ 11 11 11 11 11 H. . _L_! ______ 南-٩. B15 812 חרשרישר יזריזר וו וו -· · · . 11 9 JOISTS TJ-3 ┶ ┶ `` 0 T3-6 TS-2 g TS-1 g 5-6 TS-6 (x - 1⁵ ┇╞╬═╬╴ ≓≓≒₽ <u>م</u> ک 1 11 11 . 1 / вз вв R H K K -13 ╬╬╫╖╴╍╘╬┙┍╼┍╼┍╼┍╼┍ ╼╩╼╩╗┍╼╔╝┍╢┍╝┍╼┍╼┍╼┍ ╋┑┍ _ ـــالـــالـــالـــ BI2 à 1 11 11 11 11 -. . . 111 ╬╬ 11:0. ╞╬═╡╞ ¹ ۲۲ (1-1) عرب و 1111 11 11 45 JOISTS TJ-1 • ; ¹ 111 11 11 11 آن کی ┟╬╴┽┝ ┥┝┥┝┤┝ ᆉᆉ ╠╼╬╾╣┾ === ≓≓ 111 11 111 H 1 1 ÷ 1 11 11 h n pr _____ ساب المحالي ال Ċ, I and is bit mps -----22 sty . . NOTE: WHEN TOP STEEL IS CONTINUOUS OR PREFIXED IN SCHEDULE WITH "L", PROVIDE CLASS B TENSION SPLICE IN LIEU OF EXTENDING L/3. NOTES: L DESIGN LIVE LOADS FLOOR: 65th PS.F.⁻ CORE AREA: 100th PS.F. 2 FLOOR FRAMING SHALL BE OF LIGHT WEIGHT CONCRETE TESTING 4000 PS.I AND SHALL WEIGH NOT MORE THAN 120th PC.F. 3 ALL REINFORCING STEL SHALL BE GRADE 40(AND SHALL CONFORM TO THE ASTM SPECIFICATION AGIS 4 S. WADD FRANES ADD LEAR F TO NOTES: NOTE: HOOK ALL STEEL IN TOP AT adjy to E ig, bith, mildle DISCONTINUOUS ENDS ABOVE - GRADE AND CANTILEVER END OF GRADE BEAMS. (HOOKS NOT REQUIRED FOR TYPICAL L2, NOT REQUIRED H L1/3 eden enden - entern Men. et. ; and a stop the. TOP - - - -TO THE ASIM SPECIFICATION AND 4.5-WIND FRAMES APPLICABLE TO STRUCTURES EXCEEDING ID FLOORS ONLY. PROVIDE 3-WIND FRAMES BOT. STD. 90* - 801 3: SUPPORT-12 OTHERWISE. L3 13 Lt ---------ELEVATION . . BAR PLACEMENT DIAGRAMS 5 - E 12

Typical Floor Framing Plan

CONCRETE CONSTRUCTION CORE D PGA ARCHITECTURE ENGINEERING A DIVISION OF PIERCE GOODWIN ALEXANDER 2217 Welch Street Houston Taxes 77019 (713) 528 6321

85

21 . 14.3

الدالية مدرية مؤادم مدر

c.2. Design calculations

BLOCK 130 HSTAL. CTC. Job Name_ WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 89 P.G.A. Architect ____ 2905 Sackett Houston, Texas 77006 fe = 5ksi 27 STORY BLOG. Job # CANTLEVER FUR ASSUMPTIONS AXIAL LOAD 12 COLUMNS LEVEL 22 36,3 72.7 109 36.3 72.7 1 109 1 \odot B .D 1 151 . . 151 100.7 50.3. 50.3 100.7 23-22 H=15260.05; FA = 109 K; FB = 72.7 K; Fe= 30 Mu= 8218 F-M P== (466.2 + 100.7 = 1.7)0.75 = 478 = 22-21 H=21136 e= 17.2 FA = 151 , FB= 1007 , E= 50. - 8#11 24", 24 LEVEL 12 1307 5 + 920 920" ¹613* 307, ~ +613K H= 128778,7 · 12-11 ; Fig=613.2; Fe 3 Hu = (14736), 1.3= 19157 F-4 Fn= 120"; Pu = (1243 K + 613 .1.7) 0.15 = 1714 e = 11.2" 30 , 30 - 20#14 LEVEL 2 2279 " 11519 × 1760 × \$ 2279 K 760 4 1519 Mu = 41777 + 1,3 = 54310 + - 4 Pm = (2078K + 1519,1.7)0.75 = 3510K e = 1515" - 32 #14 40" x 40"

	CON 2905	SUL. Sac	TIN(kett	G Eł	RE 8 161N 77006	EER		ΤΑΙ	ES, 1	NC.											130	1/2		, <u>C</u> 90	<u> </u> £. ,	
										27	s	TOR	1	BLI	04.		(.	90'x	z 4	ہ')				lob i	7	
	-				R 00 F		¢ U K	1ん	· · · · · ·	 	•	A	l E A		756	24	! FT,				•	•	· · · ·			•
			- ·	Floo Flo	ers vors	•	•	918 683	• • •			14	25 × 16 • 18		-	8 +	<i># 11</i>	. i -i	•	:	·• ·		· · · ·	:		•
			-1	•	025	1	. 7	90	7 16	· · -+	.		× 2.0		· • ·	•	#18	• = :	•		:_	:				:
	•	•	8	Fle	oof ² \$	•	. 4	13/	K		4	3	4. ?	>4 	-	12	#/2	ΑU			SIZE REINF					Prod
	•	•	•	`	•	• •	· ·	• • • • •											G.					LINE	AR LOL	FT.
	•• •••••			- • -		•	• • • • • • • • •	· · · · · ·													· • · · ·	SIVA	£ 5	Fro	S PE	ĸ
	• • 		•			• •	- - -		-							····	·····					FLQ		Arco	54	
	· · · · · · · · · · · ·		••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·													······································	······		····· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	- 	· ·	••••	- -
•••••		•	····	· · · · · · · · · · · · · · · · · · ·					-		- - -					•	: 							• • •	· · ·	• · ·
		•					1	÷					• · · · · · · · · · · ·				· •• · •			·····		• • • • • • • • • • • • • • • • • • •	· · · · ·	•	:	
		•		•	•	: -	• •	••••	· · · · · · · · · · · · · · · · · · ·			-		1 an an a mar a		• • • 	••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • •				-		• •		· ·
	:		•	•	•	•	•	-	· • • • •	1								1		· · · · · ·		· · · · · · · · · · · · · · · · · · · ·	: : :	••••		•
			. 1	; 	· ·	processos.	•		i 		i •	1	•		•	. موردها.	•••1				• •			• •	•••	•
· .		•		• • •	•	•	• • • •				ана 2 4 м 4 4 4 4 4 4 4 4 4	•	•		•		• •		• • • •	• • • • • • • • • • • • • • • • • • •		· · ·	••••••••••••••••••••••••••••••••••••••	•	• • • •	·····
		•		•	•	1 4) • •	•		•	1			1	t -				ļ	•	• • • • • •	i			• i	• • •
				•	:		 • •		1	•	1		•	:	•					•	• •	•		- E		

WALTER P. MO CONSULTING E 2905 Sackett	ORE & ASSOCIATES, INC. NGINEERS	Job Name <u>BLOCK</u> 130 Architect <u>P</u> IG.A.	HSTN, CFNTER 91
Houston, Texas	a - a	TAT INVESTIGATION	Job #
bo:= 4 (= 219 psi = 31.54 k/sg $\frac{34}{12} + \frac{3}{2} = 11.33 + \frac{3}{4} \frac{34}{12} + \frac{34}{12} + \frac{34}{12} = \frac{34}{12} + 34$		
31.54 = 4	$\frac{ 3 - 8(2.83+d)^{2}}{0.85(11.33+4d)d}$		
	$5 + 4 + 3^{2} = 4131 - 8 ($ + 167.2 $3^{2} = 4131 - 64$		
	$115.2 d^{2} + 348.88 d - d^{2} + 3.03 d - d^{2}$	35,3 = 0	
	$-3.03 \pm / 9.18 \pm 141$.2 = 4.61 = 55.0	<u>4</u> <i>t= 60 "</i>
	$\begin{array}{c} +45' \\ ++++ \\ +++ \\ +++ \\ +++ \\ +++ \\ +++ \\ +++ \\ +++ \\ +++ \\ +++$	803 K = 19606 K (W.L.)	
	$A = \frac{1}{5. FSP}$	= 5122 9471. (45 ¹ ,12	0 = 5400 sq FF)
	ADT. COL. STRIP 15 CPI	$\pi C_A C :$ $f_c' = 3 k s_i$ $f_{ij} = 60 k s_i$	
· · ·	$\frac{Q^2}{15} = 8 \times 30^2$, $12/15 =$	b=12" 5760 K-4 d=56" K=153	e= .30%. As= ZIN / ET
	$\frac{10^{2}}{10} = 8 \times 30^{2} \times 12 / 10 =$	8640 16-11 $b = 12^{4}$ $d = 56^{4}$ k = 230	$Q = 145 ° L_{0}$ $A_{5} = 3.0 1 m^{2} / FT$
	3.4 POUNDS C WNC.	OF REINF STEEL PER	CU. FT. OF

-

•

d.1. Sketch of proposed system

• ·

.

おおおお あたかいたいかい しき ないがん ちゅうし

d.2. Floor framing and calculations

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sockett Houston, Texas 77006

.

,

.

.

.

Job Name	TEN-TEN	GARAGE	INV.
	<i>t</i>		95

TENNEW BEALMY Architect _

-

						Job #
		EIM .	EIM _	GN.		
	(₹) 📭	(ŵ)				
	· ·	0g		D	-	
••	N CO	. 00		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO NO	• • • • •
··	· -		(2592) 5'91×21M	th		-
-	0 b			72 X		
	O		J (2592) 5'91+21M	Ça		
		od 3. (5 2 HITUM	(50xc) 2'		· · ·
	N N	00 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 ,	22214	5 2 2	NG. NG	· · · · ·
	<u> </u>	cq		00. E		· · ·
	04		212-21 21 21	Îì		
		60	Entrate - A			• • • • • • •
	WG.	\$\$ \$ \$		2° 2° 2° 2°		
		L	2	5:53	3 0	
	.]	001	× 10596) 59/ + 2110	N CO		A A
.		CO2	X-BEACE			1 D
			N8.10 N8.10	36)		
	N N O	· · · · · · · · · · · · · · · · · · ·	(2572) 591 × ZIM		- ×	ZC
• •		· · · · ·	12572/ 5.91*21AT	20	2 0 	
- · ···	· •	~1	10 10 01 01	W CY		ų.,
. <u> </u>	• • •	DO		00		
	-	• • • • • •	V 2 · 2 · 3			- · · · · · · ·
	· QX	نې: 00 پ	W 12 - 11,5 (2610)	500 C		A D
• • • •			(2572/5'91 +21M	12.		
			W 24	N 00		· · · - · -··
. .	. O 🗗	Pq		ф <u>~~~</u>		
			15.C.)	- (? ?		
	D X		192 HM -2.4M	16 (50	W B 30	
• •	· z	Cđ	(2522) PITZIM	20 20 20		
			Z (2522) PI - 21M	3		
		çd	X-BRACE	¢°q		
•			W21 55 (2415.C.			•
	MB	RA .	55 (8 C= 4	52 V	2 °0 7	
		ମ୍ପ	121 00	200 X X X		·
				rh		• • • •
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	( <b>1</b> 4 %)	00 • • • • • • • • • • • • • • • • • • •		• • • •
	•		M	2 3 12 00		· · · ·
	NB NB	, SY 2000447	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	נייוותבע ויצי, צו	W13	
•		(')'s 29/ 07 *FIM	MIS" 1912	(-2'S 29) QP * 81M		
•						4
	 لا		ØM -	ସM 		
	··	10%	,00	, op	1	

1	WALTER P. MOORE & ASSOCIATES, INC.	Job Nome TENJ-TEN GARAGE INVESTIGATION						
	CONSULTING ENGINEERS	Architect TENNECO REALTY 96						
	Houston, Texas 77006 GRAVITY LOA	405 Job # 14016						
	LOAD: LOAD: LL $CONC$ . PAVER GROUND 100 + 42 + 20 = LL $CONCLL$ $CONCLL$ $CONCTYPICAL$ GIRDERS = 50 + 42 + 2	PARTH, CIG. D 68						
	TYPICAL PURLINS = 65 + 42 + 2							
	CORE & MECH. = 100 + 42 +	+ 6 = 148 L 100 (PURLINS & BMS,)						
• • •	ROOF 50+42+7	$20 + 6 = 1/3 \frac{0}{150} \frac{68}{50}$						
	BLDG. FACE : 4" BRICK + WINDOW	USE 50 PSE						
- <b>-</b>								
·								
• •								
• •••								
•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
• • • • • •								
, 								
• .		· · · · · · · · · · · · · · · · · · ·						
		· · · · · · · · · · · · · · · · · · ·						

-

Job Name	Train ( )	$(\gamma \gamma \gamma \gamma)$		
			97	
			Job # 11016	
			Job Name <u>Transford</u> <u>Bayyyne</u> Architect <u>Represented (CAN</u>	

-

.

日本目的 目れぞうとう デー・デス ひてん デジーン

•

.

. . . .

							:		i	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
		1.0		0.86°	. PH	בור ∖ק	12.5	#/		0 28%	fs:= 29.1*	ile camber	= 1.5 "
PUFLIN	SPAIJ	40-0		L 650 715	1265 #1	- L 65	0 1000 1 1 1 1	#/1 TL 0 14,3 4 13.0	- 54.6K N - 820'	L 26.0	1-3264	23.5 23.5	26
PURLIN	GRAD)	20_()	Ld: L	336 +	14 - 67	16		= 21 = 4	1.0 H= (-3	WIGY WIGY	14. 1.=	733	22
( <u>44</u> str.	X HICACI	-() - () 6   _ u		70 0 580	14 = 6	14 1019	#/ T/ =	28.4 L 19	9 M8	52		- 741	23-
(Left Man				284 +	0 250	18 1193	#/. Tr -	Z4.0 L 1	8.0 / ~ M= 1	19 W 12	2 10 1 K	- 24,4	23
cleft. Hegt.	SPAN 2 GPAN 2	, 1 ~	, ,		14	1070	я). т):-	751 08	+ 14-7	in the second	1 11 2	- 21-1	•
left Str.	CDALL .	0 0	1. 07	288 + WN	11 + 21	T. 502	11 02 #1/	1 TI - 16 /	D 8.1 H.	=576 "K W	12 16.5	1.205	
Kin! Tspar	SPAN (	13-0 22' 5'	id - L. D	144 + 1	4.L 1 mm		618976	十月 - 12 1	M ·	-295	A 11	1 . 01	-
			La - L	1,65 F	= 211		1 15.4	. м <u>-</u>	557 "K		id fo	- 240	•
FT. Stair	SPAD 1	12-0	(d) (0)	0 + 14	- 214	10 2	8 4 1	4.73 3.6		_ W 1- X	.4		-
	GPAN 2	;		144	WALL + Y							W12 14	
	SPAN 2		d	288 +	200	702 90	2 #/++ 1	L= 18 L	6 4.6	11. 12 N.F.	i	W12214	
Lobby		and a second	11 - 1	2 7 24	14 - 1	200	C 1/ 1	1 21 1	10 H= 1	119	1	W17.14	7
teret	GRAN C		- d - 4	240	well	54. D 4	54	3 1 18	H	= 654""	f.=25	9 W12.7	2.2
of 1.2100	1 × 1 × 0 × 2		0 1		200			1 27.0 11	DS	.0 C 3			
18 Chee	Test a			163 +	wheel +	Buy D	->82	1 P7.0 11 L G.S 3 L 3.6 1 U 7.5	H	1=740 :	{s= 29.	3 W12x	22
of the orange	J. J. C.	0 - 0		. 240	71.5			107.5 T		.5		i	
E Light Girder	5PA~ 2	30-0"	· · · · · · · · · · · · · · · · · · ·	50	119.5	L 19.5	M= 49	9J"K	f,	29.9	U:	Teniber a	74" 84
	a in terms of the		· · · · · ·		1022.3	2' D 22.3							
slair	GPAD	30-0"	Ld : 5	54 107	1 213214	7.5 U3.4 PM P	16.5	H=: 5675 "	5	ž4 f.=	24,5	WEA.76	- 0151 50
				V 28.2. 6 23.6	2' 8' 4 . p21.5 L195	<b>3</b> 3' 3'	7' t p25	.S .3	1			- Catio	
F Hech. Girder	SPAIJ	300"	Ld :	50 50	p 21.5 L 195	103.5 \$14.3	04.2 19.5	H= 564	3"5			W24.76	
				D22.2 L23.6	10'	212 63 13	60 T L 14	,				: · · · ·	
RLING	SPAN 2	20'- 0"		69.0	80=/1 TL :	29.6 K	9.6	883 " "	fs.=	25,4 K	<u>si</u>	W12,13	
of Right Spir		30'- 0"	LL 50		*	23	M= 512	10 "I K	fs = 3	1 4 51		W21x 50	84
			•	D 20		L 23	1 P		а. — П. 		• •		h
girders in	SPAN	30'. 0"	41 50			0 104.0 14	54 4.8 ×	M= 60	)53 " ^K	fs = 26	, , ,	W2:17	<u>ن 50</u>
n konser				21.4	N 8.5 1.3	4 1.	5 55 27	1.7 .8 .0	: .				
l F			· · ·		· · · · · · · · · · · · · · · · · · ·				1   	: 		i 	i
				-			· · · · · · · · · · · · · · · · · · ·	مدر وروست	1 				
•		• • • •	. <b>.</b>		·		4			; 	· ···· · ····		
-		r t		· · · · ·						• •	•	: :	1
								↓ 					
											•	4 4 × ¥	•
		• •							• •			1 I I • • •	ł
		:		j		: :				• •	•		÷
		ан на селоти По селоти на селоти				1				1	• •	• • •	
	.1	1		1 I I I					1	+			

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett Houston, Texas 77006

TON-TEN GARASE INVESTIGATION Job Name_ 98

#### TENDERS PULLTY Architect __

Job # 14046

-

-----

•

$\begin{array}{c c c c c c c c c c c c c c c c c c c $														Job # 1/1	<u>10195</u>
Box M19       Correlation of the matrix of th			<u>.</u>			(Â)	16-1			ι	ol Mar	' <u>~</u> 2)	(CONT.	-)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		WL, SFTG.	Lux	1040	600 500		1		7	13	31.2	20.3	62.0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		LoverL	Lug		(KEDUCC) (KIPS)	LĹ	SIZE			1	533,8	3,95,2	979	·	i
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• •	RUDF	13'	30,3	20.8	51,1			6	125	31.2	20.8	42.0		1 :
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			13'	30.3	20.8	51.1						116	1021		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		24th	_ 13	30.3	20.8	51,1			5	13	21.35	20,3	521		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				60.6	41.6	102.2				13	646.3	436.5	1083.1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2344	13'	30.4	20.8	51.2	: 1		4	13'	31.3	20.3	52.1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13'	91.0	62.4	153,4	•			13'	571.6	457.6			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		22	13'	30.4	70.8	51.2			3		364	203	52.2		l i.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13'	121.4	83.2	204.6				1	709	478.4	1187.4	1	
70 $73'$ $30.5$ $10.5$ $51.5$ $20.6$ $52.3$ $13'$ $152.4$ $12.48$ $597.2$ $11.7$ $712'$ $520$ $1272$ $16$ $13'$ $20.6$ $20.3$ $51.4$ $11.7$ $712'$ $520'$ $1272'$ $16$ $13'$ $20.6$ $20.5$ $51.4$ $11.6'$ $11'''''''''''''''''''''''''''''''''''$		21	13'	20,5	20.8	51.3			. 2	13	31.4	20.3	\$ 7.2		
33'       192.4       174.8 $957.2$ 172       520       1292         14 $13'$ 20.6       10.3       51.4       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1		1	13'	151.9	104	255.9				13'	740.4	449.2	1237.6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13'	30.5	10.5	51.3			GROUND		31.5	20.8	52,3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			·	182.4	124.8	3,57.2					212	52,0	1292	·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	13'	30,6	10.3	51.4				·	ļ 				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13'	213	145.6	358.6	: 		· · · · · · · · · · · · · · · · · · ·				5	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	13'	30.6	20.3	51.4						· · · · ·	<del>.</del>		• •
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4 )	13	243.6	166.4	10		<u> </u>		<u> </u>			; 		•
16 $15$ $30.7$ $20.4$ $81.5$ 15 $13$ $20.8$ $51.3$ 15 $13$ $20.8$ $51.3$ 15 $13$ $20.8$ $51.4$ $14$ $13$ $20.8$ $51.4$ $14$ $13$ $20.8$ $51.4$ $14$ $13$ $20.8$ $51.4$ $13$ $30.4$ $10.8$ $51.7$ $17$ $13$ $30.7$ $10.8$ $51.7$ $13$ $317.5$ $170.4$ $657.4$ $13$ $317.5$ $170.4$ $657.4$ $13$ $31.0$ $20.8$ $51.7$ $12$ $478.4$ $241.2$ $711.4$ $11$ $13$ $31.0$ $20.8$ $51.3$ $11$ $13$ $31.0$ $20.8$ $51.3$ $12$ $440.4$ $52.8$ $575.2$ $7$ $11^3$ $31.1$ $20.8$ $51.7$ $12$ $460.4$ $52.8$ $51.7$ $12$ $621.5$ <th></th> <th>17</th> <th>13</th> <th>30.7</th> <th>3.3</th> <th>51.5</th> <th></th> <th>ļ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>· · · · ·</th> <th></th>		17	13	30.7	3.3	51.5		ļ						· · · · ·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13'	274.3	187.2	461.5		 						•	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	13	30.7	20.2	51.5		ļ 				<u>.</u>		•	· · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13	305	208	513	<u>.</u>	<b>.</b>					•		4 i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · ·	15	13	30,8	22.3	51.6			•••••	1 ; 4	: :	: 	· · · · · · · · · · · · · · · · · · ·	•	ł • • •
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•••••		/ 3	335.8	228.3	564.6		↓ 	· · · · · ·	-		· · · · · · · · · · · · · · · · · · ·		i 	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 4	14	13'	30.3	20 3	51.6			· · · · · · · · · · · · · · · · · · ·	i 				: •	: :
i3' $397.5$ $170.4$ $637.7$ $K$ $i5$ $30.9$ $20.8$ $51.7$ $I3'$ $425.4$ $291.2$ $71.76$ $I3'$ $425.4$ $291.2$ $717.6$ $I1$ $I3'$ $425.4$ $291.2$ $717.6$ $I1$ $I3'$ $31.0$ $20.8$ $51.3$ $I3'$ $159.4$ $312$ $771.4$ $IC$ $I3'$ $31.0$ $20.8$ $51.3$ $I3'$ $31.0$ $20.8$ $51.3$ $I3'$ $460.A$ $252.8$ $523.2$ $7$ $I3'$ $31.1$ $20.8$ $51.9$ $I3''$ $521.5$ $255.6$ $515.1$ $I3''$ $521.5$ $255.6$ $515.1$ $I3''$ $51.1$ $20.8$ $51.7$		and the second second	13	366.6	249.6	616.2						· · · · · · · · · · · · · · · · · · ·		-	
$Y_{1}$ $IS$ $30.9$ $20.8$ $51.7$ $I3'$ $425.4$ $261.2$ $719.6$ $II$ $I3'$ $31.0$ $70.8$ $51.3$ $I3'$ $31.0$ $70.8$ $51.3$ $I3'$ $31.0$ $70.8$ $51.3$ $I3'$ $31.0$ $70.8$ $51.3$ $I3'$ $31.0$ $20.8$ $51.3$ $I2'$ $410.A$ $957.8$ $523.2$ $9'$ $15'$ $31.1$ $20.8$ $51.9$ $I2'$ $521.5$ $55.6$ $515.1$ $12''$ $521.5$ $55.6$ $515.1$ $7''$ $13.1$ $20.9$ $71.7$		12	-	30,9	20.3	51,7		-	· ·	• • • • •			,	1 	· ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		/3		270.4	637.9		ļ				1 · · · · · · · · · · · · · · · · · · ·	• • •	+ +	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		¥2-	•	1997 - <b>1</b> 997 - 1997	1 · · ·				•		] : 1 4	1 1 1		i 	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	,		<b></b>	+	291.2	•`	1		•••••••••••••••••••••••••••••••••••••••		· · · · · · · · · · · ·	· · · · · · · ·		+	**
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\dot{\theta}$	4 .	1 .	• • •• •	1	·			: 	•		• •	• • •	1 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<b>.</b> .				312	1771.4		+		• • • •	 	• •	• • •	1 ;	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	• • •			1 '				: · ↓- ↓	t <u>i</u> 1 • ·		•	1	· ·
$\frac{12^{2}}{521.5} = \frac{521.5}{355.6} = \frac{515.1}{51.1}$					7,37.8	1823.2						• •	•	• •	
ž 13 31.1 20.9 C.1.9			- · · ·	31.1	· ·	4				1	:   		4 		
		i	مىرى بەرسىيە ۋر مېرىمىيەتتەرىپ		355.6				•	4 •	:		1		
13 166216 324.4 127		÷	9 F		1	1				с. 1 1		1			. :
			13'	1552.6	314,74	121			1	-		· · ·	<u></u>		

## d.3. Wind reactions

99

٠

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sockett Houston, Texos 77006

۰.

