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ABSTRACT
Internship Experience with Texas Instruments
Kerry Cloyce Glover, B.S., Texas A&M University
M.S., Texas A&M University

Chairman of Advisory Committee: Dr. V.T. Rhyne

This report presents a survey of the author’s
internship experience with Texas Instruments from
November 1980 to November 1981, The internship was
spent in the Advanced Research and Development Division
of the Digital Systems Group. The report’s intent is
to demonstrate that thié experience fulfills the

requirements of the Doctor of Engineering internship.

The author’s internship activities involved the
design of a special purpose processor. The internship
was divided into two parts during which different
versions of the processor were developed. The first
design was of a slow processor which was to be simple
to build and debug. The second design' was a high
performance, and therefore complex, processor. Several
areas of expertise were galined during the intermnship
including simulation, caching techniques and
pipelining. Communication skills were developed

because of the interaction with software designers.
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INTERNSHIP REPORT

Introduction

Working on a team effort to design and develop a
new computer system 1s an exciting and challenging
opportunity. Such has been my intern experience with
Texas Instruments for the past year. My assignment was
to design the Central Processing Unit (CPU) of an
experimental computer system. This required close work
with the research group which was defining the
architecture. The successful implemention of the
system would require a full understanding of computer

hardware, software and system architecture,

The initial objectives of the project are listed
in Appendix A. Since this 1list of objectives was
submitted, many things have changed on the project.
Many of the objectives were not attainable, however,

additional goals were achieved.

Throughout the internship project, the major goal
has been to design a processor, During that time,
performance requirements for the processor have been
changed. The first processor was a low=-end

implementation of the architecture. This had several



attributes as discussed in the objectives. These were
to develop rapidly a machine which had built-in debug
and test features, allowing it to be easily microcoded.
The goals changed half-way through the project. The
new goal was to develop a high performance/high speed

version of the processor.

The two versions of the processor were of two
speed/performance ranges. A relationship exists
between hardware complexity and speed. This project
started at one point on that curve (A) and latter was
redirected to another point on that curve (B). As the
speed of the processor increased the complexity also

increased.

!

|

|

SPEED !
(MIPS) [ *

|

.05 |

I

COST (HARDWARE COMPLEXITY)

FIGURE 1 - HARDWARE SPEED-COST CURVE



This report will be divided into three sections.
The first section will be a short overview of the
entire project. This is a condensed form of the report
which will familiarize the reader with the project and
the various areas which were investigated. The second
section will discuss a slow machine. It explains
details about the data paths, microcode, and debug
features which were designed. The third section wili
describe several aspects of high performance design of
computers and how it applies to this project in

developing a fast machine.



PROJECT OVERVIEW

The first several months on the project were spent
studying a research oriented computer architecture.
This‘ architecture required that several tasks
traditionally done 1in software to be implemented in
hardware. Understaﬁding and envisioning an
implementation for this experimental machine proved to

be a learning experience.

The project had been divided into several
different hardware iIimplementation areas. These were
the processor, memory management and bus interface.
The processor section was developed during the
internship. The processor interfacéd directly to the
memory manager which then interfaced to other parts of

the system.

o +
Fmmmm— e + P + Fom - + |
| I ! MEMORY I | P
| PROCESSOR +==—=mn + tmm——— + MEMORY | |
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I
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| BUS |

| INTERFACE |

o +

FIGURE 2 - SYSTEM CONFIGURATION



The first step in the design of the machine was to
define the data paths. This involved the study of how
data would flow inside of the machine and be
manipulated to perform the functions needed. Several
methods of implementing . the architecture were
envisioned and each new revision allowed different
functions to be implemented at various speeds and

efficiencies.

The first architecture was a very basic Von
Neumann architecture with separate address and data
lines. This proved to be very 1inefficient and slow.
The design went through several variations. It -was
found that the hardware needed to implement a fast
version of the architecture would take a long time to
design and would be hard to microcode (Ucode) and
debug. The final implementation decision was between a
slow vertically microcoded machine and a horizontal
fast machine. Figure 3A shows a rough representation
of the vertical slow machine and Figure 3B shows the

horizontal fast machine.
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It was decided that a general pﬁrpose breadboard
was needed. The major reason for the general purpose
aspect was the wvariability of the design. The
architecture was changing as various aspects of the
system were developed. Therefore the breadboard was to
be very flexible, easily changed, and quickly
implemented. Data collection was also important in
determining how to 1increase the performance. These
requirements resulted 1in the selection of the slow
vertically microcoded machine to be implemented (Figure

34).



A project schedule was made to reflect the
different phases of the design and to estimate the
amount of time each phase would require. These steps
included studying and understanding the architecture,
defining the data paths, doing the detailed design, the
simulation, beard layout, hardware and microcode debug.
The schedule from initial design to final
implementation would require approximately one year to
complete. This is how the initial schedule appeared at

the beginning of the project.

LEARN ARCH
DATA PATH
DESIGN
SIMULATION
BOARD LAYOUT
HARD DEBUG

UCODE DEBUG

FIGURE 4 - PROJECT SCHEDULE



The requirement for a general purpose machine 1led
to the decision that no special purpose hardware would
be added to speed the processor. This would allow a
prototype to be available very rapidly. Proper data
paths were needed to implement the architecture around
a standard bit-slice CPU. A vertically microcoded
machine would reduce the hardware needed, make the
machine easier and quicker to implement and debug, make
the microcode easier to write, and allow the microcode
to control the collection of data. Figure 5 shows the
initial view of how the processor would be organized,

controlled and tested.
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FIGURE 5 - MICROCODE PROCESSOR W/TEST FEATURES



One important point stressed at thils time was ease
in debugging and microcoding. If not done correctly,
microcode software development could be very difficult
and time consuming. Therefore am elaborate interface
with a debugging system was made. This required that
the data paths allow proper tracing of information and
downloading of data into the writable microcode store
(Figure 5). Several I/0 modules and AMPL trace modules
in a 990 system were to be used to down-load microcode

and trace its execution (Figure 6).

/T /T
! [ ! I
+m—et/ $mm—t/
/1 /1
| I
| |
e R e et T +
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e et oo +

FIGURE 6 - DEBUG CONFIGURATION
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The detailed design was built on top of the data
paths. In traditional system design, schematics would
be drawn from which data bases would be created for
computerized layout of PC or wirewrap ©boards. This
design was to be fully simulated in software using a
Hardware Description Language (HDL) internally
available in TI. Simulation 1is radically different
from traditional schematic drawing. The hardware 1is
described 1in a special computer language where each
signal is described as a variable. These variables are
programmed to change in the same manner as the hardware

signals would change.

One simulation consisted of a register—-to-register
transfer program written in BASIC to simulate flow of
data along the data paths. This was used to exercise
the machine to insure the data paths were adequate. It
would also be used as a debug tool by microcode writers
before an actual machine was available. After this,

the detailed design was simulated using HDL.
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HDL hardware simulation 1is written in "blocks".
The lowest levels of design represent the lowest levels
of hardware. These low levels are then put together to
form higher level descriptions. This block orientation
was very versatile and allowed rapid programming of
many hardware functions which were linked together to

form a high level description of the hardware.

Fmmmm + 1 Fommmm e +
| | I
| I |
R s i D s a1 Fommm bt
| [ I [ | [
| MIDDLE | | LEVEL | | BLOCKS |
[ I | I I |
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I [ I I | I
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I | I |
I | | [
T e e LT S S &
| | I I | |
| LOW | LEVEL | | LOW | LEVEL |
| | I ! I I
R Fomm——— + R fmmm——— +

FIGURE 7 - HDL BLOCK ORIENTATION
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The actual processor contains three major parts;
the Large Register File (LRF), the Arithmetic and
Logical Unit (ALU), and the Sequencer (SEQ). The LRF
contains a large number of registers used by the ALU
and provides an interface with the memory mapper. The
ALU is the workhorse of the processor and does all data
manipulation. The SEQ controls the system. The
microcode is stored in WritablelConérol Store (WCS) in

this portion of the processor.

Fm——m——— + T Fem—m——— + t————- +
| ! A ' \Y I
| U | 4=——-- e + | t-—tmm——- +-=+ |
] C | | SMALL REG | | ] LARGE | |
I 0 1 | FILE | | REGISTER | |
| D | Hetmmm————— +-—+ | | FILE 1
| E | | === ==+ | oo
| | F=tm—=t ==t =+ | | Aem—tm———- +-—+ |
+-+-+-+ \ \/ / P v v I
[ ot | +<—-——=+ R +
CONTROL v i | +=-—+
LINES to—————— >+ | | B |
+~+ U +=>TO
| F | MEMORY
UCODE ALU LRF +-—=+

FIGURE 8 - SLOW PROCESSOR BLOCK DIAGRAM
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The LRF and ALU were simulated separately using
HDL. The design was first described in terms of 1low
level Dblocks consisting of registers, counters and
memory elements. These blocks were then linked
together to form a higﬁ level representation of the
design., The high level blocks of the ALU and LRF were

then interconnected to form an overall simulation.

About halfway through the slow processor design, a
decision was made to change the implementation to a
high performance version. Since this was to be an
experimental processor intended for a learning tool, it
was decided that the hardware implementation should be
designed to learn as much as possible. The major area
which was necessary to 1investigate was performance.
Therefore the second version would ‘have its main

emphasis on speed.

The new machine would be fast and utilize advanced

techniques for improving performance. This included
using various caches and pipelining the architecture.
This added complexity would result in a longer design

period.
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Several types of caches were used in the machine.
Workspace caches, Content Addressable Memory (CAM), and
associative <caches were all wused in various places.
These caches were mandatory to increase the performance

to the levels needed.

The fast machine was also pipelined. Five 1levels
of pipelining were wused to simplify and speed the
machine,

l. Instruction Prefetch

2, Operand Specifier Decode

3. Register Prefetch and Addrésg Development
4, Arithmetic and Logical Unit

5. Buffered Memory Write

ot + +-———— + o + +—————- +
| INSTRUCTION] ] INST | [ | | |
| PREFETCH +----- +ASS0OC | | | | |
| "FIFO" I | CACHE | I [ I I
tmm + e + | MEMORY| | MEMORY |
| OP SPEC | | DATA | | ===t | [
| "DECODER" | +=--+ASS0C +-=--=+ |CAM+-———+ |
| PROCESSOR &| | [CACHE | | 4=t | ARRAY|
| WS CACHE | | +-=-=-=-- + |MAPPER] | |
Fomm + | | WRITE] I I [ |
! ALU +==+~=+BUFFER| | | | |
Fom + Fmm———— + tomm——— + Fom———— +

FIGURE 9 - FAST PROCESSOR BLOCK DIAGRAM



15

The fast processor was simulated using a top down
approach to HDL. Top down programming means the high
level blocks are simulated before the low level ones.
Blocks such as caches, levels of the pipeline or the
ALU are simulated before low levels. These high levels
are later broken down into registers, latches,
counters, etc. Care was taken to reflect hoﬁ the lower
blocks of the design would be connected in the actual

hardware.

The first block to be simulated was the First 1In
First Out buffer (FIFO). This part was very straight
forward to simulate since the major elements were
registers. The '"Decoder" was different from the FIFO
since it consisted of Programmable Logic Arrays (PLAs)
and Read Only Memorys (ROMs). A deliberate effort had
to be made to insure the high level code represented
the actual hardware. It would be very easy to build a

system which could never be implemented.

The FIFO and Decoder were simulated before the
internship’s termination. Many things were learned and

the overall experience was very educational.
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GENERAL PURPOSE PROCESSOR

Software Defined Architecture

Upon arrival at the job site, I was introduced to
the group and given a document describing the
architecture to be implemented. Many advanced concepts
were being implemented in hardware rather than software

and it took some time to understand their benefit.

Architecture has been defined as what one sees

when he looks at something. This could be a building

or a computer, The architecture of the internal
workings of a computer system depends upon what 1level
is being addressed. The programmer looks at a computer
from a different perspective than a hardware designer.
There is a difficult task 1in designing hardware to

match the view from the software perspective.

The architecture was based on requirements of both

operating systems and programming languages. Data
structures, memory management requirements, time
sharing functions, and the instruction set were

specified and the hardware designer’s job was to use
this information to develop a system that would reflect

this structure.
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. + e T T + Frmmm e +
| OPERATING +~———- >+ ARCHITECTURE +{===== + COMPILER |
| SYSTEMS | | SPECIFICATION] | DESIGN |
Fmmm + [T —— Fomm——— + Fomm e +
!
'
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| HARDWARE |
| DESIGN |
T e +

FIGURE 10 - SOFTWARE/HARDWARE INTERFACE

The software designer and the hardware designer
are similar to the artist and the builder. The artist
can sketch a grand building that looks beautiful. The
builder in turn must take the sketch and construct the
building., If the artist does not fully understand
building principles he could sketch an impossible
design to construct; the same 1is true of computer
design. The artist or software designer developing the
architecture must understand the constraints of the
builder or hardware designer who will implement the

final structure.

A major effort was being made in this architecture
to put a large amount of the software complexity into
the hardware. Software is becoming more expensive to

develop while hardware is declining in cost. Therefore
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it seems reasonable that one solution to the problem
would be to increase the amount of hardware complexity
in a manner which would reduce the software development

cost.

SOFTWARE
#
* -

I

I

|

I
COSTS | * #
: | * i HARDWARE
[
I

FIGURE 11 - SOFTWARE/HARDWARE COST VS TIME CURVE

Changing the software/hardware boundary leads to
the problem of cost/efficiency trade-offs. The typical
software programmer has little feeling for the cost of
the hardware and cannot make tradeoffs based upon that
cost. Therefore it is necessary to identify the most
costly aspects of the architecture and make sure that

the appropriate tradeoffs is made.

Interfacing with software groups provides a very
challenging opportunity to learn many new things.
Understanding why a new feature is needed and at the

same time analyzing the cost is very difficult. To
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communicate the problems to the software designer
introduces a distinct communications ©problem. This
requires knowing most members of the group, knowing
which person to talk to and approaching them at the
right time. If you approach them on a part of the
architecture they have designed, you must be careful
and mnot <criticize them while evaluaﬁing whether it 1is

actually needed or not.

An example of a difficult instruction to argue
against is the Reverse Bit instruction. This
instruction would take the operand and reverse the most
significant and least significant bits in a criss-cross
pattern. This is very difficult to do in software yet
only takes one data path in hardware. The cost of that
hardware 1is finite and it is questionable as to how
much the instruction will be used. It was decided that
the architecture would support any needed software
feature and therefore the instruction would be

implemented.
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Architectural Implications

Many features of the architecture had wvarious
implications wupon the hardware, These areas were
investigated in more detail as different parts of the
architecture were understood. The areas under
investigation included the instruction opcodes, the
operand specifiers, the processor data structures and

memory management.

Conventional architectures have machine level
instructions which are a specific length. One
objective of this architecture was to frequency encode
the instructions. The most often used 'instructions
would take the smallest amount of room in the code
stream. Less frequently used instructions would take
more Troom. This 1s accomplished by encoding the

instruction to be a variable number of bytes in length.

In the instruction, a distinct division is made
between the operation code and.the operand specifiers,
The operation code is normally one byte long, but
escape codes are allowed for expansion of the
instruction set. The operand specifiers vary from one

to seven bytes in length and there can be from one to
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five operand specifiers per operation code. This
provides two levels of frequency encoding; operation

code and operand specifiers.
| OP CODE | OP SPEC | OP SPEC | « « « | OP SPEC |

FIGURE 12 - INSTRUCTION STREAM

The instruction fetch was not precise as in most
machines. The instructions could be from one byte to
many bytes in 1length depending on the addressing mode.
This meant the whole instruction could not be fetched
from memory at one time. Rather, blocks of code would

be fetched and instructions decoded from these blocks.

The operand specifiers were divided into various
lengths and types. The type of operand specifier had
to Dbe checked with the opcode to insure that it was
valid for that operation. The address of the operand
specifier had to be developed from the information
given in the instruction, This 1included the many
addressing modes the processor had to support. Once
this was done, the data was fetched from memory and
stored into the processor, After all operand

specifiers were fetched, the execution could begin.
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There were other data structures in the
architecture which the processor must understand.
These were time-slicing, page faulting and complex
message primitive instructions. The processor had to
time-slice between many different tasks being run on
the machine. The processor also had to support a
paging system and must handle page faults in the middle
of an instruction. The processor also had to deal with
very complex message primitive instructions.- These
three things, page fault, time slicing and messages are
the complex O0S primitives beling I1implemented in the

hardware.

% % % % % % *x * % k * k % * *x

HARDWARE * * * *
" 0S * PAGE * TIME * MESSAGES*

*# FAULT * SLICING * *

 k k k *x % k k k k k * k Kk * *

TRADITIONAL * *
HARDWARE, * INSTRUCTION *
* SET *

% % k % % * %k %X %k k % %k %k k *

FIGURE 13 - HARDWARE IMPLEMENTED OPERATING SYSTEM
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Processor Evolution

The initial design was a basic Von Neumann
architecture with one data/instruction space and
separate address and data 1lines. This was not

effective because it was communicating with the memory
management board and not with memory. The memory
management board in turn manipulated the data in such a
way that it «could access actual memory and return a

value to the processor.

T T T r— + Fom et
v I M|
fmmm——— R + +===>+ D +=—=t
I REG I | | R | [
| FILE | | +---+  +=---- DATA BUS
R — a— | | M | |
| NG | ===+ D +-=—+
s T s | | R |
\ \/ / l +--—+
fmmm— ot | | M|
' F===>+ A Hmmmmmmmm ADDRESS BUS
Fomm e >+ | R |
ot

FIGURE 14 - VON NEUMANN ARCHITECTURE

The next type of architecture had a combined data
and address bus. This was efficient since the memory
management board had to manipulate the address before
he received the data. Other data paths were added to

speed various operations such as a barrel byte shifter
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to do byte manipulation easily. Even with these
modifications the machine was very slow, yet it would

still be easy to implement and debug.

