
  

EVALUATION OF AGRICULTURAL DISINFECTANTS AND NECROTIC 

ENTERITIS PREVENTATIVES IN BROILER CHICKENS 

 

 

A Thesis 

by 

KENDRE DUARON STRINGFELLOW  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

December 2008 

 

 

Major Subject: Poultry Science 

 

 

 



  

EVALUATION OF AGRICULTURAL DISINFECTANTS AND NECROTIC 

ENTERITIS PREVENTATIVES IN BROILER CHICKENS 

 

A Thesis 

by 

KENDRE DUARON STRINGFELLOW  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  Morgan Farnell 
Committee Members, David Caldwell 
 Alejandro Castillo 
 Jason Lee 
 Jackson McReynolds 
Head of Department, John Carey 

 

December 2008 

 

Major Subject: Poultry Science 



 iii

ABSTRACT 

 

Evaluation of Agricultural Disinfectants and Necrotic Enteritis Preventatives in Broiler 

Chickens.  (December 2008) 

Kendre Duaron Stringfellow, B.S., Prairie View A&M University 

Chair of Advisory Committee: Dr. Morgan Brian Farnell   

 

 The objective of this study was to determine the effect of time, temperature and 

organic matter on disinfectant efficacy.  Staphylococcus aureus (SA) and Salmonella 

Typhimurium (ST) were used as organisms to represent Gram positive and Gram 

negative bacteria, respectively, commonly found in poultry housing.  Three independent 

experiments evaluated the effect of temperature, time, and organic matter on the efficacy 

of working concentrations of disinfectants against representative organisms found in 

commercial poultry housing.  Quaternary ammonium, chlorhexidine, phenolic and 

binary ammonium based solutions represented disinfectants commonly used within the 

poultry industry.  Results from these experiments indicated that long term storage of 

disinfectants will reduce their efficacy against SA.  However, a reduction (p < 0.05) in 

efficacy was observed with the phenolic compound against ST at elevated temperatures.  

Following the inclusion of organic matter (OM), reduced (p < 0.05) efficacy of all 

disinfectants was observed in a dose dependent manner against both organisms, with the 

exception of the phenolic compound against SA.  Fresh disinfectant performed better (p 
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< 0.05) in the presence of OM than 30 wk old disinfectant.  These results emphasize the 

need to use fresh disinfectants and that OM should be removed prior to disinfection. 

 We also evaluated the effect of bismuth citrate, lactose and citric acids on the 

development of necrotic enteritis in broilers.  Clostridium perfringens’  associated 

necrotic enteritis in poultry causes significant loss and increased morbidity in the 

industry.  Due to the reduced usage of antibiotic growth promoters, the incidence of 

necrotic enteritis has increased.  These experiments evaluated different levels of bismuth 

citrate and bismuth citrate with lactose or citric acid added, on lesion development, 

bacterial intestinal colonization of C. perfringens and pH levels in the gut of broilers 

orally challenged with C.perfringens.  Results from this investigation indicate that 

bismuth citrate at 100 ppm and 200 ppm caused a reduction (p < 0.05) in C. perfringens 

colonization and intestinal lesion development.  The addition of dietary lactose to 

bismuth citrate enhanced the effect of bismuth citrate on intestinal lesion development.  

These data suggest that bismuth citrate alone or in combination with dietary lactose will 

reduce intestinal lesion development in broilers with necrotic enteritis.  
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CHAPTER I 

INTRODUCTION 

 

The presence of avian and zoonotic pathogens is costly and difficult to control 

(Fussell, 1998).  These pathogens cost poultry producers millions of dollars in lost 

revenue.  The subclinical form of Clostridium perfringens’ associated necrotic enteritis 

(NE) causes a reduction in performance and overall health of poultry (Kaldhusdal and 

Lovland, 2000).  Recent estimations suggest that the subclinical form of NE cost the 

industry as much as 5 cents per bird or approximately $450 million/yr in the United 

States (Van der Sluis, 2000).  Escherichia coli is one of the main etiologic agents that 

cause inflammatory processes in chicks which often results in a downgraded or rendered 

carcass (Barnes et al., 2003).     

 One of the key preventative measures for reducing the incidence of these 

infectious agents includes an effective biosecurity program.  Biosecurity encompasses all 

measures that can or should be taken to keep disease (viruses, bacteria, fungi, protozoa, 

parasites), from a farm and to prevent the transmission of disease within an infected farm 

to a neighboring farm (Poss, 1998).  Major components of a biosecurity program include 

isolation of infected birds, traffic control, rodent and insect control, and effective 

cleaning and disinfection. 

 
____________ 
This thesis follows the style of Poultry Science. 
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 A disinfectant regimen is an important and inexpensive component of a 

biosecurity program.  Disinfectants kill microorganisms by membrane disruption,  

macromolecule dysfunction, and metabolic inhibition (Maillard, 2002).  Selection of a 

disinfectant depends on the chemical category and formulation, correct dilution or 

dosage, contact time, application surface, presence of organic matter, type and quantity 

of microorganisms, temperature, pH, and water hardness (Doerning, 1998).  The 

widespread use of disinfectants has prompted some speculation on the effectiveness of 

these chemicals.  Past research has shown variations in the efficacy of commercial 

disinfectants (Walker et al., 2002).  In the field, disinfectants are often diluted and stored 

in the back of pickup trucks for long periods of time.  Storage in this manner allows 

disinfectants to be exposed to extreme environmental conditions prior to their actual 

application.  Disinfecting agents have a limited lifespan after their initial dilution, and 

organic matter (fecal matter, fat, blood, protein), heat, sunlight, time, adulterants 

(antifreeze, windshield wiper fluid) can reduce efficacy significantly (Davison et al., 

1999; Ruano et al., 2001; Dvorak, 2005).  In addition to the effective use of disinfecting 

agents, alternative feed additives, such as bismuth compounds may be used to reduce or 

prevent disease in poultry production.      

For over 300 years, bismuth compounds have been used to treat gastric disorders 

in humans (Marshall, 1991).  Studies evaluating the antimicrobial effect of bismuth 

subsalicylate demonstrated that it (Manhart, 1990; Scarpignato and Pelosini, 1999) is 

effective in the treatment of traveler’s diarrhea, and treatment of gastritis and ulcer 

disease in humans caused by Helicobacter pylori (Gorbach, 1990).  There is limited 
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research evaluating the administration of bismuth compounds in poultry. The similarities 

of Helicobacter pylori to Campylobacter species, prompted Farnell and coworkers 

(2006) to evaluate the effect of bismuth compound treatments on Campylobacter 

colonization in broilers.  They found that bismuth citrate and colloidal subcitrate reduced 

(p < 0.05) cecal colonization by Campylobacter in broilers.  

Additionally, bismuth salts are involved in gut protection (Larsen et al., 2003).  

Following treatment of bismuth subcitrate of a duodenal ulcer, Moshal and colleagues 

(1979) microscopically observed an increase in mucus secretory granules in duodenal 

epithelial cells, suggesting that there is an enhancement of mucus secretion following 

administration.  The surface of the chicken gastrointestinal (GI) tract is covered by a 

layer of mucus which is essential in the protection of the GI tract against gut 

colonization of potential pathogens.  Problems occur when there are changes in the 

intestinal mucosa, which possibly lead to an increase in the incidence of necrotic 

enteritis.  The administration of bismuth compounds may be used to prevent damage to 

intestinal mucosa subsequently reducing necrotic enteritis in poultry.    

Lactose is a naturally occurring disaccharide found in mammalian milk.  An 

investigation in day of hatch broilers found that dietary lactose and probiotics decreased 

cecal pH and increased concentrations of bacteriostatic volatile fatty acids (Corrier et al., 

1990a).  This decrease in pH can be conducive to the activity of bismuth compounds.  

CBS forms a precipitate (an active metabolite) at pH levels less than 5, facilitating the 

infiltration of bismuth into human gastrointestinal microvilli (Wagstaff et al., 1988).  A 

study conducted by Tasman-Jones and colleagues (1987) found that as pH increases, 
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adherence of CBS to gut epithelium decreases.  The addition of lactose in diets may also 

promote gut integrity.  Past research has shown that the addition of lactose to the diet or 

drinking water results in a reduction of Salmonella in the lower intestine, promotes 

growth, and reduces chick mortality (Corrier et al., 1990b; Hinton et al., 1990).  

McReynolds and coworkers (2007) recently published a paper examining the effects of 

dietary lactose on the disease condition of Clostridium perfringens’ associated necrotic 

enteritis in broilers.  They found that birds fed lactose had significantly lower lesion 

scores, suggesting that addition of lactose may have protective. Similar to lactose, 

organic acids have potential antimicrobial effects against pathogenic organisms 

(Barnhart et al., 1999).    

Organic acids can change the pH of the gut, creating an inhospitable environment 

for some microorganisms (Ricke, 2003).  Citric acid is a weak organic acid and it has 

been speculated to cause a decrease in the pH of intestinal contents by contributing 

hydrogen ions to the intestinal environment in chickens (Brown and Southern, 1985).  

Similar to lactose, citric acid may also have anti- Salmonella properties.   
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In an evaluation of potential disinfectants for preslaughter broiler crop 

decontamination, researchers found that citric acid at or greater than 10% caused a 

reduction in Salmonella in a simulated crop environment, suggesting that citric acid may 

have antimicrobial effects (Barnhart et al., 1999).   

Protection against the harmful effects of poultry pathogens has relied on vaccines 

and antibiotics (Lowry et al., 1997).  Due to the reduced usage of in-feed antibiotic 

growth promoters, alternative and inexpensive methods should be researched (Van 

Immerseel, 2004).  The addition of bismuth compounds may have the potential to 

promote better animal health by reducing the colonization of pathogens.  In addition, the 

appropriate use of a disinfectant has the potential to save the industry a substantial 

amount of money.  This research investigated the effects of long term storage, 

temperature, and organic matter on disinfectants commonly used by a commercial 

poultry integrator.  This work also investigated the effects of bismuth citrate, lactose or 

citric acid in broilers challenged with Clostridium perfringens by evaluating colony 

forming units and intestinal lesion development. 
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CHAPTER II 

REVIEW OF LITERATURE 

 

Biosecurity 

An outbreak of a disease can lead to animal and production losses, expenses from 

veterinary services, quarantine and/or the cost of disinfection (Clark, 2002).  The 

greatest threat from a disease occurs when introducing naïve flocks to a farm or from 

birds that have been in contact with other animals (Clark, 2002).  Another risk includes 

traffic to and from the farm (personnel, vehicles, equipment, veterinarians, vaccination 

crews, and service representatives) which could carry a pathogen onto a farm (Clark, 

2002).  Rodents, infected or wild birds, insects, wind, water and improperly disposed 

carcasses are other vectors exposing farms to infection by pathogens (Carey et al., 1999).   