.

. . . . . . . .

· ···· ·

-----

.

Job Name TEN-TEN GARAGE INVESTIGATION 100

Architect _____TENNECO FEALTY

Job # 14016

-

-

100 yr, AN	51 <u>k</u> .	1 40'	1 20' × 40	, · · · · · · · · · · · · · · · · · · ·	109'	k_	· ·	
	175	1	1 1	·	•	1	R	
56.14	114						24 <u>–</u>	13.0' 1
. 5	172						23	13.0'
Ļ.	172							13.0'
65 psf	172			· ·	. A		22	13.0'
1	167	······			• • •		21	13.0'
	162				• • • •		20	13.0'
- <del></del>	162			·	• • • •		19	13.0
52 PSF	162				••••		18	13,0'
	162					• • •	/7	13.0
	153					• • • • •	16 -	
49 P5F	1 <u>53</u>						15	13.0'
4	153	·			· · · ·	• • •	14	13.0'
	153	and the second secon	<u> </u>		· · · · · ·	· • • =	/3	13.0' 336.00'
	141		<u></u>		1 	••••••••••••••••••••••••••••••••••••••	/2	13.0'
46 P5F	140. 				1 ' • ··•• • • • •	· · · · · ·	11	13.0'
4	140		<u></u>			· ·	10	13.0'
	139	ALWIN THREE AND I AVALLET BY THEFE			· · · · · · ·	<b></b>	9 -	13.0'
	134	And the state of t			· 1		8	13.0' 427.
43PSF	134				•	· ·	7 ··· -	13.0'
4	134						6	13.0'
	128				:	-	с —	13.0'
	/22						d	13.0'
37	122					••••		13.0'
	122	i			· · · ·	· • ·	· · · · · ·	13.0'
	159					· · ·	· · · · ·	13.0'
U. K		$\overline{\mathbf{M}}$				$\overline{\Lambda}$	/	
194 PE	98	$M \land$		$\mathbb{N}$				24.0'
				7		j (zz)		10.0'
•••			\X	· ·	 	-×	7 -	9.33'
		$ \ge $					6 · <u>-</u>	9,25'
		$ \ge $	$ \ge $		n filmen ang a sa ta film a sa ta film ang		5	( 9.17' al 110'
·	·	X	X		،		4 -	1 9.17'
		X	X	-		——————————————————————————————————————	3 -	4.17'
• • •		<u> </u>	K			Ă	G — В .	13.0'
• •	. all have been the part				1	<u>-ĽĽ</u>	<u>ש.</u> הרך	13.0'
4 s	• • • .	$1/0' + \frac{5'}{100} + 1/1$	13' (15'		· · · · · ·	( ⁷ )		
•		10 1120'1	20' 112'	10' 30'	* 30' 30'	+++-12'		
	• •	K		-209'-			-••••	·····
						<u> </u>		

• •	• •. •	Job Mame	TEN-TEN	GACAGE	THU,
LTER P. MOORE & ASSOCIATES, I HSULTING ENGINEERS	HC.	میں ۱۹۹۱۱۰ وں ر ۸۰۰۰	TENNECO	REALM	101
USULTING ENGINEELIS 05 Sockett Texas 77006		Architect		·	
05 Sackett Duston, Texas 77006				•	# doL
		- ·	· ·		
$13 \longrightarrow 17$				R	· · ·
$12 \longrightarrow$				2.4	
72				23 22	
$72 \rightarrow - + - +$				21	
$72 \rightarrow + + + +$				20	
$70 \longrightarrow$				19.	• • • • • • •
$68 \longrightarrow$				18	
$68 \longrightarrow 68 \longrightarrow$				17.	
64				16	• • • • •
64				15	
64	<u>}</u>			14	• • • • • • • • •
64				3	
60					
$60 \longrightarrow$				10	
$60 \longrightarrow$				9	
58					
56				7.	
56				6	• • • • • •
53				5	
51				4	• <del>•</del>
51				3	
51					
$  \parallel \rightarrow \land \land$	大大	大大			
			$\times$	$\Delta$	
$85 \rightarrow k$	$\leq$			GR	
	$\overline{\Diamond}$			7.	
	8			5	
	<u> </u>			4	
	×			2	L
	X		<u> </u>		à B
	JXL		K		Þ
	(5' ,5'	1		$\left( \int p p' \right)$	
1 30'	120 1. 30	30' 30'	1.30 120,	×1-20->	

. . . .

...............

TALL FROM &

WALTER P. MOORE & ASSOCIATES, INC.	
CONSULTING ENGINEERS	
2905 Sackett	

Job Name TEN- TEN GARLAS JON.

102

•

-----

Architect TURNECO AN AUT

	Houston, Texas 77006		
	· · · ·	TYP. X-BRACE	Job #
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
			• • •
	<u> </u>	R = 450.5 ⊨	
	21.9	£ · · · · · · · · · · · · · · · · · · ·	
•	21.8	12 778	
		B 150	
	21.5	يرايسانها بالأبار وبالمستنوسين ومنتوا متووين والمترومين والمتروفين فالتراوي ومساد فالألال	
e e e e e e e e e e e e e e e e e e e	21,5	· · · · · · · · · · · · · · · · · · ·	n de normen de la companya de la com La companya de la comp
	21.5	13' T= C	
	70.9		
		20 - 13' Rd = TL '	+ · · · · · · · · ·
والمراجعة المتحد		n	• • · · · · •
1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000	10.3	$\begin{array}{c} 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 $	=C = 3892.3 K
	20.3	13' 20'	-
	19.2		
	19,7	13' R+7.6 202 K	
	$\mathbb{R}^{n} \xrightarrow{\mathcal{R}^{2}}$	·+ /3'	
		13 13 14 61	
	13,0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
•	18.0		
	15.0	(3)	· · · · · · · · · · · · · · · · · · ·
	17.4	/3	
	16 2		
	16.3		i i i
		7	· · · · · · · · · · · · · · · · · · ·
	16.3	6	· · · · · · · · · · · · · · · · · · ·
	16,0	-5	
	12,8	4	i i
	15,5		
	15.5	3 - 12 - 12	i i i i i i i i i i i i i i i i i i i
un Karra. L		2 13	
	7.6		
	<b>Ι</b> τ. Ι	c .	
	2=201		
ر به محمد محمد ا			
; .			
			· · · · · · · · ·
! • :			
1			
	A set of the s		

CONSULTING ENCINEERS 1905 Sector Houston, Texes 27006     TOP, VIEW ENVE POLSAL     Job #       103     104       104     105       105     106       105     106       106     106       107     108       108     108       109     108       109     108       109     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       100     108       101     108       102     108       103     108       104     108       105     108       106     108       107     108       108     108       108     108       108     108        108     108 <th></th> <th>ASSOCIATES, INC.</th> <th>Job Name</th> <th></th>		ASSOCIATES, INC.	Job Name	
	2905 Sackett	ERS	Architect	103 <u>103</u>
	T			المالي الذاب في من من من من من بالمالي التي المالية في المالية المالية المالية في المالية التي التي المالية ال
$R = \frac{1}{12} \frac{1}{1$		4-6		
$R = \frac{1}{12} \frac{1}{1$	E E E E E E	· · · · · · · · · · · · · · · · · · ·		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32.8			
$R = \frac{1}{12} - \frac{1}{$	3,2,6		24. 15	R= 677.6 K
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.3		(3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.3			2 File 1 16513 -1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.3		13	
$   \begin{array}{ccccccccccccccccccccccccccccccccccc$			13	
$   \begin{array}{ccccccccccccccccccccccccccccccccccc$			1	· 7 M 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1 1) (170 1) Tu 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(8	$(67,6)(1,6)(1,6,1) + \frac{1}{5},40$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			traditation de la serie de	FAB 60 - 100 TUB 50
$R = \frac{28.7}{21.0}$ $R = \frac{13}{104}$ $R = \frac{13}{104}$ $R = \frac{11}{104}$ $R$			in the second	5
$\frac{1}{22.0}$ $1$	25.7		· · ·	
$\frac{1}{22.0}$ $1$	R 28.7		· · · · · · · · · · · · · · · · · · ·	TAIS = 104 - 1121,2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23.7		1 13	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.0		13	3V = R + 11.4
$ \begin{array}{c} 22.0 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 2$	27.0		:3	V = 229.74
$ \begin{array}{c} 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 25.1 \\ 24.a \\ 3.a \\ 4.a \\ 4.a$	26.0		,	a a a a a a a a a a a a a a a a a a a
$ \begin{array}{c}                                     $			13	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c}                                     $				
$ \begin{array}{c}  27.9 \\  22.9 \\  72.7 \\  72.7 \\  72.7 \\  11.4 \\  60' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  10' \\  1$		•	6 · · · · · · · · · · · · · · · · · · ·	
$\frac{22,9}{22,1}$ $\frac{13}{12}$				
$\frac{72.7}{1.4}$ $\frac{3}{1.4}$ $\frac{3}{1.4}$ $\frac{3}{1.4}$ $\frac{3}{1.5}$ $\frac{13}{1.5}$ $\frac{13}$			4 24 24	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3	
$F_{AB} = \frac{F_{AB}}{2243K}$				
$F_{AB} = F_{AB}$ $F_{CO} = F_{AB}$	11.4		15°	· · · · · · · · · · · · · · · · · · ·
$F_{CP} = F_{AB}$	40'			
$F_{CF} = -F_{AB}$ $F_{CF} = -F_{AB}$ $F_{CF} = -F_{AB}$ $F_{CF} = -F_{AB}$			1121,34	
$F_{CF} = -F_{AB}$ $F_{CF} = -F_{AB}$ $F_{CF} = -F_{AB}$ $F_{CF} = -F_{AB}$		17.43 le	Fey = - FAIS	
+ AB = 2243F		FEF FAB		
	+ Frank Feb	· · · · · · · · · · · · · · · · · · ·		
1121-3E	112	224.3F		
	[121-24			

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett Houston, Texas 77006

Ø

i

Job Name TENS CANAGE TIN.

104

TYP. STRONG ALLS POLINL Job # 4:4 i. ĸ . ; . 36.5 R 2 36.0 24 36.0 23 36.0 ; 2.7. 3 36.0 24 ţ 35.0 • 3 ŵ J 7 24,0 1ⁱ 3 3-0 诗 34,0 49 ŧ i 32.0 16 İ . ١. 33.0 15 į 32.0 14 ł ł 82.5 13 į 50.7 12 30.0 łį 30,0 {\scimete{c}} Ì. 21.0 q 28.0 3 78.0 -1 ţ. 73.0 6 26.5 ł 25.5 2515 3 1 25.5 7 75,4 ¥ ۲, -V Ÿ. -55 20 20! 30 اورد 30 30 - [1-1 312. FAB FAB + 1:48 + 1 46 72.2K - 144.4 E - 215.6 # - 185.81 3 FA3 4-12,2K + FAB 144.4 1 R= 751.5 216.6 4 283,84  $\frac{\Sigma F_{11}}{F_{1}} = \frac{1}{2} ; \frac{129122}{7515} = \frac{172.9}{5} ; v$  $\Sigma M_{A} = 0$ ;  $(7151.5)(172.7) + (3F_{AB})(30) + (F_{AB})(30) + (F_{AB})(30)$  $+\left(\frac{f_{AB}}{4}\right)(40) - \left(\frac{f_{AB}}{4}\right)(150) - \left(\frac{f_{AB}}{2}\right)(180) - \left(\frac{3f_{AB}}{4}\right)(710) - \left(\frac{f_{AB}}{4}\right)(740) = 0$ 751.5+25.4 : 13 97.1 K V = · FAB = 288.8 E

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sockett Houston, Texas 77006

Job Name TEN-TEN GARAGE INV. 105

Architect ____ TENNECO REALTY

Job #

		· ·								<b>.</b>						· ···			•
	•••		• •		•		·			•				• -	۰.		•		
				• • •				•	· •	•	•		•			·	1. · ·		
	. <b>.</b>							• .	÷,		· ·			5 7		·	•		_
		÷		• •	• •		·		·	-		·		MOISSERAMOD -	(F)				
• ••		•	2 50	51211-		L'bzz]	· it	622	•	ড	114	<u> </u>	, i	- Compression	2				
	· -		-288.8	51211-	<b>.</b>	5.422-	s't	m2+		151	211+		+	- 3	5HEAK				
			-			<b>.</b>		• •				-		•••	•				
•				- 216. G				 :	•	<b></b>	45			rey.	• •				
	: .				<b>.</b>	, -							•••		• ,		• •		
, 	. ·	•		40	· -	• • • • • • • •		• •	· · ·		• •	-	-	•	• .		•		
· · · · · · ·	. <u>.</u>	•		-144.4	· - ·	· 0	THAS O	· - · · · · · · · · · · · · · · · · · ·		· 🔶 -	39			.: -	i		• • •		•
	<u>.</u>	•						·		-	•		-	•	• •				
-	5~~		•			•••	1	I			•		•••					•	
	jc 1		~ '	- 72. 2       			Two 4	· · · ·	<b>.</b>	• <b>•</b> -	•		• • •		• • •			-	•
•	REACTION			· · ·	•			• •	• • • •										
•	OAD	2	· · ·									-							
	PO1					· · · ·	31449		· ·			240	· · · ·		•••	÷ -			
	9	<b>.</b> .				•		••••••						•	• •				
	MINT			+ 72.2 [97.1]		<b>∽</b>	31 44 0	•	• • •	6	•		· -	•				• -	
			· ·	• • ·				• •					·	•		-	•		
·			• • • •	4.51		14721	11		• - •		•.	-		• -	-	• •			
·			· • •	144,4	) .	5.2986-	0			¢			• •	-	• •				
				*		C (081 -		82+		-		1. •		• •	-			,	
			•	Πe		· · ·			•			ŀ	-		•			• •	ļ
			•	4.216.6	)	•	-		•	φ									
•••			• •	· •		· · ·						-					•		
• •			0.	· [5]	<b></b>	L'622		L'622	[		19.41		<b>.</b> .	•••		•			
			8.837+	· £'IZ 17-		£'622 -	- 1 -	£'\$22t	• • •	- [E·	1271 +		1		<b>-</b>		. <b>.</b>		
. •			•			·		•			-	• - •				• •			
	•		,	• • •		• • •••		-		ų.	• -		• .		•				
				• .	i.	••••••		•	•	•			•		•				
		.*	<b>1</b> 2	• • •	<u>}</u>		,00/	•		-+			• •	•		. <b>.</b>			
				• •				· .		•						•			
						• •		•		•			• •						

#### APPENDIX II

## Basis for Final Design: THREE RIVERWAY

- 1. Typical floor plan sketches
- 2. Rigid frame elevations
- 3. Preliminary proposals



# 1. Typical floor plan sketches

WALTER P. MOORE & ASSOCIATES,	INC. Job No	ome THREE RIVERY	
CONSULTING ENGINEERS 2905 Sackatt Houston, Texas 77006		ect <u>S. F. Morris</u>	, 108
	FLOOR PLANG		+ dol
			· · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · ·		
CONCRETE SCHE.	N.IE.	n na	• • • • • • •
	· · · · · · · · · · ·	· · · · · · · ·	به به این محمد ۱۹ ب
	· · · · · · · · · · · · · · · · · · ·		···· · · · · · · · · · · · · · · · · ·
	Ø		
			3
	·····		$\sum$
6	SHEAR WALLS		100
(3)	, STOP (	3 13th FLOOR - 3	
		: : 	1
		• • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
	273'-4"		
STEEL SCHEME			
	(2)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	9		
	• • • • • • • • • • • • • • • • • • • •		Ø .
6/	K-BRACEG		
			100
			hanna a bara a
	STU STU	SP @ 15" FLOR	
(5) x = h = h = h	· · · · · · · · · · · · · · · · · · ·		
			· · · · ·
	V	:	
	• • •		· · · · ·
	• • •	•	4

# 2. Rigid frame elevations

·

. . .

.

WALTER P.	. MOORE & ASSOC	IATES, INC.		THREE PIVERWAY	
CONSULTIN	IG ENGINEERS		Architect _	S. I. MORENS	110
Houston, Te	exas //006				Job #
		APPROX, SAME	E LELATIVE STI	FFNESS	······
	FRAME (	D (WIND	IN NARROW FACE	FFNESS ) FRANTE (2)	
		- • • • · · • • · • • • •	· · · · · · · · · · · · · · · · · · ·		•
	4	e e construir constru E e e e e e e e e e e e e e e e e e e e		• • <u>-</u> . • •	• • ••
	n na kan sa na kan kan kan na sana sa sa Sa ta	••••• ••••••••••••••••••••••••••••••••		······································	
	· · · · · · · · · · · · · · · · · · ·	• • •	· · · · · · · · · · · · · · · · · · ·		
	n - En Standard Bernard Standard Bernard Bernard Standard Bernard				
<u>.</u>			• *		•
			m ² 21		······································
			- 20		· · · · · · · · · · · · · · · · · · ·
			18		. ·
			- 17		
			- 16		
			- 15		
	-		- 13		
			-/2		
· - <del> </del>					·
			9		
•			7		
			6		/
			~ 4		
			3		
			96		
· · · · · · · · · · · · · · · · · · ·			× B		
		та с стала на мак и стала на	۹ و ۲۰ ۲۰ سرا <u>بس پیر اند</u> مسور ۱۹	1 ^{(K} ) 1 ^(K) 1 ^(K)	· · · · · · · · · · · · · · · · · · ·
. 26	-l zb j z6-	1 =6-3 = 26-8	· · · · ·	26-8 . 26-8 . 26-8 . =	6-8.268" =6-a
		• • •	•		· · ·
		• •	• • •		
	· :	: .			
ļ			• • •		

WALTER P. MO	ORE	& ASSO	CIATES,	INC.		Job Nam	e	THY2EL	FILED	RWAM		
CONSULTING 2905 Sackett Houston, Texas						Architec	t	5.I.	MORP	15	111	
· · · ·				FRAF	IE REL	ATTVE ST	IFFNS	55		-	lob #	
 						ED IN B				· · · · · · · · · · · · · · · · · · ·		
	• • • •	• • •	• •		,,,			na).	•	- •	· . ·	
	• •	FRI	11-15	(3)	· .	• • •	4 · · ·	, F,	CAME	(4)	· ·	
·					·						ана стана 1917 - Стана Стана 1917 - Стана С	
		1	· · · ·		· · · ·			•		• ••	•••	
• • • •	•							······································	• • • • • •	• • • •	•••••	
								-	• -•		• • •	
					•	-	1	1	• • •		•	
Ø					1				• ••••	· · · · • · · · •	•	
	N.									;		
20	1							-	····· • · ·····	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	-
			0.25				·	· • •	- *			
	1		0,25			•			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	••
			0125	0,33 -					••••	•	• • • • •	
17			\	0,33	ļ	·····	··· •··· •· · ·					
							· • • • • • • • • • • • • • • • • • • •			· · · · · · · · · · · · · · · · · · ·	· • • • • • •	-
	•				0.4	· · · · · · · · · · · · · · · · · · ·				ه ۲۰۰ همیند م : :	· · ·	
14								••••••••	• • • • • • • • • • • • • • • • • • •			
 13												
											···· · · · · · · · · · · · · · · · · ·	
			i.							· ••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	
10									· · · · ·	••••••••••••••••••••••••••••••••••••••		
								····• ····•	····· • • • • • • • • • • • • • • • • •	•		
8					0.4						······································	
					014	0.357	· • • · · · · · · · · · · · · · · · · ·	· · · ·	·		+ 0,214	•. •
0						0,384		··· · G	<u> </u>		0,23	
	:	i						1			0,25	• •
3						0.42					0.267	
	3					0.467			-		0.267	
G	2						·	 :				
6, 6	Site						i	G				•
			· · ·					ß		23'		
• •		31.5	18.85	18.85	2z'		••••••••••••••••••••••••••••••••••••••			2.3	• • • •	
	•	, .			•			•	· ·		•	
		i ,			•	· .	· •	•			• • •	
•		· · ·			•	•	• •		• •	• •	· · · ·	
				• •		• •	· · · ·			÷ .		
		· •		• • • i				· · · ·	<b>.</b> .			
· ·		· · · · ·		• •				· • ·		• •		•

. . . . . . .

	WALTER P. MOORE & AS	SOCIATES, INC.	Job Name THPEE RIVER,	
	CONSULTING ENGINEER 2905 Sackett Houston, Texas 77006	25	Architect 5.1. MORRIS	112
		FRAME RELATIVE	STIFFIJESS	Job #
	· · · · · ·	(WIND APPLIED		
	<b>.</b> .			1
				· · · ·
	FRAME (5)	FRAM	7E (G)	• • • • • •
	<u> </u>	۰ <u>۱۰۰۰ میں محمد میں محمد میں محمد میں محمد میں میں میں میں میں میں میں میں میں میں</u>		
				ания В со макта и со макта С в со макта и со макта В со макта и со макта В со макта и со макта В со макта и со макта и со макта и со макта В со макта и со макта и со макта и со макта В со макта и со макта В со макта и со макта В со макта и br>В со макта и
		· · · · · · · · · · · · · · · · · · ·		······································
				•
et e s	· · · · · · · · · · · · · · · · · · ·			
		R	1.0	
		21 1	Ø:67	· · · · · · · · · · · · · · · · · · ·
•••	0,33		0.67	• • • • • •
· · ·	0.25		······································	
	0,25		0,5	
	0.22		0,44	
	0,22		0,44	
	0,20-		0,4	
antino - po 1		-14	0,4	
		13		na na na ha sana ha sa
		//2		
. 1		//		
		4		· · · · · · · · · · · · · · · · · · ·
· · · · ·		0		
e terrar	0.2	0	0.4	
	0,143	6	0,286	
	0,153	5	0,23	
··· .	0.167	<i>u</i>	0,167	· · · · · · · · · · · · · · · · · · ·
	0,167	3	0,1	• • • • • • • •
•	0.167	-2	0.1	
		G g		••••••••••••••••
		6 1 1		. <b></b> .
F	3°,	ананананананананананананананананананан		• • • •
		26	26 24	
		• • • • • • •	•	
		· · ·		
	the second s	n An ann an a	n de la companya de l La companya de la comp	• • • • • ·

Preliminary proposals

.