Fom e + +=——t
v | M|
F—m——— e + +===>+ D +--+
I REG ! ! I R I |
| FILE | | +===+ +-- DATA/
e +=-=+ | | M | | ADDRESS
| Flmmmm——— | ~~==+ D +--+ BUS
+—=t-=t  F——t-—t | I R |
\ \/ / | +---+
R Katatatat = !
v |
et >+

FIGURE 15 - COMBINED ADDRESS/DATA BUS

Another severe problem was that the architecture
was not firm. Specific speed improvements would be
useless 1f the architecture changed underneath them.
This particular implementation had to be flexible
enough to be changed as the architecture changed. This
proved to be the most difficult challenge and dictated

that the functionality be in the microcode.

Because of the flexibility problem and the
complexity of a fast machine, a slow microcoded machine
was chosen to be implemented. This machine would have

all obvious data paths but would not include complex
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hardware to speed the execution. Rather than more
hardware, there would be more microcode written.This
would have the added benefit of hardware ©being

available to the the software group sooner.

With so much functionality being put into
microcode, it was 1imperative that the microcode be
easily written. Past experience with microcoded
machines shows that a large amount of time is spent
writing and debugging the microcode. Therefore the
machine must have the necessary support to help write,

modify and debug the microcode.

Since the machine would be used extensively to
develop the syétem software, there was a need to make
the machine easily testable and maintainable. There
should be no hidden data paths or registers that could
not be directly tested. This design attitude would
allow diagnostics to be written to support the machine

during software checkout.

The data paths of the final machine provided a
maximum of efficiency with a minimum of complexity.
The final data paths were broken down into three parts.

The microcode was the heart of the machine and in
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absolute control of all parts of the processor. It
must also be specially designed to interface with an
external computer to allow downloading of the
microcode. The second part was the Arithmetic and
Logical Unit (ALU). This part was the workhorse of the
processor and did all data manipulations. The last
part was a Large Register File (LRF). This was a two-
port file through which the processor and memory

management communicated.
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FIGURE 16 - SLOW PROCESSOR BLOCK DIAGRAM
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Microcode

The microcode of the machine evolved as different
functions were added or deleted. The first microcode
control word allowed control of all fields in parallel.
This word had several fields or distinct groups of

bits. These fields are as follows:

1. Arithmetic and Logic Unit (ALU)
2. CONstant field low or high (CON)
3. SHiFt control (SHF)
4, Condition Code and Carry (cce)
5. MEMory field (MEM)'
6. Memory MAP request field (MAP)
7. SEQuencer field (SEQ)

This microcode word was very wide but contained many
independent fields. Each field controlled a separate
part of the hardware. This wide word could control

every state of the machine during each microcode state.,

The major problem with the wide microcode word was
the size of the microcode <control store memory.
Additional hardware could be added to reduce the width
but this would take some versatility out of the
microcode. In most scenarios, not all fields in the

microcode could be utilized during each machine state,
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yvet the functionality of the wide field and all the

bits still needed to be controlled.

The best solution to the problem was to reduce the
number of bits affected during each <cycle. The
microcode still controlled the full width, but only one
section could be affected at a time. This would be
done by loading only a portion of the wide microcode
latch, Each of the eight sections of the wide
microcode would still be controlled, one section at a
time. Appendix B details the definition of the

microcode.

The microcode was vertically oriented and narrow
such that each machine cycle executed one microcode
instruction. These instructions were very similar to
assembly language instructions. Appendix C lists a
sample add instruction. It can be seen from this

example how similar this is to assembly language.

The microinstructions were assigned assembly
language memonics such as INC, MOV, ADD and JMP. A
microcode assembler was then used to translate this
microcode into machine level ones and zeros. There

were several people helping write the microcode. They
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were familiar with assembly language and could begin

programming microcode very easily.

The 32-bit microcode field is subdivided into two
sections, a eight bit field and 24-bit field. The
eight bit "ALL" field 1is subdivided into five other
control fields. The <control field acts as a mode

control for the other 24 bits.

/ \
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FIGURE 17 - MICROCODE WORD BIT FIELD

ALL Field

The first eight bits are referéd to as the ALL
field. The first subdivision of this field is into the
Load FielD (LFD). The LFD is used to determine which
portion of the machine the lower 24 bits will control.

The other portions of this field «controls signals
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affected during all modes of operation. These are
things such as Load Condition Code (LCC), Increment
Program Counter (IPC), Enable Constant Word (ECW), and

BreakPoinT (BPT).

The LFD field has three bits which mode select
between eight different fields. The bit assignments

are shown below:

001 LCON LOAD CON UCODE REG LOW OR HIGH
010 LSHF LOAD SHIFT/CONTROL

0l1 LCCC LOAD COND CODE AND CARRY

100 LALU LOAD ALU UCODE REG

101 LMEM LOAD MEM UCODE REG

110 LMAP LOAD MAP UCODE REG

111 LSEQ LOAD SEQ UCODE REG

These portions of the wide microcode field have been
restructured in the vertical microcoded machine. The

details of each will be discussed later.

The Load Condition Code (LCC) is used by several
fields which have status inputs to the condition code
register. The condition code register is wide enough
to test the many status condition. The IPC field is
used to advance the program counter at any time. The

ECW is wused to select a portion of the microcode from
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the normal WCS or from a special constant register.
This 1is needed 1if an internal address 1is calculated,
then used by the microcode. The BPT was a bit used to
signal external hardware that a breakpoint is to occur.
This could be wused ¢to stop the machine, sample some
data or increment a loop counter. This would be very

useful in data collection.

Specialized Fields

The ALU field controls the functioms of the ALU.
The control fields include two source register
addresses, a destination address, the shift controls,
logic and arithmetic function selection. Also there 1is
the ability to read and write special purpose registers
such as the Constant, timer, byte pipe, program counter

and the LRF.

The CONstant (CON) fields are needed when the
microcode uses a constant 1in some operation or on a
computed branch. The Constant In (CI) field allows the
microcode to contain constants needed in the execution

of an instruction. Another Constant Out (CO0) field

exists and is the destination of the ALU field and used
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by the ALL field. There are many applications for this

such as the table branch into the microcode.

The SHiFt control (SHF) field sets the direction
and parameters of a shift operation. Care must be
taken to set this field to a known value before an ALU

operation is performed.

The next field 4is the CCC field. This sets the
condition code parameters. This field 1is wused to
select the proper output from the condition code and

status multiplexer. This 1is then used by the sequencer.

to control conditional branches in the microcode.

The MEM field controls the reading from and
writing to the LRF. This includes writing into one of
several address counters, incrementing these counters
then reading and writing to the data registers. There
is an additional pointer into the register file used by
the memory mapper. The MAP section will describe this

in detail.

The MAP section controls when the memory system is

to read and write data into the LRF. The interface is

a request system, that is where address and data are
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read or written as a group. In this system a pointer
is set to the LRF which points to the address of the
data followed by a tag word which defines whether it is
a read/write and the length number or words. The MAP
field tells the memory to rum and it then reads the
address and tag, does the operation, then reads or
writes the results in the locations following the tag.
The memory cannot address the LRF but can only
sequentially access the data to which the address
pointer, set up by the MEM field, is pointing to. The
pointer is automatically incremented after every memory

mapper initiated LRF read.

The SEQuencer controls the flow of microcode and
microcode subroutine calls. The next microcode word
execﬁted could be the o0ld address plﬁs one, a new
address given by the microcode, or the address on the
Call stack. The Call stack is a push pop stack which
enables the microcode to do subroutine calls. This
allows efficient use of the microcode with common
subroutines. The sequencer 1s relatively independent
of the other parts of the system although a jump to a

computed address is possible through the CO field.
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Detailed Design

Once the microcode and the data paths had been
developed, the detailed design of the hardware could
begin. The detailed design consisted of determining
the actual chips needed and interconnecting those
chips. In addition to interconnecting these parts, the
system would be simulated ¢to insure the system was
designed correctly. This would be done Dbefore any
hardware existed and all debugging could be done during

the simulation.

Arithmetic and Logical Unit

The ALU manipulated data within the machine. This
is the workhorse of the processor and executed the guts
of the instructions. This includes a 2900 bit slice
machine, a "Byte Pipe"(BP), a Program Counter (PC) and
a Condition Code register (CC), a TIMer (TIM), and a

Instruction Queue (IQ).
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FIGURE 18 - ARITHMETIC AND LOGICAL UNIT
The 2900 series are standard devices used

extensively 1In bit-slice design. The chip family
contains several parts including the ALU, register
file, condition code select and shift control. The ALU
can have 1inputs from the register file or am external
data path. This external data path busses the output
of the 1IQ, PC, TIM, CI and BP. The ALU has the

standard arithmetic and logical functions needed. The
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shift controller has the needed functions to accomplish
arithmetic and logical shifts. The CC has the
necessary functions to set overflow, underflow and

carry bits.

The PC, and 1IQ are related special ©purpose
registers. The ©PC 1is the program counter and 1is
incremented when a byte frdm the IQ is used. Whenever
the PC counts over a word boundary, the ©processor
fetches the next word in the code stream. The IQ feeds
the sequencer to select where the microcode will
execute. This is in the form of a table branch where
the lower 8 bits of the branch address comes from the
instruction stream and the upper bits from the

microcode.

There can be some pipelining dome 1in the
processor. When code is fetched from memory it 1is
stored in the LRF. This could be one word or several.
When the ALU uses tne last word from this cache, it
starts a memory request. This memory request is then
executed in parallel with the execution within the

processor.
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The TIM 1is a simple counter and is incremented
every tick of the system clock. This counter is used
to allocate time slices to different tasks. An
overflow latch must be ©polled at the end of each

instruction to check for the end of a time slice.

The BP 1is a byte rotater/selector. It has two
words as inputs and one word as the output. The output
word contains consecutive bytes of the two input words
pointed to by the rotate select. This allows many
versatile applications., One very useful application is
to align words not on word boundaries. Another would

be to speed a bit shift operation.
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FIGURE 19 - BYTE ROTATER/SELECTOR
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The CI and CO are the Constant In and Constant Out
registers., The CI latches output from the microcode to
the ALU and the CO latches output from the ALU to the
microcode. The CI register is controlled by the CON
field in the microcode. This £field <can 1load the
register with a constant value of data. The ALU can
load the CO register as a destination of the ALU. This
register is then enabled to the microcode by the ECW

field.

The SHF field is used to set up parameters of the
ALU shifter., This function is not often used but takes
many bits of microcode because of the many various
options allowed. The shifting 1is accomplished wusing
the AMD 2900 series parts including the 2904 status and
shift control unit. This is a very versatile unit but

difficult to control.

The CCC field is used to select a status bit or
condition code bit. This selected bit is then used by
the SEQ field in a conditional branch. TIf a branch 1is
taken the condition was true, otherwise sequential
execution continues. There are 32 bits of status and
condition codes but . only one of them can be tested.

All of the error condition codes are ORed together and
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tested at the end of each instruction. If an error
exists, the microcode branches to a routine which
resolve the error condition. This reduced the number

of tests to check for interrupts and errors.

Large Register File (LRF)

The LRF is a two-port memory accessed by both the
memory map and the processor. There are several
counters wused as pointers into the LRF. One 1is
switched between the memory map and the processor.
This limits the memory map to accesses only in the area
where the processor has pointed. A memory fetch 1is
accomplished by setting up a group of words in the LRF,
pointing a counter to the group and telling the memory
map that a memory cycle is to be done. The memory
mapper then access the data in the LFR to determine

what to fetch.
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FIGURE 20 - LARGE REGISTER FILE

The LRF is 4k words of very fast (45 ns) memory.
The memory is double cycled to form a two-port memory.
An address multiplexer selects either the MAP address
or the processor address. The processor can address
the LRF either directly or through two counters, the AC
and BC. Another counter can be swapped with the MAP
address counter, the MC and MC’ counter. In this way
the processor can store data into the LRF, an address
into the MC and then swap registers MC and MC’. This
will indicate to the memory mapper that a memory cycle

is to be started.
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The ALU reads and writes the LRF through two
registers called the MDR and RDR. Reading and writing
occur when in the LRF mode. The MDR is a buffer of
data from the ALU to the LRF, The MEM specifies a
write operation and an address in the microcode field.
" The data in the MDR is then written into the LRF at
that address. Reading data is somewhat different. The
LFR read data through the RDR and directly into one of
the ALU registers. This way a second <cycle 1s not

needed to transfer data to an ALU register.

Sequencer (SEQ)

The SEQuencer consists of another chip from the
2900 family. This has the controls for subroutine
calls, a micro-program counter, a pipelining register
and a direct input. Additional hardware was added for
conditional ©branches, table jumps and downloading of

microcode.

The table branch hardware 1is a simple masking
operation. In normal operation, the microcode can
branch to any location in the microcode memory. The

table branch allows part of the branch address to come
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from the microcode and part from the IQ register. The
upper bits of the address are concatenated to the eight
bits from the IQ and this address passed to the
Sequencer.,
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FIGURE 21 - SEQUENCER

A conditional branch uses the condition bit to
select the next address in the microcode sequence.
First the proper condition code must be selected. If
the condition is not true, the next sequential address
is selected. If the condition»is true, then a branch
to another location is executed. This can be a table

branch or an absolute branch.

The microcode is stored in fast memory. This 1is

called a Writable Control Store (WCS). Data paths have
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been designed into the system to allow simple
microcoding of the machine. This is done with parallel
I/0 ports and control lines. These are used to write,

read and test the WCS.

The WCS was to be implemented on a separate board
from the rest of the processor. Therefore an interface
between the two parts of the processor had to be
defined. Appendix D shows a memo defining the
interface between the two boards. This division point
was selected such that only 32 microcode lines and a
few control lines were needed to be passed between the

two boards.

Testability and Debug Features

There are several data paths in the processor to
increase the ease of testing and debugging the machine.
The testing and debugging is done over several 1I/0
ports and through the use of a Trace module.
Connectors have been designed into the system to allow
ease 1in connecting trace modules to all important data
paths and 1I/0 modules connected to the necessary

control points.
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FIGURE 22 - TEST AND DEBUG DATA PATHS

The major concern is the ease of microcoding and
debugging. Therefore special data paths have been
added to the microcode sequeﬁcer to allow ease in
downloading the microcode. The address and data 1lines
into the microcode have an interface to several I/0
modules and the sequencer output enables are controlled
by the I/0 modules. Appendix E is a memo describing
the debug interface signal assignment and the functions

of those signals.

The first I/0 module is a control module. It

selects the enabling onto control busses from either
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the debug module or the microcode. The second I/0
module outputs only data. The first module selects the
destination for the second and strobes the data into
the proper latches. The first module has other various
control signals which allow the microcode to be written
into, read from, single stepped, multiple stepped, and
several other features. This allows full control over

the execution of the microcode.

The 1I/0 modules are controlled by AMPL which is a
software package TI uses to control the trace modules.
AMPL is used to setup and control the trace modules and

to read and write the I/0 modules.

Connections to the trace module from data busses
in the ALU and LRF allow inférmation to Dbe 'gathered
during execution of the microcode. An TI/0 module
connected to the ALU section allows testing of the
ALU’s registers and the LRF. In addition to the I/O
modules, several seven-segment LEDs mounted on the
processor board are wused during initial self test.
This would allow a user to visually check for any error

condition with a simple go/no go indication.
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A microcode bit was allocated to enhance the
tracing of information. This bit could be used to
trigger the trace of a sequence, trace a state or stop
the machine and wait for a single step. This versatile
bit, coupled with the trace module, would provide for

an easily debugged system.

Several software interface routines were to be
written to provide a simple interface to the debug
data. A memo describing showing the definition of
these signals is shown in Appendix F,. These routines
were to be written by two software diagnostic
engineers. They would do things from simple to
complex., For example one routine would simply reset
the processor. Another would allow the processor to be
single stepped. These routines were defined in AMPL as
subroutines. This would allow more complex programs to
be written. These would do complex functions such as
reset the processor, download a new set of microcode,
execute until a specific point and then begin single

stepping and tracing data at that point.
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Simulation

Two different types of simulation were utilized in
the development of this machine. First a register
level simulator was written to define, test and debug
the data paths and microcode. The next simulation
effort was in conjunction with the detailed design and
analyzed detailed delay through all parts of the

system.

BASIC Simulation

The initial simulation was writtem in the BASIC
language., This simulator can be described as a
register—-to-register transfer prograﬁ. Figure 23 shows
how the display looked to the uger. This showed the

important internal registers and data paths.
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FIGURE 23 - SAMPLE SCREEN DISPLAY

The main purpose of this simulator was to be an
interpctive tool used to assist in the detailing of the
data paths, writing and debugging of the microcode.
The register—-to-register transfer allowed the data
paths to be exercised with several sample programse.
The actual microcode controlled the register transfer
and data manipulation. These bits were assigned and

developed during the writing of the simulator.

After the simulator was finished, it was used to
test and debug microcode routines. This proved to be a

great benefit since the execution could be visualized



49

on the CRT screen, No detailed hardware timing
considerations other than machine «clock cycles were
taken info account. Each loop through the program is
one state 1in the microcode. This would allow
instruction timing to be accurately defined. Writing
and debugging of microcode could be done before the

hardware existed.

The wuser 1interface was the most important aspect
of the simulator, The data paths were graphically
displayed upon the screen. As variables changed in
various parts of the system, the changes were displayed
The microcoder could actually see what the microcode
was doing and visually trace the -execution of his

program.

One problem with the simulator was it was slow.
BASIC 4is 1inherently a slow language and therefore the
program was rewritten in PASCAL. This version ran much
faster but the I/0 was much more difficult and harder
to modify. Yet both the BASIC and PASCAL versions
proved to be beneficial to the microcoders. A 1listing
of the Pascai version of the =emulator is shown in

Appendix G.
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HDL Simulation

The detailed design was initially domne in the
traditional sense of drawing schematics. The several
pages of schematics were drawn fast and rough to be a

visual reference during the simulation.

The first step in the simulation was to learn HDL.
HDL 1is a Hardware Description Language written for use
in simulating a chip design. No one had wused this
language to simulate a complete design from the gate
level to chip level then to board level and finally
complete system 1level. Since the project was so
complex, it was believed that simulation would reduce
the time it takes to debug the breadboard. The debug
would be done during simulation before hardware

existed.