To prevent disease exposure, biosecurity should be practiced to control levels of 

pathogens in animal facilities (Ruano et al., 2001).  Biosecurity includes protocols and 

procedures put in place within an establishment to prevent the spread of pathogens 

between farms and between buildings within a farm (Poss, 1998).  Physical barriers to 

farm entries, shower in/out facilities, and permanent on farm work forces are examples 

of procedures implemented to minimize disease exposure (Dekich, 1998).  Other 

procedures include the construction of on-premise roads and walkways, which should be 

designed with all-weather materials to reduce the transport of organic matter on 

boots/shoes or vehicle tires (Carey et al., 1999).  To further reduce the potential spread 

of disease-causing organisms, on-farm features should be designed to direct personnel, 
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vehicles and poultry from youngest birds to oldest birds, from “clean” areas to “dirty” 

areas (Carey et al., 1999).  Spray wash stations are often used to spray the undercarriage 

and tires of vehicles entering and leaving a farm with disinfectant to prevent the 

transmission of pathogens on or off the farm.  Disinfectants act on microorganisms at 

several target sites resulting in membrane disruption, macromolecule dysfunction, and 

metabolic inhibition (Maillard, 2002).  For an effective disinfection protocol, 

consideration should be given to the microorganism being targeted, the characteristics of 

the disinfectant, and absence of organic matter (Dvorak, 2005).  If a sound on-farm 

biosecurity program is followed, growers protect their economic interests, the local 

economy and the national poultry industry (Carey et al, 1999).  Insufficient biosecurity 

may result in an epidemic affecting multiple flocks and/or growers, resulting in millions 

of dollars in eradication efforts (Carey et al., 1999). 

Disinfectants 

 Disinfectants are commonly used in agricultural settings.  They are an essential 

part of infection control practices and aid in the prevention of disease outbreaks on farms 

(Dvorak, 2005).  Currently there are over 5000 antimicrobial products registered with 

the Environmental Protection Agency.  Disinfecting agents are described by the 

Environmental Protection Agency as “antimicrobial pesticides”, which are substances or 

mixtures of substances used to destroy or suppress the growth of harmful 

microorganisms such as bacteria, viruses, or fungi on inanimate objects and surfaces 

(EPA, 2008).  Antimicrobial products may contain over 275 active ingredients and are 

available in several different applications (sprays, liquids, concentrated powders, and 
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gases).  The main uses of antimicrobial pesticides are to disinfect, sanitize, reduce or 

mitigate growth or development of microbiological organisms, and/or protect inanimate 

objects (i.e. floors and walls), industrial processes or systems, surfaces, water, or other 

chemical substances from contamination, fouling or deterioration caused by bacteria, 

viruses, fungi, protozoa, algae, or slime (EPA, 2008).  Antimicrobial activity can be 

influenced by many factors such as formulation effects, presence of organic material, 

synergy, temperature, and dilution (McDonnell and Russell, 1999).   

Antimicrobial products include sanitizers, disinfectants, and sterilants (Dvorak, 

2005).  Information regarding the products chemistry, efficacy, toxicity to humans, 

plants, and animals must be evaluated and submitted to the agency before the product 

can be utilized.  

 Sterilizers or sporicides are generally used to completely kill or eliminate all 

forms of microbial life (fungi, viruses, bacteria, and their spores).  Steam under pressure, 

dry heat ovens, low temperature gas, and liquid chemical sterilants are types of 

sterilizers used (EPA, 2008). 

Disinfectants describe a product applied to the surface of an object to destroy or 

inactivate fungi and bacteria (Quinn, 2001).  Disinfectants can be sporostatic but are not 

necessarily sporicidal (McDonnell and Russell, 1999).  Antiseptics refer to the 

application to the surface of living organisms or tissues to prevent or stop the growth of 

microorganisms by inhibition or by killing them (Ewart, 2001).  Specific information on 

the characteristics and specific use of each disinfectant can be found on the product 

label.   
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The product labels of these disinfectant agents include important information 

regarding the proper use and hazards of the chemical.  When a disinfectant is chosen for 

use in a biosecurity program, strict attention should be given to the proper use of a 

product regarding its application, effectiveness, and hazards (Dvorak, 2005).  Other 

information found on product labels include the claim of disinfection or germicidal 

activity against a specific microorganism (i.e. Gram negative or Gram positive bacteria), 

and its effectiveness of product under certain conditions such as dilution with hard water 

or in the presence of organic matter.  Labels also include active and inert ingredients, 

precautionary statements, a first aid section, environmental, physical or chemical hazards 

and directions for use. 

Disinfectant Testing 

The efficacy of disinfectants is regulated by an intricate system of interactions 

between the microorganisms in question, along with the conditions and the specific 

disinfectant under review.  General principles exist for disinfectant testing; these 

principles should be followed if useful information is to be obtained (Croshaw, 1981).  

Principles include the ability to yield information that can be interpreted in terms of 

practical use, report results that are repeatable and reproducible, and can be sufficiently 

controlled (Morgan-Jones, 1981).  It may be necessary to standardize all equipment and 

protocols accordingly through experimentation.  The primary function of any 

disinfectant is to destroy or irreversibly inactivate an unwanted microorganism.  There 

are multiple types of disinfectant testing protocols (Croshaw, 1981).  Tests can be placed 

into three main categories: tests that evaluate routine quality control of production 
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batches of a standard formulation (Rideal-Walker and other phenol coefficient tests), 

use-dilution tests which investigate a practical use-dilution for a disinfectant under 

certain defined conditions, and tests that study the efficiency of a disinfectant under 

simulated field conditions and uses (Morgan-Jones, 1981).  These tests consist of a 

suspension of microorganism being tested, followed by a defined concentration of 

disinfectant (Croshaw, 1981).  The disinfectant is dissolved in water of varying quality.  

The efficacy of these suspension tests was determined by calculating the difference 

between the initial microorganism concentration before the test and following the mixing 

of the suspension with the disinfectant.  Approved and accepted methods of disinfectant 

tests can be found in the Association of Official Analytical Chemists (AOAC) (1984) 

handbook (Tomasino, 2005).   

Classification of Chemical Disinfectants 

The major classes of disinfectants include alcohols (ethyl alcohol, and isopropyl 

alcohol), aldehydes (formaldehydes, paraformaldehyde, and gluteraldehyde), alkalis 

(sodium or ammonium hydroxide, and sodium carbonate), biguanides (chlorhexidine), 

halogens (hypochlorite, and iodine), oxidizing agents (hydrogen peroxide, and 

peroxyacetic acid), phenolic compounds, and quaternary ammonium compounds (QAC) 

(Dvorak, 2005).  Disinfectant classes commonly used in commercial agriculture include 

halogens (bleach and iodine compounds), oxidizing agents (Virkon-S®), phenols 

(TekTrol®, Pine Sol®), quaternary ammonia compounds (Roccal®) and chlorhexidine 

(Nolvasan®) (Dvorak, 2005). 
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Alcohol compounds are fast acting and highly effective against both Gram 

positive and Gram negative bacteria, but have no residual activity.  Several alcohols 

have been shown to be effective antimicrobials; ethyl alcohol (ethanol, alcohol), 

isopropyl alcohol (isopropanol, propan-2-ol) and n-propanol (McDonnell and Russell, 

1999).  Alcohols are limited in virucidal activity and are ineffective against spores.  

Other disadvantages of using alcohol include reduced efficacy in the presence of organic 

matter, flammability, and rapid evaporation (Dvorak, 2005).  Ewart (2001) explained 

that alcohols affect microorganisms by denaturing proteins, which cause membrane 

damage and cell lysis. High concentrations (95%) of alcohol are less effective, because 

some degree of water activity is required to denature proteins; a concentration of alcohol 

consisting of 70-90% is optimal for bactericidal activity (Joklik, 1992). 

Aldehydes are highly effective disinfectants, which act on a broad spectrum of 

microbes (bacteria and their spores, fungi, and viruses) (McDonnell and Russell, 1999).  

Examples of aldehydes include formaldehyde and gluteraldehyde.  Aldehydes achieve 

bactericidal action by denaturing proteins and disrupting nucleic acids (Joklik, 1992; 

Ewart, 2001).  Aldehydes are highly irritating, toxic to animals, and are potentially 

carcinogenic (Quinn, 2001).   

Chlorhexidine compounds are the most widely used antimicrobial product in 

disinfecting animal premises (McDonnell and Russell, 1999).  Chlorhexidine compounds 

kill microorganisms by damaging outer cell layers, and subsequently attacks the 

bacterial cytoplasmic or the yeast plasma membrane (Quinn, 2001).  This compound has 

a broad antibacterial spectrum, but it is limited in its effectiveness against viruses, spore 
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forming bacteria, mycobacterium, and fungi (Quinn, 2001).  Chlorhexidine compounds 

can only function in a limited pH range of 5-7 and are easily inactivated by soaps, 

detergents, and organic matter (McDonnell and Russell, 1999). 

Halogen compounds are broad spectrum compounds that that have a low toxicity, 

low cost, and are easy to use (Dvorak, 2005).  These compounds lose efficacy over time 

and are ineffective at temperatures above 110° F or pH levels greater than 9.  Halogen 

compounds lose activity quickly in the presence of organic debris, sunlight and some 

metals (Shulaw et al., 2001).  Chlorine and iodine based compounds are the most 

significant microbial halogens used in disinfection (McDonnell and Russell, 1999).   

