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ABSTRACT 

 

Investigations into Arsenate-Induced Neural Tube Defects 

 in a Mouse Model. (December 2007) 

Denise Suzanne Hill, B.S., Sam Houston State University 

Co-Chairs of Advisory Committee: Dr. Richard H. Finnell  
          Dr. Kirby C. Donnelly 

 

Neural tube defects (NTDs) are malformations affecting about 2.6/1000 births 

worldwide, and 1/1000 in the United States. Their etiology remains unknown, and is 

likely due to interaction of genetic susceptibility factors with environmental exposure. 

Of the many environmental agents considered to potentially contribute to NTD risk, 

arsenic is one that is surrounded in controversy.  We have developed a model system 

utilizing maternal intraperitoneal (I.P.)  exposure on E7.5 and E8.5 to As 9.6 mg/kg (as 

sodium arsenate) in a normal inbred mouse strain, LM/Bc/Fnn, that is sensitive to 

arsenate-induced exencephaly. We investigated arsenate induced gene expression 

changes using DNA microarrays of embryonic anterior neural tube tissue, as well as 

monitoring of metabolic function in conjunction with the administration of select 

compounds to rescue the normal phenotype. Finally, to address questions concerning the 

importance of route of administration and potential maternal toxicity, a teratology study 

was performed using three arsenate doses administered orally. 

Regarding the gene expression study, we identified several candidate genes and 

ontology groups that may be responsible for arsenate’s teratogenicity. Genes include: 
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engrailed 1 (En-1), platelet derived growth factor receptor alpha (Pdgfrα) and ephrinA7 

(EphA7). Gene ontology groups identified include oxidative phosphorylation, redox 

response, and regulation of I-kappaB kinase/NF-kappaB cascade. Acute arsenate 

exposure induced disruption of mitochondrial function and dependent glucose 

homeostasis: subsequent hyperglycemia was teratogenic. Maternal treatment with insulin 

or n-acetyl cysteine, an antioxidant and precursor of glutathione synthesis, proved highly 

successful in rescuing both the normal phenotype, and to differing degree, the maternal 

hyperglycemia. Maternal oral arsenate administration also resulted in exencephaly, with 

exposed embryos exhibiting a positive linear trend with arsenate dosage. There were also 

linear trends in the relationships between arsenate dose and anomalies involving several 

components of the axial skeleton: the vertebrae and calvarium. There was no evidence of 

maternal toxicity as shown by lack of differences in maternal body weight gain, liver, 

and kidney weights. In conclusion, maternal arsenate exposure (regardless of exposure 

route) was teratogenic in our model, primarily causing NTDs. Responsible mechanisms 

may involve disruption of redox and glucose homeostasis as well as expression of 

established NTD candidate genes. 
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CHAPTER I 

INTRODUCTION 

 

BACKGROUND  

Birth defects are a significant health problem worldwide, affecting approximately 6% of 

births, and resulting in the death of at least 3.3 million children under the age of five 

each year (1). Major malformations are structure abnormalities that are lethal, require 

medical or surgical treatment, or are disfiguring. About 2% of newborns are identified as 

having a major malformation at birth, which occur at similar rates in all species studied, 

including humans. The causes of structural birth defects are many, and include genetic 

transmission, chromosomal aberrations, environmental exposures (ionizing radiation), 

infections, maternal metabolic imbalance, pharmaceuticals and environmental toxicant 

exposure, with the majority of birth defects having an unknown cause. Types of 

malformations are investigated individually or clustered based on their shared 

developmental etiology, cosegregation within families, epidemiologic evidence, or 

common exposure.   

 

Neural Tube Defects (NTDs) 

The second most common type of all structural birth defects, neural tube defects  

 

____________  

This dissertation follows the style of Diabetes. 
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(NTDs), affect approximately 2.6 out of every thousand births worldwide, and 1 per 

thousand live births in the United States (1; 2). NTDs represent a class of birth defects in 

which the embryo’s neural tube fails to close prior to the end of the first month of 

pregnancy. Defective closure of the anterior neural tube results in exencephaly or 

anencephaly, in which the majority of the brain and surrounding tissues are absent. 

Failure of posterior neural tube closure results in spina bifida, a condition that often 

results in lower body paralysis and lack of bowel and bladder control (3). 

While several distinct causes of NTDs have been identified, the etiology of the 

vast majority of NTDs remains unexplained. There are numerous environmental 

exposures that are suspected of inducing NTDs in human embryos, yet definitive 

conclusions concerning the association between these potentially teratogenic 

environmental exposures and NTD risk remain difficult to reach. This is, at least in part, 

due to the relative rarity of both NTDs and documentation of the exposures of interest. A 

review of the causes of neural tube defects comprises Chapter II.  

 

Folic Acid and Prevention of NTDs 

Folates are essential donors in one-carbon metabolism, participating in the biosynthesis 

of nucleic acids and re-methylation of homocysteine to methionine, a key step for all 

biomethylation reactions. Many epidemiological and intervention studies have 

demonstrated that periconceptional folic acid supplementation reduces the occurrence of 

several congenital malformations, especially NTDs (4; 5). Methyl groups from folates 

play essential roles in multiple biochemical pathways, and their availability may be 
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dependent of numerous enzymes in the folate pathway. Thus, there are many potential 

reactions that could go awry subsequent to disrupted folate metabolism, resulting in 

aberrant development and the birth of a malformed infant. While folic acid 

supplementation has proven to have a protective effect for the population as a whole, 

some subgroups have not benefited to the same degree as the overall population. It is 

hypothesized that environment, behavior, and genetic variations in folate transport or 

metabolism may exist, conferring elevated risk and modifying response to 

periconceptional folate supplementation. This topic is covered more comprehensively in 

Chapter II.  

 

Evidence for Arsenic-Induced NTDs 

Of the many environmental agents suspected of being teratogenic and capable of 

inducing NTDs, arsenic (As) continues to command intense scientific interest for 

developmental biologists because studies in both humans and animals indicate that As 

crosses, and may accumulate in, the placenta at concentrations exceeding that of the 

maternal blood (6; 7). While it is a known laboratory animal teratogen (8-16), the few 

epidemiological studies of reproductive outcome following maternal As exposure are 

insufficient for properly assessing its teratogenic potential in humans (17-25).  Due to 

the relative rarity of specific malformations, available studies have employed insufficient 

sample sizes to demonstrate associations with specific birth defects (instead, generally 

describing observed malformations being as major or minor). In addition, the majority of 

human epidemiological studies have relied on proxy measures of exposure (e.g. distance 
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from smelter) that are subject to varying degrees of misclassification (26). In the few 

studies in which maternal As exposure was directly evaluated, measurements were not 

taken during the relevant embryological period of neural tube closure. 

The best evidence currently available falls short of being able to conclude 

definitively that As is not a human teratogen: it remains an important and, as yet, 

unresolved issue. On the contrary, despite inconclusive results, evidence suggests that 

there may well be a relationship between human in utero As exposure and adverse 

pregnancy outcomes. Acute high dose and chronic low dose As exposure during 

pregnancy has been associated with increased pre- and post-natal mortality (13; 27; 28). 

In addition, chronic low dose As exposure has been associated with low birth weight and 

developmental impairment  (13). While small study sample size makes it difficult to 

demonstrate associations with specific malformations, several studies have suggested an 

association between maternal exposure to As and general malformations in the offspring.  

At least two studies have proposed an association between maternal As exposure 

in drinking water and increased risk of congenital heart malformations in exposed 

offspring (22; 29) The first study explored the relationship between the population-

weighted mean arsenic concentration in public drinking water supplies, and mortality 

from circulatory diseases in 30 U.S. counties from 1968 to 1984. Mean arsenic levels 

ranged from 5.4 to 91.5 micrograms/l. Standard mortality ratios (SMRs) for congenital 

anomalies of the heart tended to be elevated for counties exceeding 20 micrograms/l. In 

the second study, information concerning 270 cases and 665 control children was used to 

identify maternal exposures to drinking water contaminants associated with increased 
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risks for congenital heart disease. Arsenic exposure at any detectable level was 

associated with a threefold increase in the occurrence of coarctation of the aorta 

(prevalence odds ratio = 3.4, 95% confidence interval = 1.3-8.9). Finally, a recent case-

control study of the association between maternal exposure to heavy metals and the risk 

of NTDs identified elevated odds ratios for the association between NTDs and each 

measure of maternal  As exposure that was assessed (30). These include maternal 

occupational exposure to arsenic, OR=1.5, 95% CI 0.5-8.8, drinking water arsenic >10 

μg/l OR=2.0, 95% CI 0.1-3.1, and maternal address at conception within two miles of a 

facility with arsenic emission OR=1.2, 95% CI 1.2 (0.3-4.3). In addition,  urinary arsenic 

levels greater than or equal to  38.3 μg/l, which was at or above the 95th percentile of 

controls, were detected in 4/70 case women and none of 56 control women.  While none 

of the associations in this study achieved statistical significance, a potential association 

between maternal As exposure and NTD risk cannot be excluded due to the relatively 

small study sample (n=225 case women), and the consistency of the results across 

several different measures of As exposure. Indirect evidence for an association between 

As and NTDs is provided by studies of maternal pesticide exposure.  While arsenic 

exposure is often associated with industry, arsenic is also commonly used in pesticides, 

and epidemiological studies suggest that NTD risk is associated with maternal exposure 

to pesticides or proximity to agricultural areas (13; 31; 32). Given that As is 

environmentally persistent, and continues to be used in a range of agricultural products 

(e.g. pesticides, especially herbicides, growth enhancers, etc.), these studies provide a 

potential link between As and NTD risk. 
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Additional evidence that maternal As exposure may be associated with an 

increased risk of congenital malformations, primarily NTDs, is provided by studies 

conducted using animal models.  These studies have demonstrated that As preferentially 

accumulates in the neuroepithelium of the developing embryos of hamsters, mice and 

monkeys (33; 34), and that maternal As exposure is teratogenic. Furthermore, As is 

associated with an increased risk of NTDs when the exposure occurs specifically during 

the period of neural tube closure. 

 

Arsenic Metabolism and Toxicity  

There are millions of people worldwide exposed to arsenic, at levels thought to have 

adverse health effects, primarily from contaminated water sources (Table 1.1). A well-

compiled description of exposure levels that exist in various countries was provided by 

Nordstrom (35).  Epidemiology studies have generally been inconsistent in the arsenicals 

measured. Some studies have measured total arsenic exposure; these studies often use 

the general nomenclature ‘arsenic’, or ‘As’ (29; 36). Others have focused on inorganic 

arsenicals. Inorganic trivalent (AsIII) and pentavalent (AsV) arsenicals were thought to 

be the only biologically relevant arsenicals, and these studies have generally used the 

nomenclature ‘inorganic arsenic’ or ‘Asi’, infrequently distinguishing relative levels 

AsV and AsIII (37; 38). For this reason, much of the commentary in this dissertation, 

and in arsenic research as a field, concerning the large body of early investigation into  
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Table 1.1 Summary of human health effects from arsenic exposure. Adapted from Carter et al (39). 

 

Health effect Dose (μg/kg/day) 
Blood hemoglobin increases 1-10 

Hypertension 4 
Prostate cancer risk 4 
Circulatory changes 4 

Urinary porphyrin increases 9-17 
Melanosis 6-20 

Hyperkeratosis 6-20 
Peripheral vascular alterations 12 
Gangrene of the extremities 25-35 

Hematology effects 40 
Distal polyneuropathy 40 

Anemia 50 
Prominent peripheral neuropathy 300 

Diabetes ? 

 
 
 
arsenic exposure and potential increased risk of certain adverse human health outcomes, 

is limited to descriptions of risk associated with arsenic exposure, as either As or Asi.  

In the context of the elucidation of the various arsenical’s toxicity, this is 

understandable. Dramatic advances in the field of arsenic research have taken place over 

the past decade. Only recently has evidence been revealed to indicate that 

biotransformation involving methylation of inorganic arsenic species to organic species 

did not confer detoxification. Some of the most significant advances have been 

established by landmark papers in the field, including: classic work on biotransformation 

of inorganic arsenic species both in vitro and in vivo (40; 41), biotransformation of 

inorganic arsenic (42), the relative toxicities of trivalent monomethylated species 

(MMA) as compared to arsenite (43), the revelation that methylation is not a 
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detoxification mechanism (42), proposed  ranking of arsenicals by relative toxicity (44), 

the discovery of MMAIII and DMAIII in human urine (45).  

 It is well established that oral exposure to either arsenite or arsenate results in 

excretion of all forms arsenic, both inorganic and methylated arsenicals (40; 41). While 

the exact mechanisms involved in the series of reduction and subsequent methylation 

reactions are still being elucidated, a number of promising candidates have been 

revealed: reduction by glutathione (46) or a number of proposed dithiols, in addition to 

superoxide and H2O2 (47), and oxidative methylation by an arsenic methyltransferase, 

Cyt19, a SAM-dependent methyltransferase suggested to work on arsenic-GSH 

complexes (48). A recent hypothesis has proposed the reduction of arsenicals by 

superoxide and H2O2, and suggested to replace the current hypothesis wherein the 

reduction of arsenate to arsenite is achieved by a nonenzymatic reaction with GSH.  

 The classical primary mammalian metabolic sequence for AsV is as follows: 

reduction to AsIII, biomethylation to monomethylarsonic acid (MMAV), reduction to 

MMAIII, and biomethylation to dimethylarsinic acid (DMAV), which is often the major 

arsenic metabolite excreted in the urine (40). Reduction reactions are thought to require 

glutathione, whereas the biomethylation reactions are catalyzed by SAM-dependent 

methyltransferases (49; 50). SAM is eventually regenerated by remethylation through 

the homocysteine-methionine cycle, a process that requires 5-methyl-tetrahydrofolate 

(M-THF) as a co-factor (Figure 1.1).  

 In the conventional metabolic pathway of arsenate metabolism, pentavalent 

metabolites are reduced to the more toxic trivalent compounds. Hayakawa et al.(Figure 
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1.2) has proposed a pathway in which the +3 arsenic species are formed (by oxidation) 

before the +5 species, which are the ultimate products of arsenic metabolism (48). This 

new pathway is in agreement with Aposhian’s observation that ‘‘oxidation is 

detoxification of arsenic’’  (47). 

 In a comparison of the relative toxicity of arsenate and arsenite to various rat and 

human cells, relative toxicity of arsenicals was summarized as follows: trivalent 

methylated arsenicals were significantly more toxic than pentavalent methylated 

arsenicals. MMAIII was more toxic than arsenite, and DMAIII was at least as toxic as 

arsenite for most cell types examined (44). 

In a study by Hughes et al. comparing the relative toxicities of MMAIII and 

MMAV administered orally in a mouse model, it was found that the profile of arsenicals 

excreted in the urine and feces was different between the two treated groups. In brief, 

methylation of MMAV was limited, while methylation of MMAIII was extensive, with 

less than 10% of the dose excreted in urine following MMAV treatment was in the form 

of methylated products, while is was greater than 90% following MMAIII treatment. For 

the interested reader, a comprehensive overview of results from similar studies in 

various animal models is provided by Hughes (51). 
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Figure 1.1. The classical metabolic pathway of inorganic arsenate. From Hayakawa et al (48). iAsIII 
arsenite, iAsV arsenate, MMAIII monomethylarsonous acid, MMAV monomethylarsonic acid, DMAIII 
dimethylarsinous acid, DMAV dimethylarsinic acid, Cyt19 arsenic methyltransferase, GSH reduced 
glutathione, SAM S-adenosyl-L-methionine) 
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igure 1.2. A proposed metabolic pathway of inorganic arsenate. From Hayakawa (48). iAsIII arsenite, 
sV arsenate, GSH reduced glutathione, AGT arsenic triglutathione, SAM Sadenosyl- L-methionine, 

yt19 arsenic  methyltransferase, MADG monomethylarsonic diglutathione, MMAIII 
onomethylarsonous acid, MMAV monomethylarsonic acid, DMAG dimethylarsinic glutathione, 
MAIII dimethylarsinous acid, DMAV dimethylarsinic acid. 
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While a characterization of the relative toxicities of arsenic and elucidation of the 

arious mechanisms of toxicity is still evolving (Table 1.2), considerable attention has 

een paid to this topic during the past decade, and a comprehensive and thoughtful 

view has been published by Carter et al. (39). The work is briefly summarized here. 

enerally, as mentioned, trivalent arsenic species are more toxic than the pentavalent 

complexes, as well as an As-selenium compound. Methylation is not considered to be a 

detoxification pathway, nor does it increase solubility (though it may prevent methylated 

compounds from entering cells). The trivalent compounds arsine (arsenic trioxide) and 

gallium arsenide have important industrial applications. Currently, the best characterized 

arsenicals, in terms of toxicity, are arsenite and arsenate. The suggested mechanisms 

conferring arsenite’s toxicity include inhibition of pyruvate dehydrogenase (PDH), 

binding to thiols, and transfer of electrons in oxidation-reduction reactions. It has also 

been suggested to be genotoxic, and cause disruption of the cellular cytoskeletal 

elements. Arsenate may be reduced to arsenite, and it has been suggested that arsenite 

may be the arsenical responsible for the cytotoxic effects following arsenate treatment 

(52). Arsenate is suggested to possesses a distinct toxicity due to its similarity to 

phosphate: arsenate is identical to phosphate in structure and acid dissociation constants,  

v

b

re

G

species.  Individual arsenicals need greater characterization in terms of their toxicity and 

mechanisms: there are six different urinary metabolites, and three different GSH-AsIII 
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Table 1.2. Arsenic species important in toxicity. Adapted from Carter et al. (39). 

Name (formula) Chemical form Comment 
As(OH)3, arsenious acid, 

often called arsenite 
Aqueous solution species for +III. pKa= 

9.3,12.1, 13.4 Oxidation State, AsIII 

H AsO , arsenic acid 
usually called arsenate 

Aqueous solution species for +V at pH 7.4 
4

6.98, 11.5 
3 4 Oxidation state, AsV is -2 charged anion (HAsO -2) pKa= 2.2, 

AsH , arsine Oxidation state, As(-II) Most reduced form of arsenic, slightly 
3 Hydride (H-) soluble in water. 

CH3-As(OH)2, 
monomethylarsonoic acid 

(MMAV) 
Oxidation state is +V metabolized to dimethylarsinic acid 

Methylated metabolite of AsIII, 

CH -As(OH) , 3 2
monomethylarsonous acid 

(MMAIII) 
Oxidation state is +III Reduced metabolite of MMAV 

(CH3)2-As(O)(OH), 
dimethylarsinic acid, 

(DMAV) 
Oxidation state is +V 

Dimethylated metabolite of AsIII and 
methylated metabolite of MMAIII, 

pKa=6.2 
(CH3)2-As(OH), 

(DMAIII) 
dimethylarsinious acid Oxidation state is +III Reduced metabolite of MMAV 

GaAs, gallium arsenide Oxidation state of As is 0 to 
-III 

Synthetic compound with no acid-base 
behavior 

 

 

 

and thus exclusively substitutes for phosphate in reactions. The implications of this are 

described more comprehensively in the section concerning the mitochondriotoxicity of 

inorganic arsenicals. 

 

Mitochondrial Development and Its Relationship to NTDs 

During neural tube closure, the concurrent onset of embryonic oxidative phosphorylation 

and cardiac function is a highly coordinated event involving maturation of mitochondrial 

cristae and a related increased dependence on oxygen supply. It is clear that glucose 

plays a significant nutritional role in early embryonic development. The high glucose 
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utilization of anaerobic glycolysis, essential to the early embryo, drops as the activity of 

th ctron tr ses. (53  

and function during embryogenesis is not well characterized, there is an early 

developm terized by vesiculation of the mitochondrial cristae, in 

which ents of the nsport chain are ring early 

organogenesis, the em te of hy th 

d nspo (and ox d a 

mar colysi  that th e 

is associated with quiescence of the electron transport chain, and is present in early 

embryogenesis in order to protect the embryo from toxic respiratory end-products of 

xidative respiration which could a ulate in an embryo lacki lar perfusion 

4).  

There is a clear pattern indicating that disruption of mitochondria during neural 

oxicologically significant concentrations of cyanide, which inhibits 

omplex 4. Acrylonitrile administered to hamsters by I.P. injection at 80-120 mg/kg on 

hich uncouples oxidative 

e Kreb  cycle and ele's ansport increa ) While mitochondrial morphology

ental pattern charac

 the compon

bryo is in a relative 

electrons tra embedded. Du

sta poxia, which is associated wi

ecrease of electron tra rt system activity idative phosphorylation) an

ked increase in gly s. Shepard suggests e delamellated state of the crista

o ccum ng vascu

(5

tube closure may result in NTDs. Treatment with antimycin A, which inhibits complex 

3, on E7.5 causes NTDs in mouse embryos (55). Acrylonitrile is demonstrated to be 

converted in vivo to t

c

E8 results in exencephaly of the offspring (56).  UCP2, w

phosphorylation from the production of ATP by permitting hydrogen ions to bypass 

ATP synthase, is a known regulator of blood glucose. A known risk for NTDs, gain-of-

function deletion mutations or SNPs in UCP2, increases the risk of spina bifida 

(OR>3.6) (57). Engineered mouse knockouts for Thioredoxin 2 (Txn2), a mitochondrial 
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antioxidant, are embrolethal, with failure of anterior neural tube closure. Similarly, 

knockouts for Mitofusin 1 (Mfn1) and Mitofusin 2 (Mfn2), which are essential for 

normal mitochondrial dynamics, are both embryolethal (58).  However, while Mfn1 

fetuses display normal morphology, Mfn 2 knockouts fail to close their anterior neural 

tube (59). 