HDL 1is a block description language. The design
is divided into many different blocks and each of the
blocks simulated. The 1low level ©blocks were then
connected by wupper level blocks to form a tree
structure. Each higher level reflected the functioning
of larger pieces of hardware. For example a latch chip

could be simulated at thé lowest level with gates.
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Several latches could be put together at a higher level
to form a register. Several registers could be
combined to form a register file. The register file
could be combined at a higher level with the ALU to
form the CPU, This type of simulation is very flexible
since the lowest level is only written once for a latch
and duplicated whenever va latch 1is used by a higher
level., This is similar to subroutines in software

design.,

HDL 1is also easy to modify. Errors are found by
tracing the program execution. This 1is similar to
tracing hardware signals with a logic analyzer. Once
an error is found a change is made and the hardware
resimulated. Once a lower level is fully simulated aqd
debugged it can be used over and over with a high level
of confidence. This is Dbetter than with schematics

which must be redrawn when an error is found.

Before simulation of the processor <c¢ould begin,
low 1level blocks of memory, counters, latches and
multipléxers were simulated. Another engineer had the
responsibility of writing these low level blocks and
debugging them. I took these low level blocks and made

a macro-library out of themn., The macro-library
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consisted of registers, a memory file, wide

multiplexers and large counters.

The macro-library was then used ¢to simulate the
LRF, ALU and SEQ portions of the design. The LRF used
several of the macro-blocks and combined them together
to form this ‘upper level block, This was simulated
with selected data being input and 1internal signals
traced. This would then be compared against the
expected results. The ALU was also simulated 1in a
similar way but the SEQ was handed off to another
engineer to simulate. This could be done since the
sequencer was on another board and the interface
between the boards was well defined. The data path and
block level design had been done and only the detailing

of the blocks was left.

The simulation for the LRF <can be found in
Appendix H. The first portion of the block defines all
input and output sigpals to that block. Next the
structure of the sub-blocks is defined. This 1is done
by simply defining the block’s type then its inputs
and outputs. All blocks are connected in this way

until the lowest level is reached.
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Communications

During this project, communication with other
engineers was very important. There were many key
portions of the system which were developed through

close communication of ideas and possible solutions.

The architectural specifications was constantly
changing while the hardware was being designed. While
the data path were general purpose, it was still
critical that all changes be fully understood to insure
they could be implemented. All changes were to be
taken 1into account by modifying the microcode and not
the hardware. For the most part, additional data paths
were not needed although some microcode sequences

became rather long to perform.

" The debugging of the system was done with AMPL.
Other software engineers were to write the procedures
to accomplish the needed tasks. This again involved
communications problems since I had to convey how the
hardware would work to people who did not fully
understand hardware. Yet with several memos and many
informal meetings they were able to understand and

write the procedures which were needed.
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Change in Direction

Because of the slow speed of the breadboard, it
was decided that the development of a slow breadboard
be halted and a high performance version be built. It
was deemed that a higher risk should be taken at a
earlier date so that more could be 1learned from this

experimental design.

The project was then redirected from building a
slow vertical machine to a parallel fast machine. This
posed many new problems and changed the view of the
architecture drastically. Many things which were taken
for granted in the slow machine and being done through
many cycles must now be done in one. Therefore every
data path and every microcode state héd to be changed.
This change in direction was very frustrating since

several months of work was thrown away.

Simulation was the most important thing which was
learned from the breadboard. This was one area where
what was learned on the slow machine could be applied
to the fast processor. A bottom up approach was wused
on the breadboard in writing the blocks and hooking

them together. A top down method could have also been
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used and in retrospect would have been the best way to

go. The fast machine would be much more difficult to
simulate and therefore the top down approach would be

more important to use.

With this decision, all work -on the slow
breadboard was stopped and the new direction towards a

faster, improved model was begun.
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FAST PROCESSOR

Objectives

Performance is the sole objective of the fast
version of the processors. While Millions of
Instructions Per Second (MIPS) is not a good measure of

performance, the speed goal of the machine was 2 MIPS.

The slow breadboard was at the low-speed/low-cost
end of the speed/cost curve (A). This machine is high
performance and therefore a high cost implementation.
This puts the second processor at the other end of the

curve previously discussed (B).

SPEED
(MIPS)

.05

*

COST (HARDWARE COMPLEXITY)

FIGURE 24 - HARDWARE SPEED-COST CURVE

The first problem facing the hardware designer is
to sort out the software architecture. This results in

defining what will require extensive hardware versus
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what remains in software. A good understanding of this
was gained from the first ©breadboard. Architectural
implications of caching and pipelining also must be
studied. Successful cache placement is very important
yet architecturally dependent. Pipelining requires an
understanding of data flows and how that flow could be

layered in this architecture.

Data paths for the fast processor will be broken
down into several areas. First, existing methods of
speeding a processor will be discussed Aincluding
caching and pipelining. Next, specific hardware
developed to speed this processor will be described.
This will include a decoder for the operand specifiers
and a method of speeding the jump and call

instructions.

Conventional Caching Methods

One method commonly used to speed execution 1is
through the use of caches. 1In this report, caches are
defined as any fast memory added to the system to
improve performance. There are several types of caches

and many methods and positions for the caches to be
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placed.

The workspace is an area of memory which contains
the most frequently wused wvariables. This would be
similar to the 990 workspace and 1is wused 1like a
register file. A workspace cache can be used to store
the data in the processor such that access to this area
do not actually go to memory. This cache 1is bulk

stored and loaded whenever a context switch occurs.

e i tater + R +
I ! I !
| PROCESSOR | | MEMORY |
| e + |
T T T + Fommm +
| WS CACHE | |MEMORY IMAGE]
Fomm e + fommmmm +

FIGURE 25 - WORKSPACE CACHE

Another type of «cache 1is a Content Addressable
Memory (CAM). This cache stores both data and the full
address of that data. An address 1is presented to the
cache and it is compared in parallel with every address
in the cache. If the compare is true, a cache "hit"
occurs and the data corresponding with that address 1is
presented on the output. A large amount of dedicated

hardware can make this cache very fast.
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A CAM 1is wused frequently to speed address
translation. This is important in various memory
mapping schemes where an address is mapped from one
address space to another. Most mapping schemes require
the logical address output by the processor to be
translated into a virtual or physical address. This
address would be the input to the cache. If the
address had been previously mapped and stored in the
CAM, data read out of the cache would be the translated
address. While being very fast, this cache is also

very expensive and wusually only has four to eight

entries.
$omm—— +m=——- +
] |
| DATA +m———— > DATA
[ ]
ADDRESS D==—-—- +-+-+-+-+-+-+

ICiCciciCICIC]
[010]1010[0]0}
IMIMIMIMIMIM]|
|[P{P|P|P|P|P+—==== > HIT/MISS
|AJAJATAJALA]
IRIRIR|R|R|R]
|[EIEJEIEIE|E]|
Fmm——— fm———— +

FIGURE 26 - CONTENT ADDRESSABLE MEMORY
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Another type of <cache 1is the Associative Cache
which stores ©both data and the group associative
address of that data. When a memory address is
presented to the cache, data and address are read from
the cache. After the read, the address stored in the
cache is compared to the associative ©portion of the
memory address presented to the cache which determines
if the cache contains valid data. This is slower than
a CAM since the compare occurs serially after the data
is read but can results in a less expensive and larger

cache. This cache is typically between 2k and 16k in

length.
tmm——————— +
I I
| DATA +==—m—mmm————— > DATA
I ! :
ADDRESS D=-t-—4-=m—eeeun + mmm———— +

| ADDRESS +=--+COMPARE+--> HIT/MISS

I

I [ I | I
| Am—mmm————- + ==t
I

FIGURE 27 - ASSOCIATIVE CACHE
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Caching Evolution

Data cache placement is very important to system
performance and must be studied carefully. Appendix J
shows various cache placements and the resultant speed
of the processor. These are estimates based upon the
number of memory accesses and the percentage of those
accesses which hit the cache., From this study, it was
determined that the processor should contain several

types of data caches at various locations.

The workspace 1s an architectural feature which is
preferred by software designers. The workspace is an
area of memory used simular to a register file. When a
subroutine call is made, the workspace pointer 1is
changed. This results in the processor writing the
current contents of the cache cache into memory and

loading data from the new workspace.

Fmmm e + fmmm - Fmm—————- +
| PROCESSOR | | | |
| WS CACHE | | | MEMORY | MEMORY |
Fomm + [ | !
! I | I I
| ALU LT T T . + MAPPING| ARRAY |
| ! | I i
Y + fmmmm———— fmm i ——— +

FIGURE 28 - CACHE EVOLUTION I
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Another general data cache is needed for
frequently accessed data not found in the workspace.
This is an associative type cache which is demand
loaded with "write through". Demand loading occurs on
memory reads when a cache does not contain the correct
data. This is referred to as a cache miss and when
this happens a full memory c¢ycle is started. When
valid data is retrieved from the memory system, the
data along with the proper address would be written
back into the cache. A "write through" occurs when
every cache write also results in,a memory write. This
causes the memory to always contain the current data
thereby avoiding the need to ever '"flush" the cache

into memory.

o — e + TR fmm e +
| PROCESSOR | | | |
| WS CACHE | ) | MEMORY | MEMORY |
Fom + R + | | |
[ | | DATA | [ I |
| ALU Fom——— + tmm————— + MAPPING| ARRAY |
| I | CACHE | | | i
e et + R + Fmm—————e tomm————- +

FIGURE 29 - CACHE EVOLUTION II
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An instruction cache is in parallel with the data
cache and is very similar. In fact, the same cache
subsystem could be duplicated for both. This cache 1is
also demand loaded but never written into. Since the
data cache and instruction cache are in parallel, both
accesses can occur in parallel. This allows for a
higher memory bandwidth. The back side of the data and
instruction caches are interfaced to the memory system

and must arbitrate for the memory accesses.
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Fmmm———————— + Fmmmm + Fmmmmm - +

FIGURE 30 - CACHE EVOLUTION III

When a write occurs to the memory system, it 1is
immediately written into the data cache and presented
to the memory mapping. The write buffer will queue the
write request and the memory mapper will write the data
when it is not busy. This allows the processor to
continue to execute from the data cache while the

memory system is completing the write.
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FIGURE 31 - FINAL CACHE CONFIGURATION

There are two address translation in the system.
A logical~to~virtual and virtual-to-physical. Address
caches are mandatory in this system. The lggical-to—
virtual translation occurs in the processor while the

virtual-to-physical occurs in the memory mapper.

The address register file is a defined set of base
addresses which must be used when addressing memory.
When a base address register is loaded into the
processor, the address is resolved from a logical
address to a virtual address and this virtual address
is cached 1in the»address register file. When a Dbase
register is specified, the previously translated

virtual address is then used in address development.
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The virtual-to-physical translation occurs in the
memory mapping portion of the system. This address

translation utilizes a CAM to improve speed.

Fmmmm—— + mmm——— + e + fmm———— +
| INSTRUCT | | | | | I
| PREFETCH +--+ +---=+ MEMORY | | I
Fmmm - + | DATA | | +---+ | MEMORY]
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tmmm e ———— + |CACHES +----+ MAP | | ARRAY |
| ALU +=—t | | b I
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FIGURE 32 - ADDRESS TRANSLATION

Pipelining Evolution

Pipelining is another. widely wused method of
speeding the execution of a machine. Pipelining is a
method of paralleling various portions of the
instructon cycle such as the fetch, decode and

execution phases.

Several studies were made of data flowing through
the pipeline. Appendix K shows an example of one
study. An instruction is traced through the pipeline

and the diagram keeps track of how the data flows. The
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pipeline needs to be Dbalanced such that each level
stays equally busy. This diagram can show holes in the
pipeline when one level waits on another. This 1is a-
useful tool in developing the appropriate division in

the pipeline and the hardware to put into each level.

The processor is pipelined in several layers. The
first is the instruction prefetch. The second is the
operand specifier decoding. The third level fetchs
data from intermnal registers and develops the
addresses., The fourth level contained the ALU which
does data fetches and manipulation. The last portion

of the pipeline was a memory write buffer,

The instruction prefetch is the first level of the
p;peline. It looks ahead of the current program
counter and retrieves the addition words of <code from
the instruction cache. This is fed into a FIF0O which
buffers several code words and performs code alignment

and extractione.

The speed of the 1instruction execution 1is
dependent upon the bandwidth to memory. With small
data paths, the instruction fetches occur more often

than data fetches. As the paths get wider more and
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more of the instruction stream 1is fetched on each
memory access. This will improve performance of data
manipulation by speeding the handling of larger data
types with a major benefit coming from not making as
many instruction fetches. This 1is very important

especially when instruction prefetch is heavily used.

The next level of the pipeline 1is the operand
specifier DECODER. Instructions are aligned on byte
boundaries and can be many bytes 1in 1length. This
section takes these instructions and decodes their
operand specifiers. The DECODER extracts the base
register designator, workspace register designator,
displacement and/or an immediate value then passes the

pointers and data to the next level of the pipeline.
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T + Fmmm e + o o +

FIGURE 33 - PIPELINE
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The register fetch and address development is the
next level of the pipeline. At this level the Dbase
address, limits, and access privileges are read from
the internal address register file and the index 1is
read from the workspace cache. The base in then added
to the index and displacement and compared fo the
bound. The results of this stage are then passed to

the ALU.

The ALU does all memory fetches, data manipulation
and writes into memory. After all address, register or
immediate data has been developed, this leaves a
relatively small amount of work for the ALU. The ALU
can do a memory fetch during every cycle. There 1is mno
delay when the cache is "hit" or contains the correct
data. If there is a cache "miss"™ a longer memory cycle
is started. Once the ALU has all the data needed for

the operation, it proceeds with the calculation.

Performance Improvements

One factor which is of key Iimportance to software

implementers is the speed and functionality of the CALL
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instruction. In high 1level 1languages, the CALL
instruction occurs frequently. Yet most architectures
do not have any assemble language 1instructions which
resembles the high 1level language CALL. In order to
accomplish a CALL, many assemble language instructions
must be executed to branch to the routine, pass
parameters and save the current context., In this
machine one single instruction does all of this. It
saves the current context, loads the new context, gives

the branch address and sets up parameters to be passed.

Fast execution of the CALL instruction requires
special purpose hardware. The context changes when a
CALL instruction 1is executed. This means the old
context must be stored into memory and a new context
read into the processor. Addresses must be developed
from this o0ld context and data fetched. One method of
speeding the Call is to cache the last context in the
processor. This 1is done by simply saving a copy of the
o0ld context within the processor so that the 1last

context is not fetched from memory on a return.

In Figure 34 the internal processor cache #1 could
contain the old context. The #2 bank contains the

current task. When a return is executed, the old
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context is 1s still in the processor and a switch 1is
simply made from bank #2 to bank #1. This also
improves speed when task #2 wants to get a parameter
from the o0ld context. All registers are still in the
processor and it is simple to <calculate the ©passed

operand specifiers address from the old context.,

Fomm e +

| INSTRUCTION+=—=—mm=—m—m——— +
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T + - +

FIGURE 34 - PIPELINE IMPROVEMENTS/CALLS

There are problemns which arise from this
structure. If more that one call is made, the first
Call’s context must be destroyed. This results in only
the last context being saved. It is believed that most
programs execute CALLs and RETURNs in groups which are
only one level deep. If this proved false, several
levels of context caching could be added to speed the

CALL.
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Another speed problem arises from JUMP
instructions. Since the machine is pipelined, a JUMP
instruction causes the pipeline to be flushed and the
new instruction stream fetched from the branch address.
One way to speed this is to have a dual prefetch and
decode system such that both branches of the JUMP
instruction are prefetched and decoded ahead of time.
This way both directions of the branch execute at the
same speed assuming that the prefetch «can keep the

queues full.

This same method <can be used to speed the CALL.
If the old prefetched instruction stream were kept in
the processor, the 0ld context would be preserved along
with the o0ld instruction stream, and no penalty would
be paid upon a regurn. This requires three .parallel
paths within the machine from instruction prefetch
through decoding and register prefetching. Instruction
decoder #2 and #3 would now hold the current context.
#3 would contain the instruction stream if a jump were
taken while #2 would have the currently executing

instruction streame.
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FIGURE 35 - PIPELINE IMPROVEMENTS/JUMPS

The CALL, Jump and current context portions of the
pipeline are all dynamic. The assignment depends upon
where the processor is currently executing and which

bank is an available prefetch queue.

Detailed Design

The operand specifier decoder was the first part
of the machine to be detailed. This includes the FIFO
buffer and the operand specifier DECODER. It 1is
assumed that an instruction prefetch feeds code into
this portion of the processor and the output is the

base register addresses, cache register addresses,
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displacements and literals.

FIFO Buffer

The first part of the detailed design consisted of
a FIFO buffer. This buffer 1s a queue for the
prefetched instructions and a code stream aligner for

the decoder. The aligner extracts any eight sequential
bytes from the FIFO. The select input determines which

byte is the first position on the output.

Up to seven bytes of the code stream are needed
for decoding the operand specifier. Therefore is was
decided that each 1level of the FIFO would be eight
bytes wide. The number of levels or depth of the FIFO
depends wupon how far ahead of the current ﬁrogram
counter the FIFO needs to buffer the code stream. Two
levels, each eight bytes wide, are mandatory to be able
to properly wutilize the FIFO, Four 1levels were

selected as the number of total levels in the FIFO.
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FIGURE 36 - FIFO

The FIFO is constructed from byte-wide register
latches, eight per row with four rows. The outputs of
the four rows are tied together and the controller
determines which output 1is enabled. Following this

intermediate output is a byte rotater.

The FIFO read is a two step process. First, the
byte pointed to by the select input and the next eight
consecutive bytes of code stream are enabled, one per

column. Secondly, these eight intermediate bytes are
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rotated until they were properly aligned.

The FIFO controller has an internal counter which
keeps track of the next write location. From the next
write location and the select input, the controller can
determine when a level in the FIFO becomes empty. When
this happens, a handshaking signal with the instruction
prefetch 1s toggled to begin the next code word

prefetch.