Chlorine compounds function by destroying the cellular activity of proteins 

(Maris, 1995).  They are considered broad spectrum, and are efficacious against bacteria, 

enveloped and non-enveloped viruses, mycobacterium and fungi (Dvorak, 2005).  At 

elevated concentrations these compounds can be sporicidal (Kennedy et al., 2000; 

Grooms, 2003).  The most widely used chlorine based compounds are sodium 

hypochlorite (household bleach), and chlorine dioxide (McDonnell and Russell, 1999).  

Iodine compounds are bactericidal, fungicidal, tuberculocidal, virucidal and 

sporicidal (Jeffrey, 1995).  Iodines function by denaturing proteins associated with the 

enzymatic systems of microorganisms (Dvorak, 2005).  Iodine agents are inactivated by 

quaternary ammonium compounds and organic debris (Shulaw et al., 2001). 

Oxidizing agents are broad spectrum, peroxide based compounds that function by 

attacking the basic structural cell components, including lipids, proteins, and DNA 

(Maris, 1995).  Peroxygen compounds are considered effective on hard surfaces and 
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equipment.  Virkon-S® (potassium peroxymonosulfate and sodium chloride) is a 

peroxygen molecule, organic acid, and surfactant combination, with a wide microbial 

spectrum of activity and some efficacy in the presence of organic material (Dvorak, 

2005). 

Phenolics are broad spectrum disinfectants that function by denaturing proteins 

and inactivating membrane-bound enzymes to alter cell wall permeability of 

microorganisms (Dvorak, 2005).  Phenols can be a coal-tar derivative or a synthetic 

formulation that usually have a milky or cloudy appearance when added to water, as well 

as a strong pine odor (Kennedy et al., 2000; Shulaw et al., 2001; Grooms, 2003).  

Phenols are typically formulated in soap solutions to increase their penetrative powers 

and are considered bactericidal, tuberculocidal, fungicidal, and virucidal for enveloped 

viruses (Jeffrey, 1995).  Phenols are not effective against non-enveloped viruses and 

spores.  Phenols do maintain activity in hard water and in the presence of organic matter 

and have some residual activity after drying.  

 Quaternary ammonium compounds are cationic detergents that are attracted to 

the negatively charged surfaces of microorganisms, where they irreversibly bind 

phospholipids in the cell membrane and denature proteins impairing permeability 

(Maris, 1995).  Quaternary ammonium compounds are highly effective against Gram 

positive bacteria, and are effective against Gram-negative bacteria, fungi and enveloped 

viruses.  They are not effective against non-enveloped viruses or mycobacteria and are 

considered sporostatic but not sporocidal (Kennedy et al., 2000; Grooms, 2003).  They 

are more active at a neutral to a slightly alkaline pH but lose their activity at a pH of less 
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than 3.5.  These compounds are easily inactivated by inorganic matter, detergent, soaps 

and hard water (Dvorak, 2005). 

 The use of heat, light and radiation may also be used to mitigate or eliminate 

microorganisms in the environment, in addition to chemical disinfectants.  Heat is one of 

the oldest physical controls against microorganisms and is considered a reliable method 

of sterilization (Joklik, 1992).  Moist heat (autoclave and steam) and dry heat (flame and 

baking) can both be used for inactivating pathogens but moist heat is more effective than 

dry heat (Quinn, 2001).  Sunlight and ultraviolet light can have a damaging effect on 

pathogens and may be used as a method for inactivating viruses, mycoplasma, bacteria 

and fungi (Dvorak, 2005).  The efficacy on ultraviolet light sterilization is limited to 

surface contact (Ewart, 2001).  

Disinfectant Selection 

The overall health and safety of humans and/or animals is of primary concern 

when a disinfectant is chosen for an application.  All chemical disinfectants have some 

level of hazard and can pose a threat to human and animal health (aldehydes, phenols, 

sodium hydroxide) (Dvorak, 2005).  Potential water discharge is another factor that 

should be considered when selecting a disinfectant.  Disinfecting chemicals can be 

harmful for plants and aquatic life, such as sodium carbonate, hypochlorites, and 

phenolics (Quinn, 2001).    

In addition to human and/or animal hazards there exist multiple factors that 

should be considered when a disinfectant is chosen for a biosecurity program.  The 

appropriate disinfectant concentration is important to achieve the best results for each 
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situation.  Some products may have more than one dilution depending on the situation. 

One dilution will kill the target organism while a weaker dilution will prevent 

multiplication of the organism (Ewart, 2001).  The product label contains all necessary 

information regarding the appropriate dilution for the farm operation.   

There are many ways to apply disinfectants, including spraying, brushing, and 

fumigation or wiping (EPA, 2008).  The appropriate contact time is important to the 

effectiveness of a disinfectant (Ramesh et al., 2002).  The contact time can be found on 

the product label clearly indicating the minimum contact time for optimal effectiveness 

against the target organism.  The area being disinfected should be thoroughly soaked 

with the disinfectant to avoid drying or evaporation before the end of the recommended 

contact time (Ruano et al., 2001).  The stability and storage of the disinfectant must also 

be monitored.  Disinfectants, such as sodium hypochlorite lose efficacy when stored 

over long periods in a diluted form (Dvorak, 2005).  

Environmental Considerations for Disinfectant Application 

  The ideal disinfectant would work against many types of microorganisms, in all 

types of conditions.  Disinfectant effectiveness depends on the chemical category and 

formulation, correct dilution or dosage, contact time, absence of organic matter, target 

microorganism, temperature, pH, and water hardness (Doerning,1998).  Organic matter 

(blood, fecal matter, litter) provides a physical barrier that protects microorganisms from 

contact with the disinfectant (Dvorak, 2005).  Iodine and chlorine based disinfectants 

have been shown to be neutralized in the presence of debris and organic matter (Ewart, 

2001).  The type of surface to be disinfected can have a great impact on the effectiveness 
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of a disinfectant (Dvorak, 2005).  Porous, uneven, cracked, pitted surfaces, wood and 

earthen floors, are difficult to disinfect.  An ideal surface to be disinfected is smooth and 

non-porous (Ewart, 2001).  Bacteria present on metal or other surfaces may form a 

biofilm, which is a slimy layer of an organic polymer matrix, adhering to a surface, in 

which microbes are embedded.  Coops used to transport poultry to the processing plant 

may provide a source of contamination if not properly disinfected (Ramesh et al., 2002).  

If these coops are not cleaned and decontaminated efficiently, microorganisms deposited 

from the previous trip may contaminate subsequent flocks.  Carr and colleagues (1999) 

found that a number of disinfectants were not as effective against Salmonella, possibly 

due to organic matter on the coops and protection provided by a biofilm.  Ramesh and 

colleagues (2002) published a paper that examined the effects of thirteen commercial 

disinfectants for their capacity to destroy Salmonella, in the presence of organic matter, 

against a Salmonella biofilm.  They found that of the thirteen disinfectants only sodium 

hypochlorite, sodium chlorite and alkaline peroxide compounds were effective in 

reducing Salmonella. 

Moderate temperatures (68°F) allow for the best action of disinfectants.  Dvorak 

(2005) stated that elevated temperatures may have the potential to increase the 

evaporation rate of the disinfectant which could have a negative effect on contact time.  

Water containing calcium and magnesium, is referred to as hard water. Calcium and 

magnesium can complex with cleaning compounds, leading to residue buildup which 

could negatively affect disinfectants (Dvorak, 2005).   
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Ruano and colleagues (2001) evaluated several commercially available 

disinfectants used by the poultry industry.  They found that quaternary ammonium and 

phenolic compounds, mixed at the manufacturers’ recommended concentration, were 

efficacious in the absence of organic matter against Salmonella Enteriditis and 

Staphylococcus aureus.  However, they did not enumerate the cells.  Product efficacy 

was determined by the presence or absence of microbial growth by observation of 

enrichment broth turbidity.  In prior research, Rodgers and colleagues (2001) examined 

several commercially available disinfectants against Staphylococcus aureus.  The data 

presented illustrated that when the disinfectants were mixed at the manufacturer’s 

recommended concentrations, all the disinfectants were bactericidal against 

Staphylococcus aureus.  However, with the addition of fluff, disinfectants were not as 

effective.  Bacteria required an increase in contact time with the disinfectant and/or 

higher disinfectant dosage, in the presence of organic matter (Ruano et al., 2001).  

Many antimicrobial products are ineffective against spore-forming bacteria (Dvorak, 

2005).  Clostridium perfringens is an important bacterium negatively affecting the 

poultry industry.  Due, to the ineffectiveness of disinfectants against this organism, 

alternative control methods need to be investigated. 
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Clostridium perfringens 

 Clostridium perfringens is the most significant cause of necrotic enteritis in 

poultry (Songer, 1996).  Clostridium perfringens is a ubiquitous Gram-positive 

anaerobic spore-forming rod-shaped bacterium that is encapsulated and non-motile, 

producing multiple toxins and enzymes that affect the health of poultry flocks (Van 

Immerseel et al., 2004).  Strains of C. perfringens are classified based on their 

production of toxinotypes; A, B, C, D, and E.  These toxinotypes produce toxins α 

(alpha), β (beta), έ (epsilon), and ι (iota), respectively (Songer, 1996; Petit et al., 1999).  

Clostridium types A and C are responsible for lesions and symptoms affecting poultry 

(Songer, 1996).  Clostridium type A strains produce alpha toxins, while Clostridium type 

C strains produce both alpha and beta toxins (Petit et al., 1999).  Toxinotype A is a 

phospholipase C sphinagomyelinase which hydrolyzes phospholipids and promotes 

membrane disorganization, exhibit hemolytic, necrotic and vascular permeabilizing and 

platelet aggregating properties, leading to death (Titball, 1993).  The exact mechanisms 

of beta toxins are largely unknown, but they are thought to stimulate hemorrhagic 

necrosis of the intestinal mucosa.  Clostridium perfringens causes necrotic enteritis, 

ulcerative enteritis, necrotic dermatitis, botulism, necrotic hepatitis and 

cholangiohepatitis (Williams, 2005).  Onset of these diseases occur when a high 

frequency of adhesion by C. perfringens result in damage to the intestinal mucosa 

(Williams, 2005).   
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Clostridium Perfringens in Poultry 

Clostridium perfringens is a natural inhabitant of the chicken’s gut, but onset of 

the disease does not occur unless predisposing factors are present.  Colonization of C. 

perfringens is an event that occurs early in the life of poultry (Craven et al., 2000, 2001).  

