INTERN EXPERIENCE AT

DALLAS POWER AND LIGHT COMPANY

```
AN INTERNSHIP REPORT
    by
Roger Lewis Fischer
    Submitted to the College of Engineering
        of Texas A&M University
in partial fulfillment of the requirement for the degree of
DOCTOR OF ENGINEERING
```

May 1980

Major Subject: Electrical Engineering

INTERN EXPERIENCE AT

DALLAS POWER AND LIGHT COMPANY

An Internship Report

by
Roger Lewis Fischer

Approved as to style and content by:

TABLE OF CONTENTS

Abstract 1
Internship Objectives ii
Introduction. iii
The Internship Company vi
Section One (The First Objective) 1
Section Two (The Second Objective) 12
Section Two-A (Enclosure-Technical Report) 16
Section Three (The Third Objective) 134
Summary 142
Bibliography (Marginal Cost) 143
Bibliography (Long Range Planning) 144
Vita 147

Abstract

A survey of the author's internship experience with the Dallas Power \& Light Company during the period January, 1979 through January, 1980 is presented. During this one year internship, the author worked as an Engineer in the Executive Department. The intent of this report is to demonstrate that this experience fulfills the requirements for the Doctor of Engineering internship.

The author's activities during this period can be categorized into two major areas. First, technically oriented, in which he developed a model to project future electrical demands based on land usage, and a computer program that implements this model. Secondly, a selection of nontechnical business oriented areas were investigated. The tasks in these areas offered him the opportunity to be exposed to the organization and operation of an investor owned public utility company and to gain experience in a nonacademic business environment.

Internship Objectives

1. To become familiar with the organization and operation of an investor-owned electrical utility company.
2. To make an identifiable contribution to the organization in which the internship is served.
3. To gain experience in a non-academic business environment especially in the areas of planning, cost analysis and economics.

Introduction

This report describes my Doctor of Engineering internship experience with the Dallas Power \& Light Company, an investor-owned electric utility company. The internship was performed over the period January 11, 1979, through January 10, 1980. My internship supervisor was Mr. Don M. Deffebach, executive assistant to the vice president responsible for the Engineering, Distribution and Plant Departments. During this year, I was exposed to both technical and nontechnical aspects of operating an electric utility company. My technical assignment was initially described in general terms: project the Dallas Power \& Light electrical system configuration for a time when the electrical demand is double its present value. Working toward this goal, a small area load projection and substation location model was developed and a computer program implementing this model was written. This program allows the user to investigate many possible growth scenarios, projecting the service area electrical demand distribution for each growth pattern selected. The detailed technical report prepared at the conclusion of this project is provided as an enclosure to this internship report.

Non-technical areas of experience during the internship varied from corporate philosophies to communications. Working at the vice presidential level within the organization provided me with a broad outlook that would not have been possible had I been assigned to a position deeper within the organizational structure. The partial organizational chart on the next page (Figure 1) shows the location of my internship position with respect to the company's top managers.

The intent of this report is to show that my internship experience with DP\&L fulfilled the requirements for the Doctor of Engineering internship. The fact that these requirements have been satisfied will be demonstrated through a discussion describing how each of the three objectives of the internship were met. This report is divided into three main sections, one for each of the objectives.

The page numbering is continuous through the report including the enclosure. Since the enclosure has separately numbered pages, the page numbers corresponding to this report are given in parenthesis before the original page numbers. For example, a page in the enclosure numbered "(48) 20" would be page 48 of the internship report and page 20 of the enclosed technical report.

FIGURE

The Dallas Power \& Light Company (DP\&L) is an investorowned public electric utility. DP\&L is one of three operating companies within the Texas Utilities Company System. The Texas Utilities Company System is an investor owned electric utility holding company that includes three electric utility companies (Dallas Power \& Light Company, Texas Power \& Light Company, and Texas Electric Service Company), two resource development companies (Chaco Energy Company and Basic Resources Inc.), a fuel company (Texas Utilities Fuel Company), a generating company (Texas Utilities Generating Company), and a services company (Texas Utilities Services Incorporated). The three operating electric utility companies supply electrical energy to over four million people.

Dallas Power \& Light Company supplies electrical energy to the Greater Dallas area, including the cities of Dallas, Highland Park, University Park, and Cockrell Hill. DP\&L also serves some of the adjacent unincorporated area. The service area extends into five Texas counties (Dallas, Denton, Collin, Rockwall, and Kaufman). The Company's system of transmission lines is interconnected with the systems of

Texas Power \& Light and Texas Electric Service. Five generating stations within Dallas County are totally owned by DP\&L (Dallas, Lake Hubbard, Mountain Creek, North Lake, and Parkdale Steam Electric Stations) and the Company also maintains a partial ownership in three lignite plants (Big Brown, Martin Lake, and Monticello) and one nuclear plant. The nuclear plant, Comamche Peak, is scheduled to begin commercial operation in 1981.

Section One

OBJECTIVE: To become familiar with the organization and
operation of an investor-owned electrical
utility company.

This first internship objective was met through the accomplishment of several technical and non-technical activities. In order to obtain an overview of the Company's organization, I reviewed the Organization and Procedure Manual. This document contains a set of organization charts for DP\&L as well as many operational and personnel procedures. After reviewing this document and discussing information contained therin that was not clear to me with my internship supervisor, I was given an opportunity to spend three weeks on an orientation tour of the Company. My orientation took me through seven of the Company's thirteen departments. These were the Energy Services, Engineering, Distribution, Plant, Accounting, Rate \& Economic Research, and Data Processing Departments. This tour provided me with my first exposure to the actual operation of an investor-owned electrical utility company.

The Energy Services Department is subdivided into seven main sections, three of which are geographically oriented, that is, they perform basically the same functions but for different parts of the DP\&L service area. The four remaining divisions are company wide in scope. Each of the three geographically oriented divisions provide assistance to customers by classes, such as large commercial or residential, and they all have a consumer services subsection which deals primarily with efficient uses of electricity in the home. The Power Accounts Division assists three mainclasses of customers including apartment developers, government agencies (city, state, and federal), and food services (restaurants). The assistance provided usually deals with the supply of electrical energy with sufficient reliability to meet the needs of the customer at the most reasonable cost. The Industrial Accounts Division performs a similar service for the DP\&L industrial customers. Customer consultation, consumer services, technical services, and program coordination are all responsibilities of the Consumer and Technical Services Division. This division provides customer assistance in the areas of lighting, heating, air conditioning, solar applications, energy efficiency of appliances, and public displays and programs. The last
division of Energy Services Department is the Service Coordination and Statistics Division. As their name implies, this division coordinates service requests and accumulates department related statistics such as market research, load use, appliance saturation, and customer buying patterns.

Eight divisions make up the Engineering Department. As would be expected, this department provides the engineering expertise for the Company. Four of the divisions are primarily design oriented, these being the Substation \& Transmission, Power Plant, Overhead, and the Underground Divisions. The Planning Division studies system reliability and long range requirements. During my internship I worked very closely with the personnel of this division. Acquisition of real estate and rights of way is the responsibility of the Real Estate \& Right of Way Division. This division also maintains all real estate records and performs surveying services for the Company. Preparation and maintenance of the system maps comes under the Drafting Division as does the Department tracing and micro-film files. This Division also performs many special projects, one of which was part of the data collection for the small area load projection model developed as a part of this internship.

The Estimating \& Statistical Division rounds out the Engineering Department. These people prepare estimates and work authorizations for overhead and underground work, and for changes in the Company's transportation, communication, laboratory and office equipment. They also prepare the Department's budget and perform an analysis of construction costs.

The Distribution Department is responsible for construction, operation and maintenance of the electrical distribution system, street lighting system, and customer metering and services. They are also responsible for construction and maintenance of the transmission system and for operation and maintenance of the Company's vehicle fleet. In order to carry out these functions, the Department is divided into twelve divisions. To assist the Department Manager, an intermediate management level has been established and staffed with four managers: the Manager of Distribution - Construction and Maintenance, the Manager of the Northeast Service Center, the Manager of the Southwest Service Center, and the Manager of Distribution - Operations and Services. The Accounting Division and the Safety and Employee Welfare Division both report directly to the Department Head while all of the remaining divisions report to one of the intermediate managers. This Department is probably the most visable to the
public since the large majority of customers will never meet Company employees from the other departments except for the meter readers. The employees that connect and disconnect electrical service, replace wires downed by a storm, and construct new electrical distribution and transmission lines all work in the Distribution Department. An organizational chart for the Distribution Department is shown on the next page (Figure 2). Operation of the Company's generating stations, transmission system, and distribution substations is the responsibility of the Plant Department. As in the Distribution Department, the Plant Department contains an intermediate management level, three group managers in this case. Again, Safety and Accounting report directly to the Department Manager. The Generation Group Manager coordinates the activities of the five generating stations (Dallas, Mountain Creek, Parkdale, North Lake, and Lake Hubbard Steam Electric Stations) and the Plant Betterment Division. This division seeks to improve production efficiency through technical studies of operation and maintenance procedures and other engineering aspects of generating station equipment. The Maintenance \& Construction Group is composed of four divisions: Mechanical Maintenance and Construction, Electrical

FIGURE 2

Maintenance and Construction, Civil Maintenance and Construction, and Grounds Maintenance and Construction. In addition to coordinating maintenance among DP\&L plants, the Group Manager also coordinates maintenance activities with the associate electric companies (Texas Power \& Light, and Texas Electric Service Company) and assures that an adequate supply of spare parts is maintained. The third group within the Plant Department is the Substation and Transmission Operation Group which is responsible for the operation of the System Control Center, and system protection. The System Control Center is the nerve center for the entire electrical system, being tasked with the continuous and safe operation of the transmission system and substations, allocating load among generating stations, and regulating power interchange with interconnected companies.

Three divisions make up the Accounting Department which is responsible for corporate treasurer functions, general accounting, property accounting and customer accounting activities of the Company. The General Accounting Division performs all of the services normally associated with an accounting section of a company: general accounting records, taxes, payroll, financial reports, audits and reconciliations, cash budgeting, and external reports. Since a utility has so
many customers, a separate division exists to maintain customer accounts. The Customer Accounting Division performs all accounting services required for customer accounts such as: customer accounts receivable, customer's deposit records, auditing bills, receiving and accounting for customer mail remittances, calculating KW demands for billing purposes, receiving payments from customers who call in person, and other services as required. Responsibilities of the Property Accounting Division include maintaining property records; maintaining property vintage, location, and tax code records: keeping records of plant investment; and preparation of yearly ad valorem tax reports.

Developing and administering sound rates and rate policies is one of the responsibilities of the Rate \& Economic Research Department. In addition to rate analysis and design, they also supervise rate application, perform rate and economic research studies, review large contracts for service prior to execution, analyze actual and estimated energy sales and system demands, operate the Company library, prepare the official load projections, and gather statistics pertaining to system demands, energy sales, revenues, rates, power plant operation, and weather. This is the Department with which I worked most closely during my research on marginal costs and marginal cost pricing of electricity.

My official orientation ended at the Data Processing Department. Since the Company was in the process of implementing a computerized customer information system at the time of my orientation, I only had a brief visit at that time. However, my exposure to this Department increased as my work on the computer implementation of the small area load projection model progressed. This Department operates the company's keypunch, tabulating, and computer equipment. They also maintain the Company's Organization and Procedure Manual, including format design and issuance of approved revisions and additions.

The following departments were not included on my orientation schedule: Personnel; Purchasing \& Stores; Research and Environmental Services (I visited with this Department at a later date); Taxes, Insurance \& Property; Treasury; Customer Information (since my office was on their floor, I learned quite a bit about this Department during the internship); and Communications Services.

My courses at Texas A\&M University proved useful during the orientation since they allowed me to communicate with members of these departments in their own jargon resulting in greater information flow and better questions concerning their areas of responsibility.

While the orientation provided me with an overview of the Company, much more was learned over the period of the internship through discussions with my intern supervisor. Fortunately for me, he was willing to spend many hours explaining various management philosophies, corporate policies, and business practices. From time to time throughout the internship period we talked about management styles and methods of improving communications. Many times our discussions continued after completion of the normal work day. He often routed technical trade periodicals to me so that I had the opportunity to become familiar with the hardware used by an electrical utility in addition to the theory behind the hardware. During my internship one of the Company's generators was undergoing a major overhaul and I was fortunate to be able to visit the manufacturer's overhaul facility and observe part of the generator field rewinding operation.

I was asked to review and comment on a number of technical documents. These ranged from documents dealing with system reliability and the marginal cost reporting requirements under Section 133 of the Public Utility Regulatory Policies Act of 1978 to detailed testimony presented during the rate cases then in progress.

In November, the Company started one of its evening in-house courses for employees. This 24 week course was the

Steam Power Plant Course which covers such topics as basic laws and properties, generation of steam, work from steam, fluid flow, electricity, and a number of other miscellaneous topics. I decided to take advantage of this opportunity and enrolled in the course. While the theory contained in this course is a worthwhile review, associating with plant operators and maintenance personnel presents an opportunity to learn their jargon and some of their behavioral patterns. Through an agreement with the instructor, I have been able to continue the course by correspondence during this semester.

Section Two

OBJECTIVE: To make an identifiable contribution to the
organization in which the internship is served.

This internship objective was met through the accomplishment of the primary assignment of my internship which was to project the Dallas Power \& Light system configuration after a one hundred percent growth in system demand has occurred. Based on the official company projections, this level would be reached within the next twenty years. My initial approach to this task was to obtain and read as much material on the subject of load forecasting as was available within a reasonable time frame. After two months I had a collection of over twenty relevant documents. Reviewing these, it became obvious to me that the classical methods of load forecasting were inadequate for my purposes. Most of these classical methods depended on time series analysis to project future energy or demand on a system-wide basis so that even if they produced valid results, they did not provide the spacial distribution of these projections. That is, they would purport to be capable of predicting system-wide demands but not the demands in any particular small geographical
location. Since the system configuration includes substation locations, a method to determine the geographical location of any projected demands was required. After some thought, the small area load projection and substation location model concept began to take form. A few weeks after working on this concept, I learned that another utility was also working on a geographically orientated load forecasting procedure. I contacted these personnel and obtained some technical papers from them which described the work they were doing. After reviewing this work, I decided that their methods were not directly applicable to the Dallas area but that some of their ideas corresponded with the ones I had been developing. This fact gave me confidence in my continuing development of the small area model that was applicable to the Dallas Power \& Light service area. The final report covering this Small Area Load Projection and Substation Location Model and the computer implementation is included as pages 16 through 133 of this internship report.

Once the model concept was formulated, the question of data requirements was addressed. The model requires data for numerous small segments of area, called cells, throughout the service area. Basically, the data required for each cell includes the present use to which the land is being put, the
city zoning for that land (in Dallas this is an estimate of the future use for the land), the electrical feeders that serve the cell, and the percent of the feeder area covered by the cell. The number of cells is dependent on the cell size which in turn is determined by the required resolution the model user desires in the results. This represents a trade off between resolution and data collection time and cost. A meeting was held with the planning engineers and other representatives of the Engineering Department and it was decided that the cell size should be one quarter of a district. The DP\&L service area is divided into one square mile segments called districts. The electrical system maps are based on this district "grid" and it is a common reference frame used throughout the Company. Cell size was therefore set at one quarter of a square mile in area, four cells to a district. The task of data collection for the more than 1500 cells still lay ahead.

A representative group of cells was selected and data collected for these so that a time estimate for the total data collection process could be made. The estimate came to approximately six man-months. Two persons from the Drafting Division were recruited for the data collection task primarily because they were most familiar with the system maps and
aerial photographs of the DP\&L service area. While this data collection effort progressed, the computer implementation of the small area load forecasting model was developed and debugged. After the data collection and computer encoding efforts were completed, several runs of the model were made. The results of these test runs are presented in the enclosed report.

This model and computer implementation will allow the system planners to study many possible growth scenarios to determine the sensitivity of resulting configurations to changes in the growth estimates. In addition to determining substation locations to satisfy future demands, the model can be used to study system distribution line losses versus feeder length, substation loading, or number of substations. These studies are useful for making economic comparisons among possible alternatives.

Section Two-A

SMALL AREA LOAD PROJECTION

AND

SUBSTATION LOCATION MODEL

Dallas Power \& Light Company

Roger L. Fischer
January 1980

TABLE OF CONTENTS

Foreword. 1
Abstract. 11
Introduction. iii
Background 1
The Model 5
Results 10
Conclusions \& Recommendations 17
Appendix A - Small Area Model
General A-18
Theory of the Model A-20
Growth Process A-28
Gathering Process A-31
Appendix B - LANDUSE User's Guide
General B-37
Control Variables B-44
LANDUSE Data Requirements B-55
Appendix C - Listing of the
LANDUSE Computer Program C-60

Foreword

The traditional methods of load forecasting for electrical utilities do not provide information concerning the locations of projected demands since they are area-wide techniques. In order to plan and construct facilities for short-range requirements which will mesh with the longrange growth patterns, some projections of load locations over the longer term must be available. This report describes a small area load projection model and its computer implementation developed during the author's Doctor of Engineering internship with Dallas Power \& Light Company.

Abstract

A small area load projection model based on land use has been developed which allows the user to determine future demands by geographical location. The model also collects all demands scattered throughout the service area into substation locations. A computer implementation of this model has been successfully developed. This implementation allows the user to specify up to twenty separate growth areas within the total service area, each of which can have independently selected growth rates. Demands are projected on the basis of how the land will be used during the target period. Future use is assumed to follow the City Zoning Ordinances. Demands for various land uses are calculated for present use patterns and technology but may be varied for projection purposes. These demands are of the form kilowatts per square mile, for each of fourteen identified land use types. Locations for future substations are automatically selected and can then be specified for further investigations concerning losses, feeder loading and feeder length.

Introduction

In order to have present construction meet not only the requirements of today but also those of the future, some knowledge of the future demand patterns by location should be known. Unfortunately, the most commonly used projection methods only attempt to determine an area-wide demand for some future point in time. This projection may suffice for bulk power requirements but is inadequate for long-range planning of distribution substation requirements. The relatively short lead times for substations and distribution feeders as compared to generation capacity has, in the past, allowed the system planners to provide adequate capacity for customer needs. Today, however, with the rapid development of the remaining real estate within the City of Dallas, locations for future substations are becoming not only harder to find, but also much more expensive. To limit the cost to our customers, substation sites and transmission right-of-way must be obtained as early as possible. Ideally, these locations can be selected and procured prior to the development of the surrounding areas.

The selection of these locations depends on the availability of a geographically oriented demand projection

Abstract

technique. The small area load projection method developed provides the required geographically distributed demands. This model determines the projected demands for each one quarter square mile "cell" within the service area. After these projections are made, the individual demands are collected or "gathered" to existing substation locations. If the capacity of the existing substation is insufficient, additional substations are located as required. In addition to projecting possible substation locations, the computer implementation of the small area load forecasting model keeps track of all substation - cell "transactions" so that a record is maintained of which substations (up to six) feed each cell. This information is useful for feeder design and routing studies. A measure of system losses, by substation, is maintained in the form of demand times distance (megawattmiles) so that comparisons among several possible sets of substation locations can be made. A detailed description of the small area model is presented in Appendix A while Appendix B contains a user's guide for the LANDUSE computer program that implements this model. Appendix C contains a listing of the computer program.

Background

The small area load projection model is based on the theory that total system demand is composed of small parts. These small increments of demand are caused by electrical usage within given environments. One of these usage environments is land use. It is reasonable to assume that the electrical demand in any given area depends to a large extent on the use to which that area is put. For example, one would expect the electrical demand density to be lower in a rural area than in an urban area. Similarly, various land uses within an urban area, such as Dallas, result in different electrical demand densities. Since the DP\&L service area maps are based on a one square mile district system, this "grid" was adopted as frame of reference during data collection. Each district was subdivided into four parts, called cells, identified by their compass direction from the district's center. That is, the four cells of a district identified as 11NO1W would be 11NO1WNN, 11NO1WNE, 11NO1WSW, and 11NO1WSE. These cells, each onefourth of a square mile, are the basic unit of area used in the small area model. There are over 1500 of these cells in the service area each of which required a separate set of
data. Fourteen land use types were identified for use within the Dallas Power \& Light service area. These land use types are listed in Table 1. Zoning maps covering all areas of Dallas were obtained from the City of Dallas. Aerial photographs of the $D P \& L$ service area were on hand at the start of this project and were used extensively throughout the data collection process.

The raw data was initially recorded on Data Sheets and later entered into a computer disk file. A sample sheet is shown in Figure 1. The actual use and average age of facilities in the cell were coded from aerial photographs while the zoning was taken from the city zoning maps. Transportation and age information is being reserved for possible future use. Electrical distribution feeder data was taken from the Company's 13 KV one line feeder maps. This data includes the feeder's nomenclature or name, the percentage of area fed by the feeder that is also in the cell, and the percentage of the cell's area that is covered by the feeder. Approximately eight man-months were expended during the data collection/coding portion of this project. While the data coding was in progress, computer programs implementing the small area model were being developed.

TABLE 1: LAND USE CODES

Code	Description
R1	Large single family
R2	Single family
R3	Small single family
M1	Multi-family (1-3 stories)
M2	Multi-family (more than 3 stories)
C1	Small commercial
C2	Medium commercial (2-3 stories)
C3	Heavy commercial (over 3 stories)
C4	Large shopping centers
I1	Light Industrial
I2	Medium industrial
S1	Vacant and usable
S2	Undevelopable (park, cemetery, etc.)
S3	Flood plain

DATA SHEET

Coder \qquad
District \qquad
North \qquad

Date \qquad
SW SE

Land Use:

Actual Use		Present Zone	
\%	Code	\%	Zoning
1.			
2.			
3.			

Age: \qquad

Transportation:

Feeders:

Name
\% Feeder
\% Cell

1. \qquad
\qquad

2. \qquad
\qquad
3. \qquad

Comments: \qquad

Figure 1

The Model

Since the projections of future demands are based on land usage, the demand density for each of the fourteen land use types had to be determined. Three of the fourteen uses represent vacant land with a zero electrical demand. The eleven remaining demand densities were determined using an iterative process that matches cell and feeder areas with land use types. Appendix A contains a detailed description of this process in the "Theory of the Model" section. Once the demand densities are known, the present demands within each cell can be easily calculated since the percentage of each land use type within the cell is known (this is part of the data).

The growth portion of the model takes us from the existing cell demands to the cell demands at some future point in time. Two possible ways land use within a cell can change are modeled, referred to as the two growth modes. The first of these, vacant development, is a process whereby all land area that is presently being used remains unchanged with respect to use and all vacant developable land is developed in accordance with the city zoning for that area. All city zone types are matched with one of the fourteen land use types used by the model. The second growth mode is com-
plete redevelopment of the area. In this mode, all area that is presently used as well as vacant area is transformed to its zoned usage. Since, in the City of Dallas, the zones reflect a land use plan rather than actual use, the city zoning is an indication of ultimate land use for an area. Of course zoning changes, but it is today's best guess at the future use.

Up to twenty separate areas can be identified for growth. Each of these areas may have a separate growth amount which equates to a percentage of vacant land developed in the vacant development mode or a percentage of "zonal compliance" in the redevelopment mode. Figure 2 illustrates this growth area concept by indicating four possible growth areas with an estimated growth amount for each. The growth areas are chosen based on experience as well as the outputs of other population trend models such as the Urban Growth Simulation Model used by the Department of Transportation, North Central Texas Council of Governments. The growth areas and growth amounts are influenced most by the target year for which the projection is being made. That is, larger areas are expected to have higher growth amounts as one looks further into the future.

Figure 2

Since technological and psychological changes can affect energy use patterns, the model allows external adjustment to the land use demand densities if the user has information that indicates energy use patterns will change for any or all of the land use types by the study year. After the future cell demands are obtained, they are fed from distribution substations.

The process by which substations are assigned demands from the cells is called gathering since the substations go from cell to cell collecting increments of demand. Initially, a substation feeds all of the demand within its own cell. Then it reaches out to all cells adjacent to its own. If capacity is still available, it then reaches out to the next layer of cells and the process continues until either all the capacity is used, all the cells are satisfied, or the maximum distance a substation is allowed to reach is exceeded. After this process is completed, there may still be some cells with unsatisfied demands. In these cases the model will select locations for additional substations in those cells with the greatest unsatisfied demands. The number of substations that will be created at any one time is a user specified variable. During the gathering process, the relationship between each substation and each cell, if one exists, is recorded so that
we know which substations feed which cells and the demand satisfied by each substation. A measure of the distribution line loss is also maintained for each substation as a sum of all demands satisfied times the distance from the substation to that demand.

Results

The small area model was used to project the demands that would exist in a period twenty years from now. The growth areas selected and the amount of growth in each are shown in Figure 3. It should be noted that although some amount of effort was put into this selection, the primary purpose of this growth case was to exercise the model. Table 2 lists the significant control variables used during the model runs. For a description of the variables and their function see Appendix B, Table B-2. One run was made with growth taking place in the vacant development mode (case 1) and another with the redevelopment mode (case 2).

In the vacant development mode case, the run resulted in nine additional substations. These are indicated by triangles or stars in Figure 4. The run using redevelopment growth identified thirty-five additional substation locations. The circles or stars indicate their locations in Figure 4. In Figure 4 the stars indicate locations selected by both runs of this test case.

Six of the nine substation locations created in the first case have identical positions to those of the second case. The other three are in the same general area as three substa-

Figure 3

TABLE 2: EXAMPLE VARIABLES

Variable	Value	
	Case 1	Case 2
BOUNDS	F	F
ALLGRO	F	T
GROBND	T	T
NGAREA	20	20
DELTA	0.5	0.5
NEWLMT	66.6	66.6
NNEW	2	2
DELNEW	0	0
MDBSUB	5	5
MAXRNG	10	10

Dallas Power \& Light Company

Service Area and Major Facilities

0 SCALE IN MILES

LEGEND

- GENERATING STATION
_-TRANSMISSION LINE - OVERHEAD
-------TRANSMISSION LINE - UNDERGROUND
- SUBSTATION OR SWITCHING STATION
- VACANT DEVELOPMENT
- REDEVELOPMENT
* COMMON CELL
(ご) COMMON PAIR

Figure 4
tions identified as being required in case two. These three "pairs" are circled in Figure 4. Note that some of the substation locations are very close to existing transmission lines (indicated by lines connecting the dots) while others are quite distant from existing lines. This indicates where new transmission lines would be required under the selected growth pattern. After these results were obtained, another pair of cases was run.

The second set of cases assumed 100 percent growth throughout the service area. This may be thought of as an ultimate saturation or upper bound condition. Comparing the projected demands of these two sets of cases with the presently experienced actual demands brings to light the growth patterns shown in Table 3. Growth in the redevelopment mode includes the vacant land in each growth area and so the total demand projected by the redevelopment mode includes the demand projected by the vacant development mode. The demands determined by the four runs as well as the changes between them are listed. The present demand is provided as a reference point.

Subtracting the growth in demand due to vacant development from the total growth leaves that portion of the growth due to land use changes. This basis for growth and the

TABLE 3: GROWTH PATTERNS

Time Period	MODE					
	Vacant			Redevelopment		
	MW		\%	MW	-	\%
Present	2343	-	-	2343	-	-
20 Years	3243	900	58	4742	2399	39
100\%	3887	644	42	8468	3726	61
Total Growth to 100%		1544	100		6125	100

TABLE 4: GROWTH BASIS

Period	Total Growt	Vacan Growt	e Cha Growth	$\begin{gathered} \% \\ \text { Vacant } \\ \hline \end{gathered}$	\% Use Change
Present to 20 Years	2399	900	1499	38	62
20 Years to 100%	3726	644	3082	17	83

TABLE 5: DISTRIBUTION LINE LOSSES
AND SUBSTATION LOADING

Mode	Size (MW)	Number	"Loss"	\% Loading
Redevelopment	80.0	86	2.11	87
	66.6	88	2.11	89
	66.6	93	1.82	84
Vacant	80.0	71	2.28	77
	66.6	73	2.21	79
	66.6	75	2.07	76
Present	Varies	68	1.66	65

percentages of growth due to both bases are shown in Table 4. Note that 38 percent of the growth over the next twenty years is due to development of presently vacant land while only 17 percent of the growth beyond twenty years is attributable to the same basis. This is due primarily to the "using up" of vacant 1 and.