The amount of code stream prefetched depends upon
the bandwidth between the processor and the memory.
For a 64-bit data path, one of four writes would be
possible. For narrower data paths, the inputs would be
arranged differently and the controller would causé a
different combination of registers to be loaded. An
output control signal tells the following portions of
the pipeline whether the FIFO has valid data or whether

it must wait until the prefetch catches up with valid
data.
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Operand Specifier Decoder

The second level of the pipeline is the DECODER.
This part of the pipeline decodes the operand
specifiers into a form that the processor could easily
understand. The rotated and aligned output from the
FIFO feeds several PLAs and ROMS. These decode the
necessary information from the operand specifier such
as displacement, literal value, type, 1length and a
pointer to the Dbase address register and workspace
cache., These outputs are then fed to the address

developer,
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FIGURE 37 - ADDRESS DECODER
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The first byte 1in an instruction is always the
opcode., The number of operand specifiers 1s decoded
from the opcode and passed along to the ALU. The
decoder expands the following operand specifiers into a

form needed by the address developer.

There are several fields the decoder must
recognize and decode. First, the length of the operand
specifier 1is decoded into a three bit field. Second,
the base register field is decoded to determine the
base address register used in the address development.
This is encoded in a four-bit field. The next field ié
the workspace cache pointer. If the access 1is to a
workspace data location, this four-bit field will point
to that register., The last field is the displacement
field. This is the offset from the base register to be
added to that  Dbase, This field <can also contain

immediate data to be used by the ALU.

The DECODER controller 1is a small microcoded
engine which has all possible combinations of operand
specifiers stored in | its control store, This
controller counts operand specifiers and provides
additional information about which operand specifiers

are valid for the particular instruction. The operand
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specifier for each instruction must be type checked to

insure their validity.

Many PLA and ROM decoders are used to decode the
operand specifiers. The operand specifier may consists
of several bytes of information. Each byte may depend
upon the previous byte to determine what its function
will  Dbe. Therefore several widths of decoders are

needed for one operand specifier.

The first section of the DECODER decodes the
position of various fields within the operand
specifier. The base register, workspace cache pointer,
and displacement all have distinct places that they can
occur in the code stream. The next portion of the

DECODER takes these pointers and decodes the

information starting at the specified locatiom.

The displacement is always the last thing in the
operand specifier stream. This displacement could be
the first, second, third or fourth byte in the operand
specifier and all four bytes as well as the type nust
be looked at to determine the <correct position from
which to pull the displacement. A displacement decode

table is shown in Appendix L.
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The previous decoder tells where the displacement
is to start. The first byte of the displacement has
encoded in it the length. If the first bit is a zero,
then the displacement is seven bits long. If the first
two bits are binary 10 then the displacement 1is
fourteen bits long. If the first two bits are binary
11, the the displacement 1s 30 bits long. Several
multiplexers are wused to select every possible
combination. A large PLA decodes and selects the
proper combination. This large amount of circuitry 1is

needed to get the displacement decoded in one cycle.

OXXXXXXX X - LITERAL DATA BITS

1 0XXXXXX XXXXXXXX
1 I1XXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

FIGURE 38 - DISPLACEMENT LENGTH DECODING

The final output of the DEVELOPER section is a set
of ﬁell defined pointers, information fields, and data.
This includes the type, length, base register,
wquspace cache, and displacement. This information is

then passed to the address developer.
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Address Developer

The third level of the pipeline is the address
development. This level consists of the workspace
cache, the address registers and the address cache
information including the virtual address and the
limit. The base register and workspace cache pointer
from the decoder directly access the address register
file and the workspace cache. The ©base address,
workspace cache data (index), and displacement are fed
into a three 1input adder to <calculate the proper

operand specifier address.
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FIGURE 39 - ADDRESS DEVELOPER
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The output of the adder, the fully developed
operand specifier, is fed to the ALU. If the operand
specifies the workspace, then the address register and
the displacement are selected as null and set to zero.
This would result in the output of the adder being the
actual workspace data. If the operand specifies a base
register address then the address is accessed while the
workspace pointer and dispiacement would be null and
again set to zero. This would result in the output of
the adder being the address register value. If the
operand specifies an indexed address with ‘a
displacement thenm all three are added together to

provide the proper address.

End of Pipe

The fourth level of the pipeline is the ALU. This
portion 1is used to actually execute the instruction.
If the operand specifier is immediate, workspace cache,
or address register direct, the data is read and wused
immediately. If the operand specifies an address, then
the address would be presented to the data cache. If
the data cache contained the data item, it would rbe

returned on that cycle. If the data cache were
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"missed" then a full memory cycle would be initiated
and the results presented back to the ALU. Once the
ALU has all the necessary data, it performs the

operation and stored the results into memory.

The ALU 1is controlled by the microcode. This
microcode 1is relatively simple since the address
development has been done by the pipeline. It controls
the enabling of data onto the various buses, the ALU

functions, shifting and other data manipulation and

movement.
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FIGURE 40 - FAST ALU
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The fifth and last level of the pipeline is the
memory buffer. This portion of the design would not
occur in the processor but in the memory controller.
When data 1s written into memory, it is stored both in
the data cache and the memory buffer. This pseudo-
level of the pipeline is necessary to write data into
the main memory without slowing the processor down.
The buffer allows the write—-through to occur fast with
the processor not having to wait for a full memory

cycle to be completed.

The overall machine has three data paths from the
processor to main memory. One is from the instruction
cache to memory. A second is from the data cache to
memory. The last is from the memory buffer to memory.
There are priorities associate with these data paths.
The data cache access is the most important and has the
highest priority. The 1instruction cache is the next
most important and lastly the memory write buffer.
When the memory buffer is full it immediately becomes
the highest priority and must be serviced before

anything else is written into memory.
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FIGURE 41 - MEMORY DATA PATHS

Some possible modification to the pipeline could
result in a reduced coét. One question is, "how Dbusy
will the main memory be ?". If the memory is not kept
busy, an instruction cache may not be necessary. A
wide path from main memory to the instruction prefetch
may be all that is necessary. Another way to reduce
cost .is to eliminate all but one of the FIFOs. The
three FIFOs can be viewed as performance improvements

while only one is necessary.,
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A rough idea of the details of the design were now
understood. Figure 42 shows a detailed processor block
diagram. To proceed with the detailed design would
conventionally consisted of drawing schematics,
However since HDL had been used on the previous project
and seem to be a very beneficial tool, it was decided
that the design was to be detailed by simulation. This
was viewed as the best approach especially considering
the magnitude and complexity of the ©project. The
simulation started with the least understood part of

the design which was the FIFO and DECODER.

Simulation

The simulation was done 1in a top down manner
rather than a bottom wup. With this complicated
processor, the design would be very complex. The top
down approach allows each level of the pipeline to be
simulated at a high level using functional
descriptions. The functional description describes, in
software, how the hardware will work. Once this top
level of the design is completed, each block will be

broken down into lower 1level and those levels

simulated.
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The first level to be simulated was the FIFO. The
FIFO consists of four 1levels of eight byte wide
registers. The output from the FIFO is eight bytes of
contiguous data which includes all information needed
for developing an operand specifier. Writing the
functional simulation consisted of defining several
variables which represent the signals and registers.,
Input and output variables are defined in a similar

manner to reflect the actual hardware signals into and

out of that block.

The hardest part of the simulation was to reflect
in the functional description how the hardware should
actually function. It is relatively simple to simulate
a function in software. The difficult task 1is to write
the softwére such that the simulation represents
closely the hardware. This high level description will
be expanded into lower levels wuntil it 1is detailed
enough to convert into hardware. Care must be taken to
define the blocks and signals properly or else the top-

down design could result in a functionally described

parts that cannot be implemented.

The top down approach allowed a very high 1level

description " of the FIFO to be written with loops, IF
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and CASE statements. The FIFO was described as an
array of 32  bytes. To read eight consecutive bytes
would require looping from one to eight equating the
output buffer variables with the bytes in the FIFO.
The output was then scheduled to occur after some time
delay. HDL is similar to PASCAL in organization and
syntax. Appendix M shows the HDL progranm which

accomplishes the FIFO function.

The next step in the simulation is to break this

high level description down into smaller blocks. This

would consist of registers, decoders, and multiplexers,

The intermediate level would again be simulated using a

functional description. For an edge~triggered latch

the routine would test for the proper clock edge and

equate the input data with the latched data. Then the

output would be scheduled to be equal to the input

after some delay through the device.

The last step of the design 1s to break the
functions down into the lowest possible level. This
could be TTL packages or STL inverters for gate arrays.

However, for now the top level of simulation is the

only level being written.
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The second level of the pipeline to be simulated
was the DECODER. This was simulated with several case
statements and functionally ANDing and ORing inputs to
produce outputs. The HDL language then allows
scheduling of the outputs from a block so that the
actual timing of the hardware can be simulated. Agailn
the top-level design must reflect the future
implementation and the timings should be as close as

possible to the functionality of the actual part.

The DECODER is simulated in several blocks. The
first block 1s the state machine controller. This
decodes the opcode to determine the number and type of
operand specifiers which follow. It then controls the
decoding circuitry to point at the proper byte 1in the
code strean. This 1is designed to decode one operand
specifier in every machine cycle. It has control
outputs to other blocks of the DECODER as well as to

the FIFO.

Project Termination

With the second block of the design finished and
begining to interconnect the FIFO and the DECODER

together, the internship came to an end. The time

period allocated for completion of the internship had
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expired.

There was a extremely large amount of work left to
be done. Yet most of the concepts of building a high-
level machine had been investigated and most of the
complex engineering design had been done. What was
left was the "nitty gritty" work of detailing the

machine and simulating it to insure its functionality.
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SUMMARY

The internship experience was a very excellent
learning opportunity. The experimental nature of this
machine has allowed me to learn about some advanced
methods of designing computer systems. All of the
objectives that were possible to meet were met while

others were changed due to existing circumstances of

ongoing research.

During the project, a slow processor was designed
which is believed to have met the goals of being easily
microcoded, testable and maintainable. The data paths
were designed, detailed and partially simulated.
Through the simulation it was shown that part of the
system woula theoretically work. Yet the wholé design
was not completely simulated and the processor was not
implemented. This resulted in not being able to get
the hardware running or being able to fully microcode
the machine. Instead a fast version of the same

processor was designed.

The fast processor required many different areas
to be investigated.s A lot was learned about caching,

pipelining, and instruction stream decoding. The data
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paths of the fast machine were developed and some of
the detailed design was finished with parts of the
machine being simulated. The project did not go far
enough to determine if the processor would actually met
the speed goal but from rough estimations of execution

speed those goals would have been surpassed.

While all of the goals were not met, the two
designs 1lead to a broader design experience., In the

first design the goals were different from the second.

The first design resulted 1in wunderstanding the
problems with debugging testing a machine. Many
features were designed into the machine to ensure these
goals were met. Special data paths and additional
hardware were wused in conjunction with external test
equipment to simplify the overall checkout. While
designing the slow machine, a necessary understanding
of the architecture was gained which was needed Dbefore

starting to design the fast version of the machine.

The fast machine provided a opportunity to learn
investigate the operation of fast computers. Many high
performance techniques were used to speed the

pProcessor. Several different methods of implementing
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caches, pipelining the processor, modifying memory
bandwidths, decoding instructions operation codes and
operand specifiers were investigated and designed into

the high performance machine.

It 1is believed that more was learned by doing the
two designs than if only one would have be finished.
Most of the engineefing research had been done on both
projects. What remained was taking the design from the
detailed stage to a final implementation. While this
is very important, the learning opportunity afforded by
doing two designs 1is believed to outweigh what would

have been learned otherwise.

Describing the system in HDL proved to be a good
method of designing the system and has many benefits
over drawing schematics. There was confidence the
design was correct in addition to the ease in changing
and debugging the design before the hardware ever
existed. ‘This ability to assure the accuracy of the
design through simulation and the ease of changing an
error since 1t was written iIn software seemed to
compensate for any delay due to learning to use this

new system,
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There are several other areas which I would liked
to have had the opportunity to investigate. Marketing
is very important in any project. This project had
opportunities to get exposure with the marketing
department, yeé no such obportunity was afforded me.
The same 1is true of other management areas I am
interested 1in, but was never given the opportunity to

get into.

In conclusion, the internship experience was very
positive and Dbeneficial., Many things were learned
about engineering within TI and about how TI’s
management operated. It 1is disappointing that the
projects did not result in hardware being built. Yet a
'lot of experience was gained in computer engineering
and a understanding of how management works wés gained.

This will help a great deal in future work situations.
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INTERNSHIP OBJECTIVES

Introduction

A 1list of objectives 1s being submitted to the
Doctor of Engineering committee members for approval in
partial fulfillment of the degree requirements. It
will define the scope and goals of the project and some
of the problems related to themn. The specific

objectives will then be defined.

The Internship is with Texas Instruments, in the
Digital Systems Group (DSG) locéted in Austin, Texas.
The intern position is as a Digital Design Engineer.
The job description includes the design, debug and
checkout of a digital system. This will require the
studying of many problems, making the proper tradeoffs,

and implementing a design.
Project Definition
The basic project is to design a experimental

processor. This processor is to be a very general

purpose machine with several basic properties. First,
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it is to be a microcode driven machine with writable
control store. The machine must be easily and quickly
microcoded and then be easily debugged. The microcode
is the lowest level of programming a processor.
Another key factor behind the design is the testability
and maintainability of the processor. The system must
be highly testable for the initial checkout. After the
processor 1is running, it must be maintainable and
diagnosable. This is necessary to check that all parts

are working correctly with high reliability,
Project Objectives

The first objective is to design a machine that is
easily microcoded. The general philosophy behind this
is to do as much as possible in software. All of the
microcoding is to be done from a remote terminal to the
system. This means that a host computer will be wused
with an umbilical <cord into the ©processor. This
umbilical cord will have full control over the machine.
After the initial checkout, all testing should be done
from the host computer with a minimal hardware probing
needed. There should be no hardware manipulation

needed to load, debug and modify the microcode.



100

The second objective 1is testability. microcode
diagnostics are important to allow a major part of the
testing to be done in software. This will require a
minimal of hardware probing to locate a problem. This
test philosophy requires a minimal amount of technician
support and a maximum amount of self test and self
diagnosis. The driving philosophy is for the
diagnostics to isolate the problem down to the smallest
replaceable part. A fully testable machine 1s very
expensive and the cost-benefits must be weighed to
determine what level of testability 1is to Dbe

implemented.

There are several smaller, short term design
objectives which will be accomplished. These
objectives will lead to the the implementation of the
project objectives. The following could be viewed as a
step by step method of accomplishing the project

objective.
Design Objectives
There are several milestones which must be reached

on the way to a complete, working processor. First the

problem must be fully understood. This 1is necessary
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before the objectives <can be properly defined. This
has been the major task of the last months work. With
the problem well wunderstood, a set of specific

objectives can be formulated.

The first design objective is to develop the data
paths for the ﬁrocessor. This means that all paths for
the flow of data through the processor must be
determined and checked out such that any data
manipulation needed can be done. Since this is to be a
general purpose microcoded machine, those data paths
cannot be special purpose but rather very general to
handle a wide variety of applications. This is the

first step in the processor design.

The second désign objective 1is the detailed
digital design. This part will take the data paths and
put them onto paper in the form of an actual hardware
design. This will require the selecting of appropriate
parts, studying the timings and interconnecting the
parts appropriately. The output of this phase will be
a data base which will define how the system 1is

interconnected.
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The third design objective 1is to simulate the
design. The simulation will show the detailed timing
and confirm the design before it is committed to
hardware. This will result in working hardware with
few or no iteration since the major checkout is done in

the simulation.

