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ABSTRACT 

 

The Role of Estrogen Receptors in the Contribution of Constrictor Prostanoids to Aortic 

Coarctation-Induced Hypertension.  

(December 2008) 

Minga Miown Sellers, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. John N. Stallone 

 

This study investigated the effects of selective estrogen receptor (ER) agonists on 

constrictor prostanoid (CP) function and on the development of mean arterial pressure 

(MAP) in aortic coarctation-induced hypertension (ACIH).  Female Sprague-Dawley rats 

were divided randomly into four groups: intact (INT), ovariectomized (OVX), OVX + 

ERα selective agonist (4, 4’, 4”-(4-Propyl-[1H]-pyrazole-1, 3, 5-triyl)trisphenol; 

OVX+PPT), or OVX + ERβ selective agonist (2,3-bis(4-Hydroxyphenyl)-propionitrile; 

OVX+DPN). Rats were then subjected to abdominal aortic coarctation (hypertensive, 

HT) or sham surgery (normotensive, NT). PPT, DPN or vehicle treatments were given 

daily as a subcutaneous injection. MAP was measured every other day at 2-14 days after 

coarctation. Mesenteric arterioles were harvested 12-14 days after coarctation for 

isometric tension studies to examine concentration-responses to VP. Basal and VP-

stimulated prostanoid release and mRNA and protein levels of ERα and ERβ (using real 

time RT-PCR and immunoblotting) were measured in separate groups of arterioles. MAP 

was higher in INT-HT, OVX+PPT-HT and OVX+DPN-HT than in OVX-HT after 12 

days. Vascular reactivity to VP was greater in OVX+PPT-NT rats than in other groups. 
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There were no significant differences in vascular reactivity to VP in HT groups. Blockade 

of thromboxane receptor (TP) with SQ 29,548 (TP receptor antagonist) did not have a 

significant effect in any groups. Inhibition of intracellular calcium release with 

simvastatin (blocker of IP3 mediated calcium release) was greater in NT than in HT 

groups, and greater in OVX- and DPN-treated groups than in INT and PPT-treated 

groups. VP-stimulated release of thromboxane (TXA2) and prostacyclin (PGI2) were 

highest in INT-HT and OVX+PPT-HT rats. Neither mRNA nor protein expression of 

ERs changed significantly in response to selective ER agonist treatment or during 

hypertension. Selective ERα stimulation with PPT during development of ACIH resulted 

in similar effects to those seen in INT rats for CP release, VP reactivity of mesenteric 

arterioles and MAP, while selective stimulation of ERβ only increased MAP. While ERα 

is capable of modulating most of the effects of estrogen on the vasculature, ERβ has 

stimulatory effects on MAP during the development of ACIH that merit further 

investigation. Further studies of the vascular actions of ERα and ERβ may lead to better 

hormonal therapies that successfully prevent and/or treat cardiovascular disease in post-

menopausal women.  
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CHAPTER I 
 

INTRODUCTION AND HISTORICAL REVIEW 
 
 

1.1 Introduction 
 

Men are from Mars, women are from Venus. Well, maybe that is a bit extreme. 

Although men and women do hail from the same planet, the fact remains that there are 

many differences between the sexes, ranging from behavior to body function to aging. 

And the culprit for these differences? We suspect the sex steroid hormones: estrogens and 

androgens. Perhaps once thought to affect only reproductive function, it is now well 

known that these hormones affect nearly every facet of the body, from brain 

development, to skeletal growth, to cardiovascular function.  

With respect to the cardiovascular system, considerable dogma has developed 

surrounding the effects of estrogens on cardiac and vascular functions. For many years it 

was thought that estrogens, particularly 17β-estradiol, exerted beneficial effects on the 

cardiovascular system and when estrogens vanished at menopause, so did their beneficial 

effects, resulting in increased incidences of cardiovascular diseases. This would certainly 

explain why premenopausal women experience much less cardiovascular disease (CVD) 

than men, and why after menopause, the incidences of CVD increase rapidly in women 

and attain levels virtually identical with those of men. This dogmatic view was based 

largely on epidemiological studies of coronary artery disease and hypertension in men 

versus women; however more recent clinical and epidemiological studies of other CVD  

____________________ 
This dissertation follows the style and format of the American Journal of Physiology – 
Heart and Circulatory Physiology. 
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strongly suggest that estrogens exert deleterious effects on the vasculature.  

Indeed, diseases of vascular origin such as Raynaud’s disease and primary 

pulmonary hypertension occur more frequently in young premenopausal women than in 

men and appear to be estrogen dependent. Thus this doctoral dissertation will focus on 

cellular and  

molecular mechanisms underlying the deleterious effects of estrogen on vascular function 

in the female.  

 

1.2 Classical Effects of Estrogens  

1.2.1 Estrogens in the Reproductive System 

The estrogens are naturally occurring C18-steroids characterized by the presence 

of an aromatic A-ring, a phenolic hydroxyl group at C-3, and either a hydroxyl group 

(estradiol) or a ketone group (estrone). As with all major classes of steroid hormones, the 

estrogens are derived from the common precursor molecule cholesterol (Fig. 1). The 

main estrogen secreted by the ovary is 17β-estradiol (E2), which is derived from its 

immediate precursor, testosterone, by the action of the enzyme aromatase. It is the most 

potent and important of the estrogens. In addition, the weaker androgen androstenedione 

is converted to estrone (E1) in the ovary, the secondary bioactive form of estrogen, also 

by the action of aromatase. E1 is also secreted from the ovary, and while less potent than 

E2, can exert many similar effects. While less E1 is secreted from the ovary, it remains in 

equilibrium in the circulation with E2, due to 17β-hydoxysteroid dehydrogenase activity, 

which reversibly converts E2 to E1. Then, E1 and E2 are converted to the primary estrogen 
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metabolite estriol (E3) by the liver; E3 is also secreted in small amounts by the ovary. 

Additionally, E1 is the major remaining estrogen in the circulation after menopause (see 

Table 1 for production rates in pre-menopausal women).  

The main roles of the estrogens are the development and maintenance of the 

female reproductive system and include: growth and hypertrophy of the uterus and 

vagina, development of the secondary sex characteristics, and development of the ductal 

system of the breast. Estrogens also play a central role in the regulation of the menstrual 

cycle and the process of ovulation. Production and secretion of E2 by the ovarian follicle, 

stimulated by follicle stimulating hormone (FSH), causes circulating plasma E2 levels to 

rise 5- to 9-fold (Table 1). The sharp increase in E2 release from the dominant follicle 

triggers a surge in gonadotropins (FSH and luteinizing hormone, LH), resulting in 

ovulation. Estrogens also inhibit the growth of cohort follicles and prepare the fallopian 

tubes for transport of the ovum and zygote (146). 
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Figure 1: Synthesis of estrogens from cholesterol. Adapted from Ganong, 
Review of Medical Physiology 22nd edition (45).   
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Table 1: Hormone production and turnover in adult women (adapted from Berne and 

Levy eds. Physiology, 4th edition) (11).  

Steroid 
Plasma 

Concentration 
(ng/dl) 

Production Rate 
(µg/day) 

Metabolic 
Clearance Rate 

(L/day) 
Estradiol 6-50 80-700 1400 
Estrone 5-20 100-500 2200 

Progesterone 100-1000 2000-25000 2200 
    

 

 

1.2.2 Estrogens in Other Systems 

Estrogen receptors (ERs) are found in nearly every tissue type in the body and 

thus, the effects of estrogens are widespread and have been observed in nearly every 

organ system. Estrogens act directly and indirectly on bone osteoclasts and resorptive 

cytokines, respectively, to inhibit bone resorption. E2 stimulates reabsorption of sodium 

from the renal tubules. In addition, a number of proteins synthesized in the liver are 

increased by estrogens; these include angiotensinogen, the hormone-binding globulins, 

very-low-density lipoproteins and high-density lipoproteins.  

Estrogens also exert effects in the brain and nervous system. Estrogens exert 

actions on several regions of the nervous system, including those involved with higher 

cognitive function, pain mechanisms, mood, susceptibility to seizures and even fine 

motor skills (83). There is also evidence that 17β-estradiol has neuroprotective effects in 

relation to stroke (9, 143) and Alzheimer’s disease (125) in pre-menopausal women. In 

addition, there are nonnuclear ERs located in glial cells, dendrites, and presynaptic 

terminals. These nonnuclear ERs may couple with various second messenger systems to 
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regulate various cellular events (83). These neuroprotective effects of estrogens in the 

brain are attributed largely to increases in endothelial nitric oxide synthase (eNOS) and 

the resultant formation of nitric oxide (NO) in the brain vasculature and the possible 

maintenance of the integrity of the blood brain barrier (25, 42, 46, 47, 125).  

 

1.2.3 Estrogens in the Vascular System 

The well known effects of estrogens (especially E2) on the vasculature are 

generally viewed as beneficial. E2 has effects on both the endothelium and vascular 

smooth muscle (VSM), and usually acts as a vasodilator. It increases the release of 

vasodilators such as nitric oxide (NO), prostaglandin E2, and prostacyclin, while 

decreasing production and activity of endothelin-1, a potent vasoconstrictor. In addition, 

E2 stimulates the growth and migration of endothelial cells, while simultaneously 

inhibiting the growth of VSM cells. E2 also enhances angiogenesis by facilitation of basic 

fibroblastic growth factor (bFGF) (112) and vascular endothelial growth factor (61, 77).  

 

1.2.4 Hormone Replacement Therapy 

If the loss of estrogens lead to increases in CVD in women, then it follows that 

replacement of estrogens will prevent or decrease the incidence of CVD. A number of 

earlier studies demonstrated beneficial effects of estrogens on CV health and disease. For 

example, in vitro treatment with E2 inhibits Ca2+ influx in VSM cells, causing relaxation 

of arterial strips from male rats, and this effect was shown to be endothelium independent 

(50). In studies of human coronary arteries in vitro, E2 produced relaxation by increasing 

VSM levels of cAMP and cGMP (91). In one clinical study, infusion of physiological 
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levels of E2 potentiated endothelium-dependent vasodilation in healthy post-menopausal 

women and endothelium-dependent and –independent vasodilation in post-menopausal 

women with impaired vascular function and risk factors for atherosclerosis (48). Another 

study in primates with surgical menopause (OVX) and diet-induced coronary artery 

atherosclerosis showed that coronary arteries constricted in response to acetylcholine, but 

20 minutes after infusion of ethinyl estradiol, the coronary arteries relaxed in response to 

acetylcholine (145). However, several recent clinical trials involving various types of 

hormone replacement therapy (HRT) reported that HRT was not protective against a 

variety of CVD, including atherosclerosis, pulmonary embolism (PE), myocardial 

infarction, stroke and venous thrombosis (51, 58, 111). Indeed, the incidences of CVD 

(nonfatal myocardial infarction and coronary heart disease death) and breast cancer were 

increased with HRT (111). The Heart and Estrogen/Progestin Replacement Study 

(HERS) studied women who had previous CHD, but no previous venothrombosis. The 

primary outcome for this study was increased incidence of coronary heart disease (CHD), 

either nonfatal myocardial infarction or CHD-related death in healthy postmenopausal 

women (no CHD prior to the trial) and a three-fold increase in risk for thromboembolic 

events in the HRT group (51). The Women’s Health Initiative (WHI) trial was terminated 

early because it was clear that the risks of HRT significantly outweighed the benefits 

(111). The primary outcome of the WHI study was increased incidence of CHD, either 

nonfatal myocardial infarction or CHD death, in women that were postmenopausal and 

healthy (no CHD prior to the trial). Both of these studies used conjugated equine 

estrogens (CEE) combined with medroxyprogesterone acetate (MPA). There is some 

controversy concerning the use of CEE as the source of estrogen replacement, because it 
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is not the endogenous hormone 17-β estradiol. Arguments have been made that 

replacement of the missing hormone with the identical endogenous compound rather than 

CEE would result in the return of the protective effects on CV health. The Women’s 

Estrogen-Progestin Lipid Lowering Hormone Atherosclerosis Regression Trial (WELL-

HART) looked at the effects of E2 either alone or with MPA on the progression of 

coronary-artery atherosclerosis and found that neither estrogen alone nor estrogen with 

sequentially administered MPA had any effect to reverse established atherosclerosis in 

women 20 years post-menopause, but that E2 treatment could reduce the extent of 

atherosclerosis if HRT is initiated at the beginning of menopause (58). It was recently 

found that MPA can disrupt estrogen metabolism and abrogate the inhibitory effects of E2 

on the VSM cells (35). The findings of Dubey et al. (35) concerning the actions of 

progesterone on E2 should come as no surprise, as progesterone modulates the actions of 

estrogen, both by decreasing ER levels and reducing nuclear bound estrogen-receptor 

complexes (146).  

These recent studies on HRT only seem to add to the confusion surrounding the 

mysterious effects of estrogen. What are the pathways affected by estrogens that lead to 

the beneficial versus detrimental effects on the vasculature?  
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1.3 The Actions of E2 on the Vasculature 

E2 exerts effects on both the endothelium and VSM, involving function and 

growth of the vascular wall (Fig. 2). Perhaps the most well known vascular effect of E2 is 

on the nitric oxide (NO) pathway. An abundance of research in this area shows that E2 

enhances NO not only by its genomic action to increase the message for the enzyme that 

catalyzes formation of NO, endothelial nitric oxide synthase (eNOS), but also by 

enhancing the level of eNOS activation (20). The effects on eNOS levels occur at the 

level of gene transcription via ERs, while the enhanced activation of eNOS is a rapid, 

non-genomic effect. There is a subpopulation of ERα that localizes to caveolae (lipid 

ordered domains on the plasma membrane of endothelial cells that contain signal 

transduction molecules) and is coupled with eNOS. E2 stimulates the tyrosine 

kinase/MAPK and PI3 kinase pathways and phosphorylates eNOS, resulting in its rapid 

activation (20). More recently it was discovered that ERβ also has nongenomic actions on 

eNOS in endothelial cell caveolae and rapidly increases eNOS activity in the presence of 

E2 (21).  

Numerous studies have established that E2 increases prostacyclin (PGI2) synthesis 

and activity of the cyclo-oxygenase (COX) pathway in various tissues (47, 62, 117). E2 

also appears to be involved in a number of thromboxane (TXA2)-dependent vascular 

diseases such as Raynaud’s disease (101, 139), primary pulmonary hypertension (109) 

and pre-eclampsia, all of which involve excessive vasoconstriction and elevated vascular 

production of TXA2. The incidence of Raynaud’s disease is up to seven-fold higher in 

women than in men (139), while that of primary pulmonary hypertension is about four-

fold higher in women than men (68, 140). Similarly, in pre-eclampsia there is an 
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unfavorable shift in the balance between PGI2 and TXA2 (148), resulting in a greater 

prominence of TXA2 during pregnancy. The balance between these two prostanoids is 

crucial, not only for the regulation of vascular tone, but also for hemostasis (16, 39).  

The effects of E2 on the prostanoid pathway have been elucidated further in more 

recent studies. Reactivity of the rat thoracic aorta to VP is substantially greater in females 

than in males or ovariectomized females, and estrogen replacement therapy (ERT) of 

OVX females restores reactivity to VP to that of the intact female. Selective blockade of 

various prostanoid pathway enzymes and/or receptors revealed that constitutive forms of 

COX-2 and thromboxane synthase (TXS) exist in the vasculature, and the greater 

production constrictor prostanoids (CP), mainly TXA2, are responsible for the enhanced 

responsiveness to VP in females (72, 73). Estrogen enhances the release of and reactivity 

to CP in the female vascular wall and blockade of the pathway reduces reactivity to VP 

by 25-30%. These effects of E2 are mediated by increased expression of COX-2, TXS, 

and TP receptor (73).  

E2 also is known to increase intracellular calcium (IC) release in the endothelium 

but to decrease extracellular Ca2+ entry into VSM (50, 89, 93, 113, 124). Reactivity of the 

female rat aorta to VP was reported to be more dependent on the release of IC, while that 

of the male aorta is more dependent on extracellular calcium entry (36).  

In addition to the effects of E2 on the vasculature, E1, the less potent estrogen 

secreted by the ovary, exerts both genomic and non-genomic effects on the vascular wall 

via ERα and ERβ (108, 118), including increasing NO synthesis (via activation of 

mitogen activating protein kinase – MAPK; a non-genomic effect) and enhancing protein 

kinase C (PKC) activity and VSM cell proliferation (a genomic effect), as well as 

 



 12

increasing COX, thromboxane, and prostacyclin activity via the phospholipase C – IP3-

diacylglycerol – PKC signal transduction pathway (a non-genomic effect) (108, 118).  

 

1.3.1 Regulation of Estrogen Receptors 

E2 exerts most of its long-term (genomic) effects through the two known cytosolic 

steroid estrogen receptors (ER), alpha (ERα) and beta (ERβ). Rapid (non-genomic) 

effects occur via cell membrane-associated steroid receptors and can occur through either 

ER, as both have been shown to localize to the plasma membrane (21) and are coupled to 

rapid-acting signal transduction pathways. The expression of ERs by both the VSM and 

endothelium of the vascular wall is well documented (1, 3, 10, 21, 28, 57, 60), however, 

the extent of their actions on the vascular wall is a subject that has barely been scratched 

on the surface. 

ERs appear to be highly regulated and their expression is variable among different 

blood vessels. For example, E2 treatment decreases expression of ERα in vena cava of 

OVX rats, but has no effect on ERα expression in thoracic and abdominal aorta (86). In 

contrast, in cerebral arteries, ERT with E2 increases ERα gene expression while OVX 

decreases its expression (86). There is a significant decrease in the expression of 

cerebrovascular ERβ receptors with OVX, and while ERT with E2 treatment upregulates 

ERα in the cerebrovasculature, it has no effect on ERβ gene expression (86). 

The mechanisms underlying the effects of E2 on ER expression appear to involve 

two distinct mechanisms. First, ERs can be altered by autologous downregulation, where 

an activated ER interacts with its own gene sequence to decrease its mRNA by 

suppressing transcription (86). Second, ERs can also be targeted by ubiquitin, a small 
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protein which marks the protein to which it attaches for degradation by the 26S 

proteasome (86). In this manner, ER proteins are decreased without altering their mRNA. 