The model can also be used to investigate the effects that substation size and the number of substations have on voltage drop (megawatt-miles), losses (megawatts squared-miles) and percent average substation loading. A comparison among several runs is given in Table 5. Again, the present is included for comparison purposes. In general, as the number of substations is increased, losses due to distribution lines decreases along with the average loading. In all cases the substations are more heavily loaded than they are at present.

Conclusions and Recommendations

To date, application of the model has been limited to a relatively small number of cases. In every case the model has performed as expected. Based on this limited experience, it appears that the LANDUSE program will be a useful tool for system planners, especially those involved in distribution planning. Some of the program features have not been used other than for programing checks. For example, if the BOUNDS feature were used, portions of the system that required further analysis could be investigated without calculating results for the entire system.

One limiting factor was discovered during the selection of the twenty growth areas and their growth amounts. The present program requires that all growth areas be grown by the same mode. In reality, growth takes place by both modes not only in different areas but even within a given area. To overcome this inflexibility, the growth subroutine will be reprogramed to allow both modes of growth in each growth area. Each mode within an area will be able to have its growth amount specified independently.

Appendix A - Small Area Model

General

While traditional load forecasting methods and models are frequently used to determine future peak demands and energy requirements, they do so on a system wide basis which does not allow the user to gain insight into the geographical location of future load centers. This missing information is required if one is to provide long range predictions for the purpose of substation siting. To overcome this shortfall, a small area load forecasting model was developed that uses incremental areas called cells as the basic building blocks of the service area. The size of this cell is not a model dependent absolute but rather a variable which is determined by the resolution required by the user for a particular application. There is almost always a trade off between desired resolution and data collection costs. In general, the farther into the future one looks, the larger the cell may be. Assumptions associated with the development and implementation of this small area model are based on the prime assumption that the cell size has been selected so that the required resolution can be obtained. That is, the uses of the land contained within any given cell can be represented as a homogeneous "mixture" spread throughout the cell. For example, if a given cell
contains the following land usage: 50% small residential, 30% small commercial, and 20% light industrial, the areas within the cell that are used for these purposes could not be distinguished. They would, in effect, be blurred together. We would know, for example, that 20 percent of the cell was used for light industrial purposes, but we would be unable to tell where within the cell this activity takes place.

The same thought process carries over to the electrical feeders within the cell. We know which feeders supply energy to the cell but the information concerning which parts of the cell are fed by each is lost. Having determined that whatever size has been selected will be adequate for the purpose at hand, we can now proceed into the theory of the small area projection model.

Theory of the Mode1

This model projects future electrical demands based on land usage. The model is actually a land use projection tool rather than an electrical model although part of the model does determine the electrical load densities for various types of land usage. Initially, present electrical demands for eleven land use types are determined by overlapping areas of feeders and cells. Figure A-1 illustrates this overlapping process. The common area of cell "I" and feeder " $\mathrm{F}-\mathrm{I}$ " is shown shaded. Assume the peak demand for feeder "F-1" is D_{F-1} and that cell "I" is composed of 20% land use $1,30 \%$ land use 2 , and 50% land use type 3. Further assume that 40% of the feeder area is overlapped by the area of cell "I". The demand for land use 2, let us call it $D_{\text {LU-2 }}$ is given by:

$$
\mathrm{D}_{\mathrm{LU}-2}=0.30 \times 0.40 \times \mathrm{D}_{\mathrm{F}-1}
$$

Since all land uses do not have the same electrical demand density, this initial estimate always contains some error if the cell encompasses more than one land use type. Even with only one land use type within the cell, error would be present if any of the feeder area contained other land use types. To overcome this difficulty, relative demand densities for all the land uses
are determined. These relative demand factors are found through an iterative process. Initially, all the nonvacant land uses are assigned factors of 1.0 while vacant uses are assigned factors of 0.0. The total feeder demands are preserved through a proration of the total feeder demand among the land uses as shown in Figure A-2. After an initial iteration, the calculated demand densities for each land use type are compared in order to find the relative density factors for the next iteration. The process continues until there is no change from one iteration to the next. Figure A-3 shows a typical convergence case of land use demand densities and Figure A-4 presents the associated relative demand density factors. New demand densities are then calculated as follows:

$$
\mathrm{D}_{\mathrm{LU}-2}=0.30 \times 0.40 \times \mathrm{D}_{\mathrm{F}-1} \times \text { (factor for use 2) }
$$

This is the equation that was given at the bottom of Figure A-1. In reality, the electrical demand for each land use type is not constant throughout the service area. In order to obtain the present electrical demand for each of the cells within the service area we must again prorate demands so that the sum of all demands within the feeder add up to the feeder total. The previously calculated densities serve as the proration factors. The cell demands can then be found as shown in Figure A-5. At the end of the process, the present demand for each cell with the service area is known. The next step is to project what these

Figure A-3

CELL DEMANDS

CELL KW $=\mathbf{2 0} \% \mathrm{D}_{1}+\mathbf{4 0} \% \mathrm{D}_{2}+\mathbf{4 0} \% \mathrm{D}_{3}$
demands will be at some future point in time. In order to accomplish this task, a land use growth process is used.

Growth Process

The land use within a cell can and will change over time. Within the City of Dallas, zoning reflects a land development plan rather than an actual use. Because of this, the city zoning is.used as the future use for all land. This model considers two possible methods of growth from the present land usage to that indicated by the zoning. These methods are referred to as the growth modes. The first mode will be called "vacant development" because in this mode only the land that is presently vacant is changed in use. That is, the previously vacant land is now developed. The second growth mode is called "redevelopment" since in this mode all of the land within a cell is changed from present use to that dictated by the city zoning for that area. It should be noted that in both modes the growth takes place as indicated in the city zoning ordinances for that area in question. If a cell has more than one zoning within its boundaries, the land is developed or redeveloped with a demand that is the weighted average of the demands associated with those uses. This process is shown in Figure A-6. The redevelopment mode is referred to as the alternate method in this figure. The GFACTOR is an area growth factor described below.

Ideally, one would specify the extent of development that takes place within each cell by the target year. This is not

GROWTH ZONES: 20\% Z_{1}

 ${ }^{N}$
 $40 \% Z_{3}$
 "NEW" DEMAND:
 $D_{N}=20 \% D_{z 1}+40 \% D_{z 2}+40 \% D_{z 3}$

Alternate:

possible in practice so a number of growth areas are identified and all of the cells within these growth areas are developed by the same amount. This growth factor (GFACTOR) indicates the percent of development or redevelopment that takes place within the cells of that growth area. While the model does not limit the number of growth areas, the computer implementation presently limits the user to twenty areas. At present all areas must be grown by the same mode; however, this restriction is being relaxed by a programing modification that will allow each area to be grown by both modes with separately specified amounts. When the growth process has been completed, projected demands for each cell within the service area are calculated by applying the electrical demands for each land use type to the projected uses. The next task is to satisfy these scattered electrical demands.

Gathering Process

The projected cell demands are satisfied through a "gathering" process whereby the individual cell demands are gathered to distribution substations. Initially, existing substations are used until they are fully loaded or loaded to the desired leve1. If some demands remain after this is completed, additional substation locations are selected which will satisfy the remaining demand. The gathering process proceeds as follows.

Initially, an existing substation satisfies all of the demand within its own cell. If this demand is larger than the substation's capacity, the remaining demand will be satisfied by adjacent substations if they have available capacity. If the adjacent substations are also at maximum load, a new substation location will be selected that can satisfy the demand. If the substation has remaining capacity after satisfying the demand within its own cell, it reaches out to adjacent cells and satisfies the demands within these cells. The maximum distance (RANGE) a substation is allowed to reach out is called the MAXRNG and is equivalent to specifying a maximum feeder length. The RANGE is increased by one cell each iteration. An iteration being one pass through all substations
at a given range setting. During each iteration the substations with remaining capacity reach out another cell in range until the maximum range is attained.

If a demand is within the range of two or more substations, they take turns satisfying portions of the demand. Figures A-7 through A-10 demonstrate this gathering procedure. If all of the cell demands have been satisfied, the gathering process stops. If all of the substations within MAXRNG of an unsatisfied demand are at full capacity, a new substation location will be selected to satisfy this demand. The capacity of this new substation is a user specified input variable (all new substations will have the same capacity). A cycle is defined as that period between substation creations; during any given cycle the number of substations remains constant. The selection of a new substation location coincides with the start of a new cycle. The maximum number of cycles as well as the maximum number of substations that can be created at any one time are user specified input variables.

BEING GATHERED
UNGATHERED
.-e

GATHERING - STEP 2

Figure A-8
GATHERING - STEP 3

Appendix B - LANDUSE User's Guide

General

The LANDUSE computer programs implement the small area growth model described in Appendix A. It is assumed that the user has read through Appendix A prior to this point and that. he/she has a general overall understanding of the model being implemented. This model has the capability of determining load densities for various land uses throughout the DP\&L service area. These land use related demand densities are later used to project the future demands based on the projected land uses within the service area. Control variables determine which functions are executed and which data sets are used.

Data to the programs falls into three main categories: cell and feeder data, substation data, and control data. Each of these will be covered in more detail later in this guide.

Table B-1 lists the LANDUSE computer routines by name and version/modification number for the DP\&L UPIN computer file. Also included in this table is a brief comment concerning the routine's purpose. LUSE is the main control program which calls the subroutines needed to accomplish the tasks indicated in the control data. INPUT, CHECKF and NORMAL take the raw data and determine the relative demand densities for the fourteen land use types and the present kilowatt demand for each cell in the
service area. After this is accomplished, the user has the option of storing these intermediate results or continuing on to the growth phase.

Subroutine GROW takes the existing cell demands and modifies them according to one of two possible growth procedures. The first procedure assumes that only the vacant developable land within a cell will be developed. This land is then developed according to the way the area has been zoned by the controlling city. The second growth procedure involves a complete redevelopment of the land within the cell. Again, this development takes place as the land is zoned. In both cases, the user can specify up to twenty growth areas within the service area and select an independent growth for each of these areas. At the present time the computer implementation requires that all areas be grown by the same method (vacant areas being developed or complete redevelopment). Future modifications to the program will allow the user to specify either or both methods for each growth area independently. Each area will then have the possibility of two separate growth rates: one for development of vacant land and another for redevelopment. After completion of the growth process and the determination of "new" cell demands in kilowatts, these scattered demands must be fed from existing substations or new ones if the existing substation capacity is insufficient.

TABLE B-1
LISTING OF LANDUSE COMPUTER PROGRAMS

LANDUSE
VER-MOD
0101
01
01
Routine Name
LUSE
VAR
INPUT
CHECKF
NORMAL
BLOCK DATA
GRID
Common Variables
TABLE B-1 (CONTINUED)

$$
\begin{array}{ll}
\text { LANDUSE } \\
\text { VER-MOD }
\end{array} \quad \begin{aligned}
& \text { TABLE B-1 (CONTINUED) } \\
& 0603
\end{aligned} \quad \begin{aligned}
& \text { Contains the common block information for GROWBK and the asso- } \\
& \text { ciated type and dimension specifications. }
\end{aligned} \quad \begin{aligned}
& \text { Places the feeder list in alphabetical order. } \\
& 0801
\end{aligned} \quad \begin{aligned}
& \text { Plots selected variables on a cell coordinate "map". }
\end{aligned}
$$

Common Variables ORDER
SLOT
STAT ABORT
OUT
SCATTR

PLTR

DUMPS

LANDUSE
VER-MOD
15

1601
20
201
20
Routine Name
GROW

ZCHG

SECOND
(main)
GATHER
FETCH

This process takes place in subroutine GATHER. Results are printed by subroutine OUT.

The LANDUSE control variables are presented in the control variable section. This section gives a detailed description of the action initiated by these variables. The specified action is only taken if a control variable has the indicated value. For example, if the list states "XYZ will happen if $A B C$ is equal to $0^{\prime \prime}$ and no reference is made to any other value of $A B C$, action will only be taken if $A B C$ is equal to " O " and any other value of $A B C$ is ignored.

The program tracks all cell data on a grid coordinate basis. This grid is composed of a north-south ordinate and a east-west abscissa with the origin located at the southwest corner of Dallas County for the DP\&L data. The origin is dependent only on the input data and subroutine GRID. If the user desires to make use of the BOUNDS feature, the bounds are also specified in grid coordinates. Since the program stores cell data in a compact form, pointers relate the storage locations to the grid coordinates. These pointers, called EAST and NORTH, provide the east and north coordinates for the cell data set sequence number. That is, EAST(I) contains the east coordinate of the I-th cell in the cell data set. Substations specified in the data set will be used during the first cycle of the gathering routine. If no substation
locations are specified, the program will create NNEW (number of new substations created per cycle) substations prior to starting the first cycle. These substations will be located in the NNEW cells with the greatest demands while maintaining a spacing of at least MDBSUB. (minimum distance between created substations in one cycle). Whenever a run results in the creation of a number of substations, it is always a good idea to specify these locations and run the gathering routine again. This procedure assures that all the substations will be loaded as evenly as possible.

Control Variables

This section contains a listing of the LANDUSE computer program control variables and a description of the actions caused biy each of them. A careful reading of this list together with the "LANDUSE Data Requirements" section of this guide will prove to be invaluable to the user of this program. This listing is ordered in the same sequence as the data set in which the variables will be specified. However, if a conflict of order should arise, the order presented in the data requirements section is to be used. Figure B-1 presents an overview of the options (selected through the control variables) for the main control program. The options available in subroutine GATHER are summarized in Figure B-2.

All bounds are parallel to the axes and areas must be specified with four bounds even if one of the bounds is outside the service area (which is frequently the case with the bounds that determine growth areas). The DEBUG controls should only be used if there is a problem or if data tracking through the program is necessary.

NOTE WELL: Be especially careful when specifying GDEBUG greater than one since this results in a number of pages of

Factors

1-9 อunb!y

$$
\begin{aligned}
& 1 . \\
& 2 . \\
& 3 . \\
& 4 . \\
& 5 .
\end{aligned}
$$

printed output per iteration of the gathering procedure. A normal run with a full set of data (about 1500 cells) and no substation locations specified can easily exceed ten cycles with 100 iterations in each, for a total of 1000 iterations.

List of Control Variables

```
IDEBUG - Subroutine INPUT debug code. Not used.
CDEBUG - Subroutine CHECKF debug code.
If equal to 1:
A) Lists by feeder (if cell percentages don't normalize
to 100 \pm5%)
1) feeder abbreviation
2) feeder demand
3) list of cells fed by the feeder including:
i) cell coordinates
ii) cell record number
iii) percent of feeder area covered by cell - after normalization attempt.
```

NDEBUG - Subroutine NORMAL debug code.
If equal to $1:$
A) Prints: "ENTERED NORMAL"
B) Lists by feeder:

1) feeder sequence number
2) feeder name (i.e. $A B \emptyset 4$)
3) first and last cell number in the cell file that is fed by the feeder
4) indicates if the number of cells calculated in CHECKF is different than the number calculated in NORMAL

LDEBUG - Main program debug code.
If not equal to 0 :
Creates three plots, one for each of the vacant land uses, based on original data (before growth).

List of Control Variables
 (Continued)

INLIST - If equal to 1: Subroutine OUT is called; Subroutine OUT entry points are given (OUT1, OUT2, or OUT3) in parentheses. This results in the following output;
A) By cell: (OUT1)

1) cell record number (data order)
2) district and quadrant location of the cell (i.e. IONO1WNE) (data)
3) coordinates of the cell (data/calculated)
4) feeders feeding the cell with the original percentage of feeder area (data) and the normalized percentage based on land use (data and calculated)
5) demand in KW (as calculated)
6) the cell's land uses with associated percentages (data)
7) the cell's zoning with associated percentages (data)
B) By feeder: (OUT2)
8) feeder number (alphabetical order)
9) feeder name (data)
10) demand in KW (data)
11) percentage of the feeder area devoted to each of the 14 land uses (calculated)
12) summation of the percentages (May not sum to 1.0 due to service area boundary conditions and the fact that only three land use types and three feeders per cell are coded)
13) number of different land use types in the feeder area
14) number of cells fed by the feeder
15) the first and last cell record number of cells fed by the feeder
16) the cell record numbers of all the cells fed by the feeder
C) By land use type: (OUT3)
17) use number
18) use abbreviation
19) relative demand density factor (data)
20) total area (before growth)
21) total demand (before growth)

List of Control Variables (Continued)

D) By cell (OUT3)

1) ce11 reference number
2) land use distribution factors (amount of the cell's total demand attributable to each of its land uses)
3) the number of feeders feeding the ce11
4) the number of land use types within the cell

ISCAT - If equal to 1 :
Subroutine SCATTR will be called. This subroutine calculates the demand density for each land use type and confidence intervals. It also lists by feeder the area and demand for each land use type. A graphical representation of this list is also provided.

IGTHR - If equal to $1:$
Subroutine GATHER will be called. This is the subroutine that collects the cell demands into substations. It creates new substations if the specified ones are insufficient. A record is maintained relating substations with cells and the cell demand satisfied by the substation. An indication of distribution line loss is also calculated. This indicator has the dimensions of (MW-miles) $x 2$ for a $1 / 2$ mile cell grid coordinate.

INSTOR - If equal to 1 :
Subroutine DUMPS will be called. This routine stores the following information on disk file.
A) By cell:

1) zones
2) percentage of cell covered by each zone
3) land use distribution factors
4) district and quadrant
5) demand in KW
6) coordinates

List of Control Variables

(Continued)

B) By feeder:

1) abbreviation
2) demand in KW
C) The number of cells
D) The number of feeders
E) Pointer from coordinates to cell record number

BOUNDS - Used two places:
(logical variable)
A) When used in Subroutine SCATTR, the four bounds limit the area used to calculate the land use demand densities.
B) When used in Subroutine GATHER, the four bounds limit the area within which the gathering process takes place.

NOTE: In all cases the bounds are in grid coordinate units.

NBOUND, SBOUND, EBOUND, WBOUND - The North, South, East and West Bounds.

They should be specified even if the BOUNDS feature is not being used (specify: $70,1,60,1$).

GROWTH - Logical variable
If equal to -TRUE-
Subroutine GROW will be called. The performance of this routine depends on the following variable.

ALLGRO - Logical variable
This variable controls the mode subroutine GROW uses to project future demands.

List of Control Variables

(Continued)

If ALLGRO is equal to -TRUE-
The land will be redeveloped according to the zone in that area.

If ALLGRO is equal to -FALSE-
Only the vacant land will be developed according to zone. All presently developed land remains unchanged,

NOTE: A revision to the program is planned that will increase the flexibility of this growth process by allowing both modes of growth within a growth area.

GROBND - Logical variable
If equal to -TRUE-
Only portions of the service area will be grown, otherwise, the total area will be grown.

NGAREA - The number of areas to be grown (up to 20) when GROBND is -TRUE-

If GROBND is -FALSE-, NGAREA should be set to 1.
RGRFAC (1) - Real growth factor for growth area one. This is the growth for the whole system if GROBND is -FALSE-.

NGBND (I), SGBND (I), EGBND (I), WGBND (I), RGRFAC (I) - The North, South, East and West bounds and growth factor for the growth areas

NOTE: $I=1$, NGAREA
GDEBUG - Subroutine GATHER debug code.
I) If greater or equal to 1: Lists -
A) Initial substation data for all specified substations
B) The KW demand for each cell

List of Control Variables (Continued)

C) Cell demands before new substations are created
D) Substation data after each cycle
E) List of non-zero cell demands for cells that do not contain a substation (only if there are 20 or more substations)
F) Final substation data
G) Total capacity, loss, and demand for all substations
II) If greater or equal to 2:

A through G, above, plus
H) Initial values for NSSS (number of serving substations) for each cell. This information is repeated at two points within the gathering process. It is repeated each time the RANGE is incremented.
I) For each time an increment of demand is gathered from a cell, the cycle, range, iteration, substation number, cell pointer, substation pointer, the KW demand of both the cell being gathered and the substation, and the number of serving substations will be printed.

BEWARE: This option should not be used unless there is a problem with the cell-substation assignments. It results in thousands of pages if used during a normal run with a full set of data.

MXNSUB - The maximum number of substations. This limit is governed by the dimension of substation arrays.

BOUNDS - Logical variable
If equal to -TRUE-
The Bounds option will be in effect during the gathering process.

List of Control Variables

(Continued)

DELTA - The MW increment of demand gathered from a cell to a substation at any one time. DELTA is normally set to 0.50 MW .

SKIP - Normally set equal to 1 .
This limits the plotting of intermediate cell demands during the gathering process.

IGRAF - The number of iterations between cell demand plots. IGRAF is usually set to 20 or 50 .

NEWLMT - The capacity of substations created by the computer in subroutine GATHER. Normally set to the sum of the middle capacity rating of the projected substation transformers.

NNEW - The maximum number of substations that can be created during any one creation cycle.

DELNEW - The decrease in NNEW each cycle.
MDBSUB - The minimum distance between substations created during any one creation cycle. It is measured in cells ($1 / 2$ miles).

NCYCLE - The maximum number of creation cycles during any run.
MAXITR - The maximum number of iterations during any one cycle (usually 150 for DELTA $=0.50$).

MAXRNG - The maximum range, in cells, a substation will reach out to gather demand from a cell. This is equivalent to setting the maximum feeder length.

LANDUSE Data Requirements

The following is a detailed list of the optional and required data for the LANDUSE computer program. These data requirements should be read in conjunction with the "Control Variables" section of this appendix in order to gain a better feel for the actions caused by each. The data requirements are broken into five sets for ease of preparation and modification of the data. In all cases the required format for the data and control variables is given.

LANDUSE Data Requirements

Set 1

This set includes the control cards for the main program LUSE.

Card	Column(s)	Data and Format
1	$1-20$	IDEBUG, CDEBUG, NDEBUG, LDEBUG (4I5)
2	$1-20$	INLIST, ISCAT, IGTHR, INSTOR (4I5)
3	$1-25$	BOUNDS, NBOUND, SBOUND, EBOUND, WBOUND (L1, 4X, 4I5)
5	$1-30$	GROWTH, ALLGRO, GROBND, NGAREA, RGRFAC (1) (3(4X, L1) 15, F10.5)
	$1-30$	NGBND, SGBND, EGBND, WGBND, RGRFAC (4I5, F10.5)

NOTE: There is one Card 5 for each of the growth areas if GROBND is TRUE. The set only contains four cards if the total service area is grown as one area or if the GROWTH option is not being used.

Set II

This set includes the land use relative demands and the feeder data.

First card - Fourteen land use abbreviations and the relative demand in the following format: $14(\mathrm{~A} 2, \mathrm{I} 3)$.

Subsequent cards - (One for each five feeders). Data: Feeder, Feeder KW demand in hundreds of KW's (6.5 MW is entered as 65)
Card Format: 5(A4, 1X, I3, 2X).
NOTE: If the last feeder card contains data for five feeders, a blank card must follow the last feeder data card. If the last data card contains data for less than five (one thru four) feeders, a blank card must not be added.

LANDUSE Data Requirements

(Continued)

Set III
This set contains the cell data. There is one card for each cell.

NOTE: The last data card must be followed by a blank card.

Column	Data and Format
1-8	District and quadrant, such as 10NO2WSE (2A4)
9-12	East and North grid coordinates (2I2)
	NOTE: These can be omitted and the computer will generate them. They are entered as an additional location check.
13-24	The three land use percentages and the uses 3(I2, A2)
	NOTE: 99 is converted to 100
25-42	The three zone percentages and the zones 3(I2, A4)
45	Age Code (I1)
46	Number of highways (zero thru nine) (II)
47	Number of proposed highways (II)
48	Number of rail lines (I1)
49	Number of bus lines (II)
50	Number of streets (zero thru nine) (II)
51	Number of proposed streets (II)

LANDUSE Data Requirements

(Continued)

Column	Data and Format
$52-76$	The three feeders with percentage of feeder area covered by the cell and the percentage of cell area covered by the feeder 3(A4, 2I2)
$77-80$	NOTE: 99 is converted to 100 Card sequence number (optional) no format

Set IV
This set includes a plot symbol card and 14 landuse titles.
First Card - Eleven plotting symbols, the first of which should be a blank 11(Al).

Card 2-15 - Titles for the output of subroutines STAT. If STAT is not called, the data cards will be neglected. They must be included for proper placement of the following data cards.

Set V
Data for subroutine GATHER (read by SECOND (or LANDUSE 2002) and GATHER).

Card	Data and Format
1	GDEBUG, MXNSUB, BOUNDS, DELTA (2I5, $4 \mathrm{X}, \mathrm{L} 1, \mathrm{~F} 10.3$)
2	SKIP, IGRAF, NEWLMT, NNEW, DELNEW (2I5, F10.3, 2I5)
3	MDSUB, NCYCLE, MAXITR, MAXRNG (F10.3, 3I5)
$4-23$	Five hundred numbers (1-500) (25A3)

LANDUSE Data Requirements

(Continued)

Card

Data and Format
24
Substation data: four substations per card. If the last card contains data for four substations, a blank card must follow the last data card. (If no substations are to be specified, a blank card must be provided.) Column 1-20, 21-40, 41-60, 61-80

Data: Substation abbreviation, location (district and quadrant) and capacity (MW).