The presence of C. perfringens in the poultry environment is high.  It can be found in the 

dust, soil, feces, feed, poultry litter, eggshell fragments, fluff and in the intestinal tract of 

poultry (Craven et al., 2001).  Feces of wild birds may also contain elevated numbers of 

C. perfringens which could further introduce the organism to poultry production 

facilities (Craven et al., 2000).  When evaluating environmental samples on poultry 

farms, C. perfringens presence was detected on wall swabs (53%), fan swabs (46%), fly 

strips (43%), dirt outside the entrance (43%) and boot swabs (29%), indicating that the 

microorganism is ubiquitous throughout the environment (Craven et al., 2001). 

Predisposing Factors for Necrotic Enteritis 

 It has been reported that C. perfringens is a naturally occurring bacteria in the 

environment of poultry production facilities.  To cause the signs and symptoms of 

necrotic enteritis one or multiple predisposing factors may need to be present, such as 

damage to the intestinal mucosa.  Intestinal damage, caused by coccidial pathogens, can 

result in the release of growth factors that may be utilized by C. perfringens in turn 

causing extensive proliferation in the lumen (Boyd et al., 1948; Petit et al., 1999).  It has 

been documented that broiler chicks inoculated with sporulated Eimeria species coupled 

with the administration of C. perfringens contaminated feed had increased mortality 

when compared to contaminated feed alone (Van Immerseel et al., 2004).  Additionally, 
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physical damage, possibly caused by litter-eating or fibrous material in the diet, may 

modify the mucosal lining (Williams, 2005).    

 It has been postulated that diet composition has a direct influence on the onset of 

necrotic enteritis in broilers.  Diets rich in rye, wheat and barley in comparison to diets 

rich in corn, have high levels of indigestible, water-soluble non-starch polysaccharides 

(Branton et al., 1987; Ridell & Kong, 1992; Kocher, 2003).  These diets are known to 

increase the viscosity of digesta, decreasing gut transit time, and have been shown to 

lead to an increase of intestinal anaerobic bacteria (Kocher, 2003).  Additionally, slower 

passage rates may increase the nutrient availability of C. perfringens (Williams, 2005).  

When broilers were fed corn-based C. perfringens contaminated feed for three 

consecutive days compared to broilers fed diets with high amounts of wheat, rye or 

barley, overall mortality ranged from 0-12% in the corn based diet compared to 26-35% 

in the wheat, rye or barley diets (Ridell & Kong, 1992). 

 Another possible factor associated with feed can also be the feed form.  It’s been 

documented that there was an increase in mortality associated with finely ground rations 

when compared to coarsely ground feed (Branton et al., 1987).  When birds were fed 

pellets instead of mash, Enberg and colleagues (2002) found that there was an increase 

in digestibility and a decrease in the number of C. perfringens in the intestine. 

 Diets high in protein, such as fishmeal, have been shown to increase numbers of 

ileal and cecal C. perfringens.  Bone meal has also been associated with an increase in 

risk of necrotic enteritis (Kocher, 2003). 
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 Immunosupression caused by exposure to infectious bursal disease, chicken 

anemia virus or Marek’s disease may increase the incidence of C. perfringens in birds 

(Williams, 2005).  McReynolds and colleagues (2004) developed a model for studying 

necrotic enteritis in broilers. The method consists of manipulating dietary components, 

which included feeding broilers a 55% wheat diet, along with administering a 

commercial coccidia vaccine and a commercial bursal disease vaccine, and challenging 

birds with C. perfringens.  Results from this study found that there was an increase in C. 

perfringens in all treatment groups when compared to the negative controls.  

 Mucin is one of the first lines of defense against bacterial colonization.  Altering 

mucin characteristics can affect the colonization of bacteria in the gut of a chicken, such 

as Campylobacter jejuni (Fernandez et al., 2000).  It is possible that positively affecting 

mucin development in the chicken will inhibit C. perfringens colonization in the gut.   

Mucin 

 Mucin is described as polymeric glycoproteins that comprise the main 

component of the mucus layer that covers the epithelium of the gastrointestinal tract at 

the interface between the external environment of the gut lumen and the gut epithelium 

(Montagne et al., 2004).  Primary functions of mucus are to protect the epithelium from 

chemical, enzymatic, physical, and bacterial damage (Montagne et al., 2004). 

 Mucin functions as an attachment site and nutrient source for commensal 

bacteria, viruses, and parasites (Basbaum et al., 1999).  Mucin does not kill bacteria, per 

say, but forms a viscoelastic gel (mucus) that traps bacteria along with other 

contaminants (Basbaum et al., 1999).  Mucin functions to lubricate the gut epithelium, 
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protect the epithelium against acidic environments, protect against endogenous and 

bacterial proteases, and perform as a selective diffusion barrier permeable to nutrients 

(Montagne et al., 2004).  

 Bismuth compounds have been shown to modify mucin properties in humans, to 

effectively reduce Helicobacter pylori (Slominany et al., 1990).  These compounds have 

also been demonstrated to increase mucin production, decrease acidic mucin and inhibit 

enzymes produced by Helicobacter pylori to degrade gastric mucin (Lee, 1991).    

Bismuth 

 Bismuth (atomic number 83, weight 209) is the heaviest nonradioactive element 

found on the periodic table (Marshall, 1991).  Bismuth salts originate from bismuth 

nitrate, which is subsequently produced by the action of nitric acid on free bismuth or 

bismuth ores.  Further, the separation from the acid causes hydrolyses of bismuth nitrate 

to bismuth subnitrate, which reacts in solution with soluble basic salts forming bismuth 

subcarbonate, subgallate, subsalicylate or subcitrate.  Due to the insoluble nature of 

bismuth in the presence of water, bismuth salts are considered effective following 

entrance into the stomach, an acidic environment.  Upon entrance into the stomach, 

bismuth salts interact with hydrochloric acid forming a precipitate (an active metabolite).  

Frequently utilized forms of bismuth compounds include bismuth subsalicylate and 

bismuth subcitrate (Marshall, 1991).  Sox and Olson (1989) investigated the binding and 

killing of Escherichia coli by bismuth subsalicylate and found that bismuth subsalicylate 

was able to bind and kill the organism.  In 1999, Mahony and coworkers evaluated 

antimicrobial activities of bismuth compounds against Clostridium difficle.  Evaluations 
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revealed that of the fourteen compounds tested, eight of the compounds showed 

significant antibacterial activity against Clostridium difficle.  Specific brand names of 

bismuth compounds include Tritec, (Glaxo Wellcome, Research Triangle Park, NC), 

Pepto-Bismol (Proctor & Gamble, Cincinnati, OH) and De-Nol (Tri-Med Distributors 

P/L, Subiaco, Western Australia).  Bismuth salts are also involved in gut protection 

(Larsen et al., 2003).  Following bismuth citrate treatment of a duodenal ulcer, Moshal 

and colleagues (1979) microscopically observed an increase in mucus secretory granules 

in duodenal epithelial cells, suggesting that there is an enhancement of mucus 

glycoprotein secretion following bismuth subcitrate administration. Past research has 

shown that bismuth subsalicylate has antimicrobial activity (Manhart, 1990; Scarpignato 

and Pelosini, 1999); is effective in the treatment of traveler’s diarrhea and has also been 

used to treat gastritis and ulcers caused by Helicobacter pylori (Gorbach, 1990).  

Similarly, bismuth subcitrate has been used to treat peptic ulceration (DuPont et al., 

1987; Wagstaff et al., 1988).  Bismuth compounds have been used effectively to reduce 

Helicobacter pylori in humans. These bacteria have morphological, physiological, and 

biochemical similarities to Campylobacter jejuni (Slomiany et al., 1990).  Farnell and 

coworkers (2006) evaluated whether bismuth citrate or colloidal bismuth subcitrate, 

would reduce Campylobacter jejuni in broilers.  Data from this study found that cecal 

Campylobacter colonization was reduced when birds were fed these compounds.  It is 

possible that bismuth compounds may also reduce C. perfringens. To further enhance 

the effect of bismuth compounds acidifiers such as lactose or citric acid may be used to 

decrease the avian intestinal pH and improve efficacy of the compound.  
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Lactose 

 Lactose is a naturally occurring disaccharide found in mammalian milk.  Several 

past investigations have shown that the addition of lactose to the diet or drinking water 

causes a reduction of Salmonella colonization in the lower intestine of chicks, promoting 

growth and reducing mortality (Corrier et al., 1990a; Hinton et al., 1990).  An 

investigation in day-of-hatch chicks, inoculated with Salmonella Typhimurium, found 

that providing dietary lactose with normal cecal flora, decreased cecal pH, and increased 

the concentrations of bacteriostatic volatile fatty acids (Corrier et al., 1990a).  The 

normal pH range in the intestinal tract of the chicken varies from 6.0 - 7.4.  It has been 

hypothesized that the addition of lactose to the diets of chickens lowers the pH level due 

to fermentation of lactose by normal microflora in the intestine (Hinton et al., 1990).  

Facultative and obligate anaerobes found in the large intestine ferment lactose and 

produce byproducts which may lower pH in the intestine, as lactose is not readily 

absorbed by chickens (Hinton et al., 1990).  A reduction in pH may enhance the activity 

of bacteriostatic volatile fatty acids, and reduce pathogen colonization.  

Along with pH decreases, lactose may also enhance intestinal integrity.  In recent 

studies, when the effects of dietary lactose on the disease condition of C. perfringens’ 

associated necrotic enteritis was evaluated, scientists found that dietary lactose can 

significantly alter the severity of intestinal lesion development in broilers (McReynolds 

et al., 2007).  They determined that when birds were fed a control diet that 100% had 

signs of clinical intestinal lesion development when compared with 70% of the birds fed 

a 2.5% lactose diet.  This research compares similarly to a study conducted by Takeda 
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and coworkers (1995), who evaluated the effects of 2 or 10% dietary lactose on the 

reduction of C. perfringens in the ceca.  They found that there was a significant 

reduction of bacteria in the ceca, presumably from the fermentation of lactose.  