Additionally, the ERα gene can be methylated and inactivated; thus, ERs may be affected 

by growth factors and hormone signals (86).  

 

1.3.2 Mechanisms of Estrogen Receptor Actions 

Most of the actions that estrogens exert throughout the body can be linked to their 

receptors, ERα and ERβ. The ERs are classical cytosolic steroid receptors, which require 

that estrogens bind and activate the receptors. The activated receptor-ligand complexes 

then translocate to the nucleus, and then form either homodimers or heterodimers and 

bind to estrogen response elements (ERE) located within the regulatory region of the 

target genes. Binding of the EREs activates transcription (formation of messenger RNA), 

then translation, resulting in increases or decreases in protein synthesis, which mediate 

the biological actions of the estrogens. ERs can also interact with other transcription 

factors, such as activator protein-1 (AP-1) or Sp1 transcription factor instead of the 

classical ERE; however, not all of the actions of estrogens can be attributed to genomic 

activity (Fig. 3). More recently, membrane-bound ERs have been identified, which are 

coupled to G-proteins, as well as so called estrogen receptor-related receptors (ERRs), 

some of which do not actually bind estrogen, but can actually activate transcription and 

even interact with traditional ERs (14, 53). The membrane-ERs can rapidly exert their 

actions without inducing transcription, and are reported to modulate ion channels, G 

protein-coupled receptors, tyrosine kinases, and mitogen-activated protein kinases (56, 
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86, 93). Membrane-bound ERs also activate phospholipase C and adenylyl cyclase signal 

transduction pathways (86).  
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Figure 3: Mechanisms of estrogen action. Adapted from Hewitt et al., 
2005 (56). (A) Estrogen binds a nuclear receptor and activates 
transcription, either through ERE (classical mechanism) or AP-1/Sp1 
(nonclassical mechanism). (B) Estrogen binds a plasma membrane 
bound receptor and activates any one of multiple signaling pathways 
(C). ER = estrogen receptor, ERE = estrogen response element, ERR = 
estrogen receptor-related receptor (also in the nucleus), AP-1 = 
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1.3.3 The Effects of E2 on Intracellular Calcium 

E2 exerts effects on intracellular calcium (IC) release as well as extracellular Ca2+ 

entry via various calcium (Ca2+) channels in a variety of tissues (113, 124, 135, 151). In 

the vasculature, the findings are rather conflicting. Some studies report that acute E2 

treatment increases IC release (113), while others show that acute E2 decreases cytosolic 

Ca2+ levels (104). These conflicting findings may reflect differences in the tissues studied 

and/or the experimental preparations employed, for example, as some studies have 

utilized cultured cells (113, 124, 135), while others studied intact vessels (36). Most 

studies observe rapid (nongenomic) effects of E2 to increase IC in endothelial cells (89) 

or genomic effects to down regulate L-type Ca2+ channel expression in VSM (93). At 

present, it appears that only very few studies have investigated the individual effects of 

ERs on the various Ca2+ channels (151). 

E2 exerts its effects on cytosolic Ca2+ via the vascular wall using one of two 

mechanisms. Rapid non-genomic effects occur when E2 interacts with membrane ERα or 

ERβ  or with another receptor capable of binding E2, and then activating rapid cell 

signaling pathways and causing changes in cytosolic [Ca2+] (increasing or decreasing, 

depending on the cell type) within seconds to minutes. In contrast, the “classical” 

genomic effect occurs when E2 binds to its cytosolic receptor(s) and mediates mRNA 

transcription for vascular Ca2+ ion channels, such as decreases in expression of the L-type 

Ca2+ channel in VSM (136). Indeed, E2 has differing effects on calcium handling in 

different cells within the same tissue. For instance, E2 acutely inhibits L-type Ca2+ ion 

channel fluctuation in VSM cells (93), while increasing release from intracellular stores 

in endothelial cells (89, 113). 
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The cytosolic Ca2+ concentration is very important to the mechanism of 

contraction in VSM. An increase in Ca2+ ion can occur by release from intracellular 

stores, namely, the sarcoplasmic reticulum (SR) and/or by extracellular entry through 

membrane Ca2+ channels (Fig. 4). Once in the cytosol, the free Ca2+ ion binds to 

calmodulin and the calcium-calmodulin complex in turn activates myosin light chain 

kinase (MLCK). MLCK phosphorylates myosin light chains in the presence of ATP, and 

this phosphorylation allows the myosin heads to form a cross bridge with the actin 

filaments, resulting in shortening of the VSM cell, and thereby producing contraction 

(Fig. 5). In VSM, contractile force is graded so that the higher the cytosolic [Ca2+], the 

greater VSM contraction that results. 

In the endothelium, activation of eNOS is dependent upon intracellular Ca2+ 

concentration (66). Similarly, prostanoid synthesis by the endothelium is also a Ca2+ 

dependent process, due to sensitivity of phospholipase A2 to Ca2+ (23). Therefore, the 

effects of E2 on the IC pathway could be crucial to the understanding of the multifaceted 

and complicated effects of E2 on the vascular wall.  
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Figure 5: Mechanism of vascular smooth muscle contraction. 
(Adapted from Cardiovascular Physiology Concepts, Klabunde, 
2004) (67). Calcium ions enter the smooth muscle cell and 
combine with calmodulin. The calcium-calmodulin complex 
along with ATP activates myosin light chain kinase, which 
phosphorylates the myosin head and enables it to bind with actin. 
Ca2+, calcium ion; SR, sarcoplasmic reticulum; MLC, myosin 
light chain; MLCK, myosin light chain kinase; ATP, adenosine 
triphosphate; cAMP, cyclic adenosine monophosphate; P, 
phosphorylation. 

 

 

 

 

 

 

 

1.3.4 The Effects of E2 on Arachidonic Acid Metabolism 

The initial step in arachidonic acid (AA) metabolism is its liberation from 

membrane glycerophospholipids through the action of phospholipase A2 (PLA2) or 

diacylglyceride (DAG) lipase. The liberated AA is then metabolized to prostaglandin 
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endoperoxide G2 (PGG2) and then to prostaglandin endoperoxide H2 (PGH2) by the 

enzyme cyclo-oxygenase. PGH2 is then converted to a variety of bioactive prostaglandins 

(PGs) by their respective terminal PG synthases to form PGI2 (prostacyclin synthase; 

PGIS), PGD2, PGE2 and PGF2α (mixed isomerases) and to TXA2 (thromboxane 

synthase; TXS). The PG synthases exhibit cell- and tissue-specific distributions, resulting 

in specific profiles of PG production. The liberation of AA from the cell membrane is the 

rate-limiting step in prostanoid biosynthesis, but much of the research on AA metabolism 

is focused on the cyclo-oxygenase (COX) enzymes, because they are expressed in several 

different isoforms and the fact that these enzymes are the primary targets for 

pharmacological inhibition. COX-1 is localized to the endoplasmic reticulum and is 

constitutively expressed in many tissues, including the vascular wall, and it is the only 

isoform expressed in platelets. The prostanoids derived from COX-1 are involved in the 

maintenance of normal physiological homeostasis (“housekeeping” functions). COX-2 is 

localized mainly in the nuclear envelope, and is traditionally considered the “inducible” 

form, as its expression is increased in response to mitogens, endotoxins and 

proinflammatory cytokines. Recent research has identified a constitutive form of COX-2 

in the kidney and aorta (73, 97, 102).  

Similar to other areas of research on the effects of E2, there is conflicting evidence 

concerning the effects of E2 on the PG pathway. The effects of E2 on COX-1, COX-2, 

and PGI2 have been studied extensively in various tissues, while the effects of E2 on 

TXA2 and TP receptor have been studied only to a limited extent. It is possible that the 

apparent conflicts in the evidence for the actions of E2 may in fact reflect differential 

effects of E2 in different tissues. For example, E2 upregulates COX-1 expression in rat 
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cerebral vessels (47) and in ovine fetal pulmonary arterial endothelium (62), but does not 

affect COX-1 expression in endothelium or VSM in rat aorta (73). Since PGIS is the most 

abundant prostaglandin synthase enzyme in most vascular beds, COX-1 is the enzyme 

traditionally linked with increases in PGI2 production in the vascular wall. However, 

recent studies have shown that COX-2, PGI2 and TXA2 are upregulated in parallel in 

intact female rats, compared to male or ovariectomized female rats, whereas COX-1 is 

unchanged (73). This recent finding suggests not only the presence of a constitutive form 

of COX-2, but the possibility that PGI2 can also formed by COX-2. In light of this more 

recent evidence regarding regulation of the COX-2 enzyme and its association with 

TXA2, function of the prostanoid biosynthesis pathway and its regulation by E2 must be 

reconsidered. Because both PGI2 and TXA2 share a common precursor (PGH2; see Fig. 6) 

and their respective enzyme (PGIS and TxS) as well as COX-2 are all upregulated by E2, 

the vascular actions of E2 are more complex than previously recognized, since they 

involve simultaneous upregulation of both PGI2 and TXA2 production by the vascular 

wall. Thus, it is becoming increasingly apparent that the effects of E2 on the vasculature 

are dynamic and complicated.  
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Figure 6: Arachidonic acid (AA) metabolites. Adapted from Moncada 
and Higgs, 1986 (90). 
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1.3.5 Mechanism of Action for TXA2 and PGI2 

The prostanoid receptors as a group belong to the heterotrimeric G-protein-

coupled rhodopsin-type superfamily (15).  The TXA2 receptor (TP) is a Gq-type G-

protein, which when occupied by its ligand, activates phospholipase C (PLC-β), which in 

turn cleaves phosphatidylinositol 4,5 bisphosphate (PIP2) to form 1,4,5-inositol 

triphosphate (IP3) and diacylglycerol (DAG) (15). IP3 then binds to IP3 receptors on the 

sarcoplasmic reticulum to stimulate the release of intracellular Ca2+ into the cytosol (see 
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Fig. 4). DAG acts as an additional second messenger, which remains in the cellular 

membrane and activates one of several isoforms of protein kinase C (PKC). In turn, PKC 

phosphorylates target proteins leading to the various cellular effects of TXA2. Mitogen-

activated protein (MAP) kinases such as extracellular signal-related kinase 1 and 2 

(ERK1/2) and p38 kinase also have been linked to TP stimulation (13, 15). There is also 

some evidence that p38 mitogen-activated protein kinase (p38 MAP kinase) is required 

for TXA2 induced contraction in rat resistance arteries (12).  

The PGI2 receptor (IP) is a Gαs-type G-protein. IP stimulation leads to activation 

of adenylyl cyclase and accumulation of the second messenger cyclic AMP (cAMP), and 

this in turn leads to activation of cAMP-dependent protein kinase (PKA). PGI2 is the 

predominant AA metabolite produced by endothelial cells and there is conflicting 

evidence about which COX enzyme is responsible for its production (COX-1 or -2) (39, 

41, 64, 82).  

In 1983, Moncada et al. proposed that the balance between PGI2 and TXA2 was 

important to maintaining hemostasis in the circulation (90). More recently it was shown 

that IP knock-out mice show enhanced platelet activation and vascular proliferation in 

response to vascular injury (24). TXA2 biosynthesis is increased in wild-type mice after 

vascular injury, and this response is further enhanced in the IP knock-out mice (24). 

There is also growing evidence of cross talk between IP- and TP-dependent signaling 

pathways: TP agonists stimulate PGI2 release from the endothelium, TP desensitization 

causes sensitization to IP agonists and IP activation evokes TP desensitization (24). It is 

becoming more evident that the proper balance between TXA2, PGI2 and possibly other 
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metabolites of the AA pathway is complex and crucial to the maintenance of normal 

vascular homeostasis. 

 

1.4 Recent Findings – Deleterious Effects of Estrogens 

Recently it was determined that the non-selective COX inhibitor indomethacin 

(Indo) attenuates the contractile responses to vasopressin (VP) and to the α-adrenergic 

agonist phenylephrine (PE) in female but not male rat aorta (43). Contractile responses to 

VP and PE in the female rat aorta also are attenuated by the PGH2/TXA2 receptor 

antagonist SQ 29,548, suggesting that CP play a significant role in the regulation of tone 

in the normal female vasculature, but play little or no role in the normal male vasculature. 

Sex differences in constrictor responses to the thromboxane mimetic U-46619 also occur 

in the rat aorta (72). The contractile responses of the female aorta to U-46619 are 

significantly higher than those of male aorta, and OVX markedly attenuates while E2 

replacement restores responses to U-46619, revealing that E2 enhances reactivity to TP 

agonists (72).  

The prominent sex differences in reactivity to VP in the rat aorta are clearly 

estrogen dependent, since INT and E2 replaced (ER)-OVX female Sprague-Dawley rats 

are more reactive to VP than OVX females or males (43, 72). Reactivity to VP in the 

female rat aorta is enhanced by CP and it appears that COX-2 is the isoform responsible 

for CP synthesis in the aorta, as COX-2 selective inhibitors such as NS-398 and niflumic 

acid attenuate reactivity to VP to the same extent as the non-selective COX inhibitor Indo 

(41% and 47% vs. 43% respectively) (72).  
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The greater effects of CP in the female vasculature are associated with estrogen-

enhanced expression of COX-2, thromboxane synthase (TXS) and TP receptor mRNA in 

both Endo and VSM of the female aorta, whereas estrogen-dependent differences in the 

expression of COX-1 mRNA were not observed (73). Immunohistochemical (IHC) 

studies of the aorta revealed that expression of COX-1 protein in Endo and VSM did not 

differ among male, intact female, OVX female or OVX-ER females, whereas COX-2 and 

TXS staining were higher in Endo and VSM of intact and OVX-ER females, compared to 

males and OVX females (73).  

The cellular and molecular effects of estrogen on the COX pathway in the female 

rat aorta are paralleled by functional changes in the release of TXA2 and PGI2, which are 

higher in INT and OVX-ER females, than in males or OVX females (73). In contrast, 

radio-immunoassay (RIA) of basal prostanoid release does not differ between sexes or in 

OVX vs. INT females (73). The prostanoid release data, coupled with the mRNA 

expression and IHC data clearly reveal that estrogen enhances both the production of and 

the reactivity to CP in the normotensive female rat aorta.  

If the activity of the entire TXA2 pathway is upregulated by E2 in the 

normotensive female rat (compared to the male rat), what are the consequences of this 

sex difference in CP function during pathophysiological states such as hypertension? Of 

particular interest, what are the consequences of these sex differences in CP function in 

models of hypertension that are dependent on the TXA2 pathway? Aortic coarctation-

induced hypertension (ACIH) is just such a model of hypertension. Ligation of the 

abdominal aorta (see section 1.3) results in a markedly lower blood pressure in the left 

than the right kidney, enhancing the release of renin by the left kidney and the formation 
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of angiotensin II (ANG II) and CP. The acute phase of ACIH (12-14 days) exhibits 

marked increases in vascular tone due to increases in reactivity to ANG II and ANG II-

stimulated CP release, mainly TXA2 (75). 

Recent studies on the sexual dimorphism of the CP pathway in ACIH reveal that 

INT female rats do indeed exhibit exacerbated hypertension in response to ACIH. During 

the acute phase of ACIH (12-14 days), the MAP of female hypertensive (F-HT) rats 

continues to increase over the entire time period to 186 ± 7 mmHg. In contrast, in male 

hypertensive (M-HT; 160 ± 4 mmHg) and ovariectomized female hypertensive (OVX-

HT; 150 ± 8 mmHg) rats, MAP plateaus at lower levels between days 6 and 10 (6, 7). 

Estrogen replacement of OVX-F hypertensive rats (OVX+ER-HT) restores MAP (171 ± 

3 mmHg) to levels comparable to those of INT females (6, 7). Further, during an acute 

i.v. infusion of SQ 29,548, F-HT and OVX+ER-HT exhibited marked decreases in MAP 

of 50-60 mmHg, while M-HT and OVX-HT decreased only 20-22 mmHg. Chronic daily 

oral treatment with Ridogrel (TxS and TP receptor antagonist) during the development of 

ACIH produces a 40-60 mmHg decline in MAP in F-HT and OVX+ER-HT, while M-HT 

and OVX-HT exhibited a minimal decline in MAP (6, 7). These data reveal that the CP 

pathway is largely responsible for the higher pressures in the F-HT and OVX+ER-HT 

rats, that the TXA2 pathway is active in the resistance arterioles responsible for the 

regulation of MAP, and that E2 plays a significant role in the regulation of CP pathway 

function and blood pressure in this model of hypertension. 

In vitro prostanoid release studies in the thoracic aorta reveal that basal TXA2 

release does not differ between M and F during NT; however, in response to ANG II, 

TXA2 release is nearly 2-fold higher in F than in M aortas. During the acute phase of 
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ACIH, there is a 7-fold increase in basal TXA2 release in F compared to NT, while M 

only exhibits a 4-fold increase (6, 7). Therefore, basal release of TXA2 during 

hypertension is nearly 2-fold higher in F than in M aorta, and ANG II stimulated release 

remains 28% higher in F than in M aorta. 

PGI2 release in ACIH is slightly more variable than TXA2. There were no 

differences in basal release between F and M in NT controls; however, ANG II 

stimulation of the aorta did not increase PGI2 release, in contrast to TXA2 release. During 

the acute phase of ACIH, basal release of PGI2 is 1.5-fold higher in F than in M, and 

ANG II stimulation produces a small increase in PGI2 release in F, while there is no 

change in M (6).  

While it is clear that E2-dependent CP function is enhanced to a much greater 

extent in F than in M during the development of ACIH, several important issues 

regarding the relationship between E2, CP function, and blood pressure remain 

unanswered. Specifically, what are the effects of the individual ERs on the CP pathway, 

the development of ACIH, and HT-associated changes in vascular function? It is also not 

known whether arterioles (100-200 µm) show similar trends of TXA2 and PGI2 release in 

response to VP, and whether the individual ERs have differing effects on arteriolar 

function or the development of hypertension. 