Format: $4(\mathrm{~A} 2,2 \mathrm{X}, 2 \mathrm{~A} 4, \mathrm{~F} 6.2,2 \mathrm{X})$
Example: LM 05NO4ESW_66.6

Appendix C - Listing of the LANDUSE Computer Program

c		IDISK？	DEVICE NUMGER FOR STCRAGE DISK DRIVE	VAR 112
C	－＊＊	IDISK4	DEVICE NUMEER FOR STORAGE DISK ORIVE	VAR 114
C		ILIST	DEVICE NUMBER FOR THE LIVE PRINTER	VAR 115
C		IVLIST	IF $=1$ ，THE INPUT DATA WILL GE PRINTED	var 119
C		IVSTER	IF $=1$ ．COYYON 3LOC \mathcal{L} WILL 3E STJRED ON IDISK2	VAR 120
C	＊＊	IPUNCH	JEvice Numger for the card punch	Vaz 122
C		IマEAO	DEVICE NUMSE2 for the caro reader	VAR 124
C		LこNC（F）	THE LAST CELL QECORD THAT CCNTAINS FEEDER＇F＇	VAR 125
C		LJDFC（ C ，N）	LANDUSE DISTRIBUTION FACTCR WITHIN＇C＇	var 129
c		LUSE（C，N）	the landuse type number for the n－th use	var 130
c	－		IN CELL＇C＇	VAR 132
C			NOTE：WHEN THE DATA IS READ，LUSE CONTAINS	VAR 134
C			THE ALPHA DESIGNATION UNTIL IT IS	var 136
C			CONVERTED TO THE SEQUENCE NUMSER FOR	VAR 135
C			THAT TYPE	VAR 140
C	．	vsound	NORTH BCUND	Var 142
C	．	VCELL	THE NUMBER CF CELLS	Var 144
C		NCIF（F）	THE NUMBER UF CELLS COVERED BY FEEDER＇F＇	VAR 146
C		NDEZUG	DEGUG CONTROL FOR SUBROUTINE NORMAL	VAR 148
C		VEDR	THE NUMBER OF FEEDSRS	VAR 150
C		NFIC（ ）	THE NUMBER OF FEEDERS SERVING CELL＇C＇	－VAR 152
C		VGAREA	THE NUMPER OF GROWTH AREAS（MAX：10）	－Var 154
c		NGSND（I）	THE I－TH NORTH BOUND FGR GROW	VAR 156
c		VLUIC（C）	the numser of landuse types in cell＇C＇	－Var 158
C		NLUIF（F）	THE NUMEER CF LANDUSE TYPES IN FEEOER＇F＇	Var 160
C	．	VIPTH（C）	THE NORTH CCOPDINATE OF CELL＇C＇	－VAR 152
C		NWZJNE（C，N）	ALPHA ZOVE REPLACED BY SEQUENCE NUMBER OF	－var 164
C			THE EQUIVALENT LAND USE TYPE	－var 155
ε		NZIC（C）	THE NUMBER CF ZCNES IN CELL C	－var 159
C	．	PCELL（C，N）	percentage cf cell＇C＇Covered gy the	－VAR 170
c			N－TH FEECER IN THAT CELL	－VAR 172
C	．	PFDR（C，N）	PERCENTAGE CF THE V－TH FEEDER IN CELL＇C＇	－var 174
c			THAT IS COVERED 3Y CELL＇C＇	－var 176
c	．	PFPRM（C，N）	PFDR MODIFIED TO REFLECT THE RELATIVE DEMANO	－var 179
c			asscciated with the landuse types in	－var 190
c			CELL＇C＇．THIS IS a real variable	－VAR 182
c			WITH THE DATA STORED IN DECIMAL FORM	－Vaz 184
C		PLUIF（f，LU）	PERCENTAGE CF FEEDER＇F＇Covered by landuse	－var 156
c			type＇lu＇．this is a rial variaele	var 1ss
C			WITH THE DATA STORED IN DECIMAL FGRM	Var 190
C		PLUSE（C，N）	fercentage cf CEll＇C＇Covered by the n－th	VAz 192
c	－		landuse type of that ciell	Var 194
－	．	POINT（6C，70）	A POINTER THAT POINTS FROM THE CELL COORDINA	Var 196
c			（EAST，NORTH）TO THE CELL RECORD NUM3ER	－var 193
C		PZONE（C，N）	PERCENTAGE OF CELL＇C＇COVERED ó the n－th	－var 200
c	．		ZCNE IN THAT CELL	var 202
c		QAIL（C）	THE NUMEER CF RAIL LINSS IN CELL＇C＇	Var 204
C	．	RDEMNE（j）	the kw demand per cell for the nun－vacant	V49 2こj
c			LANS USE TYPE J（REAL VARIASLE）	－Var 200
C	．	RGRFAC（I）	RELATIVE GRLWTH FACTOR SOR GRONTH AREA	VAP 21%
c			THE VALUE IS BETWEEN 0.0 and 1.0	var 212
こ		S3OUNO	SOUTH EOUND	VAR 214
c		SG3VO（I）	THE I－TH SOUTH：EOUNS FER GROW	－var zls
C		STRT（C）	THE NUMBER CF THRDUGH STREミTS IN CELL ${ }^{\text {＇}}$＇${ }^{\prime}$	VงF
C		STRTP（C）	THE NUMBER CF PROPOSES STREETS IV CELL ${ }^{\circ} \mathrm{C}$＇	－var zzj
－		TITLE（2C）	THE ARRAY USED TO Pass the title fir plcts	－Var 222
C	．	USE（LU）	the alpha name of landuse＇lu＇（az format）	－var z2－


```
        EOMMONN /MAINE/ EAST(1575),NORTH(1575),PLUSE(1575,3),LUSE(1575,3),
        lum,
        llol
        llol04
        llol
        llol
        llol
        llol
        llol
        llol
        llol
        llol
        llol
        C
        IVTESミマ\approxZ VZIC,NWZONE O2O
        IVTESミマ*ミ YZIC,NWZONE
        0ミ0
        OMWTH,GRJBND,ALLGRO 040
        ? EAL RGRFAC,K̇DEMND 052
C
        COMMON/GRCNBK/ NGAREA,NGZND(20),SGBNO(20),EGSND(20),NGEND(?O),
        0 6 0
C
        * COO
C 100
```



```
C
```



```
DESUG CONTROL CONSTANTS
LUSEOC70
LUSミ0090
    I= A DESUG CCNSTANT IS EQUAL TO 1, CERTAIN TRACKING INFJRMATION
LUS=0100
    WILL SE ORINTED ON "ILIST". MUCH OF THIS INFORMATION HELPS DETECT
LUSE0110
    EマKORS WITH THE INOUT DATA.
    LUSミ0120
LUSミ0130
    IวミうUに..........INPUT SUBRCUTINE
    Cこミ3UG.............CHECKF SUERCUTINE
    VOESUG...........VGRMAL SUERCUTIVE
    LUSE
    LUSEつ150
    LOEミUS.............\AIN PROGRAM
LUSミ3180
LUSEO190
```



```
    NHEN INDEX IS EQUAL TC I, SURRGUTINE PLOT READS ELEVEN SYMECLS LUSEOZIC
    ICONE TSILS SUEKUUTINE PLOT WHICH PLOT TO MAKE LUSEO2ZO
        ICODE PLOT
            1 NUMBER CF LAND USE TYPES PER CELL
                                AND
                            NUMEER OF FEEDERS IN EACH CELL LUSEO270
                    2
                    DEMAND DENSITY PER CELL
                            LUSE0280
                                    LUSEO200
                            LUSEこ300
```



```
    LOGICAL*1 BCUNOS
                            LUSミこ310
    LUSEO320
    LTATTL=1/=*1, LUSミ0330
    'VUMB','ER O','C VA','CANT',' CEL','LS (','S1)', LUSEjミ40
        &*' 1/ ,
            TITLE2/ 5*' ',
        3*'('/, L'C VA','CSNT',' CEL','LS(','S2)', LUSEOミ80
        8*' '/, LUSEJ390
        TITLEミノ 5*' ', LUSE0400
    'NUMG','こス こ','F VA','CANT',' CEL','LS(','SE)', LUSEO410
        5%1 1/
    LUSEOム20
```

```
C
    ఇこコつ(Iマミ\triangleO,10ここ) IDE3UG, CDE`UG, VCE3UG, LDEJUG
    २ミAつ(IFミ\Delta),10.O) INLIST, ISCAT, IGTHR, INSTOR
    C
    1:20 EJRMAT(1:15)
    Z READ(IREAC,10CZ) EOUNDS,NEOUND,S3CUND, EBOUND,W3CUND
    C
```



```
    C
    C
    1j03 FORMAT(3(4x,L1),IE,F10.5)
    C
        I=(G2CNTH .AND. GRCEND) REAO(IREAD,1004)
        * (NGこNO(I),SGEND(I),EGEND(I),WGEND(I),RGRFAC(I),I=I,NGAREA)
    c
    1004 FORY4T(4Iラ,F1U.う)
    C
        IE(GRONTH ) REAC(IREAD,1005) (RDEMND(J),J=1,14)
C
    1005 F0々M」T(7F1C.こ)
        WRITE(ILIST,1030)IDESUG,CDESUG,NOEEUG,LDESUG,INLIST,ISCAT,IGTHR,
                    INSTOR, ZOUNOS, NSOUNC, SBCUNC, EBOUNU,WBUUNC,
            GOCNTH,ALLGRC,GROBND,NGAREA,
            (I,NGSND(I),SGEND(I),EGBND(I),WGEND(I),RGRFAC(I),I=1,NGAREA)
1j3) = JRMAT(IH1,///!,1X,57('X'),' CASE VARIABLES ',57('X'),///,
    * T55, 'InEBUG ', I5 ,/,
    * TSE. 'COEBUG ', I5 ,/,
    * T55, NDESUG ', I5 ,/,
    * TSS, HDE3UG 1, IS %/,
    * TSE, 'INLIST ', I5 ,/,
    # TES. 'ISCAT ध, IS ,/,
    # TSシ, 'IGTHE :, I5 ,/,
    * T55. 'INSTOR ', I5 ,I,
    * T5j, BOUNDS !, 4x,L1 ,/,
    * T5S, 'NOCUNE ', IS ,I,
    * T55, 'SSDUND ', IE ,/,
    * T55, 'EECUNO ', I5 ,/,
    !MBOUNO - I5 +15
    * T55, MFROWTH ,', 4X,L1 ,l, LUSEO82O
    * Tइj, 'aLLSRO ', 4x,L1 ,%, LUSE0340
    * TS5, 'GRCSND ', 4X,LI ,/, LUSEOB50
    * T55, 'NEAREA ', I5 ,/, LUSEOBSO
    # TI2,'AREA',T4D,'NGSND',T5C,'SG3ND',TSO,'ErJNO',T 70,'WGSNO', LUSEOSTO
    * T 30,'RELATIVE GROWTH',/, LUSEこS80
    * (T31,I2,T42,I2,T52,I2,T62,I2,T 72,I2,T S5,F3.6) ) LUSE0890
        WRITE(ILIST,1006)
    1206 FO&MAT( ///,1X,130('X')) LUSEごM10
        IND=x=1 LUSE09?0
        Iここここ=1 LUSE00301
                LUSミ0900
```



```
    CILL INOUT LUSE095C
```



```
        NRITE(ILIST,1440) (J,USミ(J),FACTOR(J),ROEMND(J),J=1,14)
        LUSEこの7こ
```



```
    l氺FコマイAT( 1H1/////,1X,13C('X'),///,
LuS5COOS
```



```
EKXROXXKXY IG7G =REJECTED PEAKS USED FOR THIS DATA (FLAT START)XXXXXXXXXLUSE115O
EXXROXXKXK 1G7G =REJECTED PEAKS USED FOR THIS DATA (FLAT START)XXXXXXXXXLUSE117O
C...INITIAL DATA STORED IN 'LAND.USE1' (VOLI57,TRACKS 85j0 - 8557)......LUSEI180
C
EXXKXXXXXX 1=79 DQOJECTED PEAKS USEO FOR THIS DATA (FINAL FACTORSIXXXXXXLUSEI2OO
C...IVITIAL EATA STORED IN 'LAND.USEZ' (VOLIET,TRACKS 2558 - 95S5)......LUSEI2IO
```



```
CXYIAXYXXX 1079 ACTUAL PEAKS USED FCR THIS JATA (FINAL FACTORS)XXXXXXXXXXLUSEIZ3O
G...IVITIAL DATA STGRED IN 'LAND.USE3' (VOLI57,TRACKS &5Ó' - 3573)......LUSE1240
C
C
I=(Lこミ3!'G •EQ. 0) SO TO 25
    ว ? ?4 KK = 1,3
    50 [J (12,12,14),KK
    10 00 11 I=1,20
    10 00 11 I=1,20
    GO TO ls
    12 00 13 I=1,20
    1ZTITLE(I) = TITLEZ(I)
    OTO 10
    14 03 15 I = 1,20
    15 TITL三(I) = TITLE3(I)
    16 20 23 %=1,NCELL
        つuMay(に)=2.う
        LU = VLUIC(し)
        0022L=1,LU
        IF(L'JSE(C,L) .NS. KK+11) GO TC 2?
        FLT = OLUSE(C,L)
        JUM4Y(に)=F!OAT(FLT) *0.1 * 4.0
    22 cJNTTVUE
    23 CONTIVUE
        GALL OLOT4(INDEX)
    3+ cantinue
        GこT22S
    25 2EAJ(IREAE,1001) I
C THIIS JUMMY READ REMOVES THE SYMECL DATA CARO
    ?O I=(ISCAT .EQ. O) GE TO 30
    (2) I=(3JUNOS) WRITE(ILIST,1020)NBCUND,SSCUND,EZOUN[,WEOUND
    1:2) I=(3JUNOS) NRITE(IIIST,1020)NBCUND,SSOUND,EZOUNC,WEOUND
                                    LUSE1250
                                    LUSE1260
                                    LUSE1270
LUSE1295
LUSE1290
LUSE1300
    LUSE1310
        LUSE1320
    LUSE1330
LUSE1340
LUSE135C
LUSE1350
LUSE1370
```



```
LUSE1190
    LUSミ1390
    LUSE1390
    LUSE1400
    LUSE1410
    LUSE1420
    LUSE1430
LUSS1440
LUSE1450
LUSE146.)
LUSE1470
LUSE1480
LUSE1480
LUSE150G
LUSS1E10
    1 ' ミ=FECT',/////,50x,'vミOUND:',I3,//,
LUSミ15?0
LUSE1530
LUSミ15+0
LUSE15SO
LUSE1560
```

```
    2 Ejx,'S501mND:,I3,//,5こX,'ESOUND:',I3,//,5こx,'WECUND:', LUSE1570
    3 İ,/1//1,1X,130('x')
```



```
        30 TO 35
        3- २ミA`(I2ミАD,1001)(I,J=1,14)
```



```
_ THIS JUMMY २ミAD REMOVES THE 14 TITLE DATA CARDS
    5 IF(ISTHR .EQ. 1) CALL SECOND
こ QEAC ANY REAAING DATA CARDS NOT USEO (FROM SECOND)
```



```
    1010 F02M:T(A1)
    =0 CJVTINUE
        ST0?
    ミvo
LUSE1700
```

```
cusp sutive ivput
                                    INPUTCOZ
```



```
E THIS RZUTINE CCJED G JULY 19T9
                                    INPUTOOG
E THIS ROUTINE CCVED Q JULY 19T9
                                    LAST REVISION: 2O AUG lG7%
                                    INPUTOOE
        C** IVCLUJE COMMON INFD
                                1g7
INPUTOIE
INPUTO12
    INPUTO12
```



```
                                004
            IMPLICIT IVTEGER (A-Z)
            IVTミコミR午2 三АST,NORTH,PLUSE,IUSE,PZCNE,AGE,HWY,HWYP,RAIL, BUS,STRT,
        1 STRTP,PFOR,PCELL,PGINT,INLIST,USE, INSTIR,NLUIF,
```



```
        3 I ESUG,CDEZUG,NDEZUG,NZEUND,SBCUND,EZCUND,WZCUNO O13
C
    REAL AREA,PFURM,FLOAT,PLUIF,CELLKW,LUDFC
C
    CJMMJV MAIN4/ ZONE(1575,3),FOR(1575, ב),NCELL,IREAD,ILIST,IOISK,
        1 IOUNCH,IDISK2,FEEDER(450),NFOR,FKW(450),IDISK4,
    l llOUNCH,IDISK2,FEEDER(450),NFDR,FKW(450),IDISK4,
    l llol
        A TITLE(ZO),OUMMY(1575),LUDEC(1575,3)
こ
            COMMJN/MAIN2/ 三AST(1575),NGRTH(1575),PLUSE(1575,3),LUSE(1575.3),
        L\mp@code{COMMOV/MAINZ/ =AST(1575),NGRTH(1575),PLUSE(1575,3),LUSE(1575,3), 239}
        lll
```



```
        3 INSTJR,NLUIF(450),NFIC(1575),
        Q NLUIC(1575),CIF(4EC,1C7),NCIF(45C),USE(14),
        A LこNC(450),HIGHC(+50),FI(110),FJ(110),SLANK2,
        2 IDEBUG,CDESUG,NDEEUG,NSOUND,SJOUND, ESOUVD, WBOUND
            INTミうミR*2 LUSEN,NS,EN,A1,AZ,AE,EA,NO
            DIMEVSICN LUUE)
C REAO LANJ USE ANO ASSOCIATEO WEIGHTING FACTOR
        044
        046
            READ(IREAD,1こ20) (USE(I),FACTCR(I),I=1,14)
C RミAO =ミミOミR DATA
        v=0
    3% QEAD(IREAE,121J) (FEECER(N+J), FKiN(N+J),J=1,5)
        IF(FEミDEマ(N+j).EQ.SLANK) GO TC 4.0
        N=V+5
        GO TO 30
    &V VFDR = N+4
        OO55 J=1,4
    50 IF(ニ三ミつミR(NFDR).EQ.BLANK) NFDR = NFDR - 1
- PUT FESDE? LIST IN ALPHASETICAL ORDER
            CILL ORDER
ONONON
ONONON
ONOM
ONONON
ONOM
ONONON
ONOM
```



```
C READCELL DATA
C READ CELL DAT
                    006
C
    IVCLUJE CCMMCN I
        C10
        C10
                                C12
    2 NFIC,NLUIC,CIF,NCIF, FI,FJ,LOWC,HIGHC,BLANK
    016
        020
        020
        022
        024024028
        030
        032032
```

```034
        4 240
        042
        C42
        043
                        LこNC(450),HIGHC(+50),FI(110),FJ(110),SLANK2, 050
            C52
INPUTE16 INPUTOIE INPUTOこ0 INPUTO22
C RミAO＝ミミコニR DATA
INPUTO24
INFUTO26
30 READ（I2EAC，121）（FEECEQ \((N+J)\) ，FKiN \((N+J), J=1,5)\)
INPUTO23
IF（FEミDこマ（N＋う）．Ea．SLANK）GO TC 4．）
INPUTOZC
INOUTOZ2
INPUTS34
INPUTO36
INPUTO39
INPUTO4C
INPUTEL2
INPUTC44
INPUTC4E
INPUT04E
INPUTOEC
INFUTOEZ
INPUTO54
INOUTOうE
INPUTO5:8
INPUTOOO
INFUTSE2
INPUTCS4
```

```
= FROM THIS DEIN!T THROUGH STATEMENT 2C, V IS THECELL RECORO NUMEER
            v=1
```



```
        1 (PLUSE(N,J),LUSE(N,J),J=1,3),(DZONE(N,J),ZONE(N,J),
    2 J=1, B), AGE(N),HWY(N),HWYP(N),RAIL(N),SUS(N), STRT(N),STRTP(N),
```



```
        IFIOISTRT(N,I).EQ.BLANK ) GC TO 22
C OHECR GRIO vUvEERS HITH RESPECT TO DISTRICT
        CALL GRIO(:NS,AI, ミN,A2,AZ,EA,NC)
        IF(EAST(N).ES.EA.AND.NORTH(N).EQ.NO) GC TO 3S
        N2ITE(ILIST,104O)EAST(N),
        1 VCRTH(N),EA,VO,(DISTRT(N,j),j=1,2)
    1040 FJRY\triangleT(//,130('*'),/,5x,'ERROR IN OISTRICT DR GRIO NUMBER',
        1 5x,'こ4TA GRID=',2I3,5X,'CALCULATEJ GRID=',2I3,5X,'OISTRICT:',
        2 1x,244,3x,'CDRRECTED',/,13C('X'))
        EAST(V)=EA
        NORTH(V)=NO
        3o P2IYT(EムST(N),NORTH(N)) = N
            I=(PLUSS(N,1).EQ.99) PLUSE(N,1)=100
            I=(DZONE(N,1).=Q.99) PZONE(N,1)=100
            I=(PこELL(N,1).E2.7O)PCELL(N,1) = 100
C OETERMINE THE NUMOER OF FEEDERS IN THE CELL
            VくIこV=3
            IF(Fこ२(N,3).E2.3L\triangleNK) NFICN = 2
            IF(=D२(N,C).EV.BLANK) NFICN = i
            NFIC(V)=NFICN
            OO 2 J=1,NFICN
        2I=(D=כマ(N,J).EQ.\dot{Ca) PFDR (N,J) =100}00
C OETEPMIVE THE NUMBER OF LANL USE TYPES IN THE CELL
            NLLIN=3
            IF(LUSE(%.3).EQ.ELANK2) NLUIN=?
            I=(LUSE(N,Z).EQ.BLANK2) NLUIN=1
            NLUIC(V)=VLUIN
            SUMLJ = 0
            0J 13 JJ=1,NLUIN
            LU(JJ) = ?
            LUSEN=IUSE(N,JJ)
            20 14 KK=1,14
            I=(LUSEN .EQ.USE(KK)) GO TO 15
        14 CONTI VUE
            WRITE(ILIST,1030) LUSE(N,JJ),N,EAST(N),NORTH(N),
        1 (כISTRT(N,J),J=1,2)
    1030 FJRMaT( 
        ! 5X,'USE: ',A2,' CELL:',I5,' EAST:',I3,' NURTH:',İ,
        2 ' DISTRICT: ',2A4,//,1X,12&('#'))
        FFLAG = 1
        1ミ L'JSミ(N,JJ) = <k
        LU(JU) = FACTJR(KK) * PLUSE(N,JJ)
        SUMLU = SUMLU + LU(JJ)
        İ CONTINUE
C aCCumulate the areas for each laNo use tyoe and calculate ludfc
        0) i2 JJ=1,NLUIN
        I=(SUMLU .EQ. C) GC TC 16.
        LUJJ= LU(JJ)
        LUDFこ(`,JJ) = FLOAT(LUJJ) / FLOAT(SUMLU)
        G0 TO 17
        1* LUこ=こ(ソ,JJ) = 0.0
```

INPITTUKó INPUTO68 INPUTOTO INPUTC．72 INPUTO74 INPUTC 76 INPUTO 7 O INPUTOEO INPUTOSZ INPUT084 InPUT0e6 INPUTOミE INDUTコンO INPUTCO2 INPUTOG4 INPUTO96 INPUT098 INPUTI 100 INPUT102 INPUT 104 INPUT106 INPUTIOE INDUTIIC INPUT112 INPUTil4 INPUT116 INPUT113 IN？UT120 INDUT12？ INP：TT124
INPUT126
INPUTI23
INPUT130
INPUT132
INDUT 134
INPUT136
INPUT138
INPUT140
INPUT142
INPUT144
INOUT14S
INPUT 149
INPUT150
INPUT 152
INPUT154
INPUT156
INPUT 158
INPUT100
INPUTIGZ
INRUT 164 INPUTISS
inputióa
INP！UT170
INPUT172
INPUT174
inputile
INPUTITS

```
    17 I PGSE=DLUSE(N,JJ)
    INPUT130
    1242\equiv1(LUSE(N,JJ))=A REA(LUSE(N,JJ))+FLOATI IPLUSE )*2.0i INDUTIEZ
C SETEQVIVE TRE FEEOEQ SECUENTIAL NUMBER AND REPLACE THAT FEEOEROS INPUTI94
O VANE NITH THE N!MSER.
OJ 1%O IFN = 1,NFICN IFN INPUTIOO
        IFOR = FOR(N,IFN)
        IF(IFCP.LT.FIRST2) GC TO 1IO
        :=(I=2R.LT.FIRST3) GO TO 120
        IC(IfOR.LT.FIRST-) GO TO 130
        ST4RT=O*ON=DQ-1
        IC(IFDR.GT.SCND4) START = 7*CNFDR-1
        STJP=NFDR
        DO 14E <1 = START,STOP
    - I=(I=DR.EQ.FE=DER(K1)) 6O TO 200
    14इ EONTINUE
        3) TJ ?CO
13: START=ム*DNFDR-1
        IF(IFCR.GT.SCNCミ) START=5*CNFDR-1
        STコニ=NFDR-2*DNFDR+1
        2J 135 K1 =START,STOP INPUT22J
        I=(IFOR.EQ.FEEDER(Kl)) GO TO 200 INPUTE222
Lミ5 CJNTIVUS INPUT224
        }0 TO 200
120 START=2*CNFRR-1
        I=(IFDR.GT.SこND2) START=3*ONFDR-1 INPUT230
        STJP=NFDR-4*DNF=こR+1
        OO 1:25<2 =START,STOF
        IF(IFOR.E2.FEEDER(K1)) GO TO 200
12三 ここNTIVUE
        3) TC 300
110 START=1
I=(IFOR.GT.SCNDI) START=ONFOR-1
        STED=NFDR-S*DNFDR + 1
        OO 115 K1 =START,STEP
        IFIIFCR.E2.FFEDER(K1)) SO TO 200
    12S GONTINUE
12S LONTTNUE
        GO TE 100
300 NPITE(ILIST,3OIIN,IFN,FOR(N,IFN),K1
        =FL\DeltaG=1
301 =こRMAT(///,1x,30('*****'),//,5x,'FEEDEQ NOT FCUND IN LTST',/,
    1 IGX,'CELL NUMBER',I5,' GEEDER',I2,' FEEDER NAME:',
    z GONTIVUEFX,'LIST SE2UENCE NUMSER: ',I4,//,1X,120('*'')
100- SONTIVUE
        V}=N+
    GJ TO :C
    20 VEELL=N-1
    I=(CFL\DeltaG.ED.1) Gこ TO Cज゙S
```



```
1%1: Fご41T(E(&4,1x,I3,2x))
102) = २qu\T(14(A2, I3))
    २ミTUマN
    =79 CAL: AミORT
    三vo
T1&6
O THIS JRDEEOURE ASSUMES THAT THE FEEDER LIST IS IN ALPHAEETICAL CRDERINPUTl.38
OJ 100 IFN = 1,NFICN INPUTIOC
    INPUTIC2
    INPUT194
    INPUT196
    INPUTI9E
    INPUT200
    INPUT2O2
    INPUT204
    INPUTZOS
    INDUT2J8
    INPUT?10
INPUT214
IVPUTE16
INPUT213
INPUT22S
120 START=2*CNFRR-1 INPUT22S
INPUT232
INPUT234
INPUT235
INPUT23?
GO TC 300
INPUT240
NPUT240
INPUT242
INPUT244
INDUT2'6
INPUT248
INPUT250
INPUT252
2OO =JQ(N,IFN) = <1
INPUT254
INPUTE58
300 N2ITEIILIST,3C1IN,IFN,FCR(N,IFN),K1 INPUTこう8
ON0 , (FOR(N,IFN),K1
INPUTZSC
INPUT262
    IVPUT264
I NPUT2SO
INPUT2G8
INPUT270
INDUT272
INPUT274
    INPUTZ75
INFUT279
```



```
!ここう二术隹(14(AZ,I3))
INPUT28%
INPUTZ34
INPUT2:E
INPUT283
INPUT290
```

SUママこUTINE CHECKF

```CHECくFO1
```

C．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 ANDUSミ 332. CHEKFO2

```This routive cocio 9 july 1579
        THIS RGUTINE CHECKS FEEDER UATA FROM THE LANDUSE DATA FILE. CHECKFES
        IT ALSO FINDS ANO STORES THE FIRST AND LAST CELL RECCRD NUMEER CHECKFOE
        EOR CELLS CONTAINING EACH FEEDER, RECORCS THE NUMBER OF CELLS CHECKFOT
        IV 三ACH F三EDEK (NCIF) AND USES LINEAK INTERDOLATION TC
        ACJUST THE FFDRIS IF THEIR SUM PER FEEDER DOES NOT OIFFER FRCM CHECKFDO
        102% ЭY YCRE THAN +2U OR -3C PERCENT. (TO 100% +/-j%)
        I= THERE ARE LESS THAN FGUR CELLS IN THE FEEDER OR IF THE
        SUM IS CUT OF THE ABOVE RANGE THE DETAILS OF THE SITUATION ARE CHECKFII
        PRINTEJ JUT FOR MANUAL ADJUSTMENT IF REQUIRED.
        CHECKF12
CHECKF13
..CHECKF14
こ** INCLUOE CCMMON INFO CHECKF1E
COHMON VARIABLES Oח2
```



```
I IMPLICIT INTESER (A-Z) 008
C
INTEGER*2 ミAST,NGRTH, PLUSE,IUSE,PZONE,AGE,HWY,HWYP,RAIL, EUS,STRT,
        010
    1 STRTP,PFDR,PCELL,POINT,INLIST,USE, INSTOR,NLUIF,
    NFIC,NLUIC,CIF,NCIF, FI,FJ,LONC,HICHC, 3LANKZ,
    FI,FJ,LOWC,HIGHC,3LANK2,
    IOEBUG,CDEEUG,NDESUG,NEOUND,SİCUND,EZOUNO,WBCUND 0, 018
=
    REAL AREA,PFORM,FLOAT,PLUIF,CELLKW,LUDFC
C
    CこMMON MAIN4/ ZONE(1575,3),FOR(1575,三),NCE!L,ISEAD,ILIST,IDISK,
    l IMOUNH,IDISK2,FEEDER(450),NFDR,FKW(45O),IDISK4,
    l IMOUNH,IDISK2,FEEDER(450),NFDR,FKW(45O),IDISK4,
    l IMOUNH,IDISK2,FEESER(450),NFOR,FKW(45O),IDISK4,
        TITLE(20),OUMMY(1575),LUDFC(1575.3)
C
    COMMON MAINZ/ EAST(1575),NORTH(1575),PLUSE(1575,3),LUSE(1575,3),
        ZZONE(1575,3),AGE(1575),HWY(1575), HWYY(1575),
        QAIL(1575),BUS(1575),STRT(1575),STRTP(1575),
        PCJR(1575,3),PCELL(1575,3),POINT(EC,7こ),INLIST,
        INSTOR,NLUIF(450),NFIC(1575),
        NLUIC(1575),CIF(450,107),NCIF(45C),USE(14),
        COWC(450),HIGHC(450),FI(110),FJ(110), ELANK2,
        IDEBUG,CDESUG,NDESUG,NSOUND,SBOUNO,EZCUND,WSCUND
    OIMENSION CELL(12O)
    2Eム! RSUMF, २FIX, RPFDR
    IC(につEZJG.Eq.1) WRITEIILIST,IU20)
    LINES=1
12OO FORMATIIH1,'FEEOER SUM,, 2X,4(6X,'EAST NORTH RECORD &'I)
    OJ li J=1,NFDR
    SUME=
    I=0
    LEL\DeltaS=0
    -ONE(J)=0
    4GHC(J)=?
    0コ2? < = 1,NCELL
    IF(FOR(<,1).NE.J.AND.FDR(K,2).NE.J.ANE.FDR(K,j).NE.J) GO TC 2O
    I = I+1
    IC(I.'ST.110) WRITE(ILIST,IC3C)
1030=JマM4T(//,1X,130('=0),/2X,'MCRE THAN 110 CELLS IN FEEDER')
```