 

Arsenic-induced Mitochondrial Disruption and Its Importance to Redox 

Homeostasis and Neural Tube Closure 

Although the toxicity of arsenic varies based on its chemical form and oxidation state, 

mitochondria are a consistent and primary target in both environmental exposure and 

laboratory models. Cellular disruption caused by mitochondrial reactive oxygen species 

(ROS) are thought to underlie much of arsenic’s inherent toxicity. Krebs first described 

arsenite’s disruption of pyruvate metabolism in the 1930’s (60), and it has since been 

demonstrated to inactivate nearly all of the Krebs cycle enzymes, resulting in 

mitochondrial release of H2O2 (61-65). Much of the work in this field has been driven by 

the rediscovery of arsenic as a pharmaceutical, with its current primary medical use as a 

chemotherapy for recurrent or ATRA-resistant leukemia, in the form of Trisenox 

(arsenic trioxide) (66-68). While trisenox is intended for use in humans, much published 

research concerning its hypothesized mechanism of toxicity is performed in vitro, which 

as previously mentioned, may confer differences in toxicity and mechanisms due to 

differences in pharmacokinetics in comparison to in vivo studies.  
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It is unknown as to what degree arsenate’s toxicity is due to biotranformation to 

the more toxic arsenite. Unlike arsenite, which freely crosses the cell membrane, 

arsenate is a charged salt, and has to be transported into the cell. As a phosphate analog, 

it concentrates in the mitochondria (69; 70). It has even been suggested that 

mitochondria reduce arsenate to arsenite: they have been observed, in culture, to take up 

rsenate, rapidly reduce it, and export all of the arsenate as arsenite into the media (71). 

 in mitochondria, and its biotransformation to 

nt on the depletable 

substrate, GSH.  Additionally, GSH is utilized in the dismutation of H2O2 to molecular 

a

The hypothesized reduction of arsenite to arsenate may play a part in this observed 

phenomenon. Its preferential accumulation

the known mitochondriotoxin, arsenite, may account for some of its observed 

mitochondriotoxicity. Arsenate may exert profound mitochondriotoxicity through 

substitution for phosphate in glycolytic and cellular respiration pathways, although it is 

unknown whether arsenolysis of ATP occurs in vivo (70). Like arsenite, arsenate has 

also been found to decrease pyruvate dehydrogenase (72). A novel finding described in 

detail in Chapter III, an arsenate salt, sodium arsenate, has been demonstrated to 

decrease expression of genes encoding structures contributing to complexes of the 

electron transport chain (61). If ATP production is reduced significantly, it causes 

profound mitochondrial disruption and subsequent release of H2O2 into the cytosol and 

cellular disruption. Interestingly, much of the work concerning arsenate’s 

mitochondriotoxicity was discovered via its use as a phosphate analog to compete with 

cellular phosphate in order to deplete ATP production (73-78).  

Arsenic metabolism and excretion is primarily depende
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oxygen

edox state, alteration in 

cellular

 and water. Thus, arsenic exposure both causes significant H2O2 stress, while 

simultaneously impairing the antioxidant system essential for its neutralization. The 

metabolism and excretion of heavy metals such as arsenic depends on the presence of 

antioxidants and thiols that aid arsenic methylation, and arsenic metallothionein-binding. 

Induction of oxidative stress occurs through many of these pathways, such as the 

oxidative stress-induction of metallothionein and superoxide dismutase that produce 

their own free-radical waste, inducing further oxidative damage. 

It is well established that partially reduced oxygen species shed from 

mitochondria have a variety of diverse consequences for the cell. In its simplest 

description, when the production of these reactive oxygen species (ROS) outstrips 

cellular antioxidant defenses, oxidative stress results (79-81). ROS disrupt cells through 

two main pathways: physical damage, and altered cellular signaling. In addition, damage 

from ROS may initiate a feedback loop, causing continued cellular damage. Single 

exposures to some oxidative stress-inducing xenobiotics may result in prolonged 

oxidative stress responses (82). All classes of cellular macromolecules face ROS 

induced damage. Lipid peroxidation may result in altered membrane fluidity, 

permeability, and transport characteristics. Hydroxylated bases, DNA single strand 

breaks (DNA-SSBs), and chromosome breaks may all lead to faulty transcription, 

resulting in cell injury, and possibly cell death (83).  

 Cell signaling that may be altered though changes in r

 membrane transport, oxidation states of metallic cofactors, and ion homeostasis 

(84; 85). Altered cellular redox states are shown to disrupt the expression of redox 
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sensitive transcription factors NF-kB and HIF-1α (85), and free radical adducts have 

been shown to induce methylation of adjacent cytosines, a response that displayed a high 

degree of positional specificity and may account for some fraction of the gene specific 

methylation observed that likely to be the more important aspect of general, global, 

hypomethylation (86). 

Emerging evidence suggests that oxidative signaling and  redox-sensitive signal 

transduction pathways are critical for regulating basic developmental processes such as   

prolifer

etabolic diseases characterized by 

hyperg

ation, differentiation, and apoptosis (87). Therefore, chemicals that disrupt redox 

homeostasis may induce teratogenesis via the misregulation of these same pathways. 

Thiol redox couples are key regulators of redox homeostasis, and include 

glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine.  

(87). Redox disruption may occur as the result of developmental pathologies or toxicant 

exposure, which is often associated with ROS or RNS formation (88).  

 

Diabetes Classification and Diagnosis 

Diabetes’ cause and treatment is of intense interest, and the field has advanced 

accordingly. Relevant portions of the American Diabetes Association’s 2007 position 

statement on diagnosis and classification of diabetes mellitus (89) is briefly summarized 

here. Diabetes mellitus is a heterogeneous group of m

lycemia resulting from defects in insulin secretion, insulin action, or some 

combination of the two. Pathogenic processes that are observed to be involved in the 

development of diabetes include autoimmune destruction of pancreatic ß-cells and 
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subsequent insulin deficiency, as well as abnormalities that result in resistance to 

insulin’s action. Resistance to insulin’s action may result from diminished tissue 

response to insulin, as well as, paradoxically, inadequate insulin secretion. Both may 

occur in the same patient, and definitive establishment of the primary cause of 

hyperglycemia is often unclear. The vast majority of cases of diabetes fall into two broad 

categor

 are still poorly 

understood.  

he vast majority of cases (90-95%) and has 

ies: type 1 and type 2 diabetes. Type 1 diabetes is caused by deficiency of insulin 

secretion, which accounts for about 5-10% of cases. It has previously been described as 

insulin-dependent diabetes, type I diabetes, or juvenile-onset diabetes. The immune-

mediated diabetes results from autoimmune destruction of the pancreatic ß-cells, and 

may be identified by markers of immune destruction, which are present in 85-90% of 

individuals when fasting hyperglycemia is initially detected.  Although autoimmune 

destruction of ß-cells has been associated with variants within multiple genes, and is 

related to some identified environmental factors, reasons for onset

Type 2 diabetes accounts for t

previously been described as non-insulin dependent diabetes, type II diabetes, and adult-

onset diabetes. This type of diabetes is characterized by insulin resistance, and patients 

also usually have relative insulin deficiency. Risk increases with age, obesity, lack of 

physical activity, prior gestational diabetes, established hypertension or dyslipidemia, 

and occurs with varying frequency in different racial and ethnic subgroups. While it is 

associated with a strong genetic predisposition, the etiology is complex and not well 

defined.  
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Other specific types of diabetes include: genetic defects of the ß-cell, genetic 

defects of insulin action, diseases of the exocrine pancreas, endocrinopathies, drug- or 

chemical-induced diabetes, infections, gestational diabetes, and other genetic syndromes 

sometimes associated with diabetes. 

Three ways to diagnose diabetes are possible, and in the absence of unequivocal 

hyperglycemia, the diagnosis must be confirmed on a subsequent day by any of the three 

methods. These methods include: a fasting plasma glucose (FPG) level (no caloric intake 

for at least 8 hours) greater than 126 mg/dl (7.0 mmol/l), a casual plasma glucose level 

greater than 200 mg/dl (11.1 mmol/l), or a 2-hour postload glucose greater than 200 

mg/dl (7.0 mmol/l) following an oral glucose tolerance test (OGTT) using a glucose load 

containing the equivalent of 75 g of anhydrous glucose dissolved in water. 

 

Induction of Diabetes by Pharmaceuticals and Environmental Contaminants 

Many pharmaceuticals, household, and industrial chemicals can impair insulin secretion. 

While these exposures do not cause frank diabetes, they may initiate diabetes onset in 

individuals who are predisposed, such as those with insulin resistance. It is difficult to 

classify such cases as to type of diabetes. While both rare and extreme, exposures to 

Vacor or intravenous pentamidine can permanently destroy pancreatic β-cells, causing 

an insulin-dependent diabetes that mimics type 1 diabetes. Additionally, α-interferon 

treatment has been reported to result in diabetes with antibodies to islet cells. Other 

pharmaceuticals may impair insulin action, such as nicotinic acid and glucocorticoids.  
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A sampling of pharmaceuticals  and compounds recognized to induce diabetes 

(and application) include: Vacor (rat poison), pentamidine (antimicrobial), nicotinic acid 

(vitamin b3), glucocorticoids (steroid), thyroid hormone, diazoxide (vasodilator), β-

adrenergic agonists (calcium channel modifiers), thiazides (diuretic), valproate 

(antiep

lationship to 

iabetes was reported (89; 92). Interest in other environmental contaminants and their 

ioxin, 

c 

and TCDD were most suggestive of an association with diabetes, while nitrates, nitrites, 

ileptic), α-interferon (cancer and viral therapeutic). Interestingly, thiazides are 

associated with NTDs, and dilantin is associated with cleft palate, another craniofacial 

malformation associated with diabetic pregnancy (89). Valproate, a known risk factor for 

NTDs, is an antiepileptic and atypical antipsychotic, which are widely observed cause 

hyperglycemia (90; 91). 

The first environmental contaminant to be associated with an increased risk of 

diabetes was found in the 1970s, when carbon disulfide exposure’s re

d

potential to increase diabetes risk is relatively recent, and has focused on arsenic, d

and nitrates (93-96). For a comprehensive review of this subject, see work by 

Longnecker (97). At the time of publication of Longnecker’s work, while no exposures 

were conclusively linked with increased diabetes risk, several occupations and 

occupational exposures were identified that were thought to have contributed to diabetes 

onset. Evaluation of studies was hampered aspects of study design that limit the power 

of the investigation including: use of glucosuria or diabetes death as diagnostic criteria, 

lack of adjustment for possible confounders in some studies, and failure to consider both 

type 1 and type 2 diabetes as possible adverse health outcomes. Data concerning Arseni
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and N

sures are primarily occupational (94; 95; 106-108). Deliberate 

exposu

-nitroso compounds had a weaker, but not null, association. Further 

epidemiological and laboratory research concerning arsenic’s association with increased 

diabetes risk has since been published (98-105). 

 

Arsenic Exposure and Glucose Homeostasis 

Multiple epidemiological studies show that arsenic exposure is a risk factor for type 2 

diabetes in some populations, both in areas where people are exposed through 

contaminated drinking water, as well as in areas that are relatively free of environmental 

pollution and where expo

re to various arsenicals causes hyperglycemia in humans and rodents. 

Paradoxically, exposure may also cause hypoglycemia.  The reasons for this are an area 

of intense research, as investigators struggle to understand the complexities of glucose 

homeostasis. The most recent research suggests that pancreatic beta cells have a bimodal 

response to oxidative signaling, wherein very low levels of H2O2 from normal glucose 

driven mitochondrial function results in insulin release and a subsequent lowering of 

blood sugar, but severe oxidative stress/damage may decrease �-cell function and 

insulin release, resulting in hyperglycemia (109). 

In humans, one of the most common side effects of arsenic trioxide treatment as 

a cancer chemotherapeutic is hyperglycemia (66). Similarly, acute and sub-chronic 

exposure to arsenite is observed to elevate blood sugar concentrations in rodents and 

goats (103; 110-113). The studies suggest the development of diabetes mellitus after 

long term, sub-lethal arsenic exposure with a disease pathology that recapitulates type 2 
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diabetes. Arsenite exposure has also been observed to cause hypoglycemia in some a rat 

model (114; 115)  Arsenate has been the subject of few studies, but a similar pattern has 

been observed. Arsenate exposure has been observed to cause hyperglycemia in a �-cell 

odel (116) as well as hypoglycemia (117)  in a rodent model. 

thought to underlie much of arsenic’s 

tion of the glucose molecule,  

 

m

The mitochondrial release of H2O2, 

toxicity provides a mechanistic link to disrupted glucose metabolism. Mitochondrial 

oxidative phosphorylation (OxPhos) links circulating glucose and insulin levels via 

ATP-dependent glucose stimulated insulin secretion (GSIS). Arsenic has been 

demonstrated to inhibit GSIS (Figure 1.3) in vitro when administered to isolated 

pancreatic β-cell islets under glucose challenge (104). Additionally, excess hydrogen 

peroxide has been observed to reversibly repress many Krebs cycle enzymes, making 

pancreatic β-cells insensitive to GSIS, as demonstrated in vitro, as well as in vivo models 

(118-120).  

Agents that are toxic to mitochondria are regularly used in the clinical treatment 

of cancer and AIDS, commonly resulting in disruption of energy metabolism and 

hyperglycemia (121; 122). This may be due to failure of GSIS, as ATP is necessary for 

several steps in this pathway, such as phosphoryla
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Figure 1.3. Glucose stimulated insulin secretion. From Brand et al. (123). Oxidative phosphorylation links 
us and insulin secretion. Glucose equilibrates across the plasma membrane via the glucose 

2), driving glycolysis. Glucose oxidation establishes the proton motive force (PMF) that 
powers t
The inne
to pass, such as ATP synthase, and UCP2. The proton gradient  is harnessed by ATP synthase, producing 

plasma membrane potential (Dcp), and allowing opening of the voltage-sensitive Ca2+ channels, and 

(GPR40) pathway   

glucose stimul
transporter (GLUT

he transport of protons out of the matrix into the intermembrane space to create a proton gradient. 
r membrane is impermeable to protons, and only a few structures exist that will allow the protons 

ATP, and increasing in the ATP:ADP ratio. This causes closure of KATP channels, depolarization of the 

calcium influx. This increase in cytosolic Ca2+ is thought to be the main trigger for exocytosis of insulin. 
At permissive glucose concentrations, fatty acids may potentiate GSIS through a G-protein-linked receptor 

.
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potassium channel binding, and exocytosis of insulin granules. One of the best studied of 

these compounds is arsenic trioxide, a cancer therapeutic. Arsenic trioxide induced cell 

death involves an early decrease in the normal cellular mitochondrial membrane 

potential and a subsequent increase in cytosolic ROS content, predominantly H2O2. 

Efficacy is augmented by co-treatment with compounds that increase hydrogen peroxide 

stress, such as those that inhibit glutathione, the key substrate dismutating H2O2.  

A byproduct of mitochondrial function, hydrogen peroxide is a negative feedback 

inhibitor of the Krebs cycle, preventing a toxic rise in oxidative radicals by controlling 

the rate of mitochondrial oxidative metabolism (118; 119; 124). H2O2 has a signaling 

utility that is especially potent in B-cells: they possess a weak antioxidant enzyme 

defense system, especially with regard to hydrogen peroxide-decomposing enzymes 

(125; 126). 

rsenic’s toxicity. This creates an interaction wherein mitochondrial 

damage results in the release of oxidative radicals, which subsequently results in 

hyperglycemia, thereby limiting the antioxidant capacity to protect the organism from 

further mitochondrial damage.   

 

Hyperglycemia bypasses the metabolic use of the pentose shunt (Figure 1.4), 

which is necessary for production of glutathione, and thought to underlie diabetes’ 

observed oxidative stress component.  Therefore, as glutathione is necessary for arsenic 

metabolism and excretion, hyperglycemia-induced inhibition of glutathione production 

may potentiate a
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Figure 1.4. Activation of the hexosamine synthetic pathway by increased glycolytic flux. From Horal et al. 
(127). The rate limiting enzyme for hexosamine synthesis is glutamine:fructose-6-phosphate 

shown. UDP-N-acetyl glucosamine and UDP-N-acetyl galactosamine are substrates for O-glycosylation of 

rate limiting enzyme of the pentose shunt pathway. G6PD activity is coupled to production of NADPH, 
which, in turn, is coupled to glutathione reductase (GSSG reductase) and enhances catalase activity. Thus, 
hyperglycemia-induced increased flux through the hexosamine pathway ultimately results in a reduction of 
available antioxidant substrates catalase, and more importantly, glutathione. The hexosamine pathway can 

 

amidotransferase (GFAT), which yields glucosamine-6-phosphate: select downstream metabolites are 

proteins. Glucosamine-6-phosphate inhibits activity of glucose-6-phosphate dehydrogenase (G6PD), the 

be directly activated experimentally by administration of glucosamine. 
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 Maternal Periconceptional Hyperglycemia and NTDs 

Maternal periconceptional hyperglycemia is teratogenic (128-130). Maternal blood 

glucose freely crosses the placenta. The developing human embryo lacks pancreatic 

function until well after neurulation is complete, and thus equilibrates with the maternal  

circulating glucose. As half of all pregnancies are unplanned, and women who have 

missed their period have already passed the critical time of neural tube closure, good 

glycemic control in pre-existing diabetic pregnancies reduces the risk of NTDs (131-

133). In rodents, maternal hyperglycemia induced by direct injection of glucose or B-cell 

disruption from streptozotocin treatment results in exencephaly in the offspring, and 

embryonic explants grown in high glucose media also exhibit failure of neural tube 

closure (134). A growing body of research conducted over the past decade suggests that 

maternal hyperglycemia induces teratogenic oxidative stress in the exposed embryo, 

which is consistent with the well-established relationship between diabetes and oxidative 

stress (135). 

 

f epigenetic methylation in the promoter regions of genes.  

 It is plausible to suggest that diversion of methyl groups to arsenic’s 

biotransformation and excretion interferes with the SAM/SAH remethylation cycle, 

As and Perturbation of Methylation 

The mechanistic relationship between arsenic exposure and disruption of many aspects 

of one-carbon metabolism is the subject of much investigation.  The areas of most 

intense interest include disruption of the SAM/SAH remethylation cycle, and disruption 

o
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resulting in accumulation of homocysteine. It is well established that elevated 

d is likely to temporarily deplete SAM pools. Altered DNA methylation 

ould result in changes in gene expression that could have dire consequences for the 

porary depletion of SAM may adversely affect 

homocysteine is associated with impaired biotransformation and excretion of arsenic, 

exposing the affected individuals to arsenicals at increased levels (136). Additionally, 

homocysteine is known to cause NTDs in chick embryos (137). Furthermore, it is 

suggested that homocysteine and H2O2 act synergistically to increase mitochondrial 

damage, already identified as one of the main cellular organelles targeted by arsenic 

toxicity (138; 139). 

Arsenic has been demonstrated to induce both DNA hypomethylation and 

chromosome instability, as well as gene-specific hypermethylation (140-146). The direct 

causes for this are still being investigated by multiple investigators, though some 

mechanisms have recently been proposed. As previously described, arsenate is 

metabolized via biomethylation to MMAV and DMAV. Elevated in vivo AsV 

concentration requires considerable amounts of SAM for its biotransformation and 

excretion, an

c

exposed embryo. In addition, even tem

arsenic’s major route of metabolism and removal from the body, biomethylation, 

elevating and prolonging concentration of the more toxic trivalent arsenicals, As III, 

MMAIII, and DMAIII, in vivo. 
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CHAPTER II 

INVESTIGATIONS INTO THE ETIOLOGY OF NEURAL TUBE DEFECTS*

 

OVERVIEW 

Neural tube defects (NTDs) are serious malformations affecting approximately 1 per 

1000 births, yet the mechanisms by which they arise are unknown. There have been 

consistent efforts in many fields of research to elucidate the etiology of this 

multifa

alformation, neural tube defects (NTDs) have adverse 

consequences that afflict society as well as the affected individuals. The emotional 

                                                

ctorial condition. While no single gene has been identified as an independent risk 

factor for NTDs, candidate genes have been proposed that may modify the effects of 

maternal and/or embryonic exposures. Folate supplementation effectively reduces the 

occurrence of NTDs and, consequently, has focused much research on metabolism of 

folate-related pathways during pregnancy and development. Further understanding of 

normal development and how teratogens can perturb these orchestrated processes also 

remains at the fore of modern scientific endeavors. The composite of these factors 

remains fragmented; the aim of this review is to provide the reader with a summary of 

sentinel and current works in the body of literature addressing NTD disease etiology. 

 

INTRODUCTION 

Like any serious congenital m

 
* Reprinted with permission from “ Investigations  into the etiology of neural tube defects” by  Cabrera 
R.M., Hill D.S., Etheredge A.J., Finnell R.H., 2007. Birth Defects Res C Embryo Today, 72:330-44,  
Copyright (2004) by Wiley. 
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burden and monetary expenditures a these congenital malformations has 

fo al 

evelopment and how teratogens can perturb these highly regulated processes. In this 

 teratogen implies that the agent alone alters development, while in 

ere 

alformations of the central nervous system that can occur during this time are NTDs. 

 include those anomalies that involve failure of the neural tube to 

between the formation of the neural plate and the closure of the neural tube, the latter 

tem. 

ssociated with 

cused research towards understanding those underlying mechanisms of norm

d

regard, the term

reality; teratogenicity is the outcome of multiple factors. These factors not only involve 

the physical and chemical nature of the agent, but also the dose, route and gestational 

timing (147). NTDs are known to occur in one out of every thousand pregnancies in the 

United States (148), with varying rates reported among the world’s populations (149-

151). With an aim towards expanding our understanding of the mechanisms underlying 

the etiology of these devastating defects, numerous studies have been carried out on the 

etiology of both teratogen-induced and spontaneously occurring NTDs.  

 

Neurulation and Neural Tube Defects  

The embryonic period, week three through eight in human development, is the time 

frame during which organogenesis occurs (152). It is also the most susceptible period for 

induction of malformations by teratogens (153). The most common and sev

m

These malformations

close during the 4th week of embryogenesis, and the most prevalent NTDs are 

anencephaly and spina bifida. Neurulation occurs during the gestational time period  

being the precursor of both the central and most of the peripheral nervous sys
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Neurulation can also be divided into primary and secondary processes. During primary 

neurulation, fusion of the neural folds involves shaping and folding neural ectoderm and 

the interposition of mesenchyme. As midline fusion of the neural and surface ectoderm 

proceeds, the neural tube is formed and covered by surface ectoderm; accordingly, the 

neural ectoderm becomes located interiorly. Secondary neurulation creates the lowest 

portion of the spinal cord, from the upper sacral to the coccygeal regions. At the caudal 

levels of neural tube development, a tail bud or caudal eminence is formed. The tail bud 

is the remnant of the retreating primitive streak. The mesenchymal cells in the dorsal 

portion of the tail bud undergo condensation and epithelialization. This forms a rod like 

condensation of mesenchymal cells. A central canal forms within the rod by cavitation. 

The central canal then becomes continuous with the one formed during primary 

neurulation and thereby forms the secondary neural tube (154; 155). In humans, neural 

thesized to initiate at five closure sites (156). tube closure (NTC) was originally hypo

More recent clinical examinations have only identified two to three of these closure 

initiation sites; where closure I contributes to the posterior neuropore, while closures II 

and III complete closure at the anterior neuropore (157; 158). The pathogenesis of NTDs 

is often believed to involve a failure in cellular proliferation, alterations in the shape of 

the developing neuroectoderm, or negative changes in vascular development supporting 

these cells (159). The causes of these alterations is thought to be multifactorial, with 

contributions from both biological and environmental aspects (160).  