Organic Acids 

 Organic acids are used as food additives and preservatives for preventing food 

deterioration (Ricke, 2003).  In poultry, organic acids are generally used to improve 

nutrient utilization in the feed.  However, organic acids may also possess antimicrobial 

properties.  It has been hypothesized that the undissociated form of organic acids are 

easily able to penetrate the lipid membrane of the bacterial cell.  Following 

internalization, the organic acid dissociates into anions and protons (Deyner and Stewart, 

1998).  This causes the cytoplasm of the bacterial cell to utilize excessive energy to 

maintain a near neutral pH, which may result in depletion of cellular.  Other speculations 

of the antibacterial activity include the interference with nutrient transport, cytoplasmic 

membrane damage resulting in leakage, disruption of outer membrane permeability, and 

influencing macromolecular synthesis (Deyner and Stewart, 1998). 
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Typically bacteria have optimal pH levels in which they favor for survival and 

growth.  Acidic disinfectants may change the pH of the gut environment, making it 

detrimental to microorganisms (Ricke, 2003).  Acidic disinfectants, such as citric acid 

function by destroying the bonds of nucleic acids and precipitating proteins (Maris, 

1995).  In chicks, citric acid may decrease the pH of the intestinal lumen contents by 

contributing hydrogen ions to the intestinal environment (Brown and Southern, 1985).  

Researchers found a reduction in Salmonella recovery, following administration of citric 

acid (10%) in the gut (Barnhart et al., 1999).  

Conclusion  

We expect that by illustrating the significance of disinfectant misuse in the field 

that biosecurity and sanitation programs may be improved.  The objective of this 

research is to determine if temperature, storage, or organic matter negatively affects 

disinfectants.  We will also investigate the effect of bismuth citrate, lactose or citric acid 

on necrotic enteritis in broilers. Intestinal lesion development of birds orally challenged 

with C. perfringens and intestinal C. perfringens colonization of the avian gut will be 

evaluated in these studies.  These data will be utilized to help reduce incidence of 

foodborne pathogens and avian diseases through the effective use of these disinfectants 

and products.  
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CHAPTER III 

EVALUATION OF DISINFECTANTS COMMONLY USED BY THE POULTRY 

INDUSTRY UNDER SIMULATED FIELD CONDITIONS 

 

Introduction 

Poultry diseases are costly to the poultry industry and are difficult to control 

(Fussell, 1998).  During the last 30 yr, avian influenza (AI) has been introduced into the 

United States multiple times.  Following outbreaks, poultry facilities are exceptionally 

difficult and expensive to clean, sanitize and disinfect.  An outbreak of exotic Newcastle 

disease in California in 2002, cost $170 million dollars to eradicate (Hietala et al., 2005).  

The magnitude of this outbreak affected 21 poultry complexes, thousands of 

noncommercial entities (aviaries, rehabilitation centers), and allied industries from 

California, Nevada, Arizona and Texas (Crossley et al., 2005).  Laryngotracheitis, 

chicken anemia virus and outbreaks of necrotic enteritis also cause increased morbidity 

and significant economic losses (Villegas, 1998; Van Immerseeel et al., 2004).  

Staphylococcus aureus infections increase morbidity and mortality from yolk sac 

infections and secondary infections affecting the bones, tendon sheaths, and leg joints 

(Moya, 1986).  It is estimated that 1.4 million humans contract salmonellosis, caused by 

Salmonella spp., costing $3 billion annually (Williams, 1988).  Salmonella continues to 

be a predominant foodborne pathogen worldwide; with poultry and poultry products 

considered as a common vehicle for this pathogen.    
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 The principal of disease prevention and control largely rely on biosecurity. 

Biosecurity includes protocols and procedures taken to prevent pathogens from infecting 

a farm and to prevent the transmission of disease by humans, insects, wild birds or other 

animals (Poss, 1998).  Physical barriers, shower facilities, and on farm labor are 

examples of procedures employed in a biosecurity program to minimize disease 

exposure (Dekich, 1998).  Tire wash stations and foot baths are also used to reduce 

pathogen transmission (Davison et al., 1999).  

Disinfectants are important components of a biosecurity program.  Classes of 

disinfectants include phenolics, quaternary ammonium compounds (QAC), halogens, 

oxidizing agents, chlorhexidine compounds, and alcohols (Smith and June, 1999; 

Dvorak, 2005).  The objective of disinfection application is to reduce microbial 

populations (Eckman, 1994).  Disinfectants act on microorganisms at several target sites 

resulting in membrane disruption, metabolic inhibition and or lysis of the cell (Denyer 

and Stewart, 1998; Maillard, 2002).  In the field, disinfectants are often mixed with 

water in storage tanks and exposed to extreme environmental conditions prior to their 

actual application.  Disinfectants may have a limited lifespan after their initial dilution 

and it’s likely that heat, sunlight, time, organic matter (OM), or adulterants reduce their 

efficacy. Quaternary ammonium, binary, phenolic, and chlorhexidine compounds are 

commonly used in agricultural settings.  In this experiment we used Salmonella 

Typhimurium and Staphylococcus aureus as our Gram negative and Gram positive 

organisms, respectively, commonly found in commercial poultry housing.  The objective 
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of this experiment was to compare the effects of time, temperature, or OM on 

representative disinfectants used by a commercial poultry integrator. 

Materials and Methods 

Bacterial Culture 

Staphylococcus aureus (SA) (American Type Culture Collection # 12600) and a 

primary poultry isolate of Salmonella Typhimurium (ST) were obtained from the USDA, 

Agriculture Research Service, Southern Plains Agricultural Research Center (College 

Station, TX). 

Staphylococcus aureus was cultured in tryptic soy broth (Difco Laboratories, 

Detroit, MI) for 12 h.  Cells were washed 3 times with Butterfield’s solution by 

centrifugation (3,000 x g) and the approximate concentration of the stock solution was 

determined spectrophotometrically (625 nm).  The bacterial stock solution was serially 

diluted and confirmed by colony counts of three replicate samples (0.1 mL per replicate) 

that were spread-plated on mannitol salt agar (Becton, Dickinson and Co, Sparks, MD) 

plates. 

Salmonella Typhimurium was cultured in tryptic soy broth (Difco Laboratories) 

for 8 h.  The cells were washed 3 times with Butterfield’s solution by centrifugation 

(3,000 x g) and the approximate concentration of the stock solution was determined 

spectrophotometrically (625 nm).  The stock solution was serially diluted and confirmed 

by colony counts of three replicate samples (0.1 mL per replicate) that were spread-

plated on brilliant green agar (Becton, Dickinson and Co) plates containing 25 ug/mL of 

novobiocin (Sigma Chemical Co., St. Louis, MO).  
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Disinfectants 

Four commercial disinfectants were diluted to the manufacturers’ recommended 

working concentrations with distilled water.  The QAC (RXVeterinary products, 

Grapevine, TX) consisted of 10% alkyl dimethyl ammonium chloride, and 10% dimethyl 

ethyl benzyl ammonium chloride (8.8 mL/3.8 L).  The phenolic compound (Biosentry 

Inc, Stone Mountain, GA) contained 7.92% O-phenylphenol, 9.97% O-benzyl-p-

chlorophenol, and 1.95% p-tert-amyphenol (14.7 mL/3.8 L).  The chlorhexidine 

compound (Fort Dodge Animal Health, Fort Dodge, IA) consisted of 2% chlorhexidine 

diacetate (29.5 mL/3.8 L).  The binary compound (Wilson Manufacturing Company, Inc, 

Jefferson, GA) consisted of 13.02% didecyl dimethyl ammonium chloride, and 8.68% 

alkyl dimethyl benzyl ammonium chloride (7.3 mL/3.8 L).  All cultures were carried out 

in 15 mL glass tubes in triplicate.  Disinfectant activity was determined by comparing 

bacteria growth across time and concentrations for each disinfectant evaluated.  Three 

independent experiments were conducted to evaluate the effect of time, temperature and 

OM on disinfectant efficacy. 

Serial Dilutions 

 We used a modified technique derived from the Association of Official 

Analytical Chemists (1984) use-dilution test # 955.15 adapted from Robison et al. 

(1988).  In each experiment, 0.5 mL of 108 cfu/mL of the test organism was added to 4.5 

mL of diluted disinfectant (in experiments 2 and 3 disinfectants were supplemented with 

appropriate concentrations of chicken litter (organic matter)) and briefly vortexed at the 

lowest setting for 3 s.  Following a 10 min incubation at room temperature, the tube was 
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vortexed and serially diluted into 4 subsequent tubes containing 4.5 mL of Butterfield’s 

solution.  One hundred microliters (µl) of each dilution tube was then spread plated onto 

selective agar.  In experiment 2, Dey Engley agar (Difco Laboratories) was used as 

disinfectant neutralizing agar medium for both organisms, and incubated at 37°C for 24 

h and enumerated.  Dey Engley neutralizing agar contains ingredients that limit any 

residual activity.  In preliminary studies (data not shown) we found that there was no 

difference in bacterial growth on Dey Engley agar compared to mannitol salt and 

brilliant green agar.     

Enrichment 

 Staphylococcus broth (Difco Laboratories) and tetrathionate broth (Difco 

Laboratories) were used as enrichment for SA and ST, respectively.  Dey Engley broth 

(Difco Laboratories) was used for both organisms in experiment 2.  One hundred 

microliters (µl) of solution was collected from the initial incubation tube containing 

Salmonella or Staphylococcus, and inoculated into their respective enrichment broth.  

After 24 h incubation of the enrichment broth, 100 µl of each culture in experiments 1 

and 3 were struck for isolation onto agar plates and incubated at 37°C for 24 h.  In 

experiment 2, following the 24 h incubation in enrichment broth, a color change 

indicated a positive sample.   
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Samples that were negative at the 1:100 dilutions but positive after culture in 

enrichment broth were assigned an arbitrary value of 1.50 log10 of indicator organism 

according to Corrier et al. (1993). 