                                                                                                                                                                 

1.5 Aortic Coarctation-Induced Hypertension 

The model of hypertension known as aortic coarctation-induced hypertension was 

chosen for the present studies for two reasons. First, it is well known that ACIH is a 

renin-dependent and CP-dependent form of hypertension (5, 70, 74). To produce this 
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model, the aorta is completely ligated between the renal arteries, resulting in decreased 

arterial pressure in the left kidney, and subsequently a dramatic increase in renin release. 

This renin release results in downstream increases in angiotensin II (ANG II). ANG II 

acts directly on the vasculature to cause vasoconstriction; in addition, it stimulates 

generation of TXA2 by the vascular wall, increasing local and plasma levels of TXA2 (87, 

144). Second, it is a form of hypertension in which female rats develop markedly higher 

MAP than males (7). The higher MAP results from the effects of estrogen on the CP 

pathway, vascular function and structure. When females are OVX, the MAP and TXA2 

production are much lower and is similar to that seen in male rats. Thus, ACIH is a 

relevant model to study the vascular actions of E2 and CP involved in the development of 

hypertension. 
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CHAPTER II 

MATERIALS AND METHODS 

2.1 Animals 

Female Sprague-Dawley rats (14-16 weeks old at time of study, Harlan; Houston, 

TX) were used in all studies. Animals were housed in vivarium facilities at the College of 

Veterinary Medicine and Biomedical Sciences with controlled temperature (22-24°C), 

relative humidity (~50%), and lighting (12:12-h light-dark cycle). Animals were housed 

in pairs in standard plastic laboratory rat cages. Tap water and rat chow (HarlanTek-lad 

Global Diet; 16% protein) were provided ad libitum. This special diet is free of 

phytoestrogens, which are common in standard rat chow and have been reported to 

confound the effects of ovariectomy on vascular reactivity (28, 50). All experiments were 

reviewed and approved by the Texas A&M University Small Animal Care Committee 

(SACC).  

NT and HT rats were divided randomly into ten experimental groups: intact 

normotensive females (F-NT), ovariectomized normotensive females (OVX-NT), 

estrogen receptor alpha agonist-treated OVX normotensive females (OVX+PPT-NT), 

estrogen receptor beta agonist-treated normotensive females (OVX+DPN-NT), 

ovariectomized normotensive females with 17-β estradiol replacement pellets (OVX+ER-

NT), intact hypertensive females (F-HT), ovariectomized hypertensive females (OVX-

HT), estrogen receptor alpha agonist-treated hypertensive females (OVX+PPT-HT), 

estrogen receptor beta agonist-treated hypertensive females (OVX+DPN-HT) and 

ovariectomized hypertensive females with 17-β estradiol replacement pellets (OVX+ER-

HT). Previous studies established that contractile responses to vasopressin and 
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phenylephrine did not vary during various stages of the estrous cycle; therefore, intact 

female vessels were studied without regard to phase of the estrous cycle (2). 

 

2.1.1 Animal Preparation 

At 6 weeks of age, half of the female rats were subjected to bilateral OVX using 

standard surgical methods (see section 2.0.2 for anesthetic procedure). OVX rats 

remained untreated, or received estrogen replacement therapy (ER) with 17-β estradiol 

time-release pellets (2 pellets/rat; 0.05 mg/60-day pellet, 17-β estradiol), or with an ERα 

selective agonist (4, 4’, 4”-(4-Propyl-[1H]-pyrazole-1, 3, 5-triyl)trisphenol; PPT, 410-

fold selectivity of ERα over ERβ) (129a), or with an ERβ selective agonist (2,3-bis(4-

Hydroxyphenyl)-propionitrile; DPN, 70-fold selectivity of ERβ over ERα) (86a), or 

vehicle treatment. 17β-estradiol pellets were placed approximately 1 week prior to 

coarctation or sham surgery and no sooner that 4 weeks following OVX, although for 

most rats, there was a 6-8 week interval from OVX to pellet implantation. PPT and DPN 

treatments were started 1-2 days prior to coarctation or sham surgery, both to acclimatize 

the rats to the injection and to ensure stable circulating plasma levels at the time of 

surgery. PPT and DPN were dissolved in DMSO, and then diluted 1:10 in corn oil for 

daily subcutaneous injection. Vehicle alone (1:10 DMSO in corn oil) was used in the 

vehicle control-treated groups (INT-F and OVX-F). The final concentration of PPT and 

DPN in solution was 0.5 mg/ml. Each rat received 0.10 mg/day of PPT or DPN (0.20 ml) 

injection each day for 13-15 days. Vehicle treated rats received 0.2 ml of vehicle alone. 

Treatment times were similar in all groups receiving PPT or DPN.  
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2.1.1.1 Blood Samples for Estradiol and Estrone Measurement 

Blood samples were taken on the day of (but before) pellet implantation and one 

week after pellet implantation on the day of ACIH (or sham surgery) in OVX and 

OVX+ER as well as days 4, 7 and 10 after ACIH or sham surgery. In INT, surgeries were 

performed and the day of diestrus, and blood samples were taken on the subsequent days 

of diestrus (approx. every 4 days). Plasma 17β-estradiol and estrone levels were 

measured in these groups using specific RIA kits for 17β-estradiol and estrone. 

 

2.1.1.2 Vaginal Smears  

Vaginal smears were performed each day on INT-F to determine phase of the 

estrous cycle. 

 

2.1.2 Preparation for Aortic Coarctation-Induced Hypertension  

Aortic coarctation or sham surgery was performed at 12-14 weeks age. Rats were 

given a subcutaneous injection of atropine (25 µg/ml) as a pre-anesthetic at a dose of 0.05 

mg/kg. Rats were then anesthetized with an IP injection of a solution of Ketamine (55 

mg/kg) and Chloral Hydrate (180 mg/kg). After the animals achieved a stable plane of 

surgical anesthesia, the abdominal aorta between the renal arteries was exposed and 

ligated with silk 4-0 suture using sterile surgical procedures. In sham coarcted animals, 

the aorta was dissected free but not ligated. A chronic indwelling catheter (Micro-

Renathane-033 tubing) was placed in the right carotid artery in some groups of animals 

for measurement of mean arterial pressure. Since rats were prone to catheter tampering, 
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custom vests were placed around the chest of the animal to secure the catheters and 

protect them from damage from chewing.  

 

2.2 Measurement of Mean Arterial Pressures 

Rats used in BP studies were trained in small restrainer boxes (9 x 3.5 x 3.5 in.) 

that allowed for free movement but prevented the rats from tampering with the catheters. 

The rats were trained for approximately 2 weeks prior to surgery for the measurement of 

arterial blood pressure (MAP). Using the chronically implanted carotid artery catheters, 

MAP was measured every other day for twelve days post-coarctation or sham surgery. 

The catheters were connected to a pressure transducer (Model DTX, Becton-Dickinson) 

and pressures recorded continuously on a Gould Model 2400S chart recorder. The rats 

were allowed a 10 minute adjustment period in the restraint box before the pressures were 

recorded. After the adjustment period, MAP and heart rate (HR) were recorded for 30 

minutes and averaged. 

 

2.3 Preparation of Isolated Mesenteric Arterioles 

Rats were euthanized via rapid decapitation at 12-14 days post-coarctation. The 

entire mesentery was removed and immediately placed in chilled, (4°C) gassed (95% 

O2/5% CO2) KHB solution for function studies or in chilled RNALater for molecular 

studies. Vessels were immediately dissected free of surrounding fat and connective tissue 

prior to being used in vessel function (myograph) or PG release, or placed in RNALater 

at -20°C (molecular studies) as described below. First and second order arterioles 

(approx. 150-200 µm) branching off the superior mesenteric artery were used in all 
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myograph and PG release studies. The entire mesenteric arcade was used in all molecular 

studies.    

 

2.4 Vascular Function 

Rats were euthanized by rapid decapitation and the entire mesentery and small 

intestines were then removed rapidly en bloc and placed in chilled, (4°C) gassed (95% 

O2/5% CO2) KHB. The intestines and mesentery were then placed in fresh buffer in a 

Petri dish, along with a frozen cube of KHB to ensure that the solution remained at 4°C 

during the entire dissection procedure. First and second order mesenteric arteries were 

cleaned of fat and connective tissue under a dissecting binocular microscope (Olympus 

SZ), taking care not to stretch or damage the vessels in any way. Once cleaned of 

connective tissue and fat, the arteries were then cut away from the mesenteric arcade and 

placed in fresh, cold KHB. Using a Filar eyepiece micrometer, the arteries were then cut 

into four segments approximately 1.50 mm long each. The vessels were allowed to rest in 

cold, gassed KHB for 45 minutes to an hour prior to mounting on the myograph.  

After resting, each vessel segment was mounted on a wire myograph (Danish 

Myotechnology) for force-tension studies. Each 1.50 mm vessel segment was placed on 

the foot of a myograph chamber and a 40 µm diameter piece of stainless steel wire was 

passed through the lumen of the vessel, taking care not to tear or damage the smooth 

muscle or endothelium. The wire was then secured under a screw at the top of the left 

foot of the myograph. The wire was then stretched straight across the left foot of the 

myograph and then secured at the bottom screw of that same foot, thereby positioning the 

vessel vertically. A second wire was passed through the lumen of the vessel and then 
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secured at the top and bottom screws of the right foot. The feet were then adjusted so that 

the two wires were parallel throughout the length of the vessel. The wires were then 

stretched just to the point of touching the endothelium without stretching the vessel. 

Measurements were then made for vessel segment length, internal diameter and wall 

thickness using an ocular micrometer. The myograph chambers were then placed on the 

main block of the myograph for recording tension and heating the bath to 37°C. 95% 

O2/5% CO2 was bubbled into the myograph chambers continuously throughout the 

experiment. Once all four chambers were connected, the chambers were then drained and 

refilled with 6 mL of fresh KHB, gassed and warmed to 37°C. The resting tension-

internal circumference relationship was determined for each vessel using progressive 

stretches (50 µm per stretch) and measurements of passive tension and internal vessel 

circumference (L) at each level of stretch. L was calculated by using the following 

formula: L = 2f + 4 D/2 + 2(πD/2), which reduces to L = 2f + D (2 + π), where D is wire 

diameter and f is the distance between the wires as measured by the ocular micrometer 

(92). Once L was determined, the vessels were stretched to L95, where L95 is 0.95 L100 and 

L100 is the internal circumference the artery would have under a transmural pressure of 

100 mmHg (92). For the hypertensive groups, the transmural pressures were set at 0.95 

L150 for OVX females, and 0.95 L180 INT, PPT or DPN females, respectively. The L 

values were based on the average MAP measured in those groups of rats at 12 days post 

aortic coarctation prior to sacrifice. A contractile response to phenylephrine                

(PE; 2x10-6M) was used to determine smooth muscle viability and a subsequent dilation 

response to acetylcholine (ACh; 10-6M) was used to determine endothelial integrity. 

Myograph chambers were then drained and refilled with fresh, warmed, gassed KHB. 
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The vessels were then allowed to re-equilibrate in the baths for 20 minutes prior to 

pretreatment with inhibitors and/or vehicle-controls added to the baths. Following a 20 

minute pretreatment, a cumulative concentration-response to vasopressin                     

(VP; 10-12 – 10-8) was obtained.  

 

2.5 Evaluation of Basal and Agonist-stimulated PGI2 and TXA2 Production 

Paired adjacent segments of mesenteric feed arteries (2-3 mm long; 150-200 µm) 

were cleaned of all connective tissue and fat, and were then placed into chilled, (4oC) 

gassed (95% O2/5% CO2) KHB solution, allowing the arteries to rest for at least 30-45 

minutes. The arteries were then transferred into 1.5 ml polyethylene microcentrifuge 

tubes with 450 µl KHB, gassed continuously, and gradually warmed up to 37°C. After 

pre-incubation for 30 minutes, the KHB solution was carefully aspirated, then 300 µl of 

either KHB alone (basal) or KHB with VP (10-8 M) was added to the tissues and 

incubated for 45 minutes at 37°C and gassed continuously. After incubation, the KHB 

was collected and stored in -80°C until RIA of the stable metabolites of PGI2 (6-keto- 

prostaglandin F1α; 6-keto-PGF1α) and TXA2 (TXB2). RIA is performed in duplicate for 

each sample. 

 

2.6 RNA and Protein Extraction from Rat Mesenteric Arterioles 

Mesenteries were quickly removed and the arteries, veins and fat were cut away 

from the small intestine. The mesenteric arcade was then placed in ice cold RNALater 

(Ambion) and stored at -20°C for a minimum of three days prior to further dissection. 

Tissues were submerged in cold RNALater (4°C) in a Petri dish that had been cleaned 
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previously with RNaseZap (Ambion) to destroy any RNase present. The Petri dish was 

then placed on a platform of ice during dissection. Arteries were dissected away from fat 

and connective tissue, then placed in fresh RNALater and stored at -80°C until RNA 

isolation.  

Mesenteric arterial tissues were submerged in 1.0 mL of TRI reagent. Tissues 

were homogenized for 15 seconds and then placed on ice for 1 minute; homogenizing and 

icing steps were successively repeated three to four times. The homogenate was 

centrifuged at 14,000 RPM for 5 minutes to remove large cytoskeletal components. The 

supernatant was aspirated and transferred to a new RNase-free tube, 105 µl of 3M sodium 

acetate and 350 µl of bromochloropropane were added, and the contents were mixed and 

placed on ice for 15 minutes. The sample was centrifuged at 12,000 RPM for 5 minutes; 

the aqueous phase was aspirated and transferred to a new RNase-free tube for further 

RNA extraction. The organic phase was aspirated and transferred to a new RNase-free 

tube, 300 µl of 100% ethanol was added and the sample was stored at -20°C for later 

protein extraction. For each mL of the aqueous phase, 1 mL of 

phenol/chloroform/isoamyl alcohol (125:24:1) was added, and the tubes were mixed 

vigorously and centrifuged at 12,000 RPM for 5 minutes. The aqueous phase was again 

aspirated and transferred to a new RNase-free tube, with equal volume of 

phenol/chloroform/isoamyl alcohol (125:24:1), mixed and centrifuged at 12,000 RPM for 

5 minutes. Total RNA was then precipitated by incubating the final aqueous extraction 

with an equal volume of 100% isopropanol at 4°C for 30 minutes. The isopropanol-

extracted mixture was then centrifuged at 14,000 RPM for 30 minutes at 4°C to pellet the 

precipitated RNA. The RNA pellet was then washed with 70% ethanol, dried at room 
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temperature for 5 minutes, and dissolved in RNAStore (Ambion) at -80°C until real time 

RT-PCR was performed. Prior to performing real time RT-PCR, all samples were treated 

with Turbo DNase system (Ambion) to destroy any DNA present in the samples.  

The organic phase samples (for protein analysis) were thawed and centrifuged at 

6000 RPM for 5 minutes at 4°C. The supernatants were removed and incubated with 1.5 

mL of isopropanol for 10 minutes at room temperature. The samples were then 

centrifuged again at 14,000 RPM for 10 minutes at 4°C to pellet the proteins. The pellets 

were then washed with 2 mL of 0.3 M guanidine hydrochloride/95% ethanol solution, 

incubated at room temperature for 20 minutes, and then centrifuged at 11,500 RPM for 5 

minutes at 4°C. This process was repeated 3 times. After the final wash, the pellets were 

air dried for 5-10 minutes at room temperature. Total proteins were dissolved in 10M 

urea while incubating at 50°C.  Lysis buffer was added to the samples prior to storage at  

-80°C. Lysis buffer consisted of: 50 mM Tris (pH 7.4), 150 mM NaCl, 10% glycerol, 1 

mM Na-Orthovanadate (pH 10), 5 µM ZnCl2, 100 mM NaF, 10 µg/ml aprotinin, 1 µg/ml 

leupeptin, 1% Triton X-100, 1 mM phenylmethylsulfonylfluoride and Milli-Q water.  

Amount added depended on the size of the pellet.  

A second method was used for protein extraction in the second half of the study 

when RNA was not required. In this method, freshly removed mesenteries were placed in 

RNALater and placed in the freezer for at least 72 hours prior to dissection. Mesenteric 

arteries were then dissected in fresh ice cold RNALater and the fat, veins and nerve 

bundles were stripped away, leaving the entire mesenteric arcade for protein extraction. 

Mesenteric arcades were stored in fresh RNALater at -80°C until ready for protein 

extraction. 
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Mesenteric arcades were then removed from RNALater and 250 µl of lysis buffer 

was added to the tissue in 4 mL tubes along with a magnetic steel bead. The tissues were 

then ground up in a Fisher high-throughput tissue homogenizer at speed setting 10 for 

approximately 10 minutes. Tubes were removed from the machine at the halfway point (5 

minutes) and placed on ice for 5 minutes to ensure that the tissues did not overheat before 

completing the homogenization for an additional 5 minutes. The tissue homogenates were 

then transferred to 2 mL Eppendorf tubes and centrifuged at 14,000 RPM at 4°C for 30 

minutes. The supernatant was aspirated and transferred to a fresh Eppendorf tube and 

placed in the freezer at -80°C until proteins were quantitated and immunoblots were 

performed.  

 

2.7  Real Time RT-PCR 

The Invitrogen SuperScript III Platinum qRT-PCR with SYBR Green Kit was 

used for all real time RT-PCR assays. Total mRNA was quantitated using the Agilent 

RNA Nano Kit.  

 

2.7.1 First-Strand cDNA Synthesis (Reverse Transcriptase) 

The kit instructions provided by the manufacturer were followed. All tubes were 

placed on ice throughout the preparation procedure. A mastermix of kit components was 

made, including: 2X RT Reaction Mix, RT Enzyme Mix and DEPC-treated water. 12 µl 

of mastermix was added to 300 ng of mRNA in each 200 µl Eppendorf tube. 

Additionally, a separate mastermix which excluded the RT Enzyme Mix was prepared 

and added to tubes with 150 ng mRNA as the external control (RT-). Samples were then 
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placed in a thermocycler and incubated at 25°C for 10 minutes and then incubated at 

42°C for 50 minutes. The reaction was then terminated by incubation at 85°C for 5 

minutes and then chilled on ice. 1 µl of E. coli RNase H was added to each tube and the 

samples were incubated at 37°C for 20 minutes. The samples were then stored at -20°C 

until the real time PCR assay was performed.   