113

.

בינע איור	the second	21014 21014 91014 91014 91014 91014	+ 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10	*++ 6/2 *+26/2 *55/261	× 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
SUCK WALLS	*+ C. 1. C	++6/12 ++6/12 ++6/12 ++6/12 ++6/12 ++6/12 ++6/12 ++6/12		*561657 *4.612 *4.612 *4.612 *4.612	¥500 € F #5012 ¥5026 ¥5012 ¥60865	±€€8€€ #5€02
SCHOOKE SURVEY NU SURVIN	45012EF 44016 45012EF	460/26F 460/26F 440/26F	4807.6F 4807.6F 4807.2F 44012 7		*88666F #5802 #5802 #5802 #5802	
7			HENT HENT HENT HENT HENT	Here Here Here Here Here Here	Hent Hoorz Hoorz Hoorz Hoorz Vanz Vanz Hoorz	
E SCHEVE	24×24 24×24 24×24	24×24 24×24 24×24 24×24 24×24 24×24 24×24 24×24 24×24	24×124	OF WE OF	30x30 30x30 30x30 30x30 30x30 30x30 8-011 8-012 8-012	30×30
CONCRATE	24×24 4 40 22 4 40 22 24×24	40.22 24×24 24×24 24×24 44×11 44×11 44×11	24×24 24×24 4.4/11 24×24 2×23 3×33 3×33 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 44022 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 4402 44	30730 30730 6.411 7.4821 30730 30730 30730 30730	16-411 16-411 16-411 16-411 16-411 16-411 16-411 16-411 16-411 16-411 16-411	30×30
	51.12 Her 511. Ties Sac Ver1511. Ties Sac	1145 1145 1145 1145 1145 1145 1145 1145	Sate Sate Sate Sate Sate Sate Sate Sate	1687: 374. 1687: 374. 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17185 17	HART STL HART STL FILES STLE HART STL HART STL H	-5726 Vert.Sr. Vert.Sr. Vert.Sr. Ties 5126 Ties Ties
	2015 - 21 - 2 - 21 - 2 - 21 - 2 - 21 - 2 - 2	19-10-10-10-10-10-10-10-10-10-10-10-10-10-			2007 2007 2007 2007 2007 2007 2007 2007	0-E) 0-94 9-14 14 . 14 . 14



SCHEDULE	SHEDULE	RINE \$ 4.	20.24 H.	22.0 #/A	22. ct/f.	25.7#/4.	31.3 #/H.	24.7#/4.	29.7 1/4.	21.6# / A.	15.9 #/#	22.3 4/4	25.9#/A	22.8#/H.	31.3#/44.	19.14/14.	1.1*/4.	33.5#/A	22.3#/4	33.2#/4	90#/H.	112#/4
	DEAM S	SIZE	Bexde	30×36	30×36	36 X 42	36×42	36 × 42	36×42	30 X 36	30×36	36×42	30 x 36	30×36	36×42	JEXOE	24×36	36×42	36 × 42	36 ×42	60X 42	60 X 4 Z
R alkork	NKAS	(202)	0.95	24-6	29-0	32-0	35-0	28-0	0-9	27-0	20-02	29-0	38-0	20-0	25-0	27-0	U-0	38-0	20-02	36-0	25.0	30-0
TRANSFER	FLOOR			4	2151 FL.				miller	i			10//1			1824	Ĩ	とき	16th F.	150'AL	CTV C	



140 0-001 14H 0-011



MAP FLAME SCHEDULE (139 and the schedule (139

ART	RAT SECTION	MA/ CONS/KUC/10N AREA = 2620F #.R. 3 RIVERWAY - SI. MORRIS SCHEME 2 (SMUL) 5	7	Preliminary
-----	-------------	---------------------------------------------------------------------------------	---	-------------

W 24.68	W 24, 76	W 27.94	W \$0.99	801"0% M	W 30-116
W24.55	W 24 × 55	W24.61	W24 *74	W 27. B4	N' 27×94
ar\$12 5000	1241 1 81 4 b'	KD 150 140	111 121 281	112 6 1 2 1	47.53.24

#### APPENDIX III

Complete Structural Design of Buildings

a. Science and Mathematics Center/Junior College - COMMONS BUILDING

1. Development, site, and architectural plans

2. Design calculations

3. Structural drawings

### b. SMITH PARK PAVILION: Structural drawings

a.l. Development, site, and architectural plans

*.* 

.

KINGDOM OF SAUDI ARABIA MINISTRY OF EDUCATION



JAMES M. SINK ASSOCIATES Planners and Architects

118 المملكة العربية السعودية وزارة المعارف مركز العلوم و الرياضيات/ الكلية التوسطة

#### INDEX OF DRAWINGS

ARCHITECTURA

A7-2-1	Kay Plan	1:5
A7-2-2	See Plan Sector No. 1	13
A7-7-3	Sile Plan - Sector No. 2	11
N-24	See Plan - Esterior Courts	1.1
A7-3-1	Floor Plans - Dormstony	
A7-3-2 A7-3-3	Floor Plan/Building Sections — Common Reflected Ceiling Plan Floor Plani Internat	
~~,,,,	Din ston - Common	
A7-34	Roof Plan / Floor Plans Internor Elevation - Common	
A7+1	Enterior Elevations Building Section - Durmany	
A7-+2	Extensor Elevations Flax Plan Intensor	
	Elevations - Communs	
A7-5-1	Building Section - Common	
A741	Wall Sections - Durmatory	
A74-2	Wall Section - Domision	
A74-3	Wall Section - Domitiony Tright Section - Common	
A7+5	Wall Section - Common	
A7++	Wall Section - Common	
A7-01	Floor Plans Interior Linution - Dormalony	
STRUC	TURAL	
\$2-1-1	Conveal	
57-2-1	Key Plan Foundation/framing Plans - Dormalony	
\$7-2-2	Foundation transmig Furn - Domainy	
52.24	Framing Man - Foundation/Cround Level - Cammons Framing Man - Rool - Common	
\$7-1-1	Sections - Dormalony	
\$7-3-2	Section - Dormeony	
\$7-1-1	Section - Common	
\$241	Schudules	
MECH		-
M7-1-1	Legends Symbols Abbreviations	
M7-1-2	Se hedules	
M7-2-1	See Man - Dormeony Complex - Sector 1	1.30
M7-2-2	See Plan - Dormeory Complex - Sector 2	- 1.20
M7-3-1 M7-3-2	Floor Plans — Type al Dormalay Floor Plans — Type al Commons	
M7-3-3	Floor Plans - Type at Commons Floor Plans - Mins hans at Burnton - Commons, Dormat	~
ELECTR	CAL	
17-1-1	Logond. Symbols	
17-1-2	Divinibulium Duagram Schedules	
[7-2-1	See Plan - Dormelony Complex - Sector 1	1:200
17-2-2	See Plan - Dormeory Complex - Sector 2	1.300
[7-]-1	Floor Plans - Typical Dormalary	
17-3-2	Floor Man - Typical Common	
[7-}-]	Power Plan Common Kachendenung Auss	
PLUMBI	NG	
P7-1-1	LegenduSchedules	
P7-3-1	Floor Plan - Typical Dormstony	
P7-3-2	Floor Plan — Typical Domisiony Floor Plan — Typical Common	
P7-3-3	Floor Plan - Typical Common Rachen	
OVIL		
(7.71	See Plans - Paving/Grading/Senctures - Sector 1	1:200
(7-2-2	See Plans - Paving Grading Seuchares - Sector 2	1.200
LANDSC		
17-2-1	Sae Plans — Plant Material — Sector 1 Sae Plans — Plant Material — Sector 2 Sae Plans — Ingainos System — Sector 1 Sae Plans — Imgalion System — Sector 2	1:200
17-2-2	See Plans - Plans Material - Sector 2	1.200
L*+	See Plans - Irrigation System - Sector 1	1,200
14.43	See Plans — Imgalion System — Sector 2	1,000
FOOD SI	RMCE	
10-1-1	Legend/Symboli/Ceneral Note/Equipment Schedule Floor Plan	
	noor man	

SINGLE STUDENT HOUSING





### a.2. Design calculations

l

	WALTER	P. MOORE & ASS	OCIATES, INC.	Job Name	SMC/JC	1.2.1111.1.12.1.12.1.12.1.12.1.12.1.12
	CONSUL	TING ENGINEERS			JAHES M. SINK	122 ASSOC.
	2905 Sac Houston,	kett Texas 77005	COMPANY Rom			
						Job # 1301
<i>Ι.Π.</i> Ι		(14.94m)	LIVE TT TOPPING	FUOFING	PCT	
	span -	47-0 Load =	30 + 77 + 35 Super 14P. LOAD = 70 PSF	+ 40 = 102		
					# OF V2" & UTCAL-US	
				2.400 TT 760 C	5D /s=	······
	· · · · · · · · · · · · · · · · · · ·			(m) (19m)	composine -As =	
1172		(14.94-)	- LL TT Topping	Foofius		<b></b>
	Span -	49:0' Load =	30+77+35 + 4	20 = 182 P.	SF	
	· · · · · · · · · · · · · · · · · · ·		SUPERINY LOND = 70 PSF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · · ·
				.300 TT 760 C	$5DA_s =$	
	: 				A _s =	
1Π3		(11.3m)		PooF1-16		
	Span -	37-0" Lood =	30+54+ 35 +	40 - 159 Ps	SF	
			SUPERINT. LOND = 70 PSE		<b>v</b> =	
				1.400 TT 460C 4.1	D A _s =	
					-A _s =	
1174		(11.377)	TT	2		
	Span	37-0" Lood =	30 + 54 + 35 + 4	0 - 157 P	SF	
			S.PERIMP. LUXO: TO PSF		<b>v</b> =	
				2.300 TT 460 C.	4D A _s =	
					$-A_s =$	
1 17 5		(100)				
1115	Span ~	(10.0m) 32 0"1 ord -	-11 TT TARKS			
	<u> </u>	<u></u>			•	
			SUPERIMP. LOFE = 70 PSF		V =	
			<u></u>	2.400 TT460 CF	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	-A _s =	
116			LL TT. TOPHNG BO			<u> </u>
	Span –	22:0 Load =	30 + 54 + 35 + 40	· · · · · · · · · · · · · · · · · · ·		
			SUPEZIAP. LOAD = TO PSF	in a second s	V =	
				2.400 TT 460 C	$25 A_s =$	
	· ·				-A _s =	
117_		(6.7m)	-FF IL LOLDING EDOLM			
	Span —	2210 Load =	30+54+35+40	= 159 PSF	د معنی میں بنی ہے۔ محمد استان میں	
			GUDDE MP. LOAD - TO PSF		<b>v</b> =	·····
	н н Н Н 1				A _s =	
				2.275 TT 460 C		
ITTO I		(6.7m)				
	Span -		30+54 + 35+		™ ( ) <del>,</del>	
			puper impi Loxy = 70 psf	· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·		e groot e a androno		
in in it.	••• ••	يون بالي ميار مرجد من من من م		200 17-460 02	$A_3 = \frac{1}{2}$	

	Houston, Texas 77006			AL .	TAMES M.S	123 INK ASSOC.
17179	(6.7m)		COMMONS RO	DOF FORM	)(3	Job # 1302
	Span - 22-0" Lo	ad =	11 T- Tomi-6 30+ 54 + 25	ROOFING		
				$+ \lambda n$	159 PSF	
		1.1	TOP TOP	SF		
		1	2.0	75 TT 460C 2	$A_s =$	1
	Span - Lan					
	Span – Load	3 =				
					V ==	
					A _s =	
					-A _s =	
SI	pan - Load -	=				
					Y =	
					$A_s =$ $-A_s =$	
Spa	n - Load =	+				
		+			v =	
					A _s =	
Span		1			-A _s =	
opun		! 				
						· ···
				-		
					A. =	
Span _	Locd =				1 I	
				····		
					s=	
Span _	Load =	- 1		-A	5	
		··		······································		
41 4				Ac		
		! !		-A.		2 
Span _	Load =	· · · · · · · · · · · · · · · · · · ·				
*¶       }	the second se					
				oli IIIII V m Noti IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
Heren Arrana i j		 		A _s =		
				$-A_s =$	. į i	

	WALTER P. MOORE & ASSOCIATES, INC. Job Name <u>5MC / JC</u> CONSULTING ENGINEERS 2905 Sackett Houston, Texas 77006 ··· COMMONS BOOF FRAMING J' = 4000 Psi Job # 13025 Span - Load =
	v =
	-A _s =
251	1:50° (2:15 m) LIVE POFING SLAPS D115 ULT D161
	$\frac{7.63}{V = 1} \frac{2000 - 20740}{212} \frac{7.63}{F} \frac{1}{12}
6"(150 mm	$M_{m} = \frac{212}{5}, \frac{9.6}{5}, \frac{12}{8} = \frac{29700}{7} - \frac{11}{5} K = 99$ $M_{10}A_{5} = .178 \text{ in}/\text{FF}(3.17 \text{ cm}/\text{m}) 12 \text{ e} 30$ $-A_{5} = -A_{5} = -A_{5}$
252	$\frac{d=5.0''}{(2.7m)} \underbrace{Live \ Factures \ = 2LAB}_{\text{Span} - 8.9'} \underbrace{Load = 30 + 40 + 75 = 145 \ PSF \ L 30 \ = 212 \ PSF \ L 51}_{\text{Span} - 115}$
W2/11	$V = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{11} = \frac{1}{12} \frac{1}{11} \frac{1}{11} \frac{1}{11} = \frac{1}{12} \frac{1}{11} \frac{1}{11} = \frac{1}{12} \frac{1}{11} \frac{1}{11} = \frac{1}{12} \frac{1}{11} \frac{1}$
6-450	$-M = \frac{W l^2}{g} = 18,000 \# - m  K = 60  R = .13^{3/3} - A_{s} = .102 l w^{2}/F + (2.16 cm^{2}/m)$
253	$\frac{d=5.0^{\circ}}{12.1m} = \frac{1}{10E} \frac{1}{200} \frac{1}{10E} $
	$\frac{1}{V} = \frac{1}{L} \frac{1}{16} \frac{1}{PLF} \frac{1}{PL$
JL /11	$M_{u} = 212 \times 6.9^{2} \cdot 12/11 = 11,000 \# - \mu  K = 37  \text{MinAs} = -1781 \times 7/\text{Ff} (3.71 \text{cm}/\text{m}) 12 \text{C}^{3} + -\text{As} = text{As} =\text{As} =\text{As} =\text{As} =\text{As} =\text{As} =\text{As} =$
MAB-BH HETUEEUL	$d=5.0^{\circ}$ (4.7m) LIVE DEAD Span - 15.4' Load = 257 + 910 = 1147 PLF; ULT D 1274 1677 PLF 1 403
253-254	$V = \frac{1}{2} $
UL2/8 (1070,150) 4/3×6	$M_{u} = 1677 + 15.4^{2} + 12/8 = 596.576 \# - * = 519 = 117 / A_{s} = 3.6510^{2} (24u^{2}) = 8-20$ $-A_{s} = -A_{s} = -$
254	$\frac{d=5.0^{\circ}}{(3.2m)} \qquad \text{LIVE Pool ING SLis} \qquad \text{PIIS VLF} \qquad \text{PIIS INF} \qquad PIIS IN$
	V = V 12.0300
	$M_{\rm M} = 212 \times 10.50^2 \times 12/11 = 25500 \# -11  K = 35  H_{\rm A_{\rm S}} = 2.17810^2/_{\rm Ft} (3.77 \text{cm}^{1/2}_{\rm m}) / 2030.$
6 (150 mm) 255	$H = \frac{\omega L^2}{9} = 23300 \text{ # -n}  \text{$K = 36 \ \text{$R = .27\% - A_s = 0.162 \ \text{$m^2/\text{$F$}$} (3.43 \text{$cm^2/\text{$m^2$}$})}$
	$\frac{d_{2}5.0^{\circ}}{(2.95 \text{ m})} = \frac{210E - 200FING}{10E - 200FING} = \frac{54AB}{15} = \frac{115}{15} = $
wt/11	Mu = 212, 9.66, 12/11 = 21600 # - " K=72 HAS = 0.18 13/Ft (3.770m2/m)/2030
1. (150 mm) 1.56	$-A_s = \frac{1}{2.5 \text{ m}}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
JE/11	$M_{\rm IL} = \frac{212}{3.2^{+}} \cdot \frac{3.2^{+}}{12} \cdot \frac{12}{11} = \frac{15600}{4} + \frac{1}{12} \cdot \frac{52}{12} \cdot \frac{1}{12} \cdot \frac{3.7}{11} \cdot \frac{1}{12} \cdot $

	WALTER P. MOORE & ASSOCIATES, INC. Job Name SMC /JC
	CONSULTING ENGINEERS 2905 Sackett Architect JAMES M. SINK ASSOC.
1	Houston, Texas 77006 " COMMONS ROOF FRAMING Sc = 4000 PSi Job # 13025
257	d=5.0" (2.7m) LIVE POUFING LLAB
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
W12/16	
6" (150~~	$-M = \frac{WL'_{10}}{10} = 15500 \# - K = \frac{15500 \# - K}{10} = \frac{1500 \# - K}{10} = 1$
258	$\frac{d=5.0^{*}}{\text{Span}-6.56'} \frac{2.0\text{m}}{\text{Load}} = 30 \pm 40 \pm 75 = 145 \text{ PSF} = 30 \pm 212 \text{ PSF} = 161$
	$\frac{Span - 6.56}{V = 1} \frac{L aad}{PLF} = \frac{30 + 40 + 15}{15 = 145} \frac{145}{PSF} \frac{15}{L 30} \frac{212}{212} \frac{PSF}{PSF} \frac{1}{L 51} \frac{107}{1263aa}$
w12/11	
6" (150 mm)	-A. =
2B1	d=26° (4.7m) ROOF BM+PARAFET GLOOPUT ULT
	Span - $15.4$ Load = $143$ 144 144 L 243 144
w12/11	$V = \frac{p}{L} \frac{9271}{871} \frac{\#}{4}$ $M_{\text{tu}} = \frac{1447}{15.4^2} \frac{15.4^2}{12.11} = 375,000 \# - \# K = 70 \ \frac{1}{10} \text{M}_{\text{s}} = 0.7 \text{ I}_{\text{s}} \frac{1}{4.52 \text{ cm}^2} \frac{1}{2.424 \text{ m}}$
(200-750)	$\frac{11}{13 - 10MM @ 50/6 @ 165/2 @ 600/ -M= WC/10: 419650 #-4 K=76 MLAs = 0.62 W2 (4.02m2)$
8, 29,5"	$d = 26^{\circ}$ (4.1m)
	Span - $15.4'$ Load = 1 143 PLF 1447 PLF 4 243 PLF
1.2.	$V = L \frac{1871}{1871} \frac{4}{4}$ $V = 54Psi 2920$
JL2/16 [200, 750]	$\frac{M_{u}: 1447 \times 15.4 \times 12/16 : 253; \# -11 \times 43  M_{IV}A_{s} = 0.7 \text{ W}^{2} (4.52 \text{ m}^{2}) 2 \neq 24}{18 - 10 \text{ M} \text{ M}^{2} 50/6 \text{ C} 165/2 \text{ C} 600 / -A_{s} = 0.7 \text{ W}^{2} (4.52 \text{ m}^{2}) 2 \neq 24}$
283	-As = H= 27" (5.0m) H= 27" (5.0m)
602	d= 27" (5.0m) = 0.000 = 0.000 PLF 0 LT = 0.1204 PLF END OF CANTILIVED Span - 16.4 Load = 143 PLF 1447 PLF L 243 PLF Vent. 57 rsi 1447 #11 2000 X = 12.000 TLF Vent. 57 rsi 1447 #11 2000 X = 12.000 TLF Vent. 57 rsi 1447 #11 2000 X = 12.000 X = 12.00
	$\frac{1447 \# 1}{8.2^4 \# 1373^2 \oplus 12594}  \frac{10}{16.4^{12}} = \frac{10}{1405} = \frac{10}{2} = 10$
wil/3	$M_{w} = 1447 \times 24.6 \times 3.2 \times 12/3 \times 16.4^{2} = 329.000 \pm w = 31$ $M_{w} = 1447 \times 24.6 \times 3.2 \times 12/3 \times 16.4^{2} = 329.000 \pm w = 10.4^{2} \times 10.4^$
(300 x 765) 1.5"x-30"	$\frac{ 3-10MM}{250}/62165/2250/-M=504,000 \neq -*, K=55 -A_{s}=0.4412^{2}(2.3242)$
254	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$V = 42 \text{ psi}$ $Z \neq 24707$
wi/3	Mu = 3477 15,4 × 12 18 = 1,237, Ja H- + K=36 HJAs = 2.12, J (13.7:m) 2 \$30m.
10.1470) 117.59"	16-10 MM @ 50/6@ 240/1@600/ -As =
285	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Span = $16.4$ Load = $2.145$ 2910 PLF       247 PLF       Top $V = 56 psi$ $2 \neq 74$ $2 \neq 74$ $2 \neq 74$
w12/11	Mu = 2910, 16.4 × 12/11 = 354,000 to K= 55 HoAs = 1512 (2050) 230m
(300 x 915) 115 - 38 4	
.66	d= 76.4" (5.0) 0-1900 ME ULT 0-2662 PLF
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
w1/15	Mu = 29102 16:4 × 12/16 = 537,000 # -11 K= 52 MinAs = 1.5in (7.55cm) 2430 mm
Hans-9751	

·	WALTER P. MOORE & ASSOCIATES, INC. Job Name SMC /JC 126
	2905 Sackett Architect JAMES M. SINK Assoc. Houston, Texas 77006 COMMONS ROOF FRAMINY, f 4000 RSI 1-1- 13025
F	CONTINUES FOOT FRAFIDG JE-4000 FST JOB # 1-02 x
187	5:52.5" (5.0 m) Span = 16.4' Load = 145 pt 2210 PtF 1 247 PtF TPP 1
h .	Span = 16.4  Load = 145  pt + 2210  PtF + 147  PtF + 79  PtF + 247  PtF + 79  PtF + 2429
JE=/11	Mu = 2210, 16,42 12/11 = 648,500 #-4 K=20 HillAs = 2.07 102/13.4 cm2) 2,430
1330,1410,	16-10 MM @ 50/6 @ 300 /12500/ - M= W1/4 = 1,046,000 #-* K=32 MILAS = 0.62 IN2 (4 cm2)
253	1=52.5" (6.4m) EOOF BM PARAPET \$pan = 21.0' Load = 2145 BM PARAPET \$pan = 21.0' Load = 2145 PLF VLT D 1963 7LF 2210 PLF L 247 PLF
	Span = 21.0 Load = 145 2210 PLF L 247 PLF 70
WEZ/1	$V = \frac{1}{2574} + \frac{1}{2674}$
(500.1470)	
118:55"	
<u>107</u>	$\frac{d=21.6^{+}}{\text{$$$$$$$$$$$$}} (7.2.5) = \frac{1000}{200} = \frac{1000}{$
	$V = \frac{163}{100} \frac{1}{100} \frac{1}{100$
WL2/11	Mu = 1951 23.6 × 12/11 = 3,008,200 K=364 R= .72% As = 2,75 12 (17.8 cm2) 4-\$24m
1450,600)	24=10HH@50/6@140/5@500/ -H= W10 = 3,310,000 K=401 R=,3%-As = 3.0610 (19.73 cm2)
2810	d=21.6 (7.2%) D 2434 ULT D 4114 MCF
	Shan = 23.6 Load = MEI PIE 1 827 PIE
1	$\frac{1}{1} = \frac{1}{1} $
WL2/16 (\$50.600)	Mu = 4751 × 23.6 × 12, 16 = 2,069,000 # - R=250 = 63 As = 1.8410 (11.80cm) 4-420
17.7" 23.4	24-10HM @ 50/6 240/5 2500/ -As =
2 <u>B</u> 11	$\frac{1}{36''} = 5.0$ $\frac{644 + Paralet}{100 PLF}$ $\frac{1}{560 PLF}$ $\frac{1}{560 PLF}$
	$\frac{560  PLF}{V = -} \qquad \frac{10  PL}{2 - 20  M}$
w12/8,	Mu = 560x 5 × 12 /3 = 210:00 # - " Mind As = 1.18 m² (7.6cm²) 2-24 m
(250×975) -93"-73.4	10 - 10 - 11 C 170 /
2812	1:37" (1.5.n) BL1 WA!
	Spon = = 1) Eood = 23^3 PLF
112/2	V:1575 7 # V = 16 PSi Z\$2070P
WE/8 7150, 975)	Mil = 2703 x 52 12 /3 = 87000 # - K=6.5 HINAS = 1.2112 (7.5cm2) 2424 mm
98.33.4"	
2013	6225 - 12 /' Lead D 2116 # 436 ULT D 3512 PLF
	$\frac{3901}{12} = \frac{2375}{42/50} \neq \frac{1472}{4410} = \frac{1472}{4410} = \frac{1410}{12} = \frac{136}{12} = \frac{136}{2} = \frac{12}{42}$
w1=/11	Ma = 4410 , 23,6° , 12/11 = 2,630,000 # - K= 325 - 64As = 2.45 N= (15.3 cm) 3-\$26.
(450:600) 170 x 23.6"	24-10MM \$50/6@ 110/50550/ -M= W12 2,949,000 A. W K.357 R. 71% -As = 2.71102 (17.52 cm2)
	$d = 21.6^{2}$ (7.2 m)
	Span - 23.6 Load = 1 492 ULT D 3572 PLF
-wt2/16	V = 136 rsi - 2-\$24
lin .	M. = A10- 12, 12 /16 - 1.943.000 # - K. 224 1:,45% A = 1.65 12 (10.7. 1):3-\$24.