In order to understand the factors involved in a dynamic biological process, such 

as neural tube closure (NTC), the interaction between DNA sequences (genomics), RNA 
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levels (functional genomics), and expressed proteins (functional proteomics) needs to be 

carefully examined (161). When properly studied, teratogenesis in an organism can be 

approached at each of these organizational levels and may provide susceptible 

genotypes, gene expression classifiers, and diagnostic protein profiles. 

At present, studies are being conducted at each level of biological organization in 

order to better understand NTC and the subsequent development of NTDs. 

Unfortunately, the biological components contributing to the population burden of NTDs 

have been difficult to elucidate. To date, no one single major gene has been implicated 

as a direct causal agent for these defects (162), a result common in genetic association 

studies on complex diseases (163). Additionally, genetic linkage studies to identify 

critical polymorphisms are difficult to accomplish due to a shortage of multiple affected 

families. Despite this difficulty, by utilizing experimental animal models, scientists are 

able to explore the expression of those genes that are involved in biochemical transport 

and metabolism thought to be critical to normal NTC. Biochemical factors such as folic 

acid appear to be the greatest modifiers of NTD risk in the human population, and may 

play an important role in other serious structural malformations (164; 165). A reciprocal 

interaction also exists between the genome and nutritional elements, insofar as the 

influence of gene haplotypes can affect the metabolic efficiency of the organism (166). 

Considering the cellular processes whose disrupted function can lead to NTDs, 

candidate genes that have been the focus of teratogenic investigations are often those 

involved in folate biochemistry, cell proliferation, apoptosis, cellular adhesion, changes 

in vascular development, de-novo methylation, neural induction or neural pattern 
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formation (159; 167). Furthermore, in support of these gene categories being causal of 

teratogenesis, over 80 genes with a diversity of functions have been associated with 

neural tube defects when they are inactivated by gene targeting (167). These genes 

include transcription factors, transcriptional co-activators, cell surface/membrane 

recepto

e 

importa

rs, signaling proteins and signal transducers (168-172). 

 

Role of Folic Acid in Prevention of Neural Tube Defects 

Folate deficiency has been associated with the occurrence of selected birth defects, and a 

considerable number of human studies have demonstrated the protective role of maternal 

folic acid supplementation (5; 173). These studies demonstrated that maternal folic acid 

supplementation of at least 0.4 mg/day reduces the incidence of NTDs by up to 70%. A 

recently published study by Rothenberg and colleagues (2004) demonstrated that serum 

from women whom had a pregnancy complicated by an NTD contained autoantibodies 

that bound to folate receptors and blocked the cellular uptake of folate (174). Rothenberg 

suggested that given the antibody driven uptake changes, folate supplementation allows 

alternative cellular entry or increases competition with the antibody’s binding of folate 

receptors in order to restore folate homeostasis. These experiments parallel what has 

been observed in the Folbp1 knockout mouse model, and clearly demonstrate th

nce of intercellular uptake of folate (175; 176).  In contrast to these observations, 

the cellular mechanism(s) governing why perturbations of folate uptake are teratogenic 

remain unknown.    
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Folate Biochemistry and Folate Receptors 

Folic acid is a biologically inactive water-soluble B vitamin that is transformed to its 

bioactive forms in vivo (177). Folic acid is known to contribute to three metabolic 

pathways: remethylation, the folate cycle, and transsulfuration. In one-carbon 

metabolism, folic acid donates methyl groups via the remethylation pathway for the 

methylation of nucleic acids, lipids, neurotransmitters, and also for the post-translation 

 reactions are catalyzed by 

inic acid (IMP), which is used to produce AMP or GMP for RNA 

ynthesis or as DNA precursors. Carbons from the folate one-carbon pool are also 

modifications of numerous other proteins. The methylation

methyltransferase (MT) enzymes, which require S-adenosylmethionine (SAM) as the 

specific methyl donor. The metabolic process that generates SAM occurs primarily via 

the remethylation pathway, where the conversion of homocysteine to methionine 

requires the transfer of a methyl group from 5-methyl-tetrahydrofolate, the primary 

bioactive form of folate. Methionine is then converted to SAM by methionine 

adenosyltransferase and ATP. After donating its methyl group to acceptor molecules, 

SAM is converted to S-adenosylhomocysteine (SAH) (178). 

Folic acid is also biologically essential for the synthesis of nucleic acids. 

Clinically, low folate can induce megaloblastic anemia with an etiology stemming 

directly from impaired DNA synthesis. In the de novo synthesis of purines, carbons from 

the folate one-carbon pool form parts of the purine ring. The folate metabolite 5, 10-

methenyl tetrahydrofolate is used in the synthesis of the five-atom ring (position 8), and 

10-formyl tetrahydrofolate is used in the synthesis of the six-atom ring (position 2). The 

final product is inos

s
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involved in de novo pyrimidine synthesis. The enzyme thymidylate synthase catalyzes 

 anchors; however, a high-  

 
 

 

the transfer of 5,10-methylene tetrahydrofolate to the pyrmidine ring of dUMP. This 

reaction produces dTMP, which is the precursor of the dTTP used in DNA synthesis 

(178). Transport of folates into cells is principally accomplished by way of the reduced 

folate carrier (RFC) and the folate receptors (FR), also known as folate binding proteins 

(Folbps) in mice. There is one definitive gene for RFC in humans and mice. There are at 

least four human folate receptor isoforms (FR-α, FR-β, FR-γ, FR-δ) and three murine 

receptors (Folbp1, Folbp2, Folbp4) that are currently known. They are all considered 

orthologs respectively, but FR-γ / Folbp3 has not been observed in mice. The folate 

receptor isoforms have been shown to have tissue-specific and cell-specific expression 

patterns (179-181). Functionally, the differences in the protein products of FR-α and FR-

β are observed in binding of folate, where FR-α has a 50-100 fold greater affinity 

depending on the folate substrate. The folate receptor isoforms are externally bound to 

the plasma membrane by glycosyl-phosphatidylinositol (GPI)
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igure 2.1. Genes and metabolites of folate cycle, remethylation and transsulfuration. Pathway 
formation was extracted from KEGG: Kyoto Encyclopedia of Genes and Genomes at 

ttp://www.genome.jp/kegg/ and revised with reference entries at NCBI: National Center for 
Biotechnology Information http://www.ncbi.nlm.nih.gov/. Folates include: DHF – dihydrofolate, THF – 
tetrahydrofolate, 5,10-CH2-THF - 5,10-methylene-tetrahydrofolic acid, 5,10-CH=THF - 5,10-
methenyltetrahydrofolate, 5-CH3-THF - 5-methyltetrahydrofolate, 10-HCO=THF - 10-
Formyltetrahydrofolate. (A). Remethylation and transsulfuration genes (Enzyme Commission Number). 
GNMT - glycine N-methyltransferase (2.1.1.20), PIPOX - pipecolic acid oxidase / peroxisomal sarcosine 
oxidase (1.5.3.1), DMGDH - dimethylglycine dehydrogenase (1.5.99.2), BHMT - betaine-homocysteine 
methyltransferase (2.1.1.5), CDH / CHDH - choline dehydrogenase (1.1.99.1), BADH / ALDH9A1 - 
betaine-aldehyde dehydrogenase, aldehyde dehydrogenases E3 (1.2.1.8), MTR / MS - 5-
methyltetrahydrofolate-homocysteine methyltransferase / methionine synthase (2.1.1.13), MAT1A, 
MAT2A - methionine adenosyltransferase 1, 2, 3  (2.5.1.6), AHCY, AHCYL1, KIAA0828 - S-
adenosylhomocysteine hydrolase, S-adenosylhomocysteine hydrolase-like 1, KIAA0828 protein 
(3.3.1.1),CBS - cystathionine-beta-synthase (4.2.1.22), CTH - cystathionase  (4.4.1.1) 
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(B)
 

HFR - di
TIC - 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (2.1.2.3) 

mido-IZA - 1-(5'-
phosphoribosyl)-5-formamido-4-imidazolecarboxamide, 5’-PRGA - 5'-phosphoribosylglycinamide 5’PR-
N-FGA-5'-phosphoribosyl-N-formylglycinamide 

 
Figure 2.1 Continued, (B). Folate Cycle Genes (Enzyme Commission Number).
D hydrofolate reductase (1.5.1.3) 
A
GART / PRGS / PAIS - trifunctional glycinamide phosphoribosyltransferase (2.1.2.2) 
FTHFD - 10-formyltetrahydrofolate dehydrogenase (1.5.1.6) 
FTCD - formiminotransferase cyclodeaminase (2.1.2.5) 
AMT / GCST - aminomethyltransferase / glycine cleavage system T protein (2.1.2.10) 
SHMT1, SHMT2 - serine hydroxymethyltransferase 1, 2 (2.1.2.1) 
MTR / MS - 5-methyltetrahydrofolate-homocysteine S-methyltransferase (2.1.1.13) 
TYMS / TMS / TS - thymidylate synthetase (2.1.1.45) 
MTHFD1 / MTHFC / MTHFD - methylenetetrahydrofolate dehydrogenase (NADP+ dependent) / 
methenyltetrahydrofolate cyclohydrolase / formyltetrahydrofolate synthetase (1.5.1.5) 
MTHFD2 - methylene tetrahydrofolate dehydrogenase (NAD+ dependent) / methenyltetrahydrofolate 
cyclohydrolase (3.5.4.9) 
MTHFS - 5,10-methenyltetrahydrofolate synthetase / 5-formyltetrahydrofolate cyclo-ligase (6.3.3.2) 
MTHFR - 5,10-methylenetetrahydrofolate reductase (NADPH) (1.5.1.20)  
Cofactors. S-AMDHLP - S-aminomethyldihydrolipoylprotein, DHLP – dihydrolipoylprotein, PR-5-
amino-4-IZA - 1-(5'-phosphoribosyl)-5-amino-4-imidazolecarboxamide, PR-5-forma
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affinity folate receptor has also been obs d unbound without GPI modifications in 

plasma (182). The unbound form of folate receptor increases during folate deficiency 

and promotes the stabilization of tetrahydrofolate (183). The affinity and sequencing 

analysis of the unbound form indicates it as a variant of FR-α. Accordingly, FR-α and 

Folbp1 are primarily found in the plasma, placenta, choroid plexus, and the brush border 

membranes in kidney (184; 185). In the developing mouse embryo, Folbp1 has been 

observed to be highly expressed in the neural folds, yolk sac, and neural tube (186).  

There are over 25 proteins involved in the remethylation, folate cycle, and 

transsulfuration pathways (Figure 2.1).  Several of the corresponding genes have been 

examined as risk factors for NTDs, and fewer still have been associated with risk rates 

for NTDs (164; 187; 188). In this later group, the MTHFR 677C T mutation first 

emerged as a possible genetic risk factor for NTDs (189-191). A second mutation in the 

MTHFR gene (1298A C) has also been associated with NTDs (192; 193). NCBI’s SNP 

atabase www.ncbi.nlm.nih.gov/SNP/ presently shows 88 single nucleotide 

 

f these 6 nonsynonymous mutations, 

sk modification 

n closely related 

such 

erve

d

polymorphisms (SNPs) in the region; 14 of which are mutations (6 nonsynonymous)

within the MTHFR gene itself (LocusID:4524). O

only the 677C T and 1298A C have been associated with a minor ri

for NTDs. 

Mutations in genes for cellular uptake of folate receptors has bee

to NTD rates in animal models, but thus far, there has been no evidence for 

mutation being related to increased risk for NTDs in humans (194).  In this regard, NCBI 

reports there are presently 22 SNPs in region of FR-α (LocusID:2348), of which 2 are 
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nonsynonymous (107T C, 505G C), but neither have been implicated in modifying 

NTD rates. On the other hand, a highly common mutation in RFC (80A G) has 

recently been tested for modifying NTD risk rates (195).  Additional studies demonstrate 

that this mutation may also interact with low folate and MTHFR mutations to increase 

the risk of NTDs (196; 197). 

Environmental factors such as maternal vitamin use in the presence of gene 

variants directly involved in folic acid metabolism and uptake comprise a large part of 

gene-en

 (203).  

vironment (GE) associations considered in NTD studies. In this context, the 

MTHFR 677C T mutation is related to decreased MTHFR activity, low plasma folate, 

and high plasma homocysteine (198-200). Penetrance of this polymorphism is suggested 

to be modified by dietary and supplemental folate (198; 200; 201) and has highly 

variable allelic frequencies across ethnic backgrounds (202). Likewise, variations at the 

infant RFC (80A G) locus appear to modify the effects of folate supplementation on 

NTDs. Individuals that are homozygous mutant (G80/G80) for RFC confer a modest 

decrease in risk of NTDs when supplemented with folic acid, compared to the non-folate 

supplemented pregnancies (196). Risk of NTDs may also be lower for this genotype 

when red blood cell (RBC) folate is low relative to individuals having normal RBC 

folate levels

 

Vitamin B12 

In 1964, Dorothy Hodgkin identified the structure of vitamin B12 (204), which had 

already gained medical importance in the treatment of pernicious anemia (205; 206). 
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This condition begins with megaloblastic anemia but unlike megaloblastic anemia 

induced by folate deficiency, the B12 symptoms progress into degeneration of the 

nervous system. Pernicious anemia is now recognized as a disease of the stomach, where 

intrinsic factor has been shown to actively bind and allow B12 absorption through the 

small intestine via the luminal membranes of ileal cell (207; 208). Data indicates 

pernici

n et al. (2002) studied 5 SNPs in the coding region of the 

Transcobalamin 2 (TCN2) gene, but none of the SNPs were associated with a 

ncreased risk for NTDs. Three of the TCN2 SNPs affected the 

ous anemia can result from insufficient secretion of intrinsic factor or competitive 

inhibition of intrinsic factor by autoantibodies that block B12 binding and absorption in 

the small intestine (209; 210). 

Vitamin B12 was later identified as a potential risk factor for NTDs, but there has 

also been considerable debate with this observation. Several studies show no differences 

between serum levels of B12 or folate in NTD case versus control mothers (211-213), 

while other studies show lower serum B12 levels in NTD cases (214-217). This 

controversy has been the subject of a recent review where it was concluded that there are 

moderate associations between low maternal B12 and an increased risk of NTDs (218). 

Other studies also indicate that B12 concentrations appear modified internally across the 

placenta, where a lower B12 status may or may not be present in serum but is 

significantly lower in the amniotic fluid of NTD case versus control mothers (219-223). 

Additionally, Afma

significantly i

transcobalamin concentration, but these variants only partially accounted for the reduced 

proportion of vitamin B12 binding observed (224). 
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Extending the vitamin B12 hypothesis, studies have also focused on folate and 

vitamin B12 related genes such as methionine synthase (MTR) and MTR reductase 

(MTRR); these studies indicate that MTRR-dependent reduction of B12 may increase 

the risk of spina bifida (225; 226). Futhermore, studies on folate and vitamin B12 

enzymes have expanded to include gene-gene interactions or epistasis between MTHFR 

677C T, MTHFR 1298 A C, MTRR 66A G, serine hydroxymethyltransferase 

(SHMT 1420C T), cystathionine beta-synthase (CßS 844ins68), glutamate 

carboxypeptidase II (GCPII 1561C T), and RFC 80G A (203; 226; 227).  

Collectively, the genes involved in folate biochemistry and their respective 

polymorphisms appear to only produce small risk increases.  This has introduced the 

idea that cumulative environmental conditions act on individuals with specific genetic 

predispositions, leading to threshold infringement, after which a NTD is produced (152; 

228). 

Due to the different results of B12 status between sera and amnion in the 

aforementioned studies and the recent study of increased rates of NTD cases among 

women with folate receptor autoantibodies (174), we suggest that autoantibodies to 

intrinsic factor, transcobalamin 1 (TCN1) and 2, all of which increase the risk for 

pernicious anemia, may also increase the risk for NTDs. In light of intrinsic factor, 

TCN1 and 2 also being found in the amnion (229), this hypothesis may also explain the 

observed differences in concentration of vitamin B12 in different tissues.  
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Human

ed in development has led to the identification of various candidate genes for 

suscept

tions, gene-

environment interactions, and the maternal environment affecting fetal development all 

contribute to the ultimate phenotype, making downstream analysis incredibly complex. 

 Teratogens 

Teratogens associated with the induction of NTDs are shown in Table 2.1. There are an 

increasing number of investigations into suspected teratogens but relatively few have 

been or can be confirmed in population-based studies. Specifically, teratogens that are 

not prescribed medically or are environmental contaminants may be associated with 

NTDs, but the data are more difficult to assess in the later environmental groups due to 

non-medical control of usage and exposure. In order to elucidate the mechanisms of 

known teratogens, or further characterize suspected teratogens, researchers may also 

utilize animal models.  

 

Testing Teratogens in Models 

The use of animal models to enhance our basic understanding of the regulation of events 

involv

ibility to teratogenesis in humans. Model systems confirm that there are multiple 

developmental pathways and multiple genes involved in organogenesis that result in the 

same clinical malformations. They also demonstrate that interactions of environmental 

and genetic factors contribute directly to these aberrant phenotypes. Chemical 

interactions may be protective if the compound reduces the risk for birth defects (e.g. 

folic acid), or teratogenic if the substance increases the prevalence of abnormalities (e.g. 

valproate). Clearly, gene-chemical interactions, gene-gene interac
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When utilizing a model species in order to elucidate the mechanism of NTD 

allenges to using animal models to understand teratogenesis 

volves a legacy of unresolved issues over the relevance of toxicity data in risk 

 novel technology platforms into hazard evaluation, and 

teratogenesis, the hypothesis is tested upon the model itself, and extrapolating these 

findings to human populations may not always be valid for risk assessment (230). 

Another such limitation involved in experimental animal testing is the use of inbred 

strains. The inbred strain is essential to many investigations, yet extrapolation of the 

results of a near homologous population of experimental animals to a heterogeneous 

population of humans can lead to unanticipated error (231). In addition, using animal 

bioassays requires a significant time and financial commitment in order to properly 

perform the testing. Ch

in

assessment, the incorporation of

the societal challenge that demands safer products that are tested on experimental 

animals in face of disapproval and threat from various and diverse sections of society 

(232). 

In order to properly assess human exposure levels, it is essential that the data 

from animal models detect the effects of teratogens. Most studies encompass the use of 

several species for animal testing under different exposure conditions. Exposures include 

the assessment of maternal and embryo toxicity in order to establish appropriate dosages. 
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Table 2.1. Pharmaceutical teratogens. 

Category Drugs Use Teratogenic 
Mechanism 

Anticonvulsants Carbamazepine Valproic Acid Anticonvulsants are used to 

channels, active transport, 

Unknown - 

and/or 

deacetylase. 

Clonazepam 
Ethosuximide 
Phenobarbital 

Phenytoin 
Primidone 

prevent and minimize 
seziures. Therapeutic action - 
several are suspected 
including effects on ion 

and membrane stabilization. 

may include 
inhibition of 
folate 
metabolism 

inhibition of 
histone 

Folate Acid 
Antagonists 
(FAAs) 

Aminopterin 
Methotrexate 
Triamteren 

Trimethoprim 
Pyrimethamine 

FAAs can be used in the 
treatment of cancers or 
infections. Therapeuric action 
- via substrate inhibition of 

metabolism, which in turn 
stalls cellular proliferation. 

Unknown - 
may include 
nucleoside 
synthesis 

and/or 
inhibition of 

reactions. 

enzymes involved in folate inhibition 

methylation 

Diuretics Unspecified   Diuretics increase the 
discharge of urine. 
Therapeutic action- they are a 

affecting various hormones 
regulating urine production 

diuretics are sulfonamide 
derivatives.  
 

Unknown 

diverse group of compounds 

by the kidneys. Some 

Antihistamines Unspecified   Antihistamines of this type Unknown 
are used to ameliorate the 
symptoms of allergic 
response. Therapeutic action- 
most commonly used are the 
first generation H1-
antagonists, which are also 
potent anticholinergic agents.  

Sulfonamides Sulfamethoxazole Sulfamethazine Sulfonamides are a sulfur 

linked to a benzene ring. 
Antibacterials are made by 

side chain. Therapeutic 
action- they are competitive 

Unknown - 

nucleoside 
synthesis 

and/or 
inhibition of 

dioxide and nitrogen moiety 

the addition of an arylamine 

inhibitors of PABA, a 
substrate important in 
bacterial folate production. 
The addition of trimethoprim, 
which inhibits bacterial 
dihydrofolate reductase, 
creates synergistic 
preparations.  

may include 

inhibition 

methylation 
reactions. 
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When the data from several species is clearly dose-related in causing neural tube 

def rapolation to hu s considered more relia The proble ith 

this method wh mation is observed i h al a 

potential hazard for humans, but ultimately the ctly e d. 

Therefore, when these effects are observed in a test sp t uman 

p mus tablis on appro ).  

 

Correlating Mouse and Human Models 

It is unfortunate but very few of the mouse mo irror the situation 

with respect to non-syndromic cases. Such  with incomplete 

penetrance, have an unclear transmission genetic complexity. 

Although variable low penetrance is found in t models, only a few 

strains show the complex inheritance patterns that are indicative of human non-

syndromic NTDs (234). SELH/Bc is one of t that do show non-

syndromic NTDs with distinctive genetic com bryos are unable to 

c rm l  w p ephaly. 

However, most embryos develop into normal nor yology, 

as they compensate by extension of closure III to fully complete NTC (234). For further 

information on mouse models with NTDs, t l of re blished 

concise reviews (167; 234). 

 

ects, ext mans i ble. m arises w

en a malfor n only select species. T

 data cannot be dire

ecies, adverse ou

is may sign

xtrapolate

comes in h

regnancy t then be es hed based up  more mechanistic aches (233

 human dels of NTDs m

 isolated NTDs occur

pattern, and great 

 most of the mutan

he few mouse models 

plexity. SELH/Bc em

eloomplete no al closure at c osure site II, ith 20 percent dev

adults despite their ab

here are a handfu

ing exenc

mal embr

cently pu
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Pharmaceutical Induction of NTD 

Several pharmaceutical compounds have been associated with an increase in risk for 

NTDs.  Specifically, there is a direct relationship with antiepileptic drugs (AEDs) and 

the development of NTDs (235). AEDs are a diverse class of pharmaceuticals with 

chemical compositions and structures that vary considerably. In spite of these 

differences, in utero exposure during the first and second months of pregnancy to widely 

prescribed AEDs such as valproate and carbamazepine are associated with a 10-20 fold 

increase in the frequency for NTDs in humans (236-239). Exposure to multiple AEDs, as 

is often the case in the management of seizures in epileptic patients, can elevate the 

frequency of NTDs even further (240; 241). This increasing risk is reflected in data that 

strongly supports the use of monotherapy to control epilepsy during pregnancy (242). 