Experimental Design 

 Experiment 1.  Triplicate working (n=3) concentrations of disinfectants were 

stored at 4, 20, 32 and 43°C.  Samples of diluted disinfectant were collected at 1, 2, 3, 4, 

6, 8, 12, 16, 20, 24, and 30 wk. 

Experiment 2.  Two trials (n=3) were conducted to evaluate the effect of OM on 

disinfectant efficacy of freshly made disinfectants stored at room temperature.  Chicken 

litter was used as the source of OM.  The litter was dried, finely ground and sterilized, 

prior to use.  The OM was added to an incubation tube at concentrations of 0, 0.75, 1.5 

or 3%. 

Experiment 3. Two trials (n=3) were conducted to determine the effect of time 

and OM on 30 wk old and freshly made disinfectants stored at room temperature.  

Organic Matter was added to each incubation tube at 1.5%. 
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Statistical Analysis  

 Statistical analyses were completed with version 11.0 for Windows, SPSS 

statistical software package (Chicago, IL).  Data in all experiments were analyzed via a 

one-way ANOVA using the GLM procedure due to the presence of significant 

interactions.  Differences were deemed significant at p < 0.05 and means were separated 

using a Duncan’s multiple range test.  Significant interactions were as follows: 

experiment 1 – disinfectant and temperature, experiment 2- disinfectant and OM, 

experiment 3- disinfectant and storage time.  

Results  

In experiment 1, the effects of time and temperature on disinfectant efficacy were 

evaluated.  Following incubation, all disinfectants retained total efficacy against ST for 

the duration of the experiment, except on the phenolic compound.  A reduction (p < 

0.05) of 5.5 logs of ST was observed with the phenolic compound after 6 wk of 

incubation at 43°C, and after 16 wk of incubation at 32°C compared to our stock 

concentration of ST (Fig. 3.1a,b).  This reduced efficacy observed with the phenolic 

compound was indicative of a positive enrichment sample.   
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Figure 3.1a.  Disinfectant efficacy following 30 wk of storage at treatment temperatures 
against Salmonella Typhimurium.  
 
a-b Means with different superscripts differ significantly (p < 0.05)  
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Figure 3.1b.  Time point when the phenolic compound reduced effectiveness against 
Salmonella Typhimurium.  
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All disinfectants remained effective against SA regardless of temperature (Fig. 3.2). 
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Figure 3.2.  Disinfectant efficacy following 30 wk of storage at treatment temperatures 
against Staphylococcus aureus.  
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In experiment 2, decreases (p < 0.05) in disinfectant efficacy were observed in 

response to increasing levels of OM (Fig. 3.3).  At 0% OM, all disinfectants reduced the 

stock concentration of the stock ST to undetectable limits.  Following addition of OM, 

we observed reductions in efficacy on all disinfectants in a dose dependent manner.  At 

0.75% OM, cfu reductions were 1.5, 2.7, 3.0, and 5.8 logs of ST for chlorhexidine, 

QAC, binary and phenolic compounds, respectively.  At 1.5% OM, cfu reductions were 

0, 1.0, 3.1 and 3.0 logs of ST for chlorhexidine, QAC, binary and phenolic compounds, 

respectively.  At 3% OM, cfu reductions were 0, 0.75, 1.5, and 3.0 logs of ST for 

chlorhexidine, QAC, binary and phenolic compounds, respectively.  The phenolic 

compound was the most resistant disinfectant, while the chlorhexidine was the most 

susceptible.  

All disinfectants were effective at a 0% (p < 0.05) concentration of OM against 

SA (Fig. 3.4).  The binary and phenolic compounds reduced (p < 0.05) the total SA 

population at 0.75% and 1.5% OM, when compared to QAC and chlorhexidine 

compound.   
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Figure 3.3  Effect of concentrations of organic matter (OM) on fresh disinfectants at 
room temperature against Salmonella Typhimurium.   
 
a-h Means with different superscripts differ significantly (p < 0.05)  
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Figure 3.4  Effect of concentrations of organic matter (OM) on fresh disinfectants at 
room temperature against Staphylococcus aureus.   
 
a-e Means with different superscripts differ significantly (p < 0.05)  
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At 3% OM, the phenolic compound reduced (p < 0.05) the total SA population, 

the chlorhexidine compound was ineffective, but the QAC and binary compound were 

able to reduce cfu of the stock solution of SA by 2.6 and 5.2 logs, respectively.  

In experiment 3, the consequences of long term storage on disinfectant efficacy 

in the presence of OM against ST were evaluated (Fig. 3.5 and 3.6).  The efficacy of the 

30 wk old QAC was significantly reduced when compared to freshly prepared 

disinfectant against ST (Fig. 3.5).  The 30 wk old phenolic compounds were 

significantly reduced in efficacy when compared to freshly prepared disinfectant against 

ST.  There were no significant differences between the fresh and 30 wk old solutions for 

the chlorhexidine and binary treatments against ST.  The fresh and 30 wk old 

chlorhexidine compound was ineffective against ST.  

 A significant decrease was observed in the efficacy of the 30 wk old QAC and 

binary compound against SA (Fig. 3.6), relative to freshly prepared solutions of the 

disinfectant.  There were no differences between fresh and 30 wk old phenolic and 

chlorhexidine compounds.   
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Figure 3.5.  Effect of 30 wk old disinfectants compared to fresh disinfectant at room 
temperature against Salmonella Typhimurium with the addition of 1.5% organic matter.   
 
a-e Means with different superscripts differ significantly (p < 0.05)  
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Figure 3.6.  Effect of 30 wk old disinfectants compared to fresh disinfectant at room 
temperature against Staphylococcus aureus with the addition of 1.5% organic matter. 
 
a-e Means with different superscripts differ significantly (p < 0.05)  
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Discussion 

Once disinfectants are diluted they are often stored and exposed to less than 

optimal storage conditions, such as ultraviolet light exposure or extreme temperatures 

prior to their actual application.  These conditions can negatively affect the antimicrobial 

properties of disinfectants.  The use of an inactive or outdated disinfectant may result in 

a false sense of security for production personnel (Shulaw et al., 2001).  Disinfectants 

should ideally be stored in a dark, cool location and undiluted (Dvorak, 2005).  This 

study demonstrates that working concentrations of disinfectants may be stored for up to 

30 wk at less than optimal temperatures without loss of effectiveness against ST and SA 

(Fig. 3.1a,b).  However, when exposed to OM, long term storage of disinfectants may 

have a detrimental effect relative to freshly prepared disinfectants. 

Disinfectants should be used following the cleaning and removal of excessive 

OM (blood, fecal matter, litter, fat, and hatchery fluff).  Organic matter provides a 

physical barrier that protects microorganisms from contact with the disinfectant (Dvorak, 

2005).   Foot baths should be placed in the entry way of houses in an effort to avoid 

transferring disease agents into the flock and to prevent trafficking of pathogens into 

vehicles and off the farm to other operations (Poss, 1998).  Insufficient removal of 

organic debris prior to stepping into the disinfectant solution, inappropriate contact time 

allowed for disinfectants, and irregular changes of disinfectant solution are typical 

problems associated with boot baths (Dvorak, 2005).  These problems increase the 

incidence of pathogenic microorganisms on footwear and affect the amount of debris 

accumulated in the foot bath solution.  Quinn (2001) suggests, similar to our 
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observations (Fig. 3.3 and 3.4), that phenolic compounds should be used for foot baths 

and any application where excessive OM may be present, due to their better efficacy in 

the presence of OM.  Rodgers and colleagues (2001) evaluated the effects of 18 

commercial disinfectants against SA.  They found that when disinfectants were mixed at 

the manufacturers’ recommended concentrations, all the disinfectants were bactericidal 

against SA.  However, with the addition of OM (fluff) the disinfectants were not as 

effective.  Payne and colleagues (2005) evaluated commonly used poultry house 

disinfectants on reducing total aerobic bacteria, yeast, mold, Campylobacter, and  

Salmonella populations on poultry house floors.  Results of their study suggest that 

application rate, disinfectant type, time of exposure and the presence of OM are all 

important considerations when including a chemical disinfectant application in a 

sanitation program.  An insufficient concentration of a disinfectant may cause organisms 

to enter a viable but noncultureable state (Roszak et al., 1983; Mckay, 1992) or possibly 

develop antimicrobial resistance (Gismondo et al., 1995).  
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Commercially available disinfectants are not all classified as broad spectrum. 

Multiple factors should be considered when a disinfectant is chosen, such as organic 

matter on the surface to be treated, presence of OM in the diluent, quality of water, 

corrosiveness or toxicity of the product, application method, temperature, porosity of the 

surface being treated, length of contact time, infectious organisms targeted, susceptibility 

of the infectious organisms and correct dilution (Prince et al., 1991; Quinn, 2001; 

Dvorak, 2005; Payne et al., 2005). 

In conclusion, long term storage of disinfectants at 4, 20, 32 or 43°C did not 

reduce efficacy in the absence of OM against SA.  However, a reduction in efficacy was 

observed over time with the phenolic compound against ST.  Following the inclusion of 

OM, reduced efficacy was observed in a dose dependent manner against both organisms, 

excluding the phenolic compound against SA.  Fresh disinfectant performed better in the 

presence of OM than 30 wk old disinfectant.  These results emphasize the need to use 

fresh disinfectants and that OM should be removed prior to disinfection.  Appropriate 

use of disinfectants should be considered as an important intervention strategy to control 

avian diseases in poultry.  Biosecurity and an effective disinfectant program will reduce 

foodborne pathogens, immunosuppressive viruses, reportable diseases, and opportunistic 

infections. 
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CHAPTER IV 

EFFECT OF BISMUTH CITRATE, LACTOSE AND CITRIC ACID ON 

NECROTIC ENTERITIS IN BROILERS 

 

Introduction 

Necrotic enteritis (NE), commonly caused by Clostridium perfringens (CP), is an 

economically important avian enteric disease (Williams, 2005).  The incidence of NE 

has recently increased because of the withdrawal of in-feed antibiotic growth promoters 

with anti-clostridial activity (Knarreborg et al., 2002).  Clostridium perfringens is 

ubiquitous in nature and is considered an opportunistic pathogen (Craven et al., 2001).  