ļ

T	WALTER P. MOORE & ASSOCIATES, INC. Job Name SMC/JC
	CONSULTING ENGINEERS 2905 Sackett Architect JAMES M. SINK ASSOC.
	2905 Sackett Architect OAMES 19. STOR ASSOC. Houston, Texas 77006 COMMONS ROOF FRAMING Sc = 4000 PSi Job # 13025
B15	a=21.6" (7.2m) Roof BM
	Span - $73.4'$ Load = $12433 + 436$ ULT D 4017 PLF
	$V = \frac{1}{12364} = \frac{1}{12364$
WC/11	Mu = 4930, 23.62 12/11 = 3.026,000 # K=366 (=.73/As = 2.8 12 (18cm2) 4=424 mm
1450.600	24-10HM 850/68 140/52550/-M=WL/0= 3,330,000 #-" K=403, R= 8%-As = 3.06 12 (19.74 cm2)
2B16	d=21.6" (7.2m) DZ869 ULT D4017 PLF
L	Span - 23.6 Load = 2 566 4980 PLF L 963 PLF Ter
	V = 154 PSi = 2-26 L
WL/16	Mu = 4980 x 23.6 x 12/16= 2,081,000 # - ", K= 252, P= 41 (As = 1.871) 2 (12.1 cm) 3024
(450 . 600) 17.7 " 23.4	
2.B17	J=21.6" (7.2m) BH GLASS Sand D 300 PLF + 100 PLF = 400 PLF UL7
	$\frac{3pan - 24}{560 ptr}$
W2/11	$V = 27 \text{ psi} = 2420_{\text{m}}$
100×0151	$M_{II} = 560 \times 24 \times 12 / 11 = 352,000 \# - 11, K = 64 \qquad HINAs = .85 IN2 (5.5cm2) 2 (2000 m)$
1.3 23.	$\frac{24 - 10 HH}{250 / 6 (2140 / 5 (255))} - H = \frac{WL}{10} = 323,050 H = K = 71 - A_s = .41N^2 (2.3 cm^2)$
2B13	$\frac{J=21.6}{\text{Span}-24'} \begin{array}{c} DH \\ DH \\ DH \\ DH \\ OD \\ PLF \\ OD \\ PLF \\ OD \\ PLF \\ Sho \\ Sho \\ PLF \\ Sho \\ S$
	$V = 27 Psi$ $2 \neq 20 m$
12/16	Hu = 560 x 24 x 12 /16 = 242,000 #.", K=44 HWAs = 25. w2 (5.5 cm2) 2 \$20.
(200.615)	24-10HM @50/6@140/5@550/ -As=
-11.8-23-10 2B19	ATE TRAIN DECK IN EXTEND All REINE TO
	Span - 23.6 Load = $2750$ + 1060 - 027 - 560 - 027 - 560 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -
	$V = \frac{p_{82000} + p_{554}}{15300} + \frac{554}{2000} + \frac{554}{2000} + \frac{556}{2000} + \frac{1}{2000} + \frac{1}{2000} + \frac{1}{2000} + \frac{1}{2000} + \frac{1}{20000} + \frac{1}{20000} + \frac{1}{20000} + \frac{1}{20000} + \frac{1}{200000} + \frac{1}{200000} + \frac{1}{200000000000000000000000000000000000$
W12/14	May = 3030 x 23.62 12/14 = 3,3:00,000 #-0 K=235 (=46As = 2.04 102/13.2cm2) 3-426m
(200x 1000) -12x3-9	$\frac{5715K^{3}PS}{40-\phi12\ C^{50}/19\ 2180} = M=2550,000\ \#-\kappa\ K=155\ R=.35/-A_{s}=1.48\ \kappa^{2}(9.55\ cm^{2})$
2,320	1=37" (7.2m) (SEE TORSION DESIGN)
	$\frac{1}{275} = \frac{1}{275} = \frac{1}$
-11	V = 15300 = 220PSi 2.624 m
WL2/1'S	Mu = 8080 x 23.6 x 12/16 = 3,376,000 # - " K=205 (= .24% As = 1.812 (11.5 cm2) 3-\$24 m
12,37	$\frac{40 - \frac{1}{2} + \frac{1}{2}$
<u> B2 </u>	d= 26 (5,0m) EXTEDO AN REINF. TO Same 11 d' Lond D 860 PLF ULT D 1204 PLF END OF CANTILIDER
	$\frac{1}{V} = \frac{1}{1871} \frac{1}{47} = \frac{1}{1871} \frac{1}{47} \frac{1}{1871} \frac$
W2/16	$ V = \frac{9271}{1871} # \frac{6.4}{\Delta} = \frac{6.2}{1871} = \frac{7}{2} \frac{7}$
(200,750)	$M_{u} = 1447_{x} 16.4 = 12/16 = 292,000 \# - \# K = 54 \qquad HINA_{s} = 0.7 In^{2} (4.52 cm^{2}) = 2.420 - \# IS - IOMM (2.50 / 6 (2.160 / 2.600) - M = 5.84,000 \# - \# K = 103 \qquad F = .21\% - A_{s} = 0.4410^{2} (2.82 cm^{2})$
19.29.5" ILIVER	$d=26^{-10}$ (2.0 m)
TEXPAUSIC	Span - 654 Load = 1 114 PIE ULT D 1204 PLF
T-	$V = 4800 \neq 1 + 43 PLF = 1447 PLF = 23PS1 = 2-20 min$
(200.750)	
(1021)0)	

1 1 ----

T	WALTER P. MOORE & ASSOCIATES, INC. Job Name SMC / JC
	CONSULTING ENGINEERS 2905 Sackett Architect JAMES M. SINK ASSOC
1 1	Houston, Texas 77006 " COMMONS ROOF FRAMING JL= 4000 PSi Job # 13025
B22	d=21.6 (15m) PALADET
	Span - 14.76' Load = $p^{300} PLF + 733 = 1033 PLF$ 1454 PLF
wL2/8	V = 10730 # $V = 63 PSi 2-20TOF$
(100,530)	$M_{\mu} = 1038 \times 14.76^{2} 12 / 8 = 340,000 \pm K = 98 \qquad MINAs = 0.35 IN^{2} (5.5m^{2}) 2 - 420 m.$ $R = 1014H P 50 / (0.120 / 0.000 / -As = -$
7.9"x 22.5 B23	$\frac{1}{10^{\circ}}$
11	$\frac{BH}{Span - 16.4' \text{Load} = P 590RF + 345 PLF = 935 PLF  1310 $
	V= 10,750 = 23PSi 2.20mm
WL2/8.	$M_{a} = 935 \times 16.4^{2} \times 12/8 = 378,000 \# = \kappa = 20 \qquad \text{$$\mu$IJ As = 1.77; $$J^{(11.42:m^{2})} = $$\phi$24 $$$
11.8 42	16 - 10 MH @ 50/6 @ 250/1 @ 600/ -As =
2824	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Span - 75,4       Load = $2$ 143       143       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743       1743 <th1743< th="">       1743       <th1743<< td=""></th1743<<></th1743<>
w17/11	$M_{u} = 1743 \times 15.4 \times 12/11 = 451000 \# -n  K = 53  HIN A_{s} = 1.06 In^{2} (6.85 cm^{2})  2 - 24 M_{s}$
300 x 7:55) 11.8" 30"	18-10HH @50/6 @170/2@600/-M=WLZ= 496,000 + W K= 53 -As = 0.62 142 (4.0 m)
2825	$d = 27^{m}$ (4.7m)
	Span - 15.4 Load = 2 143 1743 FLF 243
ul/16	V = 42 psi V = 42 psi Z = 204 psi
(300,765)	$M_{m} = 1743 \cdot 15.4^{2} \cdot 12/16 = 310000 \pm -in k=36  MINA_{s} = 1.06 in^{2}(6.55cm^{2}) = 2-24r$
11.8".30"	18-10MM @ 50/6 @ 170/2@600/     -As =       d=27" (5.0m)     EXTEND ALL REINF.       D<1072
1120	Span - 16.4' Load = $L$ 143 ULT D 1500 PCF END OF CANTUNER 1743 PLF L 243 PLF VCANT: 45psi TopL
	$Span - 16.4' Load = L 143   1743 PLF  L 243 PLF  V_{CAUT} = 45psi   TepL  V = L 2375 #                                    $
WE/16 7500 x765)	110 - 17 1x 16 4 x 10/16 - 22 1 - 1 K = 41
-11.8" - 30"	18-10HM@50/6@170/2@600/ -M= 586,000 #-" K=63 -As = 0.6210-14 cm-)
2B27	$d = \frac{3}{2} \cdot 4^{"} \cdot (2.75 \text{ m})$ Span - $q_{0} \circ Load = v 400 i LF$ $v 560 PLF$
	Span -       q.0'       Load = $\nu 400$ PLF $V = 7 PSi$ 2.20 TO F
W2/2	
(250,750)	
	Span - Load =
	V =
	A _s =
	-A _s =
	Span - Load =
	v =
	A _s =

WALTER P. MOORE & ASSOCIATES, INC. Job Name SMC / JC
CONSULTING ENGINEERS 2905 Sackett Architect JAMES M. SINK ASSOCIATES
2905 Sackett Architect OAMES 11. SINE HSSOCIATES Houston, Texas 77006 COMMONS ROOF FRAMING
(1.2.) COMBINED SHEAR AND TORSION DESIGN J'= 4000 pri Job # 13025
5PAU = 24' CONTINUOUS EM., SUPPORTING 2.400 TT 760 + 9.25"
- 9.25"
CHEX LEDDE: The at d FROM FACE OF SUPPORT: G1800 , 70 = 36050 = -1
$T_{12} : \frac{600}{12.7} = 79psi < 2\phi/f_{c}^{i}$
$\gamma_{2,1} = \frac{31_{11}}{2};  \Sigma_{11} = \frac{31_{11}}{2};  \Sigma_{11} = \frac{31_{11}}{36} + \frac{36}{6} + \frac{36}{6$
$v_{\mu} = \frac{1}{21 - 7} = \frac{1}{2} \frac{1}{25} \frac{1}{5} \frac{1}$
$\frac{215  \text{psi}}{72  \text{m}} = \frac{-2.57  \text{psi}}{1.5  \text{fc}} = \frac{1257  \text{psi}}{1.5  \text{fc}} = \frac{175  \text{psi}}{1.5  \text{fc}}$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A: 0.15 W2/Ft (318 "/") + V at 2"; 97300 7.0 = 57000 #
USE 9 10 Proo min
Vin = 57000 = 151 PSI
MAX. Alow. JEw = 12/JC 12/4000 - 620 psi > 257 psi
$ \frac{1}{257.2} + \frac{(1.257.2)^2}{(257.2)^2} + \frac{(1.2.151)^2}{(257.2)^2} + \frac{(1.2.151)^2}{(27.2)^2} $
$\frac{2.4\sqrt{fi}}{\sqrt{fe}} = \frac{2.4\sqrt{4000}}{\sqrt{12}} = \frac{124Psi}{257Psi} \frac{124Psi}{stiePups} READIRED$
$\overline{v_{te}} = \frac{214\sqrt{4000}}{\left[1 + \left(\frac{1.2\sqrt{151}}{257}\right)^2\right]} = \frac{124}{\sqrt{12}} \frac{12}{\sqrt{12}} \frac{12}{$
$\frac{\partial \mathcal{E}}{\partial \mathcal{E}} = \frac{1}{1 + \left(\frac{1.2 \sqrt{51}}{2 \sqrt{2}}\right)^2} \int \left[ \frac{1}{1 + \left(\frac{1.2 \sqrt{51}}{2 \sqrt{2}}\right)^2} \right]$
Vo = 2/52 2/4000 - 73psi < 15/ psi STREMPS REQUIRED
$\frac{1+(\frac{12}{1.2})^2}{(1.27m)} + \frac{1+(\frac{257}{1.2})^2}{(1.2.151)}$
The second
$V_{u} = (\overline{v_{u}} - \overline{v_{c}})_{2u} d = (151 - 73)(12)(37) = 35000 = \frac{4\pi}{5} + \frac{4\pi}{5} + \frac{7}{5} + \frac{35000}{5} = 0.024 = \frac{1}{7} \ln \ln 1$
$max 5 = \frac{d}{2} = \frac{13}{15} \frac{54}{2}$
$\frac{1}{4t} = \frac{1}{5t} + \frac{1}{5t} $
2 × 14, fg
1+ (257-174) 5940 0015 - X144
$\frac{1+}{5} = \frac{(257-124)}{3} \frac{5940}{5} = \frac{0.015}{5} \frac{5910}{10} \frac{10}{10} \frac{10}{7} \frac{1000}{4} \frac{5}{4} = \frac{11''}{4}$
COMBINE DESION & SHEAR LEWF. : At + 2 AV = 0.013 1 2.024 = 0.027 39 in /in
$TEY = 0.20 = 7.4^{"}$
$T_{4}^{FY} = 3$ ; $E_{4} = \frac{0.20}{0.027} = 7.4^{"}$ ;
CLOSED STIREUPS: 40012mm @ 50/19@180/
TOESIONAL LONGITUDINAL REINOF. AR = 246 (4. 4) = 7, 0.015 , 7.6, 8.5+35.5 = 1.32 sing
LISTERBOTE AR AROUND FERMETER OF STIREUPS, PROVIDING LONGITURIUSE LINKS AT, EACH PUNCHER, MAK
BAR SPACING . 1210. #3 MID. RAX SIZE OMDINE AR WITH AS FOR FLINDRE.
DISTRIBUTE: 1.32 at top: 1.52 at bottom . The ever in when at herman i ladio

-

DISTERNOT: 1.32 at by ; 1.52 at bottom; The REST IN MIDDLE OF SECTION : 1=\$12

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett . ~

•

Architect JAMES M. SINK ASSOC.

Job Name_SMC / Jr

			CON	MON	5 COLUMN	14	FOOT	G F	oopug:	i f!: 3	Job # 13
	40-6133			1				1	in a separati ng tatanda j	1	
-	A2-51; AZ	-B6; A	3-B1; A	3-36		T	AG-B1; 1	AG-B6			
1	COL. SPT.G.	DL	LiL	TL	WL 7 FTG.	. [	COL. SPTG.	. PL	LL	TL	COL + FTG.
	Low Love	-63.63	2	50.7	(250x:000)					1	(250 x 100
	LOW Rost	27.65	3.8×	31,42	10 - 34-		LOW LOOF	18.0 =	1.5	19.5	10,39
					8\$ 30 mm						8420~
	1 st.	2.4K	-	2.4 %			/ st.	2.4 %	! +	2.4	
		30	3.5	33.8				20,410	1.5	21.9	
	WOFE, TO	- 40.0			(450x 1.20)		wy x trew				(450x1.
	FTS.	21.5	2.24	24 K	1.5 'x 4.0'		FTG.	14:6	0.9	15.5	1.5 . 4
					3.4 16 mm long				1		3 0 16 mm
					t = 450						t = 2
	14-51;	A4-36				•	A71-31 ; A	7-36	:		
	:01.587G.	DL	LL	71	WL + FTG.		WILSPTG.	DL	11	TL	CUL 4 FTG.
	600	13			(250,1000)						1253 × 10
	LOW FOOF	28 K	3.4 x	30 2	10", 39"		LOW ZOOF	36.5 x	2.12	38.614	1 1
					8 \$ 20 000					į	8 \$ 20 4
1	1 ST	2,4 14	-	241			· 57.	2.4 1-	- 1 -	2.4 K	
		30.4	3.9	34.3				33.9	2.1	41 14	
-	WORK TO				(450, 1.200)		WORE. 15				(450 , 1.
	FTG.	21.7	:3	24-	1.5' 4.0' 34:6HH LODG		e74.	27.3	1.24	29 1	1.5 2 4
					34:644 LODG						3 + 16mm
	1 1 12 11				1-450						1 2.4
	15-313	A5- 8	36				A8-01: AS	- 3% 1 49	- E1; A	7-86	
	WL. SPTG.	DL	LL	TL	GOL A		col. 975.	PL	LL	72	FT3.
1	need start	101 44	25 8 ×	1005 316	(250x,20)					1	1250,10
	LOW 2005	31.0.4	4.5 14	35.61			Low Cor	52.5	4.10	56.6	10:3
					3 \$ 20				I	1	8 \$ 20-
	155	2.4 %	25.3	2.4 *			1 ST.	Sult	-	2.4 -	
		33.4	4.5	33.0				549	4.1	59.0	
	W2CE, 13		16.1		(450, 1200)		VORK TU				1650.1
	FT'5.	24	2.7	26.7	1.5 4.0'		FTG.	\$ 7.2	2.42	41.7	2.13'
					3 & IGHM LONG 5 & IGHM SHOKT						3 + 16 MA
			•	1	t: 750		1	.			t = 4

#### WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett

.

Job Name SMC / JC

Architect JAMES M. SINK ASSOC.

Houston, Texas 77006 .~

WLUMNS: fc= 4000 psi Four 1 5' = 3000 psi

	A10-61 ; A	10-BG		1		A10-82, A10	-85			
	COL. SPTG.	DL	LL	TL	Col. f. FTC.	WE SPIG	DL.	LL	TL	WL & FTG.
					(250, 1000)		•			1450, 1.200
	LOW LOOF	52.53	4.1	56.7	10 * 39"	HIGH ROOF	151.5 K	23.81	135.3K	17.7 47.2
					8 \$ 20 mm					8 \$ 30 mm
	1 ST.	2.9	-	2.9		MIDPLE	6.72K		6.72	
		55.4	4.1	59.16			163,22	23.8	122.0	
	WORT. to				(650×1400)	LOW	53.2 ×	11.44	64.'.	
	FTG.	40.0	2.42	42.42	2.13'x 4.6'		221.4	35.2	256.6	
					3- + 15 um LONG 5- & 16 mm State	1'ST.	16.7	-	16.7	
Ī					t = 450		238.1	35.2	273.3	
	A11-B1; A1	1-B6				WORK TO				(1.700, 2.50
	COL. SPTG.	DL	LL	TL	COL 2 . FTG.	F16.	170.16	20:7 %	193.8×	5.6. 8.2'
			•		(250,1000)					6 - \$ 10HH 10H 5 - \$ 20HH 540
	Low Post	43.2	4.7	52.9	10" . 37"		t 1			1=650
					8 \$ 20 mm	A7-33, A-	1-84, AI	0-33,	410-34	
	1 ST.	2.9	-	2.9		COL. SPTS.	DL	11	TL	COL + 1 FTS.
		51.1	-4.7	55.3						(450 . 1.200
	WORK to			i	(650,1400)	HIGH EDOF	194 .	30.6 K	224.6	17.7.47.2
	FTG.	36.5	2.8	37.3	2.13' 2.6'					8 decum
Ī		•			3-5 Conton Low G	MIDDLE	13:44 *	-	13.44	
		1		Arriva 20084 * 1011 (1	1 - 450			30.6 ×	238 K	
1	47-B2, A7	- 35		;		LOW	1	19.3 *	-	
	COL SETG.	DL	LL	TL	COL 2 Ftc.		272 *	50.4 K	342 K	
Ī					(450 x 1.200)	157	15.7	-	16.7	
	HIGH LODF	161.5K	23.8 K	185.34	17.7", 47.2"		303.7	50.4	3594	
					8 \$ 30	WOEK D				(1.7.00. 2.50
	MILIULE	6.72K	-	6.72		FTG.	5214	2014	25'l K	5.0x 3.2
		163.22	23.8	192.0						6-\$ 20MH 10 5-\$ 20 MM St
	1.0V)	73.31	1.270	84.51						1:650
		241.52	35.1	276.7						
	147.	16.7	-	16.7						
·		253.3	35.1	293.42						
	WORK TO				(1.700, 2.50)	•				
•	116.	184.54	20.7	205:2 +						
					6-\$2044 DAG 5-\$20 HH SHAT					
1		1			t=650			1	1 1	

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett Houston, Texas 77006

Job Name_ SMC /JC

Architect JAHES M.SINK 14600.