Valproate (VPA, Depekane, Abbott Laboratories) is by far the most highly 

studied compound for teratogenicity of AEDs (243). Numerous animal models have 

demonstrated a dose-response to valproate induction of NTDs (244-246). The 

mechanism of valproate teratogenicity is still unknown, but considerable steps are being 

made in this direction. VPA and other AEDs are folic acid antagonists due to their 

ability to inhibit dihydrofolate reductase, decrease folate absorption, or increase folate 

degradation (237; 247). Genetic differences in NTD susceptibility to valproate have also 

been demonstrated in murine inbred strains (248). These differences have been utilized 

in breeding schemes that suggest genetic imprinting in VPA teratogenicity (249; 250), 

and have also been used to identify a region of the murine genome strongly linked to 

susceptibility of VPA-induced NTDs (251).  Recentlly, VPA has also been characterized 
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as an inhibitor of histone deacetylase (HDAC) (252; 253). Furthermore, it was 

emonstrated that VPA analogs without the ability to inhibit HDAC were not teratogenic 

in Xenopus (252). Collectively, these studies provide new insight into the etiology of 

NTDs and exemplify the complexity of pharmaceutical induced teratogenicity. 

Futhermore, we suggest that collectively, this data is consistent with the threshold model 

for the induction of NTDs and other complex traits. 

In addition to AEDs, associations with NTDs have also been found with 

diuretics, antihistamines, and sulphonamides (254). However, another study was unable 

to reproduce these results (255). Ultimately, the results on non-AED drugs are still 

equivocal, and will require additional studies for prudent characterization with respect to 

their ability to induce NTDs in the human population.   

 

Maternal Obesity and Diabetes 

While a complete consensus concerning the risk of maternal obesity and diabetes on 

NTDs has not been reached, studies suggest that blood glucose concentrations can be 

considered as an NTD risk factor. Maternal diabetes has long been associated with NTD 

risk (128-130), while periconceptional glycemic control has been associated with a 

reduction in risk (131-133). Maternal hyperinsulinemia and hyperglycemia are also 

suggested to be putative risk factors for NTD affected pregnancies (256; 257). Mothers, 

particularly obese mothers, having a higher sugar intake are at a significantly increased 

risk for having an NTD-affected pregnancy (258-260). This is particularly relevant when 

considering research correlating high body mass index (BMI) with elevated glucose 

d
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concentrations in non-diabetic mothers (261). A recent review also presents a  discussion 

of these risk factors (262). 

A retrospective epidemiologic study demonstrated a strong association between 

risk of an NTD affected pregnancy and maternal glycemic index among nondiabetic 

pregnancies (260; 262). Involving nearly 1000 participants who were almost evenly 

divided between cases and controls, the risk of an NTD-pregnancy was not significantly 

elevate

ce or ethnicity, and total energy 

takes, the elevated NTD risk was limited to higher glycemic index values in women 

 any retrospective study is subject to random variation 

d in relationship to glucose or fructose intake, although there was a modest 

correlation for sucrose intake. This effect was consistent for all NTDs when analysis was 

adjusted for energy intake. In addition, there was a strong interaction between maternal 

pregnancy weight, maternal nonpregnancy weight, and glycemic index in NTD risk. 

When adjusted for folate status, maternal education, ra

in

with a BMI greater than 29. While

and recall bias, and glycemic intake of foods in combination with activity level was used 

as a proxy for serum glucose concentrations, it is unlikely that these would have resulted 

in the quadrupling, or more, of NTD risk for the nondiabetic obese women consuming 

foods with a high glycemic index that was observed. 

Elevated maternal serum glucose concentrations during pregnancy may directly 

affect NTC. The developing human embryo lacks pancreatic function until after the 7th 

week of pregnancy, and is therefore subject to maternal serum glucose concentrations.  

This could expose the developing conceptus to harmful concentrations of glucose during 

NTC (261). In rat embryos, elevated glucose concentrations are known to induce 
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oxidative stress and inositol depletion (263; 264). It has also been shown that inositol 

supplementation is protective against folate-resistant posterior-NTDs in mice (265), but 

it is no

nic in laboratory rodents, and the 

literatu

t known whether there is a similar inositol protection in humans. 

Animal models have suggested that the Pax gene family may modify risk of 

NTDs in diabetic pregnancies (266; 267). A mouse model of diabetic pregnancy 

demonstrates an increase in NTDs accompanies a significant decrease in the 

transcription factor, Pax-3 gene expression (266). This potential interaction has not been 

substantiated in human studies; however, due to small sample sizes it is possible the 

existing studies in the literature lacked the power required to detect such an interaction 

(268-272).   

 

Maternal Hyperthermia 

The range of acceptable mammalian maternal core temperatures is from 39.5°C to 

35.5°C, while the range between hyperthermia- and hypothermia- induced coma is 41°C 

to 33°C. Embryonic development, and NTC in particular, has proven especially 

refractory to hyperthermia. Marshall Edwards first demonstrated that a 3°-5°C elevations 

during the initial stages of neurulation were teratoge

re suggests that even small elevations in the core temperature of 1.5-2.4°C are 

detrimental to mammalian neurulation (273; 274). Knowing that developmental defects 

were observed in animal species (guinea pigs, mice, rats, chicks, and monkeys) exposed 

to a hyperthermic insult of 2°C or more above normal body temperature, it is reasonable 

to suspect that human embryos are similarly susceptible (274). 
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With the advent of hot tubs as a recreational device, anecdotal clinical reports, 

followed by retrospective epidemiologic studies brought this potential developmental 

hazard to the attention of the medical community (275). In humans, anencephaly, 

mening

plicated pregnancy, while exposure to more than one of these factors 

creased risk 6-fold (283). 

atest hyperthermic risk is generally considered to be from 

. The resulting progeny 

omyeloceles, and encephaloceles have all been associated with an elevated 

maternal core temperature, increasing risk as it reaches 38.9°C, and especially as it 

exceeds 40°C.  (276-283). These elevations in temperature can be secondary to febrile 

illness, occupational exposures, or recreational activities. In a comparative study 

involving 23,491 women of hyperthermic exposure limited to sauna, hot tub, fever, or 

electric blanket, it was found that early hyperthermic exposure roughly doubled the risk 

of an NTD-com

in

In humans, the gre

maternal febrile illness. In a large retrospective population-based case-control study of 

fetuses and liveborn infants with NTDs, maternal fever or febrile illness in the first 

trimester was associated with a two-fold increased risk for an NTD pregnancy (284). 

However, the possibility that the increased risk was due to reporting bias cannot be 

completely discounted. Additionally, the etiology of these NTD-affected pregnancies is 

difficult to disentangle from maternal hyperthermia and the illness itself (285). In 

support of hyperthermia proper being a risk factor, data from experimental animals 

demonstrate the increased NTD incidence without pathogenic exposures.  

Edwards first showed the hyperthermia-NTD relationship by exposing guinea 

pigs to hyperthermic insult immediately prior to neurulation
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present

 half of the exposed embryos being microcephalic (288). 

Tempe

ghly sensitive 

(SWV/

ed with defects of the abdominal wall, and hypoplastic digits, but most of the 

anomalies were confined to the neural tube, brain, and skeleton. In hamsters that were 

similarly exposed, NTDs were the most common defect (286). Additionally, 

hyperthermic insult resulting from radiation exposure has been proven to be an effective 

method of inducing NTDs in rats (278; 283; 285; 287).  

Evidence in animal models suggests that induction of NTDs through elevation of 

the maternal core temperature is an embryonic, not a maternal effect. This has been 

investigated by completely removing the embryo from maternal influence and exposing 

rat embryonic explants during the onset of NTC to mild hyperthermic insult which 

proved to be teratogenic. Embryos thus exposed displayed head and somite 

malformations, with nearly

rature and duration of exposure act together in a dose-response relationship to 

induce NTDs in experimental animals (289). This provides an explanation for the failure 

of saunas to induce elevated rates of NTDs in Finnish women, who regularly indulge in 

saunas while pregnant (290). Consistent with this explanation, subjects in another study 

could not tolerate hot tub exposure long enough to elevate their core temperature to 

38.9°C (291).Susceptibility to hyperthermia induced NTDs also appears to have a strong 

genetic component. This has been demonstrated in laboratory mice with pronounced 

differences in response frequencies of hyperthermia induced NTD. Susceptibility for 

mice has been shown to range from completely resistant (DBA/2J) to hi

Fnn), where the latter group displayed 44.3% exencephaly following exposure 

(292). Data from this study also suggest that only a relatively few genes are responsible 
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for this variation in NTD susceptibility and that the embryonic genotype is the major 

modifier of this susceptibility. 

 

Fumonisin B1

Fumonisin B1 (FB1) has been identified as a potential teratogen and risk factor for NTDs 

in populations consuming large amounts of fumonisin-contaminated corn products (293-

297). Fumonisins are a family of mycotoxins produced by Fusarium verticilloides, 

commonly found as a contaminant of corn. The major isoform, fumonisin B1, has been 

recently recognized as a teratogen (298), and previous studies also showed it causes liver 

and kidney cancer in rats and mice (Gelderblom, NTP) and is a suspected human 

carcinogen (299). 

  Receptor-mediated folate uptake was found to be reduced by up to 50% in Caco-

2 cells pretreated with fumonisin (300). Due to Fumonisin’s structural resemblance to 

sphingoid bases, it disrupts sphingolipid biosynthesis by inhibiting ceramide synthesis 

(301-303). This pathway is required for GPI-anchoring, and fumonisin thereby disrupts 

the GPI proteins such as folate receptor.  This in turn disrupts the receptor’s endocytic 

recycling (304) and the amount of the receptor available for substrate transport (294).  

 In several animal models, maternal oral fumonisin exposures have been largely 

unsuccessful in producing NTD phenotypes (305-307), but fumonisin does produce 

NTDs in developing murine explants in addition to significant growth retardation (308). 

Explants also displayed dose-dependent exencephaly that could be partially mitigated by 

the addition of folate to the growth medium (298). Murine studies also showed that 
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maternal IP dosing with fumonisin during neurulation induced exencephaly in 

Lm/Bc/Fnn mice which was reduced by folate supplementation (Gelineau-van Waes and 

Maddox, personal communication). Fumonisin’s role in the disruption of folate transport 

 was further supported by rescue of fumonisin-exposed dams with 

 with a greater than a two-fold increased risk of an NTD-affected 

and lipid rafts

gangliosides (10 mg/kg) the day before, during, and the day following exposure (294). 

  

Other Risk Modifiers for NTDs 

Many environmental contaminants have been suspected of being human teratogens. 

These contaminants include organic solvents (309; 310), chlorination disinfection by-

products in drinking water (311-314), and pesticides (310). These studies rarely 

associate exposure

pregnancy. Metals are another area of concern with respect to NTD teratogenesis. 

Periconceptional exposure to cadmium (315) and lithium carbonate (316) has been 

associated with NTDs in animal models, but human studies have shown no increased 

NTD risk from exposure to tap water contaminated with a variety of metals including: 

lead, calcium, magnesium, copper, lithium, zinc, nickel, selenium, mercury, chromium, 

silver, cobalt, cadmium, and molybdenum (317; 318).  

There has also been data that indicates a relationship between folate and iron, in 

that the metal can modulate the availability of folate, leading to symptoms of folate 

deficiency despite adequate folate intake and extracellular folate concentrations (319). 

Investigations shed light on this relationship by demonstrating that the homocysteine 

remethylation pathway is regulated in part by serine hydroxymethyltransferase (SHMT), 
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whereby SHMT’s gene expression is regulated by the heavy-chain subunit of ferritin 

(320). It has been suggested that lead may induce NTDs by reducing bioavailability of 

dietary zinc (321-324). 

Other exposures of interest which require additional research in order to further 

establish their importance as human teratogens include: maternal diarrhea (325), 

maternal emotional stress (326), electromagnetic fields (327; 328), proximity to 

nd pesticides (331).  

DISCU

hazardous waste sites (329; 330), a

While there are many agents suspected of possessing a teratogenic potential, 

there are relatively few confirmed environmental teratogens.  This may be due to several 

factors, including: 1) laboratory studies performed on mice generally utilize doses of 

teratogens that are much higher than that which humans would generally be expected to 

encounter; 2) environmental exposure is much more difficult to quantify in retrospective 

studies involving humans than in mice kept under laboratory conditions; and 3) human 

susceptibility to these environmental teratogens may hinge on complex interactions of 

genetic susceptibility, environmental exposure to teratogens, and availability of 

protective agents, such as dietary folate. 

 

SSION 

The interactions between environmental factors and target genes are critically important 

to the regulation of developmental pathways contributing to the formation of an embryo. 

Evidence from mouse models suggest that the multiple genes/proteins involved may be 

contributing in an additive or multiplicative fashion; this can set the embryo on a path of  
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abnormal development should the regulation of these genes/proteins be perturbed by 

exogenous factors. A long-standing teratologic concept is that an organism of a given 

genetic sensitivity may be subject to multiple environmental factors that are potentially 

teratog

 a neural tube defect (152; 228). 

Althou

e population and individual-based influences 

ccording to ethnicities or genetic backgrounds.  

enic; yet remain below the threshold for expression of an abnormal phenotype. 

The abnormal phenotype may present at a time when these multiple factors reach some 

threshold at which normal development can no longer proceed. Such additive factors 

ultimately contribute to a final phenotypic expression of

gh it is highly unlikely that any single gene is responsible for the risk of develo-

ping birth defects in the majority of human clinical cases, animal models have efficiently 

proven their worth in identifying candidate genes for further investigations in human 

molecular epidemiologic studies. However, it is important to temper any conclusions 

with the realization that modifier genes, stochastic processes, distinct targets for specific 

isoforms and functional redundancies all may lead to different phenotypic outcomes 

(332). Additionally, when studying NTDs or NTC, it is essential to view them as 

dynamic biological processes. In these processes, the presence of teratogens or absence 

of essential biological factors can hav

a
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Studies of complex disease etiology for gene-gene and gene-environment 

interactions have expanded in methodology and matured in analyses, yet the existing 

body of literature is still constrained by limited sample sizes. Support for genetic 

variants and environmental exposures as independent risk factors has proven difficult, 

and evidence for gene-gene and gene-environment interactions is often equivocal. 

Befitting its complexity, methods to establish the genetic and biochemical underpinnings 

of NTDs must continue to evolve. Greater focus should be placed on increasing sample 

size, evaluation of multiple loci and effect modification, and determination of the most 

relevant phenotype (e.g. having a child/pregnancy affected by a NTD or having a NTD) 

and genotype (maternal/embryonic) (333). These highlights are presented in anticipation 

of the increasing number of studies by investigators into the etiology of NTDs and the 

growing level of understanding proffered to the scientific community by these studies.  
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CHAPTER III 

ARSENIC-INDUCED GENE EXPRESSION CHANGES IN THE NEURAL TUBE 

OF FOLATE TRANSPORT DEFECTIVE MOUSE EMBRYOS∗

 

OVERVIEW 

Arsenic injected intraperitoneally (ip) during early organogenesis to small pregnant 

laboratory rodents (mouse, rat, and hamster) induces several congenital defects in the 

progeny. Among those abnormalities consistently and predominantly observed are 

exencephaly and encephalocele. These severe defects of the central nervous system 

originate from a corrupted process of neurulation and are better known as neural tube 

defects (NTDs). In order to understand the mechanism of arsenate-induced NTDs, we 

designed studies in which highly sensitive Folr2 nullizygous mice were injected 

intraperitoneally with sodium arsenate at the beginning of the neural tube formation 

process. This specific knockout mouse and the arsenic exposure conditions were chosen 

as they were known to provide a high incidence of exencephaly in exposed embryos. We 

have applied gene expression technology to the anterior neural tube. This allowed us to 

study arsenic induced changes in patterns of gene expression that may contribute to the 

development of neural tube defects in these mice. Using extensive data analysis 

approaches including hierarchical clustering and gene ontology analysis, we identified 

several candidate genes as well as important ontology groups that may be responsible for 

                                                 
∗ Reprinted with permission from “Arsenic-induced gene expression changes in the neural tube of folate 
transport defective mouse embryos” by Wlodarczyk B.J., Cabrera R.M., Hill D.S., Bozinov D., Zhu H., 
Finnell R.H., 2007. Neurotoxicology, 27:547-57, Copyright (2007) by Elsevier. 
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arsenic’s teratogenicity. Changes i  of several genes in response to 

to also i 1 (En-1), 

platelet derived growth factor receptor alpha (Pdgfrα) and ephrinA7 (EphA7). We also 

gene ontology groups that could be implicated in arsenic’s underlying 

Release Inventory (TRI), in the year 2003, 289,629,256 pounds of arsenic or arsenic 

l 

n the expression

arsenic treatment in our model had previously been demonstrated by other investigators 

nduce NTDs in murine model systems. These include: engrailed 

found several 

teratogenicity: morphogenesis, oxidative phosporylation, redox response, and regulation 

of I-kappaB kinase/NF-kappaB cascade. Additionally, we revealed new target genes 

which may be responsible for arsenic disrupted oxidative phosphorylation. 

 

INTRODUCTION 

Arsenic posses “the most significant potential threat to human health due to its known or 

suspected toxicity and potential for human exposure” of the 275 most hazardous 

substances found in the environment (334). This list, created by the Agency for Toxic 

Substances and Disease Registry, is based on the toxicity, and potential for exposure at 

any one of the National Priorities List, or “Superfund” sites. While arsenic is ubiquitous 

in the environment and is found in varying concentrations in rock, soil, and water, 

anthropogenic sources of arsenic including metalworking industries (including the 

smelting of lead, copper, and nickel), coal combustion, semiconductors and pesticides 

production, results in tons of arsenic being released into the environment every year. 

According to the United States Environmental Protection Agency’s (USEPA) Toxic 

compounds were reported released as a consequence of "Total On- and Off-site Disposa
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or Other Releases". This is not a comprehensive number, as only a portion of relevant 

facilities are required to report to the TRI. The consequence is a greatly increased 

circulation of potentially hazardous compounds into the environment. Increased human 

exposure to arsenic compounds carries with it unknown health risks for future 

generations.  

Inorganic arsenic, the 20th most common element in the Earth’s crust, is found in 

the environment in several chemical forms, and is well known for its ability to cause 

acute toxicity and death. It exists in several oxidation states, and those of the most 

terest to toxicologists are the trivalent and pentavalent forms, arsenite and arsenate. 

y exposed to these compounds through contaminated water, food 

in

Humans are generall

and air.  

The chronic effects of arsenic on humans and animals include, but are not limited 

to: skin lesions, blackfoot disease, peripheral neuropathy, encephalopathy, 

hepatomegaly, cirrhosis, altered heme metabolism, bone marrow depression, papillary 

and cortical renal necrosis, diabetes and skin and lung cancer (335-337). While arsenic’s 

toxicity has never been in question, controversy over its teratogenicity in humans 

continues unabated (13; 26; 338; 339). This is primarily due to the limited human data 

and questionably designed epidemiological studies (17-25). The primary flaw in most 

studies involving humans is that actual maternal exposure is not determined, rather 

environmental setting is substituted as a proxy. In the few studies in which maternal 

exposure was directly evaluated, measurements were not taken during the relevant 

embryological period of neural tube closure. These retrospective studies of a link 
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between arsenic exposure and increased risk of malformation measured maternal arsenic 

levels or environmental exposures long after the time when teratogens would be capable 

of inducing structural malformations. However, these studies proved valuable by 

demonstrating that arsenic readily crosses the human placenta and actually concentrates 

in the embryo/fetus and placenta during gestation  (6; 14; 340). Acute prenatal arsenic 

exposu

ly demonstrated when the route of adminstration involved using injections 

(intrap

re in humans can result in miscarriage and early neonatal death (27; 28). 

In contrast to human studies, in vivo and in vitro experiments in laboratory 

animal species (mouse, rat, hamster and rabbit) have consistently shown arsenic to be a 

potent developmental toxicant and a teratogen, primarily inducing anterior neural tube 

defects (NTDs) (8-16). However, it should be noted that arsenic-induced teratogenicity 

was main

eritoneal and intravenous), and that arsenic doses used in these studies were high 

when compared to the doses likely to be experienced by humans in the environment (for 

detailed reviews the reader is referred to: (26; 339). In some studies, arsenic given orally 

or via inhalation  revealed embryotoxic  and/or teratogenic effects but at the doses 

presumably toxic for mothers (341-345). The relatively high doses of arsenic used in 

animal studies should not be a surprise, as lethal doses for laboratory animals are 

somewhat higher than the estimated lethal dose in humans. Based on clinical reports, the 

estimated minimal lethal dose for humans is about 1-3mg As/kg (346; 347), whereas 

available LD50 values for arsenite and arsenate in rats and mice range from 15 to 175 mg 

As/kg (336; 347). Thus, extrapolation from animal studies to humans is not trivial, and 

proper assessment of the developmental toxicity of arsenic will require much higher 
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quality human epidemiological studies and thoughtful investigation of potential 

modifiers to arsenic’s teratogenicity in animal models. Taken together, these currently 

available data build a potential linkage between human arsenic exposure and elevated 

risks for neural tube and other congenital defects that bears further exploration (348). In 

this situation, it seems essential to fully understand the mechanisms by which arsenic 

may cause congenital defects, as this will enhance our ability to accurately predict the 

human health risks associated with arsenic exposure. 

Folic acid enters cells via folate receptors (Folr’s), also known as folate binding 

proteins, and the reduced folate carrier (RFC1), originally known as Slc19a1. Folr’s are 

membrane bound and have both tissue- and cell-specific expression patterns (181). 

Murine Folr2, which is homologous to the human FOLR2, is variably expressed in most 

tissues (349; 350). To assess the role of Folr2 during embryogenesis, specifically during 

the period of neural tube closure, embryos lacking functional Folr2 alleles were 

generated by homologous recombination in embryonic stem cells (175). In this knockout 

strain, STOCK-Folr2tm1Fnn (Folr2), nullizygous embryos exhibited normal neural tube 

closure and had no grossly detectable abnormal phenotype. Plasma folate concentrations 

in these mice were unchanged relative to wildtype controls, and homocysteine levels 

were only slightly elevated, not reaching statistical significance (175). Repeated 

experiments consistently demonstrated that Folr2 nullizygous mice display increased 

sensitivity to arsenic-induced teratogenicity. Intraperitoneal injection of 9.6 mg As/kg  as 

a sodium arsenate administered just prior to and during the onset of neural tube closure 

(embryonic (E) days 7.5 and 8.5) results in 40% exencephaly in nulls compared with 
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24% exencephaly in treated wild-types. This sensitivity to arsenic-induced NTDs was 

further enhanced by maintaining dams on a low-folate diet (351). When the Folr2 

nullizygous dams were maintained on a low folate diet (0.3 mg/kg diet) and treated with 

arsenic as above mentioned, the level of exencephaly rose to 64%, while in the wildtype 

it remained relatively stable at approximately 25%.  