CHECKF17
CHECKFIO
CHECKF10
CHECKF2O
CHECくF？
CHECKFこえ
CHECKFころ
CHECKF24
CHECKF25
ChECくF2b
CHECKF？ 7
CHECKFZS
CHECKF2O
CHECKFBO
CHECKF31
$1030=$ JRMAT（／／，1X，130（＇＝＇），／2X，＇MCRE THAN 110 CELLS IN FEEDER＇）CHECKFZZ

```
        IF(LCLAS.シQ.C) LCWC(J)=K CHECKF33
        L=L\Deltaう=1
        cELL(I) = <
        k<=vFIC(k)
        DO 3つ L= 1,Kく
        I=(Fこ२(K,L).NE.J) GO TO 30
        SUMF = SUMF + OFDZ(K,L)
        FI(I)=L
        3) CONTIVUミ
        HIGHC(J)=<
    \imathこ CONTIVUE
```



```
C J FESOEQ NUMBER CHECKF45
    I NUMBER OF CELL 'CELL(I)' IN FEEDER J CHECKF4E
    NOTE: THE LAST VALUE JF I IS NCIF(J) CriEこKFム7
    CELL(I) THE I-TH CELL IN FEEDER J CriECKF48
    FI(I) NUMGER OF FEEDER J IN CELL 'CELL(I): CHECKF4Q
        NCIF(J) = I N
        IF( I .EG.0) GC TO 40
        IF(SUMF.GT.94.AND.SUMF.LT.1OS) GO TO 10
c AT THIS FDINT WE <NOW THAT FEEDER J DOES NOT SUM TO lC0 +1- s a
C ORIVT FEEDER NAME, AOPROPRIATE CELLS AND ASSOCIATED PERCENTAGES CHECKF55
        IF( (I.LT.4) .OR. (SUMF.LT.7O) .OR. (SUMF.GT.120) ) GO TO 50 CHECKFFS
        ITEO= こ
    j5 I% (ITER.GT.10) GO TO 50
        ITER = ITER + I
```



```
        २SUMF = FLCAT(SUMF) CIECKFS1
        = FIK = 1OC.-RSUMF
        SUM==0 CHECKFG3
        2O 50 <=1,i CHECKFS4
        CミLLくここELL(K) CHECKFGE
        FIK=FI(K) CHEC<FGS
        RコFOR = PFDR(CELIK ,FIK ) CHECKFET
        RPFSR = RPFER + (RPFDR/RSUMF) = RFIX ) + 0.5 CHECKFSS
        PFER(EミLLK ,FIく ) = IFIX(RPFDR) CHECKF59
    SO SUM==SUMF+PFOQ(CELIK FFIK ), CHECKFFO
        IC( SUMF.GT.92.AND.SUMF.LT.10S) GO TO 10 CHECKF7I
        G2 TJ 35 CHECKF7
        G2 TJ 25 ChECKF7?
```



```
    j0 IFに0ミミUE.NE.1) SO TC 10 CHECKF74
        LINES=LINES+((I+3)/4)+1}\mathrm{ CHEこKF75
        IC(LINES.GT.59) WRITE(ILIST,IUO0) CHECKF76
        I=(LINES.ET.50) LINES = 1 + (I+3)/4 CHECKF77
        WRITE(ILIST,lO10) FEEOER(J),SUMF, CHECKF7Q
        1 (EAST(CELL(II)),NORTH(CELL(II)),CELL(II), CHECKFT9
        2 دFOQ(CELL(II),FI(II)),II = i,I) CHECKFEO
        Gว TJ 10 CHECKF31
    -3 IC(COF3UG.NE.1) GO TO IC
    I=(IINES.GT.53) WRITE(ILIST,1 OW0)
    IF(LINES.GT.jE) LIVES = I
    WRITE(ILIST,IO20) FEEDER(J)
    LINES=LINES+2
    10 EJNTINUE
1:13 FORMAT( /, 2X,AL,2X,14,(r16,+1EX,13,4X,13,4X,214,)))
1920 FフRYAT( /,2X,A4,EX,'THIS FEEOER HAS NO こELLS')
CHECKF32
CHECKF83
CHECKFS2
    CHECKF77
CHECKF34
CHECKF2%
CHECKF3S
```

```
            SUEROUTINE NORMAL
                NORM OO1
c...............................landuse 0401
                                    NORM 002
C THIS 2SUTIN= CODED ES JULY 1070
vDR4 203
    LAST MODIFICATICN: % AUG 1979
                            NERM 004
C* IVCLUDE CEMMON INFE
    NGRM OO5
    COMMCV VAFILALES
        002
C..................................landUSE 0002
        004
c
IMP:ICIT INTEGER (د-Z)
        006
c
    INTSGERF2 SAST,NORTH,PLUSE,LUSE,PZONE, \triangleGE,HWY,HWYP,RAIL, ZUS,STRT,
        $
        010
    1 STRTP,PFOR,PCELL,POINT,INLIST,USE, INSTJR,NLUIF, 014
    2 NFIC,NLUIC,CIF,NCIF, FI,FJ,LJWC,HIGHC,SLANK2, C16
    3 ILESUG,CDESUG,NDESUG,NSCUND,S3CUND,ESOUND,N3OUND O18
c
    २ミ\triangleL 入२ジム,PFORM,FLOAT,PLUIF,CELLKKN,LUDFC
    020
    022
E
    COM&ON/MAINL/ ZONE(1575,3),FCR(1575,3),NCELL,IREAD,ILIST,ICISS,
        024
        026
    l I
    l
        029
        030
    l IMPUNCH,IDISK2,FEEDER(450),NFOR,FKW(45U),IDISK4,
    ATITLE(20),DUMMY(1575),LUCFC(1E75,3)
        232
c
    ZJWMON /MAIN2/ EAST(1575),NORTH(1575),PLUSE(1575,3),LUSE(1575,3),
        034
    036
        # PZONE(1575,3),AG=(1575),HWYY(1575),HWYP(1575) 038
                PZONE(1575,3),AGE(1575), HWY(1575),HWYP(1575),
        O 2AIL(I575),3US(1575),STRT(1575),STRTP(1575), OLS
        7 OFO&(1575,3),FCELL(1575,3),POINT(60,70),INLIST,
        3 NOSTOR,NLUIF(450),NFIC(1575),
        246
        = NLUIC(1575),CIF(450,107),NCIF(450),USE(14),
        = NLUIC(1575),CIF(450,107),NCIF(450),USE(14),
        i LOWC(45O),HIGHC(4EO),FIG11O),FJ(11O),FLANK2, 
^ AJJUST DFJR(I) FJR LAND USE TYPE (APPLY FACTORS), THEN VORMALILE NORM OOT
    OIMEVSION TQACK(14)
    NCRM 008
    REAL SUMP, SUML, FKWI, PFDRMJ
    I=(VOEZUG.EG.1) FRITE(ILIST,1000)
NCRM 00G
    1000
            NORM 010
    I=(VOEZUG.EG.1) FRITE(ILIST,1000)
    201 1 = 1, NCELL
    NORMM =11
        1 CELL<N(I)=0
C. CYCLE TH2CUGH FEEDERS
            0こ100 I=1,NFこR
            IF(Vวミ3UG.EQ.1)
    WRITE(ILIST,1C10) I,FEECER(I)
NOマM 012
        44
        \)
NOマM 012
1u10
    FCRYAT(10X,'FEEDER 1,I3,2X,A4)
NORM ©14
    v=..
NORM O15
            SUMD=0.
NCRM D15
NORM 217
    NLUIF(I)=?
    0) 10 II=?,14
    PLUIF(I,II)=0.0
        10 T२\DeltaC<(II)=0
            START=LONC(I)
NCRM 018
    NCRM 018
NORM O19
    OMに!,14
NOR4 こ20
            NORM こ20
            STCJ=HIShC(I)
NCRM 022
NORM O23
C CYCLE TMROUGH APPLICABLE CELL RELORD RANGE 
va=M O23
C CYCLE TMROUGH APPLICABLE CELL RELORD RANGE 
CCYCLE TMROUGHAPPLICABLE CELL RELORD RANGE 
C CYCLE TMROUGH APPLICABLE CELL RELORD RANGE 
NORM 024
NORM 025
NOFY 02S
1220
    FORMATi''+',30X,'LOOK THROUGH CELLS',
    1
    15,' TJ',I5,5X,'EKW=',I5)
NCOM 027
    I=(START.E6.O. AND.STOP.EQ.O) GO TO 1OO
    I=(START.EG.O.AND.STEP.EQ.O) GO TO 1TO
NORM 028
NERM O29
NORM 030
    วつ うこ J=START,STOP
vCRi4 031
NORM OE2
```



```
        <<=\=:(j)
        SOTO So
    45 LL=VLUIC(J)
        SUML=O.
        OFURJく= つ「OR(J,K)
        Z BELON, L IS THE VUMEER OF LAND USE IN CELL J
        = BELON, L IS THE VUMEER OF LANC USE IN CELLLJ
    OO-7 L=1,LL
        LUSミJL=LUSE(J,L)
        TPAC<(LUSEJL)=1
        PLULF(I,LUSEJL)=PLUIF(I,LUSEJL)+FLOAT( PLUSE(J,L)*PFDRJK )*C.0Cこ1
        47 SUML=SUML+FLJAT(PLUSE(J,L)#FACTCR(LUSEJL) ) %0.0CO1
        P=こ々^(J,K) = FLUAT(PEORJK)*0.01 * SUML
        i=(0=D&M(u,K) .LT. O.C) PFDRM (J,K) = 0.0
        S:JMP= SUMP + PFDRM(J,K)
        v=v+1
            IC(V.GT.110)EG TO 4R
C JIS THE CELL RECORD NUMBER, K IS THE NUMSER OF FEEDER I IN
C CELL J (O<<<<), N IS THE NUMBER OF CELL J IN FEEDER I
z I=IVAL VALUE OF N IV the feeder loop is the vumber of cells
C COVERED ミY ごGEOEK I) (O<N<111)
    Fi(v)=\
    FJ(v)=人
    CI=(I,v)=J
    GOTO50
    LE WRITE(ILIST,103C) I, FEEDER(I), J,(OISTRT(J,Z),z=1,2)
```



```
        1 IS.2X,A+,5X,'CELL EXCLUDED:', I5 ,5x,244,/,1X,130(:%1),/1)
    シ0 CONTIVUミ
\sigma++++++++++++++ NJRMALIZE PFDRM +++++++++++++++++++++++++++++++++++++++++++++++NORM O65
            I.C(SUMMP.EQ.O.O) GC TO 51 NCRM O66
            SUMP=1.O/SUMP NORM C67
    51 IF(v.ST.110)N=1!?
            CO so J=1,N
            FIJ= FI(J)
            DCDミMJ = PFDRM(FIJ,FJ(J))
            D=0२MJ = PFORMJ * SUMD
            FKNI = FLOAT(FKW(I))
            F<WI = 100.0 * FKWI * PFDRMJ
            CELL<K(FIJ) = CELLKW(FIJ) + FKWI
        00 PFJ२प(FIJ, FJ(J) ) = PFDRMJ
            *).GE. 1) WRITE(ILIST,1070)
    1:70 FORMATUII,40X,'THERE IS A DISCREPANCY IN THE NUMBCR OF CEULS, NCRM O78
        1 'FED ЗY A FEEDER',///, NCRM ÜBC
        2 T50, 'FEEOER: ', 14 , 3x,A4,1/, NORM O81
        3 TEO, 'CHECKF NCIF: , I5 ,//, NOPM O92
        4 TSO, NORMAL NCIF: ', I5 ,//, NCRM O&3
        5 Tइう, VVLUEUSEO: ', I5 ,///I) NORM ढ34
            NCIF(I)=V
C COUNT UP THE NUMEER GF LAND USE TYPES
            D) f5 J=1,14
        55 IF(T२Aこく(J).E&.1) VLUIF(I)=NLUIF(I)+1
            3) T丁 160
            NORM C33
        \thereforeCRM 034
        NחRM 035
        NORM O36
        NCRM 037
    +゙MしこVLUTC(J)
        NORM 033
        NORM 039
    NORM OLCO
C
        (।)
```

```
        s
```



```
        040,
```

```
    70 vRIrE(ILIST,İ4C) START,STOP,I,FEEDER(1.)
                                    NCRM 090
```



```
        l,'IV THE CELL QAVGE OF A FESOER. THE STARTING AND ENOING CELLS', VORY DO2
        ? ' AS WELL AS THE FEEDER ARE SIVEN BELOW',//,T4O, VORM OF3
        3'5T:2T=',I5,' STOP=',15,5x,'FEELER:',I4,3x,A4,//,2(/,1x,130('E')I)NGRM O94
    1OD COvTIVUE
        W2ITE(ILIET,IこうO)
1:50 FORMAT(1H1,TEき,'CELL DEMANES (KA)',',12(2X,'CELL',4X,'KN',1X)) NCRM 0.97
```



```
:=50, WRITE(ILIST,105%)(K,CELLKN(K),K=1,NCELL)
:E50, % WRITE(ILIST,105O)(K,CELLKN(K),K=1,NCELL)
    110 כEMAvD(J)=0
OE E.OI = 1,NCELL
        VLU = NLUIC(I)
        O) 13OK K = ,NLU
230 こミムムVコ(LUSE(I,<))= 巨EMANC(LUSE(I,K))+
1% I=IX(CELLKN(I)*PLUSE(I,K)*0.01)
    ZOCCONTINUE
    OC CONTINU
    EvC
NORM 095
    NGPM 008
    NCRM }09
    NORM 100
NERM 101
NCRM 102
NORM 103
NORM 104
NORM 105
NCRM 1OS
NCRM 107
NCRM 108
NORM 109
```

？LOCく こムTA 032
c．．．．．．．．．．．．．．．．．．．．．．．．． 034
C ここMMON VARIAELES 006 006
c．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．LANDUSE $360 Z$ 0.02
c 006
IMPLIこIT INTEGER（A－Z） 0.03
INTEGER*Z EAST, NORTH, PLUSE, LUSE,PZCNE,AGE,HWY,HWYP, RAIL, EUS, STRT, 012

```
c010
```

 1 STRTP,PFDR,PCELL,POINT,INLIST,USE, INSTOR,NLUIF, 14
 2 NFIC,NLUIC,CIF,NCIF, FI,FJ,LOWC,HIGHC,BLANKZ, 015
 3 IDESUG, LLEEUG,NDEZUG,NOCUNO,SSOUND, EBOUNE, WSOUND 018
 ©
RミAL $\triangle R E \triangle$, PFCRM,FLOAT,PLUIF,CELLK'N,LUDEC
C
CJMUGN /MAIN4/ ZONE(1575,ミ),F゚R(1575, こ),NCELL,IREAD,ILIST,IDISK, Ü26
1 IPUNCH,IDISK2,FEEDER(450),NFOR,FKN(459), IOISK4, O29
2 FACTOR(14),DEMANC(14),AREA(14),CELLKW(1575), 030
$3 \quad$ OISTRT(1575,2),3LANK,PFDRM(1575,3),PLUIF(450, 14), 032
A TITLE(20), DUMMY(1575),LUDFC(1575,3)
c
C.OMMJN /MAINE/EAST(1575), NORTH(1575), PLUSE(1575,3), LUSE(1575,3), 038
$\begin{array}{lll}j & \text { PZCNE }(1575,3), A G E(1575), H W Y(1575), H W Y P(1575), & 040 \\ 0 & R A I L(1575), 3 U S(1575), S T R T(1575), S T R T P(1575), & 042\end{array}$

$\begin{array}{lll}0 & R A I L(1575), 3 U S(1575), S T R T(1575), S T R T P(1575), & 042 \\ 7 & P F=R(1575,3), P C E L L(1575,3), P O I N T(S 0,7 C), I N L I S T, & 044\end{array}$
$\begin{array}{lll}7 & \text { PFこR(1575,3),PCELL(1575,3),POINT(} 50,7 C), I N L I S T, & 044 \\ 3 & \text { INSTOR,NLUIF(450),NFIC(1575), } & 046\end{array}$
$\begin{array}{ll}3 \\ \Rightarrow & \text { INSTOR,NLUIF } \\ \Rightarrow & \text { NLUIC(1550),NFIC(15),CIF(450,107),NCIF(450), USE(14), }\end{array}$
LCWC(450), HIGHC(450), FI(110), FJ(110), OLANKZ,
位
036

046
$0+3$
LCNC(450), HIGHC(450),FI(110),FJ(110), OLANK2, 050
IDEラUG,CDEEUG,NCEEUG,NBJUND,SBOUND,ESOUND,NBOUND 052052

C..

c 320

 I NTミちヒマ*? NZIC,NWZONE
 INTEらEマ\＃？NZIC，NWZONE 030
LJGICAL＊1 GRCWTh，© ROSND，ALLGRO 040
२EAL RGFEAC，RDEMND 050

c

060
c
CこMYJN /GRCW3K/ NGAREA,NGBND(20),SGEND(20),EGEND(20),WGZNO(2C), C2O
0.70
F RGRFAC(2C),NZIC(1575), NWZONE(1575,3),RDEMND(14), 090
ca0
* GROEND,GROWTH,ALLGRO 100
C
090
C... 12 .11

c

 012
 DATA BLANK/' \(1 /\), AREA/l+*O.O/, IREAD/1/,IDISK/4/,IPUNCH/2/, 014
 1 ILLIST/3/, ELANK2/' \(1 /\), POINT/4200*0/,TITLE/20* \(1,1 /, 15\)
 2 2FORM/4Tこ5*0. \(2 /\),NGOUND/70/,S5OUNJ/1/,WEOUVD/1/,ESOUNE/SG/, 018
 3 IこISK2/13/,NGシND/こO*7C/,SGBND/20*1/,WGBVD/20*1/,EGBND/2C*60/, 020
 4 2GZFAC/2O*1.こノ,REEMND/14*0.0/, LUDFC/4725*0.0/ 022
 c
ミvo 026
024

SUE SOUTINE GマID（NS，AI，EW，A2，43，EA，NO）
GRID 002

C THIS KCIUTINE CALCULATES THE GRIS CUCRDIVATES FROM THE UISTRICT GRID OQO
THIS RCUTIVE CコCEO \＆AUGUST 1979
I＇\｛OITCIT INTEGER＊？（A－Z）
うaTA S／＇S＇／，W／＇N＇／，NW／＇NW＇／，NE／＇NE＇／，SW／＇SN＇／，SE／＇sE！／ \triangle DOE＝C
$120 \mathrm{~V}=$ ？
E $\Delta=$ ？
Nコニン
$I=(13 . E O$ ．iviv）$\triangle O O N=1$
$I=(A 3 . シ \approx . C E) \quad \Delta[D==1$ $I=(A \mathcal{E}$ ・ミ．NE）GU TO 5 G口 TO 1%
$5 \triangle \supset O N=1$ $\triangle コ D E=1$
10 IF（A1．EG．S）GC TO 20 $I F(A 2 . E \approx \cdot W)$ GC TJ 15
C NCRTH ミAST QUADEANT JF SERVICE AREA $E 1=25+2 * E W+A D D E$ $\mathrm{NJ}=31+2 \% \mathrm{VS}+\mathrm{ADDN}$ RミTU२N
－VORTH VEST QULDRANT OF SERVICE AREA
$15 E A=27-2 *=W+A D D E$
NO＝ミ1＋2＊NS＋4OCN マミTURN

C SUUTHEAST GIJADRANT OE SERVICE AREA

へこころ3－2〒NS＋ 1 DDN
々 ミTURN
C SCUTH NEST こUADRANT CF SERVICE AREA

Nロニ33－2＊N $5+$－J DN
々ミTリマN
EVS

GRID OCE

GRIO 010
GRIJ 012
GRID 014
GRID 016
GRID 018
GRIO 020
GRIL 022
GRIC 024
GRID 026
GRID 028
GRID 030
GRID 032
GRID 034
GRID 036
GRID 033
GRID 040
GRID 042
GRID C44
GRID 046
GRID 048
GRID 05C
GRID 052
GRID 054
GRID 056
GRID 05？
GRID 0 ÓO
GRID 062
GRID 064
GRID 066
GRIE 063
GRID 370
GRID 072


```
    SU3ROUTIVE PLOT (INDEX, ICOCE)
    PLOT
    032
```



```
C* INCLURE CFMNCN INFC PLOT
C CJYMCN V1RIAJLES 002
cos
E.....................................LANDISSE 0602
    004
- IMP-ICIT INTEGER (A-Z)
c
    INTEGEマ#\overline{C}EAST,NCRTH,PLUSE,LUSE,FZONE,AGE,HWY,HWYP,RAIL,SUS,STRT,
    1 STRTP,PERR,PCSLL,FOINT,INLIST,USE, INSTOR,NLUIF,
    VFIC,VLUIC,CIF,NCIF, FI,FJ,LOWC,HIGHC,BLANKZ,
    IEESUE,CLEZUG,NDESUG,NECUND,SZDUND,EZOUND,WSOUNO
:
    २ミAL ARE&,P=DRY,FLOAT,PLUIF,CELLKW,LUDFC
c
    ここツ^JN MUIN4/ ZONE(1575, 三),FDR(1575, 三),NCELL,IRE4O,ILIST,IDISK,
        IPUNCH,IDISKL,FEEDER(450),NFDR,FKW(45こ),IDISK4,
        FACTOR(14),DEMANE(14),AREA(14),CELLKW(1575),
        DISTRT(1575,2),3LANK,PFDRM(1575,3),PLUIF(45U,14),
        TITLE(20),DUMMY(1575),LUDFこ(1575,3)
c
    Cこ^4JN /MAIN2/ EAST(1573゙),NORTH(1575),PLUSE(1575,3),LUSE(1575,3),
        PZC.VE(1575,3),AGE(1575),HWY(1575),HNYD(1575),
        RAIL(1575),SUS(1575),STRT(1575),STRTP(1575),
        PFOR(1575,3),PCELL(1575,3),POINT(<U.,7こ),INLIST,
        INSTCR,NLUIF(450),NFIC(1575),
        NLUIC(1575),CIF(450,107),NCIF(450),USE(1+),
        LOWC(450),HIGHC(450),FI(110),FJ(110), ELANK2,
                                ICESUG,CDEBUG,NDESUG,NBJUND,SJCUND,EIJUNO,WECUVD
            IVTEGミG*? SYMEOL ,LINE
            RミムL R2\Delta, २23, RRC, RRD, RRE
            OIMENSION SYMBOL(I1),LINE(131)
            Data JUT/'.'/
    1:12 FDQ:4aT(11al)
        I=(IVNEX.ES.1) REAC(IREAC,101C) (SYM3OL(J),J=1,11)
        IVEEX=2
        I=(ICODE.NE.1) sc to 100
```



```
    1:20 = DOM4T(1H1)
    1%30 FOPMAT(T1:,9(10 '),10('1 '),10('2 1),10('3'),10('4'),10('j '),
        1 'c', /,TIC,'i 2 3 4 5 6 7 8 9,'5('0 1 2 3 4 5 6 7 3 9 '),
        2 0', ,!,T10,60('.') )
        \mathrm{ EUNT = 1}
        10 WRITE(ILIST,1:2O)
            I=(にJUVT.EQ.1) WRITE(ILIST,107C)
            IF(こOUNT.E2.2) NRITE(ILIST,1060)
            NRITE(ILIST,1030)
            つこ 70 II = 1,70
            J=7!-II
            00 30 I = 1, 60
            I=(دOIVT(I,J).NE.N) GO TO <O
            LINE(I) = 3LANK2
G I IS iHE 三AST COURDIVATE, J IS THE NORTH COORDINATE
            G2 10 j0
        20:L=2うIVT(I,J)
            IFにOJNT.F%.1) LE=NFIC(Ll)+1
```

```
    I=(につUNT.シล.こ) L?=NLUIC(Ll)+1
    LINE(I)=SYMちCL(L\Sigma)
    30 CONTIVUE
    I=(!IVミ(こ).EQ. BLANR2) LINE(1)=COT
    IF(LIVE(c0).EQ. 3LANKZ) LINE(50) = DOT
    WRITE(ILIST,1040) J,(LINE(K),K=1,60),v
    1こ+: FORMAF( 2X,I5,T12,60(A1,1X),T129,13)
    90 CONTIVUO
        WRITE (ILIST,1050) (SYMBCL(K),K=1,11)
        *RITE(ILIST,1こここ)
        IF(CJUNT.NE.I) GO TO 100
    COUNT=?
    G0TJ 1%
1070 =20AAT(T3O,'PLOT OE THE NUMBER OF FEECERS IN EACH CELL',/)
IG60 FJRMAT(TEO,'PLOT OF THE NUMEER OF LAVD USES IN EACH CELL',N
105C FJRYAT(TLC,bO('. '),//,
    * TIE,0(10,'),10('1 '),10('2 '),10('3 1),10(14 '),10(15'),
        l ': ', /,ilo,'1 2 3 4 5 6 7 3 9 ',5(10 1 2 3 4 5 5 7 3 9, 1),
        !
        ///,T2:,'SYMBOLS: ',11(A1,1X) )
    100 IF(IにこロE.NE.2) GO TO 200
```



```
    WRIT\doteqdot(ILIST,122G)
    NマIT\equiv(ILIST,1C30)
    *マITE(ILIST,1030)
10ミこ FJPM4T(T3O,'DLOT OF THE KW LOAO IN EACH CELL,,/)
    CJ 120 II=1,70
    J=71-II
    00 110 T=1,60
    !=(PつINT(I,J).NE.O) GO TO 101
    LINE(I)= ELANK2
    Gor= 110
    101 Ll=OOTNT(I,J)
    L2= IFIX( (CELLKN(LI)*0.0C1) + 0.5 ) + 1
    IF(L2.LT.1) L2=1
    IF(I?.GT.11) L? = 11
    LINE(I)=SYMEOL(LZ)
    110 CONTIVUE
    IF(LINE(1).F2.OLANK2) LINE(1)=COT
    I=(LINE(60).EQ.3LANK2 ) LINE(60)=DOT
    W2ITE(ILIST,1040)J,(LINE(K),K=1,60),J
    1?0 CONTINLE
    WRITE(ILIST,1J5:) (SYMEOL(K),K=1,11)
    200 WRITE(ILIST,135:) (SYMEO
=
```



```
    I=1:VOEX.E6.1) 2EAO (IREAL,1010)(SYMBCL(J),J=1,11) OLCT 162
    IVOEY = 2
```



```
    THIS IS A UNIVERSAL PLDT RCUTIVE. THE VARIASLE TO QE PLOTTED
C IS 2ASSEO TE THE ROUTINE VIA THE OUMMY VARIABLE DUMMY'.
    THE ROUTINE FINOS THE M&X ANO MIN VALUSS AND THE PLOTTIVG INCRAMENT
    IF IVOEX = 1, A VSW SET JF SYMEOLS NILL BE READ.
    THE DGDT TITLE IE zASSED VIA THE VARIABLE 'TITLE'.
    OLOT 066
    PLOT \áz
    DLOT ©70
    PLOT 072
    PLOT 074
    PLET 075
    PLOT C79
    PLOT 0:O
    PLOT 082
    OLכT 034
    OLOT 0SS
    PLOT 088
    PLGT 090
    PLOT 092
    DLOT 094
    S!OT 096
    PLOT 098
    pLOT 100
    PLOT }10
    PLOT 104
PLOT 110
PLOT }11
OLOT 114
PLOT 116
DLOT lle
PLOT 120
PLOT }12
PLOT 124
PLCT 12S
PLOT 128
PLCT 130
OLOT 132
PLOT 134
PLCT 136
PLOT 13&
OLOT 140
OLOT 142
FLOT 144
PLCT 146
PLOT 148
PLOT 150
PLCT 152
DLOT 154
```



```
C
    OLCT los
    PLET 164
PLET 166
PIOT loz
PLOT 1GE 
OLOT 172
PLJT 174
PLOT 175
PLOT 176
```



```
        MIN=0050000
        2け 21% I=1,NCEIL
        IF(DUMMY(I).LT.MIN) MIN = DUMMY(I)
    <10 IF(כUMMY(I).GT.MAX) MAX = CUMMY(I)
        INC? = (4AX - MIN)/10
        I=(IVCR.GE.1) GO TO 212
        IVC2 = 1
    212 WRITE(ILIST,1020)
        , マITミ(ILİT,lこ90) (TITLE(J),J=1,2C)
    1こう今 नQP44T(T20,2044)
        NRITE(ILIST,1630)
        2丁 220 JJ=1,70
        J=71-J」
        0. 219 1=1,50
        LI = دこINT(I,J)
        I=( Ll .NE. D ) GO TO ZC2
        LINE(I) = 3LANK2
        GOTO 219
    2כ2 RRA = SUMMY(LI)
        २२S=MIN
        RRC=INOR
        L2 = IFIX((RRA - FRO)/RRC + 0.5 ) +1
        I=(L2.!T.1) L2 = 1
        IF(L2.GT.11) L2 = 11
        LINE(I) = SYMBCL(L?)
    210 CONTINUS
        IF(LINE( 1).EQ.?LANK2) LINE(1) = DCT
        I=(LIN二(うO).EO.BLANK2) LINE(SO)= COT
        NRITミ(ILIST,1040)J,(LINE(K),K=1,60),J
    z20 cONTIVUE
        ki2ITE(ILIST,1050) (SYMBOL(K),K=1,11)
    300 IF (ICODE.NE.-) 50 T0 400
        २ET!RN
C
```



```
    \SigmaVTスV ว\ЈT4 (INREX)
```



```
C
    I=(INDEX:EQ.1) READ (IREAD,1010)(SYMBCL(J),J=1,11) PLOT 2SO
    IvDEx=2
        PLOT 258
PLOT 2óz
```



```
PLOT 254
    THIS IS A UNIVEOSAL PLOT ROUTINE SIMILIAR TO PLOT3 BUT DOES NOT PLOT ZS6
    ƏミTシミイIVE THE MAX AND MIN VALUES AND SCALE TO THESE LIMITS.
    INSTEAJ, THIS ROUTINE SCALES-DUWN 'OUMMY' SY A FACTOR OG FOUR aNO
     دLOTS THIS SCALLED VALUE IN ABSCLUTE TERMS.
```



```
    WRITE(ILIST,122.)
    WRITE(ILYST,1ढOO)(TITLE(J),J=1,20) PLOT 273
    W2ITE(ILIST,1Н30) PLOT 230
    OO 320 II=1,7.
    J=71-II
    00 310 I=1,60
    IF(OOINT(I,N).VE.O) GO TC 301
    LIVE(I)= 3LAN<E
    GOTJ 31C
PLOT 282
PLOT 23.
PLOT 2So
PLOT 2:%
PLOT 290
PLOT こOZ
```

```
    3こ1 Lえ=つつIVT(I,J)
        SEALE JOWN CELL OEMANOS BY A FACTOR OF FOUR
        L2= I=IX(OUMMY(LI)*0.25 + 0.5 ) + 1
        I=(L2.LT.1) L2=1
        I=(L2.ET.11) L2=11
        LINE(I)=SYMECL(LZ)
    310 CJNTIVUE
        I=(LINE(1).EQ.3LANK2 ) LINE(1)=DOT
        IF(LINE(SO).EQ.SLANKZ ) LINE(OO)=DOT
        WマITE(ILIST,1 340)J,(LINE(K),K=1,00),J
    220 CJNTIVUE
        NFITE(ILIST,1050) (5YMSOL(K),K=1,11)
    +20 CJNTINUE
C +0う I=(IOOJ三.NE.ミ) GO TO 5,00
    マミT!!2v
    ENO
```