COMMONS COLUMN & FOOTING FOOTING SOTTOGEST = 3000 PSi Job # 13025

132

- -

1	A5-62; A5-85					A6-82; A6	. 9.6		1	1
	OL. SPTG.	DL	L·L	TL	COL 2		[		[	601.7
	JL. 5713.		<u> </u>		FT3. (450x1,200)	06, 596.	DL	LL	TL	FTG. (250, 1.200)
	COOF	79.42	5 Gr	872.	17.7 47.2"	FOOF	45,0,4	144	A. A.	10", 47.2"
···· · · ·	COOP	11142		51.94	3 \$ 30 mm	FUDE			HOMAN	10 + 4 h 4 6\$26 mm
		19.0 K		19.0 K		157.	242		244	0700000
	/ \$7.	98.4K	7.9 14	108.34			4722		48.50	
	NOL'E. to				(1,053 , 2.00)	WORK. to			10,00	(50,1.40)
	TG.	70.3K	5,9 K		3.23' 5.15	FTG.	33.9×	12	2/94	2.13,46
	10.	10.21		İ	3-016нм 1046 5-016нм знорг				17.11	3- 5 là mai làn 5- Billinanai M
					t = 650	-			-	t=500
A	5- 53 ; A	5-84				A2-B0; 13-B0; 44-B0; 12-BT; 43-BT; 44-BT				
	OL. SPTS.	DL	11	Tİ	Co4. 2 FTE.	WESDEG.	DL	44	TL	COL ST
					450,1200			r E	1 II.	(200, 11100)
	RADE	117,2 %	19 82	137K	.7.7"47.2"	FOOF	24.4 =	1.2%	13.4 ×	7.5 47.3
			• • • • • • • • • • • • • • • • • • • •	8.4	30304~			i i i		8 \$ 20 mm
	157.	12.0 %	-	19.0		137	23.5K		23.5	
		136.2 K	.9.8K	156 K			4734	4.JK	51.9×	
1	105K. 10				(1.0:0,205)	HORK. TO		12		(650m 11.1100)
	<i>T</i> Ġ.	77.3K	11.7 K	109 ×	3.28 . 6.6	FTG.	34,24	Z.4c	动作	2.113 . 4.60
				1	3- & IGHA LOUG 5- & IGHA SHORT					B-do Telemante
					t = 650	1		18 1		社 44940
A	AI-81; AI-86					A1-80; A1-87				
CC	DL. SPTG.	D'_	11	TL	COL. 2 FTG.	WL. SPTG.	DL	44	πμ	421 St.
					(250, 1.00)					(22000 yr. TT22)
E	200,=	14,4 14	1.9	15.3	10- 31"	LOOF	11.4 =	11,05	1135.35	73.99 4c 2226 55
					8 \$ 20 mm					3 2 16 16 Heren
	157.	2.44	-	2.4.4		1 ST.	.1.5	-	明道…	**
		16.8K	1.01 -	18.7%			2.1 %	11.2	22.3	
W	DEE. D				(450, 1.20)	WORK. TO				((4100), 11 parso
F	rg.	12 4	1.1 E	13,14	1.5 4.0'	FTG.	11314	11-22 14	16214	115 4 3.3"
					3 410 HM LONG 5 4/6 HN SHONT					多的Kerring
•		•			t=450					1= 450

# a.3. Structural drawings

٠

•







Imperator     Display Display     Imperator     Display Display       Imperator     Imperator     Display Display     Imperator       Imperator     Imperator     Display Display       Imperator <th></th> <th>MARY THORNESS PENFORMA STEEL (MILE) PENANS</th> <th>14 ST COMMONS 23</th>		MARY THORNESS PENFORMA STEEL (MILE) PENANS	14 ST COMMONS 23
		MARY THERNESS PENDING SIEL (2144) PENANS	WARE 5125 01.1.500
	LEVEL	SECOND LEVEL	ROOF
481 150 25500 25 km 48 11 200 Z.U	2:0 2 12 1 150/	251 152 128 20 128 -28	281 200 730 2-10
492         130         Tells i Lexat         442         270         620         270           659         120         120         120         120         120         200         270	2:12 2 2 1901 2:20 36 10 10000014(150)266001	252         150         12-32         7.6 m²           253         150         21 200         24 10	281         :00         750         7         10           783         *00         765         7         10
454     170     28 min     28 min     464     200     8.00       455     190     16 min     16 min     16 min     465     177     400     2.00	Z-15 4 12   130/1000/ Z-16 4 10   152/475/	254         150         172300         12300         1.50           255         150         125 and         24 and         24 and	284 300 1610 2.26 285 300 775 "Z.74
456         190         7.6 xc0         7.6 xc1         466         2.6 4c0         2.4 4           457         190         7.0 xc0         7.6 xc2         467         7.0 4c0         2.4 4	2.10         2.0         10         52/10 e 75/3 e 979/           2.10         8         10         150/3 e 575/	Code         150         120 and         120 and           Z57         150         To 400         To 400	7.64         3.00         17.5         2.24           7.87         3.00         4.60         4.7.24
358         150         178 soft         548         120         400         7.16           439         150         128 soft         459         253 doo         7.16         1	2-16         8         10         130/30 575/           2-16         8         10         150/30 575/	258 /50 /78 tac /78 sco	788 300 1410 * 7 24 789 490 600 * 7.76
-4910 190 -22 200 - 250 400 · 216	2-16 8 10 150/3#5751		7810 640 000 276
THIRD         LEVEL         49/1         700         600         2-16         1           59/1         150         178.00         128.12         THIRD	2-16 6 10 1 150/28525/ LEVEL		Z&II         250         775         * 2-20           Z&IZ         Z30         775         2-20
352         360         7 ± 300         2 ± 230         381         1/4 ± 13         600         2 ± 16           353         1/50         1/2 ± 240         1/2 ± 240         1/2 ± 240         1/2 ± 240         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ± 16         1/2 ±	Z-Ke         Z         IO         ISO/           Z-Ke         Z         IO         ISO/		Z&/3         450         600         2.76           Z&/4         450         600         2.24
- 354 150 178 500 C 4327 200 400 714	2.24 30 10 39.2075/00150/975/		28/5         450         620         2-76           28/5         450         600         7-26
756         150         120300         1305         177         385         246	2 /6         10         10         75/22 /30/22 /30/           2 /4         4         10         150/675/		2817 400 615 ¹ 2.20 2818 300 615 ¹ 2.20
357         150         rt0 300         rt e sort         346         250         3e5         2-6           758         190         rt e sort         367         200         400         *2-6	2.4         20         10         50/6215/332475/           2.4         8         10         150/32573/		2017 500 1000 3.76 2570 500 1000 2.24
SECOND LEV	Z+4         8         10         150/30575/           Z+6         8         70         150/30575/	. · · .	2821 200 750 220
C1         12         12 22           252         150         12 50         400         2-16	2-16 8 10 150/36535/ 2-16 12 10 75/36130/2=375/		2877         700         560         2.70           2875         500         1070         2.20
255 1% <u>6300</u> - 12% 254 150 12 esc 2 esc 5 ECOND	LEVEL	· · · ·	2876         300         785 ^L 2-20           2825         300         769 ^L 2-20
255         150         122 yzz         25 max         28/         1/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2         2/2/2 <th< td=""><td>2-13 2 13 10 150/ 2-16 2 10 150/</td><td></td><td>2820         300         72-5         ¹         2·20           Z827         250         750         2·20</td></th<>	2-13 2 13 10 150/ 2-16 2 10 150/		2820         300         72-5 ¹ 2·20           Z827         250         750         2·20
757         150         178 300         72 307         283         200         0.00         2.16           758         150         78 300         16 7 203         254         200         0.00         2.16	2-24 36 10 50/2075/00150/573/ 2-16 12 10 75/30150/2075/	•	•
- ZDA 177 965 Z-16 - ZDA 777 965 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 955 Z-16 - ZDA 777 - ZDA 777 955 Z-16 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA 777 - ZDA	Z-16 4 10 150/473/ Z-16 20 10 50/675/36475/		
257 200 400 42.4	2-K 8 10 150/3E575/	•	
TZM         200         400         146           284         250         400         1.46           284         250         400         1.46	Z-K6         B         IO         I5Q'38575/           Z-K6         B         IO         I30/38575/		
ZAT 750 400 2.16 ZAT 200 400 2.16	Z.16 8 10 150/32575/ Z.16 12 10 75/32/50/22375/		
1.287         700         600         2.46           285         700         400         2.46	Z-14         B         10         123/250/26450/           Z-15         16         10         75/50.150/450/		
		· · · · ·	
			•
SHOLE STUDENT COMMONS COLUMN & FOOTING SCHEDULE	•		•
1266, 1850, 1860, 1860, 1867, 1866, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867, 1867,		•	
1000 1500 West 1005			FOR TOP
			H-100
TIES         NOE 250         NOE 350         N			
ROTING ROME S GARANT S GARANT S GARANT S GARANT S GARANT S GARANT S GARANT S GARANT S GARANT S GARANT S GARANT S GARANT S S SATTANT S S S SATTANT S S SATTANT S S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S SATTANT S S S SATTANT S S S S S S S S S S S S S S S S S S S			
SWIGHT COMMONS LET FIG SCHER			
MARK A D			
SIZE 300.500 500.1000			NOTE WHEN TOP
- Tres // e soo // e soo			IN LIEU OF
POTTAS REINE 3-6 CAMPTE 126 BT			
		-	
2월 19일 - 2월 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19일 전 19 19일 전 19일 r>19일 전 19일 전 19일 전 19일			
	-		
			BAI
			1. SAME POLYTO THEY \$ 45 IF BLAS IS CONTINUOUS SUFFORT. 2. SAME MARKED THES : SO
			LE DERCONTERCOS AT 1
		en en en en gelegen erste sog og er sog sog for sog for en en en en en en en en en en en en en	











naan na maan soo misa kasaan shada waxaya dhii dhii dhii a



b. SMITH PARK PAVILION: Structural drawings .





JOIST GARDER

CONT. 8.2.84 - WELD 1

6-0" OFENING

10'8"

NUTCHEDE

"STATALER R'S - WELD

to COL.

TYPICAL COLUMN-GIRDER CONNECTION , THE AT 140



### APPENDIX IV

Design of Special Structural Systems in Major Buildings: THREE RIVERWAY

- 1. Column location and architectural elevations
- 2. Wind loading and computer-generated display

3. Standard format for wind beam design

4. Computer output revision

5. Wind beam design information

6. Structural floor plans and beam schedules

1. Column location and architectural elevations

٨

.



THREE RIVERWAY W. P. MOORE .S. I. MORRIS Éngineers Architects APRIL 20, 1978

- ----

. .

		K00-		
•	BAASS TYPE "C"-		41.495 TTPE'C'	
`				
		PLOOK 20	-	
		PLOOR 19	-	
		PLOOR 19		
			-	
2 - C - 2				
			-	
•				
	•••		-	
		FLOOT 15		
	-	FLUCK IS		
		FUUR IN	-	
		FLOOR ID		
•			-	
		2 3		
•	· · · · · · · · · · · · · · · · · · ·		-	
•				
		φ		,
		FLOOTE 10		
				······································
		FLOOR 9		
	ALASS TYTE A			
		FLOOT 8		
•		· · · ·		
4		FLOOR 7		· · · · · · · · · · · · · · · · · · ·
•				
		FLOOR 6		
		· · · · · · · · · · · · · · · · · · ·		
		PLOOR 6		
		PLOOR 4	- ]	
ата — С. С. С. С. С. С. С. С. С. С. С. С. С.		· · · · · · · · · · · · · · · · · · ·		
		FLOOK 3 3 4		
· ·		FLOOR 2		
	- SLA95 TITE 'B'		- 41455, JYTE B	(
		г. - 9. - 9. - 9.		
		FLOOR I		
-				
	n	$\sum i = i = i$		
		- بسا		

a'-1'0 22

LEST ELEVATION

. .

-....

- - -·····

. ÷

-

and all the second

-

1 I

.

· · · · · · ~: 2-. . . .

. . .

-. ** :

SOUTH ELEVATION

· · · · ·

-



	₹2 HTHOUSE ROOF	-+	
	z.00#		
	FLOOR 20		
	PLOOK 19	· · · · · · · · · · · · · · · · · · ·	
		\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
		· · · · · · · · · · · · · · · · · · ·	61.455
	PLOOR IS		
		1-11 1-11 1-11	
	PLOOP, II		
			ALOD A.J. FRANKS
GLANS TYPE 'A'			GLANS TYPE 'A'
		¢	means an same
	PLOOR 7		
		· · · · · · · · · · · · · · · · · · ·	
	FLOOK 4	÷	
	i <del>'</del>	id	
GLASS TYPE "B"	FLOOT 2	· · · ·	aLA55
	FLOOR 1	9 9 	
	BASEMENT		

NORTH ELEVATION

يتجرب أجرب المراجع والمساور

القريع المتجامع والمداري المتحال المتحال والمتحال والمتحال والمتحال والمتحال والمتحال والمتحال والمتحال والمتح

•

5

· . .

.....

16-1.0 12

. . . . . 

•

1.14

. . . .

i j

12 1

· · · · · ·

. ..

EAST E EVATION



2. Wind loading and computer-generated display

ſ

~

		Job Name7	HEE PICEUMAN	MININE ET EN EN EN EN EN EN EN EN EN EN EN EN EN
WALTER P. MOORE & CONSULTING ENGINES 2905 Sackett	ERS	500 Hanie	- I MOPPK,	152
Houston, Texas 77006	WIND LOADIN	IG CONDITION	15	Job #
	273,33'	 . <b>v</b>		: :
	266.67	in an an an an an an an an an an an an an		
	2 66.00 25 3.73	e alan ana ang manang manang mang mang mang	//	· · · · · · · · · · · · · · · · · · ·
	246.67	ماند و المربع المانية ( ) ( ) ( ) مانية مانية مانية مانية ( ) مانية مانية مانية مانية مانية مانية مانية مانية م المانية المانية ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (		1
· · · · · · · · · · · · · · · · · · ·	240.00	<b>***</b> *********************************		
	233,33			
	226.63			· · · · · · · · · · · · · · · · · · ·
657	2 1 3:33		-/	
<b>x</b>	$\left  \begin{array}{c} \end{array} \right $	· · · · · · · · · · · · · · · · · · ·		
$\overline{\mathbf{y}}$	VE	)		·
	· · · · · · · · · · · · · · · · · · ·			
			X + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	the second second second second second second second second second second second second second second second s
	$\overline{\langle   \rangle}$			X X X
3333-	4	32.00.8	52811	
46.67		15,6	16. 1.1-1 - 194	
ea.			1 88 101 10 85	i
			γ ¹ γ ¹ γ ¹	
		ул 		
			7	
$(3)^{1}$			میسید د بعد بین در در ارتبال ارتبال از این از میناند. این مسید ارتباط این از این از این از این از این از این از این از این از این از این از این از این از این از این از ا	
			· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · ·	• • • •		:
		•	<b>.</b> . <b>.</b> .	· · · · · ·
,	· · ·	•		
			· · · · ·	•
			· · · · · ·	· · · · ·

ĺ





L-D DISPLAY NODE Defined Plane Stae Cone Sface One 154

FRAME

THETA 2. 8. THETA Y. 8. 7





LAY MODE Z

9. THETA Y. -45. THETA X. THETA 2-

FRAME 4

U

ನು ಸು /____

-3r C3

00) 737

THETA 2. 180. THETA Y. -38. THETA X.-180.

557 558-

ູ້ລິ

163**9**-

tee

-880-



	0.0	7	Ś	8	5	או	$\tilde{\mathcal{N}}$	土	M	2	Ξ	õ	5	60	۲	ও	S	4	Μ	2	G	
	-		സ	<b>8</b> -4	0	0	ω	~	(0	ហ	4	m	3		0	0	00		0	10		( ⁷ )
	1		¥1	*	4	ন	*	च	7	4	*	¥	4	শ	4	m	ñ	m	en l	ė.	ē	<b>[</b> * <b>)</b>
			6	du du	t	19- 19-	් ශ	က် မိ	. 10	60	en Ko	6	61 13	 ເວ	5	6) C: D:#X	5	100 100 100	÷.	40 47	in T	
	N	2	50 - 40 (10	ରୁ ଅ ଜୁନ୍ମ	ල් දෙක	<u></u>	P=13	10:63	<u></u>		100	0) ()(0) ()(0)		61 640	0 0 0 0 0	DX 1940	P-60		-inda		<u>()</u> 143	_ <u>_</u> ?_
	р: С		m	63	ñ	ñ	ê	e	e	e l	m	ei	m	(m)	en	172	2	2	m	( ^m	() ()	(*)
								1			Ļ		, A				6	L	6			
	- 5	5	ن مرد	1 1 1 1 0	840 -840	347 247 239	365 365	5 137	13	53 53	117 117 117	-353	53	9 931	99 99 99	258 258	အ မိုး မိုး	រក្នុ ហេ	11 12 12 12 12		ុំរ 	
	***	3	ဂျိ	<u>S</u>	<u></u>		ഹി	-101-			- C1	- 6	- <u>S</u> ]-	- <u>8</u> 		50	1777-				-87	
	ē		0	n	<u>[</u> ]	č	ñ	- m	ē	6.1	m	CD	<b>m</b>	m	63	~	60	m	い	ŝ	17	C.
									5		Ļ	5			þ	6	do la	L.			4	
	350	S	20 20 20 20	2000 2000 2000	500	6 1 1	5 1 1 1 1 1 1 1 1 1 1 1 1	-8+9-	10 10 10	မ် ကို ျင	<u>با</u>	010	339	338	5	0 0 0 0 0	503 263	40		~ ~	ో	
	Ø,	2	<u>a</u> ?	- (i)	<u></u>				an addadaa				-	- <u>m</u> -	- 6	-67				<u></u>	8	
	e		m	m	က်	ά.	m	(n)		CI	9	er	C	6	n	(U)	67	ന	ന	ო		ര
					1.	ļ		5	L	60		4	, en	4	4	5	4				4	
		5	6	ୁ କୁ	5	ទ គ្ន ព្រះ	20	1.99 1.99	65 01	128	0 1785	- 5	63	ດ ເຊິ່ງ ເຊິ່ງ	រទី មើ	5 5 5 7	60	~	~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a
_	o	<u>د</u> ې	cor?	~ ⁽¹⁾	101	Tas		רי <u>י</u> ריי מינוריי	10) 	~~~i ~~~cia	- 00'	<b>D</b> 1 	501	5		ນ ນ			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u></u>	
	10 (7)	1	0.002	ന്ത്	(n 3	<b>C</b> ) 20	್ಷಣ್ಣು	ന്യാ	62	(m)-	(The second	();~	-11.	<u>سردی</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(Libr	<b>m</b> •	<b>.</b>	en.	5 C	ເຈ

Z-D DISPLAY MODE Defined Plane Siab E Sface Five Cols 393 to 412 Are Dummy

•

చి

THETR 2- 180. THETA Y. 143. THETA X- 180.

159

FRAME 6



THETA 2. 9. THETA Y. 0. THETA X. 90.

3. Standard format for wind beam design

.

	CONSULTING ENGINEE 2905 Sackett Houston, Texas 77006	RS	ВЕЛМ5	Arc%	ilect			ih »
	Span - Load + $M_D = W_0 R^2 / =$ + $M_L = W_L R^2 / =$	·				5977287 3/1714(AD+174)	мах(:м)? 0.90+1324	59479Ki
1	$-M_{D} = w_{D} \frac{J^{2}}{2} =$ $-M_{L} = W_{L} \frac{J^{2}}{2} =$ $+M_{W} =$ $-M_{W} =$	: 		· · · · · · · · · · · · · · · · · · ·		¥ =		
	Span - Load	l =	MAX (4 M) 0	N SPAN	MAXFM) D	As = -As = SUPPORT	M4X(+M)@	509903R1
 	$\frac{fM_{D} = \omega_{D} l^{2}}{fM_{L} = \omega_{L} l^{2}} = \frac{1}{M_{D} = \omega_{D} l^{2}} = \frac{1}{M_{D}}$			the second second second second second second second second second second second second second second second se	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	₹( .7.L+1.+D+1.7.04) #(	Constraint and Call I. C. A. A. A. A. A.	
· · · · · · · · · · · · · · · · · · ·	-ML=WLP'/ = +Mw = -Mw =	: : : في في المحالي - - حجر محالي -			· · · · · · · · · · · · · · · · · · ·	v = Å _s =		· · · · · · · · · · · · · · · · · · ·
······································	Span - Loa	d = ;		· · · · · · · · · · · · · · · · · · ·		-Аз = СЗОРРАНТ 	MAX (FM)	A CHARLEN
، ،	$+ M_0 = w_0 l^2 / =$ $+ M_L = \omega_L l^2 / =$ $- M_0 = w_0 l^2 / =$ $- M_L = \omega_L l^2 / =$							
	+ Mw = -Mw =	· · · · · · · · · · · · · · · · · · ·			: 			
• • • • • • • • • • • • • • • • • • •	Span - Loo+ Mo: Wol2/ =	id =	- Andrew Street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street and a street an	تيبه معطنانا تنبي ومعاقلتها يغرون	and the second second second second second second second second second second second second second second second	)@SUPPART	MAX (4M)	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
	$\frac{\dagger M_{L} = \omega_{L} \lambda^{2} / = M_{D} = \omega_{D} \lambda^{2} / = M_{L} = \omega_{L} \lambda^{2} / = M_{L} = M_{L} \lambda^{2} / = M_{L} = M_{L} + M_{L} = M_{L} + M_{L} = M_{L} + M_{L} = M_{L} + M_{L} = M_{L} + M_{L} = M_{L} + M_{L} + M_{L} = M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + M_{L} + $						,	· · · · · ·
	-M _w =					v → A: = -A: =		

							E	<u>м</u>		 	Ø	63	~	ပ	in	4	<u>n</u>	c.J	-+	0	<u></u>
:	:	:	: :	:		9.	10.	10	8	9	5	55	67	0,	- 67	-ŭ	6	59	CP4	25	C3
	•						•		60	~	ام	in	4	m	<u></u>		Ċ.	<u></u>	8	<u></u>	.02
:	•	•	-	•	•	•	•	ſ		O1	53	50	63	- O	63	O1 O1	6	O,	6	0.	Ë,
			_					[													
•	•				•	•		L	្រុ	4	<u></u>	100		<u></u>		<u></u>			<u></u>	-5-	
•	•	•	-						Ċ5	Ō	Ċ;	G	C3	Oï	0,	Ċ4	()¢	0,	<b>D</b> 9	03	C/4
	a	~1		- <del>0</del> 1	<u></u>			-in En	<u>क</u>				- <u>0</u> -	<u></u>	^w		- CF	5		m	<b>0</b>
	83	Ğ	Ör	Ö,	Ъ. Съ	9	0,	Đi	6	Ch.	Ch I	On .	01	თ	σ	Or	C7	a	C+	С»	∽.
	_		CR		2	5	S	-		N		0	Ch.	63	~	(0)	in	•	<u>en</u>	r: 1	
<u>ا</u>		- Cir			0	5	6	07	6	0,	GA	ò,	S S	öi	- full On	09	C?	0.	O ^a	CA	0 <b>.</b> .
	<u>.</u> ,	2.																			
:	:	:	:	:	L	e	<u></u>	<u>[]]</u>		10)	<u>[v]</u>	<u> </u>	-91	<u></u>		-0		<u> co</u>	-6-f-		. (J)
•	•	•	-	-		0	б О	07	Ċ1	Ċ4	Ċ)	103	O1	C)	ወ	C4	U)	60	( <b>7</b> 1	<b>C</b> 4	S) S)

Z-D DISPLAY MODE Defined Plane Jlab E

SHEAR WALLS

THETA Z. O. THETA Y. O. THETA X.