 

2.7.2 Real Time PCR  

Following the protocol from the Invitrogen PCR kit, a mastermix of Platinum 

SYBR Green qPCR SuperMix-UDG, ROX Reference Dye, forward and reverse primers 

and autoclaved distilled water in a total volume of 45 µl was added to each reaction tube. 

5 µl of cDNA from the RT reaction was added to the appropriate reaction tube. Duplicate 

tubes for each RT+ reaction were made. 18S RNA was used as an internal control. Due to 

high expression of 18S RNA, a 1:10 dilution of cDNA from the RT+ tubes was made into 

autoclaved distilled water. 5 µl of this dilution was used in the 18S PCR reaction.  

Following PCR kit instructions, a 3-step cycling program was used for the PCR 

reaction: 50°C for 2 minutes hold, then 95°C for 2 minutes hold, then 45 cycles of 95°C 

for 15 seconds, 55°C for 30 seconds, and 72°C for 30 seconds. PCR Reactions were run 

on ABI Prism 7700 and 7500Fast. The results were exported to a desktop computer and 

saved into an Excel spreadsheet for data analysis.  

 

2.8  Immunoblot  

Total protein was quantitated using the Pierce BCA Protein Assay Kit. After 

quantification, protein samples were combined with sample buffer (1.15 ml distilled H2O, 
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0.42 ml 75% glycerol, 0.63 ml 0.5 M Tris (pH 6.8), 0.25 ml beta-mercaptoethanol (Sigma 

Chemical, St. Louis, MO), 0.05 ml 0.25% bromophenol blue and 0.125 g SDS) and then 

immersed in boiling water (100°C) for 5 minutes to denature the proteins. The sample 

buffer and protein mixture were then loaded onto the SDS-PAGE gels at a volume of    

40 µl.  

40-50 µg of total protein were required to visualize the ERs in the mesenteric 

arteries. The positive controls were human recombinant estrogen receptor β for ERβ and 

uterine protein or MCF-7 whole cell lysate for ERα. Beta actin was used as a loading 

control.  

Proteins were combined with the sample buffer and loaded onto 7.5% Tris-HCL 

pre-cast gels (Bio-Rad). Electrophoresis was performed at 125 V for 75 minutes. After 

the electrophoresis, the gel was teased off into a 0.2% SDS transfer buffer solution, along 

with one piece of filter paper and one sponge. The PVDF membrane was first wet in 

methanol, then rinsed in Milli-Q water and finally placed in transfer buffer with no SDS, 

along with a second piece of filter paper and sponge to be used in the “sandwich”. The 

transfer unit was assembled in the 0.2% SDS transfer buffer solution and transferred 

overnight at constant voltage (12 V). The next morning the transfer unit was 

disassembled and the membrane rinsed in Milli-Q water and dried at room temperature. 

The membranes were stored in a desiccation chamber until the immunoblots were 

performed.  

Prior to incubation with the antibodies, PVDF membranes were soaked in 

methanol. The membranes were then washed in Tris buffered saline (TBS) for 5 minutes 

and then placed in blocking solution (5% non-fat milk in TBST; TBS + 0.1% Tween 20) 
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for a minimum of 2 hours at room temperature. The primary antibodies were then added 

to the milk solution at the following dilutions: ERα 1:200 (rabbit polyclonal, cat. no. sc-

542; Santa Cruz), ERβ 1:500 (mouse monoclonal, cat. no. ab16813; Abcam), and beta 

actin 1:2500 (rabbit polyclonal, cat. no. ab8227; Abcam). The primary antibodies were 

then incubated with the membranes overnight at 4°C on a rocker. The membranes were 

removed from primary antibody solutions, rinsed in TBST for 15 minutes, and then 

rinsed in fresh TBST 2 times for 5 minutes each time prior to placing in the secondary 

antibody solutions. The secondary antibodies were also diluted in 5% non-fat milk in 

TBST at the following dilutions: ERα 1:10.000 (goat anti-rabbit, cat. no. ab6721; Abcam) 

ERβ 1:10,000 (rabbit anti-mouse, cat. no. ab5762; Abcam) and beta actin 1:5,000 (goat 

anti-rabbit, cat. no. ab6721; Abcam). The secondary antibodies were incubated for a 

minimum of 2 hours at room temperature, followed by one 15 minute wash with TBST, 

and then four to six 5 minute washes prior to addition of the substrate for visualization in 

the imaging equipment (Fuji; Model LAS 3000). Substrate (Millipore) was added to the 

blot for 5 minutes. All secondary antibodies were horseradish peroxidase (HRP) 

conjugated.  

 

2.9 Radioimmunoassay (RIA) of 6-keto-PGF1α, TXB2, Estradiol and Estrone 

Basal and VP-stimulated release of prostacyclin and TXA2 by mesenteric 

arterioles into the incubation medium were measured using specific RIAs for the stable 

metabolites 6-keto-prostaglandin  F1α (6-keto-PGF1α) and thromboxane B2  as reported 

previously (72, 126). Briefly, prostanoid standards (1.95-1,000 pg) or unknown samples 

were incubated with [3H]-6-keto-PGF1α or [3H]-TXB2 and with the appropriate 
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prostanoid antiserum overnight at 4°C.  The charcoal-dextran method was used to 

separate bound and free fractions of [3H]-6-keto-PGF1α or [3H]-TXB2. Bound 

radioactivity was counted by liquid scintillation spectroscopy.  The limit of detection of 

the RIAs is 1.95 pg/tube for TXB2 and 3.90 pg/tube for 6-Keto-PGF1α; the cross-

reactivity of the antiserum to other prostanoids is <0.1%, and the intra-assay and 

interassay coefficients of variation are 5.0% and 7.6% respectively (126). 

17β-estradiol was measured using a double-antibody RIA.  Blood samples taken 

to assess plasma estrogen levels were centrifuged and the plasma stored at -80°C until the 

assays were completed. Estrogen standards (0-500 pg/ml) or unknown samples were 

incubated with [I-125]-estradiol and antiserum at room temperature (25°C) for one hour. 

The bound and free fractions were separated using a secondary antibody and 

polyethylene glycol. The intra-assay and interassay coefficients of variation for 17β-

estradiol are 7.1% and 4.6% respectively (Diagnostic Systems Laboratories, Inc.).  

Estrone was measured using a double-antibody RIA. Estrone standards (0-2,000 

pg/ml) or unknown samples were incubated with [I-125]-estrone and antiserum at room 

temperature (25°C) for one hour. The bound and free fractions were separated using a 

secondary antibody and polyethylene glycol. The intra-assay and interassay coefficients 

of variation for estrone are 6.5% and 9.1% respectively (Diagnostic Systems 

Laboratories, Inc.).  

 

2.10 Data Analysis 

All data were expressed as the mean ± standard error with “n” indicating the 

number of animals studied for each experimental treatment group. Prostanoid output is 
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expressed as picograms of 6-keto-PGF1α or TXB2 per mg dry weight of mesenteric 

arterioles. Plasma 17β-estradiol and estrone concentrations are expressed as picograms 

per mL. To detect significant differences among the means of the experimental groups, 

data groups were analyzed by 1-way or 2-way analysis of variance (ANOVA). Factors 

compared for the 2-way ANOVA were sex (F vs. OVX vs. OVX-DPN vs. OVX-PPT or 

F vs. OVX vs. OVX+ER) and experimental treatment (VEH vs. SQ and VEH vs. SIM or 

NT vs. HT). Unpaired t-tests were used to determine significant pair-wise differences 

among the means of the various experimental groups. The Bonferroni test was employed 

to correct for type I error associated with multiple comparisons and differences between 

means were accepted as significant if P<0.05. 

 

2.11 Chemicals 

DPN and PPT were purchased from Tocris Bioscience (Ellisville, MO). 

Phenylephrine hydrochloride and acetylcholine chloride (Sigma Chemical, St. Louis, 

MO) were prepared daily from 10-2 M stock stored at -20°C and diluted in KHB. 

Arginine vasopressin (Sigma Chemical, St. Louis, MO) was prepared daily from 10-3 M 

stock stored at -80°C and diluted in KHB. SQ 29,548 (Cayman Chemical, Ann Arbor, 

MI) was dissolved in 100% ethanol (1 mg/ml), stored at -20°C, and diluted daily with 

KHB. Simvastatin was a generous gift from Merck. ERβ and beta actin primary and 

secondary antibodies were purchased from Abcam (Cambridge, MA) and ERα primary 

and secondary antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA). All lysis buffer and immunoblot ingredients were purchased from Sigma Chemical 

or Fisher Scientific (Fair Lawn, NJ) and were of reagent grade quality. RNALater, 
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RNaseZap and TurboDNase were purchased from Ambion (Austin, TX). TRIzol reagent 

was purchased from Invitrogen (Carlsbad, CA).  

SuperScript III Platinum SYBR Green Real time RT-PCR kit and primers were 

purchased from Invitrogen (Carlsbad, CA). Primer sequences were as follows: ERα 

forward: CTG ACA ATC GAC GCC AGA A; ERα reverse: CAG CCT TCA CAG GAC 

CAG AC (GenBank Accession No. Y00102); ERβ forward: CTT GCC CAC TTG GAA 

ACA TC; ERβ reverse: CCA AAG GTT GAT TTT ATG GCC (GenBank Accession No. 

U57439); 18s RNA forward: AAA TGT GGC GTA CGG AAG AC; 18s RNA reverse: 

TTC ACG CCC TCT TGA ACT CT (GenBank Accession No. V01270).  
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CHAPTER III 

OBJECTIVES AND RATIONALE 

3.1 Objectives 

It is apparent that more research needs to be done on the cardiovascular effects of 

estrogen in both males and females. Estrogen appears to exert detrimental effects in 

various states of pathophysiology, and to elucidate these deleterious effects of estrogen 

more clearly, this study will focus on the effects of estrogen and its receptors on the 

vascular wall, both in normotension and during the development of hypertension.  

The central hypothesis to be tested is that:  

 

In aortic coarctation-induced hypertension, estrogen upregulates the 

constrictor prostanoid pathway in the vascular wall via activation of ERβ, enhancing 

vascular tone and leading to enhanced development of hypertension in the female rat.  

 

This hypothesis will be tested by addressing the following specific aims:  

Specific Aim I: To determine the effects of hypertension on plasma 

estradiol levels and estradiol metabolism, and on the expression of estrogen 

receptors in the vascular wall of the rat mesenteric microvasculature.  

Specific Aim II: To determine the mechanisms by which ERα and ERβ 

increase CP pathway function in vascular wall of the rat mesenteric 

microvasculature. 
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Specific Aim III: To determine the roles of ERα and ERβ in mediating 

the effects of estrogen on rat mesenteric arterial vascular function and on systemic 

arterial BP.  

 

3.2   Experimental Design 

3.2.1 Specific Aim I: To determine the effects of hypertension on plasma estradiol 

levels and estradiol metabolism, and on the expression of estrogen receptors 

in the VSM and endothelium in the rat mesenteric microvasculature. 

3.2.1.1 Rationale 

Recent studies reveal that the TxS enzyme is upregulated during aortic 

coarctation-induced hypertension in the aorta (6, 7). In addition, expression of COX-2 

and TxS mRNA in both endothelium and VSM of aorta is higher in both F and OVX+ER 

than in M or OVX females in both normotension and hypertension, while expression of 

TP receptor mRNA is higher in VSM of F and OVX+ER (73). Studies also reveal that 

plasma levels of the sex hormones change during essential hypertension in humans (59, 

65) and that ERβ mRNA is increased after vascular injury in M rat aorta (76), and that 

ERβ mRNA and protein are increased in primate carotid arteries after injury (1). 

However, it is not known whether the message or expression of ERs changes during this 

type of hypertension, or how the ERs are linked to the pathway of TXA2. Studies have 

shown that estrogen regulates the expression of its receptors by up- or down-regulating 

either ER mRNA or protein synthesis (60, 86). There is a possibility that if estrogen 

secretion and/or metabolism are altered during the development of hypertension that the 

expression of ERs will increase or decrease and parallel changes in the TXA2 pathway 

 



 46

could occur via this mechanism. Both secretion (in INT-F rats) and metabolism (in 

OVX+ER rats) of 17β-estradiol and estrone will be measured in this study. Finally, this 

specific aim will address the relationship between ER mRNA and protein (transcription 

and translation).  

 

3.2.1.2 Specific Aim 1 Experiments 

Protocol 1: Determine Plasma Estrogen Levels During Normotension and 

Hypertension  

Blood samples were collected from rats on the day of the coarctation surgery 

through the carotid catheter or the jugular vein. Blood samples were then taken on the 4th, 

7th, and 10th days and then on the day of sacrifice (day 12-14) for all OVX and OVX+ER 

groups. For OVX+ER groups, blood samples were also taken 4 weeks post-OVX on the 

day of the E2 pellet placement, prior to pellet implantation to ensure that circulating 

levels of E2 were diminished by OVX. Aortic coarctations were performed in OVX+ER 

groups 2 weeks after pellet placement. For INT females, vaginal smears were performed 

on a daily basis and blood samples were taken during the diestrus phase of the cycle to 

assess basal estrogen levels in the plasma and to avoid the estrogen surge during 

proestrus. 
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Protocol 2: Real Time Reverse-Transcriptase-Polymerase Chain Reaction for 

ERα and ERβ messenger RNA in the Rat Mesenteric Microvasculature  

Mesenteric arcades were collected from INT, OVX and OVX+ER normotensive 

and hypertensive groups and processed to obtain mRNA from each sample, to determine 

the expression of ERα and ERβ mRNA in NT and during the development of HT in 

female rats.  

 

Protocol 3: Immunoblots for ERα and ERβ Protein Expression 

Proteins were extracted from the same samples from which mRNA was obtained.  

 

3.2.2 Specific Aim II: To determine the mechanisms by which ERα and/or ERβ 

increase CP pathway function in VSM and endothelium in the rat mesenteric 

microvasculature. 

 

3.2.2.1 Rationale 

With the recent availability of selective estrogen receptor agonists for ERα and 

ERβ, the effects of each receptor can be studied individually. There are no known studies 

examining chronic effects of treatment with these agonists on cardiovascular function or 

during hypertension. This study provides a unique examination of the selective effects of 

ERα and ERβ during normotension and during the development of hypertension. 
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 Protocol 1: PPT and DPN treatment in vivo. 

OVX rats were randomly assigned into one of three treatment groups: PPT, DPN 

or vehicle treatment. INT rats received vehicle treatment only. Rats were then further 

divided randomly into one of two groups: normotensive or hypertensive. Thus, there were 

eight treatment groups: INT-NT, OVX-NT, OVX+PPT-NT, OVX+DPN-NT, INT-HT, 

OVX-HT, OVX+PPT-HT and OVX+DPN-HT. Based upon these treatments, 

experimental groups include INT females with both ERα and ERβ activity, OVX females 

with little or no ER activity, PPT-treated OVX females with ERα activity only, and DPN-

treated OVX females with ERβ activity only. Rats received subcutaneous injections of 

PPT, DPN or vehicle once a day for 14-16 days.  

 

 Protocol 2: Immunoblots for ERα and ERβ Protein Expression 

Mesenteric arcades were collected from INT, OVX, and PPT- or DPN-treated 

normotensive and hypertensive rats and processed for protein extraction to quantify 

levels of receptor protein expression for ERα and ERβ. 

 

3.2.3 Specific Aim III: To determine role of ERα and ERβ in mediating the effects 

of estrogen on rat mesenteric arterial vascular function and on systemic BP. 

3.2.3.1 Rationale 

In the acute (developmental) phase of ACIH, substantial changes occur both in 

function and structure (remodeling) of the female vasculature (1). TXA2 is a potent 

vasoconstrictor and mitogen that increases vascular tone acutely and induces vascular 

smooth muscle proliferation chronically (8, 15). Thus, increases in TXA2 levels are 
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associated with changes in vascular morphology and function. Inhibition of TXA2 

synthesis or blockade of the TP receptor during ACIH reduces MAP and prevents 

changes in vascular morphology (8). In addition, OVX of female rats prior to the 

induction of ACIH reduces the HT during the acute phase (12-14 days), as well as the 

expression of TxS mRNA, suggesting that TxS and TXA2 levels are increased in parallel 

in the presence of estrogen. In the NT female rat aorta, OVX reduces mRNA and 

expression of TxS and COX-2 and TP receptor. However, the effects of selective 

activation of either ERα or ERβ on MAP, TXA2 production and vascular reactivity to VP 

have not been studied in either NT or ACIH female rats. 

It has been proposed that the balance of TXA2 and PGI2 is crucial to the regulation 

of vascular tone and hemostasis (90, 138, 142). There are several interactions between 

TXA2 and PGI2; including the ability of TP receptor agonists to evoke PGI2 release and 

IP receptor activation to evoke TP receptor desensitization (24).  In light of these 

interactions, the release of PGI2 will also be measured in the mesenteric arteries.  

 

 Protocol 1: PPT and DPN Treatment 

OVX rats were randomly placed into one of three treatment groups: PPT, DPN or 

vehicle treatment. INT rats received vehicle treatment only. Rats were then further 

divided randomly into one of two groups: normotensive or hypertensive. Rats received 

subcutaneous injections once a day for 14-16 days. Uterine weights were recorded to 

assess ERα stimulation in the PPT treatment group. 
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 Protocol 2: Dose Response Curve to Vasopressin 

  First and second order mesenteric arterioles from OVX, PPT, DPN and INT 

normotensive and hypertensive rats were mounted on myographs and a dose response 

curve to VP (10-12 M – 10-8 M) was obtained. Four 1.5 mm sections were cut from each 

artery branch of each animal. Vessels were either incubated in vehicle, SQ 29,548 (1 

µM), or Simvastatin (10 µM or 60 µM).  