The fourth design objective is to get the hardware
running. This will require initial power-up and debug
of the system. This will wutilize the appropriate
equipment- scopes, data analyzers, etc. A major
portion of the debug 1is to be done with a host
computer., This host computer will be able to read all

busses and trace various signal within the processor.,

The last objective is to begin the microcode of
the machine. It 1is an objective to verify that the
execution of any microcode state caused the expected
results. This 1is 1intended to support the actual
microcoding of the machine and insure that the hardware

is functioning properly.
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Summary

The objectives of the Doctor of Engineering
Internship of KXerry C. Glover with Texas Instruments
have been presented. The major overall objective 1is
the design of a experimental processor. This includes
the development of a system which 1is inherently
testable, easily microcoded and supported. The design
objectives are to specify the déta paths, do the
detailed digital design, simulate that design, debug

the hardware and support the initial microcode effort.
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APPENDIX B

DEFINITION OF MICROCODE
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MICROCODE DEFINITION

The following is a definition and summary of the microcode

1. Arithmetic and Logic Unit (ALU)
2. CONstant field low or high(CON)

3. SHiFt control (SHF)
4, Condition Code and Carry (CCC)
5. MEMory field (MEM)
6. Memory MAP request field (MAP)
7. SEQuencer field (SEQ)
SUMMARY
ALL
332 2 2 22 2
109 8 7 65 4
XXX X X XX X
LFD LCC IPC ECW BPT
ALU
22 1 1 1 1 1111 1100 0000 0000
10 9 8 7 6 5432 1098 7654 3210
XX X X X X XXX XXXX XXXX XXXX
SCY XXX AIN AIX L/A ALU BREG AREG XREG
CON
2 2 11 11 1111111000000000
1 0 98 76 5432109876543210
X X XX XX XXXXXXXXXXXXXXXX
LCH LCL SCH SCL CONSTANT
SHF
0 O 000 0000
8 7 654 3210
X X XXX XXXX
SE SLR SALU SSC

CcCcC
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1 111100 0 O O 00000
4 321098 7 6 5 43210
X XXXXXX X X X XXXXX
ECT SRS CEU CEM OEY SCC
MEM
2 22 1 111 1 111 1100 00000000
2 10 9 876 5 432 1098 76543210
X XX X XXX X XXX XXXX XXXXXXXX
WMF SC MIX LCT I/D ECT RMD  AMF
MAP
1 1 111111000000 00 O 0
7 6 543210987654 32 1 0
X X XXXXXXXXXXXX XX X X
ESEX STM WLI BSEX HSEX
SEQ
2 2 2 2 1 1 1 1 1111110000000000
3 2 1 0 9 8 7 6 5432109876543210
X X X X X X X X XXXXXXXXXXXXXXXX
DLC1 DLCO OCB BCC Sl SO FE PUP SADD



332
109
XXX
LFD

LFD
001
010
011
100
101
110
111

LCC
IPC

ECW
00
01
10
11

BPT

22
10

XX
SCY

SCY
AIN
AIX
L/A
IALU
BREG
AREG
XREG

ALL

CON UCODE REG LOW'OR HIGH

SHIFT/CONTROL

COND CODE
ALU UCODE
MEM UCODE
MAP UCODE

2 2 22 2
8 7 65 4
X X XX X
LCC IPC ECW BPT
LOAD FIELD
LCON LOAD
LSHF LOAD
LCCC LOAD
LALU LOAD
LMEM LOAD
LMAP LOAD
LSEQ LOAD

SEQ UCODE

AND
REG
REG
REG
REG

CARRY

LOAD CONDITION CODE REGISTER
INCREMENT PROGRAM COUNTER

ENABLE CONSTANT OR WCS
ENABLE 00 BITS
ENABLE 08 BITS
ENABLE 16 BITS
ENABLE 24 BITS

EOO

EO8

E16

E24

BREAKPOINT

1 1 1 1
9 8 7 6
X X X X

XXX AIN AIX L/A

SELECT CARRY INPUT (Il2 AND Ill ON 2904)

ALU

OF
OF
OF
OF

CONSTANT
CONSTANT
CONSTANT
CONSTANT

1111 1100 0000 0000
5432 1098 7654 3210

XXXX XXXX XXXX XXXX
ALU BREG AREG XREG

A INPUT IS INTERNAL REGISTER FILE
ALU WRITE INTERNAL OR EXTERNAL

LOGICAL OR
ALU INSTRUCTION

B REGISTER FILE
A REGISTER FILE
X REGISTER FILE

ADDRESS
ADDRESS
ADDRESS

ARITHMETIC FUNCTION

107
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ALU DESTINATION

REG# ATX=0 AIX=1
XXXX BREG=XXXX XREG=XXXX

LBUG LOAD DEBUG
LTIM LOAD TIME

0000 BREG
0001 BREG

0010  BREG LPC LOAD PC
0011  BREG LCO LOAD CON
0100  BREG LMDR  LOAD MDR
0101  BREG LIQ LOAD IQ

LBPO LOAD BPO
LBP! LOAD BPl
LLOP1 LOAD LOOP COUNTER 1
LLOP2 LOAD LOOP COUNTER 2

0110 BREG
0111 BREG
1000 BREG
1001 BREG
1010 BREG
1011 BREG
1100 BREG
1101 BREG
1110 BREG
1111 BREG

HEHOAQWPEP WO NOTUVMPWNEFO

DUMMY LOAD NOTHING

ALU A SIDE SOURCE SELECT

AREG
XXXX AIN=0 AIN=1

0000 AREG EBUG ENABLE BUG

0001 AREG ETIM ENABLE TIME

0010 AREG EPC ENABLE PC

0011 AREG ECI ENABLE CONSTANT

0100 AREG ECC ENABLE CONDITION CODE
0101 AREG EIQ ENABLE INSTRUCTION QUEUE
0110 AREG EMC EMABLE MEMORY COUNTER

0111 AREG
1000 AREG
1001 AREG
1010 AREG
1011 AREG
1100 AREG
1101 AREG
1110 AREG
1111 AREG

ROTO ENABLE ROT
ROT1 ENABLE ROT
ROT2 ENABLE ROT
ROT3 ENABLE ROT
ROT4 ENABLE ROT
ROT5 ENABLE ROT
ROT6 ENABLE ROT
ROT7? ENABLE ROT

HHMogQOPOwooNOTCUPREWNRFO

NoOoOUPRWN O
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CON

1 1 11 11 1111110000000000
1 0 98 76 5432109876543210

X X XX XX XXXXXXXXXXXXXXXX
LCH LCL SCH SCL CONSTANT

LCH LOAD CONSTANT HIGH
LCL LOAD CONSTANT LOW
SCH SELECT CONSTANT HIGH
SCL SELECT CONSTANT LOW

00 FILL LOWER/UPPER BITS WITH ZERO’‘S
01 FILL LOWER/UPPER BITS WITH ONE‘’S
10 SELECT CONTROL STORE
11 SELECT CONTROL STORE
SHF
0 O 000 0000
8 7 654 3210
X X XXX XXXX
SE SLR SALU SsC

SE SHIFT ENABLE

SLR SELECT LEFT OR RIGHT (I10 OF 2904 AND I8 OF 2903)
SALU INSTRUCTION FOR ALU I5-I7 OF 2903

SSC SELECT SHIFT CONTROL I6-I9 OF 2904
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CcccC
1 111100 O 0 0 00000
4 321098 7 6 5 43210
X XXXXXX X X X XXXXX
ECT SRS CEU CEW CEY SCC/SM

ECT ENABLE CONDITION TEST

SRS STATUS REGISTER SELECT IO-I5 OF 2904

CEU CONTROL ENABLE FOR MICRO STATUS REGISTER
CEM CONTROL ENABLE FOR MACHINE STATUS REGISTER
CEY CONTROL ENABLE FOR STATUS READ OR WRITE
SCC/SM SELECT CONDITION CODE AND STATUS MASK

SCC

00000 ONE +5 VDC
00001 MBUSY MEMORY BUSY (0=ACTIVE,l1=TERMINATED)(INT)

00010 PCERR PROGRAM COUNTER ERROR

00011 MERR MEMORY ERROR (MISC1)
00100 UFL UNDERFLOW OCCURRED
00101 TRNC TRUNCATION OCCURRED
00110 AUX AUXILARY

00111 ROUND ROUNDING OCCURRED
01000 LCZRO LOOP COUNTER ZERO

OTHER CONDITIONS ARE CHECHED VIA 2904

ECT AND SRS FIELDS. THESE SAME CONDITIONS

MAY HAVE THREE(3) DIFFERENT SOURCES:
1) MICRO STATUS REG (USR)
2) MACHINE STATUS REG (MSR)
3) ALU STATUS (ASR)

CONDITIONS POSSIBLE ARE:

EQU  EQUAL :
NEQU NOT EQUAL :

GTE GREATER THAN OR EQUAL ¢:THESE CONDITIONS
LTE LESS THAN OR EQUAL tRESULT FROM COMPARE
LT LESS THAN :

GT GREATER THAN : :

ZRO ZERO

NZRO NOT ZERO

CAR CARRY

NCAR NOT CARRY
OVR OVERFLOW
NOVR NOT OVERFLOW
SIGN SIGN

NSIGN NOT SIGN



NN

WMF

WMF
MIX

LCT
100
010
001
1/D
ECT
100
010
001
scC

00

01

10
11

22
10

XX
SC

1.

9

X
MIX

111
876

XXX
LCT

MEM
1 111 1100 00000000
5 432 1098 76543210

X XXX XXXX XXXXXXXX
I/D ECT RMD AMF

WRITE MAR INTO MEMORY
MEMORY REGISTER WRITE INTERNAL OR EXTERNAL

LOAD

LOAD
LOAD
LOAD

cou

A-C
B-C
M-C

NTER

OUNTER
OUNTER
OUNTER

INCREMENT OR DECREMENT

ENABLE C

ENABLE A
ENABLE B
ENABLE M

SELECT

SAC
SBC
SMC
SAD

OUNTER TO COUNT

—-COUNTER
~COUNTER
—-COUNTER

MEMORY COUNTER

SELECT A COUNTER
SELECT B COUNTER
SELECT MAP COUNTER
SELECT ADDRESS DIRECT

111



READ MEMORY DESTINATION

REG#
XXXX

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

AMF

MIX=0

RMD=XXXX

BREG
BREG
BREG
BREG
BREG
BREG
BREG
BREG
BREG
BREG
BREG
BREG
BREG
BREG
BREG
BREG

HEHUOUQWE>POONOTUEWNERO

MIX=1
RMD=XXXX
LBUG LOAD
LTIM LOAD
LPC LOAD
LCON LOAD
LMDR LOAD
LIQ LOAD’
LBPO LOAD
LBP1 LOAD
LLOP1 LOAD
LLOP2 LOAD

112

DEBUG

TIME

PC

CON

MDR

1Q

BP O

BP 1

LOOP COUNTER 1
LOOP COUNTER 2

DUMMY LOAD NOTHING

ADDRESS MEMORY FILE



MAP
1 1 111111000000 00 O 0
7 6 543210987654 32 1 0
X X  XXXXXXXXXXXX XX X X
ESEX STM WLI BSEX HSEX
ESEX ENABLE SIGN EXTENSION
STM START MEMORY CYCLE
WLI WS, LS, INST ACCESS
BSEX BYTE SIGN EXTEND
HSEX HALFWORD SIGN EXTEND

WLI FETCH TYPE

00 FINS FETCH INSTRUCTION
. 01 FWSD FETCH WORKSPACE DATA
10 FLSD FETCH LINKAGE SECTION DATA
11 FMIS FETCH MISC
SEQ
2 2 2 2 1 1 1 1 1111110000000000
3 2 1 0 9 8 7 6 5432109876543210
X X X X X X X X XXXXXXXXXXXXXXXX
DLC1 DLCO OCB BCC S1 SO FE PUP SADD

DLC1 DECREMENT LOOP COUNTER 1
DLCO DECREMENT LOOP COUNTER O
OCB OPCODE BRANCH

BCC BRANCH ON CONDITION CODE
LRE LOAD SEQUENCER REGISTER

S0 SELECT O

S1 SELECT 1

PUP PUSH/POP STACK
FE FILE ENABLE

SADD SEQUENCER NEXT ADDRESS

113
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APPENDIX C

SAMPLE MICROCODE ROUTINE



* MAIN
INC PC ;
TEST PCER ;
CEQ PCHDLR ;
JREL OCTBL,IQ

* TABLE OF OPCODE SPECIFIER
OCTBL :

JMP

+IQ ADD2 :

* ROUTINE TO ADD S,SD

ADD2 MOV OPAO,MC ;
INC PC :
TEST PCER
CEQ PCHDLR
CALL DOPS H
MOV OPAl ,MC ;
INC PC :
TEST PCER
CEQ PCHDLR
CALL DOPS
MOV OPAO+2,MRA ;
MOV OPAl1+2 ,MRB ;
ADD MRA,MRB,MAR;
MOV MAR,O0PAl+2 ;
MOV OPAl,AC,MC ;
CALL | TRUN H
WRITE
JMP MAIN

115

INCREMENT PC

TEST FOR IQ EMPTY

CALL PC HANDLER IF EMPTY
JUMP RELATIVE OCTBL + IQ

JUMP VECTORS

JUMP TO ADD S,SD ROUTINE

MOVE OPERAND SPECIFIER
ADDRESS TO MEMORY COUNTER

CALL DECODE OPERAND SPEC
MOVE OPERAND SPECIFIER
ADDRESS TO MEMORY COUNTER

MOVE OPS DATA 0 TO MRA
MOVE OPS DATA 1 TO MRB
ADD MRA TO MRB SAVE TO MAR
MOVE RESULTS TO OPS 1 DATA
MOVE OPS TO A CTR, MEM CTR
CALL TEST FOR TRUNCATE

* ROUTINE TO DECCDE AND JUMP TO OP SPECIFIER ROUTINE

DOPS JREL

OSTBL,IQ

JUMP RELATIVE TO OSTBL + IQ

* TABLE FOR OPERAND SPECIFIER JUMP VECTOR

OSTBL :

+IQ  JMP SHWS :

JUMP TO SHORT WORKSPACE OPS

* ROUTINE TO FETCH SHORT WORKSPACE

SHWS MVI 00,CHI H

MOVE 00 TO CONSTANT HI FLD



MVI OF,CLO H
AND IDR,CON,RO ;
ADD RO,WSP,MAR ;
MOV MAR,MCI H
MVI TYP,CLO H
MOV CON,MAR ;
MOV MAR,MCD H
TEST MBZ H
JEQ *—1 5
READ H
RETURN ;

* PC HANDLER

PCHDLR MOV PCN+2 ,MRA ;
MOV MRA, IQ H
ADD 4 ,PC,MAR ;
MOV MAR,PCN+1
MOV PCN,MC ;
TEST MBZ :
JEQ *-1 H
READ H
RETURN

* TRUNCATION TESTER

TRUN MOV ACI,MRA ;
MOV 03F,CLO ;
AND MRA,CON,RO ;
MOV TRTBL,CLO
ADD RO,CON, CON ;
JMP El6 :

* TABLE FOR TRUNCATION JUMP
TRTBL :
+TYPE JUMP TRHALF

H
HALFWORD RESULTS

* TRUNCATE

TRHALF MOV ACI,MRA ;
MOV AC,MRA :
MOV 0,CLO
MOV 0,CHI
CMP MRA,CON :
TEST ZERO ;
JEQ NTR :
MOV FFFF,CHI  ;
CMP MRA, CON :
TEST ZERO :
JEQ NTR :
MOV TRMK,CLO
MOV 0,CHI
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MOVE OF TO CONSTANT LO FLD
MASK IDR/CON STORE IN RO
ADD RO TO WS PTR STORE MAR
MOV MAR TO MEM CTR LOC

MOV IMM THE TYPE TO CLO
MOV TYPE TO MAR

MOV TYPE TO MEM CNTR LOC
TEST MAP BUZY BIT

HOLD UNTIL READY

START READ INSTRUCTION
RETURN

MOV NEXT PC WORD ADD TO MRA
LOAD THE INSTRUCTION QUEUE
ADD FOUR TO PC STORE MAR
STORE ADD OF NEXT PC WORD
MOV PC NEXT ADD-MEM CNTR
TEST MEM BUZY BIT

HOLD UNTIL MEM NOT BUZY
START READ CYCLE

MOVE A CNTR AND INC TO MRA
MOVE 03F TO CLO

AND MRA WITH CON STORE RO
MOVE TRUN TABLE BASE TO CLO
ADD TYPE/TBL BASE STORE CON
JUMP TO TRTBL + TYPE

VECTOR

JUMP TO TRUN HALFWORD. CHECK

INCREMENT A COUNTER
MOVE A CNTR TO MRE

CMP MRA TO ZERO
TEST FOR ZERO
JUMP IF ZERO TO
MOV FFFF TO CON
CMP TO NEGATIVE
TEST FOR ZERO
JUMP IF ZERO TO NO TRUNCATE
MOVE TRUNCATE MASK TO CLO

NO TRUNCATE

RESULTS



NTR

AND
RETURN
MOV
MOV
AND
RETURN

STAT,CON,STAT
;
NTRMK,CLO
0,CHI
STAT,CON, STAT
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SET TRUN BIT IN STAT REG
MOVE NO TRUN MASK TO CLO

CLEAR TRUN BIT IN STAT REG
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APPENDIX D

PROCESSOR/SEQUENCER INTERFACE
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THE FOLLOWING WILL DEFINE THE JINTERFACE BETWEEN THE
PROCESSOR AND SEQUENCER BOARD. SOME SIGNALS WILL BE
GLOBAL WHILE OTHERS WILL BE ONLY BETWEEN BOARDS.

**GLOBAL SIGNALS**
CLKA 1 CLOCK PHASE A

CLKB 1 CLOCK PHASE B

SRS 1 SYSTEM RUN STOP (MUST BE SYNCRONIZED)
SSS 1 SYSTEM SINGLE STEP (MUST BE SYNCRONIZED)
**LOCAL SIGNALS FROM PROCESSOR TO SEQUENCER**

ccC 1 CONDITION CODE BIT

INST 8 INSTRUCTION

CS 32 CONTROL STORE BUS

**,0OCAL SIGNALS FROM SEQUENCER TO PROCESSOR**

CLK1 1 CLOCK PHASE 1

CLK2 1 CLOCK PHASE 2

CLK3 1 CLOCK PHASE 3

CLK4 1 CLOCK PHASE 4

SDIR 1 SELECT DIRECTION OF CONTROL STORE BUS
RBHL 1 READ BUG HIGH OR LOW (SAME BIT AS BELOW)
WPDH 1 WRITE PROCESSOR DATA LATCH HIGH

WPDL 1 WRITE PROCESSOR DATA LATCH LOW
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APPENDIX E

DEBUG INTERFACE SIGNALS
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MEMO DESCRIBING THE DEBUG FEATURES AND INTERFACE TO
THE BREADBOARD SEQUENCER.

DESIGN OF THE SEQUENCER TO 16 I/0 INTERFACE

THE FOLLOWING WILL SHOW THE DETAILS OF HOW TO
DESIGN THE INTERFACE OF THE SEQUENCER BOARD WITH THE
16 I/0 MODULE. THIS IS OF SIMULAR FORMAT AND REFERS
TO THE MEMO OF MAY 27.

**%*FIRST 16 I/0 MODULE**%*
SIN I 16 DATA INPUT LINES FROM WCS BOARD TO I1/0 MODULE

THESE 16 LINES ARE DEFINED AS OUTPUT LINES FROM
THE WCS BOARD AND INPUT LINES TO AMPL I/0 MODULE.
THE VIKING NUMBERING SYSTEM IS LITTLE INDIAN BUT
AMPL IS BIG INDIAN. THEREFORE ON THE AMPL END OF
THE CABLE THE MSB WILL BE BIT O AND ON THE VIKING
END OF THE CABLE THE MSB WILL BE BIT 15. LIKEWISE
ON THE AMPL END OF THE CABLE THE LSB WILL BE
NUMBERED BIT 15 AND ON THE VIKING END OF THE CABLE
THE LSB WILL BE NUMBERED BIT O. THIS IS SO THAT
WHEN A VALUE IS DISPLAYED ON EITHER SYSTEM IT WILL
APPEAR THE SAME.

SOUT O 16 DATA OUTPUT LINES TO WCS BOARD FROM I/0 MODULE
THESES 16 LINES ARE DEFINED AS INPUT LINES TO THE
WCS BOARD ANT OUTPUT LINES FROM THE AMPL I/0 MOD.
LIKEWISE THE NUMBERING SYSTEM WILL BE ON AMPL BIT
0 AND 15 AS MSB AND LSB. ON THE VIKING END OF THE
CABLE THE SAME BITS WILL BE NUMBERED 15 AND O AS
MSB AND LSB.