. .

1

## 4. Computer output revision

.

·

. .

	WALTER P. MOORE & A		Job Name_	3 ROVERDAY	165			
	CONSULTING ENGINEE 2905 Sackett Houston, Texas 77006	२ऽ	Architect	SI MORALS	165			
	1005108, 12205 77000	3ª RUNA CITE	cr.		Job #			
	WHAD BLOWING	5001H (20A	UNISG CASE	z)	. i i di i	•		
	LEVEL 15	. <b></b>	• • •	i e i e e e e e e e e e e e e e e e e e	141	•		
			• • • • • •	··· · · · ·				
		a in the second second	· · · ·	· · · · · · ·	¥ *			
• •				· · · · · · · · ·	D/5,			
	and the second second second second second second second second second second second second second second second			e mer e rere	2	•		
					in .			
÷				· · · · · · · · · · · · · · · · · · ·		•		
					6	•		
. •						•		
•			N T	41	×			
•••				س :	, o	•		
• •• •				ני קני ק	5 10 10	•		
						•		
• • • •						]		
						_		
						• .		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · ·			
			1		• • • • • • • •			
				······	an an an an an an an an an an an an an a	ł		
						•		
					:	•		
• .				······································	· · · · · · ·			
						ŀ		
				and the second second second second second second second second second second second second second second second	= + 			
					· · · · · · · · · · · · · · · · · · ·	•		
				· • • • • • • • • • • • • • • • • • • •				
•••••••				·····	La La La como o			
						,		
	• • • • •		· · · · · ·	a particular de la companya de la companya de la companya de la companya de la companya de la companya de la co	· · · · · · · · ·	•		
					· · · ·			
			Ý	, , <u>,</u> , ,				
				· • • •	, , , , ,	•		

	WALTER P. MO	NORE & ASSOCI	ATES INC		lob 1	lame		20172711		ANAMAMAN	
	CONSULTING 1 2905 Sackett Houston, Texas	ENGINEERS						MARE		166	
	Housion, rexus	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ę	RUN	CHEICK	~				Job #	
	LOADING	CASE 1	<u>/</u>	DEFLEC	TION			2 D1	SPLAC	EMEA.	11
	col,5		····•	• •		<b>ļ</b>	•		r	: .	
. •	<u> </u>	· · · · ·			t,	•	• • •		• • ·	• •	
·	Tx S				• • • • • • •		н н	· ·	· · ·		
		. 20.			ř	· · ·	••		• • •		
1 - A		. 19 .	• • • •		1. <b>1</b>	; ;	•	. <b>.</b> .		. <b>.</b> .	
	· · · ·	18					ы 1	• •=•	• • •	: • • • •	· · · ·
									• · · • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · ·
		16 15-					· · · · · · · · · · · · · · · · · · ·		• ····· • · · · • • · ·		
 		13			•	-				i , 	
		-13					· • • • • • • • • • • • • •			• - - - - - - - - - - - - - - - - - - -	
		12 ·			·····				······	••• • • ?	· · ·
		-//////////		-						- • • •	: • •
		10							· · · · · · · · · · · · · · · · · · ·		
		g		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						• •
	· · · · · · · · · · · · · · · · · · ·	7		1				···· •••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••		•
	1 	G							······································	an ∳iù 18 1	
							1		· · · · · · · · · · · · · · · · · · ·		· · ·
- -			11				÷		۱ ۱	. <u>.</u>	
		. 2	· .	•						···· • ••	•
	•	G	:								
4.5		в								• • •	• •
	• • ··· •	• • -•		1			•			•	
				1	•				1 1 2		• · · •
	• · · ·		•					, 			
		· · · ·	••••	•			11 <b></b>	•• • ••		ана — С. — С. 	
					· · · · · · · · · · · · · · · · · · ·					• • • • •	• •
		• • •				• • •	•	• • • • • • •			
ľ,		• • •		• •	· · · · · ·			• •			
1		· · · ·			· · ·						
		. · ·		1							
		• <u>•</u> •		•				, . 			

		OORE & ASSO	CIATES	, INC.			Job No	ame	7, 1			·	167				
	CONSULTING 2905 Sackett Houston, Texa						Archit	ect		S. J. 1	 			167			
	nouston, texa	15 77 000	2.	P. )/ ;		TT.								Job	#		
	LDADING	CASE 1.				~~~~~		X	DIS	PLAC	EM.	EN	Τ				
	COL ()	• •	• • •				•••	•	•								•
			• • • •	• •	•	•		• 1		·	•			•			•
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. • :	• • •	2.5	7",	MAX	, DIS	PLACE	MENT	 113	X D	REC	1701			•	
	Y _z		· ·	÷.	- 	•	•	•	· ·			•	,				
•	i -,	R ·					•	•		-, -			~ .				
		· · · · · · · · · · · · · · · · · · ·							:		•			•	•		
				•		· · · · · · · · · · · · · · · · · · ·				•••••	-	•	•		•	, 1	:
·	· · · ·	17						1	1	•	•				•		
ai I		. 16	· · · · · · · · · · · · · · · · · · ·		Ĩ											• *	
											·····	1		-		•	•
		15			1								· · · · · · · · · · · · · · · · · · ·	Ì			•
10 m	· · · · · · · · · · · · · · · · · · ·	. 14	••••••••••••••••••••••••••••••••••••••		Ţ	······				· · · · · · · · · · · · · · · · · · ·	•			i		1	• • • •
	ана на траните на на на на При при при при при при при при при при п				• ••••••			1	•	·····	· · ·	1			•	• •	•
				1									• •		•		•
	•	· · · // · · ·				· • • • • • • • • • • • • • • • • • • •		+		in de la de la constante El constante de la constante de la constante de la constante de la constante de la constante de la constante de El constante de la constante de la constante de la constante de la constante de la constante de la constante de			, i	• • •		•	•
		/0	• • • • •			···	4					 : 1			•	:	
	ing and the second second second second second second second second second second second second second second s	9.		· · · · · · · · ·								· · · · •	•••••• : :	- 4	÷	•	ł
	,	. <u> </u>										نة تساده . 			· • • •	•	•
	4 	7	· · · · · · · · · · · · · · · · · · ·	·····							• ·•				· • •		
		- 6		1 .	• • • • • • • • •						•••	++ 	•••• ·· • ··		••		• ·
		5	··· •			· · · · · · · · · · · · · · · · · · ·				3 *** ******	1 1		•••		•	•	•
54 1		- 4	t	11		· · · · · · · · · · · · · · · · · · ·	- 1				I !		·	•	• •	•	•
			4				1 1	1			.			•••••	• -	•	
. <u>.</u>		· · · · 2 ·										• • • • •		·····	-		•
•		- G		[!		• • • • • • • • • • • • • • • • • • •	· •·· · •·	• • • •	•				•	•	•
		·B	•					.		• • •	• • •			·• •			•
		i			1				·····			•		•		•	•
•		· · ·					· · • • • • • •	• 1	••••			•		• •	,	- .	•
	: .						•					1	···· •		•	•	•
			*****			• •		•••		- 1	• • • • • •	•		•••	•	•	•
		• :	••••••••••				·				••••••••••••••••••••••••••••••••••••••						·
					; 			- •••		••••	• •	• • • •	••••	•	• •	•	•
		• • •	, .				•				•					•	,
		• • • •			· •		· · ·	•	•		•			•	. •		
		• • •					•	•	• • •		••	•	. .		•	÷ ·	
		· · · ·	, , ,			t			•	•			. :			·	
							•		4	•	•						

ł	WALTER P. MOORE	R ASSOCIATES	INC.		Job Name	31	$(1/2)^{1/2} (1/2)^{1/2}$				
	CONSULTING ENGIN 2905 Sackett	NEERS					1 NAMA 3	168			
	Houston, Texas 7700)6									
			M CHI					H doL			
	Londonda Char	2	D <u>EFLE</u>	cno×7		ZDIS	PLACEMENT				
	COL, 🗐 .			:	· · · · · ·		•	1			
	Ţ.	•	• • • • •	ان بالم الم الم الم	i i i	· • •		• •	•		
	15		а .а. а. а.				· · ·	•			
		а с., в цел (ф. 2), ми а		6,82"	· -* ·	MAX	DISPLACEMEN		DIRECTION		
	۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	· R · · · · · ·					• • • • • • • •	· · ·			
		··· 20 · · · · · · · ·		<mark>.</mark>					· ·		
	ана салана селото на br>Селото на селото на с Селото на селото на с	19	· · · · · · · · · · · · · · · · · · ·						· ·		
	· · · · · · · · · · · · · · · · · · ·	18			1				• •		
					/.ii		······		•••• •		
		16		1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			•		
		- 15		7	<u>. </u>			······································			
	· · · · · · · · · · · · · · · · · · ·	14	-	/ -				···· • ··· •	• • •		
		.13 .		1	·····				• •		
		- 12		1					· •		
	ana an an an an an an an an an an an an	· # · · · · · · · · · · · · · · · · · ·		, ,	•				•		
			/						•		
	· · · · · · · · · · · · · · · · · · ·	с — Г	7								
		7									
			Ĭ					· · · ·			
								· · · ·			
· · · · · · ·		4	· /				· · · · · · · · · · · · · · · · · · ·		· · · · ·		
		. 3		· · · ·		: . : :					
	1							• 			
، جو محا		· G	1				· · · · · · · · · · · · · · · · · · ·		•		
		·B ·					1 		•		
· · ·		: ,				• • ••	· · · · · · · · · · · · · · · · · · ·	, i 	•		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
	•	e		•	•				• •		
	• • • • • • •	· · · · · · · · · · · · · · · · · · ·				: 	en en en en en en en en en en en en en e	: 			
		с. 		1 I I I	1	: 	n an an ann an an an an an an an an an a		- • · •·		
		• • • •		: 1.4		i -	 • • • •	• • • •			
		• • • · ·		•	:	•	: 	• •	. a		
		• • •	• •		;	•	• • • •	• • • •	• • • •		
	, , , ,	• • • •		: :		•	•	• •	· .		
		•	• •				. .		· •		
			1								

CONSULTINC 2905 Sackett	WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackott Houston, Texas 77006			B RIJER MAY BI MORRIS	169
		A RUN C	HECK		Job #
LOADING	CASE 4 -	DEFLECTI	01.1	X DISPLA	CEMENT
co1,6)				•	
5×		ـــــــــــــــــــــــــــــــــــــ	······································	• · • • · • · • · • · • · •	· - · ·
	a an an an an an an an an an an an an an	۱۰۰۰ - ۲۰۰۰ محمد محمد محمد محمد محمد محمد محمد م			• • • • • • • • • • • • • • • • • • •
¥Z	* *R			na para serang na serang na serang na serang na serang na serang na serang na serang na serang na serang na se Serang na serang na s Serang na serang na s	· · · · · · · · · · · · · · · · · · ·
	- 20			n ann a an an stàitean ann an an an an an an an an an an an	· · · · · · · · · · · · · · · · · · ·
and the second second second second second second second second second second second second second second second					••••••
· · · · · · · · · · · · · · · · · · ·	18				
	//				
	16			• • • • • • • • • • • • • • • • • • • •	
		· · · · · · · · · · · · · · · · · · ·			
	/3				
	12				
	10		• • • • • • • • • • • • • • • • • •		
۰۰ و ۱۰۰ ۵ میکند و ایرو بر و	7				
	7				
	6				
······································					
	3	1, :			
· · · · · · · · · · · · · · · · · · ·	2				
	9			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			+		
				n an an ann an an ann an an ann an an an	
· · · · ·	i i i i i i i i i i i i i i i i i i i				1
undru in i nizione en en en en en en en en en en en en e	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	<u>i</u> constra providente en entre en entre	,			
	, , , , ,	بېغىن يەسىر يې يې يې يې يې يې يې يې يې يې يې يې يې		· · · · · · · · · ·	
•	•	• · · · · · · · · · ·	- · · · ·		
	i i i i i i i i i i i i i i i i i i i	· · · · · ·	•		
• •	• • •	• •	an an an an an an an an an an an an an a		· · · · ·
				• • •	· ·
		1			
	e se a se a se a se a se a se a se a se			and the second sec	

5. Wind beam design information

.

-			3 RIVER WAY					
WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS		Job Name	JI MORRIS	171				
2905 Sackett Houston, Texa		Architect						
nousion, reas	WIND FRAME DE	ESIGN -		Job #				
	BEAMS							
			- 					
GRAVITY M	OMENTS : INTERIOR SPANS	+M=	w/2 16	(+)				
(TYPICAL)	INTERIOR STRISS							
		-M=	w? 2					
			1.1.72					
	END SPANS	+N13	$= \frac{\omega \rho^2}{12}$	(-)				
		- M	$= l u f^{2}$	V				
			10					
WIND	MOMENTS:							
	FROM COMPUTE	ROUTRT		(+)				
	TIONS :							
COMBINA	1.7L + 1.4D							
	3/ (1.72 + 1.40 + 1.	7W)						
	0.9D + 1.3W	FOR PO	SINVE MOMENT	OVER SUPPORT)				
		+						
	·			CHECK MAX. POSITIVE				
			MOHEN	T CEND SPANS				
	LIMITING WIND MONENT:	1.7/.1	10					
a) NEGA	TIVE MOMENT: 3 (1.72+1.40+1.7)	N) = 1.2+1						
	MAKE : (1.72+1,4D)	= <i>K</i>						
	075 K + 1.275 W	/ = K						
	W	= 0.25 = =	0.196 E-					
	Top2	w' > 0.19/0	$K \Rightarrow \frac{3}{10L}$	+1.40+17W) conThols				
		10 - 01119.	4					
	OSITIVE MOMENT @ SUPPORT		•••••					
	0.70 + 1.3W = 0 : $1.3W = 0.70$	· · · ·						
	W = 0.67.2	D	orcus D s	PPOPT				
	FOR W > 0.692D -> (+) MOMENT OCCUPS @ SUPPOPT							
· · · · · · · · · · · ·								

6. Structural floor plans and beam schedules

.

•·

• •

.

.

•

		BEAM SCHEDULE W3-, CB-, B	NOTIONS DESCRIPTION
	TOPC, TOPS C BOT		1 5-5-70 122-65 Mat 150 02
	MARY SIZE REINFORCING STEEL STIRRUPS	SIZE REINFORCING STEEL STIRRUPS SIZE REINFORCING STEEL STIRRUPS	2 Am 28 11540 Me 48, "4 To 800 2
RE	MARKS W' D' TOP TOP TOP BOT BOT ' NO SIZETYPE SP.	NG EA ENJ REMARKS MARK W. D' TOP TOP TOP BOT BOT BOT NO SIZE TIPE SPACING EA END REMARK W. D' TOP TOP STE BOT STE TOP SPACING EA END	175
	ROOF NBI 50 2011 2.09	FLOORS 18, 17, 16 'U.M CONTINUED FLOORS 12, 11, 10 U.M CONTINUED FLOORS 18, 17, 16 'U.M CONTINUED FLOORS 12, 11, 10 U.M CONTINUED FLOORS 18, 17, 16 'U.M CONTINUED FLOORS 12, 11, 10 U.M CONTINUED FLOORS 18, 17, 16 'U.M CONTINUED FLOORS 12, 11, 10 U.M CONTINUED	
		S. 11 FLE. 5" NB17 36 35 6-"9 L4"9 12 6/5 = 15/ 12 6/5 = 15/ 12 5." 45." 5." 45." 5." 45." 5." 45." 5." 45." 5."	
		EK/ FLR. 17" NB17 36 33 4.411 5.41 3.411 14 6/19:5/2:21 FLA. 7" NB18 5+ 35 4.41 3-411 43.11 3. 6/12:215/3:20	
		2 12/ FUR. 18 th 186 17 36 33 5- ¹ 11 2 ⁻¹ 9R 3- ¹ 11 44 619 5 5/2 6.21/ FUR 18 th 186 19 36 33 2- ¹ 12 2- ¹ 10 -3- ¹ 11 12 1 6/5 8/2 0.81/ 1 6 17 5/2 1.0 13 2- ¹ 10 13 2- ¹ 11 3- ¹ 11 3- ¹ 11 44 61/9 5/2 6.21/ 10 ¹ 2 2 ⁻¹ 10 12 2- ¹ 10 12 2 ⁻¹ 10 12 ⁻¹ 10 12 2 ⁻¹ 10 12 2	•
		1 FLR. 17 11818 34 33 4-9 2.49 12 20 6/76/2521 FLR 5 NB20 32 33 2.40 11 -2.10 3 17 6/6 215/	
		3/2/1/ FUR 18" NO 18 36 33 2." 7 2." 2." 2." 2." 2." 2." 2." 2." 2." 2."	
		#/ FLR.17# WB 19 36 33 2.4 12 6/5 2.65 FLR.17# NB 21 32 23 550 510 21 6/6 265/ 9 6.15/ FLR.17# 138.19 36 33 2.49 2.49 2.48 1 1.17 6.15 55.10 1.50 5.10 5	
1		FERST FLR 18" NB19 30 242 2.47 1.47 428 16 D 617 ENT 1.20 NBSS 30 522 550 50 10 10 10 10 10 10 10 10 10 10 10 10 10	
		14 5 12/ FLR. 17 ⁴ 1/6 20 36 33 3. ⁴ 9 - 2. ⁴ 4 1/8 LTD 9 5 8 / 1/6 1/2 1/6 1/2 1/6 1/2 1/6 1/2 1/6 1 = FLR. 17 ⁴ WB 20 36 33 2. ⁴ 8 LTD 9 5 8 / 1/7 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 7 4 //10 1/2 1/2 5 / 1 5 / 10 //10 1/2 1/2 5 / 1 5 / 10 //10 1/2 1/2 5 / 10 //10 1/2 1/2 5 / 10 //10 1/2 1/2 5 / 10 //10 1/2 1/2 5 / 10 //10 1/2 1/2 5 / 10 //10 1/2 1/2 5 / 10 //10 //10 //10 //10 //10 //10 //	
•		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
		2 = 15/ FLA 1/2" 1:3 21 30 33 2-10 2."9. 42."2 14 III 4/5 = 15/24/	
		2 151 2x 12 36 33 3.10 2.9 42.2 80 1 DD 1/7615/2624	
		FLORS 9. B. T (UN)	
		FLOORS 15, 14, 15 1131 30 24% 2*11 2*11 44 1 1/100/2014 1131 30 24% 2*11 1 1/100/2014 1 1 1/100/2014 1	
	•	182 30 244 2-11 2-10 42.40 A LOT LIDE 44 A HE 3 30 244 5-9 1-9 42.9 2 6/0 5/0/2 544	
		NB3 30 243 2.40 1.47 -2.49 26 C/0512/2524/ NB4 30 213 2.40 42.0 22 6/8911/2024/	
	FLOOR 20, 19 (1.555 NOTO - REMARKS) WB1 30 243 2-"11 2-"11 (2-"11 -5."11 35 #4 8 4)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	WB 4 30 242 2*11 10 3*11 -5*10 44 5544 .485 35 242 2*8 41.00 16. 0	NBB 30 $24\frac{3}{3}$ $3^{-1}l$ 24 13 $26/l$ 189 30 $26\frac{1}{3}$ 13 $26/l$ 199 30 $24\frac{3}{3}$ $3^{-1}l_{22}$ 13 $26/l$ $188/l$ $188/l$ $1326/l$ $1326/l$ 199 30 $24\frac{3}{3}$ $3^{-1}l_{22}$ $1326/l$ $1826/l$ $188/l$ $188/l$ 302 $24\frac{1}{3}$ $1326/l$	
		2 21 WB10 30 242 2-6 -2.º10 28 6/13 512/ WB11 30 223 5.º1 (2.º10 55 4/8 0.0/2 0.001)	
		$\frac{1}{10/1} \frac{1}{10} \frac{30}{10} \frac{1}{20} \frac{1}{20} \frac{1}{20} \frac{1}{10} \frac{1}{20}	
	.188 30 23% 5.°16 L3.°0 74 //3 c 1189 5c 243 3.°10 23.°0 24 13 c		
	WB10 30 242 2. B -2.70 28 6	1/2 / 30 243 2. 9 / 1. 10 +2.10 := c/.4 s.c/2 = 1 WB = 30 233 = 9 C/2 = 1 (19 0/4/ 2 = 4)	
		\overline{x} c/ WB 15 30 24 \overline{x} 2."0 42.10 12 4/9 ± 12/24/ WB 16 30 54 \overline{x} 7."0 2: 0 j/9 ± 10/10 ± 0/ \overline{x} 1/1 FLR 13 £ 4 J1915 50 Ed \overline{x} 2."0 2."0 1.0"0 2."0 1.0"0 2."0 1.0"0 2."0 1.0"0 2."0 1.0"0 2."0 1.0"0 2."0 1.0"0 2."0 2.10"0 1.0"0 2."0 2.10"0	
		2.15/ The Arm with 17 36 33 2."11 110 -2."0 30 III : -15/23201 WB/B 36 33 6."1 3."11 -4."11 26 . II 6/14 0/5/3 024	
	97# W814 3C 24 4 3= 10 2. 10 _ 2. 10 _ 2. 10 / 4/	210 FLR. 15° MB17 36 33 3.°11 2.°0 -3.511 22 III - 6.15 WB20 31 33 2.°9 2.°11 -3.°0 16 III 8 2.10/	
		DISI Tr. R1/L WB 18 36 III 14 = 15 3 m/ 6 15/ FLR 5* WB 18 36 33 4.*1/ 2.*9 5.*1/ 43.*1/ 36 III 14 = 15 3 m/ W 8 21 32 33 5.*1/ 2.*1/ 42.*1/ 14 111 6/6 210/1 2m/	
FLR.	20 ⁷⁷ WB15 36 33 2=11 4=11 2=11 4=21 34 72	1 2+ B 6 16 WB 19 36 33 3- 10 2-10 (5-11) 16 2 224 W8 23 30 24 3 2.10 4.10 1-10 42.10 20 [7 6/10 010/2 024]	
FLR. ELR		5 15/2 2 = 1 K 5 M W3 19 36 33 3-10 2-10 43.70 10 1 5 1/2 224/ WB19 36 33 2.77 43.10 16 II 8 010/	
FLR. FLR		B/2:22 FU:3(14 WB 20 36 38 2:9 1.*10 47.*10 14 1/5 0151 E-5:22 FLR. 57 UB 50 36 33 2:9 1.*10 47.*10 14 1/6 0151	
.=LR	20 ^m WB17 36 33 4-•11 2-•11 44 61.	15/2521 ARBSIN MB 21 36 33 350 1-10 42% 14 4 4/6 215/	· · · · · · · · · · · · · · · · · · ·
ELR. I			
		5 5 4 1 FLR 15 45 22 30 24 2 10 2 10 2 10 2 10 2 10 2 10 2 10	<u>, </u>
		- FLR 15" WB 16 30 24% 2.".0 -2.".C 22 1 [] 6/9010/26/ WB 2 30 26% 2.".1 2.".1 2.".1 2.".1 4/8 210/2 224/ S	5. I. Morris Associates
			ACHITECTS 3465 WEST ALABAMA HOUSTON, TEXAS
		WB5 30 24% 2.49 42.00 22 6/8 Dic/2 524	
	FLOOR 18, 17, 16 (1.4.)		ALTER P. MOORE
		$\frac{1}{2524} \frac{FLOORS 12, 11, 10}{WB1 30 24^{3} 2.^{4}11} \frac{12.^{4}11}{2.^{4}11} \frac{12.^{4}11}{42.^{4}11} \frac{12.^{4}11}{34 44 5} \frac{12.4}{414 010/2524} \frac{12.^{4}12}{WB8 30 24^{3} 4.^{4}11} \frac{12.^{4}11}{3.^{4}11} \frac{12.01}{3.08/2}$	
	W83 30 243 2."7 1-"9 42."9 26 1 6/01	12 5.73/ WB2 30 24% 2.8 42.50 22 6/8 D 10/2 524/ WB9 30 24% 3 41 3.41 26 13 28/ W	Alter P. Moore & Associates, Inc. RUCTURAL ENGINEERS HOUSTON
FLR. I		1.47 HB3 30 243 10 2- 10 -2	
-28.17		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	henault & Associates, Inc. Insulting Engineers Houston
	WB6 30 243 2-9 2.9 43-10 30 -/3	115/ 1196 30 243 258 -3.50 30 6/13 210/1 DISA WB13 30 203 250 250 250 42.50 34 6/14 210/2 D24	
	WB7 30 24 / 2.% 4.3."// 34 4.1/12 WB8 50 24 / 2. % 4.3."// 4.3."// 50 1.3. %		HREE
	189 30 24° 3-"11 43-"11 24 32 C	WB9 30 243 3 °11 20 13 05/ WB16 30 243 2. "11 2. "11 (2. "10 22 6/9 212) (19 212) H	IVERWAY
	WB10 30 212 2-6 42-10 28 6/13	0/ WB10 30 242 2.49 42.70 28 6/18 2.11 2.11 42.40 2 4/9 Dic/1024/	OHN HANSEN
1	WB/I 30 242 2.40 5.70 5.		VESTMENT BUILDER
	W813 30 242 2.49 . 5.40 -2.40 34 61.4	CIERRAL WB13 30 24% 2-410 2.10 2.10 4.10 34 GIADIC/EDTA WB20 30 33 2.47 43.97 24 GIADIC/	EAM SCHEDULE
	WB 14 50 242 2-9 1.10 42.10 34 - 6/4	WB14 30 244 2.99 1310 42.10 34 6/4010/2011 WB21 30 33 3.47 43.9 26 4/12 0.10/	
FLE. KA	WB /5 30 2-4 2-9 2-9 2-10 52 2 C 6/7 WB /6 34 35 2-1c 5-1 2-2 2 4 20 6/7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TE DRAWING NO.
	WATE 36 33 2.12 2.1 2.2 2.2.7 20 4 20 6/1 WATE 36 38 2.2.1 2.2.7 20 50 50 50 50 25 20	10 10 10 10 10 10 10 10 10 10 10 10 10 1	SI,4

· · · · · · · · · · · · · · · · · · ·	
•	
	Γ
	ma
	F
	FL.
· • .	12.10
	12 :
	.s- H
4 -	12.1
• •	12-1
	13 #
	14 E
	14 A 12 C 12 A 15 A 14 E
	12 8
~	15.0
	FL
	7-11.
-	

and a state of the second second second

ŀ

· - .