PLET 294
PLOT 296
PLOT 298
PLOT 300
PLOT 302
DLOT 304
PLET 306
PLDT 308
PLOT 310
PLOT 312
PLOT 314
PLOT 315
PLOT 313
PLCT 320
PLIT 32？
PLOT 324

SUQマこUTINE STAT(X,V,MEAN,SMEAN,S2,S,MAX,MIN,L,U,CI)
STAT COZ


```
        SUM?=0.0
        IF(CI.NF.&O.AND.EI.NE.7C.AND.CI.NE.3O.AND.CI.NE.90) CI=G5
        N1=N-1
        O3 2J I=1,N
        XI= X(I)
        S!u!1= sunl +xI
        SUM?=SUM? +(XI*XI)
        IF(MAY.LT.XI) M\Deltax=XI
        IC({IV.GT.XI) MIN=XI
    20 GこNTINUミ
    SJM3= SUM1*SUM1
    MEAN=SUM1/FLOAT(N)
    S2=(SUM2-(SUM3/FLJAT(N)))/FLJAT(N1)
    S=S2RT(S?)
    S 2MEAN=SZ/FLOAT(N)
    SMEAV=SERT(SZMEAN)
    EVTFY STATZ(CI,L,U) STAT 150
```



```
    IF(N.GT.3E)GO TO 39
    J=N
25 IF(CI.E\vartheta.95) GO TO 195
    IF(C:.Eシ.OO) GO TO 190
    IF(CI.EZ̈.3C) GO TG 180
    IF(CI.E2.TE) GO TE 170
    IF(CI.EQ.EO) GO TO 1bC
195L = MEAN - T(J) * SMEAN
    U = MEAN + T(J) * SMEAN
    RミTUQN
1 9 0
    L = MEAN - T2(J) % SMEAN
    U = MEAN + T2(J) % SMEAN
    RETU२N
1EG L = YEAN - T3(J) # SMEAN
    U=MEAN + TZ(J) F SMEAN
    RETUQN
17C L = MEAN - T4(J) * SMEAN
    U = MEAN + TG(J) % SMEAN
    RミTURN
160: = MEAN - T5(J) * SMEAN
    U = MEAN + TS(J) * SMEAN
    RETURV
30 I=(N.GT.EC) GO TO 4O
    J=((v-30)/5)+30
    GOTO 25
    40 IF (N.GT.109) OO TO 50
        J=((V-ミう)/10) +3j
    GO TJ 25
50 I=(N.GT.509) SC TN 60
    J=((N-1OC)/10:)+4.0
    Gう TO 25
60 J=45
    IF(V.GT.12OL) J=46
    Gコ TJ 25
    END
```

STAT 116
STAT 118
STAT 120
STAT 122
STAT 124
STAT 126
STAT 129
STAT 130
STAT 132
STAT 134
STAT 136
STAT 138
STAT 140
STAT 142
STAT 144
STAT 146
STAT 150

IF $=1$
$J=N$
25 IF（CT・シソ．95）GO TO 195
IF（C：．Eむ．OO）GU TO 190
FF（CI．ニ̈ッ．うG）GU TG 180
IF（CI．E2．7e）GD TA 170
IF（CI．Ev．もう）GO TO 15C
$195 \mathrm{~L}=\mathrm{MEAN}-\mathrm{T}(J)$＊SMEAN
$U=M E A N$＋T（J）＊SMEAN
190
$U=M E A N+T 2(J)$ \＃SMEAN
RETUマN
180 L＝YEAN－T3（J）＊SMEAN
$U=4 E A N+T Z(J)$ F SMEAN
RETURN
17C L＝MEAN－T4（J）＊SMEAN
$U=M E A N+T \div(J)$＊SMEAN
16O L＝MEAN－T5（J）＊SMEAN
$U=M E A N+T S(J)$＊SMEAN
२ETUマN
30 IF（N．GT．EC）GO TO 40
$J=((v-30) / 5)+30$
GO T？ 25
STAT 154
STAT 155
STAT 153
STAT 150
STAT $1 \leqslant 2$
STAT 164
STAT 156
STAT ló
STAT 170
STAT 172
STAT 174
STAT 176
STAT 179
STAT 190
STAT 192
STAT 124
STAT 156
STAT 138
STAT 190
STAT 102
STAT 194
STAT $1 ? 6$
STAT 192
STAT 200
STAT 2.2
STAT 204
STAT 206
STAT 203
STAT 210
STAT 212
STAT 214
STAT 216
STAT Z1E
STAT 220
STAT 2？2
STAT $=24$

```
            SUこRGUTENE ASORT
    AミCQTCOZ
```



```
E THIS RJUTIVE PRINTS THREE 'AEORT' PAGES, READS ANY REMAING DATA MOM, ASORTOCS
    GARこS INTO A [UMMY VARIABLE AND THEN STEPS THE PROGRAM. AEGRTUIO
```



```
    I=0
    I=(I.ミQ.1) GO TO jC ABORTOIG
C THE AЗこVE TNO STATEMEVTS PKOVIDE THE REOUIRED REFERENCE TO ASERTOIR
C STATEMEYT ER, THE OUMMY RETURN \triangleECRTOZO
    W2ITE(3,1:00)
            WRITミ(ミ,1000)
            WRITE(3,1COU) ABCRTC24
            AMCRTO26
```



```
            1 ,5(/,1X,131('A'))) ARCRTC3O
    1:10 FここMAT(A4) ASORTO32
        IJ REAC(1,1010,END=20) CATA ABCRTOS4
            G2 TC 10
        20 STG?
C DUMMY RETURN TO SATISFY THE COMPILER (SUBROUTINES NEED A RETURN) ABORTOBR
        3う RETURV
            EvO
ABORTC36
            \triangleBORT040
ABCRTO42
AEORTO44
```

SリビマOUTINE cUT
EUT 0010
\qquad

THIS QOUTINE OUTPUTS THE LANDUS F PROGRAM RESULTS AS WELL AS CERTAIN OUT COYO INTEOMEDIATE RESULTS AND INPUT OATA FOR DESUGGING PURPOSES．SUT COSO a CALL Tこ JUT WILL PQOCUCE THE MAXIMUM OUTPUT POSSIELE．TO LIMIT OUT OCEC THS AMOUNT ZF DUTPUT，ENTER AT GUT\＃，NHEマE \＃IS ONE OF THE OUT OC7O

```
    #NTマY OOINTS. GUT OOBO
```

E... 0
CЗMMCN VAスIAELES

002


```
C IMOIICIT INTEGER (A-Z)
305
```

```
008
```

I:NTEGER*2 EAST, VERTH,PLUSE,LUSE,PZONE,AGE,HNY, HWYP,RAIL,BUS,STRT, G12
1 STRTP, PFDR,PCELL,POINT,INLIST,USE, INSTOR,NLUIF, 01.4
$2 \quad$ NFIC,NLUIC,CIF,NCIF, FI,FJ,LOWC,HIGHC,BLANK2, 016
3 IDESUE,CDEEUG,NDEBUG,NSOUND,SICUND,EZOUND,NBOUND 018
c
REAL AREA, PFDRM,FLOAT, PLUIF,CELLKN, LUDFC
020
G 024
COMMON/MAIN4/ ZCNE(1E75,3),FER(1575,3),NCELL,IREAD,ILIST,IDISK, 026
1 IPUNCH,IDISK2,FEEDER(450),NFOR,FKW(45Cj),IDISK4, 023
2 FACTOP(14), DEMAND(14), AREA(14),CELLKN(1575), 030
3 OISTRT(1575,2),BLANK,PFJRM(1575,3), PLUIF(450,14), 032
TITLE(20), DUMMY(1575), LUDFC(1575,3)
036
CJMMDN/MAIN2/ EAST(1575),NC2TH(1575), PLUSE (1575,3),LUSE(1575,3), 038
j PZONE (1575,3), AGE(1575), HWY(1575), HWYP(1575), 040 , 040
$\begin{array}{lll}0 & \text { RAIL(1575), BUS(1575),STRT(1575),STRTP(1575), } & 042 \\ 7 & \text { PFDR(1575,3),PCELL(1575,3),POINT(SO,70),INLIST, } & 044\end{array}$
3 INSTCR,NLUIF(45C),NFIC(1575), 046
$=\quad \operatorname{NLUIC}(1575), C I F(450,107)$,NCIF(450),USE(14), $\quad 043$
$A \quad \operatorname{LOWC}(450), H I G H C(450), F I(110), F J(1 i C)$, GLANK2, 050
BミAL TCT IDEZUG,CDESUG,NDEBUG,NEOUND,SBOUND,EEOUND,WSCUND OUT O 110
=INIS $=$
GつTコ
EVTRY OUT1
$=$ INISh $=1$
CUT 012
OUT 0130
OUT 0140
CUT 0150
こXXXXXXXZX JUT $=$ UT EY CELL $X U T$ OLSC
弓 WQIT
CUT Cl70
1OCO FГマ:1AT (1H1,1X,'CEL'',' DISTRICT ','こOORD',Tミ5,'1 FEEDERS DFDRS OUT O180
1 دЕJマYS)',TフI, 'CELLKW', TEC.' (LUSES PLUSES ZONES PZUNES) OUUT $01 \neq 0$
2 , /)
LINES $=2$
$2050 I=1, V C E L L$
LINES = LINES + 1
IF(LIVES.LT.59) GO TO 10
WRITE!ILIST, 1000)
LINES = 2
10 w2ITミ(1L1ST,1う10)I, (DISTRT(I,K), K=1,2), EAST(I), NCRTH(I),
1(こミ三コンR(FกR(I,K)), PFDR(I,K), PFDRM(I,K),K=1,3),CELLKW(I),
¿ (USE(LUSE(I,K)), PLUSE(I,K), $K=1,3)$,
3 (ZONE $(I, K), P Z O N E(I, K), K=1,3)$


```
    50 CJNTINUE
        I=(=INIGH.EQ. 1) २ETURN
    Gコ Tコ %:
        ENTRY CUT?
        FINISH = 2
```



```
C jata zy EEERE々
    SO WRITE(ILIST,1020)
        LINES = 三
    &ここし FJRMAT(1H1,T2G,'................PERCENT LAND USE.
        & !つ('.'),'TSTAL',
        l Tll1,'CELL LIMITS',
                /, 5X,'FEEDEP',0X,'FK'N',
        シTころ, 21 22 <З M1 ME C1 CZ C3 C4 Il IM S1 S2 S3, CUT 0460
        -> TOC,' NLUIF NCIF LOW HIGH, IL, S1 S2 53', OUT 047.
        OO 100 I=1,NFDR
        <1 = NCIC(I)
        TOT=?.O
        2. 5j K=1,14
    53 TOT=TOT+PLUIF(I,K)
        LINES = LINES + 3 + (K1+20)/20
        If (LIVES.LT.Sg) GO TO ó5
        WRITE(IUIST,1020)
        ITVES= =
        j5 N2ITE(ILIST,lこ30) I, FEEDER(I), FKN(I), (PLUIF(I,J),J=1,14),TOT,
        1. VLUIF(I),NCIF(I),LOWC(I),HIERC(I)
    133. = 2244T(/,3X,13,2X,A4,3X,I5,T25,14F4.2,T34,F4.2,T90,4I3 ), CUT C57C
    NPITE(ILIST,IOSC) (CIF(I,J),J=1,K1)
    1OSO FCRMAT(T25, 2与('.'),'CELLS IN THIS FEEDER',
        l '任,47('.'),/,(T25,2015) )
    100 EONTIVUS
        If ( =INISH .Eq. 2) RETURN
        E TO 120
=...................
    FINISH=3
```



```
        = OUTPUT EY LANCUSE TYPE
        OUT 0710
    Lこう WRIT三(ILIST,IこSU)(I,USE(I),FACTOR(I),AREA(I),DEMAND(I), I= 1,14)
```



```
        1 2OX,'LANOUSE',T30,'FACTCR',T40,'AREA',T50,
        # 'DEMAVO BEFORE GROWTH',/,
        2 20x,7('-''),T30,6('-'),T40,'---',T50,'-(KW)-',1/1, SUT OT50
        3 i4(2lx,I2,IX,A2,T3C,IE,T38,F3.1,T50,I6,1)), UUT O770
```



```
& ADDITIDNAL CUTPUT EY EELL CUT OT9O
CUT 080]

EUT 0330
CUT 0340
OUT 0350
¿．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
CUT Oミが
OUT 0370
OUT 0390
c Data zy \(5=5\) Cocs
CUT 0390
50 WरITE（ILIST，1020）
CUT 0400
LINES＝
\(\therefore\) 1つ（＇．＇），TSTAL＇，
？\(\quad\) ，5X，＇FEEDER＇，ox，＇FK＇H＇，

\(20102 \mathrm{I}=1\) ，NFDR
K＝NCIC（I）
2． 5 j \(k=1,14\)
53 TOT＝TOT＋PLUIF（I，र）
LINES＝LINES＋3＋（K1＋20）／20
Le（INEJ．LT．．gl GO TO ós
C）
3 ：NマITE（ILIST，lC30）I，FEEDER（I），FK＇N（I），（PLUIF（I，J），J＝1，14），TOT，
1 VLUIF（I），NCIF（I），LOWC（I），HIERC（I）

1OSO FCRMAT（T25， 2 ＇\(^{\prime \prime} \cdot{ }^{\prime \prime}\) ，＇CELLS IN THIS FEEDER＇，
IOO CONTIVUG
\(\because 210120\)
ENTRY OUTE
OUT C410
CUT O420
CUT O420
OUT 0430
OUT 0440
SUT 0450

OUT 0470
OUT 0500
CUT 0510
CUT 0520
OUT 0530
OUT 0540
CUT 0550
CUT 0500
CUT 0570
OUT C530
CUT C590
OUT 2610
CUT \(0 \leq 20\)
CUT 0530
OUT 0540
CUT 0650
CUT 0660
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
FIVISH＝CUT 2680
CUT 0600
＝GUTPUT ミY LANCUSE TYPS
：こう WRIT三（ILIST，ここ
OUT 0720

OUT 0730
1 ZクX，＇LANOUSE＇，T30，＇FACTCR＇，T40，＇AREA＇，T50，
C！ 0 T 0740
cut 0750
GUT CTSO
OUT 0770
¢ ADDITIDNAL CUTPUT EY EELL
```

-NQIT=(T1TST, CUT 0801)

```
-NQIT=(T1TST, CUT 0801)
    WRITE(ILIST,1070)
```

```
    WRITE(ILIST,1070)
```

```


```

```
    2 2x,'LUQFC(く)',2x,'LUCFC(ミ)',2X,'NFIC',2x,'NLUIC',10x),/, CUT O830
```

```
```

```
    2 2x,'LUQFC(く)',2x,'LUCFC(ミ)',2X,'NFIC',2x,'NLUIC',10x),/, CUT O830
```

```


```

```
        LINES=3
```

```
        LINES=3
        OO \geqOO I = 1, VCELL,2
        OO \geqOO I = 1, VCELL,2
        II = I+ l
        II = I+ l
        LIVES = LINES + I
        LIVES = LINES + I
        IF(LIVES .LT. E0) Э0 TO 130
        IF(LIVES .LT. E0) Э0 TO 130
                            CUT OS50
                            CUT OS50
CUT OSSO
CUT OSSO
CUT 0870
CUT 0870
CUT O&&0
CUT O&&0
CUT ng90
```

```
CUT ng90
```

```
```

 LINES = 3
 WマITミ(I!IST,ここつこ)
 :j0 W२ITミ(ILIST,10EC)I,(LUOFC(I,N),J=1,3),NFIC(I),NLUIC(I),
 1 II,(LUCFC(II,J),J=1,3),NFIC(II),NLUIC(II)
 zan covrINuE

```

```

 I=(=IVISH •E2. 3) RETURN
 G5 TJ 3こ0
 EVTマY OUT4
 =\\ISt = 4
 32:
२ETURN
ミソつ


```
    INOEX=1
    "タメム=ら.゙
    UIVA=0ここCG.0
    vAX)= 0.j
    MINJ=デッチこ0.0
    !-%マ=?
    つつ つに F=1,NFDR
    I=(دLUIF(F,LU) •LE. O.こ) GO TO 9C
= WE VON <NSA THIAT FEEDER 'F'' CONTAINS LAND USE TYPE 'LU'.
```



```
    ミリイう = 0.0
    HIGH = NCIF(F)
    VOこごL = .TRUE.
    \0 EO CC=1,HIGH
    C= こIF(F,CC)
    IC(VCRTH(C).GT.NBOUND) GO TO QO
    IF(VORTH(C).LT.SJOUND) GO TC EO
    IF( EدST(C).LT.WSOUND) SO TO 30
    IF( EAST(C).GT.ESOUND) GC TG.SO
    Tココ=VLUIC(C)
    こつ 12 I=1,TO?
    IF(LUSE(C,I) EQ. LU) GO TO 1S
    12 CINTIVUE
    Gつ TC EG
= 'NE VJN <NDN THAT CELL 'C' HAS 'LU' AS ITS I-THi LAND USE TYPE.
    l亏 २R=O!USミ(C,I)
    NOCEL! = .FALSE.
    SUMA = SU4A + (FLOAT( RR )*C.O1)
    Sリnつ=SUMD+(LUJFC(C,I)*CELLKW(C))
= NE NEED TE USE (LUDFC%CELLKN) RATHE? THAN (PLUSE*FKW) BECAUSE
- LUDEC AVJ CELLKN HAVE SEEN CORRECTED FDR THE LAND USE TYPSS
    か? ここvTINUE
    I=(VIJCELL) GC TO 90
    I=DR = I=DR + I
    Iマミに(IFへ२)=F
    IF(M\DeltaXA &T, SUMA) MAXA = SUMA
    I=(MIVA .ET. SUMA) MINA = SUMA
    I=(MAYD .LT. SUMD) MAXD = SUMO
    IF(YINJ.GT. SUMD) MIND = SUMC
    xA(IIDFR)=SUMA
    XJ(IFNR)=SUMD
    DEMOミ1-(IFCR) = SUMO/SUMA
    SUMLUA = SUMLUA + SUMA
    SUMLUO = SUMLUC + SUMD
G0 CJNTINUE
C OLET २ESULTS
    I=(IF%? .EQ. ふ) GO TO 100
    YMIV=MINA
    YY\DeltaY=M\angleXA
    IMIYO = IFIX(YIVO)
    IMAXC = IFIX(MAXD + ICO.)
    OU ? ? J=1,<<0
92 TITLE(J) = TITLEミ(LU,J)
    2つ 79 <, =1,20021,120
    VUM = ?
    I=(<ん,.LT.IMIND.CR.KW.GT.IMAXO) GCTJ =0
    २<'H= =LO\DeltaT(<N) - 2.J
```

SCAT	066
SCAT	068
SCAT	070
SCAT	072
SCAT	C74
SCAT	076
SCAT	073
SCAT	080
SCAT	082
SCAT	034
SCAT	086
SCAT	088
SCAT	090
SCAT	092
SCAT	094
SCAT	096
SCAT	こ79
SCAT	100
SCAT	102
SCAT	104
SCAT	106
SCAT	108
SCAT	110
SCAT	112
SCAT	114
SCAT	116
SCAT	118
SCAT	120
SCAT	122
SCAT	124
SCAT	126
SCAT	128
SCAT	130
SCAT	132
SCAT	134
SCAT	136
SCAT	138
SCAT	140
SCAT	142
SCAT	144
SCAT	146
SCAT	143
SCAT	150
SCAT	152
SCAT	154
SCAT	156
SCAT	15ε
SCAT	150
SCAT	152
SCAT	154
SCAT	166
SCAT	153
SCAT	170
SCAT	172
SCAT	174
SCAT	176
SCAT	173

```
    2コ こ5 <=1,IFGR
        I=(I=IY(XD(K)).LT.(KW+1CO).AND.IFIX(XO(K)).GE.(KN-I)) SC TC QE
        E) TO =5
    53 VUM = NUM + 1
        Y(NUM)= xa(<)
        I=(vuiM . ER. +) GO TO 9E
    75 CONTIVUE
        I=(NUM EEC. う) GJ TO =9
    OS CALL PLTU(OKN,YMIN,YAAX,Y,NUM,INDEX,TITLE)
    is EJVTIVUE
: 2RIVT २ESU_TS
    SCAT 180
        *uM num
    SCAT 182
    WマITE|IIS
    1 うミMCFL(J)
    1:12 FORM\DeltaT(1H1,T25,2044,/,5X,'REF #',6X,'FEEDER',
                ITX,'* CELLS', 7X,'KN DEMAND',
    1 TSj, !DX,'` CELLS',
        (EX,I5,7X,A4,3X,F10.3,5X,F10.4,T65,F11.4)) SCAT 210
```



```
    CI = 75
    SCAT 214
    GALL STAT CEMCEL, IFJR,MEAN,SMEAN,VARIEN,STDJEV,MAX,MIN,
    1 LOWER,UPPER,CI) 
        WRITミ(ILIST,IOZE)(TITLE(J),J=1,20),MEAV,IFDR,VARIEN,STDJEV,
    - MAX,MIN,UPOER,LDWER
1O20 FJRMAT(1H1,25X,20A4,//1/, 55X, DEEMAND (KN) PER CELL',////,
    1 5Cx,'MEAN:', F15.5,//,50x,'NUM3ER OF POINTS:',I8,
                2 //,50X,'VARIENCE:',F15.2,//,50X,'STANDARD TEVIATION:.,
    M F15.2,/1,2OX,'MAXIMUM VALUE:',F15.5,TSO,'MINIIMUM VALUE:', SCAT 230
    F F15.2,1/,2OX,'MAXIMUM VALUE:',F15.5,TSO,'MINIMUM VALUE:', SCAT 232
```



```
    0う 150 I=1,4
    OJ 15) I=1,4
    SCAT 236
    SCAT 236
    CALL STAT? (CI,LONER,UPPER)
    150 WRITミ(ILIST,IO2JICI,UPPER,LOWER
1030 FORMAT///,40X,I?,'& CONEIDENCE INTERVAL:',/,50X,
    1 UPOER SOUND:',F15.5,1,50X,'LOWER BOUNO:',F15.5)
    ICC =INTINUS SCAT 248
        २ETJRN
        ミNO
SCAT 240
SCAT 218
SCAT 223
SCAT 222
SCAT }22
    1 5Cx,'MEAN:', F15.5,/l/50x 'NUM(K
SCAT }24
SCAT 250
SCAT 252
SCA
SCAT 254
```

```
            SUミRJJTIVE FLTR(X,YMIN,YMAX,Y,NUM,INIT,TITLE)
```



```
            X YMIN SMALIS' VALUE 
    LARGEST Y-AXIS VALUE
        Y THE VALUE TO 3E PLOTTED (MAX OF FOUR PER PLOT)
        NUM GIMENSION OF Y (NUMEER OF VARIAELES...LE. 4)
        IVIT SET TO ONE. PLOT ROUTINE WILL FRINT AXIS AND
                                RETURV INIT AS 10.
    TITLE TO SE PRINTED AT THE TOP OF THE PLCT
PLTR 022
PLTR 024
```



```
        THAT IS,THE VALUES NAT (
            ME, THE VALUES ARE PLOTTED AS THEY ARE CALCULATED.
                            PLTR 028
            I= AN ARRAY OF VALUES IS TO SE PLOTTED, THE CALL TO PLTR
                        MUST ES PLACED IN A 'DC' LOOP.
                            PLTR 030
                            PLTR 032
        IVTミE三々 TITLE
                            PLTR 034
        JIM=VSION K(6),IA(101),Y(NUM),TITLE(20)
```



```
        PITR 036
        I=(IVIT.NE.l) GO TO 10
        こI===(YMAX-YMIN)/2.0
        YMIO=YuIN+CIFF
        WRITS(3,5)(TITLE(JJ),JJ=1,20),YMIN, YMID,YMAX
        5 FORMAT('1',30x,2CA4.
        $////17x,F1E.7,36X,F15.7,35x,F15.7//24x,1*',49x,'*',49x,'*1/
        ま24x,'*',1C( ○x,'*')/24x,101(1*'))
    1: cวNTIVUE.
        02 15 I=1,101
        I\lambda(i)=<(5)
    15 contivus
        २=YM\Deltax-YMIN
        0〕 3こ V=1,NUM
        L=NUM+1-N
        IOT=I=IY(((Y(L)-YMIN)/R)*100.0 0 . 51)+1
        IC(I OT.GT.1O1.OR.IPT.LT.1) GO TO 30
        IA(IOT)=k(L)
    3う CONTIVUE
        IZミ20=IFIX((-Y:4IV/R)*100.0+.51)+1
        IFIIZミR2.ET.!Ol.OR.IZERO.LT.1) GO TO 40
        IA(IZERO)=<(6)
    40 EONTINUE
    W2ITE(2,260) X
250 co2vaT(' ',bx,F15.7)
    WRITElミ,こと0) IA
230 Fこ२u4T('+',23x,101A1)
    IVIT=1;
    マミTリマV
    ENO
OLTR C38
PLTR 040
OLTR 042
PLTR 044
PLTR 046
PLTR 048
PLTR 050
PLTR 052
PLTR 054
PLTR 056
PLTR 058
PLTR 05O
PLTR 062
PLTR 064
pLTR cóó
PLTR 068
PLTR 070
OLTR 072
PLTR 074
PLTR 076
PLTR C78
PLTR O30
OLTR 032
PLTR 0.84
PLTR 086
PLTR 088
PLTR 200
PLTR 092
PLTR 074
PLTR 096
PLTR 098
```