*%*SECOND I/0 MODULE**%*

PIN I 16 DATA INPUT LINES FROM PROCESSOR BOARD TO
I/0 MODULE. REFER TO ABOVE

POUT O 16 DATA OUTPUT LINES TO PROCESSOR BOARD FROM
I/0 MODULE. REFER TO ABOVE
*#**THIRD I/0 MODULE**%*

VIK AMPL



NAME
SWA

SDI

SHS

SRS

§SS

I/0 PIN PIN DESCRIPTION
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0] 0 15 SELECT WRITABLE CONTROL STORE ADDRESS

SOURCE.

THIS SELECTS THE SOURCE ADDRESS OF THE WCS AS

COMING FROM A COUNTER OR THE 2911. A VALUE OF

ZERO SELECTS THE COUNTER AND A ONE SELECTS THE
2911.

R 0 1 14 SELECT DIRECTION OF CONTROL STORE
BUSS,

THIS SELECTS THE DIRECTION OF THE BUFFER FROM
THE SEQUENCER BOARD TO THE PROCESSOR BOARD.
SDIR=1 DRIVES DATA FROM SEQUENCER TO PROCESSOR,
SDIR=0 DIRVES DATA FROM PROCESSOR TO SEQUENCER.
THIS ALLOWS DATA FROM THE PROCESSOR TO BE

READ OR MANIPULATED ON THE SEQUENCER BOARD.

NOTE THAT THIS IS IN COMBINATION WITH THE

ECW FIELD OF THE UCODE WHICH ENABLES DIFFERENT
BYTES FROM THE PROCESSOR TO THE SEQUENCER BOARD.

0 2 13 SELECT HARD OR SOFT BREAKPOINT

THIS BIT IS USED TO DETERMINE WHETHER THE
BREAKPOINTS ARE TO BE HARD IE AN INPUT TO A
AMPL TRACE MODULE WHICH WILL RESULT IN THE
SYSTEM BEING HALTED OR WHETHER IT IS A SOFT
BREAKPOINT FOR USE AS A TRIGGER IN A SCOPE

OR BIOMATION TRACE LOOP. SHS=1 SELECTS A HARD
BREAKPOINT AND SHS=0 SELECTS A SOFT BREAKPOINT.

0 3 12 SYSTEM RUN/STOP

THIS SIGNAL IS THE RUN/STOP SIGNAL FOR THE
SYSTEM. THIS GOES TO ALL BOARDS AND WILL
CAUSE ALL BOARDS TO BE HALTED AND READY

FOR A SYSTEM SINGLE STEP. SRS=1 SELECTS RUN
STATE AND SRS=0 SELECTS A STOP STATE.

0 4 11 SYSTEM SINGLE STEP

CAUSES A SINGLE STEP ON THE SYSTEM. THIS
HAS BEEN DEFINED AS A CYCLE ON ALL FOUR
PHASES OF THE CLOCK BOTH RISING AND FALLING
EDGES. THE CYCLE STOPS BETWEEN PHASE 4

AND PHASE ! WITH ALL TRUE CLOCKS LOW.

A SINGLE STEP OCCURS ON THE RISING EDGE

OF SSS.
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PRS 0 5 10 PROCESSOR RUN/STOP

SIMULAR TO SYSTEM RUN/STOP EXCEPT THAT
IT STOPS ONLY THE PROCESSOR BOARD.
PRS=1 SELECTS THE RUN STATE AND PRS=0
SELECTS THE STOP STATE.

PSS 0 6 9 PROCESSOR SINGLE STEP

SIMULAR TO SYSTEM SINGLE STEP EXCEPT THAT
IT SINGLE STEPS ONLY THE PROCESSOR BOARD.
A SINGLE STEP OCCURS ON THE RISING EDGE
OF SSS.

ZERO 0 7 8 FORCE ZERO TO 2911 OUTPUT (RESET)

ZERO INPUT ON THE 2911, FORCES A ZERO

ON THE OUTPUTS OF THE 2911 ADDRESS LINES.
THE FIRST INSTRUCTION SHOULD BE A JUMP

TO SOME LOCATION TO GET THE SEQUENCER
STARTED AT A KNOWN LOCATION. ZERO=0
FORCES THE OUTPUT TO A ZERO.

RBHL 0 8 7 READ BUG HIGH OR LOW
ENABLES AMPL TO READ OR WRITE THE HIGH
LOW HALFWORD OF THE DEBUG LATCH. A RBHL=1
ENABLES THE HIGH HALFWORD AND A RBHL=0
ENABLES THE LOW HALFWORD.

RAMP 0 98 67 READ AMPL
RMS 00 READ MISC STATUS

ENABLES THE MISC STATUS TO BE READ FROM
THE SEQUENCER BOARD OVER THE AMPL MODULE.

RAB 01 READ WCS ADDRESS BUSS

ENABLES THE WCS ADDRESS TO BE READ FROM
THE SEQUENCER BOARD OVER THE AMPL MODULE.

RCH 10 READ CS HIGH BUSS

ENABLES THE CS HIGH DATA TO BE READ FROM
THE SEQUENCER BOARD OVER THE AMPL MODULE.

RCL 11 READ CS LOW BUSS

ENABLES THE CS LOW DATA TO BE READ FROM
THE SEQUENCER BOARD OVER THE AMPL MODULE.



WAMP 012-10 3-5 WRITE AMPL

DEFINES WHICH REGISTER THE DATA WHICH IS
ON THE AMPLE OUTPUT LINES IS TO BE WRITTEN.

WCL 000 WRITE COMPARE LATCH

WAC 001 WRITE WCS ADDRESS COUNTER

WWDH 010 WRITE WCS DATA HIGH LATCH

WWDL 011 WRITE WCS DATA LOW LATCH

WPDH 100 WRITE PROCESSOR DATA LATCH HIGH
WPDL 101 WRITE PROCESSOR DATA LATCH LOW
WWCS 110 WRITE WRITABLE CONTROL STORE
NWRT 111 NO WRITE (MUST END HERE)

EWRT 0 13 2 ENABLE WRITE

THIS LINE SHOULD BE TAKEN LOW AND THEN
HIGH TO WRITE DATA INTO THE APPROPRIATE
REGISTER AS DESCRIBED ABOVE.

IWC 0 14 1 INCREMENT WRITABLE CONTROL COUNTER
INCREMENT COUNTER USED WHEN DOWN-LOADING
THE WCS FROM AMPL. THIS LINE SHOULD BE
TAKEN LOW AND THEN HIGH TO COUNT.

* 0 INDICATED OUTPUT LINES
* 1 INDICATED INPUT LINES
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APPENDIX F

SOFTWARE DEBUG ROUTINES
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SOFTWARE ROUTINES FOR PROCESSOR

THE ©PROCESSOR BOARD WILL REQUIRE SEVERAL
SOFTWARE ROUTINES TO HELP IN THE DEBUG AND UCODE
CHECKOUT PROCEDURES THE FOLLOWING IS A LIST OF SOME
OF THE NEEDED ROUTINES.

RST RESET

RUN SYSTEM RUN

STOP SYSTEM STOP

SSS SYSTEM SINGLE STEP

PRUN PROCESSOR RUN

PSTP PROCESSOR STOP

PSS PROCESSOR SINGLE STEP

DREG DISPLAY CPU REGISTERS

MREG MODIFY A CPU REGISTER

DMEM DISPLAY A MEM LOCATION

MMEM MODIFY A MEM LOCATION

DWCS DISPLAY WCS ADDRESS AND DATA

MWCS MODIFY WCS ADDRESS AND/OR DATA

LWCS LOAD WCS

VWCS VERIFY WCS

SBPT SET A BREAKPOINT

BPHS BREAKPOINT HARD OR SOFT

DALL DISPLAY CPU STATE BETWEEN EVERY INSTRUCTION
DBPT DISPLAY CPU STATE AT EACH BREAKPOINT

THE PREVIOUS PROCS MAY HAVE SEVERAL OPTIONS SUCH AS
SAVE DISPLAYED DATA ONTO DISK FILE FOR LATTER REFERENCE.

IN ADDITION SEVERAL TEST ROUTINES ARE NEEDED TO CHECK
THE SYSTEM OUT TO INSURE IT IS OPERATION CORRECTLY.

TMEM TEST MEMORY
TALU TEST ALU
TCCC TEST CCC
TSEQ TEST SEQ

TWCS TEST WCS
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APPENDIX G

PASCAL EMULATOR



PROGRAM EMULATE;

TYPE

BYTE=0..#FF;
F30=0..#3FFFFFFF;
F24=0..#FFFFFF;
F15=0..#3FFF;
F12=0..#FFF;
F10=0..#3FF;
F9=0..#1FF;
F7=0..#7F;
F6=0..#3F;
F5=0..#1F;
F4=0..1#F;
F3=0..7;
F2=0..3;
F1=0..1;

WORD=PACKED RECORD

CASE
1:¢(

INTEGER OF
CS:LONGINT);

2:(LFD:F3;LCC:Fl;IPC:Fl;ECW:F2;BPT:Fl;
CASE INTEGER OF

1:(DTC1:F2;SCY:F2;DTCl11:F1;AIN:F1;

4

5

6

7

4:(H:PACKED

TALU:F4;BREG:F4;AREG:F4;XREG:Fb3);
2:(DTC2:F4;LHI:F1; LLO:F1;SHI:F1;SLO:F1;
FHI:F1;FLO:F1;CON:INTEGER;);
3:(DTC3:F15;SE:F1;SLR:F1;SALU:F3;SSC:F4;);

:(DTC4:F9;ECT:F1;SRS:F6;CEU:Fl;CEM:F1;CEY:F1l;

SCC:F5;);

: (DTC5:F10; SRSEL:F2;SR:F4;DTC88:F4; YOVR:Fl;

YN:Fl;YC:Fl;YZ:Fl;);

:(DTC6:F1;WMF:F1;SC:F2;MIX:F1;LCT:F3;ID:Fl;
EC:F3;RMD:F4; AMF:BYTE; );
:(DTC7 :F6;ESEX:F1;STM:F1;TAG:F12;WLI:F2;

BSEX:F1;HSEX:Fl;);
8:(DLCl:F1;DLCO:F1;0CB:F1;BCC:Fl;S1:F1;S0:F1;

FE:Fl1;PUP:Fl;SADD:INTEGER;););
3:(W:LONGINT);

ARRAY [0..1] OF INTEGER);
5:(B:PACKED ARRAY [0..3]

OF BYTE);

6:(N:PAGKED ARRAY [0..7] OF F&4);
T:PACKED ARRAY [0..15] OF F2);
I:PACKED ARRAY [0..31] OF Fl);

7:(
8:(
9:(

10: (SEG:BYTE; OFFSET:F24);

S:SET OF 0..31);

11:(DTC8:F24;DTCY9:Fl;SELPC:F3);

12: (ALL:BYTE; FCN:F24);

END

.
b
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AIX:Fl;LA:F1;



VAR
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PIPE=PACKED RECORD
CASE INTEGER OF
1:(B:PACKED ARRAY [0..11] OF BYTE);
2:(W:PACKED ARRAY [0..2] OF LONGINT);
3:(ROTO:LONGINT; ROT4: LONGINT);
4:(DMYO:BYTE; ROT1:LONGINT; ROT5:LONGINT);
5:(DMY1:INTEGER; ROT2 : LONGINT; ROT6 : LONGINT);
6:(DMY2:F24;ROT3:LONGINT; ROT7 : LONGINT);
END;

HALF=PACKED RECORD
CASE INTEGER OF
1:(H:INTEGER);
2:(B:PACKED ARRAY [0..1] OF BYTE);
END;

STR8=PACKED ARRAY [1..8] OF CHAR;

LINE=PACKED RECORD
CASE INTEGER OF
1: (L:PACKED ARRAY [l1..80] OF CHAR);
2:(W:PACKED ARRAY [1..10] OF STR8);
END;

PWR,MM,ROM
:ARRAY [0..31] OF LONGINT;
REG
:ARRAY [0..15] OF LONGINT;
STK
:ARRAY [0..3] OF INTEGER;
¢cs,pCc,CO0,CI,CC,IAB,IBB
:WORD;
IYB,IQR,F
:WORD;
SADD, SB
:HALF;
OPC,PCE,AC,BC,MC,MA,LEV
:INTEGER;
CN,CCB,CYCLE,CHI,CLO,YB,QR
:INTEGER;
DAB,DBB,BUG,TIM,MDR,RDR
:LONGINT;
ALUL,MEML, SEQL
1F24;
IQ,BP
:PIPE;
KEYBD
:TEXT;
INKEY
:CHAR;



SCREEN
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:ARRAY [1..24] OF LINE;

: BOOLEAN;

Lcl,LCc2,Z,0VR,N,C,TB,FB

:BOOLEAN;
:BOOLEAN;

: BOOLEAN;

PROCEDURE READCPU;

VAR
BEGIN

CPUA:TEXT;

RESET (CPUA);
FOR I:=1 TO 24 DO
READLN (CPUA,SCREEN[I].L);

END;

CCB,MBUSY,PCERR,MERR,UFL,TRNC,AUX

UZ,UOVR,UN,UC,MZ,MOVR ,MN,MCB

1z,I0VR,INB,IC,QI00,QI031,SI00,SI031

PROCEDURE DISHEX(DAT:LONGINT;X,Y:INTEGER);

TYPE

VAR

BEGIN

NIB=0..15;

WIN=PACKED RECORD
CASE INTEGER OF
1:(W:LONGINT);

2:(N:PACKED ARRAY [0..7] OF NIB);

END;

STR8=PACKED ARRAY [1..8] OF CHAR;
STR16=PACKED ARRAY [1..16] OF CHAR;

ASTR=PACKED RECORD
) CASE INTEGER OF
1:(S:STR8);
2:(N:PACKED ARRAY
END;

BSTR=PACKED RECORD
CASE INTEGER OF
"1:(S:STR16);
2:(N:PACKED ARRAY
END;

DAT1 :WIN;

HEXS1:ASTR;

ONE:CHAR;

TWO : BSTR;

DAT1.W:=DAT;
TWO.S:='’0123456789ABCDEF”’ " ;
FOR I:=0 TO 7 DO
BEGIN
HEXS1.N[I]:=TWO.N[DAT1.N[I]];

END;

SCREEN [X].W[Y]:=HEXSL.S;

[0..7] OF CHAR);

[0..15] OF CHAR);
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END;

PROCEDURE DISCPUA;
BEGIN
DISHEX (RDR,4,2);
DISHEX (MDR,5,2);
DISHEX (REG[CS.AREG],10,2);
DISHEX (IQ.W[O0],11,2);
DISHEX (IQ.W[1],12,2);
DISHEX (BUG,13,2);
DISHEX (DAB,17,2);
DISHEX (¥B,19,3);
DISHEX (YB,21,3);
DISHEX (REG[CS.BREG],10,4);
DISHEX (BP.W[O0],11,4);
DISHEX (BP.W[1],12,4);
DISHEX (TIM,13,4);
DISHEX (PC.W,14,4);
DISHEX (DBB,17,4);
DISHEX (QR,22,4);
DISHEX (AC,3,6);
DISHEX (BC,4,6);
DISHEX (MC,5,6);
DISHEX (CS.AMF,6,6);
DISHEX (CO.W,10,6);
DISHEX (CI.W,14,6);
DISHEX (CC.W,18,6);
DISHEX (STK[O0],3,8);
DISHEX (STK[1],4,8):
DISHEX (STK[2],5,8);
DISHEX (STK[3],6,8);
(*DISHEX (RE,8,8);%)
(*DISHEX (ISB,9,8);%*)
DISHEX (SB.H,11,8);
DISHEX (CS.W,14,8);
DISHEX (ALUL,17,8):
DISHEX (MEML,18,8);
(*DISHEX (CCC,19,8);%)
(*DISHEX (MAP,20,8):%)
DISHEX (SEQL,21,8);
FOR I:=1 TO 24 DO
WRITELN (SCREEN{I].L);
END;

PROCEDURE ROMINIT;
BEGIN
ROM[ 0] :=#A0012001;
ROM[1] :=#A0023502;
ROM[2]:=#A0011012;
ROM[3]:=#A0010013;
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ROM[ 4] :=#A000C100;
ROM[5] :=#E00C0000;

ROM[6] :=0;
ROM[7]:=0;
ROM[ 8] :=0;
ROM[9] :=0;

ROM[11] :=0;
ROM[12] :=0;
ROM[13]:=0;
ROM[14] :=0;
ROM[15] :=0;

END;
PROCEDURE POWER;
BEGIN
PWR[O0] :=1;
FOR I:=1 TO 31 DO PWR[I]:=PWR[I-1]%*2;
END;

PROCEDURE PROGCNT;
VAR OPC:INTEGER;
BEGIN
IF CS.IPC=1 THEN
BEGIN
OPC:=CS.SELPC;
PC.W:=PC.,W+CS.IPC;
IF OPC=3 OR OPC=7 THEN PCE:=1;
END;
END;

PROCEDURE ECW;

BEGIN
IF CS.ECW=1 THEN CS.B{3]:=CO0.B[3];
IF CS.ECW=2 THEN CS.H[1]:=CO.H[1];
IF CS.ECW=3 THEN CS.FCN:=CO.FCN;

END;

PROCEDURE CON;

BEGIN
IF CS.SHI=1 THEN CHI:=CS.CON ELSE CHI:=CS.FHI;
IF CS.SLO=1 THEN CLO:=CS.CON ELSE CLO:=CS.FLO;
IF CS.LHI=1 THEN CI.H[O0]:=CHI;
IF CS.LLO=1 THEN CI.H[1]:=CLO;

END;