•

1

•

1 2.50

.....

,

/

•

۰.

REANI		
BEAM	SCHEDULE	
	and the second second second second second second second second second second second second second second second	
		•

•

			rc,• :	1000	<u> </u>							
	31	zε	RE	INFC	RCI				i i	RR	JP5	OR REMARKS
MARK	w	0.	TOP	TOP	TOP	3 <i>5</i> 7 -	BOT	12 201	NO	5:21	TYP	E SPACING EA E
FLOOR	e /	1 13		VOTEE	1	T T	Î.	1	Î	Ť	Ť.	1
12.14 81	1	14	- r ` · · ·		2.*8	1	: "11	1	24	13	10	s went
12 =2	30	24	. 		8.09		5.01		D	13	1-	6/4011,
.S- H B2	120	244	+	+	6.14	<u> </u>	3.48		<u>ب</u>	11	+	6/24/24/
12-16 63	+	33		3-1-10		1	6-9/1	┨━───	24	•4	20	
	60			·			+		+	1.	1-	
12- AB4		.23	1				6-"11		18	÷	Ð	1
13 # 5	30	24 \$		ļ	4.=9	-	5.47	ļ	8	"	15	6/11/11/33/
1485	30	544			Z-#4	<u> </u>	4.19	ļ	2Z	13		6/3e6,7en/
14 BG	30	Z4 *		1		311	3.10	ļ	46	13	3	5,1105/10€11/
1285 1286	30	20					2 - 1C			#3	12	619012/
1586 1487	30	1.4%			8.49		3.0		10	• 3		6/4+11
FLOO	RE	7 7	HRU I	/	· ·]						1.
7-11.01	30	20%	1		4-"10	1-#8	2.49		6	13	ND	6 Ge11124/
			1	1		1				1	1	1
FLOOR	6	.	1								† -	
	r -	120		20 01			50."11		90	•5	enn.	6/44@ B/
681	84	39	2-#11	120.00						12		
682	30	23	1		3-1/1	·	7-411		38	1	1.	1937/
6B3	30	33	╂───		2-#11		4-#11		/8	14	0	6/5@15/3@36
	[1	<u> </u>			 						
FLOOR	es J	; *						 				
381	36	33	4-11	1-"11t	4 * 1/		6-11		68	4	U	6/3308/
4B/	56	53	9-\$11			4.911	5- #11		34	-4	中	6/16011
FLOM	2				· · ·							
281	36	33	2-11	2-"110	3-10		2-11	1.2-10	32	-4	U	G/110-12/4 EZ4,
282	6C	33	20-11				10-411		20	•4	ter	10@121
283	<u>مع</u> دی	33	†	3-795			- - ,7		40	-4	E.	6/19@12/
205	2÷	55 11 ^j -		2 1	2.19	·	3-#7		40 20	• •	10	6/9011/
		-			• /							-//
		-										
FLOO		FIR	5.7 							-		
151	36	24 4		5. 115					44		وليا	1010 5/11 = 11/201
1B2	52	24%		4. "12	4.10	3-9	4-9		₽₽.	• 3		1606/ 5ell/ 40
183	30	20 2			4-10		2. 7		14	*3	U	6/2 E11/2016,
184	30	24 4	7- 9			2. 9	3-7		28	• 3	ЪЭ.	Sp5/3et/Cell
185	30	:4ª4			4. 8		2.*8	•	12	43	ម	c/3011/2018
136	30	24%			4."8		4-8		20	* 3		6/308/5311
187	30	34 4		: st	3.4		3-"9		16	و م		6/7e11
188	30	2434			4.57	_	2.9		14	•3		Glachizear
139	50	244		2.*/ot		4.9	4."9		24		อก	5/905/11/11
1810	· · · · · · · · · · · · · · · · · · ·		2.*5	-			2 5		3	#3		6/38/38
	17	24 4							6	• 3	ย	
IB //	112	24 ⁵ 4	2-*5				2.5				i	6,38/98/
IBR.	10	24 4	2- 5-				2-5		4	13		6/30/
1813	12		5.5				2.5		4	*3	<u> </u>	6,40/
1814	17	24 %	2-5				2-6		6	13		5138,38/
1815	42	2434	2-5				2.5		G	#3		6/38/38/
13%	24	24°4	2-#6	- • 4 :	3-*8		5-8		30	•3		6/12 07/31/31
1/3 17	<u>:4</u>	::==	2-*6				3. *8		28	-3		= /11 @7/17/17/
1318	24	ي. پ ^ن و	:-*:		6-8		1."8		34	*3		6/15 07/34;
1319	/7	244			i		2. 4		12	*3		6/2 811/3 234
1820	17		2-06	1.16 :			3-*7		16	•3	$\uparrow\uparrow$	6/5 = 11/3 = 32
1321	12	244	2-45				3-5-	-+		•3	++	6/9/9/
1822	30	244	2-7				9		54	- <u>-</u>	+	
			5-10				3-8					4/15 0 4 0 F6/2 010/3 4
1823	30		2. #5							*3 *•	*	6/14/14/20/
1824	20	36		/2			5-11	·		*3 -,		4/504/206/2/12/0
	18	244	:-*5				2-*8		14	3	8	4/629/
1326	8		2-*5				2.*6		10	د م		6/4 911/
1327	8	<u> </u>	2-*5				2-6			# 3		614 2111
11328	8	24 4	2. 5				z.*6		2	.3		6/
1829	24	36	4-10			- 1	3-9		22	*3		4/10 67/
1830	24	36	2.5	z.st		1	5-10		78	•3		3/23 = 3/ -5 = 7/
1331	14	36		1.º65	• †		4. 7			*3	+	6/4=6/8= 1.
	32	36	5-10				5.0	{		3	+	
i			+			-+	6-10		+			-115/18/
18 33	32	36	2.7						÷4		50	6/11 87 50 6/
	32		2-7	/	7.9		6-8		34			3785:04/28/28
	32		<i>:-*</i> 7				5-99			-1		4/11 04/4 04/27/2
	38	36	1."9	·			1.79			3	2	6/17/
1837	18	244	2.5	1-150	[3-#7]	4	±3	1	6/41/
1838	£4	244		4.075			5.9		38	• 3	[]	6/18 57/
113 39 2	145	14 4	1	2. 7t			3-77		4	*3		6/41/
				4.075			5.09				<u>, i</u>	
B 40:	201	24 0		4- /]	1	1	S- 7		20 KG			5/14@5/8@3
	20		2-05				3-8			5 #3		3/:4 24/

<u> </u>						$\underline{}$													
			Tor c	1									7				:00	1.	
	5	ZE	1			NG	STEE	= /	37	IRR	IPS	OR REMARKS	1		9/	zε	F	INF	ORC
11444	·	·		TOP					_					MARA	<			-70F	
	n		100	- HOP	10,0	-801	B 01	2.5	120	p.2.		E SPACING EA EN	REMAR	ମ	W	0	100	ليون مەربىدىد	TOP
820	50	4-15				1	1		T	1			ר	FLO	ORS	5	4 5	2	. 455 A
231	30	26		5 .91		4 = 10	0 6.011		198	13		seel no elsen	7	WB	30	- <u>1</u> -	\$ 2.14	1	
	-+	·						+	+	- i	-		4		- <u>†</u>			+	-
REZ	20	74	4		10 . \$ 11		9.06	<u> </u>	1	13		6/2011/39/	4	WBE	2 30	20	2. 11		2-1
R83	30	243	-		8.#1	Z-#6	3.07	1	20	13	10	6,101/39;		WB3	30	20	1 2. 9		1
PE4	10	122		3- 110	20	5 . 9	5.10	1	11	13	Ø	6:3036;	1	434	30	243	2- 410	1	2.1
RB5				9.08			8 \$ 1	+	+				-	NB5	30		2.19	+	
	130	<u></u>	·	3	·		01	+	10	"		6/8011/29;	51. 200		36	33		1:19	2.0
PBG	30	122	:		6.011		3. +7		12	19		6:4e11/20/	=2.345	_	30	24		+'''	2.00
007	1 3:	24			16 44	3.18	5 . 18		24	-3			/	WBT		242	5 . 10	\top	1
238	30	: 5 %		3 =11		1.010	5. 10	1	1	1.3	17	1			-+	24		+	
1					·			+	56	1.3		14+3/5=6/9=11	+	WBE	30	-		+	+
129	06	36	2. •7	·			2.40		8	*3	1	6,2017,41/	FL. 200	WB9	30	24	3 3 77		L
2310	1 . Z	76 5	2-#6	.	1		5 06		16	-		6/7012/	FLAT. 3, 4,	5 WB9	30	24-	3.511	1	
FBII	12	:13	2.06				3 = 6	1	/2	1 +3	1	614011/54/	FLR 2M	u B 10	30	33	2.19	+	+
	÷	24 4				+					++-			+			+		
₹3,2		14.4	2 *5			1	2.#7		12	-3		6/4 € 11/34/	=43	48.10	30	24 9	2. 10	Ļ	ļ
RE13	10	56	6-19				9.410	1	20	10	1.	49en1 .	FL 4,5	WB 10	30	24 -	2.19		
FLOO	R ZO	2	T					1			1 :	1	F.1. 24	NB 11	36	44	3.11	7."11	e
2081	30	1 2 4 4 4			a.= 10	>	3.""		36	14	ie-	6/7+614+9/6+10,	TLP 3	WEI		+	3. # 11		2- "10
2592	30	:4 %					3 *8		Ø		+ E	6/2-22/	<u> </u>		36	33	+		2- 14
22-53			5 = 11		5-#11		4-#//		4	* 3		9-6/1:6-11/28/	FUR 4	WR 11	30	20	2-411	L	
2285	50	244	1 2 - #11			+	2.011		10	* 3		6,3911/30	FUS	4.811	30	2930	2-#11		1
2286				+	1	1	4.19	 . .	12	-3		6/50 40/	FUR 4	N'512	36	35	5-5/1	†	1
20137	12	:434	2.05	1	1	1	2 =6	<u> </u>	14	13	1	6,32/	+			1	<u> </u>	+	
2088	2412	24%	4-#9			[4.14		12	19		6/58 401	FLK 5	6012	30	24 4			- I ·
FLOOR	19												FLR. 2,3	15 14	36	33	2-59		: 1/
ITEI	30	244	1		1	1. 7	2.58		16	13	15	615011/33/	FLR. 4	WD14	30	2434	2."11		:. *]!
.9B2	+	244	1	4.49t	4.09	1- 17	2.18		24	16	5	5/605/5011	Pi -	ND/5	30	24'	+	<u> </u>	1
	20	-	+	- 7C	1 .		+			+	1-		- II.			+	÷		2.31
1983	30	24 4			6-10	3-10		ŀ	40	13	+	6.7e6/12011	411	WB16		24"	2-#11	L	
19:54	30	20%	ł				3.18		10	13	0	6/3en/41/	Jil -	WBIT	30	24'*	2-54		2-7/1
1985	Ĩ	124%	1 100	1			2. 10		26	13	Ð	6/11:08/	711	NB/S	30	24 4	2.10		2.410
	+	-13	2 100	+	ł	t	1	1 1 40	18	15	m	6:8011	1	w5/7	30	24 4	2- #//		
1986	48	64					+	14 19	.''	+	1			<u> </u>	+				ł
1987	28	264	7-110	1	<u> </u>		2.*11		10	• 3	臣	6/3611/		NB20	نذ	24 4	1		L
.958	30	1900	1	1	TETAL TO	1.*8	2.8		6	03	5	6,28/28/		WB21	30	24 4	< *//		2#11
239	3/:	20-2	6.09	1	p.a. a	<u> </u>	6.09		12	15		6.5840	1	W822	30	24 4	5 AH		2 #1
	÷	+	<u> </u>	+					4	<u> </u>	+		ť			-	2.17		
9310	12	24-5	2.85				2.86			*3	ļ	6;321	1 1	<i>\$\$823</i>	Ŵ	24 4			
.9.211	24 2	1.034	4.09				4.09		20	*3		6/2011/3036/		w 8 24	30	24 **	3.43		1.*10
FLOOR	18					1							+FLR 4	WB 13	30	2.13	2.17		
8B1	1	742	<u> </u>	1	4,00	1-8	2.8		4	03	0	6/28 28/	+=:R.5	N. A. 13	30	24%	2-510		:.=10
<u></u>	30	1	<u></u>	+		10	1			L			<u>.</u>			<u> </u>	L		1
.8B2	22	244	1				4.#11		.4	39		6 Sell, 33	$\rightarrow F_{-R} =$	WB14	30	24 8	2.54		ļ
1883	30	242	1	1	18	1-2	28		10	13		6, ZEN/34/34/	lí				1		
.3E.1	۶	742		3.8t		1.*8	2.12		8	*3		6;2011/401	1						
	<u> </u>	+		100						-			ł		1				
IEES	30	244	ļ	_	6. "10	3-10	3.*10		40	13	20	6,766/12011			I				
1836	18'2	24 34	4-09				4-\$9		30	• 3	2	6, 12 0 11/36 36/		FLOC	<u> </u>	IRSi	r		
		Γ—											•	NG i	3516	24 34	5.10	2 • 7 ±	1
	<u> </u>											· · · · ·		×32	35 14	24 34	2-==		t
		L											· ·			-			
FLOOR 1	7	•		1									· ·	n 63		2434	2.09		L
1731	5e	20%		1			4.411			13	Ď	6 GE11/24/		1.64	3 5 %	24 4	2 • • 5		
1752	30	24%		1	6-11		2.8		/Z	13		6:4011/30/		,JENT	нои	SE	RCOF	SE A	MS
			ł		<u> </u>									C.R.		14			
1783	30	24%	<u> </u>				3 *8		12	¥3		6/4e11/24/		FBI	24	14	3.17		
1784	30	24 4		2. "6t			3.8		ú	*3		6/34/94/		FBI	<i>L</i> 4	14			
1785	30	24%		1	5.19	3. "9	49		55	13	ði:	6, res/12011,		r:33	24	;4	T	4	
.756	30	212	l		6.29		₹*E		12	13	0	6 401/38/		F84	z4	14	3.27		
														P65	24				
1787	30	240		3-8t			3. *11		z4	*3		Gineni				14			
1788	30	24 4		<u> </u>	60 TETAL TO	1. #8	2.08		ف	• 9		6:28/28/		rec	24 ·	14	2.*5		
17 89	67	2434	4.+10	6.181		2.411	4.10		1				1	P87	24	.4	Ţ]	
		<u> </u>				. 1							1	PAB	z4 .	14	5. #7		
		L		\vdash							•		1		24	14		l.=6 t	
FLOOR	16	r	—										1 - I	F89					
1681	30	2434				1.2	2.*9		18	#3	B	6, 8e 11/		FBIO	24	14		2 :	
1682	30	20 -	3.48			1-*8	2.00		8	*3	. 1	6/3021/		• -11	:4	-4	2.07		_
						1.*8		-+		#3		6/6e11/30/		FLOO	2R	FIRG	ST 10	TINO	:
1283	30		3. 8	<u> _ </u>	- <u>-</u>					- 1	~		<u> </u>			- 1			
16 84	48 .	26.4	2.10	£ 118	2 10	3.*//	4.°IC		32	#3	Ð	6160\$19011	j	1843		2434	2.*7		
1685	\$c	20%			4"1C	3- 10	4.10		4Z	#3		6/8e6/12e11		1844	24	24%	2.77	2-9t	
686			3.49				2.48		D	4 3	Ð	6/2011/32/32/	; 1	1845			2. 7		:-7
L			2.9		- 1								: 1				<u> </u>	::05	
1687	30	24%	L	3*9t		1-00	2.49		20	13	8	6/80 11/24/	÷	1846		36			
													. [1847	30	36		: ""	
													: [18 48	30	36		c.iet	
├	•												t l			20 3			
								·	-+				, F	1849					
FLOOR 1	5												i l						
1581	30	244				1.38	2.4		18	*3	2	6, 1011		·].		1		
1582	30	_	3.18			1.8			7	13	+	630211	1 }	1010IA	.16 1	ock.	Real	F 52	41 5
												· · · · · · · · · · · · · · · · · · ·	I / F				e	T	
1503	30	24 #	3.*9			1-8			-	"3		6 5611/36:36/	1 Y F		+				
1584	30	212			6. 10	3.10	3.10		31	••	20	6,507,11811,		OCB:	18	50 4	2.*5		
	30	244		3-8t		1.18			18 .	15	Ð	6.6011/30 36	i 1		ΞŢ	T	. T	T	
													i F	+	•		<u></u> +	- +	
1586	60	53		3- * /0ť			6-11					c/neiz/							
15B7	60	33	10-11				6-#11		18	"4		G/8 €12/	1 L		•				

.

•••

•

	_			-				_		
								•		·
									NO DATE DEBCRIFTION	ST P # 2
م ج در ا		-			· · ·			•	I JUR BISILED RE A.	
NF C	DRCI	NG	STEE	EL Icasi	37	RR	JP S	E SPACING EA END	•··	
N1:22	-	1			120	P.4.		E SPALING EA END	176	
	455 12	20	· • • • • • • •	+	<u> </u>	14				
	2."11			47.11	22	1		6/14 4 10/2 224/		
	-	1.19	-	62.9		†÷	1-	6/10 016/2 224/		
	2.10	,		12-6		Li	Y	6/850/8524/		
: 9	2. • 10	2.09		12.12	1::	++				
	2.*11			-3. 1C	30	1.	5	6/13 810/1815/	- -	
		+		43.11			╉╌╴	6/16 10/		
	1	1		43-11	-	1		1377 55 W. # Cass.	}	
	L		ļ	43-11	t					
				-1-9	t		1II	+	•	
			+	1 11 1-2-11	33 28		0	6/16 210/ 6/15 210/		
7."//		<u></u> +	+	16-11				+		
	2. "10	3-"10		24.11	36		æ	6/1801574024/		
	ļ			12.10			-	6/9 210/1024/		
			3-#11	42 .10			5	6/7 815/4 824/		
		4-11	3-11	-3-11 -2 * 10				6/9 5 10/1 8 24/		
	: *//	1	1	4.9						
	· •//	2-*10	2	12- 10	34		D	5/14 210/2 224/		
		<u> </u>		+ 2- = 10				6/9010/1024/		
	2.311				22		\parallel	6/9210/1224/		
	2. 10	2010	+	· · · · · //	:2 30		╎╀	6/9=10/1=24/		
				· . •//	::			618 010/2 2 24		
			ļ	\$ 2. 10	23			0/8210/1224/	-	
	2#11			•4.•11	30			30/12 210/		
	2 **			4-11 2.10	30 ,'s			566/10 010/ 5/6 210/1 2#1		
	1.010	1. 10		1 2 IU	а,		1	6/10 210/2 224		
		1-10		-2."10	22	i		6/8010/2024/		
	:."10			42-10			¥	6/14 210/2 224/	-	
		1-10		42.*10	34	. ¥	D	6/:4 210/2 224		
								<u>├</u> ┟		
•7 ±			4- * //		24	5"	1	6/11e11/39/		
		•	3.18 3.19		16 18	* 3 * 3		6/7011/2031		
			3 8		16	-3 * 3		c/s=11; 2 = 33/		
ЭE А	MS					•				
			2.#9		24	13	Ð	11 E G [45]		
			2. 47		10	13		406, 66/		
(.e. z		,. #7	2-#7		6 30	13 13		206.46/		
		,	2.07	•	4	-3 #9	+	6/24/	S. I. Morris Ass	ociator
			2.07		10	*3		306 2038/	S. I. IVIOITIS ASS ARCHITECTS 3465 WEST ALABAMA	
			2.07		4	*3	+	6/24/	ALC: NO	
=6 t			2 • 9		32	13 #3		15 C 6/40, 4 = 6 38/	WALTER P. MOORE	<u>حجاً)</u>
			2.07		19 14	*3		2 ° G 38/ 2 ° G 38/	116 0 MO. 146	
			3 •8	-+	26	•3	Ċ	1266/39/		-
UT.									Walter P. Moore & Asso	ociates. Inc.
			2. 7		-	* 3	<u>0</u>	6/3 @ 11/	STRUCTURAL ENGINEERS	HOUSTON
-9t	:-7		7-10		+	* 3	<u>в</u>	31.5 + 3/ 13 0 5/20/	Chenault & Associates, CONSULTING ENGINEERS	Inc. HOUSTON
1.05	• /		15 "11 .		+	3	B Ľ	6/4 @ 11 / c/4 @6/10 @ 8/8 = 17		
*		_	::-"# #			r		4/10 00/11 02/0017	TUDEE	
Tiet			17- 11			+		4/ 4 = 4; 4 = 6 - 4 = 17	THREE RIVERWAY	
			3.*10		.0	r 3	U	6/2011, 35;38/		1
					-				JOHN HANSEN	
524	41 5			+	-+				INVESTMENT BUILDE	н
			g."5		3	• :	4	6/3-421	BEAM SCHEDULE	
	• 1		3.00		12 1	و ا	U	6/10/10/3434/		
									DATE DRAWING NO.	
		{				\dashv	-		COMM. NO. 51	5
									77152	

18

80

48

STIRRUPS OR REMARKS NO SIZE TYPE SPACING EA END 72 19 11 2/2004/ 30 9/203 12 3 []] 3/ 10 al confro 31/ BOT 30 3 2/13 05/16 25/ 42 "3 E] stiestiesi GAN 24 -3 [] \$110. 3/1000/ 44 49 2 2005/10 32/ 2/15: 5/ 93/ 34 99 28 49 1:1.2051 881 56 3 2125=512=301 4 "9 5 6/28/ (CREATER LE - ME 10 3 0/3e 11/40/ 4 1.3 6/ 30/ 4 3 6/10/ . -3 4/2 e 38/ 4 6/201 * 3 6 3 6/26 3B/ GHIN-D 6 3 6/26 30/ 6 3 d 28.381 6 13 6/20 38/ 6 13 . 6;2038/ 6 13 6,20 581 6 13 6/2038/ 12 13 6 4211/34/ TOPCI TOP CS ____ -----BOTC Le remainerer) 4 STIRRUPS OR REMARKS NO SIZE TYPE SPACING EA ENL 8 13 [6,3010/ 26 \$3 6/1206/ 20 43 6190101 20 13 6/9e10j 34 13 6/16010/ 14 13 6;6010/ 6 13 [6, 2/10/ 1. ÷з.