Biotransformation of inorganic arsenic in most mammalian species requires a 

series of reduction and methylation reactions which facilitate arsenic excretion from the 

body (39). Recent studies revealed that intermediate trivalent arsenic species are 

extremely toxic, which suggest that methylation might not be the detoxification pathway 

(43; 352-354). In vitro study demonstrates that oxidation of trivalent arsenic species to 

pentavalent forms should be considered as a detoxification pathway (47). 

In order to more thoroughly investigate the mechanism of arsenate-induced 

NTDs, we designed experiments in which highly sensitive Folr2 nullizygous mice were 

treated ip with a teratogenic dose of sodium arsenate just prior to the onset of neural tube 

formation process. This specific knockout mouse and arsenic exposure conditions were 

chosen as they previously produced a high incidence of exencephaly among the exposed 

embryos. We hypothesized that disruption of Folr2 in nullizygous mice disturbs 

methylation and excretion processes when challenged with high doses of arsenate, 

extending the time of embryo-exposure to arsenic. Results of our previous arsenic-

induced teratogenicity study (351) and toxicokinetic study (unpublished data) on Folr2 

knockout mice supports the above hypothesis. We have applied gene expression 

technology to study arsenic induced neural tube defects in these mice. This technique 
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allowed us to develop gene expression profiles within isolated regions of the target 

neural tissue that had been pre-selected for analysis. We investigated the gene expression 

changes induced by arsenic in the anterior part of neural tube in order to discover 

patterns that might shed light on the mechanism of arsenic’s teratogenicity.  

 

MATE

ere maintained 

on a 1

RIALS AND METHODS 

Animals, Treatment and Collection of Samples 

The STOCK-Folr2tm1Fnn (Folr2-/-) null mice were housed in the Institute of 

Biosciences and Technology Vivarium. The animals were maintained in clear 

polycarbonate microisolator cages and were allowed free access to food and water 

(Harlan Teklad Rodent Diet#8606, Ralston Purina, St. Louis MO) and w

2-h light/dark cycle. Virgin females, 50–70 days of age, were mated overnight 

with males and examined for the presence of vaginal plugs the following morning. The 

onset of gestation was set at 10 p.m. of the previous night, the midpoint of the dark cycle 

(355). Pregnant females were randomly assigned to receive sodium arsenate (Na2HAsO4 

• 7H2O, Sigma-Aldrich Chemicals, St. Louis, MO) or water. On E 7:12 and 8:12, 

pregnant dams were injected ip with water solution of sodium arsenate at the dose of 9.6 

mg As/ kg of body weight. Control dams were injected at the same time points with 

water for injection (USP, Abbott Laboratories Chicago IL) as a control treatment. The 

volume of each single injection amounted to 10 μL/g body weight. At three selected 

time-points: 8:15 (3 hours post-injection), 9:00 (12 hours post-injection) and 9:12 (24 

hours post-injection), at least 4 control and arsenic treated dams were sacrificed and 
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embryos harvested. After a thorough gross morphological examination under a 

dissection stereomicroscope (Leica MZ95, Heerburg Switzerland) the embryos were 

staged according to somite number and advancement through the process of neural tube 

closure (Table 3.1). From these embryos, the anterior part of neural tube (cut off just in 

ont of the otic pit) was dissected and transferred separately to a 600 μL plastic tubes 

 (Ambion). The samples were placed in -20°C for 24 

 compound, and then frozen at -80°C 

(n) (n) 

fr

containing 15 μL of RNAlater-ICE

hours to allow the tissue soak the RNA preserving

and kept until further processed. 

 

 

 

Table 3.1. Embryos collected from Folr2-/- control and arsenic treated dams. 

 

 

 

 

 

 

 

 

 

Gestational 
Day 

(day:hour) 
Treatment Litters Embryos Somites 

(mean ± 
SD) 

Closure sites#

Open    I       II       III      IV 
8:15 
8:15 

Control 
Arsenic 

5 
4 

28 
26 

7.9 ± 1.7 
7.4 ± 1.6 

0 
0 

23 
26 

4 
0 

1 
0 

0 
0 

9:00 Control 6 44 9.4 ± 2.8 1 33 2 8 0 
9:00 Arsenic 6 39 8.5 ± 2.3 1 31 6 1 0 

9:12 Control 4 30 20.4 ±1.8 0 0 0 0 30 
9:12 Arsenic 4 28 17.7 ±3.8* 0 12 8 7 1 
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Sample Processing and Microarray Assay 

No less than 6 embryonic neural tubes from separate dams (3 controls and 3 arsenic-

treated) for each time-point were used for hybridization on commercially available 

CodeLink UniSet 10K Bioarray. Each array contains a broad range of genes (~10,500) 

derived from publicly available, well-annotated mRNA sequences. Every probe has been 

functionally validated against multiple tissues. A set of housekeeping genes has been 

included to be used for baseline normalization procedures. However, for a dataset of this 

size, a global scaling technique is definitely preferable. Array to array variation is said to 

e less than 8% across batches. Probe specificity is claimed by the manufacturer to be 

pproximately 90% probe homology to target sequence, such that a 3bp mismatch would 

ignificantly reduce the hybridization intensity.  

 in gene expression with 

95% confidence or 2-fold with 98% confidence while differentiating between targets. 

m n u cat y experim r improve the 

confidence to 99.9%, wh

mi  The sequen  info tion pro  (g )  a ila  the 

htt ww1. mbiosciences.com/ap 107 sf/ te

gel provides support for 30-mers in a mat lds e pr  a y m the surface 

f the slide. This substantially reduces background and enhances sensitivity (1:300,000), 

llowing for the detection of one transcript per cell with 50-200 ng of poly A+ RNA. 

Since the limited quantities of total RNA extracted from each anterior part of the 

embryo neural tube did not enable us to use standard procedures for probe labeling, we 

b

a

s

This translates into the ability to detect a 1.3 fold change

Triplicate easureme ts thro gh repli ed arra ents furthe

ich is crucial for settings with very large data sets such as 

croarrays. ce rma of each be ene is va ble on

p://w amersha trix/upp0 7.n Con nt website. The 3-D 

rix that ho  th obe wa  fro

o

a
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utilized aRNA amplification methodologies as previously described by Eberwine and 

ion) at 42°C overnight in the presence 

of biot

fluorescent nucleic acid stain RiboGreen (Molecular Probes). The aRNA was 

fragmented in 40mM Tris acetate, pH 7.9, 100mM KOAc and 31.5 mM MgOAc, at 

94°C for 20 minutes. Hybridization, coupling of Alexa Fluor 647-streptavidin 

(Molecular Probes), and subsequent washes were performed according to manufacturer’s 

protocol (Amersham Biosciences). The aRNA was mixed with buffer component A and 

B and then denatured at 90°C for 5 minutes. The sample was then injected into the 

hybridization chamber and sealed. Hybridization was allowed to go 18 hours at 37°C, 

while shaking at 300 rpm. Each slide was rinsed in TNT buffer (0.1M Tris-HCl pH 7.6, 

colleagues (356) with several modifications. Briefly, total RNA was extracted (PicoPure 

RNA isolation kit, Arcturus) and its quality was assessed on an Agilent 2100 

Bioanalyzer using Pico LabChips (Agilent). To the RNA, concentrated to a final volume 

of 10μL in a Speedvac (ThermoSavant), 200ng of T7 RNA polymerase primer was 

added and the sample was denatured at 70°C and allowed to anneal slowly at 42°C. First 

and second strand cDNA synthesis was performed using 100 units of Superscript-II 

(Invitrogen) and DNA Pol I (Invitrogen). The DNA was isolated by a standard PCR 

purification kit (Qiagen) and concentrated using a Speedvac (ThermoSavant). The 

cDNA was then suspended in 8μL of RNAse-free water. The aRNA amplification 

synthesis was performed using Megascript (Amb

in-UTP. The aRNA was extracted using RNeasy kit (Qiagen) and the volume 

reduced to 10μL using a Speedvac. The net aRNA yield from each embryo neural tube 

was 10μg, and the aRNA quantity was determined using a fluorometer and the 
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0.15M NaCl, 0.05% Tween-20) at room temperature, followed by a wash at 42°C for 1 

hour. Coupling of biotin labeled hybridized probe to dye labeled-streptavidin was 

performed in a 1:500 dilution of Alexa Fluor 647-streptavidin. Excess dye was removed 

by washing 4 times for 5 minutes each with TNT buffer at room temperature. Slides 

were rinsed in deionized water, spun-dry, and then scanned using an Agilent DNA 

Microarray Scanner.  

 

Quantitative RT-PCR 

TaqMan® Gene Expression Assays were used to validate microarray data for selected 

genes. Gene-specific probes and primer sets for Cox7c (Mm01340476_m1), Atp5k 

(Mm_00833200_g1), Hmox1 (Mm00516004_m1) and Sqstm1 (Mm00448091_m1) were 

purchased from Applied Biosystems (Foster City, CA). The RNA extracted from 

independent (different from those used for microarray assay), control and arsenic treated 

target tissue samples was reverse transcribed into cDNA with High Capacity cDNA 

Archive Kit (Applied Biosystems). 50ng cDNA of each sample was mixed with 10μl 

TaqMan® Universal PCR Master Mix, No AmpErase® UNG (Applied Biosystems, 

Foster City, CA) and 1μl probe and primer mixture in a total volume of 20μl in a 384-

well plate. The assays were performed according to manufacturer’s protocol on an ABI 

PRISM® 7900HT Sequence Detection System (Applied Biosystems, Foster City, CA). 

The thermo-cycling started with a 10 min denaturing at 95°C, followed by 40 cycles of 

95°C for 15sec and 60°C for 1 min.  
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Statistical Analysis 

Initial feature extraction from the images was performed using CodeLink Expression 

Analysis software v4.0 (Amersham Bioscience), and expression values for all 10500 

genes were generated. Intensities for each individual gene were determined by the 

median intensity of all pixels within the spot’s region. Subtraction of the median local 

background (computed from the subset of remaining pixels of the bounding box) yielded 

et intensities representing relative gene expression levels. In order to compensate for 

OOR function with a value of 1 (range is 0-65535) was applied. 

maining genes were sorted based on their 

n

negative intensities, a FL

For equidistant scaling, all values were logged with a base of 2 and the data were 

normalized using a global scaling method derived from single-channel normalization 

schemes used by Affymetrix analysis software. Expression intensities, ratios and gene 

ID’s were then merged; the median of the expression values for each sample at the 

specified timepoint was used to generate the effective expression ratios representing the 

impact of arsenic on embryonic development in mice during the critical phase of neural 

closure. In other words, the comparison groups were the arsenic treated vs. the water 

injected Folr2 nullizygous embryos, with measurements taken over time. A thresholding 

function was employed to eliminate very weakly expressed genes. This, by definition, 

occurred where every intensity value contributing to the higher of the two gene 

expression levels was lower than the highest observed signal from negative control gene 

spots, plus four standard deviations derived from the distribution of the set of 481 

negative control genes on the array. The re

differential expression and a boundary of 1.5-fold change in expression was used to 
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produce a list with considerably up- and down-regulated genes. In addition, a T-test has 

been applied, where a p-value of 0.05 ensured a consistent expression throughout the 

replicated arrays. 

 For hierarchical clustering, we used Hierarchical Clustering Explorer software v 

3.0 (Human Computer Interaction Laboratory, University of Maryland, College Park), 

and the parameters were set for average linkage using the Unweighted Pair Group 

Method with Arithmetic Mean (UPGMA) and Pearson Correlation Coefficient. 

 The data were further analyzed based on gene ontology groups with the use of 

NCBIs GoMiner (Genomics and Bioinformatics Group, LMP,CRR National Cancer 

Institute) and ArrayTrack (Center for Toxicoinformatics,  Division of Biometry and Risk 

Assessment, National Center of Toxicology Research, U.S. Food and Drug 

Administration),  web-delivered Gene Ontology analysis tools to inquire about their 

relationships to known regulatory pathways. The gene ontology analysis produced 

clusters of differentially expressed genes according to biological processes, cellular 

component, and molecular function. Ontological enrichment analysis of all differentially 

expressed genes from all time-points collectively identified numerous ontological groups 

displaying significant enrichment (p<0.005). 

 Quantitative RT-PCR data were analyzed using SDS software v2.1 (Applied 

Biosystems, Foster City, CA). Mouse Gapdh gene was used as internal control. Standard 

curve method was used to generate quantitative values. Each reaction was replicated 3 

times and the normalized mean value was used in final comparisons. The level of gene 
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expression was compared between arsenic treated and control neural tube samples. For 

that purpose the unpaired T-test was applied and the critical P value was set at 0.05. 

 

RESULTS 

Embryos Collected from Dams on E 8:15, 9:00 and 9:12 

Majority of embryos collected on E8:15 was still in a “U” shape and had just started the 

process of neural tube closure (Theiler stage 13). There were no visible differences 

expressed across more than one time point after arsenic treatment in the anterior neural  

between the control and arsenic treated embryos. On E9:00 the embryos were 

undergoing axial rotation and most of them were already in a “C” shape (late phase of 

Theiler stage 13). The control embryos seemed to be a little bigger at this time-point and 

had on average one pair of somites more than the arsenic treated embryos. On E9:12 the 

progress in neurulation was more pronounced, with all the control embryos having 

closed anterior part of the neural tube (Theiler stage 14). In the arsenic treated group the 

embryos were developmentally delayed and most of them have closed the neural tube 

only at closure site I. At this time-point arsenic treated embryos showed significantly 

fewer somites than control embryos (Table 3.1). 

 

Gene Expression Data Analyses 

The entire gene expression data from this experiment (21 microarray chips representing 

genetic profile of neural tube samples from control and arsenic treated mouse embryos) 

were deposited on the NCBI Gene Expression Database. Genes that were differentially 
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tube are displayed. The data are presented as fold change after log2 transformation. 

Differential expression was defined as having at least a 1.5 fold change. Probe accession 

umbers and known gene symbols for the data presented include NM_010133 (En1), 

 (Cnn1), AF209926 (Icmt), and NM_023850 (Chst1). Complete data can be 

base, omnibus web page 

e point. The threshold and T-test were 

applied (1.5 fold change, P<0.05), and those genes meeting this criterion at any time- 

e time points. Out of 10500 gene elements that were 

 

n

NM_009922

accessed from this MIAME compliant depository data

http://www.ncbi.nlm.nih.gov/projects/geo/ via accession number GSE3412 

In concert with the microarray data collection, we have performed an intensive 

bioinformatic analysis of the expression profiles in this unique genetic model of arsenic 

induced neural tube defect. In order to evaluate possible relationships between arsenic-

induced malformations and gene-expression alterations, the anterior neural tube of 

mouse embryos was collected, processed, and the labeled aRNA was hybridized to 

microarray slides. A minimum of three biological replicates for each of the six tested 

groups were used: three time points (3, 12, and 24 hours after treatment) for controls and 

experimentals. A total of 21 CodeLink BioArrays were utilized for this experiment. 

Statistical parameters, as described above, were used to identify the most significantly 

altered up- or down- regulated genes for each tim

point were graphed across the thre

present on the microarray slides, 233 were identified as differentially expressed in this 

study (Table 3.2.). Of these, 121 were up-regulated and 112 were down-regulated 

relative to controls with 31 being unknown. Analysis indicated that there were four 

genes (Engrailed 1, Calponin 1, Isoprenylcysteine carboxylmethyltransferase, and
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Carbohydrate sulfotransferase 1) that displayed differential expression across multiple 

time points (Figure 3.1). 

 

 

 

 

Figure 3.1. Genes with dynamic differential expression in the anterior neural tube from mouse embryos 
treated with arsenic 
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Table 3.2. Number of genes with changed expression level in the anterior part of neural tube from mouse 

 
Gestational Day 

embryos treated with arsenic. 

(day:hour) 

Up Regulated 
Genes 

Down Regulated 
Genes 

∑ 

8:15 18 37 55 
9:00 87 60 147 
9:12 16 15 31 
∑ 121 112 233 

 

 

 

 

Hierarchical cluster analysis of differentially expressed genes was used to group 

samples, based on the degree of similarity of their gene expression profiles across all of 

the samples, separately for each time-point (8:15, 9:00 and 9:12). The results of this 

analysis showed that all control and arsenic samples (genetic profiles) were clearly 

assigned into two separated clusters (Fig. 3.3). 

The data were further analyzed based on gene ontology groups with the use of 

GoMiner (Zeeberg et al., 2003). The gene ontology (GO) analysis produced clusters of 

lue <0.005) enriched differentially expressed genes according to their 

ontologies e.g. biological processes, cellular component, and molecular function. The 

ontology groups that were enriched (GO gene lists are available in the supplemental 

data) at each time point are shown in (Table 3.3). 

 

 

statistically (p va
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Quantitative Real-Time PCR (qRT-PCR). To independently validate gene expression 

results obtained by the microarray analysis we applied the TaqMan® Gene Expression 

Assay, which allows detection and quantification of mRNA. The expression levels of 

four genes that showed differential pattern of expression (two up- and two down-

regulated genes) in neural tube samples from control and arsenic exposed embryos were 

quantified using TaqMan® RT PCR and compared to those levels determined by the 

microarray assay. More specifically we chose two genes (Hmx1 and Sqstm1) that were 

d arsenic treated mouse embry

erent comparing t l (t-test, p<0.0
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upregulated by the arsenic exposure and two genes (Cox7 and Atp5k) down regulated 

(Figure. 3.2) The qRT-PCR results confirmed the microarray outcomes; Hmx1 and 

Sqstm1 were up regulated and Cox7 and Atp5k were significantly down regulated in the 

arsenic treated neural tube samples as compared to the control samples (Fig. 3.3). The 

overall, relative expression profiles (control/treated) of the four mRNAs revealed in 

qRT-PCR assay were found to be in a good agreement (correlation coefficient 0.97) with 

the expression profiles determined by microarray technique (Table 3.4). 

 

 

 

 

omparison of relative ratios of gene expression obtained from qRT-PCR and microarray 

 

 

 

 

 

Relative expression ratio 
control/arsenic treated Hmox1 Sqstm1 Cox7 Atp5k 

Table 3.4. C
assays 
 

qRTPCR 0.01 0.43 3.96 2.32 

Microarray 0.28 0.41 5.04 1.86 
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Figure 3.  Hierarchical clustering of differentially expressed genes in the neural tubes of arsenic treated 

ray. The colors indicate fluorescent signal intensity, red indicates an increase in expression levels 
fter arsenic exposure, and green indicates a decrease. Note clean separation of the two treatment groups 
to two clusters, indicating the high level of reliability of the expression data. 

 

 

 

DISCUSSION 

Embryonic arsenic exposure via maternal ip injections leads to a well-described pattern 

of fetal malformations in mice (9; 16; 342; 351). It has also been demonstrated that 

arsenic interferes with normal gene expression in both cell and animal models, but the 

mechanism by which arsenic exposure induces malformation and alters gene expression 

remains to be elucidated. We suggest that these changes in gene expression are 

3.
and control mouse embryos. The dendrogram is a group-based comparison (arsenic vs. control), the rows 
represent each array, while the columns represent a unique gene-specific oligonucleotide on the 

icroarm
a
in
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responsible, at least in part, for arsenic induced malformations. This is supported by the 

fact that disrupting the expression of several arsenic responsive genes has previously 

been demonstrated to induce defects in mouse models. These genes included engrailed 1 

(En-1), platelet derived growth factor receptor alpha (Pdgfrα) and ephrinA7 (EphA7). 

Inhibition of En-1 by antisense targeting has resulted in craniofacial abnormalities (357), 

disruption of Pdgfrα was associated with craniofacial clefts, and cleft palate (358), and 

targeted gene disruption of EphA7 has been shown to induce exencephaly (359). The 

gene expression analyses were designed in order to identify genetic alterations produced 

y teratogenic arsenic exposure. We observed that these changes were dynamic, in that 

e set of genes altered by arsenic depended directly on the time point following 

nd had developed to a comparable stage of development as determined by the number 

f somites. At the first two time points (E8:15 and 9:0) this developmental delay was 

ery slight, as the vast majority of the control and arsenic treated embryos were in mid-

ure at the closure site I. At that time, the average control embryo was 

b

th

exposure. Gestational staging of embryos by somite numbers demonstrated that a delay 

in embryological development was induced by arsenic. Knowing that, in subsequent 

microarray studies, control and treated embryos were collected at the same time points 

a

o

v

neural tube clos

slightly developmentally ahead of the arsenic treated embryos (0.5-0.9 somite pair) with 

respect to somitogenesis. Even though the difference between treated and control somite 

numbers were more pronounced at E9:12 (Table 3.1), we were still able to select control 

and treated embryos with comparable numbers of somites (18-19 pair of somites). 

Despite of the equivalent number of somites observed, the control embryos were 
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significantly more advanced in terms of the neurulation process, when compared to the 

As treated embryos. Analysis of the genetic changes that coincided with these 

developmental changes indicated essential housekeeping genes were altered by arsenic 

exposure (up regulated: Vdac1, Atp5b, Mphosph10, Snrpa and down regulated: 

Syncrip). Globally, alterations induced by arsenic included changes in genes providing 

housekeeping functions, morphogenesis, response to hypoxia, and regulation of I-

kappaB kinase/NF-kappaB cascade (globally changed in Table 3.3).  

It is generally hypothesized that multiple genes and pathways are responsible for 

complex birth defects (3). Therefore, the aim of the present study was to observe 

alterations in the gene expression of the anterior neural tube that precede the genesis of 

neural tube defects in arsenic-treated mouse fetuses. Characterization of gene alteration 

in the embryonic tissues that ultimately generates these malformations produced lists of 

up or down regulated genes, and these genes were then classified by gene ontologies. 

Genes identified by their relevance to toxicant response and dysmorphogenesis are 

described below, identified by the gene ontology group to which they belong, and 

clustered based on the timepoint they were shown to have altered expression. 

 

3 Hours Post-Treatment  

PKinase Cascade. Heme oxygenase 1 (Hmox1) is a hallmark for arsenic-induced stress 

(360). An essential enzyme in heme catabolism, it cleaves heme to form biliverdin a 

strong antioxidant. In addition to its substrate, heme, its activity is also strongly induced 
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by many agents causing oxidative stress. Microarray results indicated that Hmox1 was 

the most upregulated gene in the arsenic-treated anterior neural tubes.  