PROCEDURE SHF;
BEGIN
TB:=TRUE;
FB:=FALSE;
IF F.I[0]=1 THEN SI00:=TB ELSE SI00:=FB;
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IF F.I{31]=1 THEN SI031:=TB ELSE SIO0O31:=FB;
IF F.I[0]=1 THEN QIO0:=TB ELSE QIOO0:=FB;
IF F.I[31]=1 THEN QIO031:=TB ELSE QIO31:=FB;
IF CS.SLR=0 THEN
CASE CS.SSC OF
0:BEGIN SI031:=FB; QI031:=FB; END;
1:BEGIN SIO31:=TB; QIO031:=TB; MCB:=SI00; END;
2:BEGIN SI031:=FB; QI031:=MN; END;
3:BEGIN SI1I031:=TB; Q1031:=STI00; END;
4:BEGIN SI031:=MCB; QI031:=S100; END;
5:BEGIN SIO03]1:=MN; QI031:=S1I00; END;
6 :BEGIN SIO31:=FB; QI031:=S100; "END;
7 :BEGIN SIO31:=FB; QI031:=SI00; END;
8:BEGIN SI031:=SI00; QI0O31:=QI00; END;
9:BEGIN SIO031:=MCB; QI031:=QI00; MCB:=SI00; END;
10:BEGIN SI031:=SI00; QIO031:=QI00; END;
11:BEGIN SIO031:=IC; QI031:=S100; . END;
12:BEGIN SI031:=MCB; QI031:=SI00; MCB:=QI00; END;
13:BEGIN SI031:=QI00; QI031:=SI00; MCB:=QI00; END;
14:BEGIN SI031:=(INB AND (NOT IOVR))OR(NOT(INB)
QI031:=SI1I00; END; AND IOVR);
15:BEGIN SI031:=QI00; END;
END
ELSE
BEGIN
CASE CS.SSC OF
0:BEGIN SIO0Q0:=FB; QI00:=FB; MCB:=S5I031; END;
1:BEGIN SIO0:=TB; QIO0:=TB; MCB:=SIC31; END;
2:BEGIN SIOOQ0:=FB; QIO0:=FB; END;
3:BEGIN SIO0:=TB; QIO0:=TB; END;
4 :BEGIN SI00:=QI031; QIO0OO0:=FB; MCB:=SI031; END;
5:BEGIN SI00:=QI031; QIQ0:=TB; MCB:=SI031; END;
6:BEGIN SI00:=QI031; QIO0:=FB; END;
7 :BEGIN SI00:=QI031; QIOO0:=TB; END;
8 :BEGIN SIO00:=SI031; QI00:=QI031;MCB:=SI031; END;
9 :BEGIN SIOO0:=MCB; QI00:=QI031;MCB:=SI031; END;
10:BEGIN SI00:=SI031; QI00:=QI031; END;
11:BEGIN SIOO0:=MCB; QI00:=FB; END;
12:BEGIN SI00:=QI031; QI00:=MCB; MCB:=SI031; END;
13:BEGIN SI00:=QI031; QI0O0:=MCB; MCB:=SIO0O31; END;
14:BEGIN SI00:=QI031; QIOO:=MCB; END;
15:BEGIN SI00:=QI031; QI00:=SI031; END;
END;
END;
END;

PROCEDURE CCC;
BEGIN

(* NOT IMPLEMENTED YET %)

IF CS.ECT=0 THEN

BEGIN
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CASE CS.SCC OF
0:CCB:=TB;
1:CCB:=MBUSY;
2:CCB:=PCERR;
3:CCB:=MERR;
4:CCB:=UFL;
5:CCB:=TRNC;
6:CCB:=AUX;
8:CCB:=LCl;
9:CCB:=LC2;
END;
END
ELSE
BEGIN
CASE CS.SRSEL OF
O:BEGIN Z:=UZ;O0VR:=UOVR;N:=UN;C:=UC; END;
1:BEGIN Z:=UZ;0VR:=UOVR;N:=UN;C:=UC;END;
2:BEGIN Z:=MZ;OVR:=MOVR;N:=MN;C:=MCB; END;
3:BEGIN Z:=IZ;0VR:=IOVR;N:=INB;C:=IC;END;
END;
CASE CS.SR OF
0:CCB:=N<>0VR;
1:CCB:=NOT(N<>OVR);
2:CCB:=N<>0VR;
3:CCB:=NOT(N<K>OVR);
4:CCB:=2Z;
5:CCB:=NOT(Z);
6:CCB:=0VR;
7:CCB:=NOT(OVR);
8:CCB:=C OR Z;
9:CCB:=Z AND (NOT C);
10:CCB:=C;
11:CCB:=NOT C;
12:CCB:=(NOT C) OR Z;
13:CCB:=C AND (NOT Z);
14:CASE CS.SRSEL OF
0:CCB:=INB <> MN;

1:CCB:=UN;
2:CCB:=MN;
3:CCB:=INB;
END;

15:CASE CS.SRSEL OF
0:CCB:=NOT(INB <{>MN);
1:CCB:=NOT UN;
2:CCB:=NOT MN;
3:CCB:=NOT INB;
END;

END;

END;
END;



PROCEDURE CCCU;
BEGIN
TZ:=UZ; TC:=UC;
IF CEU=0 THEN
BEGIN
CASE SRS OF
0:BEGIN
UZ:=MZ;
END;
1:BEGIN
UZ:=TB;
END;
2:BEGIN
UZ:=MZ;
END;
3:BEGIN
UZ:=FB;
END;
6:BEGIN
UZ2:=12Z;
END;
7 :BEGIN
UZ:=1Z7Z;
END;
8:UZ:=FB;
9:UZ:=TB;
10:UC:=FB;
11:UC:=TB;
12:UN:=FB;
13:UN:=TB;

14:UOVR:=FB;
15:U0VR:=TB;

24:UZ:=12;
25:U0Z:=12;

TN:=UN;

UC:=MC1I;
UC:=TB;
UC:=MCI;
UC:=FB;
UC:=1IC;
UC:=1IC;

40:UC:=NOT IC;
41:UC:=NOT IC;

44 :BEGIN
UN:=IN;
UOVR:=I0VR;
END;
45:BEGIN
UN:=IN;
UOVR:=I0VR;
END;
OTHERWISE
UZ:=12Z;
UC:=IC;
UN:=INB;

UOVR:=I0VR;

‘UN:=MN;
UN:=TB;
UN:=MN;
UN:=FB;
UN:=INB;
UN:=INB;

TOVR:=UOVR;

UOVR:=MOVR;

UOVR:=TB;

UOVR:=MOVR;

UOVR:=FB;

UOVR:=I0VR+UOVR;

UOVR:=IO0VR+UOVR;
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END;

END;

IF CEM=0 THEN
BEGIN
CASE SRS OF

0:BEGIN
MZ:=YZ;
END;
1:BEGIN

MCI:=YC;

MZ:=TB; MC:=TB; MN:

END;
2:BEGIN
MZ:=TZ;
END;
3:BEGIN
MZ:=FB; MC:=FB; MN:
END;
4:BEGIN
MZ:=1Z;
END;
6 : BEGIN
UZ:=1Z; UC:=1C;
END;
7:BEGIN
UZ:=1IZ; UC:=IC;
END;
8:UZ:=FB;
9:UZ:=TB;
10:0C:=FB;
11:0C:=TB; -
12:UN:=FB;
13:UN:=TB;
14:U0VR:=FB;
15:U0VR:=TB;
24:0Z2:=12;
25:U0Z2:=12;
40:0C:=NOT IC;
41:0UC:=NOT IC;
44 :BEGIN
UN:=IN;
UOVR:=I0VR;
END;
45:BEGIN
UN:=IN;
UOVR:=I0VR;
END;
OTHERWISE
UZ:=1Z;
UC:=IC;
UN:=INB;

MC:=TCI;

TC:=MC;

MN:=YN;

MN:=TN;

MC:=MOVR; MN:=INB;

UN:=INB;

UN:=INB;
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MOVR:=YOVR;

MOVR:=TB;

MOVR:=TOVR;

MOVR:=FB;

MOVR:=TC;

UOVR:=I0VR+UOVR;

UOVR:=IOVR+UOVR;
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UOVR:=I0VR;
END;
END;

FUNCTION IQW:LONGINT;
BEGIN
CASE CS.SELPC OF

0:IQW:=IQ.ROTO;
1:IQW:=IQ.ROTI;
2:IQW:=IQ.ROT2;
3:IQW:=IQ.ROT3;
4:IQW:=I1Q.ROT4;
5:IQW:=IQ.ROT5;
6:IQW:=IQ.ROT6;
7:IQW:=IQ.R0OT7;
END;

END;

PROCEDURE ALU;
BEGIN
ALUL:=CS.FCN;
DAB:=REG[CS.AREG];
IF CS.AIN=0 THEN
CASE CS.XREG OF
1:DAB:=TIM;
2:DAB:=PC.W;
3:DAB:=CI.W;
4:DAB:=CC.W;
5:DAB:=1IQW;
8:DAB:=BP.ROTO;
9:DAB:=BP,ROT1;
10:DAB:=BP.ROT2;
11:DAB:=BP.ROT3;
12:DAB:=BP,.ROT4;
13:DAB:=BP.ROT5;
14:DAB:=BP.ROT6;
15:DAB:=BP,.ROT7;

OTHERWISE;

END;
DBB:=REG[CS.BREG];
IF CS.LA=0 THEN

CASE CS.IALU OF

1:YB:=0;
2:YB:=DBB-DAB-1+CN;
3:YB:=DAB~DBB-1+CN;
4:YB:=DBB+DAB+CN;
5:YB:=DBB+CN;
6:YB:=DAB+CN;
7:YB:=DAB+CN;

END;
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IF CS.LA=1 THEN
BEGIN
IAB.W:=DAB;
IBB.W:=DBB;
CASE CS.IALU OF
0:I¥YB.S:=[1];
1:IYB.S:=1AB.S*IBB.S;
2:1YB.S:=[1;
3:IYB.S:=[1];
4:I1YB.S:=IAB.S*IBB.S;
5:1YB.S:=[]-(IAB.S+IBB.S);"
6:IYB.S:=[]-(IAB.S*IBB.S);
7:1YB.S:=IAB.S+IBB.S;
END;
END;
YB:=1IYB.W;
IF CS.AIX=0 THEN REG[CS.BREG] :=YB;
IF CS.AIX=1 THEN
CASE CS.XREG OF
0:BUG:=YB;
1:TIM:=YB;
2:PC.W:=YB;
3:C0.W:=YB;
4 :MDR:=YB;
5:BEGIN
IF PC.I[31]=0 THEN
BEGIN
IQ.W[O0]:=YB;
IQ.W[2] :=YB;
END;
IF PC.,I[31]=1 THEN IQ.W[1l]:=YB;
END;
6:BEGIN
BP.W[0]:=YB;
BP.W[2] :=YB;
END;
7:BP.W[1l]:=YB;
OTHERWISE;
END;
END;

PROCEDURE MEM;
BEGIN
MEML :=CS.FCN;
IF CS.LMC=1 THEN
BEGIN
CASE CS.SMC OF
0:AC:=CS.AMF;
1:BC:=CS.AMF;
2:MC:=CS.AMF;
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OTHERWISE;
END;
END;
CASE CS.SMC OF
0:MA:=AC;
1:MA:=BC;
2:MA:=MC;
3:MA:=CS.AMF;
END;
IF CS.WMF=1 THEN
BEGIN
CASE CS.SMC OF
0:MM[AC] :=MDR;
1:MM[BC] :=MDR;
2 :MM[MC] :=MDR;
3:MM[CS.AMF] :=MDR;
END;
END;
CASE CS.SMC OF
O:RDR:=MM[AC];
1 :RDR:=MM[BC];
2 :RDR:=MM[MC];
3:RDR:=MM[CS.AMF];
END;
IF CS.MIX=0 THEN REG[CS.RMD] :=RDR;
IF CS.MIX=1 THEN
BEGIN
CASE CS.SMC OF
0:BUG:=RDR;
1:TIM:=RDR;
:PC.W:=RDR;
:CO.W:=RDR;
:MDR:=RDR;
:BEGIN
IF PC.I[31]=0 THEN
BEGIN
IQ.W[O0] :=RDR;
IQ.W[2] :=RDR;
END;
IF PC.I[31]=1 THEN IQ.W[1l]:=RDR;
END;
6:BEGIN
BP.W[0] :=RDR;
BP.W[2] :=RDR;
END;
7:BP.W[1] :=RDR;
END;
END;

wm s~ WweN

END;
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PROCEDURE SEQ;
BEGIN
SEQL:=CS.FCN;
IF CS.0CB=1 THEN SADD.B[1l]:=IQ.B[CS.SELPC];
IF CS.BCC=1 AND CCB=0 THEN CS.S10:=0;
IF CS.FE=1 AND CS.PUP=0 THEN LEV:=LEV-1;
IF CS.FE=1 AND CS.PUP=1 THEN
BEGIN
LEV:=LEV+1;
STRK[LEV] :=SB.H+1:
END;
CASE CS.S10 OF
0:SB.H:=SB.H+1;
1:SB.H:=SADD.H;
2:SB,H:=STK[LEV];
3:5B.H:=SADD.H;
END;
END;

BEGIN
READCPU;
ROMINIT;
POWER;
RESET (KEYBD);
READ (KEYBD,INKEY);
WHILE INKEY<>'’S’’ DO
BEGIN
CYCLE:=CYCLE+1;
DISCPUA;
CS.W:=ROM[CYCLE];
PROGCNT;
ECW;
CASE CS.LFD OF
1:CON;
2:SHF;
3:CCC;
4:ALU;
5:MEM;
(* 6 :MAP; *)
7:SEQ;
END;
(* UPDATE; *)
READ (KEYBD,INKEY);
END;
END.
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APPENDIX H

HDL SIMULATION OF MEM
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BLOCK MEM DESIGN;

(*

(*

(*

(*

GLOBALS CLKA,CLK1,CLK3,CLK4 ,VCC,GND *)
(CLKA,CLKl,CLK3,CLK4 ,MR_Y@INPUT;

INTERFACE TO UCODE *)
(* CS IS THE WCS WORD TO BE LATCHED IN UCODE REG *)
€cS(23 TO 0) @INPUT; :

(* LPMEM IS THE LOAD PULSE FOR THE MEM UCODE REG *)
LPMEM QINPUT;

(* MEMCY MEMORY CYCLE *)
MEMCY @INPUT;

INTERFACE TO MAP BOARD *%*)
(* PD BUS IS FROM THE PROCESSOR TO THE MAP BOARD *#*)
PD(31 TO 0) @INOUT;

(* ENPRD MEANS MAP READ, ENPWT MEANS MAP WRITE *)
(ENPRD,ENPWT) @INPUT;

(* MAPREQ REQUEST TO THE MAP FOR A MEMORY CYCLE #%)
MAPREQ @INPUT;

(* BSEX BYTE SIGN EXTEND *)
BSEX @INPUT;

(* HSEX HALF SIGN EXTEND *)
HSEX @INPUT;

INTERFACE TO ALU *)
(* YO IS THE OUTPUT BUS FROM THE 2903 *)
YO(31 TO 0) @INOUT;

(* LPMDR LOAD PULSE FOR MEMORY DATA REGISTER *)
LPMDR @INPUT;

(* RMD READ MEMORY DESTINATION INTO THE ALU %)
RMD(3 TO 0) @OUTPUT;

(*# MIX MEMORY DESTINATION INTERNAL OR EXTERNAL #%)
MIX @OUTPUT;

(* MD IS THE MEMORY COUNTER OR DIRECT BUSS *)
MD(7 TO 0) @OUTPUT;



(* LOCAL ARRAYS *)
(* AM DIRECT ADDRESS LINES FROM UCODE TO MEMORY *)
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AM(7 TO 0) @LOCAL;
(* AC A MEMORY COUNTER OUTPUT BUSS *)
AC(7 TO 0) @LOCAL;
(* BC B MEMORY COUNTER OUTPUT BUSS *)
BC(7 TO 0) @LOCAL;
(* MC M MEMORY COUNTER OUTPUT BUSS *)
MC(7 TO 0) @LOCAL;
(* M1 MEMORY COUNTER 1 OUTPUT BUSS *)
M1(7 TO 0) @LOCAL;
(* MM MEMORY COUNTERS MUXED BUSS *)
MM(7 TO 0) @LOCAL;
(* MA MEMORY ADDRESS BUSS *)
MA(7 TO 0) @LOCAL;
(* MBR MEMORY READ BUSS *)
MBR(31 TO 0) @LOCAL;
(* MBW MEMORY WRITE BUSS *)
MBW(31 TO 0) @LOCAL;
STRUCTURE
U00:  LAT24
(* CS 24 BITS INPUT TO UCODE LATCH *)
€cs(23 TO 0),
(* NCO DONT CARE *)
NCO,
(* WMF WRITE MEMORY FILE *)
WMF,
(* SMC SELECT MEMORY COUNTER *)
SMC1,SMCO, .
(* MIX MEMORY DESTINATION INTERNAL OR EXTERNAL *)
MIX,
(* LCA LOAD COUNTER A *)
LCA,
(* LCB LOAD COUNTER B *)
LCB,
(* LCM LOAD COUNTER M *)
LCM,
(* ID INCREMENT OR DECREMENT COUNTER *)

(*

ID,
ECA ENABLE COUNTER A *)
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ECA,
(* ECB ENABLE COUNTER B *)
ECB,
(* ECM ENABLE COUNTER M *)
ECM,
(* RMD READ MEMORY DESTINATION *)
RMD(3) ,RMD(2) ,RMD(1) ,RMD(0),
(* AM 8 BITS FOR MEMORY ADDRESS *)
AM(7) ,AM(6) ,AM(5) ,AM(4) ,AM(3),AM(2),AM(1) ,AM(0),
GND,
(* LPMEM LOAD PULSE TO LOAD MEM UCODE REGISTER *)
LPMEM;

(* MUX MEMORY OR MEMORY1 COUNT AND LOADS *)
U010: LS257A

EMMC ,ECM ,EMCO ,

ECM ,EMMC_,EMCl_,

vcc ,LCM ,LMCO |,

LCM ,VCC,LMCl ,

MM1,GND;

(* FLIP FLOP TO DETERMINE PHASE OF MEMORY AND MEMORY1 *)
U020: LS109A |
VCC,GND,MM1 ,MM1_,MAPREQ,VCC,MR_,
NCl,NC2,NC3,NC4,NC5,NC6,NC7 ;