 

 Protocol 3: TXA2 and PGI2 Release from Mesenteric Arteries 

First and second order mesenteric arterioles from OVX, OVX+PPT, OVX+DPN 

and INT normotensive and hypertensive rats were incubated in KHB alone or KHB with 

10-8 M VP to obtain basal and agonist-stimulated TXA2 and PGI2 release data.  
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CHAPTER IV 

RESULTS 

4.1 Effects of Aortic Coarctation-Induced Hypertension on Plasma Estradiol and 

Estrone Levels 

Body and uterine weights were recorded on the day of sacrifice. OVX increased 

body weight by an average of 28% and decreased uterine weight by an average of 84%. 

OVX+PPT treatment increased uterine weights compared to OVX (355%), while 

OVX+DPN treatment did not alter uterine weight (see Table 2). The uterus expresses 

ERα protein only, and this measurement served as an index of ERα activity in the PPT 

group.  

Blood samples were taken on the day of coarctation surgery in all groups (day 0), 

and then on the 4th, 7th and 10th day in OVX-F and OVX+ER. In INT rats, all blood 

samples were taken during diestrus on the day of surgery and during the development of 

hypertension. Normotensive INT rats had the expected 4-5 day estrous cycle and low 

range of 17β-estradiol levels during diestrus (7.96 ± 3.08 pg/ml) and most INT rats 

continued to cycle during hypertension (21.24 ± 8.57 pg/ml) (Fig. 7). Hypertension did 

not affect 17β-estradiol levels at matching time points compared to NT (7.77 – 15.64 

pg/ml vs. 7.43 – 21.24 pg/ml) groups (P>0.05). The day to day measurements showed 

similar trends between 17β-estradiol and estrone, but due to fluctuations in both 17β-

estradiol and estrone levels in cycling rats, there were no significant differences within or 

between NT and HT groups, except in INT-HT (estrone, sample 2) (Figs. 7, 8). 

In OVX-NT rats, there was a small but significant decrease in 17β-estradiol levels 

from day 0 (6.82 ± 0.53 pg/ml) to days 4 (3.34 ± 0.35 pg/ml) and 7 (2.92 ± 0.69 pg/ml) 
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(0.0003 ≤ P ≤ 0.001).  Between OVX-NT and OVX-HT groups, 17β-estradiol levels in 

OVX-HT were significantly higher at day 0 (11.12 ± 2.08 pg/ml), day 4 (8.76 ± 2.60 

pg/ml) and day 7 (13.90 ± 3.82 pg/ml) (Fig. 9). There were no significant differences in 

estrone levels between OVX-NT and OVX-HT groups (Fig. 10). 

 

 
Table 2. Body and uterine weights of intact, ovariectomized, ovariectomized with 
estrogen replacement, ovariectomized with PPT treatment and ovariectomized with 
DPN treatment Sprague-Dawley rats. 

 INT OVX OVX+ER OVX+PPT OVX+DPN

n 12 15 18 23 26 

Body Weight 
(grams) 

230.8 ±  
7.5a 

297.2 ± 
9.9b 

255.0 ± 
5.1c 

277.0 ± 
8.0b 

288.9 ± 
8.7b 

Uterine Weight 
(mg/100 g 
body wt.) 

172.2 ± 
12.6a 

26.82 ± 
1.6b -- 

95.7 ± 
 3.3c 

34.42 ± 
3.9b 

      

  

 

 
Note: Values are means ± S.E. (n = number of rats). a-cWithin body weights or 
uterine weights, mean values without common script are significantly different 
(0.0001 ≤ P ≤ 0.0174). 
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Figure 7: Plasma estradiol concentrations in normotension and during the 
development of hypertension in intact female rats. Bars are mean ± S.E. (n = number 
of rats). Samples were taken starting on the day of coarctation and on each day of 
diestrus thereafter. There were no significant differences within INT-NT, INT-HT or 
between NT and HT groups (P > 0.05).  
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Figure 8: Plasma estrone concentrations in normotension and during the development 
of hypertension in intact female rats. Bars are means ± S.E. (n = number of rats). 
Samples were taken starting on the day of coarctation and on each day of diestrus 
thereafter. a-bWithin each group (INT-NT or INT-HT), mean values without common 
script are significantly different (0.0145 ≤ P ≤ 0.0329). *Denotes significant differences 
between NT and HT groups (INT-NT vs. INT-HT) at like time points (Time 1) (P ≤ 
0.0445). 
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Figure 9: Plasma estradiol concentrations in OVX-NT and OVX-HT female 
rats at coarctation or sham (day 0) and at days 4, 7 and 10 following 
coarctation. Bars are means ± S.E. (n = number of rats). a-bWithin OVX-NT 
group, mean values without a common script are significantly different 
(0.0003 ≤ P ≤ 0.001). Mean values in OVX-HT do not differ significantly (P 
> 0.05). * Denotes significant differences between NT and HT groups (OVX-
NT vs. OVX-HT), at like time points (days 0, 4 and 7) (0.0111 ≤ P ≤ 
0.0402).  
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Figure 10: Plasma estrone concentrations in OVX-NT and OVX-HT female 
rats at coarctation or sham (day 0) and at days 4, 7 and 10 following 
coarctation. Bars are means ± S.E. (n = number of rats).  There were no 
significant differences within OVX-NT, OVX-HT or between NT and HT 
groups (P > 0.05).  
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Figure 11: Plasma estradiol concentrations in OVX+ER-NT and OVX+ER-
HT female rats at coarctation or sham (day 0) and at days 4, 7 and 10 
following coarctation. Bars are means ± S.E. (n = number of rats).  a-cWithin 
each group (OVX+ER-NT or OVX+ER-HT), mean values without common 
script are significantly different (0.0048 ≤ P ≤ 0.048). *Denotes significant 
differences between NT and HT groups (OVX+ER-NT vs. OVX+ER-HT) at 
like time points (Days 0, 4 and 7) (0.0087 ≤ P ≤ 0.0116).  

In OVX+ER-NT, plasma concentrations of estradiol exhibited a steady decline 

from day 0 through day 10. There was a 47% decrease from day 0 to day 4 (248.4 ± 

36.42 pg/ml vs. 137.6 ± 20.57 pg/ml) and then subsequent declines of 36% and 25% for 

the remaining two time points (87.40 ± 14.31 pg/ml and 65.40 ± 13.85 pg/ml).  

The plasma concentrations of estradiol in OVX+ER decreased 44% from day 0 to 

day 4 during the development of hypertension (115.0 ± 15.09 pg/ml vs. 60.75 ± 12.48 

pg/ml), but then remained fairly stable throughout the remaining samples, although there 

was a 23% decline on day 10 (to 46.67 ± 11.32 pg/ml) (Fig. 11).   
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 In OVX+ER, plasma estrone levels remained fairly stable throughout the 

development of hypertension, unlike plasma estradiol, which declined over time. Plasma 

estrone remained higher in OVX+ER-NT than in OVX+ER-HT on days 4, 7 and 10 (Fig. 

12). There was a slight increase on day 4 in OVX+ER-HT (42.0 ± 7.0 pg/ml vs. 65.5 ± 

10.75 pg/ml).  

 

 

 

 

 

Figure 12: Plasma estrone concentrations in OVX+ER-NT and OVX+ER-
HT female rats at coarctation or sham (day 0) and at days 4, 7 and 10 
following coarctation. Bars are means ± S.E. (n = number of rats). a- bWithin 
each group (OVX+ER-NT or OVX+ER-HT) mean values without common 
script are significantly different (0.0106 ≤ P ≤ 0.05). *Denotes significant 
differences between NT and HT groups (ER-NT vs. ER-HT) at like time 
points (Day 4, 7 or 10) (0.0034 ≤ P ≤ 0.0147).   
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4.2 Effects of Aortic Coarctation-Induced Hypertension and Estrogen Receptor 

Agonists on Mean Arterial Pressure 

Blood pressures were measured starting on day 2 after coarctation (or sham) 

surgery and every other day through day 12. In NT (sham) groups (INT, OVX, 

OVX+PPT and OVX+DPN), BP averaged 125 ± 3 mmHg, 120 ± 1 mmHg, 118 ± 3 

mmHg and 124 ± 4 mmHg respectively on day 2,  and did not differ over time within 

groups (P > 0.05) or between groups at days 2 or 12 (P > 0.05). The only exception was 

in OVX+DPN rats at day 12 (132 ± 2 mmHg), which was significantly higher than 

OVX+PPT at day 12 (119 ± 2 mmHg) (P < 0.01) (Fig. 13A).  

Aortic coarctation increased blood pressure notably in all groups. In HT groups 

(INT, OVX, OVX+PPT and OVX+DPN), BP averaged 166 ± 3 mmHg, 150 ± 4 mmHg, 

151 ± 7 mmHg and 157 ± 5 mmHg, respectively, on day 2 and BP increased over time 

within groups in INT (183 ± 4 mmHg), OVX+PPT (180 ± 4 mmHg) and OVX+DPN 

(182 ±  4 mmHg) (0.0058 ≤ P ≤ 0.0238), but not in OVX (153 ± 3 mmHg) (P = 0.27). 

Among groups, BP was higher in INT than in OVX at day 2 (P = 0.0028) and higher in 

INT, OVX+PPT and OVX+DPN than in OVX at day 12 (0.0005 ≤ P ≤ 0.0048) (Fig. 

13B).  
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A. 

Figure 13: (A) Mean arterial blood pressures (MAP) of rats following sham 
coarctation (normotension, NT; A) or induction of aortic coarctation-induced 
hypertension (HT; B) at days 2 and 12.  
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B. 

 
Figure 13 continued: (B) Mean arterial blood pressures (MAP) of rats following
sham coarctation (normotension, NT; A) or induction of aortic coarctation-induced 
hypertension (HT; B) at days 2 and 12. Bars are means ± SE (n = number of rats). a-

cMean values within each group (NT or HT) without common script are significantly 
different (0.0058 ≤ P ≤ 0.0238). *Mean values between NT and HT in all groups 
(INT, OVX, OVX+PPT and OVX+DPN) exhibited significant increases in MAP (P < 
0.001). 

 

 

 

 

 

 

4.3 Effects of Aortic Coarctation and Estrogen Receptors Agonists on TXA2 and 

PGI2 Release from the Mesenteric Arterioles 

4.3.1 TXA2 

Basal release of TXA2 (as the stable metabolite TXB2) during normotension did 

not differ among the groups, except for OVX+PPT-NT (82 ± 13 pg/mg tissue/45 

minutes), which was about 2-fold higher than OVX+DPN-NT (40 ± 8 pg/mg tissue/45 
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minutes) (P < 0.05) (Fig. 14). The largest increase in response to VP stimulation (10-8M) 

in NT rats was observed in INT-NT (46 ± 15 vs. 182 ± 55 pg/mg tissue/45 minutes; P < 

0.05). Stimulation with VP in OVX-NT and OVX+PPT-NT did not produce a significant 

increase in the release of TXA2 (51 ± 23 vs. 137 ± 38 and 82 ± 13 vs. 116 ± 24 pg/mg 

tissue/45 minutes) (P > 0.05). Stimulation with VP produced a small but significant 

increase in the release of TXA2 in OVX+DPN-NT versus basal release (40 ± 8 vs. 79 ± 

14 pg/mg tissue/45 minutes; P < 0.05). Aortic coarctation produced a dramatic increase in 

the basal release of TXA2 from mesenteric arterioles in all groups (INT, P < 0.001; OVX, 

P < 0.01; OVX+PPT, P < 0.02; OVX+DPN, P < 0.01); however, basal release did not 

differ among HT groups. INT-HT (58% increase) and OVX+PPT-HT (55% increase) 

increased TXA2 release the most in response to VP stimulation during hypertension, 

while OVX-HT (36% increase) and OVX+DPN-HT (35% increase) groups exhibited 

smaller increases. Stimulation with VP caused significant increases in all HT groups 

except OVX-HT (P > 0.05) (Fig. 14).  
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Figure 14: Basal and vasopressin (VP)-stimulated release of TXA2 
(measured as the stable metabolite TXB2) from mesenteric arterioles in 
normotensive (NT) and aortic coarctation-induced hypertensive (HT) rats. 
Bars are means ± S.E. (n = number of animals). INT, intact females; OVX, 
ovariectomized females; PPT, OVX females treated with PPT; DPN, OVX 
females treated with DPN. a-cMean values within each group (NT or HT) 
without common script are significantly different (0.0008 ≤ P ≤ 0.0482). 
*+Denotes significant differences between groups (NT vs. HT) (0.0008 ≤ P ≤ 
0.0199).  
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4.3.2 PGI2 

Basal release of PGI2 (as the stable metabolite 6-keto-PGF1α) in INT (742 ± 147 

pg/mg tissue/45 minutes), OVX (689 ± 75 pg/mg tissue/45 minutes) and OVX+DPN 

(625 ± 141 pg/mg tissue/45 minutes) did not differ during normotension. Basal release of 

PGI2 during normotension was highest in OVX+PPT treated animals (1,577 ± 228 pg/mg 

tissue/45 minutes) than the other groups (P < 0.05) (Fig. 15). VP stimulation produced 

significant increases in PGI2 release in INT (2,897 ± 490 pg/mg tissue/45 minutes), OVX 

(1,451 ± 292 pg/mg tissue/45 minutes) and OVX+DPN (1,418 ± 256 pg/mg tissue/45 

minutes), but not in OVX+PPT-NT (2,312 ± 591 pg/mg tissue/45 minutes) (P > 0.10) 

(Fig. 15). Coarctation increased basal release of PGI2 in all groups, but basal release 

during HT did not differ among groups. INT-HT (7,969 ± 1,659 pg/mg tissue), 

OVX+PPT-HT (8,971 ± 1,238 pg/mg tissue) and OVX+DPN-HT (6,030 ± 1,454 pg/mg 

tissue) produced similar amounts of PGI2 in response to VP. OVX-HT (4776 ± 865 

pg/mg tissue) produced significantly less PGI2 in response to VP than the other groups 

(Fig. 15).  
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Figure 15: Basal and vasopressin (VP)-stimulated release of PGI2 (measured 
as the stable metabolite 6-keto-PGF1α) from mesenteric arterioles in 
normotensive (NT) and aortic coarctation-induced hypertensive (HT) rats. 
Bars are means ± S.E. (n = number of animals). INT, intact females; OVX, 
ovariectomized females; OVX+PPT, OVX females treated with PPT; 
OVX+DPN, OVX females treated with DPN. a-cMean values within each 
group (NT or HT) without common script are significantly different (0.0040 
≤ P ≤ 0.0498). *+Denotes significant differences between groups (NT vs. HT) 
(0.0008 ≤ P ≤ 0.0338).  
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4.4 Effects of Aortic Coarctation and Estrogen Receptor Agonists on the 

Mesenteric Arteriole Response to Arginine Vasopressin 

In NT rats, INT (9.97 ± 0.75 mN/mm) exhibited a maximal response to VP 

similar to those of OVX (8.63 ± 0.58 mN/mm) and OVX+DPN (9.93 ± 0.53 mN/mm). 

OVX+PPT treatment in NT rats increased reactivity to VP (12.96 ± 0.64 mN/mm) 

compared to INT, OVX and OVX+DPN treatments at both middle and maximal 

concentrations (0.0002 ≤ P ≤ 0.02). INT differed significantly from OVX and 

OVX+DPN at the middle dose only (0.0271 ≤ P ≤ 0.0294) (Figs. 16A, 17A). However, 

aortic coarctation abolished the maximal differences in reactivity to VP between INT 

(11.77 ± 1.40 mN/mm), OVX (10.14 ± 1.01 mN/mm), OVX+PPT (11.39 ± 1.08 

mN/mm), and OVX+DPN (11.34 ± 1.39 mN/mm) (P > 0.05) (Figs. 16B, 17B). 

Hypertension did not alter the contractile responses to VP significantly in any group 

compared to normotensive controls (P > 0.05) (Figs. 16B, 17B).  
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A. Normotensive Control

 
Figure 16: (A) Concentration-response curves for arginine vasopressin (VP) 
in endothelium-intact mesenteric arterioles from INT, OVX, OVX+PPT- and 
OVX-+DPN-treated normotensive-control (NT; A) and hypertensive (HT; B) 
Sprague-Dawley rats. Contractile force was normalized by vessel length. 
Data points represent means ± S.E. (n = number of animals). #Statistically 
significant differences exist in OVX+PPT-NT vs. OVX+DPN-NT, INT-NT 
and OVX-NT (0.0002 ≤ P ≤ 0.02) at both middle (1x10-10M) and maximal 
(1x10-8M) concentrations of VP. *Statistically significant differences exist in 
INT-NT vs. OVX-NT and OVX+DPN-NT at the middle concentrations only 
(1x10-10M) (0.0271 ≤ P ≤ 0.0294). No statistically significant differences 
exist between OVX+DPN-NT and OVX-NT (P > 0.05).  
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B. Coarctation-Induced Hypertension 

 

Figure 16 continued: (B) Concentration-response curves for arginine 
vasopressin (VP) in endothelium-intact mesenteric arterioles from INT, 
OVX, OVX+PPT- and OVX-+DPN-treated normotensive-control (NT) 
Sprague-Dawley rats. Contractile force was normalized by vessel length. 
Data points represent means ± S.E. (n = number of animals). No statistically 
significant differences exist between the curves (P > 0.05).  
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A. Normotensive Control

 
Figure 17: (A) Concentration-response curves for arginine vasopressin (VP) 
in endothelium-intact mesenteric arterioles from OVX-PPT- and OVX-DPN-
treated normotensive-control (NT; A) and aortic coarctation-induced 
hypertensive (HT; B) Sprague-Dawley rats. Data points represent means ± 
S.E. (n = number of animals). *Statistically significant differences exist in 
OVX+PPT-NT vs. OVX+DPN-NT (0.0001 ≤ P ≤ 0.004) at both middle 
(1x10-10M) and maximal (1x10-8M) concentrations of VP. 
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B. Coarctation-Induced Hypertension 

 
Figure 17 continued: (B) Concentration-response curves for arginine 
vasopressin (VP) in endothelium-intact mesenteric arterioles from 
OVX+PPT- and OVX+DPN-treated normotensive-control (NT; A) and 
aortic coarctation-induced hypertensive (HT; B) Sprague-Dawley rats. 
Contractile force was normalized by vessel length. Data points represent 
means ± S.E. (n = number of animals). No statistically significant differences 
exist between OVX+PPT-HT vs. OVX+DPN-HT (P > 0.05).  
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4.4.1 Effects of SQ 29,548 on the Vasopressin Concentration Response 

There were no significant differences in any of the groups in the presence of SQ 

29,548 (SQ) (P > 0.05) (Figs. 18 thru 25). 