Stress (Temp). Heat shock protein A1B (Hspa1b) is also known as 70kDa, Hsp70, 

hsp68, HSP70A1, Hsp70-1, and Hsp70.1. Heat Shock Proteins (HSPs) are a family of 

proteins that are induced by stressors such as heat and toxicants, and it is thought that the 

expression results in enhanced thermotolerance and chemotolerance. While the 

necessary induction of HSPs is well established during organogenesis in the rodent 

embryo

e and time 

pecific, and is a developmental signal implicated in the formation of the neural axis. RA 

ear receptors, which influence transcriptional regulation of 

, expression may also help provide protection against dysmophogenesis induced 

by toxicants. Work by (361)  suggests that Hsp70-1 and Hsp70-3 are both necessary and 

sufficient to prevent arsenite-induced dysmorphology in early-somite staged mouse 

embryos. Both Hspa1b and Dnajc8 (another member of heat shock proteins, hsp40) were 

demonstrated to be highly upregulated at the earliest timepoint following arsenic 

treatment, and are known to participate together as a chaperone complex.  

Morphogenesis. Aldehyde dehydrogenase family 1, subfamily A2 (Aldh1a2) is also 

known as Raldh1, Raldh2, Aldh1a7, RALDH-2 and AV116159. Retinaldehyde 

dehydrogenase converts retinal to retinoic acid (RA). RA expression is tissu

s

serves as a ligand for nucl

genes containing retinoic acid responsive element (RARE). At E8:12, RA can be 

detected in the mouse hindbrain. Raldh2-/- knockout mice die by E10:12 with heart 

defects (362), whereas excess of RA leads to defects in neural crest cell derived 
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structures such as craniofacies, heart, axial skeleton, and eyes. Aldh1a2 was upregulated 

in the arsenic treated samples, and may possibly drive additional RA synthesis. 

been identified as a putative tumor suppressor, and it may also influence various signal 

Translation Elongation Factor. The sulfhydryl amino acid homocysteine is associated 

with an increased risk for cardiovascular disease and birth defects (363; 364).  

Homocysteine and methionine, both of which are part of the active methyl cycle, have 

also been shown to influence the expression of elongation factor-1delta (EF-1delta) in 

endothelial cells (365). This gene, a member of a multimeric complex regulating mRNA 

translation, was also differentially expressed after arsenic exposure. Furthermore, 

alterations in the s-adenosyl methionine to s-adenosyl homocysteine (SAM:SAH) ratio 

of the active methyl cycle have been demonstrated in Folr2 mice in a previous study 

(366). As in the endothelial model, these alterations in the active methyl cycle appear to 

induce the expression of EF-1delta and may thereby mediate accelerated synthesis of 

free sulfhydryl-containing proteins in response to oxidative stress (365). 

 

12 Hours Post-Treatment 

Ribosome. Ribosomal proteins are integrally involved in protein synthesis. The 

numerous proteins of the ribosomal subunits have multiple sequential steps that must be 

followed in order to properly initiate and translate mRNAs to proteins. The genes 

RPL10, RPL13, RPL14, and RPL18A are all found in the 60S ribosomal subunit. This 

subunit joins with the 48S initiator complex at the initiation complex of mRNAs, 

functionally forming the active 80S ribosome. RPL10, which is also known as QM, has 
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transduction pathways involving SH3 domain-containing membrane proteins (367). The 

gene RPL14 is also suggested to be a tumor suppressor gene (368). Therefore, the 

IL may parallel 

hat is seen in ATO exposed cells, in that ATO induces Apo2/TRAIL, activates caspase 

poptotic BCL-2 family member, which depolarizes the 

changes in expression of these ribosomal genes during development may directly alter 

ribosome biosynthesis required for cell proliferation and growth. These alterations may 

thereby increase the vulnerability of an embryo to a neural tube defect if there were 

delays in cellular proliferation and growth during neural tube closure. We observed such 

delays in growth in arsenic exposed embryos, and other studies have also demonstrated 

that inactivation of ribosome is similarly embryotoxic and teratogenic (369; 370). 

Apoptosis. Arsenic trioxide (ATO) has been shown to induce differentiation and 

apoptosis in acute promyelocytic leukemia (APL) cells with concomitant upregulation of 

R1 and R2 APO2/TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) 

receptors (Akay et al., 2004; Liu et al., 2003). We observed alteration of Apo2/TRAIL in 

response to pentavalent arsenic exposure. These changes in Apo2/TRA

w

cleavage of BID, a pro-a

mitochondrial membrane and releases Apoptosis-inducing Factor from mitochondria in a 

Bcl-2 independent fashion (371-373). Inducible expression of PYCARD/TMS1 has also 

been shown to inhibit cellular proliferation and induce DNA fragmentation (374). Since 

methylation of the CpG islands surrounding exon 1 of PYCARD/TMS1 has been 

indicated in controlling its gene expression (375), the biotransformation of arsenic may 

also directly influence the expression of PYCARD/MS1 by depleting the availability of 

methyl-groups and altering SAM:SAH (366). 
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24 Hours Post-Treatment 

Anion transporter. Voltage-dependent anion channel (Vdac1) is also known as Vdac5. 

The voltage-dependent anion channel (VDAC) is a small, abundant pore-forming protein 

found in the outer mitochondrial membrane. It is hypothesized that mitochondrial 

membrane potential and the release of cytochrome c, initiating apoptosis, is regulated by 

the binding of BCL2 family of proteins to the VDACs (376). The BCL2 family of 

proteins’ members may be anti-apoptotic or pro-apoptotic. Vdac1 is upregulated in the 

appaB, is phosphorylated in the event of 

arsenic-treated samples. 

ATP Synthase, H+ Transporting Mitochondrial F1 Complex, Beta Subunit (Atp5b). 

Atp synthase harnesses the energy of proton flux through the inner mitochondrial 

membrane to synthesize ATP from ADP during oxidative phosphorylation. Atp5b 

expression was upregulated in the arsenic-treated samples. 

 

Global Analysis 

A global analysis was performed on all differentially expressed genes at all time points. 

Global analysis using GoMiner indicated that the three most highly enriched GO groups 

were I-kappaB kinase/NF-kappaB cascade, oxidative phosphorylation, and eukaryotic 

translation elongation factor 1 complex. 

The I-kappaB kinase/NF-kappaB cascade is activated by a wide range of cellular 

toxicants such as cytokines, reactive oxygen species (ROS), UV radiation, and many 

others. I-kappaB kinase, an inhibitor of NF-k
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cellular challenge. The phosphorylation marks the I-kappaB proteins for proteolysis via 

allowing activation of the NF-kappaB complex. NF-kappaB, 

 membrane of the mitochondria. This proton gradient is used by 

nd Atp5b).  

The eukaryotic translation elongation factor 1 complex ontology cluster consisted 

1d. These elongation factors control the recruitment of amino-acylated 

 between the genes in the first two ontology 

groups

the ubiquitination pathway, 

a nuclear receptor, translocates to the nucleus where it binds to NF-kappaB response 

elements in the regulatory regions of inducible genes, the expression of which help 

protect the cell from apoptosis. This gene cluster included Sqstm1, Birc2, Eef1d, 

Hmox1, Lgals1, and Tnfrsf10b.  

Oxidative phosphorylation is the main method of energy production in the cell, 

using a high-energy electron passed through several respiratory enzyme complexes that 

pump H+ out of the inner

ATP synthase to form ATP from ADP and phosphate. ATP is essential to the completion 

of energetically unfavorable chemical reactions in the cell. The genes represented in this 

ontology group include the last three enzymes in the electron transport chain (Rfk, 

Bcs1l, Cox7c) and a two subunits of ATP synthase (Atp5k a

of Eef1a2 and Eef

tRNA to the ribosome and regulate the translocation of the growing polypeptide 

(Hershey, 1991). Elongation factor 1a, one of the most abundant protein in the cell is 

also involved in cytoskeleton organization (377). 

An evaluation of the relationship

 suggests a clear pathway for cellular damage and response to this damage. 

Downregulation of the enzymes in the electron transport chain compromises oxidative 

phosphorylation, reducing available ATP, and perhaps more importantly, causes reactive 
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oxygen species (ROS) spilling, primarily consisting of superoxide anions into the cell. 

As these ROS overwhelm the cell’s antioxidant capabilities, oxidative stress ensues. 

ROS disrupt cells through two main pathways: physical damage, and altered cellular 

signaling. In addition, damage from ROS may initiate a feedback loop, causing 

continued cellular damage. The genes from the I-kappaB kinase/NF-kappaB cascade 

were upregulated, and may indicate an attempt by the cell to ameliorate the damage 

induced

 in our model.  

 

idative stress might be responsible for 

observe

 by the ROS. The most highly upregulated gene observed in the i E8:15 neural 

tube array was the anti-oxidant Hmox1 (heme oxygenase), which is considered to be the 

hallmark of arsenic exposure.  It has been proposed that damage to proteins induces heat 

shock proteins 40 and 70 (Hsp40 and Hsp70). When damaged proteins overwhelm the 

cell’s ability to stabilize or degrade them, the sequestosome-ubiquitin sequestration 

system is induced, which isolates damaged proteins from the cytosol for later 

proteolysis. Microarray evidence suggests this scenario may be occurring

Arsenic can exert its toxic effect via several pathways: as a phosphate analog it 

interferes with phosphorylation reactions and competes with phosphate in ATP 

formation, through reactions with enzyme sulfhydryl groups it can inhibit many 

biochemical cell processes. There has been increasing evidence that arsenic toxicity is 

associated with free radical generation and that ox

d adverse effects. ROS not only can cause DNA and protein damage but also 
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 cellular lipid peroxydation. Additionally they can serve as signaling molecules in the 

pathway leading to cell apoptosis (378). Results of our study seem to endorse that 

arsenic exerts its toxic effect via oxidative stress pathways. Analysis of gene expression 

in the neural tube of arsenic exposed embryos indicated that there was a significant 

dysregulation in a group of genes directly involved in the mitochondrial process of 

energy production. Disruption of this process leads to uncoupled oxidative 

phosphorylation, which ultimately causes oxidative stress. Analysis of microarrays also 

showed that arsenic strongly activated the I-kappaB kinase/NF-kappaB cascade which in 

turn launched several early response genes in response to oxidative stress. Additionally, 

besides confirming Hmox1 as a main marker gene of acute arsenic intoxication we 

revealed for the first time new target genes changed in expression by arsenic caused 

disruption of the oxidative phosphorylation process. 
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CHAPTER IV 

REPRODUCTIVE CONSEQUENCES OF ORAL ARSENIC EXPOSURE 

DURING PREGNANCY 

 

OVERVIEW 

 The second most common of all structural birth defects, neural tube defects (NTDs), 

affect approximately 2.6/1000 births worldwide, and 1/1000 births in the United States. 

Of the many environmental agents suspected of being teratogenic and capable of 

inducing NTDs, arsenic (As) commands intense scientific interest. We evaluated the 

teratogenicity of oral exposure on gestational day (E) E:7.5 and E:8.5 to As 4.8 mg/kg, 

As 9.6 mg/kg, and As 14.4 mg/kg (as sodium arsenate) in an inbred mouse strain, 

LM/Bc/Fnn, that does not exhibit spontaneous neural tube malformations. Control and 

s-treated dams (20 per treatment group) were weighed daily, and evaluated for signs of 

aternal toxicity. Fetuses were evaluated for soft tissue and skeletal malformations. 

There was no maternal toxicity as evidenced by differences  in maternal body weight 

gain, liver, and kidney weights following As-exposure. The number of live fetuses 

affected with an NTD in each treatment group was: water treated control 0 (0.0%), As 

4.8 mg/kg 1 (0.5%), As 9.6 mg/kg 7 (4.0%), and As 14.4 mg/kg 15 (8.2%), which 

exhibited a positive linear trend (p< 0.0001). There was also evidence for linear trends in 

the relationships between arsenic dose and congenital anomalies involving components 

of the axial skeletal ( vertebral, p< 0.0001 and calvarial, p< 0.0001). In our model 

system, maternal oral treatment with As induced exencephaly and significantly increased 

A

m
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the frequency of axial skeletal varia ations in the offspring exposed in 

utero

 

INTRODUCTION 

e a significant health problem worldwide, affecting approximately 6% of 

tions and malform

, without evidence of maternal toxicity. 

Birth defects ar

births, and resulting in the death of at least 3.3 million children under the age of five 

each year (1). The second most common of all structural birth defects, neural tube 

defects (NTDs), affect approximately 2.6 out of every thousand births worldwide, and 1 

per thousand live births in the United States (1; 2). NTDs represent a class of birth 

defects in which the embryo’s neural tube fails to close prior to the end of the first month 

of pregnancy. Defects in the closure of the anterior neural tube result in exencephaly or 

anencephaly, in which the majority of the brain and surrounding tissues are absent. 

Failure of posterior neural tube closure results in spina bifida, a condition that often 

results in lower body paralysis and lack of bowel and bladder control. 

While several distinct causes of NTDs have been identified, the etiology of the 

vast majority of NTDs remains frustratingly unexplained. There are numerous 

environmental exposures that are suspected of inducing NTDs in human embryos, yet 

definitive conclusions concerning the association between these potentially teratogenic 

environmental exposures and NTD risk remain difficult to reach. This is, at least in part, 

due to the relative rarity of both NTDs and the exposures of interest. 

Of the many environmental agents suspected of being teratogenic and capable of 

inducing NTDs, arsenic (As) commands intense scientific interest. Naturally occurring 



89 
 

arsenic is an ubiquitous environmental toxicant known to contaminate water supplies 

around the world. In addition, anthropogenic sources result in tons of arsenic being 

leased into the environment every year. Ten thousand metric tons of arsenic-based 

ed in the U.S. every year from 1930 to 1980 (379). Rice grown in 

and the majority of 

human

re

pesticides were appli

the southern United States has recently been observed to have higher levels of arsenic 

that Californian rice. This is suggested to be due to the practice of growing southern rice 

in fields previously used for cotton cultivation, as this crop was heavily treated with 

arsenic, and many of these fields remain heavily contaminated (380). In addition, 

monosodium methane arsenate is still one of the most common herbicides used on golf 

courses (381), and roxarsone, an arsenic-based feed additive, is heavily used in 

agribusiness to prevent parasites and enhance growth in swine and chickens (382). 

However, despite the pollution inherent in mining, industrial applications for gallium 

arsenide semiconductor chips, which are ubiquitous in household and automotive 

electronic products, continues to grow (383). 

Studies in both humans and animals indicate that As crosses, and may 

accumulate in, the placenta at concentrations exceeding that of the maternal blood (6; 7). 

While As is a known laboratory animal teratogen, the few epidemiological studies of 

reproductive outcome following maternal As exposure are insufficient for properly 

assessing its teratogenic potential in humans.  Available studies have lacked a sufficient 

cohort size to demonstrate associations with specific malformations, 

 epidemiological studies have relied on proxy measures of exposure (e.g. distance 

from smelter) that are subject to varying degrees of misclassification. In the few studies 
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in which maternal exposure was directly evaluated, measurements were not taken during 

the relevant embryological period of neural tube closure  (26).  

Although the available data are insufficient to conclude definitively whether As 

is or is not a human teratogen, there is evidence suggesting that there may be a 

relationship between human in utero As exposure and adverse pregnancy outcomes. 

Acute high dose and chronic low dose As exposure during pregnancy has been 

associated with increased pre- and post-natal mortality (13; 27; 28). In addition, chronic 

low dose As exposure has been associated with low birth weight and developmental 

impairment  (13). Several studies have also suggested an association between maternal 

exposure to As and an elevated rate of malformations in the offspring. At least two 

studies have provided evidence of an association between maternal As exposure in 

drinking water and risk of congenital heart malformations in exposed offspring (22; 29). 

In addition, indirect evidence for an association between As and NTD risk is provided by 

epidemiological studies linking NTD risk to maternal exposure to pesticides or 

proximity to agricultural areas (13; 31; 32). Given that As is environmentally persistent, 

and continues to be used in a range of agricultural products (e.g. pesticides, especially 

herbicides, growth enhancers, etc.) these studies provide a potential link between As and 

NTD risk. 

Finally, evidence that maternal As exposure may be associated with an increased 

risk of congenital malformations, primarily NTDs, is provided by studies conducted 

using animal models.  These studies have demonstrated that As crosses the placenta and 

preferentially accumulates in the neuroepithelium of developing hamster, mouse and 
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monkey embryos (33; 34), and that maternal As exposure is teratogenic. Furthermore, 

As is associated with an increased risk of NTDs when the exposure occurs specifically 

during the period of neural tube closure (26). However, criticism regarding the design of 

these studies has hampered the use of evidence from animal models for policy decisions. 

Common deficits ascribed to the early experimental animal literature on As 

teratogenicity include: use of environmentally non-relevant routes of exposure, lack of 

qualitative or quantitative assessment of maternal toxicity, lack of a dose-response 

design, insufficient number of animals per treatment group, incomplete identification of 

test substance, partial description of methods, and inadequate reporting of results (26). 

While many of these issues have been addressed as the field of teratology has matured, 

conflict remains over the issues of dose and route of As administration. It has been 

suggested that teratogenicity is only reached in laboratory animal studies when As doses 

are so high as to induce maternal toxicity, especially in the case of the few oral studies 

available for review (26). In the current study, we address concerns regarding dose and 

route of administration by evaluating the teratogenicity of oral exposure to As using an 

inbred mouse strain, LM/Bc/Fnn, that does not exhibit an underlying rate of spontaneous 

neural malformations, yet is highly sensitive to As-induced exencephaly.  
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MATERIALS AND METHODS 

Test Agent and Treatment Regimen 

Three treatment concentrations of arsenic: 4.8, 9.6, and 14.4 mg/kg of body weight of 

arsenic (in the form of sodium arsenate) for injection were prepared by dissolving 

sodium arsenate (Na2HAsO4 • 7H2O, Sigma-Aldrich Chemicals, St. Louis, MO) in 

Sterile Water for Injection (USP, Abbott Laboratories Chicago IL). Treatments were 

administered by oral gavage at a dose volume of 10 μL/g body weight. Dose levels were 

selected to bracket the 9.6 mg/ dose, which had been previously used in our laboratory 

for As teratogenicity studies that employed an intraperitoneal injection route of 

administration. The controls dams were gavaged with Sterile Water for Injection. 

Twenty pregnant females were assigned to each of the four experimental groups.  On 

E7.5 and 8.5, pregnant dams were orally gavaged with either an arsenic solution or 

water. 

 

Animals and Housing 

The LM/Bc/Fnn mice were housed in the Institute of Biosciences and Technology 

Vivarium, which is fully accredited by the Association for Assessment and Accreditation 

Animal Care.  The animals were maintained in clear polycarbonate 

microisolator cages and were allowed free access to food and water (Harlan Teklad 

Rodent Diet #8606, Ralston Purina, St. Louis MO). The mice were maintained on a 12-h 

light/dark cycle. Nulligravid females, 50–70 days of age, were mated overnight with 

males and examined for the presence of vaginal plugs the following morning. The onset 

of Laboratory 
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of gestation was considered to be 10 p.m. of the previous night, the midpoint of the dark 

n’s solution. Structures of the head were examined for malformations by Wilson 

ectioning.  In addition, the thoracic and abdominal cavities were opened and the internal 

grossly. Because cardiac malformations subsequent to in utero 

cycle (355).  

.  

Observations and Measurements 

All animals were observed once a day during the study period for morbidity and 

mortality. Maternal body weights were measured daily from E0.5 through E18.5, when 

the animals were euthanized. Weights of selected maternal organs were measured 

(gravid uterus, kidneys and liver). Litters were assessed by counting the number of 

implants, resorptions/dead, affected, and unaffected fetuses. A detailed external 

examination of each viable fetus was conducted. For each litter, half the fetuses were 

cleared with dilute potassium hydroxide solution, stained with Alizarin Red S, and 

examined for abnormalities in skeletal development.  The remaining fetuses were fixed 

in Boui

s

organs were examined 

arsenic exposure have been observed in some mouse models in our laboratory, additional 

attention was paid to cardiac morphology. Specifically, the atria were dissected from the 

heart, and a transverse section was performed through the conotruncal region to identify 

possible malformations.  This was followed by a careful opening of the right ventricle to 

determine if there were any ventral septal defects present. The type and incidence of 

external, visceral, and skeletal malformations were recorded.  
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Statistical Methods 

One way analysis of variance (ANOVA) was used to evaluate differences, between 

atment groups, in the mean values of continuously distributed variables (i.e. maternal 

 gain).  When the ANOVA provided evidence that 

f all tests were considered 

 be statistical significant when the p-value (or adjusted p-value) was less than 0.05.  

tre

body and organ weight, and weight

the group means were not equal, differences in the mean values of each treatment group 

pair were evaluated.  That is, the mean value for each treatment group was compared to 

that of the control group and the two other treatment groups.  To account for the multiple 

pair-wise comparisons, the Bonferroni procedure was used to adjust the level of 

significance for each test.  For these analyses, maternal organ weights (liver and kidney) 

were evaluated relative to maternal body weight.  

The Kruskall-Wallace test was used to evaluate the differences, between 

treatment groups, in the distribution of the number of implantations and viable fetuses. 

Differences in proportions, between groups, for categorical variables (i.e. 

resorption, NTD, skeletal malformation) were assessed using either the chi-square or 

Fisher’s exact test.  In addition, the Cochran-Armitage test was used to evaluate 

evidence for a linear trend (e.g. dose-response) in the relationship between arsenic dose 

and the occurrence of NTDs and skeletal abnormalities.  When no abnormalities were 

observed in the control and the lowest As treatment group (i.e. vertebral abnormalities), 

these two groups were combined for the analysis of linear trend. 

All statistical analyses were conducted using GraphPad InStat (version 3.06; 

GraphPad Software, San Diego, CA, USA), and the results o

to
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RESULTS 

Maternal Body Weight and Weight Change 

On average, the initial body weights of dams in the arsenic treatment groups were not 

statistically significantly different from each other (Table 4.1).  The initial body weights 

of dams in the groups receiving the two highest arsenic doses were also not statistically 

different from that of dams in the control group. However, the initial mean maternal 

body weight of dams receiving the lowest arsenic treatment was statistically significantly 

lower than that for control dams. Neither maternal weight gain throughout gestation 

(E0.5 – E18.5) (Figure 4.1) nor maternal weight gain from the onset of treatment (E7.5 – 

E18.5)

l 

dams b

 were statistically different between any of the groups. Mean gravid uterine 

weights of dams receiving arsenic treatment all were significantly lower than contro

ut were not statistically significantly different from each other. Maternal kidney 

and liver weights for treated dams were not significantly different from controls, nor 

were there significant differences between treatment groups with the exception of the 

liver weight, which was significantly lower in the lowest treatment group as compared to 

controls.  
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Table 4.1. Maternal body and organ weights of As-exposed groups relative to controls. 
 