こ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 02

DUMPS

DUMPS 002
IVELUJE COMNON INFG
IVELUJE COMNON INFG
こ．．LANCUSミ $06 C 2$. 004
IMPLIにIT INTEGER（A－Z） 026
こ010
IVTEうミマ＊と EAST，NORTH，FLUSE，LUSE，PZONE，AGE，HWY，HWYF，RAIL，EUS，STRT， 312
1 STRTO，PFDR，PCELL，POINT，INLIST，USE，INSTOR，NLUIF， 014
3 ICEEUG，CDEIUG，NDEBUG，NECUVD，S ZOUND，ESOUND，NBOUND 016 018REAL AREA，PFDRM，FLOAT，PLUIF，CELLKW，LUOFCこJMMJV／MAIN4／ZONE（1575，3），FDR（1575，3），NCELL，IREAD，ILIST，IDISK，
REAL LREA, PFDRM,FLOAT, PLUIF, CELLKW,LUDFC
こJMMJV/MAIN4/ ZONE(1575,3),FDR(1575,3),NCELL,IREAD,ILIST,IDISK,
C221 IPUNCH，IDISK2，FEEEER（450），NFDR，FKW（450），ICISK4，C22
025
$2 \quad$ FACTOR（14），DEMAND（14），AREA（14），C三LLKiN（1575）， 030029
ЈISTRT（1575，2），SLANK，PFDRM（1575，3），PLUIF（450，14），
a TITLE（20），OUMMY（1575），LUDFC（1575，3） 032 032

COMYOV／MAIN2／三AST（1575），NCRTH（1575），PLUSE（1575，3），LUSE（1575，3）， 036
5 (MKON M 038

$\begin{array}{lll}5 & \text { RAIL }(1575), 9 U S(1575), S T R T(1575), S T R T P(1575), & 042 \\ 7 & \text { DFD }(1575,3), \text { PCELL(1575, } 3), \text { POINT }(60,70), \text { INLIST, } & 044\end{array}$
3 INSTOR,NLUIF(4EV),NFIC(1575), 044
$\Rightarrow \quad$ NLUIC 11575), CIF $(450,107)$, NCIF(450), USE (14), 045
$\triangle \quad$ LONC 1450),HIGHC(450),FI(110),FJ(110), SLANK2, 050
3 IDESUG,CDESUG,NDESUG,NSJUND, SZOUND, EJOUND, WSOUND
052
W२ITE(IDISK?)((ZOVE(I, J), LUDFC(I, J), J=1,3), (DISTRT(I, J), J=1,2), DUMOS OS
1 CELLKN(I), I=1,1575),(FEEDER(I),FKW(I), I=1,450),NCELL,NFD?
c
NRIT (IOISKZ) ((?ZGNEII,J), J=1,3), EAST(I), NORTH(I), $I=1,1575)$,
1 ((アOINT(I, J), $\mathrm{I}=1,6 \mathrm{C}), \mathrm{J}=1,70$)
२ミWIV) IDISK2
マミT!コスN
DUMPS 06
DUMPS 07
DUMPS of
CUMPS 09
DUMPS 10
$=\mathrm{V}$ ©
DUMPS 12

```
SUEROUTIVE GROW
GROW CO2
```



```
    GRCW OOL
```

 GRCW OOL
 C- COMMCN VARIASLES
0.02
c..................................lANDUSE 2002004
C
IMPLICIT INTEGER (A-Z)
C
IVTESミR*2 EAST,NORTH,PLUSE,LUSE,PRONE,AGE,HWY,HWYD,RAIL,BUS,STRT,
1 STRTP,P=OR,PCELL,POIVT,INLIST,USE, INSTOR,NLUIF,
1 STRTP,P=OR,PCELL,POIVT,INLIST,USE, INSNTOR,NLUIF, FI,FJ,LOWC,HIGHC,ZLANK2, NFIC,NLUIC,CIF,NCIF, ONT,
3 IOEEUG,CDEBUG,NDESUG,NSOUND,SSDUND,ESOUND,NBOUND SO
0.06
008
010
c
REAL AREA,PFDQM,FLCAT,PLUIF,CELLKW,LUDFC 022
0 2 0022
c
CJMMJN MMAINA/ ZONE(1575,3),FOR(1575, I),NCELLL,IREAD,ILIST,IDISK, ONNG,IOISK2,FEEDER(450),NFDR,FKW(450),IDISK4, 026
026
I IPUNCH,IOISK2,FEEEER(450),NFDR,FKW(450),IDISK4, 028
2 FACTOR(14),DEMANE(14),AREA(14),CELLKN(1575),
I IPUNCH,IOISK2,FEEEER(450),NFDR,FKW(450),IDISK4, 028030
2
3 DISTRT(1575,2),3LLANK,DFDRM(1575,3),FLUIF(4EC,14),034
こ
CIMMJN/MAIN2/ EAST(1575),NORTH(1575),PLUSE(1575,3),LUSE(1575,3).
5 % PZONE(1575,3),AGE(1575), HWY(1575),HWYP(1575),
5 PZONE(1575,3),AGE(1575), HWY(1575),HWYP(1575),
7 PFOR(1575,3),PCELL(1575,3),POINT(60,70),INLIST,
3-INSTOR,NLUIF(4うU),NFIC(1575),
9 NLUIC(1575),CIF(450,107),NCIF(450),USE(14), 040
LCNC(450),HIGHC(450),FI(110),FJ(1110), BLAVK2,036
C38
040
S IDESUG,CLEBUG,NDEZUG,NSJUND,SJOUND,EJ̃OUNO,WSOLVNO E52

```

```

c
INTEGミR*2 NZIC,NWZONE020

```
INTミGミR＊2 NZIC，NWZONE ..... \(0 \leq 0\)
```

 REL! RGRFAC,RDEMNC
 C
C40
050060
COMMON/GZOWEK/ NGAREA,NGEND(20),SGBND(20), EGGND(20),NGSND(20),
070
*
090
* GROSND,GROWTH,ALLGRO
070
100
C

```

```

 LOSIOAL*1 VACANT,SPOT
 1 1 0
    ```

```

 GRCW 010
 OIMEVSIEN MATCH(2),IMATCH(3)
OIMEVSIEN MATCH(Z),IMA
\imath
CALL ZCHG
C
VLUSSE= 12
AUTOLU= =
AUTOLU = ?
4JTONN= 三
c

- 20 500 CELL = 1,NCELL
IF(. VDT. GROEND) GO TO 19
= CHELく अरOWTH EOUNOS
GROW 012
0 4 2
M - N
044

```


```04
 O12
M, (1)
 012
 015
 015
 C46
 040
 A LCNC(450),HIGHC(45j),FI(11U),FJ(110),3LAVNK2, }25
E CIMMJN/MAIN250
```

```010
 020
 M040050020 GROS̃ND， \(\mathrm{GROWTH,ALLGRO}\)100110
GROW 014
GRCW 015
- SOOT = .FALSE.
 EST = EAST(CELL)
CALL 2CHG
GRC'N OlS
GRCW OこO
*VLSE
GRCW 022
GREW 024
GROW O26
GRCW ここE
GRCN 03O
GROW こ3こ
GROW 034
GROW C3S
035
 VTH=NEFTH(CELL)
GRCW 038
GRCW
040
GREW O43
GRCW 042
```

```
 OO 1? I = I,NG\trianglePEA
 I=(:IGBNEII).LE.EST.AND.EGEND(I).GE.EST.AND.SGBND(I).LE.NTH
 * .AVO.NGENO(I).GE.NTH) SPOT = .TRUE.
 &ッミご = I
 I=(SOOT) GO TC 20
 に EこNTIVUS
 ちつ Tコ EC6
10 G\RこA= =
20 NLU = VLUIC(CELL)
 VACدVT = .F\triangleLSE.
 IF (ALLERC) 30 TO 70
 0コ 32 I = 1,NLU
 LU = LUSE(C=LL,I)
 I=(LU,NE.VLUSE) GO TO こE
 VACAVT = .TRUE.
 KVCNT = I
2% I=(LU .NE. AUTOLU .OR. AGE(CELL) .LE. AUTOAG) GO TO 30
 LUSミ(ここLL,I) = LUTONH
 FLT = PLUSE(CELL,I)
 I=(2)ミマNO(AUTOLU) .LE. O.0) GO TO 30
 CミL!<W(にELL)=CELLKW(CELL)+(FLCAT(FLT)*0.01*
 REEMND(\triangleUTONW)/RDEMND(AUTCLU))
 32 CJNTIVUミ
 IF(.NCT. VACANT) GO TO 500
 IF(VLU .E&. l) GO TO TC
 VZICS = NZIC(CELL)
 NMATVH=?
 วつ +O I =1,NZICC
 0.3 35 J =1,14
 IF(N!WZONE(CELL,I) .EG. J) GO TO 33
35 EONTINUE
 Gう TO 40
3S NMATCH = NMATCH + 1
 IMATこH(NMATCH)= I
 YATE-(NM&TCH)= J
 40 COVTIVUS
 WE VO'N HAVE 'VMATCH' MATCHES BETWEEN 'MATCH(NMATCH)' LANDUSE TYPE
 AVO THE 'IMATCH(NMATCH)'-TH ZONE OF THE CELL. THE 'KVCNT'-TH
 LAVDUSE TYPミ OF THE CELL (VACANT) IS TO BE REOLACED.
 IF(NMATCH.LLT.O .CR. NMATCH .GT. 3) GO TO 500
 GEPLACE THE VACHNT AREA SY THE AVERAGED ZONED DEMANO
 jう 2TOTAL = C.O
 2SUM = 2.C
 つう ミj L = 1, NZICC
 FLT = 2ZONE(ここLL,L)
 २วZ = FLCAT(FLT)
 2SUM = RSUM + RJEMNJ(NWZONE(CELL,L)) * &PZ * 0.01
 55 २TOTA!- = PTOTAL + 20Z * C.01
 IFIRTOTAL .LE. 2.J) GO TO 500
 FLT = PLUSE(CELL, KVCNT)
 C三L!<N(E三Li) = CELLKW(CELL) + RSUM * FLOAT(FLT) * RGRFAC(GAREA)
 * * 0.01 / RTOTAL
 GJ TJ 500
C
 IF THE TOTAL ここLL IS VACANT: (OR ALLGRO)
7CV\geqICC=VZIC(CELL)
```

O	0
GRCW	046
GROW	043
Grow	つ5う
GRCW	052
GROW	054
crow	055
GRC＇N	058
GROW	$0 \leq 0$
Grow	052
GROW	004
GROW	05s
CROW	058
G20W	070
GRDW	072
GRCW	074
GROW	076
GROW	c73
GRCW	050
GROW	032
GROW	084
GROW	036
GROW	058
GROW	090
Eraw	092
GROW	C94
Grow	C90́
GROW	098
GROW	100
GROW	102
GRCW	104
GROW	105
GRCW	108
GROW	110
GRCW	112
GROW	114
GROW	116
Grow	118
SRCW	120
GREN	122
Graw	124
GROW	$12 t$
GREW	125
GRCW	130
Grow	132
GROW	134
Graw	136
GRCW	135
G2OW	$1+0$
GROW	142
GROW	144
GROW	140
	147
GROW	14 c
GROW	150
Grcw	152
$20 \cdot$	5

```
 0031 L = 1,NzICC
 IVว)= vWてONE(CELL,L)
 LUSミにミLL,L)= INOX
 =-T = OTENE(CELL,L)
 CELL<N(CELL) = CELL<W(CELL) + (RDEMND(INOX) * 0.21 *
 CLOAT(FLT) * RGRFAC(GAREA))
 31 cIntIvuE
=00 contINJE
 २ミT\cup?, %
 三人
```

GROW 156
GROW 15 ？
GROW 1 on
GROW 162
GROW 164
GROW 165
GROW 1 as
GRCW 170
GROW 172
GROW 174

```
 SUEQJJTINE ICHG
 ZCHG 0.22
```




```
C COMMOV VARIAELES
```



```
 022
E...................................LANCUSE 0002.
 004
~
 IMPIICIT INTEGER (\Delta-Z)
 006
=
 IVTE「ミR*? EAST,NCRTH,PLUSE,LUSE,PZONE,AGE,HWY,HWYD,RAIL,EUS,STRT,
 008
 010
 l STRTP,PFCP,PCELL,POINI,INLIST,USE, INSTOR,NLUIF,
 l FTRTP,PFCP,PCELL,POINI,INLIST,USE, INSTOR,NLUIF,
 3 ILEZUG,CDEZUG,NDEZUG,NEOUND,SZOUND,EZOUND,WSLUND
C
 2ミAL ムREA,P=DRM,ELOAT,PLUIF,CELLKW,LUDFC
C
 COMMJN/4AIN4/ ZONE(1575,3),FDR(I575, ミ),NCELL,IREAD,ILIST,IDISK,
 1 [lOUCH,ISISK2,FEESER(45O),NFDR,FKN(450),IDISK4,
 1 [lOUCH,ISISK2,FEESER(45O),NFDR,FKN(450),IDISK4,
 1 [lOUCH,ISISK2,FEESER(45O),NFDR,FKN(450),IDISK4,
 3 UISTRT(1575,2),3LANK,PFDRM(1575,3),
C
 COMM.JN/MAINE/ EAST(1575),NORTH(1575),PLUSE(1575,3),LUSE(1575,3),
 j PICNE(1575, 三),AGE(1575),HWY(1575),HWYO(1575), 0<0
```



```
 O
 # INSTOR,NLUIF(450),NFIC(1575),
 # NIUIC(1575),CIF(450,107),NCIF(450),USE(14),
 012
 014
 A LIWC(450),HIGHC(450),FI(110),FJ(11O),ELANK2,
 3 ISEJUG,CDESUG,NDESUG,NJJUND,SBOUND,ESOUND,WGCUNO
C6
 0.4
 008
 N(038
 044050
```

052

```
C010
©020
```

IVTミラ $2 *$＊2 NZIこ，NWZCNE ..... 030
LOTSICAL＊1 GROWTH．GROSND，ALLGR？ ..... 040
RミムL RGRFAC，RJEMND

```050
\zeta050
0 7 0
 CJMMJV/GRONBK/ NGAREA,NGOND(20),SGZND(20), EGRNC(20),WGBNO(2O), \30
 CJMMJV/GRONBK/ NGAREA,NGOND(20),SG3ND(20), EGRNC(20),WGBNO(2O),
 0 9 0
 * GROSND,GREWTH,ALLGRU
 100
 GROSND,GREWTH,ALLGRU
```



```
I
```



```
 DIMENSIDN OZONE(2O),NZONE(二9) ZCHG C12
 OATA JZONE/'R7.シ','FD','A', 'IZ','SU','MMZ', 'PD', 'LC', ,ZCHG OI4
```




```
 * 'NS', 'MF3', 'FPA', 'TH1', MF4'/, INHG 02O
```



```
c
 M\triangleTA VIONE/ 2,14,12,10, 7, 4, 7, 6,5,1, 6,10,5,7,2,4, 1, % ZCHG O22
 0050 CELL = 1,NCELL
 ZCHG 024
 ZCHG 026
 NZICE=3
 ZCHG 02O
 ZCHG 030
 IF(フŋVE(CELL,3) EQ. SLANK) NZICC=2
 I=(?ONE(こELL,2) .EQ. BLANK) NZICC = 1
 ZCHG O34
 VZIL(CELL) = NZICC
 ZCHG j36
 OJEOI = I,NZICL
 ZCHG 038
 ZONこCI = 2JNこ(CELL,I)
 ZCHG 040
 j235J=1,29
ZCHG 042
```

```
 IF(ZうvESI .シa. ここOVE(J)) CO TC 35
 30 CONTIVUE
 WPITE(ILIST,100C) ZONECI,CELL
10.0 = J2MAT(Ex,'IONE ',A4,' NOT FDUND IN ZONS LIST. CELL:',IS)
 うコ Tつ 5こ
 5 VNZOVE(CELL,I) = NZONE(J)
 S0 CONTIVUE
 วミT!วV
 #v
```022
```

```
            sußROJTIVE SECOvN
```

 sußROJTIVE SECOvN
 0 0 1
    ```
                0 0 1
```



```
G THIJ CRCGRAM QEAOS INTERMEOIAT RESULTS AND PERFCRMS THE 
```

```
G THIJ CRCGRAM QEAOS INTERMEOIAT RESULTS AND PERFCRMS THE 
```



```
Z THIS PRCGRAM REQUIRES THE FOLLOWIVG SUBROUTINES:
```

Z THIS PRCGRAM REQUIRES THE FOLLOWIVG SUBROUTINES:
Cllol
Cllol
clug
clug
clug
clug
Cllol

```
Cllol
```



```
\====================
```

```
\====================
```



```
C
```

C
IMDILIT INTEGER (A-Z) 008

```
IMDILIT INTEGER (A-Z) 008
```



```
O
```

O
IVTEGミ?*2 三\triangleST,NORTH,PLUSE,LUSE,PZONE,AGE,HWY,HWYP,RAIL,EUS,STRT, OLT,
IVTEGミ?*2 三\triangleST,NORTH,PLUSE,LUSE,PZONE,AGE,HWY,HWYP,RAIL,EUS,STRT, OLT,
0 1 0
0 1 0
l STRTP,PFDR,PCELL,PGINT,INLIST,USE, INSTOR,NLUIF,
l STRTP,PFDR,PCELL,PGINT,INLIST,USE, INSTOR,NLUIF,
l STRTO,PFDR,PCELL,PGINT,INLIST,USE, INSTOR,NLUIF,
l STRTO,PFDR,PCELL,PGINT,INLIST,USE, INSTOR,NLUIF,
214
214
3 IOESUG,CDEEUG,NDEEUG,NSCUND,SBOUND,EBUUND,WBOUNO O13
3 IOESUG,CDEEUG,NDEEUG,NSCUND,SBOUND,EBUUND,WBOUNO O13
c
c
२ミAL RPEA,PFORN,FLOAT,FLUIF,CELLKN,LUDFC
२ミAL RPEA,PFORN,FLOAT,FLUIF,CELLKN,LUDFC
020
020
022
022
c
c
ここMMON/MAIN4/ ZONE(1575,3),FEQ(1575,ミ),NCELL,IREAO,ILIST,ISISK,
ここMMON/MAIN4/ ZONE(1575,3),FEQ(1575,ミ),NCELL,IREAO,ILIST,ISISK,
024
024
026
026
1 IPUNOH,IOISK2,FEEOER(450),NFOR,FKW(450),IDISKM, 029
1 IPUNOH,IOISK2,FEEOER(450),NFOR,FKW(450),IDISKM, 029
? FACTOR(14),DEMAND(I4),AREA(14),CELLKW(1575), 030
? FACTOR(14),DEMAND(I4),AREA(14),CELLKW(1575), 030
1 IPUNCH,IIISK2,FESOER(450),NFOR,FKW(450),IDISKム, 029
1 IPUNCH,IIISK2,FESOER(450),NFOR,FKW(450),IDISKム, 029
3 DISTRT(1575,2),3LANK,PEDZM(1575,3),PLUIF(450,14),
3 DISTRT(1575,2),3LANK,PEDZM(1575,3),PLUIF(450,14),
A TITLE(20),DUMMY(1575),LUUFC(1575,3)
A TITLE(20),DUMMY(1575),LUUFC(1575,3)
2 FACTOR(14),DEMAND(I4),AREA(14),CELLKW(1575), 030
2 FACTOR(14),DEMAND(I4),AREA(14),CELLKW(1575), 030
032
032
**\&゙堷
**\&゙堷
C
C
こJMMOV /MAIVE/ EAST(1575),NORTH(1575),PLUSE(1575, ミ),LUS\subseteq(1575,3),
こJMMOV /MAIVE/ EAST(1575),NORTH(1575),PLUSE(1575, ミ),LUS\subseteq(1575,3),
036
036
038
038
5 PZONE(1575,3),AGE(1575),HWY(1575),HWYP(1575), 040
5 PZONE(1575,3),AGE(1575),HWY(1575),HWYP(1575), 040
2\triangleIL(1575),BUS(15T5),STRT(1575),STRTP(1575), 042
2\triangleIL(1575),BUS(15T5),STRT(1575),STRTP(1575), 042
7 OFDR(1575,3),PCELL(1575,3),POINT(60,70),INLIST,
7 OFDR(1575,3),PCELL(1575,3),POINT(60,70),INLIST,
7 OFDR(1575,3),PCELL(1575,3),POINT(60,70),INLIST,
7 OFDR(1575,3),PCELL(1575,3),POINT(60,70),INLIST,
7 OFDR(1575,3),PCELL(1575,3),POINT(60,70),INLIST,
7 OFDR(1575,3),PCELL(1575,3),POINT(60,70),INLIST,
7 OFDR(1575,3),PCELL(1575,3),POINT(60,70),INLIST,
7 OFDR(1575,3),PCELL(1575,3),POINT(60,70),INLIST,
3 INSTOR,NLUIF(450),NFIC(1575),
3 INSTOR,NLUIF(450),NFIC(1575),
3 INSTCR,NLUIF(450),NFIC(1575),
3 INSTCR,NLUIF(450),NFIC(1575),
MLUUC(1575),CIF(450,107),NCIF(450),USE(14),
MLUUC(1575),CIF(450,107),NCIF(450),USE(14),
A LOWC(450),HIGHC(45J),FI(1110),FJ(111C),ZLANK2,
A LOWC(450),HIGHC(45J),FI(1110),FJ(111C),ZLANK2,
MLUUC(1575),CIF(450,107),NCIF(450),USE(14),
MLUUC(1575),CIF(450,107),NCIF(450),USE(14),
२ミ\triangleL DELTA,MOBSUE,NENLMT
२ミ\triangleL DELTA,MOBSUE,NENLMT
A LOWC(450),HIGHC(45J),FI(1110),FJ(111C),ZLANK2,
A LOWC(450),HIGHC(45J),FI(1110),FJ(111C),ZLANK2,
013
013
LこEICAL*1 SCUNOS
LこEICAL*1 SCUNOS
C14
C14
C.JMMON/LAST/ DELTA,NCYCLE,MAXITR,MAXRNG,GDEOUG,NNEN,DELNEW,
C.JMMON/LAST/ DELTA,NCYCLE,MAXITR,MAXRNG,GDEOUG,NNEN,DELNEW,
1
1
NEWLMT,
NEWLMT,
N=WLMT,'MEBSUZ,IGRAF,SKIP,SOUNDS
N=WLMT,'MEBSUZ,IGRAF,SKIP,SOUNDS
015
015
1
1
016
016
M=NLMT,MSUSUS,MOZSUS,IGRAFF,SKIP,SOUNDS
M=NLMT,MSUSUS,MOZSUS,IGRAFF,SKIP,SOUNDS
C....MJЗSU3: YINIMUY OISTANCE BETNEEN CREATED SUZSTATIONS IN A CYCLE......
C....MJЗSU3: YINIMUY OISTANCE BETNEEN CREATED SUZSTATIONS IN A CYCLE......
0 1 7
0 1 7
O19
O19
\zeta
\zeta
005
005
Cllol
Cllol
Cllol
Cllol
Cllol
Cllol
Cllol
Cllol
Cl1
Cl1
NFIC,NLUIC,CIF,NCIF, NBCUNI,FJ,LOWC,HIGHC,RLANK
NFIC,NLUIC,CIF,NCIF, NBCUNI,FJ,LOWC,HIGHC,RLANK
016

```
                                016
```



```
                                0
```