 

 

Figure 18: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from INT-NT female Sprague-
Dawley rats in the presence of SQ 29,548 (SQ, 1 µM) or vehicle-control. 
Contractile force was normalized by vessel length. Data points are means ± 
S.E. (n = number of animals). There were no statistically significant 
differences in INT-NT for SQ vs. VEH (P > 0.05). 
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 Figure 19: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX-NT female Sprague-
Dawley rats in the presence of SQ 29,548 (SQ, 1 µM) or vehicle-control. 
Contractile force was normalized by vessel length. Data points are means ± 
S.E.; (n = number of animals). There were no statistically significant 
differences in OVX-NT for SQ vs. VEH (P > 0.05). 
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 Figure 20: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX+PPT-NT Sprague-
Dawley rats in the presence of SQ 29,548 (SQ, 1 µM) or vehicle-control. 
Contractile force was normalized by vessel length. Data points are means ± 
S.E. (n = number of animals). There were no statistically significant 
differences in OVX+PPT-NT for SQ vs. VEH (P > 0.05). 
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Figure 21: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX+DPN-NT Sprague-
Dawley rats in the presence of SQ 29,548 (SQ, 1 µM) or vehicle-control. 
Contractile force was normalized by vessel length. Data points are means ± 
S.E. (n = number of animals). There were no statistically significant 
differences in OVX+DPN-NT for SQ vs. VEH (P > 0.05). 
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Figure 22: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from INT-HT Sprague-Dawley rats 
in the presence of SQ 29,548 (SQ, 1 µM) or vehicle-control. Contractile 
force was normalized by vessel length. Data points are means ± S.E. (n = 
number of animals). There were no statistically significant differences in 
INT-HT for SQ vs. VEH (P > 0.05). 
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 Figure 23: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX-HT Sprague-Dawley rats 
in the presence of SQ 29,548 (SQ, 1 µM) or vehicle-control. Contractile 
force was normalized by vessel length. Data points are means ± S.E. (n, = 
number of animals). There were no statistically significant differences at 
either the middle or highest dose in OVX-HT for SQ vs. VEH (P > 0.05). 
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Figure 24: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX+PPT-treated HT 
Sprague-Dawley rats in the presence of SQ 29,548 (SQ, 1 µM) or vehicle-
control. Contractile force was normalized by vessel length. Data points are 
means ± S.E. (n = number of animals). There were no statistically significant 
differences in OVX+PPT-HT for SQ vs. VEH (P > 0.05). 
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 Figure 25: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX+DPN-treated HT 
Sprague-Dawley rats in the presence of SQ 29,548 (SQ, 1 µM) or vehicle-
control. Contractile force was normalized by vessel length. Data points are 
means ± S.E. (n = number of animals). There were no statistically significant 
differences in OVX+DPN-HT for SQ vs. VEH (P > 0.05). 

 

 

 

 

 

 

 

 

 

 



 

Table 3. A. Maximal contractile responses to vasopressin (A) and sensitivity to VP (EC50; B) for vehicle-control and SQ 
29,548 treated mesenteric arterioles.

 INT-NT OVX-NT OVX+PPT- 
NT 

OVX+DPN-
NT INT-HT OVX-HT OVX+PPT-

HT 
OVX+DPN-

HT 
n 5 6 6 6 6 6 6 6 

Vehicle-
Control 

(mN/mm) 
9.97 ± 0.87b 8.63 ± 0.64b 12.96 ± 0.71a 9.93 ± 0.58b 11.77 ± 1.40 10.14 ± 1.01 11.39 ± 1.08 11.34 ± 1.39 

SQ 29,548 
(mN/mm) 9.16 ± 1.53b 9.48 ± 1.14b 11.40 ± 1.76a,b 9.71 ± 0.82b 12.69 ± 1.77 8.43 ± 1.27 12.25 ± 0.85 9.56 ± 1.02 

         

           

 INT-NT OVX-NT OVX+PPT-
NT 

OVX+DPN-
NT INT-HT OVX-HT OVX+PPT-

HT 
OVX+DPN-

HT 
n 5 6 6 6 6 6 6 6 

Vehicle-
Control 

(pM) 

6.19 x 10-12 

 ±  
1.49 x 10-12 

8.88 x 10-12 

 ±  
2.87 x 10-12 

14.8 x 10-12  
±  

2.39 x 10-12 

19.5 x 10-12 

 ±  
10.9 x 10-12 

15.5 x 10-12 
±  

8.04 x 10-12 

12.5 x 10-12 
±  

2.8 x 10-12 

8.62 x 10-12  
± 

3.23 x 10-12 

26.7 x 10-12  
±  

16.3 x 10-12 

SQ 29,548 
(pM) 

10.50 x 10-12  
±  

2.19 x 10-12 

15.7 x 10-12  
±  

7.02 x 10-12 

16.3 x 10-12 

 ± 
 3.47 x 10-12 

17.4 x 10-12 

 ± 
 5.31 x 10-12 

22.0 x 10-12 
± 

13.8 x 10-12 

20.1 x 10-12 
± 

12.0 x 10-12 

9.02 x 10-12 

 ±  
3.33 x 10-12 

54.1 x 10-12 

 ± 
28.9 x 10-12 

         

Table 3. B.  

Note: Values are means ± S.E. (n = number of rats). a-bMean values within normotensive (NT) without common script are 
significantly different (0.0002 ≤ P ≤ 0.02). There were no significant differences in EC50 between vehicle-control and SQ 
29,548 treated microvessels. 79
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4.4.2 Effects of Simvastatin on Mesenteric Arteriole Responses to Vasopressin  

Arterioles from INT-NT and OVX-NT rats were treated with 60 µM Simvastatin 

(SIM). At this concentration, SIM nearly eliminated contractile responses to VP 

throughout the concentration-response curve (maximal responses were 0.12 ± 0.03 

mN/mm and 0.11 ± 0.06 mN/mm respectively; 99% reduction from vehicle-control) 

(Table 4). Subsequently, the remaining six groups were treated with 10 µM SIM. 

Mesenteric arterioles in all groups exhibited significant attenuation (0.0001 ≤ P ≤ 0.05) of 

the contractile responses to VP throughout the range of concentrations in the presence of 

SIM. In OVX+PPT-NT, SIM reduced the contractile response to VP by 73% at the 

maximal concentration of VP (10-8M) (12.96 ± 0.64 mN/mm vs. 3.52 ± 0.65 mN/mm) 

(Fig. 26), whereas OVX+DPN-NT exhibited a 92% reduction at the maximal 

concentration of VP (9.93 ± 0.53 mN/mm vs. 0.78 ± 0.25 mN/mm) (Fig. 27).  

In INT-HT, SIM reduced the maximal response to VP by 35% (11.77 ± 1.40 

mN/mm vs. 7.62 ± 1.01 mN/mm respectively) (Fig. 28), while in OVX-HT the maximal 

response to VP was reduced by 61% (10.14 ± 1.01 mN/mm vs. 3.91 ± 0.45 mN/mm 

respectively) (Fig. 29). In PPT-HT, SIM reduced the maximal response to VP by 28% 

(11.39 ± 1.08 mN/mm vs. 8.15 ± 1.26 mN/mm respectively) (Fig. 30), while in DPN-HT, 

SIM reduced the maximal response to VP by 62% (11.34 ± 1.39 mN/mm vs. 4.35 ± 0.76 

mN/mm respectively) (Fig. 31).  In arterioles from both INT-NT and INT-HT rats, SIM 

had a profound effect to decrease sensitivity to VP. 
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Figure 26: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX+PPT-treated NT Sprague-
Dawley rats in the presence of Simvastatin (SIM, 10 µM) or vehicle-control. 
Contractile force was normalized by vessel length. Data points are means ± S.E. (n 
= number of animals). *Statistically significant differences exist in OVX+PPT-NT 
for SIM vs. VEH (P = 0.0001) at both middle (1x10-10M) and maximal (1x10-8M) 
concentrations of VP. 

 

 

 

 

 



 82

 

 
Figure 27: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX+DPN-treated NT Sprague-
Dawley rats in the presence of Simvastatin (SIM, 10 µM) or vehicle-control. 
Contractile force was normalized by vessel length. Data points means ± S.E. (n = 
number of animals). *Statistically significant differences exist in OVX+DPN-NT for 
SIM vs. VEH (0.001 ≤ P ≤ 0.0084) at both middle (1x10-10M) and maximal (1x10-

8M) concentrations of VP. 
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 Figure 28: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from INT-HT Sprague-Dawley rats 
in the presence of Simvastatin (SIM, 10 µM) or vehicle-control. Contractile 
force was normalized by vessel length. Data points are means ± S.E. (n = 
number of animals). *Statistically significant differences exist in INT-HT for 
SIM vs. VEH (0.0012 ≤ P ≤ 0.0319) at both middle (1x10-10M) and maximal 
(1x10-8M) concentrations of VP.  
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Figure 29: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX-HT Sprague-Dawley rats 
in the presence of Simvastatin (SIM, 10 µM) or vehicle-control. Contractile 
force was normalized by vessel length. Data points are means ± S.E. (n = 
number of animals). *Statistically significant differences exist in INT-HT for 
SIM vs. VEH (0.0002 ≤ P ≤ 0.0005) at both middle (1x10-10M) and maximal 
(1x10-8M) concentrations of VP.  
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Figure 30: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX-PPT-treated HT female 
Sprague-Dawley rats in the presence of Simvastatin (SIM, 10 µM) or vehicle-
control. Contractile force was normalized by vessel length. Data points 
represent means ± S.E. (n = number of animals). *Statistically significant 
differences exist in PPT-OVX-HT for SIM vs. Veh (0.0044 ≤ P ≤ 0.05) at both 
middle (1x10-10M) and maximal (1x10-8M) concentrations of VP.  
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 Figure 31: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact mesenteric arterioles from OVX-DPN-treated HT female 
Sprague-Dawley rats in the presence of Simvastatin (SIM, 10 µM) or vehicle-
control. Contractile force was normalized by vessel length. Data points 
represent means ± S.E.; (n = number of animals). *Statistically significant 
differences exist in OVX-DPN-HT for SIM vs. VEH (0.0003 ≤ P ≤ 0.0019) at 
both middle (1x10-10M) and maximal (1x10-8M) concentrations of VP.  

 

 

 

 

 

 

 



 

Table 4. A. Maximal contractile responses to vasopressin (A) and sensitivity to VP (EC50; B) for vehicle-control and simvastatin 
treated mesenteric arterioles. 

 INT-NT OVX-NT OVX+PPT-
NT 

OVX+DPN-
NT INT-HT OVX-HT OVX+PPT-

HT 
OVX+DPN-

HT 
n 5 6 6 6 6 6 6 6 

Vehicle-
Control 

(mN/mm) 
9.97 ± 0.87b 8.63 ± 0.64b 12.96 ± 0.71a 9.93 ± 0.58b  11.77 ± 1.40a 10.14 ± 1.01a 11.39 ± 1.08a 11.34 ± 1.39a 

Simvastatin 
(mN/mm) 

0.12 ± 0.03c 
(60 µM) 

0.11 ± 0.07c 
(60 µM) 

3.52 ± 0.71d 
(10 µM) 

0.78 ± 0.31c 
(10 µM) 

7.62 ± 1.01c 
(10 µM) 

3.91 ± 0.45b 
(10 µM) 

8.15 ± 1.26c 
(10 µM) 

4.35 ± 0.76b 
(10 µM) 

         

 

 INT-NT OVX-NT OVX+PPT-
NT 

OVX+DPN-
NT INT-HT OVX-HT OVX+PPT-

HT 
OVX+DPN-

HT 
n 5 6 6 6 6 6 6 6 

Vehicle-
Control 

(mN/mm) 

6.19 x 10-12 

 ±  
1.49 x 10-12b 

8.88 x 10-12 

 ±  
2.87 x 10-12ab 

14.8 x 10-12  
±  

2.39 x 10-12*a 

19.5 x 10-12 

 ±  
10.9 x 10-12*ab 

15.5 x 10-12  
±  

8.04 x 10-12* 

12.5 x 10-12  
±  

2.8 x 10-12* 

8.62 x 10-12  
± 

3.23 x 10-12* 

26.7 x 10-12  
±  

16.3 x 10-12* 

Simvastat
in 

(mN/mm) 
-- -- 

877.0 x 10-12 

 ± 
 213.0 x 10-12* 

1040.0 x 10-12 

 ± 
 405.0 x 10-12* 

684.0 x 10-12  
± 

81.1 x 10-12*a 

902.0 x 10-12 

 ± 
329.0 x 10-12*ab 

325.0 x 10-12 

 ±  
63.1 x 10-12*b 

644.0 x 10-12

 ± 
226.0 x 10-

12*ab 
         

Table 4. B.  
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Note: Values are means ± S.E. (n = number of rats). a-dMean values within normotensive (NT) or hypertensive (HT) maximum 
contraction without common script are significantly different (0.0002 ≤ P ≤ 0.05). *Mean values between vehicle control and 
simvastatin EC50 are significantly different (0.0001 ≤ P ≤ 0.0167). a-bMean values within normotensive (NT) or hypertensive 
(HT) EC50 without common script are significantly different (0.0048 ≤ P ≤ 0.0134). 
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4.5 Effect of Estrogen Receptor Agonists on Thoracic Aorta Responses to 

Vasopressin  

The contributions of the thromboxane pathway and intracellular calcium to VP-

induced contractions of the rat thoracic aorta were quite different than those in the 

mesenteric arteriole. In OVX+PPT-NT (3,887 ± 247 mg/mg ring wt.), SQ attenuated the 

contractile response to VP by 34% (2,577 ± 173 mg/mg ring wt.), while in OVX+DPN-NT 

(3,038 ± 472 mg/mg ring wt.), SQ attenuated the contractile response to VP by 56% (1,328 

± 167 mg/mg ring wt.).  In OVX+PPT-NT, SIM (60 µM) attenuated the contractile 

response to VP by 34%, (2,572 ± 274 mg/mg ring wt.), while in OVX+DPN-NT SIM 

attenuated the contractile response to VP by only 18% (2,497 ± 164 mg/mg ring wt.) (Figs. 

32 and 33).  
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Figure 32: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact aortic ring segments from OVX+PPT-treated NT Sprague-Dawley 
rats in the presence of Simvastatin (SIM, 60 µM), SQ 29,548 (SQ, 1 µM) or vehicle-
control. Contractile force was normalized by dry ring weight. Data points are means ± 
S.E. (n = number of animals). *Statistically significant differences exist in OVX-PPT-
NT for SQ and SIM vs. vehicle-control (0.0025 ≤ P ≤ 0.0220) at both middle (1x10-

8M) and maximal (1x10-6 M) concentrations of VP.  
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Figure 33: Concentration-response curves for arginine vasopressin (VP) in 
endothelium-intact aortic ring segments from OVX+DPN-treated NT Sprague-
Dawley rats in the presence of Simvastatin (SIM, 60 µM), SQ 29,548 (SQ, 1 µM) or 
vehicle-control. Contractile force was normalized by dry ring weight. Data points 
are means ± S.E. (n = number of animals). *Statistically significant differences exist 
in OVX-DPN-NT for SQ vs. vehicle-control (0.0055 ≤ P ≤ 0.0208) at both middle 
(1x10-8M) and maximal (1x10-6 M) concentrations of VP.  
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4.6 Effect of Aortic Coarctation-Induced Hypertension and Estrogen Treatment 

on Estrogen Receptor Expression 

 

4.6.1 Real Time RT-PCR 

Neither estrogen replacement nor aortic coarctation caused significant changes in 

the expression of ERα or ERβ (P > 0.05) (Figs. 34, 35).  