· •.

5. STIRRUPS SHALL BE SPACED FROM FACE OF SUPPORTS.

6. BOTTOM BARS HARVED THUS 🌲 SHALL BE PLACED IN THO LAYERS.

GG.

PAI

L1/3

SCRED. STIRRUPS

TOP AP TOP & BA

APPENDIX V

Field Inspection

CARRIAGE PARK APARTMENT COMPLEX

- 1. Inter-office report to T. Shipman from X. Arguello
- 2. Report to R.A. Tash, Ltd. from Walter P. Moore & Assoc.

1. Inter-office report to T. Shipman from X. Arguello

. 179 WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett Houston, Texas 77006

Witer house the

Job Name	APAREMEN	JТ	THSPEC	110~1
			180	
Architect	ROMALD	Α,	TASH,	<u>LTD,</u>

Job # 98056

_	JOD # 1005()
	TO: TERRY SHIPMAN FROM: XAVIER ARGUELLO SUBJECT: REPORT ON STRUCTURAL SURVEY PERFORMED AUGUST 4. th AND 5 th , 1977 AT CARFIAGE PARK APARTMENT COMPLEX.
	THE COMPLEX HAS A TOTAL OF 25 BUILDINGS, INCLUDING 22 TWO-STORY APARTMENT BUILDINGS, I THREE-STORY APARTMENT BUILDING, AND 2 ONE-STORY MECHANICAL ROOMS. IT IS DIVIDED INTO NORTH CARRIAGE PARK (IG BLDGS.) AND SOUTH CARRIAGE PARK (9 BLDGS.). THE EXTERIOR OF ALL BUILDINGS AND SOME OF THE INTERIORS WERE INSPECTED. TYPICALLY ALL EXTERIOR WALLS AT GROUND LEVEL ARE BRICK VENEER, THE SECOND LEVEL EXTERIORS A'L OF WOOD CONSTRUCTION.
	OBSERVATIONS: A. WALLS NORTH SIDE: MOPERATE CRACKING IS VISIBLE IN MOST OF THE BRICK WALLS; THE CRACKS ARE BASICALLY OF TWO TYPES: I. VERTICAL CRACKING LOCATED IN MIDDLE OF WALL
	2. DIAGONAL AND HORIZONTAL CRACKS AT WINDOIN OPENINGS EXTENDING TO NEAREST CORNER. ONE OF THE BUILDINGS PRESENTS A PELATIVELY LARGE NUMBER OF THISE CRACKS (10). THE REST HAVE AND AVERAGE OF 2 CRACKS PER BUILDING. GOUTH SIDE: TWO BUILDINGS PRESENT MODERATE CRACKS AT THE LOCATION OF ELECTRICAL PANELS.
	IN THE THREE-STORY BUILDING, VERTICAL MODERNTE CRACKS ARE VISIBLE IN WALLS AROUND ELEVATOR AND STAIRS. B. <u>SLABS</u> NOISTH SIDE ! MODERATE CRACKING OBSERVED AT

WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 2905 Sackett Houston, Texas 77006 Job Name <u>APARTHEYST THE RECENCE</u> Architect <u>POLIALD A TOUCH</u> LEE

Job # 9304.

CURNERS OF SLADS ON GRADE. IN FEW PLACES EROSION DUE TO RAINFALL WAS OBSEFICED ON THE GROUND, EXPOSING BOTTOM OF SLAP ON GRADE. HOUTH SIDE ; GENERAL CRACKING (MUDERATE) INS SLABS AT CORRIDORS IN THE THREE-STORY BUILDING WERE OBSERVED NO VISIBLE CRACKING OF SLADS ON GRADE. C. STAIRS All STAIRS ARE OF THE LIGHT METAL AND CONCRETE TYPE THROUGHOUT THE COMPLEX; ALL STAIRS EXPOSED TO WEATHER! PRESENT A HIGH LEVEL OF CORPOSIDN. POOR WORKMANSHIP WAS OBSERVED AT PIPE COLUMN SUPPOR D. ROOF EVIDENCE OF LEAKING WAS FOUND IN ALMOST ALL INTERIORS . . INSPECTED, THE EXTENT OF POSSIBLE PANAGE TO THE WOODEN STRUCTURE SUPPORTING THE POOF COULD NOT BE DETERMINE WE TO ITS CONCEALED NATURE. E. GENERAL PIPE COLUMNS SUPPORTING CORFIDORS IN THE THEEE-STORY BUILDING AND COOLING TOWER IN NORTH MECHANICAL FOUR ARE HEAVILY CORPORED AT BASE, RETAINING WALL AT DRIVENAY, WEST OF NORTH SIDE SWIMMING POOL WAS UBSERVED IN POCK CONDITION. CONCLUSION : All CRACKS OBSERVED IN WALLS AND SLABS ARE OF NON- STRUCTURAL CHAPACTER. FROM WHAT COULD BE OBSERVED, THE BUILDINGIS ANE STRUCTURALY SAFE. PRESENCE OF TERMITES WAS REPORTED, BUT NO FUDENCE OF STRUCTURAL DAMAGE WAS FOUND,

2. Report to R.A. Tash, Ltd from Walter P. Moore & Assoc.

•

.

.

ITER P. MOORE AND ASSOCIATES INC. CONSULTING ENGINEERS 2905 SACKETT STREET HOUSTON, TEXAS 77098 (713) 526-5641

TO: Ronald A. Tash, Ltd.

SUBJECT: Report on Structural Survey Performed August 4th and 5th, 1977 at Carriage Park Apartment Complex, Houston, Texas

The complex has a total of 25 buildings, consisting of 22 two-story apartment buildings, 1 three-story apartment building, and 2 one-story mechanical buildings. It is divided into North Carriage Park (16 buildings) and South Carriage Park (9 buildings).

The exterior of all buildings and some of the interiors were inspected. Typically all exterior walls at ground level are brick veneer.

The following observations were made:

- 1. Walls
 - A. Northside Moderate cracking is visible in most of the brick walls. The cracks are basically vertical cracks located in the middle of the wall, and diagonal and horizontal cracks at window openings. One of the buildings has a relatively large number of these cracks (10). The remainder have an average of two cracks per building.
 - B. Southside Two buildings have moderate cracks at the location of the electrical panels. The three-story building has cracks in the walls around the elevator and stairs.

The cracks in the brick indicate some foundation movement. These cracks are probably caused by expansion of the clay soils due to seasonal changes in the moisture content of the soil. This condition is quite prevalent in many parts of Houston that have expansive clays. The cracks could also be due in part to temperature stresses.

The cracks do not indicate any serious structural damage and are only cosmetic in nature. The cracks should be patched to prevent moisture penetration and can be done at a small cost. In general, the brick and mortar appear to be in good condition.

- 2. Slabs and Grade Beams
 - A. Northside Moderate cracking was observed at the corners of slab on grade and grade beams. These cracks are due to the placement of the reinforcing bars. They are cosmetic in nature and do not affect the structural integrity of the foundation system. They can be repaired at a small cost.

Report on Structural Survey - Carriage Park Apartment Complex Page -two-

> In a few locations, erosion due to rainfall has exposed the bottom of the grade beam. This does not affect the grade beam but should be filled in to prevent further erosion.

- Southside In the three-story building, moderate cracks in Β. the slab on grade were observed in the corridors. The corridors are exposed to the weather, and these cracks are only cosmetic in nature and do not present any serious structural consequence.
- 3. Stairs

All stairs are of the light metal and concrete type. Stairs exposed to the weather exhibit a high level of corrosion. This is quite normal for areas of Houston where air pollution tends to be a little more concentrated than normal. The project is in such an area because of its proximity to the ship channel. The stairs should be repaired and probably can be done by the maintenance staff.

4. Roof

> **Evidence** of leaking was found in almost all interiors inspected. The extent of possible damage to the wooden structure supporting the roof could not be determined due to its concealed nature. It is our opinion that any structural damage would be minor.

5. General

> Some pipe columns supporting the corridors in the three-story building and the cooling tower in the North Mechanical Room are corroded. This could be repaired by the maintenance staff.

The presence of termites was reported in six buildings, but there was no evidence of structural damage.

6. Conclusion

In general, the buildings are structurally sound and should not present any major structural problems in the near future. The stairs and pipe columns that are corroded should be repaired.

Submitted by:

WALTER P. MOORE AND ASSOCIATES, INC.

Jeury & Stepman Terry G. Shipman, P.E.

APPENDIX VI

Structural Additions and Remodeling of Existing Buildings

- 1. Structural drawings
- 2. Memorandum to K. Zimmerman and response

1. Structural drawings

2. Memorandum to K. Zimmerman and response

.

•

.

•

MEMORALDUM

May/2/73

TO: Ken Zimmerman

FROM: Xavier Arguello

- RE: Suggestions for improvement in our methods of design and detailing.
- A. The number of jobs involving additions, repairs and revisions of emisting structures represent not a small percentage of the total jobs our firm gets. I would like to present a suggestion derived from my involvement in several jobs of this type: It is quite common to specify in our drawings, welding of cover plates, hangers, stiffner plates, connection plates, etc. to emisting structural elements that are stressed. We should include in our "Check List of Problem Items" a provision calling to the attention of our engineers the potential problems that may occur due to the reduction in effective area caused by welding temperatures in the stressed member. (i.e. welding stiffner plates on midspan of a simply supported beam could create a collapse mechanism). Connections to existing stressed members can be performed without problems if one is aware of this and applies sound engineering judgement.
- B. In our typical stick-on detail: "Typical Elock
 Lintel Details", the note for the two course block lintel reads: "openings 5 ft. wide or greater". I recommend including in the note an upper bound limiting the opening length. I feel that this will clarify our detail preventing misinterpretations.

Walter P. Moore and Associates, Inc. Consulting Engineers and Planners

K. E. Zimmerman, P.E. Vice Chairman of the Board

May 19, 1978

Mr. Xavier Arguello 2905 Sackett Street Houston, Texas 77098

Dear Xavier:

Your suggestions of May 2 were presented to the Executive Committee on May 10 and discussed. While the content of your suggestions are items that have heretofore been orally brought to the attention of our group leaders, your comments suggested that if it really gets effective it should be put in written form. Lee Jones will have a memorandum regarding the items out shortly.

The Committee appreciated your concern regarding the items mentioned, and thanks you for submitting them. The enclosed check is a token of appreciation for your thoughtfulness.

Yours very truly,

WALTER P. MOORE AND ASSOCIATES, INC.

K. E. Zimmerman

KEZ:md

Walter P. Moore and Associates, Inc. Consulting Engineers and Planners

MEMO

DATE: MAY 25, 1978

TO: ALL STRUCTURAL PERSONNEL

FROM: LEE W. JONES

Xavier Arguello has made several suggestions that all of us should have been aware of, but they are worthy reminders.

- Caution should be used when welding to existing steel members. Sound engineering judgement should be exercised when welding to stressed members since the welding temperatures may reduce the member capacity.
- 2. Our typical two course block lintel detail reads "For openings 5 Ft. wide or greater." With various loading conditions it is not appropriate to set an upper span limit for this lintel. We should however insure that the larger openings on each project are provided with adequate lintels.

APPENDIX VII

Revision of Design and Shop Drawings

- 1. Framing plan and sections
- 2. Revision of precast system

1. Framing plan and sections

.

2. Revision of precast system

.

.

Job Nome GREENSPORST GARAGE WALTER P. MOORE & ASSOCIATES, INC. CONSULTING ENGINEERS 196 Architect _ 2905 Sackett Houston, Texas 77006 PRECIST DESIGN - REVISION Job # - USE LIGHTWEIGHT TOPPING ON POUBLE TEE V 0,K. DL 20PSF (OUR NOTES CALL FOR 5000) - fc = 5500 psi WAS USED IN DESIGN FOR DT'S Notes: D IT SHIFTED 1/2" (2) IT SHIFTED 21/2" OIK, (SEE ()) DIMENSIONS O,K. DIFFERENT ARRANGEMENT OF DIS U.K. - GTAIR WELL DIMENSIONS AND LOCATION O.K. -- NOTE : PANELS SUPPORTED ON IT. NOT SHOWN ON SHOP DEAWINGS AS DESIGNED, PLATES_AT ENDS_ONLY : WHEN BUMPER LOAD ACTS, THE FLEXURAL ACTION WILL BEHAVE WITH d37" $M = \frac{16}{29} \frac{12}{4} = \frac{1392}{2} \frac{1392}{2} \frac{12}{3} \frac{1392}{2} \frac{1392}{$ 291 ATEEL PROVIDED: (0,1) (5.67) = 0,57 in2 NO - MOTE: ON L BEAM, SHEAR STRESS DUE TO TORSION & TO DIRECT SHEAR WERE NOT COMPUTED PROPERLY. 85.4,7.5 = 47 P> 85.4 6.75' 13.75'

Job Name GPEEDSPORDT GAIANT WALTER P. MOORE & ASSOCIATES, INC. 197 CONSULTING ENGINEERS Architect_ 2905 Sackett Houston, Texas 77006 REVISION TEE Job # DOUBLE L= 60.83 (AT MIDDLE) loss due to placific shortering (Trep = (2) (173460) - (2) (173460) × 12.68 (-570,8 1si)(0,9) = -513,7 (TENSI. 3062 Spor = (2) (173460) + (2) (173460) x 12.63 4460 PSix 0.9 = 4014.0 (compres 1/223.6 401 INITIAL PRESSTRES PLUS BM WEIGHT (B) 418 x 60,23 x 12/8 = 2,320,000 # -4 Mp. = Grop = -513,7 + 2320 000 24316 ps1° (compression) 3063.5 4014.0 - 2320000 _ 2118. ps; (compression) Smor = 1223,6 Allowable compression (ACI 18,4.1) 0.6fii = 0.6x3500 = 2100 Q.K. AFTER 22% bosses + WEIGHT OF TOPPING \overline{c} STRESSES 160, 60,83 LT - 885,070 5 top = (-570,8) (0.78) + 2320000 / 3063.5 + 888,070 / 3063.5 = 602 (4460) (0.78) - [2320000 /1223.6] - [888070 /1223.6] = 857 psi 5000 F = (composite section) L.L. STRESSES DUE P 70 320, 60.93 - 12/8 -439.3 Psi OTPP(composite) Spor (comp) 40421 ML 1776200 - 1240,5 151 Smor (convissive) = 14 31.3 SHOT (cmp) (14) (21 (7300) 324 602. 7 , 902

APPENDIX VIII

Other Professional Development Activities

A. Excerpts of a seminar conducted at Walter P. Moore & Assoc.

B. AISC seminar, certificate of completion

A. Excerpts of a seminar conducted at Walter P. Moore & Assoc.

.

.

.

· •

,

Some Aspects of the Structural Damage Caused by the 1972 Managua, Nicaragua Earthquake

The Structural Engineers Association of California (SEAOC), establishes provisions for earthquake-resistant structures in their "Recommended Lateral Force Requirements and Commentary", which are adopted by most of the major building codes in the Western Hemisphere. They state that: "With regard to earthquakes, structures designed in conformance with the provisions and principles set forth herein should, in general, be able to: 1. Resist minor earthquakes without damage, 2. Resist moderate earthquakes without structural damage, but with some non-structural damage, and 3. Resist major earthquakes, of the intensity of severity of the strongest experienced in California, without collapse, but with some structural as well as non-structural damage."

The 1972 Managua earthquake can be classified as a moderate earthquake. The intensity of shaking in the city was established to be around VII to VIII in the Modified Mercalli scale with high shaking zones of IX to X (out of a maximum of XII). Maximum accelerations recorded were of 0.39 g East-West, 0.34 g North-South, and 0.33 g vertical; it was established that at least in one zone the vertical acceleration reached the value of gravity (1 g.) (see: Saint-Amand, Pierre; "The Seismicity and Geologic Structure of the Managua, Nicaragua Area"; Managua, Nicaragua earthquake of December 23, 1972 Earthquake Engineering Research Institute conference proceedings).

It was established that the total damage caused by the earthquake amounted to about 30% of the nation's gross national product. Around 8000 people were killed, 20,000 injured, and the property damage exceeded a

billion U.S. dollars (see: Duke, Martin C.; "Impact of Managua on Earthquake Engineering"; Managua, Nicaragua earthquake of December 23, 1972, Earthquake Engineering Research Institute, conference proceedings).

Damage in Managua was related to the type and quality of construction, to the intensity of shaking, and to fault lines. In Photos 1, 2, and 3, we can appreciate obvious examples of neglect of provisions for resistance to lateral forces.

In Photos 4 and 5 permanent deformations are observed due entirely to first floor distortions beyond the elastic limit. The upper floors are undistorted due to the fact that once the strength of the "weak" first floor is reached, the upper floors are isolated to a great extent from the ground-induced forces. Notice in Photo 4 that the failure actually occurred in the direction of the weak axis of the portal frames. In photo 5, notice how the second and third floors are intact, even the glass pa es are in place!

Weak parts of a structure may be attributable to underdesign of that part of the structure, and/or overdesign of other parts of the structure. In earthquake-prone areas, danger exists both from understrong and overstrong elements. Photo 6 presents a close-up of one of the failed first floor columns of the building shown in photo 5. The effective length of this column has been reduced by the presence of the masonry walls, confining its lower half portion, this creates an unnoticed stiffer element which attracts greater forces and which doesn't have the strength to resist them; notice the far spacing of the stirrups and their size.

The occurrance of the type of failure caused by understrong elements in structures has been thoroughly studied, a proposed design taking advantage of the weak first floor has been set forth by M. Fintel and

F. Khan: "Shock-Absorbing Soft Story Concept for Multistory Earthquake Structures", Portland Cement Association.

The author had the opportunity of participating in the structural inspection of the repairs performed on the building shown on Photo 5; it consisted basically of carrying reinforced concrete piers from the foundation to the roof in the same location of existing columns. This way the structure was strengthend without creating additional weak spots.

Photo 7 presents the damage caused to a building which had been repaired from previous earthquake damage (1968). The new damage occurred at the abrupt change in stiffness in the second floor level, up to where strengthening had been carried when repairing the 1968 damage. After the 1968 earthquake, the first floor which was damaged then, was strengthened by forming reinforced concrete piers carried to the second floor; and thus inadvertedly transfering the original weakness to that floor. Photo 8 shows a close-up of the abrupt change of stiffness and the damage concentrated there.

In Photo 9, overturning failure in the strong axis of the portals can be observed, this view presents the failed tension-side, Photo 10 shows a crushed column on the failed compression-side. This building obviously had no provision for resistence of large lateral forces.

An example of damage due to inadverted stiffness provided by infills in frames, without the sufficient strength to resist the forces induced, is presented in Photo 11. The main structure of this building, a reinforced concrete frame system did not suffer major damage but the "nonstructural" damage was rather high. In seismic areas, due consideration has to be given to the behavior and interaction of non-structural elements, as well of course to the structural elements.

Conditions such as the one presented in Photo 12 are quite prevalent in building-congested downtown areas; in this particular case an adjacent building stiffened the bottom story levels of the six story building causing damage at the externally-originated abrupt change in stiffness.

Photo 13 presents an example of poor detailing and/or poor workmanship. The connections of the heavy precast concrete roof slabs failed in each and every dwelling of this housing project; upon close examination of the failed slabs, only tack welds were observed to have been provided as connection to the walls.

Finally, Photo 14 presents two medium-rise buildings, both of reinforced concrete but the one to the left, the "Banco de America" building withstood the earthquake very well while the one to the right, the "Banco Central" building fared poorly. The "Banco de America" building had a much stiffer structure which relied on shear wall-frame interaction for the resistance to lateral forces, in addition to having a sysmmetric plan. The "Banco Central" building had a flexible frame system resisting lateral forces, when the frames deformed, most of the "non-structural" partitions were damaged; in fact damage was so heavy that even though the main structure was undamaged it was determined that the cost involved in its repair would exceed the benefits of putting it back in operation. This building also had an unsymetric distribution of stiffness in-plan; as of today it has already been demolished.

Photo 1

Photo 2

Photo 3

Photo 5

Photo 7

Photo 10

Photo 11

Photo 12

Photo 13

AISC Seminar, Certificate of Completion

Robert O. Wina 1921 ROBERT O. DISQUE, Chief Engineer Practical Steel Design for Buildings / 2-20 Stories R. 1. 20. American Institute of Steel Construction, I 0.9 CONTINUING EDUCATION UNITS (CEU) ARE AWARDED WITH THIS CERTIFICATE egional Engineer has successfully completed Date sponscred by XAVIER ARGUELLO S. TEEL CO. Carlos Carlos

VII. Vita

Francisco Xavier Arguello Carazo was born on August 6, 1953 in Guatemala, Central America; his parents being Felipe and Lola Arguello Bolanos, he is married to Olga A. Arguello and has four children. He received the degree of Civil Engineer in August of 1975 from the National University of Nicaragua, Central America, and a Master of Science degree in May of 1977 from Rice University in Houston, Texas, with a major emphasis in structural engineering. While in Nicaragua, he acquired three years of experience in engineering, working one and a half years for a consulting engineering firm: Federico Fiedler & Assoc., and one and a half years for an agricultural development firm: Arrocera Venllano S.A. He has fifteen months consulting engineering experience at Walter P. Moore & Associates, in Houston, Texas. His permanent mailing address is: P.O. Box 645, San Pedro Sula, Honduras, Central America.