For infection to occur one or more predisposing factors must be present, including 

mucosal damage (commonly caused by coccidiosis), diets with high levels of 

indigestible water-soluble non-starch polysaccharides or immunosupression (Van 

Immerseel et al., 2004; Williams, 2005).  Disease occurs when high numbers of CP 

adhere to damaged intestinal mucosa, proliferate, and then produce toxins.  Toxin 

production results in damage to the small intestine, leading to lesions and necrosis (Van 

Immerseel et al., 2004).  Infected chickens appear to be depressed, anorexic, and 

stationary, leading to a reduction in performance and/or death (Van Immerseel et al., 

2004).  Outbreaks of this disease may result in downgraded or rendered carcasses, and 

mortality rates may reach up to 1% per day (Kaldhusal and Lovland, 2000).  Alternative 

feeding strategies such as probiotics or prebiotics may be used to reduce the incidence of 
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NE.  One strategy that may be worth pursuing is modifying the avian gastrointestinal 

mucosal environment, in which C. perfringens flourish, with bismuth compounds. 

Bismuth compounds, primarily colloidal bismuth subcitrate (CBS) and bismuth 

subsalicylate (BSS) have been used to treat gastric disorders in humans for over 300 

years (Marshall, 1991).  These compounds have treated duodenal ulcers, gastritis, 

chronic diarrhea, traveler’s diarrhea, and acute diarrhea in young children (DuPont et al., 

1987; Soriano-Brucher et al., 1990; Steffen, 1990).  Bismuth subsalicylate and other 

bismuth compounds (acid bismuth subsalicylate, bismuth sulfate, bismuth citrate, and 

bismuth oxychloride) have been shown to inhibit the growth of Escherichia coli, 

Salmonella, Shigella, and Campylobacter (Manhart, 1990).  The administration of 

bismuth compounds have also been shown to protect the gastric mucosa.  In past 

investigations CBS has been to reduce H. pylori, by altering mucin characteristics in 

humans (Slomiany et al., 1990; Tillman et al., 1996; Rauws et al., 1988; Fraser, 2004).  

These studies suggest that the modification of chicken mucin with bismuth compounds 

may also reduce C. perfringens colonization in chickens.  Bismuth citrate and colloidal 

bismuth subcitrate have been used to reduce cecal colonization by Campylobacter jejuni 

in broilers (Farnell et al., 2006).  In addition to bismuth compounds, lactose has been 

used to reduce pathogens in poultry. 

Lactose or milk sugar is a naturally occurring disaccharide found in mammalian 

milk. Lactose fed to broilers at 2.5%, has been shown to significantly reduce intestinal 

lesions and mortality rates associated with NE (McReynolds et al., 2007).  Addition of 

lactose to the diet or drinking water has been shown to reduce Salmonella in the lower 
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intestine, reduce mortality, and promote growth (Corrier et al., 1990b; Hinton et al., 

1990).  Along with this protective effect in the gut, milk sugars have been shown to 

decrease the pH of the chicken intestinal tract from 6.0 - 7.4 to 4.4 - 5.6 (Hinton et al., 

1990).  Feeding lactose to chickens resulted in an increase in bacteriostatic acetic and 

propionic acids causing a decrease in cecal pH (Corrier et al., 1990a).  Organic acids 

may be another method of lowering the pH of the avian gut environment and offer 

protection against C. perfringens colonization. 

Organic acids can change the pH of the gut, creating an inhospitable environment 

for some microorganisms (Ricke, 2003).  Citric acid is a weak organic acid and has been 

speculated to cause a decrease in the pH of intestinal contents by contributing hydrogen 

ions to the intestinal environment in chickens (Brown and Southern, 1985).  Similar to 

lactose, citric acid may also have anti- Salmonella properties.  In an evaluation of 

potential disinfectants for preslaughter broiler crop decontamination, researchers found 

that citric acid at or greater than 10% caused a reduction in Salmonella in a simulated 

crop environment, suggesting that citric acid may have antimicrobial affects (Barnhart et 

al., 1999).   

Due to the insoluble nature of bismuth compounds in the presence of water, 

bismuth compounds are considered most effective following entrance into the acidic 

environment of the stomach. Research demonstrates that bismuth compounds form a 

precipitate (active metabolite) at a pH of less than 5, facilitating the infiltration of 

bismuth into human microvilli (Wagstaff et al., 1988).  It is possible that the addition of 

lactose or citric acid may reduce intestinal pH to an optimal range for enhancing bismuth 
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efficacy in broilers.  The purpose of this study was to determine if bismuth citrate can 

reduce gut colonization by CP and reduce intestinal lesion development in broilers 

challenged with our NE model.  We will also determine if the addition of lactose or citric 

acid enhance the efficacy of bismuth citrate. 

Materials and Methods 

Experimental Birds 

 Day of hatch chicks were obtained from a local commercial hatchery and placed 

in floor pens with pine shavings and supplemental heat.  Chicks were provided water and 

a commercial whole wheat-corn based broiler ration ad libitum that met or exceeded the 

NRC (1994) guidelines.  Elevated concentrations of wheat in the diet have been shown 

to intensify the occurrence of NE (Riddell and Kong, 1992). 

Immunosupression Vaccine Administration 

 As previously described, a commercial bursal disease vaccine (Schering Plough 

Animal Health, Millsboro, DE) was used as an immunosuppressant in the current 

investigation (McReynolds et al., 2004).  All experimental birds were administered the 

vaccine on d 14 at a level 10 times the recommended dose of the manufacturer via an 

ocular route.  

Clostridium perfringens Administration  

Multiple isolates of CP (type A) obtained from active field cases in Virginia, 

North Carolina and Georgia were used in this investigation (McReynolds et al., 2004).  

The isolate was grown in thioglycollate medium (Becton Dickinson Co., Sparks, MD) 
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for 12 h.  Birds were challenged once a day for 3 days by oral gavage (1.5 mL/bird) with 

a stock culture of 107 cfu of CP/mL. 

 Bacterial Culture 

To measure the colonization of CP, a 6 in /15.24 cm section of the small 

intestine, cranial to Meckel’s diverticulum was removed.  The sample was placed in 10 

mL of anaerobic thioglycollate, stomached for 30 s, and 0.5 mL of gut contents were 

removed and placed into 4.5 mL of thioglycollate medium (Becton Dickinson Co ).  

Three ten-fold serial dilutions were performed and plated onto thioglycollate agar 

(Becton Dickinson Co) and incubated anaerobically (24 h at 37°C).  Colonies exhibiting 

typical colony morphology were counted and recorded. Colony forming units were 

transformed into Log10 values. 

NE Lesion Scores 

  The jejunum and ileum of the small intestine were examined for gross lesion 

scores associated with NE.  Lesion scores were recorded using the following criteria: 0 = 

no gross lesions, normal intestinal appearance, 1 = thin-walled or friable, gray 

appearance; 2 = thin-walled, focal necrosis, gray appearance, small amounts of gas 

production; 3 = thin-walled, sizable patches of necrosis, gas-filled intestine, small flecks 

of blood; and 4 = severe and extensive necrosis, marked hemorrhage, much gas in 

intestine (Prescott et al., 1978). 

pH Analysis 

 On the last day of the second experiment, all birds were sacrificed and upper 

ileum pH values were determined.  Intestinal pH was determined by the insertion of a 
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sterile glass pH electrode (Model 05669-20; Cole Palmer, Niles, IL) through an incision 

in the intestinal wall ensuring that the electrode remained in contact with the gut 

contents. 

 Experimental Design 

 Three independent experiments were conducted to evaluate the effect of bismuth 

citrate (Sigma Chemical Co., St. Louis, MO), lactose (Sigma Chemical Co) or citric acid 

(Agri Laboratories LTD, St. Joseph, MO) on NE in broilers. 

 Experiment 1. Birds were randomly assigned treatments consisting of: 0, 50, 

100, or 200 ppm bismuth citrate.  Birds were fed respective diets from day-of-hatch until 

termination of the experiment.  All birds were challenged as previously described 

(McReynolds et al., 2007).  Two replicate trials were conducted to evaluate CP 

colonization and the development of intestinal lesions.  

 Experiment 2. Birds were randomly assigned to treatment groups consisting of 

negative control, bismuth negative control, or a challenged treatment group.  Challenged 

treatments consisted of a positive control, 2.5% dietary lactose, citric acid, bismuth, a 

combination of bismuth with 2.5% dietary lactose or a combination of bismuth with 

citric acid.  This experiment evaluated intestinal pH and the development of intestinal 

lesions. 

 Experiment 3. Birds were randomly assigned to treatment groups consisting of 

negative control, bismuth negative control, or a challenged treatment group. Challenged 

treatments consisted of a positive control, 2.5% dietary lactose, bismuth or a 
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combination of 2.5% dietary lactose with bismuth treatment. This experiment evaluated 

CP colonization and intestinal lesion development. 

Statistical Analysis 

 Statistical analysis was completed with the SPSS statistical software package 

(Chicago, IL).  Data in all experiments were analyzed via a one-way ANOVA using the 

GLM procedure.  Differences were deemed significant at p < 0.05 and means were 

separated using Duncan’s multiple range test.