 0
 5 PZONE(1575,3),AGE(1575),HWY(1575),HWYP(1575),
 5 PZONE(1575,3),AGE(1575),HWY(1575),HWYP(1575),
 O 2\triangleIL(1575),BUS(15T5),STRT(1575),STRTP(1575),
 O 2\triangleIL(1575),BUS(15T5),STRT(1575),STRTP(1575),
 40
40
C...MJ3SU3: MINIMUM SISTANCE BETNE=N CREATED SUOSTATIUNS IN A CYCLE.....
C...MJ3SU3: MINIMUM SISTANCE BETNE=N CREATED SUOSTATIUNS IN A CYCLE.....
FE\triangleD(IREAD,1010) GOEBUG,MXNSUE,3CUNOS,DELTA,
FE\triangleD(IREAD,1010) GOEBUG,MXNSUE,3CUNOS,DELTA,
010
010
* SKIP,IGRAF,NENLMT,NNEN,DELNEN,
* SKIP,IGRAF,NENLMT,NNEN,DELNEN,
020
020
* SKIP,IGRAF,NENLMT,NNEN,DELNEN,
* SKIP,IGRAF,NENLMT,NNEN,DELNEN,
421
421
321
321
1こ1こ F-2タ\TにI5,4x,ME3SUS,NCYCLE,MAXITR,MAXRNG
1こ1こ F-2タ\TにI5,4x,ME3SUS,NCYCLE,MAXITR,MAXRNG
ここ1こF=マタAT(こI5,4X,L1,F1J.3,/,2I5,FIC.3,2I5,/,F10.3,3I5)
ここ1こF=マタAT(こI5,4X,L1,F1J.3,/,2I5,FIC.3,2I5,/,F10.3,3I5)
022
022
C
C
W'RITE!ILIST,I2OOIBOUNDS,DELTA,SKIP,IGRAF,NEWLMT,
W'RITE!ILIST,I2OOIBOUNDS,DELTA,SKIP,IGRAF,NEWLMT,
023
023
024
024
W'RTE:ILIST,I 2OOISOUNDS,DELTA,SKIP,IGRAF,NEWLMT,
W'RTE:ILIST,I 2OOISOUNDS,DELTA,SKIP,IGRAF,NEWLMT,
1200 F2२41T(IH1,/////,1X,130('X'),//,T5U,'CASE PARAMETERS',//,
1200 F2२41T(IH1,/////,1X,130('X'),//,T5U,'CASE PARAMETERS',//,
* T+2, 'SOUNOS ,1X,130('X'),//,T5S,'CASE PARAMETERS',//,
* T+2, 'SOUNOS ,1X,130('X'),//,T5S,'CASE PARAMETERS',//,
* T\div2, SOUNOS ध, 5x,L1,//,
* T\div2, SOUNOS ध, 5x,L1,//,
\# T+0, こELTA , %FG.2,//,
\# T+0, こELTA , %FG.2,//,
* T+0, 'SkIP , İ ,/l,
* T+0, 'SkIP , İ ,/l,
\# T+0, IIGRAF , IO !//,
\# T+0, IIGRAF , IO !//,
* T+O, IIGQAF ', IG ,//,
* T+O, IIGQAF ', IG ,//,
* T+S, IVENLVT , 16 FO.2 ,//,'
* T+S, IVENLVT , 16 FO.2 ,//,'
1, 03!
1, 03!
031
031
032

```
032
```



```
1イ,1ここ('X') ,///)
```

C

```
C
こAL GAT-ER
こAL GAT-ER
    २ミT!12N
    २ミT!12N
ENO
```

```
ENO
```

```


```

σ
..............2ミ10 INTERMEDIAT RESULTS
CALL EETCH
C.........テ̇THER LOADS
CAL! GATHER
STO?
ミvo

```
c． 65
065 070
072
074
076
073
080
082
034

SUミマDUTINE GATHER
GTH2000？
\(=\)
6
6
6
```

 AL!=!ル
    ```

4LLてマつ
zeUnes
Cく＇r＂（I）
こYCLE
ここLVEW
ここLTA
2IST
פV？？CC（I）
ミタアTY（I）
三STS
－JLL（S）
IGRAF
さTEス
－I4IT（s）
Loss（s）
MAXITR
\(4 \perp \times 2 \mathrm{VG}\)
YフきSUB
NEYCLE
\(V E\) VL \(1 T\)
vVミN
NVフスロ
iNSES（I）
NGUE
VSUZIN
VTHS
NZRCC（J）
コンミリヲ
こVマLo
วGIVT？
DOIVTE
        Logical - true if all substations have reacheo
                THEIR CADACITY

LUGiCal－true if all substations have reached THEIR CADACITY
LOGICAL－TRUE IF aLL NCN－SUSSTATION CELLS have zerd demand（fully＇gathered＂）
LQGICAL－TRUE IF THE BOUNDS OPTION IS IN EFFECT
CURRENT CELL DEMAND FCR CELL II＇（IN M＇N）
UNE CIMPLETE RUN WITH A GIVEN NUMSER OF SUESTATIONS
CECREASE IN NNEW PER CYCLE
MAX AMOUNT CF LDAO GATHERED FROM A EIVEN CELL gy any substation in an iteration（mw）
DISTANCE FROM SU3STATION TO CELL SEING GATHERED DEmand of the non－zerg cell＇i＇
LoGical－true if the current demand fcr cell ＇I＇IS ZERC
SAST GRID CCORDINATE OF SU3STATION
LUGICAL－TRUE IF SUBSTATIJN＇S＇HAS REACHED ITS CAPACITY
THE NUMBER GF ITERATIONS BETWEEN PLOTS AFTER THE FIRST FIVE
THE ITERATION NUMBミR．AN ITERATION IS CNE PASS of＇eathering＇through all the suistations
MAX DEMAND FOR SUBSTATION＇S＇（IN MW）
SUSSTATICN＇S＇LOSS IN MWFCELL DISTANCE
THE MAXIMUM NUMBER OF ITERATIONS PER CYCLE
THE MAXIMLM RANGE THE PROGRAM WILL REACH OUT TO＇EATHER＇LOAD TO A SUESTATION
MINIMUM DISTANCE BETWEEN SUBSTATICNS CREATED IN A GIVEN CYCLE
THE MAXIMUM NUMSER OF CYCLES ALLGWDED
CAPACITY OF CREATED SUSSTATIONS
THE NUMBER CF SUBSTATIONS TO BE CREATED AFTER the first cycte
THE NUMBER OF NÜN－ZERO CELLS
THE NUMBER UF SUBSTATIONS SUPPLYING CELL＇I＇
THE NUMBER OF SUSSTATIONS
THE NUMEER OF ORIGINALLY SPECIFIED SUESTATICNS
NORTH GRID COCROINATE OF SUBSTATICN
the cell refgence number of the non－zero CELL＇J＇
the＇OLD＇NUMEEz of SUBStations，from the last CYCLE，PLUS ONE
EGUAL TO 1 IF SUSSTATION IS OVERLOADED
PIINTER．FROM（ESTS，NTHS）TO THE CELL RECORD FOR THAT SUBSTATION
POINTER FROM（E，N）TO THE CELL RECURD FOR

GTトRの004
XGTHECEOS
GTHROOO8
GTHROD10
／GTHROO1？
GTHROC14
KGTHRCO1́
－GTHRCO19
＝GTir20c20
GTHROO22
GTHRCO24
GTHRCO26
GTHROC23
GTHRC030
GTHROC32
GTHROO34
GTHROO36
GTHR003：
GTHRCC4O
GTHRCO42
GTHROO44
GTHRO046 GTHROO48 GTHROU50
GTHROC52 GTHRC054 GTHROO56 GTHRCO 58 GTHR0060 GTHK 0062 GTHROOS4 GTHROOSS GTHROU68 GTHROOTO GTHROOT2 GTHROO74 GTHRCO75 GTHRC079 GTHRCOEO GTHRCO8？ GTHROO\＆ GTHPOOR6 GTHROO38 GTHRCDOJ ETHROOQ2 GTHROO94 GTHR0096 GTHROC9 GTHRC 100 GTHRO1：2 GTHRC104 GTHRO106 GTHROIUE GTHRC110 GTHRO112 GTHRO：14

```

 c ll,
    ```

```

 'A5','85','C5','D5','E5','F5','GG5','4E','I尔'.'J5',
 'AS','3O','CO','DO','ES','FS','GG','圠','IG','Jo',
    ```




```

 '1吕'11','12','13','14','15','16','11','15','19',
    ```



```

 '50','51','52','53','54','55','55','57','58','55',
 '50','61','62','53','64','65','50','57','68','64',
 '70','71','72','73','74','75','76','77','78','79',
    ```


```

C
DATA TITLE2/ 'CELL',' CEM','ANOS',' AFT','ER ',
! ',' ITE','RATI','INS ','OC C','YCLE',
SUミAミR/180*: 1/,SUPPLY/9450*0.J/, STAR/'**/
こ
YNDEY = 1
I=(IGEAF .LT. 1) IGRAF=5
\sigma
२ミAO (IREAD, 1060) (NUMBER (J), J=1,500)
1こもこ=つマMAT(25A3)
OO FI = 1,NC=LL
VSSS(I) = 0
SSS(I,1)=200
EMOTY(I) = FALSE.
XSUB(I) = .FALSE.
C
ADD E.ここL TO CELL DEMANR OF CELLS WITH, ZERO DEMAND
SC THAT THEY WILL HAVE AT LEAST ONE SUBSTATION ASSIGNED
こKNa(I) = こELLKW(I) * 0.001
IF(ごNM(I) .LE.0.0) CKWM(I) = 0.0CI
う こINT:VUミ
IF(4XVSリ3 .ST. 200) 4XNSUS = 200
22 3 I = 1,4\timesNSUS
0.J 3 J = 1, 2
@ SUELJC(I,J)= ELANK
C

```

```

 I~(GつミこUG.GE. 2) NRITE(ILIST, caCO)(I,NSSS(I), I=I,NCELL)
 ดのに0-2) NRITE(ILIST,COCO)(I,NSSS(I),I=1,NCELL)
    ```

```

GTHRN275
CXXXXXXXXXYXXZXXXXXXXXXXXXYXXXGTHROSTS
C
0280
GTHRC292
GTHRO?\&4
C........RミAJ SUBSTATITN LOCATIONS ANS MAXIMUM DESIEN DEMANDS
GTHRO2O6
VSUZ = ? GTHRC23S
STニアスつ = .VALSE.
GTHQこ2Oこ

```


GTRRCISO GTHRCI 32 GTHRU194 GTHRO186 GTHRO138 GTHROIOO ETHRC10？ GTHRO194 ETHRJ196 GTHRO198
GTirRC200
GTHRD2 2
GTHRC204
GTHRO20S
GTHRก2 39
GTHRO210
GTHRÛ212
GTHRO214
GTHRO216
GTHRO21S
GTHK0220
GTHRO222
GTHRO224
GTHRE 226
GTHRO229
GTHRO230
GTHRJ232
GTHRO234
GTH20236
GTHRO23S
GTHRO240
GTHR 0242
GTHRO244
GTHRO248
GTHRO248
GTHRO250
GTHRC252
GTHRO254
GTHRD256
GTHRC25S GTHRO250 GTHRS262 GTHRO264 GTHRO25S GTHRO2S\＆ GTHRO270 GTHRO272
こ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTHROZT4 I二（GつミシUG •GE．2）NRITE（ILIST，CaCO）（I，NSSS（I），I＝1，NCELL） GTHRC275 GTHRO27？
CXXXXXXXXXXXZXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXGTHROZ GTHRC292 GTHRO296

GTHQこ20に

GTH2त？
```

 llol
        ```

```
GXXXGTHROLOS
```

```
GXXXGTHROLOS
 34 こYCL三 = こYこLE +1
 34 こYCL三 = こYこLE +1
 I = 'GYCLE.GT. NCYCLE, GO TC 200
 I = 'GYCLE.GT. NCYCLE, GO TC 200
 I=(CYCLE .NE. 1) VNEW = NNEN - DELNEW
 I=(CYCLE .NE. 1) VNEW = NNEN - DELNEW
 I=(NVEN,LT, 1) NVEW=1
 I=(NVEN,LT, 1) NVEW=1
 ~ AVGE= C
 ~ AVGE= C
 35 ALL=UL = .TRUE.
 35 ALL=UL = .TRUE.
 RANGE= RANGE +1
 RANGE= RANGE +1
 I=(R,NGE .GT. M\DeltaXRNG) GO TC 110
 I=(R,NGE .GT. M\DeltaXRNG) GO TC 110
 GTHRC,410
 GTHRC,410
 GTHRO412
 GTHRO412
 GTHRO414
 GTHRO414
 GTHRC416
 GTHRC416
 GTHRC418
 GTHRC418
 GTHRO420
 GTHRO420
 GTHRO422
 GTHRO422
 GThRJ424
 GThRJ424
CXXXXXXXXXXXXXXYXXXXXXXXXXXXXXXXXXXYXXXKXXXYTHRRO4ZG
CXXXXXXXXXXXXXXYXXXXXXXXXXXXXXXXXXXYXXXKXXXYTHRRO4ZG
 I=(ミフミQUG .GE. こ) NRITE(ILIST,G尹0?)(I,NSSS(I),I=1,NCELL)
 I=(ミフミQUG .GE. こ) NRITE(ILIST,G尹0?)(I,NSSS(I),I=1,NCELL)
 GTHRO4?8
 GTHRO4?8
EXXXXXXXXXXXX:XXXGTHRO4 SC
EXXXXXXXXXXXX:XXXGTHRO4 SC
 1LLプO= .TRUE.
 1LLプO= .TRUE.
 OD 33 CELL = 1,NCELL
 OD 33 CELL = 1,NCELL
 IF(xSUう(CELL)) Gח TO 38
 IF(xSUう(CELL)) Gח TO 38
C
C
 I=にくWM(CELL) .GT. O.0う) GO TO 37
 I=にくWM(CELL) .GT. O.0う) GO TO 37
<
<
 #MCTY(CELL)=.TRUE.
 #MCTY(CELL)=.TRUE.
 GO TO ? 2
 GO TO ? 2
 3.7 ALLZQO = .FALSE.
 3.7 ALLZQO = .FALSE.
 ミ乡קTY(C三LL) = .FALSE.
 ミ乡קTY(C三LL) = .FALSE.
 3氵 CJNTIVUE
 3氵 CJNTIVUE
 IF(土LLZRO) GO TO ?00
 IF(土LLZRO) GO TO ?00
 4) ITE? = ITER +1
 4) ITE? = ITER +1
 IF(ITER .GT. MAXITR) CC TO 110
 IF(ITER .GT. MAXITR) CC TO 110
 IF(RANGE.GT. MAXRNG) GO TC 110
 IF(RANGE.GT. MAXRNG) GO TC 110
 =LAG = 3
 =LAG = 3
 5: 50 12J SUZ = ONSU3, NSUS
 5: 50 12J SUZ = ONSU3, NSUS
 I=(CULL(SUP)) GO TO 100
 I=(CULL(SUP)) GO TO 100
 VTHS = NTH(SUS)
 VTHS = NTH(SUS)
 #STS = EST(SUE)
 #STS = EST(SUE)
 POINTE = POINT(ESTS,NTHS)
 POINTE = POINT(ESTS,NTHS)
 I=にくNM(POINTZ) .GE. LIMIT(SUZ)) GC TO 90
 I=にくNM(POINTZ) .GE. LIMIT(SUZ)) GC TO 90
 ESTART = ESTS - RANGE
 ESTART = ESTS - RANGE
NSTART = VTHS - RANGE
NSTART = VTHS - RANGE
 EENC = ESTS + २ANGE
 EENC = ESTS + २ANGE
 VEND = NTHS + RANGE
 VEND = NTHS + RANGE
G THE FOUR BRUNDS ARE INITIALIZED IN BLOCK DATA (LANDUSE 2501)) GTHRO439
G THE FOUR BRUNDS ARE INITIALIZED IN BLOCK DATA (LANDUSE 2501)) GTHRO439
 I=(ESTART.LT.WSOUND) ESTART = WBOUND
 I=(ESTART.LT.WSOUND) ESTART = WBOUND
IF(NSTART.LT.SBOUND) NSTART = SBOUND
IF(NSTART.LT.SBOUND) NSTART = SBOUND
 IE(ミEND.GT.EZOUND) EEND = EROUND
 IE(ミEND.GT.EZOUND) EEND = EROUND
= IF TH= IF(NEND.GT.NSCUND) VEND = VESUND,
= IF TH= IF(NEND.GT.NSCUND) VEND = VESUND,
- IF THE zOUNOS FEATURE IS NOT IN EFFECT, GO TO 9060
- IF THE zOUNOS FEATURE IS NOT IN EFFECT, GO TO 9060
 IF(.NOT. BCUNOS) GO TO 906O
 IF(.NOT. BCUNOS) GO TO 906O
C CHECK TJ SEE IF SUB IS WITHIN SCUNDS; IF NOT, GO TO 100
C CHECK TJ SEE IF SUB IS WITHIN SCUNDS; IF NOT, GO TO 100
IF(NTHS .LT. NSTART.OR. NTHS.GT. NENO) GJ TC lCO
IF(NTHS .LT. NSTART.OR. NTHS.GT. NENO) GJ TC lCO
 :E(ESTS .LT. ESTART .CR. ESTS .GT. EEND) GO TO IOJ
 :E(ESTS .LT. ESTART .CR. ESTS .GT. EEND) GO TO IOJ
 OCO 0O 30 E = ESTART, EEND
 OCO 0O 30 E = ESTART, EEND
 DO 55 V = VSTART,NENE
 DO 55 V = VSTART,NENE
 O.OINTZ = PCINT(E,N)
 O.OINTZ = PCINT(E,N)
C IF THIS CELL IS THE SAME AS SUS, GO TO ES
C IF THIS CELL IS THE SAME AS SUS, GO TO ES
 I=(POINT3.EV. POINT2) 50 TO j5
 I=(POINT3.EV. POINT2) 50 TO j5
C IF THIS CELL IS OUT EE THE SERVICE AREA, GO TO 65
C IF THIS CELL IS OUT EE THE SERVICE AREA, GO TO 65
I=(JOINT3 .EQ. O) GO TO 6S
I=(JOINT3 .EQ. O) GO TO 6S
 GTHRO432
 GTHRO432
 GTHRO432
 GTHRO432
 GTHRC436
 GTHRC436
GTHR0433
```

GTHR0433

```
```

        GTHRC436
    ```
 GTHRC436
 GTHRO440
 GTHRO440
 GTHRO442
 GTHRO442
 GTHRO444
 GTHRO444
 GTHRC446
 GTHRC446
 GTHRO442
 GTHRO442
 GTHRO450
 GTHRO450
 GTHRO45?
 GTHRO45?
 GTHR0454
 GTHR0454
 GTHRO45S
 GTHRO45S
 GTHRO458
 GTHRO458
 GTHRO460
 GTHRO460
 GTHRO452
 GTHRO452
 GTHRO454
 GTHRO454
 GTHRO4S4
 GTHRO4S4
 GTHR0456
 GTHR0456
 FINSTARTAT SBDUND) NSTART SIOUND
 FINSTARTAT SBDUND) NSTART SIOUND
GTHRO468
GTHRO468
8
8
GTHRC47C
GTHRC47C
GTHRC472
GTHRC472
GTHR0474
GTHR0474
ETHRC475
ETHRC475
GTHR0475
GTHR0475
@START = ESTS - RANGE
@START = ESTS - RANGE
GTHRC480
GTHRC480
 GTHRO482
 GTHRO482
 GTHRC494
 GTHRC494
 GTHRO436
 GTHRO436
 GTHRO400
 GTHRO400
GTHRO492
GTHRO492
GTHRO494
GTHRO494
GTHRC406
GTHRC406
GTHR0498
GTHR0498
GTHROミn0
GTHROミn0
GTHRO502
GTHRO502
GTH20504
GTH20504
GTHROEjo
GTHROEjo
GTHRO50&
GTHRO50&
GTHRO510
GTHRO510
GTHRO512
GTHRO512
GTHRC514
GTHRC514
GTMRO516
GTMRO516
GTHRO518
```

GTHRO518

```
```

            CくがMO = CKNM(PEINTE)
            IF(×Sリミ(POINT3)) GO TO 51
            I=1 ミ40Tr(0,INT3)) GJ TJ S5
    C
IF(弓OミFUG .GE. 2) WRITE(ILIST,9069)
l CPCL=,RANEE,ITER,SUS,PCINTE,POINTZ,OKWMP,CKWM(POINT2),
VSSS(PGINT3)
OO.0 FORNAT(IX,'CYCLE',IZ,IX,'RANGE',I3,1X,'ITER',I4,IX,'SU3',I4, IX,
1 'DPINTE:',IE,IX,'POINT3:',I5,IX,'CK'NMP:',F8.Z,2X,'CKNM(SUZ):',
2 =2.2,2X,'NSSS(OOINT3):',Ió)
C
C
GつTこ ミミ
O WE NOW KND'N THAT POINTZ POINTS TO A SUBSTATION OTHER THAN SUB
C EIVO DUT WHICH SUESTATION IT IS
51 22 シ4 i = 1,NSUS
I=(I .EQ. SUE) GO TO 54
EOINTS = POINT( EST(I), NTH(I) )
IF(OPINT? NE. PCINTS) GC TO 54
`WE VCN <NUN THAT DOINTS POINTS TO SUBSTATION 'I'             I=にくNMD.LE. LIMIT(I)) GO TO 65` IT IS <VON KNOWV THAT SUBSTATION 'I' IS OVERLDADED
OVRLD = 1
SUR!? = I
WマITミ(ILIST,2OOC) DOINT3,E,N,I,LIMIT(I),CKWMP
こCO: FこロM4T(1H1,//////////,1X,13C(1X'),
* //1,5之X,'OV=RLDADED SUESTATION',
l ///,GOX,'CELL:',I5,
//, b0x,'EAST:',I4,
3 //,EOX,'NORTH:',I4,
4 //,0こX,'SUSSTATION= ',I4,
5 //,j?x,'LIMIT:',FG.2,
S /1,SOX,'LOAD:',F3.2,/1/,1X,13C('x'))
GO TO 55
54 ESNTIVUE
N2ITミ(ILIST,1110)POINT2,POINT3,SUB,CKWMP,CKWM(SUB),ITSR,
1
RANGE,CYCLE
1112 F2RMAT(1F1,20x,'XSUS = TRUE, SUT SUSSTATION NOT FOUND IN',
' CURRENT LIST',///,
T40, 'PEINT3 ', I4, //,
T40, 'SU3 ', I4, //,
!40, 'CKWMD ',FE.2, /1,
T40, 'CKNM(SU5)',FE.2, //,
T4C, 'ITER ', I4, //,
T40, 'RAVGE ', I4, //,
T40, 'CYCL三 ',I4,/////|
SOT0 55
55 CJNTI VIS
OIF = CELTA
IFEOVRLD.ER. 1) GO TO 56
1=(C<NVD.LT. CELTA) DIF = CKINMP
I=(C<!NM(?EINT2)+DIF.GT. LIMIT(SUB) ) GO To 90
こくw(コロIVT3) = EKiNMつ - OIF
IF(CKNM(POIVT3) -LT. O.OCC1) EMPTY(POINT3) = .TRUE.

```

 GTHP.O522

GTHP．O522
GThRC524
GTHRC525
GTHRO528
GTHROS30
GTHRC 532
GTHRO534
GTHRO536
GTHRO538
GTHRO540
GTHRO542
GTHRO544
GTHRC546
GTHRC548
GTHRO550
GTHFO552
ETHRO554
GTHRC556
GTHRO558
GTHKOS50
GTHRO562
GTHROS64
GTHRO566
GTHRO56C
GTHR0570
GTHRO572
GTHR0574
GTHR0576
GTHRO578
GTHRO580
GTHRC532
GTHRO594
GTH20536
GTHRO588
GTHRC59C
GTHRO592
GTHRC504
GTHRO596
GTHRO508
GTHROEOO
ETHROSO2
GTHROSO4
GTHRO636
GTHRO508
GTHRO610
GTHRÓ́l？
GThROS 14
GTHROS16
GTHRO619 GTHROS20
GTHROO22 GTHROS 24 GTHRCS26 GTHRO628
GTHROS30
GTHROS32
GTHROS34
```

    ここN&(コ.JIVTZ) = こイNM(POINT?) + DIF GTHRC;OZG
    Si22 = =LこAT( (ESTS-E)**2 + (NTHS-N)**2 ) GTHROS30
    CIST = SSRT( SGRZ)
    LOSS(SU=) = LUSS(SUZ) + DIST * DIF
    G0 TO 57
    EO JVRLJ = - 
    OELS = CKWMP - LIMIT(SUEID)
    IF(CELS .LT. こELTA) DIF= DELS
    I=にく棌(つCINT2)+OIF.GT. LIMIT(SUZ) ) GOTO O.
    こぐN(PCINTE) = CKWMD - OIF
    CKMM(POINT2) = CKWM(POINT2) + OIF
    SiR2 = ELOAT( (ESTS-E)**2 + (NTHS-N)**? )
    DIST = SごRT( S&R2 )
    LISS(SUこ) = LOSS(SUミ) + DIST * OIF
    LJSS(SUSIこ) = LOSS(SUBID) - DIST * DIF
    SJPO!Y(POINT3,1) = SUPDLY(POINTS,1) - DIE
    VSS52 = VSSS(POINT3) GTHROÓTD
    G] TO (50,5心,SO,50,SO,GE), NSSSP GTHROS72
    I=(VSSSP .NE.O) GO TO 66 GTHROS74
    VSSS(OCINTE) = 1
    GTHR0676
    SSS(2)IMT3,1)= SUE
    SUPPI_Y(PDINT3,1)= OIF
    GO Tg js
    50 20 Sl J = 1,NSSSP
    IF(SSS(OGINT3,J) .EQ. SUS) GO TO 64
    \therefore1 CONTIVUE
    J=VSSS? + 1
    VSSS(20IVT3)= J
    SSS(つOINTE,J) = SUB
    SIJPOLY(POINT3,J)= DIF
    GO TO so
    j j = j
    IF(SSS(ONINT3,J) •NE. SUS) GO TO ÉS
    S+ SUDOLY(OOINT3,J) = SUPPLY(POINT3,J) + DIF
    jう =L1; = 1
    C
C
=5cこNTINUE
C
まこCONTIVリミ
c
ALL=IJL =.FALSE.
\#OTJ 100
Э` FULL(SU`) = .TRUE.
120 CONTIVUE
!=(!TミR.LE. 5) CO TO 101
IF( MOC(ITER,IGRAF).EQ. C) SO TC 101
I=( S<ID .ES. 1) GC TO l06 GTHROT3E
GTHR0675
C.........J:OT CKNM AFTER EACH ITERATION, TITLE GIVESITERATICN \#........GTHROT3`
1)1 TITLE?( ) = VUMOER( ITER) GTHROTAO
T!TLE2(I2) = NUMES2 (CYCLE) GTHRC742
TITLミこ(15) = VLMBER (RAVGE) ETHRO7SL
20 123 J=1,20
1:3 TITLE(J)=TITLE2(J)
GTHRO746
GTMRこ748

```
```

            ここ1こ三J=1,NCELL ETHROT5O
    C (2ミこA!L THaT PLET4 MULTIPLIES JU'MMY ミY 0.25)
1-5 כ!:Mav(u)=CKNM(j)*4.0+1.3 GTHRO754
CALL دLOT4 (INDEX)

```

```

    i=(A!LFUL) GOTこ 110
    GこTに35
    11: こENTIVUE
    I=(ITER.GT. MAXITR) ITER = MAXITR
    E..................LIST CKWM.