 

 

A. Log 10 Scale 

 Figure 34: (A) Effect of hypertension and estrogen receptor agonists on 
mRNA levels of estrogen receptor alpha. ERα was quantified by the ΔCT 
method and expressed relative to ERα of INT-NT in both log 10 scale 
(A) and linear scale (B). Bars are means ± SE. (n = number of animals). 
There were no significant differences in ERα mRNA levels (P > 0.05). 
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B. Linear Scale 

 

 

 

Figure 34 continued: (B) Effect of hypertension and estrogen receptor 
agonists on mRNA levels of estrogen receptor alpha. ERα was quantified 
by the ΔCT method and expressed relative to ERα of INT-NT in both log 
10 scale (A) and linear scale (B). Bars are means ± SE. (n = number of 
animals). There were no significant differences in ERα mRNA levels (P 
> 0.05). 
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A. Log 10 Scale 

 Figure 35: (A) Effect of hypertension and estrogen receptor agonists 
on mRNA levels of estrogen receptor beta. ERβ was by the ΔCT 
method and expressed relative to ERβ of INT-NT in both log 10 scale 
(A) and linear scale (B). Bars are means ± SE. (n = number of 
animals). There were no significant differences in ERβ mRNA levels 
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B. Linear Scale 

 Figure 35 continued: (B) Effect of hypertension and estrogen 
receptor agonists on mRNA levels of estrogen receptor beta. ERβ was 
by the ΔCT method and expressed relative to ERβ of INT-NT in both 
log 10 scale (A) and linear scale (B). Bars are means ± SE. (n = 
number of animals). There were no significant differences in ERβ 

 

 

 

 

4.6.2 Immunoblots 

Neither estrogen receptor agonist treatment nor aortic coarctation caused significant 

changes in the protein expression of ERα or ERβ (P > 0.05) (Figs. 36, 37).  
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Figure 36: Effect of hypertension and estrogen receptor agonists on 
the expression of estrogen receptor alpha. ERα was quantified by 
densitometry analysis, normalized to beta actin and expressed relative 
to ERα of INT-NT density. Bars are means ± SE. (n = number of 
animals). There were no significant differences in ERα protein 
expression (P > 0.05). 
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Figure 37: Effect of hypertension and estrogen receptor agonists on the 
expression of estrogen receptor beta. ERβ was quantified by 
densitometry analysis, normalized to beta actin and expressed relative to 
ERβ of INT-NT density. Bars are means ± SE. (n = number of animals). 
There were no significant differences in ERβ protein expression (P > 
0.05). 
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 OVX HT OVX+ER-HT 

 

 

 
ERβ 56 kD 

+ Control 
INT NT INT HT OVX NT OVX+ER-NT 

ERα 67 kD 

+ Control 
INT HT INT NT OVX HT OVX NT 

 

 
Beta actin 42 kD 

+ Control 

 OVX+PPT-NT OVX+PPT-HT OVX+DPN-NT OVX+DPN-HT 

 Figure 38: Representative immunoblot analysis of ERα, ERβ and beta actin 
(loading control) in mesenteric arterioles.  
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CHAPTER V 

SUMMARY AND DISCUSSION 

 

This study investigated the effects of estrogen and selective estrogen receptor 

agonists on the regulation of mean arterial blood pressure and prostanoid function and on 

the roles of thromboxane and intracellular calcium in vascular reactivity of mesenteric 

arterioles to vasopressin in the female Sprague-Dawley rat. The central hypothesis tested 

was that in aortic coarctation-induced hypertension, estrogen upregulates the constrictor 

prostanoid pathway in the vascular wall via activation of ERβ, enhancing vascular tone and 

leading to deleterious effects on blood pressure in the female rat. If so, then rats treated 

with an ERβ agonist would have higher mean arterial pressures than rats treated with an 

ERα agonist, as well as increased release of constrictor prostanoids from the vasculature, 

which would potentiate vascular reactivity to VP. ERβ was suspected of having a main 

role, based on evidence that it is the more abundant vascular ER.  Indeed, rats treated with 

DPN (ERβ agonist) exhibited mean arterial pressures comparable to those of intact female 

rats during the development of aortic coarctation-induced hypertension. However, PPT- 

(ERα agonist) treated rats exhibited similar mean arterial pressures as those seen with DPN 

treatment. While both treatments resulted in similar increases in blood pressure during 

aortic coarctation-induced hypertension, which were greater than those in OVX rats, there 

were significant differences in the release of constrictor prostanoids from the mesenteric 

vasculature in both normotension and hypertension in ERα vs. ERβ-treated rats. During the 

development of hypertension, mean arterial pressures in PPT-treated rats can be explained 
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by the increase in thromboxane release by the mesenteric vascular wall in this group, while 

the DPN-treated group appears to have another mechanism mediating increases in blood 

pressure during aortic coarctation-induced hypertension. Prostacyclin release exhibited 

similar trends as thromboxane, but with a few minor differences.  

In mesenteric vascular function studies, blocking the thromboxane receptor with 

SQ 29,548 did not affect the contractile responses to VP in any groups. However, blocking 

intracellular calcium release from the sarcoplasmic reticulum with SIM resulted in 

differential effects in both normotensive and hypertensive groups and among INT, OVX, 

PPT and DPN groups. SIM had a greater effect in normotensive than in hypertensive rats, 

and a greater effect in DPN-treated groups than in PPT-treated groups, even during 

hypertension. The vascular function studies performed in the mesenteric arterioles did not 

mirror preliminary studies performed in the aorta, where SQ 29,548 treatment attenuated 

contractile responses to VP to differing extents in normotensive PPT and DPN treated rats, 

and SIM appeared to have greater effects in the PPT-treated group rather than the DPN-

treated group. These studies may reflect regional differences in the roles of ERα and ERβ 

and/or intracellular Ca2+ handling in aorta vs. mesentery. 

In most experiments in this study, PPT treatment closely mimicked function in INT 

rats, while DPN treatment more closely resembled function in OVX rats. This would 

suggest that most of the actions of estrogen on constrictor prostanoid function and vascular 

reactivity to VP are mediated by ERα alone. A noticeable instance where DPN treatment 

had similar results to INT was in the development of ACIH, where MAP was just as severe 

in the DPN treated group at 12 days as in INT and PPT-treated rats.   
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5.1 Effects of Aortic Coarctation-Induced Hypertension on Plasma Estradiol and 

Estrone Levels 

In the present studies, plasma levels of 17β-estradiol and estrone were measured in 

normotensive and ACIH rats in an effort to determine whether the development of ACIH 

was associated with alterations in the secretion and/or metabolism of estrogens. Studies in 

humans with essential hypertension revealed that serum levels of estradiol were higher in 

both men and women (59, 65) compared to their normotensive counterparts. In the present 

study, estradiol levels in INT-HT females were not altered; however, OVX-HT females 

had slight but significant increases in plasma estradiol on days 0, 4 and 7 post-coarctation, 

indicating an increase from an extra-ovarian source of estradiol, most likely the adrenal 

gland. In OVX+ER-HT, plasma estradiol on days 0, 4 and 7 post-coarctation were 

significantly lower than in OVX+ER-NT. Although the estradiol level at day 0 in 

OVX+ER-NT was twice that of OVX+ER-HT (the pellets from the NT group had a higher 

rate of E2 release than is normally expected), the rate of estrogen metabolism appeared to 

differ between the two groups. OVX+ER-NT had a steady rate of decline from day 0 to 

day 4 to day 7, with no significant decrease between day 7 and day 10. In contrast, 

OVX+ER-HT had a significant decline from day 0 to day 4, but the levels were steady 

from day 4 to days 7 and 10. This suggests that during ACIH, exogenous estrogen is 

metabolized at a faster rate than during NT, while ovarian estrogen secretion does not 

change during ACIH.  

In the present study, plasma estrone levels in INT and OVX females were very 

similar, both in normotension and during the development of ACIH. This suggests that the 
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production of estrone is independent of ovarian function, and likely arises from peripheral 

conversion of adrenal derived E2. The levels of estrone in the present study in INT rats 

were similar to those in a previous study (121). In the present study, the presence of the 

exogenous estrogen source in OVX+ER groups resulted in higher levels of estrone, due to 

the conversion of 17β-estradiol to estrone by 17β-hydroxysteroid dehydrogenase in the 

periphery. 

One interesting observation of the present study was the trend of estrone to closely 

follow 17β-estradiol, indicating that, for the most part, where 17β-estradiol increased or 

decreased, estrone also exhibited parallel increases or decreases. This serves as an internal 

control and verifies that the changes in estrogen levels measured by RIA are authentic. 

 
5.2 Effects of Aortic Coarctation-Induced Hypertension and Estrogen Receptor 

Agonists on Mean Arterial Pressure 

The present study revealed that INT-HT rats exhibited a higher MAP at day 2 than 

OVX-HT or OVX+PPT-HT, while MAP of OVX+DPN-HT did not differ from INT-HT 

on day 2. However by 12 days post-coarctation, the differences among INT, OVX+ER-

agonist and OVX treated groups had progressively widened to reveal marked statistically 

significant differences in MAP. At 12 days post-coarctation, MAP during treatment with 

either ERα or ERβ agonists closely resembled that of INT rats while OVX rats exhibited a 

significantly lower MAP.  

These results support previous work by Baltzer et al. (6, 7)  which reported that the 

presence of estrogen in INT or OVX+ER rats results in a higher MAP than in OVX or 

male rats at days 12-14 of ACIH (6, 7, 8). One difference between this and the present 
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study is the significantly higher MAP at day 2 in INT-HT rats when compared to OVX-HT 

rats in this study. Prior to the studies by Baltzer et al. (6, 7, 8), there were only two short-

term investigations that examined MAP in female rats with ACIH. One study revealed that 

chronic estradiol treatment increased the sensitivity of the carotid arteries to ANG II 

induced-vasoconstriction (116), while another study compared the effects of partial aortic 

coarctation in pregnant vs. virgin female rats and found that in pregnant females there was 

an increase in MAP (54). While the Henzel study did not find any change in the MAP of 

virgin female rats, this is most likely due to the use of partial aortic coarctation, rather than 

the complete aortic coarctation that was used in the present study as well as the Baltzer 

study (6, 7, 8).  

While there were subtle differences in MAP between INT-HT, OVX+PPT-HT and 

OVX+DPN-HT at day 2, these differences were abolished at day 12. The higher MAP of 

OVX+DPN-HT rats at day 12 is likely due to a different mechanism (perhaps neural 

mechanisms involved in ACIH) than that of INT-HT and OVX+PPT-HT rats, as 

mesenteric arteriolar TXA2 production in response to VP-stimulation was nearly half that 

of OVX+PPT-HT, but not significantly different than arterioles from INT-HT rats. 

Previous studies by Baltzer et al. (6, 7, 8) revealed that acute infusion of SQ 29,548 (TP 

receptor antagonist) at day 14 or chronic treatment with Ridogrel (TP receptor 

antagonist/TXS inhibitor) during the development of ACIH during days 1-14 significantly 

attenuated the MAP of INT and OVX+ER females at 12-14 days to a much greater extent 

than in OVX or male rats, indicating that TXA2 and TP receptor activation are central to 

the effects of estrogen to exacerbate MAP in ACIH. In the present study, increased 
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arteriolar TXA2 production in OVX+PPT-HT and INT-HT rats can be associated with the 

high MAP observed at day 12, based on the findings in the present studies and those of 

Baltzer et al. (6, 7, 8) involving systemic administration of SQ, which lowered MAP 

markedly in INT-HT rats. However, the high MAP observed in OVX+DPN-HT cannot be 

explained by a massive increase in TXA2, since the arterioles from this group did not have 

similar increases in TXA2 production when stimulated with VP.  

A previous study examined blood pressure and vascular function in male ERβ 

knock-out mice and found that the absence of ERβ resulted in systolic and diastolic 

hypertension with aging, suggesting that ERα, when unopposed by ERβ, possesses the 

ability to exert detrimental effects on blood pressure (152). In the present study, both 

selective and non-selective ER agonist activity clearly exacerbate the development of 

ACIH. Based on the data in the present study, there is no difference at day 12 in MAP 

whether PPT (ERα), DPN (ERβ) or 17β-estradiol (ERα and ERβ) are present. It is apparent 

that the activity of both of the ERs is detrimental and exacerbates MAP in ACIH.  

Based on previous studies of the effects of 17β-estradiol to upregulate TXA2 

production in the vascular wall, as well as TxS and TP receptors (73), and studies 

demonstrating that females rely more on intracellular calcium release in the contractile 

response to VP (36), the mechanisms by which ERα and ERβ modulate blood pressure 

may lie in differences in these two pathways (see sections 5.3.1 and 5.3.2).  
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5.3 Effects of Aortic Coarctation and Estrogen Receptor Agonists on TXA2 and 

PGI2 Release from the Mesenteric Vasculature 

In the present study, basal release of PGI2 and TXA2 was similar across all NT 

groups; however, OVX+PPT treatment resulted in a higher basal release of TXA2 than 

OVX+DPN treatment. Similarly, basal release of PGI2 also was higher in OVX+PPT than 

in all other groups. The effect of OVX+PPT to increase both TXA2 and PGI2 release in 

arterioles from normotensive rats suggests that a common precursor is upregulated by PPT, 

possibly COX-2. Recent studies by Li et al. (73) support this idea, since 17β-estradiol 

replacement therapy upregulated expression of both COX-2 and TxS, enhancing the 

release of both TXA2 and PGI2 in the NT female rat aorta (73). Other studies have 

demonstrated that estrogen treatment increases COX-2 protein in cultured endothelial cells 

(2, 131). 

Likewise, the dramatic increase in basal release of both TXA2 and PGI2 across all 

the groups during the development of ACIH in the present study demonstrates that a 

precursor molecule common to both TXA2 and PGI2 is upregulated during hypertension, 

likely COX-1 or COX-2, and possibly both. Previous studies have shown that 

prostaglandin release is increased during hypertension (7, 74, 75) and that 17β-estradiol 

upregulates the prostaglandin pathway, from COX-2 to TxS to the TP receptor (73). 

Therefore, there is a synergistic effect of hypertension and the presence of estrogen to 

increase prostaglandin production and activity. However, the effects of specific ER 

agonists demonstrated that significant differences exist in the extent to which ERs can 

affect TXA2 and PGI2 production during the development of ACIH. 
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5.3.1 TXA2 

The present study quantified basal and VP-stimulated TXA2 release from 

mesenteric arterioles in normotension and during the development of ACIH hypertension. 

In normotensive rats, basal release did not differ among the groups with the exception of 

OVX+PPT arterioles, which exhibited higher basal release of TXA2 than OVX+DPN 

treatment. For INT and OVX groups, this consistency in basal release is in agreement with 

previous studies of the female rat aorta, where basal release did not differ between INT, 

OVX and OVX+ER females (73).  

In the present study, arterioles from INT-NT rats demonstrated the largest increase 

in TXA2 release of all NT groups in response to VP-stimulation. While arterioles from 

OVX and OVX+DPN rats also exhibited significant increases in TXA2 release in response 

to VP, agonist-induced increases were much smaller than in INT rats. In OVX+PPT rats, 

VP-induced release of TXA2 did not differ significantly from basal release.  

During the development of hypertension, basal release among groups did not differ 

from one another, although ACIH increased basal release of TXA2 in all of the groups 

compared to NT rats. Arterioles from INT, OVX+PPT and OVX+DPN groups all 

exhibited higher agonist-induced release of TXA2 compared to OVX. While the statistical 

analysis did not detect any significant differences in VP-stimulated TXA2 release between 

OVX+DPN-HT and OVX+PPT-HT, this is likely due to the small sample size of the 

OVX+DPN-HT group (n = 3), because the mean difference in TXA2 production by 

OVX+PPT-HT arterioles was nearly two-fold higher than that of OVX+DPN-HT vessels, 
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suggesting that this difference is likely to be biologically significant, based upon previous 

functional and prostanoid release studies in the rat aorta (72, 73). 

During the development of ACIH, TXA2 release appears to be reduced about half 

in the combined presence of both ERα and ERβ activity in the INT group, when compared 

to ERα activity alone in the PPT-treated group, where TXA2 production is quite high. This 

suggests that ERβ may have some inhibitory effects on ERα activities, which has been 

suggested by several previous studies on the interactions of ERs (28, 80, 81, 95, 130). It is 

possible that homodimer formation of ERα leads to the detrimental effects seen in the PPT-

treated group, since it appears that ERβ exerts any inhibitory effects on ERα through the 

preferential formation of heterodimers (80, 96). This formation of the homodimers alone in 

the PPT-treated group combined with ACIH may result in the significantly increased 

production of TXA2 and PGI2 seen in this study.  

 

5.3.2 PGI2 

In NT rats, basal release of PGI2 by arterioles from OVX+PPT rats was 2-2.5 fold 

higher than that of arterioles from INT, OVX+DPN or OVX rats. INT, OVX+DPN and 

OVX groups all exhibited significant increases in PGI2 release in response to VP, while 

arterioles from OVX+PPT rats did not. In HT rats, differences in basal release among the 

groups were abolished, although ACIH caused significant increases (2-3 fold) in the basal 

release of PGI2 in all the groups compared to NT rats. Arterioles from OVX+PPT-HT and 

INT-HT rats exhibited the highest VP-stimulated release of PGI2 overall, and significantly 

higher release than OVX-HT rats, while OVX+DPN-HT treatment did not differ from 
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OVX-HT. The differences observed between INT-HT and OVX-HT groups were expected, 

as 17β-estradiol is known to increase PGIS and PGI2 production (37, 98, 99, 114) as well 

as COX-2 and the production of PGI2 (73). While the evidence that estrogen upregulates 

COX-1, COX-2 and PGIS expression and PGI2 production is seemingly abundant in the 

literature, more often than not, these studies have failed to measure the effects of estrogen 

on TxS expression and TXA2 production. Based on the findings of the present study, it is 

clear that both pathways are upregulated not only by estrogen, but by any activity of the 

ERs, especially ERα.  

The findings of the present study suggest that ERα possesses the ability to 

upregulate PGIS as well as TxS, and likely the COX enzymes, while ERβ appears to have 

very little effect on TxS and the COX enzymes, but may act more on PGIS, at least during 

ACIH. Further, the present study suggests that the differential changes in basal and VP-

stimulated release of TXA2 and PGI2 in the presence of OVX+PPT vs. OVX+DPN vs. INT 

could result from the formation of hetero- or homodimers by the ERs, which could play a 

role in determining the physiological response or pathways that are influenced by estrogen.  

While TXA2 production is greatly increased during ACIH, PGI2 is increased to a 

much greater extent, raising the question of why PGI2 does not appear to provide a 

protective effect on blood pressure or vascular reactivity. The answer may reside in the 

chronic effects of TXA2 on the vasculature. While TXA2 acutely promotes platelet 

aggregation and powerful vasoconstriction (greater than that of angiotensin II), its long-

term effects include VSM hypertrophy and abnormal remodeling of the vascular wall (15, 

52). On the other hand, PGI2 works to combat these effects, by exerting anti-aggregatory 
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effects on platelets and inhibiting VSM hypertrophy (22, 24). These findings reveal that a 

delicate balance must be maintained between these two molecules in order for vascular 

homeostasis to prevail. Therefore, in the case of ACIH, this balance is severely disrupted, 

and the increased biological activity of TXA2 is unable to be overridden by the possible 

protective effects of PGI2, resulting in enhanced vascular reactivity to VP, thrombosis and 

MAP, especially in female rats.  