Results 

 When evaluating CP colonization in the first trial of experiment 1, there were no 

significant differences between the treatments.  A reducing trend in lesion scores 

associated with CP was observed in birds fed 200 ppm bismuth citrate when compared 

with the positive controls (Fig. 4.1.).  In trial 2, reductions (p < 0.05) in CP colonization 

were observed in birds fed 100 ppm or 200 ppm bismuth citrate when compared with the 

0 ppm bismuth citrate treatment (Fig. 4.2.).  
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Figure  4.1. Intestinal Clostridium perfringens colonization of broilers treated with 0, 
50, 100, or 200 ppm bismuth citrate (Trial 1). 
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Figure  4.2.  Intestinal Clostridium perfringens colonization of broilers treated with 0, 
50, 100, or 200 ppm bismuth citrate (Trial 2). 
 
a-b Means with different superscripts differ significantly (p < 0.05)  

 

 

Following CP challenge, lesion scores for the 50 ppm, 100 ppm and 200 ppm 

bismuth citrate treatment groups were reduced (p < 0.05) when compared with birds fed 

0 ppm bismuth (Fig. 4.3).  Birds fed the 100 ppm or 200 ppm diet resulted in a 

significant reduction in lesion score when compared with the 0 ppm treatment group 

(Fig.4. 4).  There were no differences between the positive control (0 ppm bismuth 

citrate) and the 50 ppm bismuth citrate treatment.  In experiment 2, we evaluated dietary 

lactose and citric acid for enhancing the efficacy of bismuth citrate in reducing intestinal 

pH and lesion development.  We found no significant differences, following CP 
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challenge, between birds fed bismuth citrate, relative to birds fed a combination of 

bismuth citrate with dietary lactose or citric acid in lesion development (Fig. 4.5).  The 

intestinal pH of birds fed a combination of bismuth citrate with dietary lactose or citric 

acid was not significantly reduced when compared with birds fed bismuth citrate alone 

(Fig. 4.6).  A significant reduction in pH was observed in birds fed bismuth citrate and 

lactose relative to the negative control.  In experiment 3, we evaluated the effect of 

dietary lactose and bismuth citrate on NE intestinal lesion development and CP 

colonization, birds were fed 2.5% lactose with 100 ppm bismuth citrate.  A significant 

positive effect between, dietary lactose and bismuth citrate was not observed when 

evaluating CP colonization (Fig. 4.7).  A reducing trend in CP colonization was 

observed in challenged birds fed bismuth citrate, when compared with challenged birds 

fed a combination of bismuth and lactose.  The addition of 2.5% dietary lactose with 100 

ppm bismuth citrate reduced (p < 0.05) intestinal lesion development relative to the 

positive control and lactose positive control treatment (Fig. 4.8).   
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Figure  4.3.  Intestinal lesion development in broilers treated with 0, 50, 100, or 200 
ppm bismuth citrate (Trial 1). 
 

a-b Means with different superscripts differ significantly (p < 0.05)  
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Figure  4.4.  Intestinal lesion development in broilers treated with 0, 50, 100, or 200 
ppm bismuth citrate (Trial 2). 
 

a-b Means with different superscripts differ significantly (p < 0.05)  
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Figure  4.5.  Evaluation of bismuth citrate and lactose or citric acid on intestinal lesion 

development. 

 a-b Means with different superscripts differ significantly (p < 0.05)  
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Figure  4.6.  Evaluation of bismuth citrate and lactose or citric acid on intestinal pH.. 

 a-d Means with different superscripts differ significantly (p < 0.05)  
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Figure  4.7.  Evaluation of lactose and bismuth citrate on intestinal Clostridium 
perfringens colonization. 
 

 a-b Means with different superscripts differ significantly (p < 0.05)  
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Figure  4.8.  Evaluation of lactose and bismuth citrate on intestinal lesion development. 
 

a-d Means with different superscripts differ significantly (p < 0.05)  
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Discussion 

Necrotic enteritis negatively affects broiler production worldwide.  The disease 

can be subclinical or fatal, leading to increased morbidity and mortality (Williams, 

2005).  In-feed antibiotic growth promoters (AGPs) have been an effective means of 

controlling NE (Williams, 2005).  The risk of NE has increased due to the voluntary or 

involuntary withdrawal of certain AGPs in the European Union, due to the perceived 

risk of antibiotic resistance in humans (Van Immerseel et al., 2004).  Following an 

involuntary ban in Scandinavia, broiler flocks began to experience increased health 

problems, with CP infections being the most significant (Kaldhusal and Lovland, 2000).  

In the U.S., the use of AGPs has been under consumer scrutiny due to the similarity of 

drugs used in humans to treat bacterial infections.  Two well-known corporations in the 

U.S. (KFC and McDonalds) have both made statements saying that chicken meat grown 

with AGPs will not be accepted (Kentucky Fried Chicken, 2002; McDonald’s 

Corporation, 2003).  Some consumers may feel that antimicrobial drug use in poultry 

can cause drug resistance in humans.  There are no regulatory guidelines in the U.S., 

however pressure from consumers has caused some producers to voluntarily remove 

AGPs from poultry feed.    

Bismuth compounds have been used to treat gastric medical disorders since at 

least the 1700’s in human (Marshall, 1991).  Bismuth compounds are anti-microbial and 

improve gut health in man (Larsen et al., 2003).  Specific brands of bismuth compounds 

include Tritec (Glaxo Wellcome, Research Triangle Park, NC), Pepto-Bismol (Proctor & 
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Gamble, Cincinnati, OH) and De-Nol (Tri-Med Distributors P/L, Subiaco, Western 

Australia).  Data from experiment 1 suggest that the addition of 100 or 200 ppm bismuth 

citrate reduced (p < 0.05) CP colonization and intestinal lesion development.  Similar 

results have been reported when bismuth citrate and colloidal bismuth subcitrate were 

fed to day-of-hatch chicks, challenged with Campylobacter jejuni (Farnell et al., 2006).   

We hypothesized that the addition of lactose or citric acid would enhance the 

efficacy of bismuth citrate in broilers.  A decrease in pH has been proposed to further 

enhance the anti-microbiological activity of bismuth compounds (Wagstaff et al., 1988).  

Colloidal bismuth subcitrate forms a precipitate (an active metabolite) at pH levels of 

less than 5 aiding in infiltration of gastrointestinal microvilli with the compound 

(Wagstaff et al., 1988).  A study conducted by Tasman-Jones and colleagues (1987) 

found that as pH increases, adherence of CBS to the gut epithelium decreases.  We found 

that birds fed citric acid had a reduced (p < 0.05) intestinal pH relative to the lactose or 

positive control.  The normal pH range of the intestinal tract of chickens is 6.0 - 7.4.  

Citric acid reduced the pH from 5.67 (negative control) to 4.87.  
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An investigation in day of hatch broilers found that dietary lactose and probiotics 

decreased cecal pH and increased concentrations of bacteriostatic volatile fatty acids 

(Corrier et al., 1990a).   

In experiment 3, we hypothesized that dietary lactose would enhance the efficacy 

of bismuth citrate.  Dietary lactose fed to broilers has been shown to significantly reduce 

intestinal lesions associated with NE (McReynolds et al., 2007). Takeda and coworkers 

(1995) have also shown that birds fed dietary lactose had a significant reduction of cecal 

CP.   

In conclusion, bismuth citrate treatments of 100 ppm and 200 ppm reduced CP 

colonization and intestinal lesion development.  The combination of bismuth citrate and 

lactose offered protection against intestinal lesions associated with NE.  Due to the 

reduction of AGPs in the commercial poultry industry, alternative feeding strategies 

need to be investigated to mitigate the incidence of NE.  Bismuth citrate and lactose 

treatments may provide a cost-effective approach in controlling this disease. 
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CHAPTER V 

CONCLUSION 

 

 Chapter III:  In experiment 1 where the effect of long term storage and 

temperature (4, 20, 32 or 43°C) were evaluated on the efficacy of working 

concentrations of disinfectants, a reduction in disinfectant efficacy was not observed 

against SA.  A reduction in efficacy was observed with the phenolic compound at the 

two highest temperatures.  This reduction was indicative following a negative cfu data, 

but positive after samples were enriched in tetrathionate broth.  When the effect of the 

inclusion of organic matter was similarly evaluated in experiment 2, a reduction (p < 

0.05) in disinfectant efficacy was observed in a dose dependent manner against ST and 

SA, with the exception of the phenolic compound against SA. 

In experiment 3 when comparing the effects of fresh and 30 wk old disinfectant 

solutions, we found that fresh disinfectants performed better in the presence of organic 

matter.  This experiment was conducted to validate the assay in experiment 1.  

Following the 30 wk incubation in the first experiment we failed to find any significant 

affects on disinfectant efficacy in the absence of organic matter, with the exception of 

the phenolic compound.   

 

 

 

 



 66

These disinfectants were diluted and stored in a “clean” environment.  Following 

the addition of organic matter, a simulated field environment was created and 

disinfectants were challenged.  In support of these finding of the present manuscript, 

correct disinfectant use should be considered to reduce avian diseases on the farm.  

In retrospect, we feel that we should have taken into consideration the stress 

exerted on the bacteria as a result of the selective agar.  This stress may have been sub 

lethal, causing some cells to be alive but not culturable. 

Chapter IV: We evaluated the effect of bismuth citrate, lactose or citric acid on 

necrotic enteritis in broilers.  In experiment 1 (trial 1), the administration of 50, 100 or 

200 ppm bismuth citrate reduced (p < 0.05) intestinal lesion development when 

compared to 0 ppm bismuth citrate.  In trial 2, reductions (p < 0.05) in lesion scores was 

observed in birds administered 100 or 200 ppm bismuth citrate.  When evaluating CP 

colonization, reductions in colonization was not observed in trial 1.  In trial 2, a 

reduction (p < 0.05) was observed in birds fed 100 ppm or 200 ppm bismuth citrate 

when compared to birds fed 0 ppm bismuth citrate.  

In experiment 2, we evaluated dietary lactose and citric acid on enhancing the 

efficacy of bismuth citrate in reducing intestinal pH and lesion development.  We found 

no significant differences, following CP challenge, between birds fed bismuth citrate, 

relative to birds fed a combination of bismuth citrate with dietary lactose or citric acid in 

lesion development.   
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The intestinal pH of birds fed a combination of bismuth citrate with dietary 

lactose or citric acid was not significantly reduced when compared with birds fed 

bismuth citrate alone.  A significant reduction in pH was observed in birds fed a 

combination of bismuth citrate and lactose relative to the negative controls. 

When evaluating the effect of dietary lactose and bismuth citrate on necrotic 

enteritis intestinal lesion development and CP colonization in experiment 3, the addition 

of dietary lactose with 100 ppm bismuth citrate reduced (p < 0.05) intestinal lesion 

development relative to the positive control and lactose positive control. When 

evaluating CP colonization we did not observe any significant reductions on 

colonization. 

Taken together, these data indicate that bismuth citrate alone or bismuth citrate 

with dietary lactose may be considered as an alternative feed additive in controlling 

necrotic enteritis.  Future investigations will look at evaluating the feed conversion ratio 

and/or weight gains.           
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