 
 
 

 

 

*Significantly different from control (Bonferroni,  p<0.05) 

(mean + SD) (%) 

 

 
 

 
 
 
 

 
 

 
1Data presented as mean + standard deviation.  
2Data are present as raw averages, however, statistical analysis was performed as organ wt. relative to 
maternal body wt.  

 
 

 

 

Table 4.2. Developmental outcomes for As-exposed litters relative to controls. 
 

As Dose 
mg/kg 

No. of 
Litters 

Implantations 
per litter No. of 

implants 
No. of 
resorptions (%) 

No. of 
Liveborn (%) 

No. of Liveborn 
fetuses with NTDs 

Water 20 10.3 + 1.6 206 13 (6.3) 193 (93.7) 0 (0.0) 

4.8  20 9.5 + 2.4 189 5 (2.6) 184 (97.4) 1 (0.5) 

.6  20 9.1 + 2.5 184 9 (4.9) 175 (95.1) 7 (4.0)* 

14.4  20 9.9 + 1.6 197 13 (6.6) 184 (93.4) 15 (8.2)* 

9

 
 
*Significantly different from control (Fisher’s Exact, p<0.05) 

mg/kg 

Gravid 
Uterus (g) Liver2 (g) Kidneys2 (g) 

As 
Dose No. of 

Dams 
Maternal Body 

Weight Gain (g) 
Initial Maternal 

Body Weight (g) 

Water 20 19.3 +  2.7 22.6 + 1.5 14.5 +  2.2 2.0 + 0.21 0.4 + 0.03 

4.8 20 17.1 +  3.2 20.5 + 2.3* 10.4 +  2.3* 1.6 + 0.17* 0.35 +  0.04 

9.6 20 17.7 +  3.4 21.1 + 1.7 11.1 +  2.6* 1.7 + 0.19 0.39 +  0.05 

14.4 20 18.2 +  3.2 21.7 + 2.0 12.4 +  2.5* 1.8 + 0.24 0.39 + 0.04 
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igure 4.1. Maternal body weight gain throughout gestation. F
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Table 4.3. Skeletal variations and malformations observed in As-treated and control fetuses. 
  

 
 
*Significantly different from control (Fisher’s Exact Test, p<0.05) 
§Significant trend (Cochran-Armitage Chi-square Test for Trend, p<0.05) 
# Supernumerary 14th vertebrae are typically observed in this strain 
 

 

 As Dose mg/kg 

 Water 4.8 9.6 14.4 

Fetuses (Litters) Examined 93 (20) 82 (20) 82 (20) 88 (20) 

Sternebrae       
     All sternebral abnormalities  7 (5) 20* (11) 23* (14) 26* (16) 
     Abnormal number (7 or 5) 2 (2) 4 (3) 11* (7) 8* (7) 
     Malformed (misaligned or bipartite) 5 (4) 18* (10) 13* (8) 20*  (13) 
Ribs      
     All rib abnormalities   14 (8) 29* (14) 44* (20) 32* (14) 
     Abnormal number (11, 12 or 13)# 13 (7) 29* (14)  44* (19) 23* (11) 
     Malformed (fused, split, or bent) 2 (2) 0 2 (2) 10 (5)* 
Vertebrae      
     All vertebral abnormalities § 0 0 23* (15) 37* (16) 
     Atlas fused with occipital  0 0 5* (5)  4* (3) 
     Atlas fused with Axis 0 0 5* (3) 7* (5) 
     Atlas malformed 0 0 10* (9) 19* (13) 
     Axis malformed  0 0 11* (9) 14* (9) 
     Fusions between other cervical 
vertebrae 0 0 0 5* (3) 

0 1 (1) 5* (4) 

Calvariae       
     All calvarial abnormalities § 0 33* (13) 53* (18) 68* (19) 
     Calvarial bones absent (exencephaly) 1 1 (1) 7* (5) 15* (9) 
     Occipital incomplete ossification 0 33* (13) 48* (17) 63* (18) 
     Interparietal incomplete ossification 0 10* (4) 34* (14) 46* (14) 
     Parietal incomplete ossification 0 8* (3) 6* (5) 16* (7) 
     Frontal incomplete ossification 0 3 (2) 0 5* (4) 
Metacarpals       
     Abnormal number (3) 0 6* (2) 4* (2) 2 (2) 
Metatarsals     
     Abnormal number (4 or 3) 10 (3) 22* (8) 14 (6) 21* (9) 

     Vertebrae with irregular centra or 
arches   0 
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Litters 

The number of implantations and live  4.2) was not statistically 

significantly different between groups. The ra  was also not sign

different between groups. The number of litters affected with an NTD in each treatment 

gr s 4.8 mg/kg  As mg/kg (n=5), As 14.4 mg/kg 

(n=9). There was evidence of a significant linear trend in the number of affected litters 

w .0001).

rmations other than exencephaly and associated secondary facial 

disruptions were not observed during external or internal exam  of B  fixed 

fetuses (Fig 4.2). All exencephalic fetuses appeared o be of arable degree of 

severity, irrespective of As dose.  Among uses w  exence he e  ears 

w ccipital terparietal, pariet  caud cts of 

the frontal bones were absent (Fig 4.3) 

fetuses (Table

te of resorptions ificantly 

oup was: Control (n=0), A (n=1),  9.6 

ith increasing dose of arsenic (p< 0  

Malfo

ination ouin’s

 t a comp

fet ith phaly, t yes and

ere always present, and the suprao , in al, and al aspe
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Figure 4.2. E18.5 fetuses: external morphology. On left, As treated fetus (14.4 mg/kg) 

protruding tongue, short muzzle). On right, control fetus with open eyes due to the 

 

 

 

displaying exencephaly with accompanying disruption of facial development (e.g.: 

lidgap M1 gene on the LM/Bc background 

 

 

 

Figure 4.3.  E18.5 fetuses: cranial skeleton. Top (A) and side (B) views of As treated 
(14.4 mg/kg) exencephalic fetus displaying loss of the supraoccipital, interparietal, 
parietal, and the caudal aspect of the frontal bones. Facial structures remain intact. Top 
(C) and side (D) views of control fetus displaying normal development. 
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Skeletal variations and malformations were observed at a very low rate in the control 

fetuses, with statistically significantly higher rates observed in the As-treated groups 

(Table 4.3). Similar numbers of skeletal malformations were found in As exposed 

fetuses with and without exencephaly. The observed abnormalities occurred primarily in 

the axial skeleton, although the tympanic bullae and hyoid bones were unaffected, and 

most frequently included delayed ossification of the cranial vault, fused and malformed 

vertebrae (almost exclusively C1 and C2 and T1 through T8), fused ribs (T1-T8), 

absence of normal supernumerary ribs, and supernumerary or absent sternebrae. It is 

of a significant dose-response relationship 

etween arsenic and abnormalities in components of the axial skeleton:  vertebral (p< 

.0001), and calvarial (p< 0.0001).  

 

DISCUSSION 

In our model system, maternal oral treatment with As significantly increased the rate of 

exencephaly in the offspring exposed in utero, without evidence of maternal toxicity. 

The average litter size and resorption rates were similar in controls and all experimental 

groups. Further, there were no differences between controls and As exposed dams with 

regard to the average weight gained throughout gestation, or maternal organ weights 

(relative to maternal weights) with the exception of the liver weights of the dams in the 

ult 

important to note that the LM/Bc/Fnn mouse strain typically presents with a 14th pair of 

supernumerary ribs. There was evidence 

b

0

lowest treatment group. While the cause of this difference is unexplained, it is diffic
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to hypothesize a mechanism where the lowest treatment group would be exclusively 

affected.  

Maternal arsenic treatment was associated with NTDs in offspring and there was 

evidence of a significant positive dose-response relationship. It is of interest that an 

exencephalic fetus was observed in the lowest treatment group. While the rate of NTDs 

in this groups was not significantly greater than in controls, a spontaneous neural tube 

defect has not been witnessed in the 30 years of close observation of this inbred strain in 

our laboratory (384). A significant positive dose-response was also seen for total As-

induced vertebral and calvarial abnormalities.  

As mentioned, it has been suggested that teratogenicity is only reached in 

laboratory animal studies when As doses are so high as to induce maternal toxicity, 

especially in the case of the few oral studies presented. However, as different strains of 

ice display markedly differing responses to arsenic’s teratogenicity and toxicity, the 

senic in a limited number of strains is insufficient for the purposes of 

in our laboratory also demonstrate differences in NTD rates due to route of 

m

assessment of ar

conclusively establishing or refuting the teratogenic potential of this agent. For example, 

the classic work performed by Hood in the Swiss-Webster mice of the CD-1 strain, 

demonstrated that a single I.P. dose of 9.6 mg/kg As (40 mg/kg of sodium arsenate) 

administered E8.5 results in 34% grossly malformed fetuses, 59% dead/resorbed, and the 

death of four out of ten dams, whereas oral treatment on the same day with 28.8 mg/kg 

of As (120 mg/kg of sodium arsenate) resulted in only 1% grossly malformed fetuses, 

17% dead or resorbed, and the deaths of two out of nine dams (385). Studies performed 
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administration, but without evidence of maternal toxicity by either route.  Specifically, 

treatment of LM/Bc/Fnn dams with the same I.P. route and dose as the classic Hood 

study (

s are high when compared to doses likely 

to be e

but treated on both E7.5 and 8.5) resulted in rates of exencephaly that approached 

100%, whereas in the current oral treatment study markedly lower rates of exencephaly 

were observed.  Hence, taken together these studies provide evidence of both strain and 

route dependent differences in teratogenicity and toxicity. 

While an in-depth discussion of environmentally relevant dose selection in 

laboratory animal studies is outside the scope of this paper, it is important to note that 

the doses used in most laboratory animal studie

ncountered in exposed human populations (26; 339). Lethal doses calculated per 

kg of body weight for small laboratory animals are generally observed to be substantially 

higher than the observed and estimated lethal doses in humans: in summary, laboratory 

animals are generally less sensitive to toxicants. Arsenic is no exception to the rule. 

Based on clinical reports, the estimated minimal lethal dose of arsenic for humans is 

about 1-3mg As/kg (346; 347), whereas available LD50 values for arsenite and arsenate 

in rats and mice range from 15 to 175 mg As/kg (336; 347). While extrapolation from 

animal studies to humans is not trivial, laboratory animals are employed to mimic human 

biological responses. As such, it is important to consider the relevant toxic biological 

response in the selected laboratory animal and select for a dose that mimics the observed 

human response, rather than simply recreating the relevant environmental exposure. It 

may be appropriate to consider additional higher doses in studies of birth defects because 
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achieving an NTD rate of 2.6 per 1000 (which would mimic the current world rate of 

NTDs) would not provide an experimentally useful model. 

It is generally hypothesized that multiple genes and pathways are responsible for 

complex birth defects (3). Arsenic’s teratogenicity may be mediated through several 

pathways. As a phosphate analog, As may interfere with phosphorylation reactions and, 

through reactions with enzyme sulfhydryl groups, it can inhibit a multitude of 

biochemical cell processes. Arsenic has been observed to be highly mitochondriotoxic, 

an attribute that is exploited for use as a cancer therapeutic.  Sequelae of mitochondrial 

disruption and oxidative stress are typically observed as a result of arsenic exposure: 

upregulation of heme oxygenase-1 (Hmox-1) and urinary 8-OHdG are considered 

markers of arsenic exposure. This is of interest because redox disruption and oxidative 

stress have long been thought to play an important role in the onset of some birth 

defects, although the exact relationship remains unclear and may involve a mix of 

signaling disregulation and macromolecular damage (87; 386). Our laboratory has 

previously performed a microarray study on anterior neural tube tissue collected from 

embryos exposed to arsenic at the onset of neurulation. While the results demonstrated  
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that arsenic induced mitochondrial disruption and oxidative stress, this study also 

revealed many genes whose altered pattern of expression has previously been shown to 

induce birth defects in mouse models. These genes included engrailed 1 (En-1), platelet 

derived growth factor receptor alpha (Pdgfra) and ephrinA7 (EphA7) (61). 

Human exposure to arsenic during pregnancy appears poised to increase. Arsenic 

is currently an important part of industry in the United States, and its use worldwide is 

forecasted to increase as population-dense areas of the world such as India and China 

become ever more important players in the global industrial arena. It is an unfortunate 

circumstance that both of these countries already harbor pockets of significant natural 

arsenic contamination. Taken together, the ubiquitous nature of arsenic, the sensitivity of 

humans to arsenic toxicity  and the teratogenicity of maternal oral arsenic exposure 

demonstrated in this, and other, studies builds a potential linkage between human arsenic 

exposure and elevated risks for neural tube and other congenital defects (348). This 

provides sound reason to perform more sophisticated human epidemiological studies to 

determine if environmental arsenic exposure poses a teratogenic threat to exposed 

human populations.  
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CHAPTER V 

ARSENATE-INDUCED MATERNAL HYPERGLYCEMIA AND NEURAL 

TUBE DEFECTS IN A MOUSE MODEL 

 

OVER

d by intraperitoneal (I.P.) injection on gestational  day (E) 7.5 and 

E:8.5 to in an inbred mouse strain, LM/Bc/Fnn, that does not exhibit spontaneous neural 

tube malformations. In addition, a range of compounds (LinBit insulin pellet, sodium 

selenate, NAC, L-Met, PBN) selected based on their potential to mitigate the effects of 

arsenic were evaluated to assed the effect on arsenate teratogenicity, maternal fasting 

plasma glucose, and insulin levels.   Arsenate exposure cause NTDs (100%, p<0.0001) 

that were associated with  maternal hyperglycemia (37% increase in FPG, p<0.0048) and 

VIEW 

Epidemiological studies have linked environmental arsenic (As) exposure to increased 

risk of type 2 diabetes. A potential mechanism is revealed by studies both in vivo and in 

vitro suggest that arsenic is mitochondriotoxic, with acute exposure causing failure of 

GSIS, and subacute exposure causing profound changes in energy metabolism, resulting 

in type 2 diabetes. Periconceptional hyperglycemia is a significant known risk factor for 

having neural tube defect (NTD) affected pregnancies. The second most common of all 

structural birth defects, NTDs affect approximately 2.6/1000 births worldwide, and 

1/1000 births in the United States. Suspected of being teratogenic and capable of 

inducing NTDs in animal models, As commands intense scientific interest. We evaluated 

the teratogenicity of maternal intraperitoneal  exposure on As 9.6 mg/kg (as sodium 

arsenate) administere



107 
 

failure of GSIS, as demonstrated by n levels that were not significantly 

diff ed 

the rate of NTDs (p< e NTD rate to 77%, 

BN reduced the NTD rate to 74%,  L-Met reduced the NTD rate to 68%, LinBit 

TD rate to 45%, NAC reduced the NTD rate to 38%. With the one 

 maternal insuli

erent from water treated dams (p>0.05). All compounds tested significantly reduc

0.001 for all tests: sodium selenate reduced th

P

reduced the N

exception (PBN), none of the rescue treatments significantly altered the rate of 

resorptions in comparison to arsenate. NAC was successful in prevention of NTDs, 

though it did not restore maternal FPG or insulin levels to normal (p>0.05). The success 

of insulin in preventing NTDs provides evidence that arsenate-induced NTDs in this 

model are secondary to arsenate-induced hyperglycemia. Further, the protection against 

arsenate-induced NTDs provided by the antioxidants NAC, sodium selenate, and PBN 

suggest that embryonic oxidative stress is an important component of arsenate’s 

teratogenicity. In summary, these experiments demonstrate the importance of arsenate’s 

effects on mitochondrial disruption, failure of  maternal GSIS, and to neural tube 

closure. 

 

INTRODUCTION 

Type 2 diabetes, characterized by hyperglycemia secondary to a relative lack of insulin, 

is a group of disorders whose multi-factorial etiology has both environmental and 

genetic components. While it has been known for nearly 30 years that environmental 

toxicant exposure may contribute to diabetes onset, the environmental toxicant arsenic 

has only recently come under scrutiny for its role in contributing to diabetes risk (92; 
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97). While arsenic is generally observed in six different chemical species having varying 

levels and differing mechanisms of toxicity, the forms primarily found in the 

environment are the inorganic trivalent and pentavalent forms, arsenite and arsenate, 

collectively referred to as Asi. Over the past few years, multiple epidemiological studies 

have demonstrated that total arsenic or Asi exposure from contaminated drinking water 

or in the workplace is a risk factor for type 2 diabetes (94; 95; 98; 106-108). While 

epidemiological studies have been limited in their characterization of the arsenic species 

responsible for this observed increase in diabetes risk, deliberate exposure to arsenate 

and arsenite alters glucose metabolism in humans, as well as in rodent and in vitro 

laboratory models. In fact,  the most common side effect of arsenic trioxide (a trivalent 

compound) treatment for cancer is hyperglycemia (66). In rodent and β-cell models, 

both acute and sub-chronic exposure to both arsenite and arsenate has been shown to 

cause hyperglycemia or type 2 diabetes, respectively (103; 110; 111; 116).   

 Diabetes from environmental arsenic exposure is of interest because pre-

gestational diabetes is associated with a two- to ten-fold increase in the risk of having an 

TD affected pregnancy (132). NTDs represent a class of malformations wherein the 

e fails to close, most commonly resulting in exencephaly or 

N

embryo’s neural tub

anencephaly, in which the majority of the brain and surrounding tissues are absent, or 

spina bifida, which often results in lower body paralysis and lack of bowel and bladder 

control (3). While epidemiological studies concerning arsenic’s role in NTDs have 

proven inconclusive, embryonic arsenic exposure via maternal intraperitoneal (I.P.) 
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injection or oral exposure leads to a well-described pattern of fetal malformations in a 

variety of animal models, primarily characterized by NTDs (9; 16; 351; 387). 

 Maternal periconceptional hyperglycemia is teratogenic (128-130). Maternal 

blood glucose equilibrates with the embryo, dictating embryonic glucose levels until 

onset of fetal pancreatic function, well after neurulation is complete. As half of all 

pregnancies are unplanned, and women are typically past the critical time of neural tube 

closure when they initially detect a pregnancy, good prepregnancy glycemic control is 

essential in diabetic patients to reduce the risk of NTDs (131-133). Studies conducted 

using animal models provide further evidence that embryonic exposure to elevated 

glucose levels is mechanistically responsible for the increased risk of congenital 

malformation. Rodent models demonstrate that maternal hyperglycemia induced by 

direct injection of glucose or β-cell disruption from streptozotocin treatment results in 

exencephaly in the offspring, and explanted rodent embryos grown in high glucose 

edia 

oxygen species (ROS), especially H2O2, is thought to underlie much of arsenic’s 

m also exhibit a failure of neural tube closure (134). Recent work  shows that gene 

inactivation of the glucose transporter, Glut2, in embryonic mice protects them from 

maternal hyperglycemia-induced malformations (388). A growing body of evidence 

collected over the past decade  suggests that maternal hyperglycemia induces teratogenic 

oxidative stress in the exposed embryo, which is consistent with the well-established 

relationship between diabetes and oxidative stress (135).  

Although the toxicity of arsenic varies with its chemical form and oxidation state, 

mitochondria are a consistent and primary target. Mitochondrial release of reactive 
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toxicity. This hallmark of arsenic exposure provides a mechanistic link to disrupted 

glucose metabolism. Arsenite is more toxic than arsenate, and while they have some 

nzymes (125; 126). 

differing aspects to mechanisms underlying their toxicity, both have been demonstrated 

to be mitochondriotoxic, and able to disrupt glucose metabolism. Krebs first described 

arsenite’s disruption of pyruvate metabolism in the 1930’s (60), and arsenite and 

arsenate have since been demonstrated to reversibly inactivate nearly all of the Krebs 

cycle enzymes and to decrease expression of genes coding for portions of each of the 

electron transport chain components, resulting in mitochondrial release of H2O2 (61-64). 

Mitochondrial oxidative phosphorylation (OxPhos) links circulating glucose and insulin 

levels via ATP-dependent glucose stimulated insulin secretion (GSIS). Arsenite and 

arsenate can inhibit GSIS in vitro when administered to isolated pancreatic β-cell islets 

under glucose challenge (104). Additionally, excess H2O2 has been observed to 

reversibly repress many Krebs cycle enzymes, making pancreatic β−cells insensitive to 

GSIS, as demonstrated in vitro, as well as in vivo models (118-120). A byproduct of 

mitochondrial function, hydrogen peroxide is a negative feedback inhibitor of the Krebs 

cycle, preventing a toxic rise in oxidative radicals by controlling the rate of 

mitochondrial oxidative metabolism (118; 119; 124). It has a signaling utility that is 

especially potent in  β-cells: they possess a weak antioxidant enzyme defense system, 

especially with regard to hydrogen peroxide-dismutating e

We hypothesize that in utero arsenic exposure alters neurulation by disrupting 

maternal and embryonic mitochondrial function, inducing oxidative stress, which alters 

dependent biochemical pathways such as maternal ATP-dependent glucose sensing, 
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causing additional embryonic oxidative stress. In this study, we investigate arsenic-

induced disruption of maternal glucose homeostasis and its role in the observed NTDs.  

 

MATERIALS AND METHODS 

Animals and Housing 

The LM/Bc/Fnn mice were housed in the Institute of Biosciences and Technology 

Vivarium, which is fully accredited by the Association for Assessment and Accreditation 

of Laboratory Animal Care. The animals were maintained in clear polycarbonate 

microisolator cages and were allowed free access to food and water (Harlan Teklad 

Rodent Diet #8606, Ralston Purina, St. Louis MO). The mice were maintained on a 12-h 

light/dark cycle. Nulligravid females, 50–70 days of age, were mated overnight with 

males and examined for the presence of vaginal plugs the following morning, and the 

onset of gestation was considered to be 10 p.m. of the previous night, the midpoint of the 

dark cycle (355).  

 

Test Agent and Treatment Regimen 

Sodium Arsenate (Na2HAsO4 • 7H2O, Sigma-Aldrich Chemicals, St. Louis, MO) was 

dissolved in sterile water (Sterile Water for Injection, USP, Abbott Laboratories Chicago 

IL) to prepare a 9.6 mg/kg body weight dose of arsenic (in the form of sodium arsenate). 

This dose has been demonstrated to cause exencephaly in nearly all of the exposed 

offspring in this highly inbred mouse strain, without signs of embryotoxicity, which are 

increased resorption rates or decreased litter size. This enables us to make an 
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unequivocal assessment of the efficacy of the rescue compounds. As a commonly used 

dosing scheme in birth defects research, it additionally allows comparison of results 

etween this, and other studies in this area. Both As and water control treatments were 

.) injection at a dose volume of 10 μL/g body weight. 

stered on gestational day (E)7.5 and 8.5, immediately preceding, 

fluid per gram of body weight. The LinBit insulin pellet (LinShin 

anada, Toronto, Canada) was implanted subcutaneously on E2.5 or 3.5, between onset 

on. The pellet dissolves over a period of weeks, 

b

administered by intraperitoneal (I.P

Treatments were admini

and at the onset of, neurulation, which generally occurs from E8.5-9.5. 