 

5.4 Effects of Aortic Coarctation and Estrogen Receptor Agonists on the 

Mesenteric Vascular Responses to Arginine Vasopressin 

The present study demonstrated clear differential effects of chronic treatment with 

selective ER agonists on mesenteric vascular function. In normotension, OVX+PPT 

treatment resulted in markedly higher contractile responses to VP compared to 

OVX+DPN, INT or OVX. These differences were abolished during ACIH, but the 

contractile force developed in mesenteric arterioles from ACIH groups were not 

significantly higher than that from NT rats, and in fact, OVX+PPT-HT developed slightly 

less contractile force than OVX+PPT-NT. At the middle concentrations only, VP produced 

significantly higher contractions in INT than in OVX or OVX+DPN. This result was 

expected in the INT and OVX groups, based on previous findings by Stallone et al. (72, 

126, 127, 128), which established that intact and estrogen-replaced females exhibit higher 

responsiveness to VP compared to males or OVX females, both in the aorta and the 

isolated perfused mesenteric vasculature.  
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A previous study of the effects of estrogen replacement on mesenteric arteriolar 

reactivity to VP found no differences between INT, OVX and OVX+ER rats (150). One 

possible reason for the differences between that study and the present study is the use of 

pressurized mesenteric vessels in the previous study, which were normalized to a maximal 

constriction to 120 mM KCl. While this is an acceptable format for reporting this type of 

data, normalizing the vessels in this manner can mask differences in maximal force 

developed by the different groups, and so it is difficult to determine whether there were 

any true differences in the maximal contractile responses to the vasoconstrictors. Further, 

the rats in this previous study were likely fed standard laboratory rat chow (it was not 

discussed in the paper), which is known to contain phytoestrogens (119, 120), which 

confound the effects of ovariectomy on vascular reactivity to VP (43, 72). The present 

study used an alfalfa- and soy-free diet, which is free of phytoestrogens.  

The increased responsiveness to VP in OVX+PPT-NT rats compared to INT-NT 

and OVX+DPN-NT in the present study was unexpected, since VP-stimulated release of 

TXA2 is not different between INT-NT, OVX+PPT-NT and OVX-DPN-NT groups, and 

therefore it is reasonable to assume that TXA2 production is not the only pathway 

differentially regulated by ERα and ERβ in the response to VP. In fact, this idea is 

supported by two previous studies, one involving sexual dimorphism and vascular 

reactivity to phenylephrine (PE) in rat aorta, which demonstrated that the female rat aorta 

was more reactive to PE than male aorta (43), and another demonstrating that estrogen 

augmented vasoconstriction to PE in male ERβ knock-out mice (152).  
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The present study also examined the role of ERα and ERβ in the mesenteric arterial 

response to VP during ACIH. While there were differences in the maximal response to VP 

in normotensive rats, these differences were abolished in hypertensive rats. While INT-HT, 

OVX+PPT-HT and OVX+DPN-HT developed slightly higher contractile force than OVX-

HT, due to the inherent animal to animal variability of the mesenteric arteriolar response to 

VP, they were not significantly different. However, the significantly lower MAP in OVX-

HT compared to the other ACIH groups would suggest that responses to constrictors 

should be blunted when compared to those of the ER treated groups. That they were not 

different may be due to the possible interactions between TXA2 and PGI2, as suggested by 

the effects of TP receptor blockade with SQ 29,548 (see next section).  

The fact that OVX+DPN-HT developed nearly identical contractile force as 

OVX+PPT-HT was unexpected. Although the TXA2 release in these two groups was not 

statistically different, the mean TXA2 production was 2-fold higher in OVX+PPT-HT, and 

this difference likely has biological relevance. The 2-fold difference in TXA2 production of 

these two groups would suggest that OVX+PPT-HT would possess greater reactivity to 

VP, as in the NT groups. However, the mechanism for the contractile responses of 

OVX+DPN-HT to VP remains unknown at this time. Further investigation into this 

mechanism is warranted.  
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5.4.1 Effects of SQ 29,548 on Concentration-Responses to Vasopressin 

To determine the role of ERs on TXA2 production and TP receptor function in the 

mesenteric vascular reactivity to VP in the present studies, the TP receptor antagonist SQ 

29,548 was employed in vascular function studies. INT-NT, OVX-NT, OVX+DPN-NT, 

OVX+DPN-HT, INT-HT and OVX+PPT-HT groups all produced significant amounts of 

thromboxane in response to VP, and yet SQ 29,548 did not have a significant effect on the 

contractile responses to VP (10-12 M – 10-8 M) (Figs. 18-25).   

In contrast, studies by Fulton et al. (43) demonstrated that contractile responses of 

the female rat aorta to VP were significantly higher in females than in males and that non-

selective inhibition of COX enzymes with Indo reduced contractile responses of female 

aorta to the same extent as SQ 29,548, suggesting that TXA2 and/or TP receptor activation 

were responsible for about 30% of VP-mediated contractions of the female rat aorta (43). 

Studies by Li et al. (72) further supported this idea, showing that the maximal response to 

TXA2 receptor analog U-46619 was significantly higher in female than in male rats, and 

that the maximal response in OVX rats was attenuated when compared to INT rats and that 

OVX+ER restored the contractile responses to U-46619 (72). Studies by Baltzer et al. (7) 

provided further in vivo support of this idea, since in ACIH, intravenous infusion of SQ 

during the acute phase of the hypertension (on day 12-14) in conscious rats resulted in a 

significantly greater decrease in MAP in INT female and OVX+ER female rats, compared 

to OVX or male rats. These findings consistently indicate that the TXA2 pathway is 

important in the regulation of arterial tone, which is responsible for controlling blood 

pressure. One earlier study found that OVX increased the sensitivity and maximal 
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contractility of mesenteric arterioles exposed to U-46619 when compared to OVX+ER 

(150); however, the vessels used in that study were endothelium-denuded, whereas those in 

the Fulton and Li studies (43, 72) and the present study were all endothelium intact vessels. 

Therefore, based upon the previous findings from the studies of Fulton, Li and Baltzer (6-

8, 43, 72, 73), a significant effect of SQ 29,548 to attenuate the contractile responses to VP 

was expected in the vascular function portion of the present study. The failure of TP 

receptor blockade to attenuate contractile responses to VP suggests that either the estrogen-

TXA2 mechanism is absent from the mesenteric vasculature, or that other local vasoactive 

factors may be masking the actions of TXA2.  

Indeed, more recent studies have suggested the possibility that other 

prostaglandins, especially PGI2, which is normally believed to be vasodilatory, may also 

contribute to vasoconstrictor responses of VSM to VP. In the Spontaneously Hypertensive 

Rat (SHR) aorta, the vasodilator agonist acetylcholine (ACh) induces contractile responses 

via agonist-induced release of a local vasoconstrictor factor (49, 107, 133). The Rapoport 

study (107) found that ACh-induced contractions of SHR and Wistar-Kyoto 

(normotensive) rat aortas are composed of two components: activation of the TP receptor, 

and activation of an additional PG receptor or receptors. That study determined that the 

amount of PGI2 produced by the aorta in response to ACh stimulation likely resulted in 

local concentrations of PGI2 in the micromolar range, and based on functional studies with 

carbacyclin (a PGI2 analogue), this concentration of PGI2 would be high enough to elicit 

the contractile responses observed in the aorta. Rapoport et al. (107) proposed that PGI2 
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was causing the constrictions through activation of the prostaglandin E (EP) receptor, since 

the constriction with carbacyclin occurred in the presence of SQ 29,548. 

Similarly, in the present study, the levels of PGI2 produced by the mesenteric 

arterioles in response to VP were 1.6 to 1.8 times higher than those in the Rapoport study. 

In fact, the groups with the highest output of PGI2, INT-HT and OVX+PPT-HT, actually 

demonstrated slightly higher contraction to VP in the presence of SQ (although not 

statistically significant). The abundance of PGI2 released by the mesenteric arterioles may 

mask the inhibitory effect of SQ 29,548 on TXA2-enhanced contraction via the TP 

receptor. If the PGI2 produced in response to VP stimulation is adequate to stimulate an EP 

receptor (likely EP3, as this receptor subtype is associated with contraction of vascular 

smooth muscle) (105), then this may mask the effects of SQ 29,548 to block effects of 

TXA2 in the contractile response to VP. The PGI2 contractile theory seems a likely 

candidate, given the amounts of TXA2 produced by the mesenteric arterioles in response to 

VP stimulation (especially during ACIH), as well as the substantially higher amounts of 

PGI2 being produced simultaneously by these arterioles. That production of these two 

prostanoids is upregulated in parallel suggests that several points along the AA metabolism 

pathway are upregulated, mainly COX-2, as well as PGIS and TxS.  

 

5.4.2 Effects of Simvastatin on the Vasopressin Concentration Dose Response 

To determine the role of ERs on intracellular calcium release by the sarcoplasmic 

reticulum in the mesenteric vascular response to VP, simvastatin (blocker of IP3 mediated 

IC release) (38, 94) was employed in the functional studies.  
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In the present studies, SIM significantly reduced the response to VP in all groups. 

The response was greater in NT than in HT, and greater in OVX+DPN and OVX than in 

INT and OVX+PPT. The greater dependence on IC release in the normotensive groups 

suggests that during hypertension there are other mechanisms contributing to the 

contractile response to VP, or that extracellular Ca2+ entry contributes more to contraction 

during ACIH. Another possibility is that blockade by SIM during ACIH is not as effective, 

due to greater contribution by intracellular calcium in contractile responses. Indeed, a 

previous study demonstrated that hypertensive rats exhibited a calcium dependent basal 

tone during ACIH, and that this tone was dependent upon TP receptor and COX (33). 

A previous study by Eatman et al. (36) demonstrated that a clear sexual 

dimorphism exists in the role of intracellular vs. extracellular calcium in the vascular 

reactivity to VP in the rat aorta, revealing that female rats were more dependent on IC 

release for VP-induced contraction, whereas male rats were more dependent upon 

extracellular calcium influx. In the present study, the observed differences between INT 

and OVX rats were not expected, as OVX resulted in greater dependence on IC release for 

VP-induced contraction. The change in calcium contribution with OVX demonstrates that 

in the absence of estrogens, the mechanisms of vascular function are altered and this might 

be central to understanding why post-menopausal women are more susceptible to 

cardiovascular disease. Although OVX did not produce the expected response, it is another 

example of how function of PPT-treated rats closely resembles function of INT rats while 

the function of DPN-treated rats resembles function of OVX rats, suggesting that ERα 

alone is capable of mediating the effects of estrogen on IC release. Previous studies have 
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shown the effects of 17β-estradiol to relax VSM by reducing IC concentration, either by 

increasing efflux or reducing influx via inhibition of L-type Ca2+ channels (50, 93, 104, 

113, 124). While it appears evident that estrogen receptors exert effects on Ca2+ in the 

vasculature, it remains unclear at this stage exactly what those effects are in differing 

tissues, as well as the differences in acute and chronic treatments. 

 

5.5 Effect of Estrogen Receptor Agonists on the Concentration-Response to 

Vasopressin in Rat Aorta 

In the present study, preliminary aortic function studies demonstrated clear 

differences in the effects of OVX+PPT vs. OVX+DPN treatment on the functional 

responses to VP. Similar to the mesenteric arterioles, OVX+PPT treatment resulted in a 

greater contractile force in the control response to VP. The responses to SQ and SIM in the 

OVX+PPT group were almost identical (34% reduction in contraction), unlike the 

mesenteric arterioles, where SQ did not have an effect and SIM reduced the response to VP 

by 73%. However, OVX+DPN treatment exhibited differential responses to SQ and SIM 

treatment. In the aorta, SIM reduced the response to VP by approximately 12%, whereas in 

the mesenteric arterioles, the reduction was much higher, at 92%. SQ also had a more 

prominent effect in aorta, where it reduced the maximum response to VP by 56%, while it 

had no significant effects on mesenteric arterioles. 

These data suggest that while TXA2 and TP appear to play a more significant role 

in the response to VP in aorta, the mesenteric response is either independent of TXA2 and 

TP, or the TXA2 contribution is masked by the effects of another PG, possibly PGI2. It is 
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possible that the mesenteric vasculature is more sensitive to the effects of other PGs, while 

the aorta is unresponsive to any interference of other PGs that are released, especially 

PGI2. Indeed, neither PGI2 nor PGI2 analogues produce relaxation in rat aorta (49, 107). In 

addition, aortic responses to VP appear less dependent on intracellular Ca2+ release than 

the mesenteric arterioles.  

 

5.6 Effect of Aortic Coarctation-Induced Hypertension and Estrogen Treatment 

on Estrogen Receptor Expression 

5.6.1 Real Time RT-PCR 

In the present study, there was a trend for OVX to increase the levels of ERα and 

ERβ mRNA, but there were no statistically significant differences due to animal to animal 

variability in the data.  

Other studies have shown that ERα mRNA is upregulated during OVX in the 

uterus (110) as well as in the kidney and cerebral cortex (88). However, Mohamed et al. 

(88) found that in the liver, heart, brainstem, cerebellum and thoracic and abdominal aorta 

there were no significant changes in mRNA of ERα. ERβ was not measured in these 

studies; in the Rosser study, ERβ had not yet been identified. It would appear that the 

regulation of the ERs by estrogen is tissue specific.  

While there were not any statistically different levels of mRNA in the present 

study, this may not have made much impact, since the protein expression levels for ERα 

and ERβ did not change with either estrogen treatment or hypertension, and thus, are in 

agreement with the mRNA expression data. 
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5.6.2 Immunoblots 

In the present study, there were no significant differences in the protein expression 

of the estrogen receptors; however, there were some general trends. OVX+PPT treatment 

during normotension and hypertension tended to slightly increase the expression of ERα 

when compared to INT-NT. In contrast, ERβ expression in OVX+PPT-NT, OVX+DPN-

NT, OVX+PPT-HT and OVX+PPT-NT tended to be lower than INT-NT. This might 

indicate that ERα activation increases its own receptor protein, but has little effect on ERβ 

protein levels, while activation of ERβ does not appear to affect either its own receptor 

protein or ERα protein levels. 

Previous investigations have stated that ERβ was the more dominant ER in the 

vascular system in both humans and rats (3, 57). Using the method of immunoblotting to 

detect protein levels makes comparisons between ERα and ERβ unreliable, due to 

differences in antibody binding affinity. Therefore, in the present study, we were unable to 

make such comparisons and each group is normalized to the reference group, in this case 

INT-NT.      

In the present study, levels of both ERs were strikingly similar in both INT and 

OVX groups, suggesting that the regulation of ERs is independent of ovarian function. 

Another recent study found that protein levels of ERα and ERβ in the VSM of the sheep 

uterine artery did not differ between OVX and OVX+ER sheep and that there were no 

differences in either ERα or ERβ protein in omental, renal and coronary endothelium from 

ewes in luteal, follicular and pregnant stages. An exception was the higher levels of ERβ 

protein in the coronary endothelium of pregnant ewes, compared to non-pregnant ewes 
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during the luteal phase ewes (17). An earlier study found that treatment of endothelial cells 

with 17β-estradiol decreased ERα after short-term exposure, but increased it after longer 

exposure (60). Clearly, the effect of estrogen to regulate its receptors is both tissue and 

treatment dependent. 

The lack of change in protein expression during HT likely indicates that 

upregulation of ERs in the vasculature is not the mechanism by which HT affects the PG 

pathway during the development of HT, and that changes in expression of ERs are not 

important in ACIH. However, the present study provides the unique opportunity to 

examine ER cross-regulation and protein levels in the presence of selective receptor 

activation. Specifically, whether the expression of each ER is modulated by its own 

activity, or the activity of the opposing receptor, or whether the interaction of the two ERs 

together changes their expression differentially. 

 

5.7 Conclusions  

Historically, TXA2 and other constrictor prostanoids were considered important 

only in hypertension or other vascular disease states, and only in males (22, 30, 90). More 

recent studies have revealed that not only is TXA2 important in maintaining vascular tone 

during normotension, but that the prostanoid pathway appears to contribute to vascular 

tone more in females than in males (6, 7, 8, 43, 72, 73). The findings of the present study 

confirm that ERα and ERβ contribute selectively to the actions of estrogen on the 

prostanoid pathway and are important in the regulation of constrictor prostanoid mediated 

mechanisms and blood pressure during the development of aortic coarctation-induced 
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hypertension. Further, the increased release of constrictor prostanoids by the vasculature is 

likely responsible for the increased reactivity to vasopressin seen in both the aorta and 

mesenteric vasculature (43, 73, 126, 127). Although aortic coarctation was used as the 

model of hypertension in the present study, essential human hypertension may also involve 

the effects of estrogens and constrictor prostanoids. Levels of estradiol in men and women 

with essential hypertension were higher than their normotensive counterparts (59, 65, 103), 

suggesting that estradiol may contribute to essential hypertension. In addition, aortic 

coarctation-induced hypertension is renin-angiotensin-dependent, a major factor in human 

essential hypertension as well (65, 70, 103); therefore, this model provides the unique 

opportunity to study the mechanisms of and changes to the vasculature involved in the 

development of hypertension. 

Although women appear to be protected from cardiovascular disease in the pre-

menopausal years, there is increasing evidence that the protective effects of estrogen on the 

vasculature have an “expiration date”, because post-menopausal women receiving 

hormone replacement therapy have higher incidences of cardiovascular events (51, 58, 

111) and are no longer protected.  Clearly, there are many details of current hormone 

replacement therapy which mandate investigation, including the type of hormone used, 

timing of replacement and risk factors at the time of therapy. If it is possible to separate the 

beneficial effects of estrogen from the detrimental effects, then new possibilities will 

evolve in the treatment of cardiovascular disease for women, involving selective estrogen 

receptor modulation. 
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The present study is the first to study the effects of chronic selective estrogen 

receptor stimulation during normotension and the development of aortic coarctation-

induced hypertension, and to examine the effects of the estrogen receptors on the 

production of PGI2 and TXA2, as well as the contribution of the estrogen receptors to 

vascular reactivity to vasopressin in normotension and during the development of 

hypertension. 

 The present study demonstrates that ERα mediates the majority of the effects of 

estrogen on the constrictor prostanoid pathway and on the vascular reactivity to 

vasopressin in the rat mesenteric arterioles. Although ERβ replacement therapy did not 

increase levels of PGI2 and TXA2 production to the same extent as did ERα therapy, nor 

did it increase vascular reactivity to vasopressin to the same extent, stimulation of this 

receptor caused increases in mean arterial pressure that rivaled those of 17β-estradiol and 

ERα stimulation, suggesting that ERβ affects other pathway(s) involved in this type of 

hypertension. Further investigation into the vasoconstrictor and vasodilator mechanisms 

associated with the estrogen receptors are needed to clarify the true effects of estrogen on 

vascular homeostasis and blood pressure.  
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