(* XOR TO CHANGE MM BUSS WITH CLOCK *)
(* GENERATE INCREMENT FROM MAP #*)
U030: LS86

CLKA,MM1,SMMI,

ENPWT,ENPRD,EMMC,

CLKA,VCC,CLKA ,

EMMC,VCC,EMMC_;

(* A MEMORY COUNTER *)
U040: CNTOS8
AM(7 TO 0),
AC(7 TO 0),
ID,CLR4 ,ECA ,LCA_;

(* B MEMORY COUNTER *)
U050: CNTOS8
AM(7 TO 0),
BC(7 TO 0),
ID,CLK4 ,ECB ,LCB ;

(* M MEMORY COUNTER #*)
U060: CNTOS8
AM(7 TO 0),



MC(7 TO 0),

1D, CLK4_,EMCO_,LMCO_;

(* M1 MEMORY COUNTER *)

U070: CNTO8
AM(7 TO 0),
M1(7 TO 0),

ID,CLK4_,EMC1_,LMC1_

(* M OR Ml MUX *)
U080: MUX16 08

MC(7
M1(7
MM (7

SMM1;

TO 0),
TO 0),
TO 0),

(* MM,AM MUX *)
U090: MUX32 08

AM(7
AC(7
BC(7
MM(7
MD(7

SMC1,

TO 0),
TO 0),
TO 0),
TO 0),
TO 0),
SMCO;

(* MD,MM MUX *)
U100: MUX16 08

MM(7
MD(7
MA(7

CLKA;

(* DELAY CLOCK 1 THEN AND WITH MEMORY WRITE
U110: LSOO

CLK1l,CLK1,CLKl ,

CLKl ,CLK1 ,CLKID,

CLK3,CLK3,CLK3_,

CLK3_,CLK3_,CLK3D;

(* AND MEMCY WITH WMF,LMC,EMC *)

U120: LSOO
LCM,MEMCY,LCM
ECM,MEMCY,ECM ,
WMF ,MEMCY,WMF ,
WMF_,WMF_,WMFD;

(* AND MEMCY WITH A AND B COUNTER SIGNALS *)

U130: LSOO
LCA,MEMCY,LCA
ECA,MEMCY,ECA_,

TO 0),
TO 0),
TO 0),
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LCB,MEMCY,LCB_,
ECB,MEMCY,ECB_;

(* FORM MEMORY WRITE PULSES *)
Ul140: LSOO
CLK1D,WMFD,WME ,
CLK3D,ENPWT,WMME_,
WME ,WMME ,WE,
WE,WE,WE

(* MEMORY FILE *)
Ul50: MEM256
MBW(31 TO 0),
MBR(31 TO 0),
MA(7 TO 0),
GND,GND,VCC,WE_;

(* RDR REGISTER *)
Ul160: GAT32
MBR(31 TO 0),
Y0(31 TO 0),
VCC,CLKA;

(* MDR REGISTER *)
U170: LAT32
Y0(31 TO 0),
MBW(31 TO 0),
CLKA_ ,LPMDR;

(* MO REGISTER *)
U180: GAT32
MBR(31 TO 0),
PD(31 TO 0),
ENPRD_,CLKA_;

(* SIGN EXTEND INVERTER *)
(* PD BYTE 1 ENABLE=PDl *)
(* SE BYTE 1 ENABLE=SEl %)
(* SE1=CLKA*BSEX*PD7 *)
(* SE2=CLKA*(BSEX*PD7+HSEX*PD15) *)

U190: LSOO
BSEX,PD(7),INTI ,
INT1 ,INT1 ,INTI,
CLRA ,INT1,SEl ,
CLKA ,INT1_,PDI_;

U195: LSOO
HSEX,PD(15),INT2 ,
INT2_ ,INT2 ,INT2,
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INT1_,INT2 ,INT3,
INT1,INT2,INT3_;

U200: LSOO
CLKA ,INT3,SE2 ,
CLKA ,INT3 ,PD2 ,
ENPRD, ENPRD, ENPRD ,
NC8,NC9,NC10; -

U210: LS373
vcc,vce,vee,vee,vee,vee,vee,vece,
MBW(31) ,MBW(30) ,MBW(29),MBW(28),
MBW(27) ,MBW(26) ,MBW(25) ,MBW(24),
SE2_,GND;

U220: LS373
vee,vec,vee,vee,vee,vee,vee,veg,
MBW(23),MBW(22) ,MBW(21) ,MBW(20),
MBW(19),MBW(18),MBW(17),MBW(16),
SE2_,GND;

U230: LS373
vce,vee,vee,vee,vee,vee,vee, vee,
MBW(15) ,MBW(14) ,MBW(13) ,MBW(12),
MBW(11) ,MBW(10) ,MBW(09),MBW(08),
SE1l_,GND;

(* MI REGISTER #*)

U240: GAT32S
PD(31 TO 0), -
MBW(31 TO 0),
PD2_,PD2_,PDl_,CLKA ,ENPWT;

ENVIRONMENT
GLOBAL VCC,GND;

END MEM;

BLOCK LAT24;
DI(23 TO 0) @INPUT;
(p023,D022,D021,D020,D019,D018,D017,D016,
po15,b014,p013,D0012,0011,D010,D009,D008,
Doo7,Dp006 ,D005,D004,D003,D002,D001,D000) GOUTPUT;
(0E_,CLK) @INPUT;

STRUCTURE
U00: LS374
bpI(7),bp1(e¢),p1(s),pi(4),pr(3),ni(2),pi(1),nI(o),



148

D007 ,D006,D005,D004,D003,D002,D001,D000,
OE_,CLK;

U0l: LS374
DI(15),DI(14),DI(13),DI(12),
DI(11),DI(10),DI(9),DI(8),
poi1s5,b014,0013,0012,D0011,D010,D009,D008,
OE_,CLK;

U02: LS374
DI(23),DI(22),DI(21),DI(20),
DI(19),DI(18),DI(17),DI(16),
po23,p022,0021,0020,D019,D018,D017,D016,
OE_,CLK;

END LAT243



149

APPENDIX J

CACHE PLACEMENT STUDY



NO CACHE
30%M/9=3.3*%M

M =600 NS

MIP =1/(3.3*%.6)=.5

WORST CASE
M =600 NS+400 NS
MIP =1/3.3=.3

INST CACHE

NOT OVERLAPPED

(18*M+12*PC+9*MC) /9=
=2,0*%M+1.33*MC+1*PC

M=600NS MC=150NS PC=150NS

MIP=1/(2.0*.,6+1.33*%,15+.15)
=.65

OVERLAPPED
18*M/9=2,0*%M

M =600 NS

MIP =1/(2.0*%.6)=.83

INSTRUCTION AND DATA CACHE
NOT OVERLAPPED
(30*MC+9%PC)/9=3.3*MC+1*PC
MC =150 NS PC =150 NS
MIP =1/(3.3*.15+.15)=1.5

OVERLAPPED
(18*MC+9*PC)/9=2,0%*MC+1*PC
MC =150 NS PC =150NS

MIP =1/(2.0*%.15+.,15)=2,22

150

R +
|DYNO +—-———+

Fom———— + !

|DEV | l

tmm—— + |

| FETCH+————+—-=—-
tm———— +

to——-- + fomm - +
| DYNO +---+ | INST |
Fom——- + | | CACHE |
[ DEV | I Fm -t
tm———— + | |

| FETCH+===4===m—=m te—
tm———— +

tm———— + m——— +

| DYNO +--+CACHE+--+
t———— + fm———- + |

| DEV | |
Fm———— <4 l

| FETCHA=~== === P
$m———— +

Fe———- + +———— +
|DYNO +--+ |INST |
Rintatatute + | |DATA |

| DEV | | |CACHE]
Fommm- + | e+

| FETCH+=—4====~ P
fmm——— +

+-————- + m———— +

| DYNO +--+CACHE+--+
+m——— + t=———- + I

| DEV | [
te———— + e + |
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INSTRUCTION AND DATA CACHE 80%

NOT OVERLAPPED
(30*%*MC*,8+30%M*,2+9%PC)/9=2,66*%MC+.66*M+1*PC
MC =150 NS M =600 NS PC =150 NS

MIP =1/(2.66%,15+.66%.,6+.15)=1,05

OVERLAPPED
(18%.,8*MC+18*%.2*M+9*%PC)/9=1.6*MC+.4*M+1*PC
MC =150 NS M =750 NS PC =150 NS

MIP =1/(l.6%.15+,4%,75+,15)=1.45
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APPENDIX K

PIPELINE DATA FLOW STUDY
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PIPELINE EVALUATION FOR THE FOLLOWING ROUTINE;

BEGIN ADD A,B[C],D
INC C
JUMP BEGIN

FIFO
+=———- +
| 1 ] DECODER 1,2,3... OPERAND SPECIFIER
Fe-———- + I INDEX
J JUMP
+--—=- + - + W WAIT
| I | | 1 ] DEVELOPER
- + - +
o= + - +  fm———- +
I 2 | I I | 11 | ALU
tm———— + Fm———- + Fe———- +
= + - +  e———- + - +
| 3 ] ] 2 | | ) | 1 | WRITE
- + e + te———- +  e———- + BUFFER
+mm——— + te-——- + te———- + te———- + fe———- +
[ 1 ] [ 3 | [ 2 [ W | | W
+————- + tm———- + t-——-- + tm-——- + te———- +
- + e———- + === + - + Fm———- +
I J I 1 I 3 | 2 [
Fm——— + - + te——— + fm———- + m———- +
tm———— + = + fm———- + 4-=——- +
N A e D O T e
+————- + t——-—- + m———- + fe=——- +
tm——— + e———- + === +
1 J | 1 I 3 |
+———— +  p=———- + fe———- +
o= + fe-——- +
I J |
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APPENDIX L

DISPLACEMENT DECODE TABLE



OP CODE ONLY
WS SHORT

ADDRESS DIRECT

DISPLACEMENT
ADDRESS BASE

OPTIONS

DISPLACEMENT
DISPLACEMENT
DISPLACEMENT

INDEX WS SHORT

INDEX ADDRESS BASE

LITERAL #

LS BASE DISPLACEMENT

WS BASE DISPLACEMENT

ADDRESS BASE DISPLACEMENT

INDEX LS LONG DISPLACEMENT

INDEX WS LONG DISPLACEMENT

INDEX ADDRESS BASE DISPLACEMENT

LS LONG FIELD DISPLACEMENT

WS LONG FIELD DISPLACEMENT

ADDRESS LONG FIELD DISPLACEMENT

INDEX LS LONG FIELD

INDEX WS LONG FIELD

INDEX ADDRESS LONG FIELD

DISPLACEMENT

000XXXXX 00000

0010XXXX 00000

0011XXXX 000XXXXX 00102
001 0XXXX 00202
0011XXXX 10000
010XXXXX 10000
0110XXXX 10000
Ol11XLLL OXXXXXXX 01003
0111XLLL 10XXXXXX 02003
Ol111XLLL 110XXXXX 03003
Ol111XLLL 1110XXXX 04003
0111X110 XXXXXXXX OXXXXXXX 01004
O111X110 XXXXXXXX 1OXXXXXX 02004
Ol11X110 XXXXXXXX 110XXXXX 03004
0111X110 XXXXXXXX 1110XXXX 04004
1 XXX0XXX 00000
IXXX1LLL OXXXXXXX 01003
IXXX1LLL 10XXXXXX 02003
IXXX1LLL 110XXXXX 03003
1XXX1LLL 1110XXXX 04003
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01 0XXXXX

01100XXX
01101000
01101001
01101010
O1101RRR
0111XLLL
Ol11XLLL
Ol11XLLL
0l111XLLL
0l11X110
0111X110
0111X110
0111X110
11110XXX
11111LLL
11111LLL
11111LLL
11111LLL
11111110
11111110
11111110
11111110
PREVIOUS
O0XXXXXXX

IXXX1110
1XXX1110
1XXX1110
1XXX1110
000XXXXX
0010XXXX
0011XXXX
01 0XXXXX
0110XXXX
0111XLLL
0l111XLLL
0111XLLL
0111XLLL
0111X110
0111X110
0111X110
0111X110
1XXX0XXX
1XXX1LLL
1 XXX1LLL
1XXX1LLL
1XXX1LLL
1XXX1110
1XXX1110
1XXX1110
1XXX1110

OXXXXXXX
1 0XXXXXX
110XXXXX
1110XXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

OXXXXXXX
1 0XXXXXX
110XXXXX
1110XXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

OXXXXXXX
10XXXXXX
110XXXXX
1110XXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

XXXXXXXX

OXXXXXXX
1 0XXXXXX
110XXXXX
1110XXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX
XXXXXXXX

OXXXXXXX
1 0XXXXXX
110XXXXX
1110XXXX

0XXXXXXX
10XXXXXX
110XXXXX
1110XXXX

STATE JUMP/CALL

OXXXXXXX
1 0XXXXXX
110XXXXX
111 0XXXX

OXXXXXXX
10XXXXXX
110XXXXX
1110XXXX

O0XXXXXXX
10XXXXXX
110XXXXX
1110XXXX

01004
02004
03004
04004
00102
00202
10000
10000
10000
01003
02003
03003
04003
01004
02004
03004
04004
00000
01003
02003
03003
04003
01004
02004
03004
04004
00000
01012
02012
03013
10000
01002
02002
03002
04002
01003
02003
03003
04003
00000
01002
02002
03002
04002
01003
02003
03003
04003

01001

156



1 0XXXXXX
11 0XXXXX
1110XXXX

000XXXXX
0010XXXX

0011XXXX
0011XXXX

010XXXXX
01 0XXXXX

0110XXXX
0111XLLL
0111X110
1XXXXLLL
1XXXX110

000XXXXX
0010XXXX

0011XXXX
0011XXXX
0011XXXX
0011XXXX
0011XXXX
0011XXXX

01 0XXXXX
010XXXXX
010XXXXX
010XXXXX
010XXXXX
010XXXXX

0110XXXX
01110XXX
01111XXX
1 AAAXXXX

XXXXXXXX

XXXXXXXX XXXXXXXX

XXXXXXXX XXXXXXXX XXXXXXXX

0111X110
1XXXX110

0111X110
1XXXX110

000XXXXX
001 0XXXX
0110XXXX
01110XXX
01111XXX
1AAAXXXX

000XXXXX
0010XXXX
0110XXXX
01110XXX
01111XXX
1AAAXXXX

FIELD

BASE

WS
WS

WS
WS

WS
LS
AAA

WS
WS

WS
LS
AAA

WS
LS
AAA

157

02001
03001
04001

NONOO W w w W (o N e

o

NRPRNONN NDNNNONN

i o)



000XXXXX
0010XXXX
0011XXXX
010XXXXX

011XXXXX
1XXXXXXX

000XXXXX
0010XXXX
0011XXXX
010XXXXX
0l11XXLLL
1 XXXXLLL

INDEX/SHORT

LENGTH

[

[N e

mEEx

LLL
LLL
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APPENDIX M

HDL SIMULATION OF FIFO



BLOCK FIFO DESIGN;

CLK @INPUT;
INST_CACHE(63 TO 0) @INPUT;
BYTE SKIP(2 TO 0) @INPUT;
FIFO_LOAD : @INPUT;
FIFO VALID @OUTPUT;
FIFO_OUT(63 TO 0) @OUTPUT;

BEHAVIOR FUNCTIONAL PROGRAM;

BOOLEAN I(4 TO 0) ,NEXT FIL(4 TO
J(4 To 0),FIFO_VALIDI;

IF VCHANGE(CLK)#*(CLK=1) THEN

NEXT SEL:=LAST_SEL@+BYTE_SKIP
I:=NEXT_SEL@-NEXT_FIL;

3 0),LAST_SEL(4 TO
NEXT SEL(4 TO 0),FIFO(0 TO 31,7 TO 0),

.
’

IF (FIFO LOAD=1)#*((I>7)#+FIF0 VALIDI=0) THEN
: 56);

FIFO(NEXT FIL):=INST CACHE(
FIFO(NEXT FIL@+1):=INST CAC
FIFO(NEXT_ FIL@+2):=INST CAC
FIFO(NEXT FIL@+3):=INST CAC
FIFO(NEXT FIL@+4):=INST CAC
FIFO(NEXT FIL@+5):=INST CAC
FIFO(NEXT FIL@+6):=INST CAC

63 TO
HE(55
HE (47
HE (39
HE(31
HE(23
HE(15

TO
TO
TO
TO
TO
TO

48);
40);
32);
24);
16);
8);

FIFO(NEXT FIL@+7):=INST_CACHE(7 TO 0);

NEXT_FIL:=NEXT FILG@+8;
I:=NEXT SEL@-NEXT FIL;

END IF; -
J:=NEXT SEL;

0),
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FIFo_OUTT63 TO 0):=FIFO0(J)::FIFO(J@+1)::FIFO(J@+2)::
FIFO(J@+3) ::FIFO(J@+4) ::
FIFO(J@+5) ::FIFO(J@+6) ::FIFO(JQ@+7);

IF I>23 THEN FIFO VALIDI:=0;
ELSE LAST SEL:=NEXT SEL;
FIFO VALIDI:=13
END IF;
FIFO VALID:=FIF0 VALIDI;
SCHEDULE FIFO_OUT,FIFO_VALID
END IF;
END FIFO;

AT 35;
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VITA
Kerry Cloyce Glover
3802 Hawkshead Dr.
Austin, Texas 78759
Birthplace:‘ Lubbock, Texas
Birthdate: May 21, 1954
Parents: Erwin and Dorthy Glover
Spouse: _ Joann Adlin Wright Glover
Children: Robert Erwin Glover
Education: B.S. Electrical Engineering

Texas A&M, 1976.

M.S. Electrical Engineering
Texas A7M, 1977.

Experience: November 1980 - Present
Internship Position
Texas Instruments
Austin, Texas

Nov. 1978 - Aug. 1980
Design Engineer
A.R.C.,

College Sta., Texas

May 1978 - Sep. 1978
Design Engineer
S.D. Sales
Dallas, Texas

Jan. 1978 - April 1978
Design Engineer
IBM
Austin, Texas

The typist for this report was a TI 990/12 - PDWS.