 

Rescue Compounds   

Five test compounds were selected to determine their ability to “rescue”, or restore, the 

normal phenotype of the arsenic-exposed embryos. Pregnant arsenic-treated dams were 

randomly selected to receive one of the rescue compounds. Sodium selenate (Na2SeO4), 

L-methionine, and N-acetyl cysteine (Sigma-Aldrich) were administered  daily from 

E0.5-10.5 by oral gavage as a standardized solution in sterile water such that they 

receive 10  μL of 

C

of gestation and embryonic implantati

releasing insulin to the dam. N-tert-Butyl-α-phenylnitrone (Sigma-Aldrich) was injected 

I.P. on E7.5 and 8.5 as a standardized solution in sterile water such that the dams receive 

10 μL of fluid per gram of body weight.  

  N-acetyl cysteine (NAC) (200 mg/kg) is an antioxidant that acts as a precursor of 

glutathione synthesis, a key substrate dismutating H2O2 to molecular oxygen and water. 

Sodium selenate (SS) (0.5 mg/kg) is thought to exert its effects through possible multiple 
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utilities: as part of selenocysteine, it is the active centre of antioxidant selenoenzymes 

such as glutathione peroxidase, has been demonstrated to have diverse effects on glucose 

homeostasis, and has been shown in vivo to methylate arsenic without the use of a 

methyltransferase. L-methionine (L-Met) (70 mg/kg) was selected to provide additional 

methyl groups for arsenic’s biotransformation and help speed its excretion from the 

body. Insulin was selected to lower maternal circulating glucose levels, while N-tert-

utyl-α-phenylnitrone (PBN) (40 mg/kg) is a spin-trap, a compound that traps and 

dicals, preventing deleterious molecular interactions. The two 

B

stabilizes oxidative ra

compounds most successful in rescuing the normal phenotype were characterized in 

further studies described below. 

 

Fasting Plasma Glucose (FPG) 

Fasting maternal plasma glucose was evaluated in tailsnip blood using a glucometer 

(Bayer Ascencia Elite XL) (Bayer HealthCare, LLC. Tarrytown, NY). Gravid dams were 

fasted for six hours prior to sample collection (beginning at 4:00 pm through 10:00 PM 

sample collection time) to allow for the evaluation of FPG levels at E:9.0, midpoint in 

neural tube closure. Experimental groups consisted of control, arsenic, arsenic/LinBit 

and arsenic/NAC treated dams.  

 

Insulin ELISA 

The amount of secreted insulin was determined to determine if observed elevations in 

maternal FPG were due to insulin resistance or failure of GSIS, and if the most 
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successful rescues were modifying the arsenic-induced effects. An enzyme-linked 

immunosorbent assay (ELISA) using antibodies that  recognize mouse and rat insulin 

was used following the manufacturer’s protocol (Rat/Mouse Insulin ELISA Kit, LINCO 

Research, St. Charles, Mo.) to evaluate tailblood samples (collected from gravid, fasting 

dams as described above for Fasting Plasma Glucose). Experimental groups consisted of 

control, arsenate, LinBit + arsenate, and NAC+ arsenate treated dams.  

 

Observations and Measurements 

Gravid dams were killed on E18.5, and litters were assessed by counting the number of 

implants, resorptions/dead, affected, and unaffected fetuses. A detailed gross external 

xamination of each viable fetus was conducted. 

est (p<0.05). 

All statistical analyses were conducted using GraphPad InStat (version 3.06; 

are, San Diego, CA, USA), and the results of all tests were considered 

e

 

Statistical Methods 

Fisher’s exact test was used to evaluate differences between treatment groups for litter 

outcomes (resorption/dead, NTD). The Kruskall-Wallace test was used to evaluate the 

differences, between treatment groups, in the distribution of the number of 

implantations. If p<0.05, a Dunn’s Post-Test was performed. FPG and insulin levels 

were evaluating using 2-sided t-t

 

GraphPad Softw

to be statistical significant when the p-value (or adjusted p-value) was less than 0.05.  
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RESULTS 

Comparison of Treatments 

The highly inbred LM/Bc mouse strain is known to have a very low rate of spontaneous 

NTDs, and no NTD affected fetuses were observed in the absence of treatment with 

arsenate in these studies. Specifically, all test procedures (i.e. LinBit pellet placement, 

fasting, and additional maternal handling associated with blood collection for insulin 

sting) were evaluated in conjunction with a water control to determine whether they 

ee Table 5.1 for all results). The LinBit pellet, which 

 diabetic women.  

Water treated dams implanted with LinBit displayed in increase in NTDs or 

) in comparison to water treatment alone (Group A2), (p>0.05 for 

14) displayed no increases in NTDs or   

te

influence the outcomes of interest (s

is placed subcutaneously to provide exogenous insulin, was also evaluated, because 

historically it had been suggested that insulin treatment was responsible for the increased 

risk of malformations observed in the offspring of

resorption (Group A3

both comparisons). Further, fasted water-treated dams tested for FPG (Group C9) 

displayed no increases in NTDs or resorption when compared to water-treated dams that 

were not fasted (Group A2), indicating that the six hour fast did not disrupt embryonic 

neural tube closure (P>0.05 for all comparisons). Similarly, water treated dams fasted for 

blood collection for insulin for testing (Group D
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 Table 5.1 Summary of litter and maternal outcomes following treatment. 

 

 

 

 

 

Group 
Implants per 

Litter 

 

Administered No. of 
Compounds Dams Mean + SEM (%) with NTDs 

(%) 
(mg/dL) 

 Mean 

No. of 
Resorptions 

No. of 
Fetuses 

Maternal 
FPG 

+ SEM ( mg/dL) 

Maternal 

Insulin level 

A) Controls   1 Arsenate   10 8.3+0.56 6(7.2) 77(100.0) - - 

2 Water 10 10.3+0.37 3(2.9) 0(0.0) - - 

3 LinBit  9 9.8+0.42 7(8.4) 0(0.0) - - 

B) Rescue     4 NAC + As 11 9.7+ 0.66 5(4.7) 39(38.2) - - 

5 LinBit + As 12 9.8+0.42 8(6.8) 51(46.4) - - 

6 L-Met +As 10 8.2+0.65 4 (4.9) 53(67.9) - - 

7 PBN +As 9 9.1+0.7 23(28.0) 43(74.1) - - 

8 SS +As 11 8.9 +0.61 4(4.1) 72(76.6) - - 

C) FPG         9 Water  9 9.2+0.32 3(4.8) 0(0.0) 85+6.3 - 

10 Arsenate 11 10.8+0.63 2(2.2) 91(100) 117+7.3 - 

11 LinBit 10 9.4+0.27 3(3.2) 0(0) 60+3.0 - 

12 NAC + As 13 8.3+0.58 9(8.3) 40(40.4) 106+3.8 - 

13 LinBit + As 11 7.7+0.79 16(18.8) 29(42.0) 82+9.8 - 

D) Insulin   14 Water  8 8.5+0.68 0(0.0) 0(0) 98+5.1 0.445+0.043 

15 Arsenate 8 9.1+0.72 10(13.7) 63(100) 124+8.7 0.525+0.064 

16 NAC + As 9 7.9+0.79 7 (9.9) 32(45.1) 122+7.4 0.355+0.028 

17 LinBit +As 8 8.1+0.77 9(13.8) 28(43.1) 59.1+6.0 0.083+0.075 
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resorption when compared to water-treated dams that were not fasted (Group A2) 

(p>0.05 for all comparisons) 

 

Arsenate Treatment 

When treated with the  arsenate regimen utilized in this study, nearly all of the exposed 

s ith N s. A -treated dams ignific tly more NTD-

affected fetuses (Group A1, 100%) than the r-tre ontrols Group A2 0%) 

(p<0.000 . er, th rates orpti ere ignific tly differ t in 

arsenate-treated dams when compared with water-treated dams (p>0.05). 

 

Rescue of Arsenate-Induced NTDs

All com u sed to r ue th al ph pe of bryos ed to a nate 

were succes pared to arsenate only, bu AC inBi ents were the 

most effective. Thus, NAC and LinBit treatment were selected for further investigation 

into maternal FPG and insulin levels.  

 As previously described, arsenate treat roup A1) exhibited a 100% rate 

of exencephaly. In the groups described above, SS+As  (Group B8) reduced the NTD 

te to 77% (p<0.0001); PBN+As (Group B7) reduced the NTD rate to 74% (p<0.0001); 

-Met+As (Group B6) reduced the NTD rate to 68% (p<0.0001); LinBit+As (GroupB5) 

 and NAC+As (Group B4) reduced the NTD 

te to 38% (p<0.0001). With the one exception, the rescue treatments did not 

significantly altered the rate of resorptions in comparison to arsenate. The single 

fetuses pre ented w TD rsenate had s an

 wate ated c  ( , 

1)  Howev e  of res ons w  not s an en

 

po nds u esc e norm enoty  em expos rse

sful com t the N  and L t treatm

ment (G

ra

L

reduced the NTD rate to 45% (p<0.0001)

ra
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exception, PBN, was associated with a significantly higher resorption rate of 28% 

(p<0.0001) as compared to arsenate (Group A1). 

ssociated Pregnancy Outcome 

nate alone vs. 

sting,  (A1 vs. C10); water alone vs. fasting, (A2 vs. C9); LinBit alone vs. fasting, (A3 

  (B4 vs. C12)). LinBit+As+fasted dams had a 

 

Maternal FPG and A

FPG testing was conducted in water (Group C9), arsenate (Group C10), NAC+As 

(Group C12) and LinBit+As (Group C13) treated dams that underwent a six hour fast. In 

all groups, tailblood was tested at the midpoint of neural tube closure. With one 

exception, fasted dams displayed no differences for NTD or resorption rates when 

compared to the similarly-treated dams that were not fasted (i.e. arse

fa

vs. C11); and NAC+As vs. fasting,

significantly higher rate of resorptions (Group C13, 19%) when compared to the 

LinBit+As dams that were not fasted (Group B5, 7%) (p<0.0001). It is notable that 

fasting did not diminish the effects of the NAC or LinBit on the rates of arsenate-

induced NTDs (Table 5.1, Group C).  

The FPG levels of dams treated with arsenate (C10, 117 mg/dL) were 

significantly higher than dams treated with water (Group C9, 85 mg/dL) (Two-Tailed T-

test, P=0.0048). Dams receiving LinBit in addition to arsenate (Group C13, 82 mg/dL) 

had FPG levels similar to dams receiving water controls (Group C9, FPG 85 mg/dL) 

(p>0.05). In contrast, in NAC treated dams (Group C12) FPG levels (106 mg/dL) 

remained high, and were significantly different from water treated dams (p<0.0065). 

LinBit+water (Group C11) was evaluated to confirm that LinBit treatment alone was 
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sufficient to lower FPG in water-treated dams. LinBit+water treatment (Group C11) 

successfully lowered the FPG (60 mg/dL) below the FPG associated with water 

eatment (p<0.0019). As indicated earlier, the low FPG associated with this treatment 

ates in comparison to water 

teratogenic nor embryotoxic (P>0.05 for all 

compar

tr

was not associated with an increase in NTD or resorption r

alone. 

 

Maternal Insulin   

Insulin testing was conducted in water+FPG+insulin (Group D14), 

arsenate+FPG+insulin (Group D15), NAC+As+FPG+insulin (Group D16) and 

LinBit+As+FPG+insulin (Group D17).  Dams underwent a six hour fast in order to 

evaluate maternal blood glucose levels midpoint in neural tube closure, as well as 

additional handling to collect blood for an ELISA. Dams in this groups displayed no 

differences in NTD or resorption rates when compared with the similarly treated dams 

that were not fasted or tested for insulin levels, indicating that the additional handling 

and blood collection was neither 

isons).  

All FPG levels associated with this insulin testing were similar to FPG levels in 

dams not tested for insulin, though they were slightly higher overall, possibly reflecting 

the stress of additional handling. Most importantly, arsenate treatment (Group D15) 

continued to be associated with a significantly higher FPG (123 mg/dL) in comparison to 

water treatment (Group D14) (FPG 98 mg/dL). However, there was no difference 

between the insulin levels in these same groups, indicating that elevated levels of 
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circulating glucose caused by arsenate failed to stimulate compensatory insulin secretion 

(p>0.05). Similarly, the FPG (122 mg/dL) associated with the NAC treatment (Group 

D16) was significantly higher than the water treatment (Group D14), with no difference 

in insulin levels. The LinBit treatment alone (Group D17) significantly lowered the FPG 

(60 mg/dL), and the exogenous insulin, as expected, elevated the insulin levels in 

omparison to water treatment (Group14).  

aternal hyperglycemia in this model. The resulting 

teratog

c

 

DISCUSSION 

This study provides evidence that some arsenate-induced NTDs in this model are 

secondary to arsenate-induced hyperglycemia. Further, these experiments highlight the 

importance of arsenate-induced failure of mitochondrial activation and GSIS, and 

subsequent oxidative stress, to neural tube closure. While all selected rescue compounds 

significantly rescued the normal embryonic phenotype, NAC and insulin were the most 

effective. In particular, the success of maternal administration of insulin in rescuing 

arsenate-induced NTDs suggests that an important component of the teratogenicity of 

arsenate is mediated through m

enic effects of maternal hyperglycemia-induced oxidative stress is highlighted by 

the success of maternal administration of NAC, an antioxidant and precursor of 

glutathione synthesis, to rescue the normal embryonic phenotype, without restoring the 

normal maternal GSIS and FPG. Further, the oxidative stress component of arsenate-

induced NTDs is shown by the rescue achieved by the administration of PBN, a radical 

trapping agent which inactivates toxic radical species was highly effective as an inhibitor 
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of arsenate-induced NTDs. However, it also significantly increased the number of 

resorptions and therefore was not further investigated.   

 Due to the diverse biochemical effects of arsenate, no single pathway or 

experimental model comprehensively describes its toxicity. We suggest that arsenate has 

both maternal and embryonic effects that ultimately prove teratogenic in our model. 

Maternally administered arsenic concentrates in the embryonic neuroepithelium of both 

dents and primates (33; 34). While arsenate causes profound mitochondrial disruption 

e dam and embryo, this has important implications for maternal blood 

ro

affecting both th

glucose regulation, whose circulating glucose equilibrates with the embryo’s during 

early developmental timepoint. The embryo is thus exposed to two separate, but related, 

oxidative insults: direct mitochondrial damage via in utero arsenic exposure, and 

oxidative stress due to the hyperglycemic milieu.  

 Many types of mitochondrial disruption have been associated with diabetes. 

While a limited number of types of monogenic mitochondrial diabetes have been 

discovered (loss of function of mitochondrial TRNAs, nuclear encoded mitochondrial 

transcription factor A, TFAM, TCA cycle enzyme α-ketoglutarate dehydrogenase), the 

much more common type 2 diabetes is thought to be due to complex gene-environment 

interactions. Mitochondrial disruption involving such disparate factors as mitochondrial 

number or mtDNA copy numbers and gain or loss of function of uncoupling protein 2 

(UCP2) have been associated with type 2 diabetes (389). 

Mitochondria are a common target of both environmental toxicants as well as many 

pharmaceuticals. Many pharmaceuticals, household, and industrial chemicals can impair 
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insulin secretion. While these exposures are not generally thought to cause frank 

diabetes, they may initiate diabetes onset in individuals who are predisposed, such as 

associated with an increased diabetes 

those with insulin resistance. A sampling of compounds and pharmaceuticals recognized 

to induce diabetes (and their application) follows: Vacor (rat poison), pentamidine 

(antimicrobial), nicotinic acid (vitamin b3), glucocorticoids (steroid), thyroid hormone, 

diazoxide (vasodilator), β-adrenergic agonists (calcium channel modifiers), thiazides 

(diuretic), dilantin (antiepileptic), α-interferon (cancer and viral therapeutic). 

Interestingly, thiazides are associated with NTDs, and dilantin is associated with cleft 

palate, another craniofacial malformation associated with diabetic pregnancy (89). 

Valproate, a known risk factor for NTDs, is an antiepileptic and atypical antipsychotic, 

which are widely observed cause hyperglycemia (90; 91). 

The first environmental contaminant to be 

risk was found in the 1970s, when carbon disulfide exposure’s relationship to diabetes 

was reported (89; 92). Interest in other environmental contaminants and their potential to 

increase diabetes risk is relatively recent, and has focused on arsenic, dioxin, and nitrates 



123 
 

 (93-96). For a comprehensive review of this subject, see work by Longnecker and 

Daniels (97). At the time publication of Longnecker’s work, while no exposures were 

conclusively linked with increased diabetes risk, several occupations and occupational 

exposures were identified that may have contributed to diabetes onset. Evaluation of 

studies was hampered by aspects of study design that limit the power of the investigation 

including: use of glucosuria or diabetes death as diagnostic criteria, lack of adjustment 

for possible confounders in some studies, and failure to consider both type 1 and type 2 

diabetes as possible adverse health outcomes. Data concerning arsenic and TCDD were 

compounds had a weaker, but not null, association. Further epidemiological and 

ed diabetes risk has 

since been published (98-105).  In summary, as we continue to dissect the multifactorial 

causes of these complex diseases, diabetes and NTDs, environmental exposures to 

most suggestive of an association with diabetes, while nitrates, nitrites, and N-nitroso 

laboratory research concerning arsenic’s association with increas

mitochondriotoxic compounds warrant further investigation.  
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

SUMMARY 

Gene expression technology was used to investigate arsenate-induced NTDs in Folr2 

nullizygous mice, a mouse strain with an engineered deletion of a gene involved in the 

receptor mediated folate pathway. These mice were injected intraperitoneally with 

sodium arsenate at the beginning of the neural tube formation process, resulting in a high 

incidence of NTDs in the exposed embryos. Gene expression was evaluated in 

embryonic anterior neural tube. This allowed us to study arsenic-induced changes in 

patterns of gene expression that may contribute to the development of neural tube 

defects in these mice. Using extensive data analysis approaches including hierarchical 

clustering and gene ontology analysis, we identified several candidate genes, as well as 

important ontology groups that may be responsible for arsenic’s teratogenicity. Changes 

in the expression of several genes in response to arsenic treatment in our model had been 

previously demonstrated by others to also induce NTDs in murine model systems. These 

include: engrailed 1 (En-1), platelet derived growth factor receptor alpha (Pdgfrα) and 

ephrinA7 (EphA7). Several gene ontology groups that could be implicated in arsenic’s 

underlying teratogenicity were also revealed. They include: morphogenesis, oxidative 

phosporylation, redox response, and regulation of I-kappaB kinase/NF-kappaB cascade. 

Additionally, we revealed new target genes which may be responsible for arsenic 

disrupted oxidative phosphorylation. 
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Oral arsenate exposure w ine if this common 

environmental route of vestigated in an inbred 

ouse strain, LM/Bc/Fnn, that is known to have a very low rate of spontaneous NTDs. 

 maternal toxicity as evidenced by differences in maternal body weight 

t reduced the NTD rate to 45%, NAC reduced the 

as investigated to determ

exposure was teratogenic. This was in

m

There was no

gain, as well as liver and kidney weights following arsenate exposure. Oral maternal 

arsenate exposure resulted in NTDs in the offspring, and dose-response exhibited a 

positive linear trend (p< 0.0001). The dose, number of live fetuses affected with an 

NTD, and percent of litters affected were: water treated control, 0, (0.0%): As 4.8 

mg/kg, 1, (0.5%): As 9.6 mg/kg, 7, (4.0%): and As 14.4 mg/kg, 15, (8.2%). There was 

also evidence for linear trends in the relationships between arsenic dose and congenital 

anomalies involving components of the axial skeletal (vertebral, p< 0.0001 and calvarial, 

p< 0.0001).  

Environmental arsenic exposure has been associated with increased diabetes risk in 

epidemiological studies. Because hyperglycemia, the hallmark of diabetes, is teratogenic 

in humans as well as in rodent models, we investigated whether the arsenate-induced 

NTDs involved disruption of glucose metabolism. Arsenate exposure cause NTDs 

(100%, p<0.0001) that were associated with maternal hyperglycemia (37% increase in 

FPG, p<0.0048) and failure of GSIS, as demonstrated by maternal insulin levels that 

were not significantly different from water treated dams (p>0.05). All compounds tested 

significantly reduced the rate of arsenate-induced NTDs (p<0.001 for all tests: sodium 

selenate reduced the NTD rate to 77%, PBN reduced the NTD rate to 74%,  L-Met 

reduced the NTD rate to 68%, LinBi
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NTD r

ppaB cascade, which in turn, launched several early response genes in 

ate to 38%. With the one exception (PBN), none of the rescue treatments 

significantly altered the rate of resorptions in comparison to arsenate. NAC was 

successful in prevention of NTDs, although it did not restore maternal FPG or insulin 

levels to normal (p>0.05).  

 

CONCLUSIONS 

Analysis of gene expression in the neural tube of arsenic exposed embryos indicated that 

there was a significant dysregulation in a group of genes directly involved in the 

mitochondrial process of energy production. Disruption of this process leads to 

uncoupled oxidative phosphorylation, which ultimately causes oxidative stress. Analysis 

of DNA microarrays also showed that arsenic strongly activated the I-kappaB 

kinase/NF-ka

response to oxidative stress, such as Hmox1. In addition, we revealed for the first time 

new target genes that was altered in their expression by arsenic induced disruption of the 

oxidative phosphorylation process. The oral route of exposure was determined to be 

teratogenic in our LM/Bc/Fnn mouse strain, with a positive dose-response.  Maternal 

oral treatment with arsenate induced exencephaly and significantly increased the  
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frequency of axial skeletal variations and malformations in the exposed offspring. The 

fetal malformations were produced in the absence of maternal toxicity. The I.P. route of 

exposure used in the LM/Bc/Fnn mice caused NTDs that were associated with maternal 

hyperglycemia. The success of insulin in preventing these arsenate-induced NTDs 

rovides evidence that arsenate-induced NTDs in this model are secondary to arsenate-

mia. Further, the protection against arsenate-induced NTDs provided 

p

induced hyperglyce

by the antioxidants NAC, sodium selenate, and PBN suggest that embryonic oxidative 

stress is an important component of arsenate’s teratogenicity. These experiments 

demonstrate the importance of arsenate’s effects on mitochondrial disruption, failure of  

maternal GSIS, and to neural tube closure. 

The results of these studies are consistent with established mechanisms of 

arsenate’s toxicity. Results of our study strongly suggest that arsenic exerts its toxic 

effect via oxidative stress pathways. 
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