```

```

        GTHRO75?
        GTHRO755
        GTHRC758
        ETHRO750
        GTHROTSZ
        GTHRO754
    GTHRC75́8
    ```

```

        A /,j0x,CYCLE: ',I5,
        1//,3(1CELL CKWM 1),/,S(1X,I4,=09.2,1X))
        GTH20772
        GTHRO774
        |,I, s(1X,14,F09.2,1X)) GTHRO776
    ```

```

Z
I=(NSUS .LE. O) GO TO 130
GTHR0732
GTHRO7S4
I=(GこミマJG.GE.1)WRITE(ILIST,IC7C)CYCLE,(I,SUBABR(I),EST(I),NTH(I), GTHROTS6
1 (SU3LOC(I,J),J=1,2),POINT(EST(I),NTH(I)), LIMIT(I),LOSS(I),
GTHRO7BE
? EKNM( DOINT( EST(I),NTH(I) ) ),I,
I=1, vSUE)
1C75 = JRMATYIH1, SOX,'SUESTATICN DATA AFTER CYCLE',I3,////,
F=\mp@code{MATTIH1,'SOU,'SUSSTATICN OATA AFTER CYCLE',I3,////,}
TT5,'CELL',TEO,' LIMIT ',T100,'LOSS',T11J,'OEMAND',/,
T7,'CELL',TEO,',T30,'MIT ',T100,'LOSS',T11J,'DEMAND',/, ETHRJ79S

```


```

                    F7.2,T109,F7.2,10X,Iう)1
    =
GTHRO806
C.
C.....こマミATミVミW SU3STATION SITES IF ALL VON-SUBSTATION CELLS GTHROR12

```

```

    IFCYFLE.EQ. NCYCLE) GO TO こOO
    GTHRC814
I=(NSUUS .EG. MXNSUき) GO TO 20?
GTHRO815
i弓O VNZRO = b
GTHRO81E
ALLZRO = .TRUE. GTHRO32C
IF(VSUE .GE. ZO .ANJ. GDESUG .GE. 1) WRITEIILIST,IOJJ)CYCLE, ITER GTHRO\&22
1にミO =ORM\&T(1H1,1OX,'LIST OF ALL NCN-ZERO CELLS AND THEIR JEMANDS',/, GTHRCE24
1 ICX,'\triangleFTER',Iz,' CYCLES ANO',IS,' ITERATIONS',////)
GTHR08?6
2J 152 CELL = 1,NCELL GTHROE2S
IF( XSUミ(CELL) .こR. EMPTY(CELL) ) G丁 TO 150 ETHRC\&30
C\NMC = CXWM(CELL) GTHRDE32
C<NMC = CKWM(CELL) , NTTE(ILIST,1040) CELL, CKWMC
IE(VSUE GE. 20) WRITE(ILIST,1040) CELL, CKWMC GTHROE34
NNZRO = NNZRO + 1
GTHROE34
NZRJC (4NZOO) = C5LL
GTHROS3\&
ONZROE(NNZRO) = CKWMC
GTHROE4C
AL!LRJ = .FALSE.
GTHRO842

```

```

    1Ej COVTIVUS,
    GTH0.こ344
GTHROR46
I=1 HLZZO, , GO TO 200
GTH20843
ITER=0
GTHROS5C
2NSU3 = NSUZ +1
22 15% L = 1,NVEN
GTHROE52
T2AこくL=?
GTHRORE4
15s 2MAX= Cl
GTHROeje
T2AこKL = TRAC<L + 1
GTHROS53
GTHROEj0
IM\DeltaX=?
GTHROES2

```
```

            フコ 1ち?J=1, VNZマO GTHROES4
            IF(RMAX.GT.ONZROC(J)) GO TC 16C
            RY\DeltaY = ONZRCC(J)
            IVA< = J
    lこ% CONTTVUS
            I= IMAX .EQ. う) GO TO 200
    = IF THELAरGEST OEMAND UNGATHERED IS LESS THAN O.25, AND
A) NSUF .GE. ONSUZ ... GO TO 34
3) NSUZ .LT. JNSUS (NO NEN SUBSTATIONSI GO TO 200
I=( 244X .LT. O.25 .AND. NSUS .GE. ONSU3 ) GO TO 34
I=( マツ\&% .LT. O.ट5) GO TO 20G
VSUZ = VSUR + 1
I=(VSUJ.'心T.MXNSU3) GO TO 170
NZRCEI = NZROC(IMAX)
วvz२Jこ(IM\Deltax)=0.0
LSES(VSUQ) = 0.25 * CKWM(NZROCI)
LIMIT(`SUQ) = NSWLMT
FJL!(VSUS) = .FALSE.
GTHROES6
GTHRC:36?
GTHRO870
GTHRO87?
GTHR0874
GTHR2876
GTH2CE7S
ETHROQ30
GTH203S2
GTHROE34
GTHRC856
GTHRO85s
GTHRC890
GTHRCE92
GTHROS94
GTHRO896
GTHRC80\&

```

```

    KVSUZ = VSUB - NSUSIN GTHRO9O2
    SUEA3R(NSUE) = NENNAM(KNSUE)
    ETHRC904
    O0 1\leqslant5 J=1,2 GTHROQO6
    lj5 SUJLIU(NSUE,j) = DISTRT(NZRCCI,J) GTHRCOOE
        ミST(NSUZ)= E\triangleST(NZROCI)
        NTH(NS!j:) =NORTH(NZRCCI) GTHROF12
    GTHRO910
        I=(L.E2. 1) &丁 TO 108
        L2=L-1
        OC 1:5 IL = 1,L2
        SGR2=FLOAT((EST(NSUZ-IL)-EST(NSUB))**2 +(NTH(NSUB-IL)-NTH(NSUZ))
        l **? )
        OIST = SCQT (S5R2)
        IF(DIST.GT. MDSSUE) GO TO ISÓ
        NSUE = VSUS - 1
            IF(TRACKL.GT. NNZRO, ANL.NSUB .GE. DNSUS, GO TO 34
        IF(TRACKL.GT. NVZRO, ANE.NSUB •GE. ONSUS , GO TO 34, GTHROQ2O
        I=(T२ALKL .GT. NNZRO ) GO TO 2CO
            G)T2 15ミ
    1うó CONTIVUE
    163 DOIVTS = PJINT( EST(NSUE), NTH(NSUR) )
WरITE(ILIST,ICEC) SUBABR(VSUB),POIVTS,
1 (SU3LOC(NSUQ,J),J=1,2),EST (NSUB),
2 VTH(VSUB),LIMIT(NSUB),CKNM(NZROCI),LOSS(NSUB)
12צ) FDRM4T(1म1,////////////////////////,1X,130('X'),////, +0X,

```

```

        こ\X,'NAME: ',A2,//.50X,'CELL:',I5,//,
    ```


```

    4 'MW',///,50X,'PRESENT LOSS:',FE.2,' MW-CELLS',
    4 '/MW',///,50X,'PRESENT LOSS:',FE.2,' MW-CELLS',
    xSU3( כOINTS ) = .TRUS.
            IF(NSSS(JOINTS) .SE. 5) GO TO 169
    VSSS(2OINTS) = VESS(POINTS) + 1
    VSSS(2OINTS) = VESS(POINTS) + 1
    Ij-> CONTIVULE
            GこTJ 34
    170 WRITE(ILIST,1こ50) MXNSUS
    GTHRC914
    GTHRO915
    , (SUENOM,
    GTHRO918
    GTHRO920
    GTH?こ922
    GTHRO924
    GTHRO924
    GTHR0926
    GTHRO029
    GTHRO932
    GTHRO934
    GTHROG3&
    GTHRO93&
    GTHRCO40
    GTHRC942
    GTHRJ044
    ```

```

    GTHRO946
    GTHR0943
    GTHRDQ5J
    GTHRC952
GTHROO54
GTHROO54
GTHROO56
GTHR095?
GTHR095:
GTHROGS2
GT:+R0054
GTHROGSE
GTH2CO50
GTHROO70
GTHRC072
Lこ50 FOPM\&T(1,41,///1//,1X,125('X'),//,10X,'THE PROGRAM NLNTS TE CREATCO,GTHRJGTA
1 MこRE THAN ',I3,' SURSTATIONS',//, LX,1こ5('X')) GTHROOTE

```
```

            VSU? = 4Y\SUz
            の口下こジ
    ```

GTHRO973 GTHRCG32 GTHRU932 GTHROOQ4 GTHROQSS GTHREçg GTHRJ990 GTHR0992 GTHRO994 GTHR0996 GTHR0908 GTHRIOCO
GTHR1002
GTHR10．04
GTHR1006
GTHR1009
GTHR1010
GTHR1012
GTHR1014
GTHRIC16
GTHR1015
GTHR 1020
GTHR1022
GTHR1024
GTHR1026
GTHR1028
GTHR 1030
GTHR1032
GTHR1034
GTHR 1036
ETHR1038
GTHR1040
GTHR1042
GTHR1044
GTHR1046
GTHR1G48
GTHR1050
GTHR1052
GTHR1054
GTHQ1055
GTHRIC5S
GTHR1060
GTHR106？
GTHRIOS4
GTHR1065
GTHR105？
GTHEICTO
GThR1072
GTHR1074
ETHR1076
GTHR1078
GTHR10ミ0
GTHR1082
GTHR10e4
GTHR1086
GTHR109S
GTHR1．29：
```

                TT:,'CEIL',Tミ2,' LIMIT ',TlGO,'LOSS',T110,'DEMAND',/, GTHR1092
    ```

```

                T70,'----',T&O,', ---- ',T1CO,'----',T110,'------1,///, GTHP1005
    ```

```

                    =7.2,T109,57.2,10X,I31)
                    GTHR 1100
    C
IF(ふ)EこルG .GE. 1) WQITE(ILIST,1140)TOTALI,TOTAL2,TGTAL3
C

```

```

        マミT!ノマN
        ENO
        SUBRJUTINE FETCH
    GTHR1102
    GTHR1104
    GTHR1106
    O
GTHR110s
GTHR11110
GTHR1112
GTHR1114
FETCH O1

```

```

IVCLUOS COMMIN INFO FETCH J3
CUAYDN VARIAZLES NO2
¿....................................LANDUSE CSO2
0.02
~
IYOLICIT INTEGER (\Delta-Z)
C
INTEGE२*Z EAST,NCRTH,PLUSE,LUSE,?ZONE,AGE,HWY,HWYP,RAIL, BUS,STRT,
i STRTP,PFOR,OCELL,PCINT,INLIST,USE, INSTOR,NLUIF,
3 IDESUG,CDESUG,NDEEUG,NECUND,SBOUND,ESOUND,WSOUND 018
C
RE\triangleL A२EA,PFORM,FLOAT,PLUIF,CELLKW,LUDFC
020
C22
こ
CJMMJN/MAIN4/ ZONE(1575,3),FDR(1575,3),NCELL,IREAD,ILIST,ICISK,
024
IPUNCH,IDISK2,FEEDER(450),NEDR,FKW(45こ), IDISK4,
? FACTER(14),DEMAND(14),AREA(14),CELLKW(1575), 030
FACTOR(14),DEMAND(14),AREA(14),CELLKW(1575), 030
OISTRT(1575,2),BLANK,PFDRM(1575,3),PLUIF(450,14), 032
TITLE(20),DUMMY(1575),LUDFC(1575,2)}03
こ
CJMMSN/MAIN2/ EAST(1575),NORTH(1575),PLUSE(1575,3),LUSE(1575,3),
0 3 6
j PZENE(1575,3),AGE(1575),HWY(1575),HWYP(1575), 040
j) R\triangleIL(1575),3US(1575),STPT(1575),STPTO(1575), 042
7 PFDR(1575,3),PCELL(1575,3),POINT(6C,70),INLIST,
INSTOR,NLUIF(450),NFIC(1575),
NLUIC(1575),CIF(450,107),NCIF(450),USE(14),
LEWC(450),HIGHC(450),FI(110),FJ(110), SLANK2,
ICEBUG,CDEBUG,NDEEUG,NBCUND,SBOUND,EミOUNO,N?OUND
२,5AO (ILISK2)((IONE (I,J),LUDFC(I,J),J=1,3),(DISTRT(I,J),J=1,2),
1 SELLKN(I),I=1,1575),(FESOEP(I),FKN(I),I=1,450),NCELL,NFDR
c
2\equiv\&の(ISIS<2) ((PZGNE(I,J),J=1,3), EAST(I),NORTH(I), I=1,1575),
1 ((OCINT(I,J),I=1,jC),J=1,7C)
२ミWIND IDISK2
२ミTURN
EvO
CETCH 05
FETCH }2
FETCH O7
FETCH OS
FETCH O9
FETCH 10
FETCH 11
EETCH l2

```
3LOCर JaTA 001
 002
C こコッYJV V\＆マIAPLES 003
AらLミS
AらLミS 002
```IMDLIこIT INTEEミマ（A－Z）054
```

5 － 006
010

```
\zeta
    INTEニミマ*2 EAST,NORTH,PLUSE,LUSE,PZONE,AGE,HWY,HWYP,RAIL,BUS,STRT, O12
    1 STRTP,DEDR,PCELL,PCINT,INLIST,USE, INSTJR,NLUIF, 014
    2 VFIC,NLUIC,EIF,NCIF, FI,FJ,LOWC,HIGHC,BLANK2, O16
    3 IDEEUG,CDESUG,NDSSUG,NEOUND,S3UUND,EBOUND,WEOUND 01E
%
    Rミ1L A२ミA,PFDRM,FLOAT,PLUIF,CELLKW,LUDFC
    EZMWDY /MAIN4/ ZONE(1\Sigma75,3),FDR(1575,3),NCELL,IREAD,ILIST,IDISK,
C
        I DUNCH,IDISKZ,FEEDER(450),NFDR FKW(450),IDI SK4,
        FACTDR(14),DEMAND(14),AREA(14),CELLKW(1575), 030
        ЭISTRT(1575,2),3LANK,PFDRM(1575,3),PLUIF(450,14), 032
        TITLE(20), DUMMY(1575),LUDFC(1575,3)
    COMMDV/MAIN2/ EAST(1575),NCRTH(1575),PLUSE(1575,3),LUSE(1575,3),
        PZONE(1575,3),AGE(1575),HWY(1575), HWYP(1575),
        RAIL(1575),3US(1575), STRT(1575),STRTP(1575),
        PFDR(1575,3),PCELL(1575,3),POINT(60,7)),INLIST,
        INSTOR,NLUIF(45C),NFIC(1575),
        NLUIC(1575),こIF(450,107),NCIF(450),USE(14),
        LONC(450),HIGHC(-50),FI(110),FJ(110),SLANK2,
        IDESUF,CDESUG,NDESUG,NEOUND,SSOUND,EBCUND,WEOUNC
    ッTA 3!ANK/!
                        1/, IREAD/1/,ICISK/4/,IPUNCH/こ/,
    ILIST/3/,3LANK2/' %/, OU6
    2 NESUND/70/,SEOUND/1/,WIOUND/1/,ESOUND/60/, 007
    !DISK2/13/
    ก0%
    ミvD
009
```

Section Three

OBJECTIVE: To gain experience in a non-academic business environment especially in the areas of planning, cost analysis and economics.

One of the main benefits of an internship requirement within the Doctor of Engineering program is the exposure to non-technical and business aspects of industry. My internship has given me the opportunity to experience many of these areas. Some of these areas which will be described below are communications, long range planning, marginal costs, scheduling, and economics.

Prior to the start of this internship, all of my business experience had been military oriented. This military background together with three and a half years in an academic environment provided an inertial force that took a while to overcome. Gradually, I became acclimated to the civilian business environment through guidance by my intern supervisor. Some seemingly insignificant items that were not addressed in the academic communications courses became quite important. One of these is the fact that when one signs a letter on company stationary, that individual is speaking for
the company and should therefore present the company's point of view, even if this point of view is different from his or her own. Another topic that was not covered in my course work is that of evaluating sources of information. There are many sources of information concerning electrical utility practices and procedures. As would be expected, some of these sources are more reliable than others depending to a large extent on the purpose of the information source and the technical expertise of the author. In some cases information is purposely distorted or left out to strengthen the author's position.

For a number of years the electrical utility industry has had a problem with communications between itself and the public, the industry's customers. The utility industry has become an information source that has low credibility in the eyes of the public. During the past few years the industry has been advertising ways in which the consumers of electricity can reduce their electric bills through energy conservation measures. Even though the information is factual, many citizens do not accept these conservation hints. Some of this lack of credibility originates from past industry actions but another portion of it has been caused by the media's misrepresentation of factual information.

Since the Company did not have a doctoral level engineer employed in the Engineering Department, and only one in the whole company, my presence was somewhat of a novelty to many of the engineers. This resulted in a defensive posture toward me which had to be relaxed before communication could take place. As time went on this defensive posture was slowly lowered by a number of the engineers. I feel that one of the contributing factors to the improved communications that resulted was my ability to ask them for assistance with my projects in such a way that anxieties were relieved. As I asked more questions, they started to return questions concerning some project that they were working on at the time. By the end of my internship period, an open communication channel between myself and most of the engineers in the Planning Division had been established.

Working at the vice presidential level within the organization gave me the opportunity to make a number of presentations to the Company's top management. These included both semi-formal discussions concerning the objectives and philosophies of my work as well as formal presentations in which I detailed the results of my efforts. These presentations were usually preceeded by a short description of the Doctor of Engineering program since its existance and objectives
were not generally known by my audience. Interest in the Doctor of Engineering program was evident by the questions asked and the following discussions. My technical presentations were well received and several vice presidents made favorable comments concerning my technical and nontechnical work. Slides for my presentations were prepared by the Company's graphic arts personnel. In addition to the above, I had informal discussions with vice presidents and department heads as the need arose.

My major assignment, the long range system configuration study, allowed me to become familiar with the area of long range planning. I had the opportunity to review many types of long range planning techniques. The long range load forecasting techniques mentioned in conjunction with my load projection work in section two were one area of planning to which I was exposed. In addition to these classical load projection techniques, a number of "system expansion" plans were made available for my review. These expansion plans dealt mostly with the bulk power generation capability of the Company, based on official electrical demand and energy forecasts for the Company. Most of these expansion plans considered some fuel cost escalation but few addressed the fuel availability problem. It makes little sense to plan for a very reliable generating unit
that uses a non-available fuel. The expansion plans typically choose five or six possible combinations of future units and then analyze these configurations for reliability, construction cost, and fuel cost over the expected life of the units.

The electrical utilities that only serve customers within the State of Texas are interconnected through their transmission lines and form what is called the Texas Interconnected System (TIS). Each member of the TIS has certain operating responsibilities and limitations designed for the benefit of the system as a whole. For example, each company is required to have a minimum amount of generating capacity available "on line" at all times. This capacity is required so that the demands of the customers can be satisfied when some piece of equipment breaks down causing a decrease in the total instantaneous generation available. This margin is referred to as "spinning reserve" which is calculated by considering the capacity of the largest unit "on line" and some percentage of the load. The expansion plans must consider this spinning reserve requirement so that each company will be able to meet its reserve commitment in the future.

In addition to expansion plans and long range load forecasting, I was exposed to a small amount of corporate planning
since the Company's goals and objectives were being reviewed during the latter part of my internship period. While not directly involved with the selection of these goals and objectives, I was offered the opportunity to review them and discuss them with my intern supervisor.

Initially, I was assigned two projects: the long range planning task described in section two and in the enclosed report, and an investigation into the calculation of electrical utility marginal costs. During the initial period of my internship, I conducted a literature search to identify published material on the subject of marginal costs of electrical utilities.

The concept of marginal cost is quite simple: determine the cost to produce one additional unit of production. The problem arises when one attempts to define in specific terms what the unit is and what the relevant costs for this unit are, for both the short and long time frames. Many times the total marginal cost is broken into components such as generation, transmission, and distribution marginal costs. The total cost for each of these components is divided by the number of customers served and this average cost used as a marginal cost. In other cases, these costs are neglected and a study based on estimated demand elasticity during different time periods is conducted to
determine what the costs for electrical energy to the consumer should be during those periods.

It was planned that I would work closely with members of the Rate and Economic Research Department on this marginal cost project; however, a number of events prevented this from happening. First of all, the Company was in the midst of a rate case and as could be expected under such circumstances, all personnel of the Rate and Economic Research Department were extremely busy. In addition, the two other Texas Utilities operating companies (TESCO and TP\&L) had decided to employ the services of a consulting engineering firm for the calculation of marginal costs. The decision was made that DP\&L would join the two other companies in this contract. Since I had done the above mentioned literature search, I was invited to be present during the consultant's presentations and to comment on the methods they proposed to use. My literature search for this aborted project increased my knowledge of utility accounting and allowed me to interpret the Company's Financial and Operating Report in a more meaningful manner.

Throughout most of my internship, I was actively engaged in a number of simultaneous tasks. Some of these had quite short suspense times while others were to be
completed at some undetermined future date. This variety of task durations and suspense dates, together with scheduled meetings and events, required me to work up a time schedule so that I could manage my time effectively. This schedule allowed me to avoid the "feast or famine" syndrome by allocating my time to the tasks in an efficient, organized manner.

Research for my primary assignment included the field of economics. The growth rate in electrical energy demanded by customers is influenced by the economic conditions within the service area and the adjacent areas. Local economic conditions and projections for the future were discussed with a number of organizations such as The City of Dallas, The North Central Texas Council of Governments, and the Company's own personnel familiar with local economic conditions. I attended a meeting of the Dallas Chamber of Commerce which brought to light many interesting facts concerning the economic future of the Dallas area. Business periodicals also provided information concerning the economic vitality of this area.

Summary

My one year internship with the Dallas Power \& Light Company has satisfied the requirements for the Doctor of Engineering internship. The three internship objectives have been met.

From a personal point of view, this internship has been one of the best possible. The level within the organization and the willingness of company employees to cooperate was very condusive to a profitable internship experience. The positive attitude of my internship supervisor, Mr. Don M. Deffebach, and his ability to devote time to my many questions was a significant factor in the successful completion of this internship.

Bibliography (Marginal Cost)

1. Cicchetti, Charles J., William J. Gillen, Paul

Smolensky. The Marginal Cost and Pricing of
Electricity. Cambridge Massachusetts:
Ballinger Publishing Co., 1977.
2. Cudahy, R. D., J. R. Malko. "Electric Peak-Load Pricing: Madison Gas and Beyond", Wisconsin Law Review, May, 1976.
3. "Electricity Costing and Pricing Study, Vol. VII: Costing Methodology for Determining Marginal Costs", Ontario Hydro, 1976.
4. Everett, Carol T., and J. R. Malko. "Measuring the Impact of Residential gas and Electric Rates", Public Utilities Fortnightly, December, 1977.
5. Kahn, Alfred E. The Economics of Regulation: Principles and Institutions. New York: John Wiley \& Sons, 1970.
6. Malko, J. Robert. "Implementing Time-of-Use Pricing", Palo Alto, California: Stanford University - Engineering Economy for Public Utilities Seventeenth Annual Program, July, 1978.
7. Malko, J. Robert, Dennis J. Ray, and Nancy L. Hassig. "Time-of-Day Pricing of Electricity Activities in Some Midwestern States", Chicago, Illinois: Midwest Economics Association Annual Meeting, April, 1979.
8. Malko, J. R., Malcolm A. Lindsay, and Carol T. Everett. "Towards Implementation of Peak-Load Pricing of Electricity: A Challenge for Applied Economics", The Journal of Energy and Development, Autumn, 1977.
9. "Long Run Marginal Cost Study", New Bedford Gas \& Edison Light Company, 1978.
10. "Rate Design Study", Chapter 5, The Public Utility Commission of Texas, 1978.
11. Scherer, Charles R. Estimating Electric Power System Marginal Costs. Amsterdam: North-Holland Publishing Company, 1977.

Bibliography (Long Range Planning)

1. Arnold, R. Dustin, Lester A. Burris. "Improved System Reliability by Design Economics", 1979 COPS Conference Record, pp. 19-24.
2. Barron, Wallace L., R. T. Bowles. "Load Management Past, Present, And Future At Florida Power Corporation", 1979 COPS Conference Record, pp. 87-91.
3. Bhavaraju, Murty P., Roy Billinton. "Cost of Power Interruptions-A User's Viewpoint', 1979 Reliability Conference For The Electric Power Industry.
4. 'Businessman's Inventory, Dallas/Fort Worth, 1978 Edition", D.F.W. Airport, Texas: North Texas Commission, 1978
5. Chikhani, A. Y., V. H. Quintana, P.T.L. Chan. "A Stochastic Approach for Scheduling of Hydro Units in a Hydro-Thermal System", 1979 COPS Conference Record, pp. 61-69.
6. "City of Dallas 1977 Performance Report", A City of Dallas Publication, No. 78-1003, 1978.
7. "Costs and Benefits of Over/Under Capacity in Electrical Power System Planning", Electric Power Research Institute Report EA-927.
8. "Dallas Maxi-Facts", Dallas Power \& Light Co., 1978.
9. "Electric Energy Usage and Regional Economic Development", Electric Power Research Institute Report ES-187.
10. "Fuel \& Energy Price Forecasts", Electric Power Research Institute Report EA-411.
11. Garver, L. L. "Effective Load Carrying Capability of Generating Units", IEEE Transactions, Vol. PAS-85, No. 8, Aug. 1966, pp. 910-919.
12. "Generation Planning Processes", Memorandum of ONTARIO HYDRO to the Royal Commission on Electric Power Planning with respect to the Public Information Hearings, 1976.
13. Gonen, T., P. Enouen, J. Fagan, J. C. Thompson, M. E. Council. "Toward Automated Distribution System Planning", 1979 COPS Conference Record pp. 25-30.
14. Green, Barry E. "A New Tool for Load Management", 1979. COPS Conference Record, pp. 114-120.
15. "Impact Assessment of the 1977 New York City Blackout", U. S. Department of Energy Report HCP/T5103-01, 1978.
16. Isaak, David, Joseph Nadal, Richard Timm. "Quantifying the Effects of Residential Energy Programs for Use in System Planning", 1979 COPS Conference Record, pp. 96-102.
17. "Model Code for Energy Conservation in New Building Construction", U. S. Department of Energy Report SAN/1230-1, 1977.
18. "Load and Use Characteristics of Electric Heat Pumps in Single-Family Residences", Electric Power Research Institute Report EA-793.
19. "Long-Range Forecasting Properties of State-of-theArt Models of Demand for Electric Energy", Electric Power Research Institute Report EA-221.
20. "Long-Term Residential Load Forecasting", Electric Power Research Institute Report EA-584.
21. "Methodology for Predicting the Demand for New Electricity Using Goods", Electric Power Research Institute Report EA-593.
22. Mount, T. D.., L. D. Chapman, T. J. Tyrrell. "Electricity Demand in the United States: An Econometric Analysis", Oak Ridge National Laboratory Report ORNL-NSF-EP-49, June, 1973.
23. Patton, Alton D. "Determination and Analysis of Data for Reliability Studies", IEEE Transactions, Vo1. PAS-87, No. 1, Jan. 1968, pp. 84-100.
24. "Residential Demand for Electricity by Time of Day" An Econometric Approach", Electric Power Research Institute Report EA-704.
25. "Review of Overall Adequacy and Reliability of the North American Bulk Power Systems (Fourth Annual Review)", Princeton, N. J.: National Electric Reliability Council, 1974.
26. Samsa, M. E., K. A. Hub, G. C. Krohm. "Electrical Service Reliability: The Customer Perspective", Argonne National Laboratory Report ANL/AA-18, Sep. 1978.
27. Saylor, Charles H. M., Lawrence C. Markel. "Evaluation of Customer Load Management and Its Impact on Energy Management Systems", 1979 COPS Conference Record, pp. 92-95.
28. Shipley, R. Bruce, A. D. Patton, J. S. Denison. "Power Reliability vs Worth", IEEE Transactions on PAS, September/October 1972, pp. 2204-12.
29. Skof, L. V., J. K. Snelson, L. D. Wilson. "Estimating the Cost of Power Outages", New Orleans: ORSA/TIMS Conference, Session MPA7, April 30, 1979.
30. "Factors Which Influence Electrical Growth", Aware, No. 56, May 1975, pp. 7-11.
31. "The Impact of Electric Passenger Autos on Utility System Loads 1985-2000", Electric Power Research Institute Report EA-623.
32. "The National Energy Outlook 1980-1990", A Shell Oil Co. Paper, 1978.
33. "The Residential Demand for Energy", Electric Power Research Institute Report EA-235.

Roger Lewis Fischer

P. O. Box 61

College Station; TX 77840

Birthplace:
Birthdate:
Parents:
Family:
Education:

Experience:

Jamaica, New York
July 11, 1945
Ludwig and Leopoldine Fischer
Married with three children
B. Eng. (Electrical), Manhattan College, 1967
M. Eng. (Electrical), Texas A\&M University, 1977

Research Assistant, Electric Power Institute, Texas A\&M
University,
January 1980 - Present
June 1976 - December 1978
Engineer, Dallas Power \& Light Co., Dallas, Texas (Doctor of Engineering Internship)
January 1979 - January 1980
Officer, United States Air Force (Active Duty)
May 1968 - June 1975

The typist for this report was Alicia D. Calloway

