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ABSTRACT 

Relationships among Antioxidants, Phenolics, and Specific Gravity in Potato Cultivars, 

and Evaluation of Wild Potato Species for Antioxidants, Glycoalkaloids, and Anti-

cancer Activity on Human Prostate and Colon Cancer Cells In Vitro. (December 2008) 

Magnifique Ndambe Nzaramba, B.S., Makerere University, Kampala, Uganda; 

M.S., Texas A&M University, College Station, TX 

Chair of Advisory Committee: Dr. J. Creighton Miller Jr. 
 

 
Understanding the influence of environment and correlation/relationships among 

traits is necessary in selection for crop quality improvement. Therefore, correlations 

among antioxidant activity (AOA), total phenolics (TP), phenolic composition, and 

specific gravity (SPG) in four potato (Solanum tuberosum, L.) cultivars (Atlantic, Red 

La Soda, Russet Norkotah, and Yukon Gold) grown in nine states (California, Idaho, 

Michigan, Minnesota, New Jersey, North Carolina, Oregon, Texas, and Wisconsin) for 

three years, and in 15 advanced selections grown in Texas were investigated. Cultivars 

within and between locations were significantly different in AOA, TP, and SPG. 

Significant effects of cultivar, year, location and their interactions on AOA, TP, and SPG 

were observed. There were significant positive correlations among the four cultivars 

between AOA and TP, and negative correlations between AOA and SPG, and between 

TP and SPG. However, correlations between AOA and SPG, and between TP and SPG, 

in the advanced selections were not significant.   

 Some tuber-bearing wild potato species were higher in AOA and TP than the 

commercial cultivars; therefore, they could be used as parental material in breeding for 
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high AOA and TP. However, use of wild species that might be higher in total 

glycoalkaloids (TGA) than cultivars could result in progenies with high TGA if the traits 

are positively correlated. To elucidate the relationships among AOA, TP and TGA, 

accessions of Solanum jamesii and S. microdontum from the US Potato Genebank were 

screened for these traits and their correlations determined. Also, anti-proliferative and 

cytotoxic effects of 15 S. jamesii tuber extracts (5 and 10 μg/ml) on human prostate 

(LNCaP) and colon (HT-29) cancer cells was determined in vitro. 

Alpha-solanine and α-chaconine were found in both species, while tomatine and 

dehydrotomatine were quantified in some S. microdontum accessions. Both species were 

higher in all above traits than the Atlantic, Red La Soda, and Yukon Gold cultivars. 

More than 90% of S. jamesii accessions had TGA levels < 20 mg/100g fresh weight, 

while only two accessions of S. microdontum, P1 500041 and PI 473171, exhibited TGA 

< 20 mg/100g. Neither AOA nor TP was significantly correlated with TGA in both 

species. Also, individual phenolics were not correlated with TGA. Solanum jamesii 

accessions significantly reduced proliferation of HT-29 (5 and 10µg/ml) and LNCaP 

(10µg/ml) cells and were not cytotoxic compared to the control (DMSO). Therefore, 

since AOA and TP were not found to be correlated with TGA, using wild accessions in 

breeding for increased health promoting compounds would not necessarily increase 

glycoalkaloids in newly developed potato cultivars.  
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CHAPTER I 

INTRODUCTION 

 
 Crop plants have long been known as a source of essential nutrients such as 

proteins, carbohydrates, vitamins, and lipids, which are required for human 

development, growth, and survival. These nutrients, in addition to producer-oriented 

traits like pest and disease resistance and drought tolerance, have been the focus of crop 

improvement initiatives for generations. 

In addition to proteins, carbohydrates, vitamins, and lipids, crop plants provide 

bioactive compounds that play a significant role in disease prevention and health 

promotion. The bioactive non-nutrients from plant foods, also referred to as 

phytochemicals, are numerous, and more than 5000 have been identified, but several 

more are still unknown (Shahidi and Naczk, 1995a). 

The bioactive phytochemicals are still referred to as non-nutrients, implying that 

they are not yet qualified to be in the same category as proteins, carbohydrates, fats and 

vitamins. Duyff (2002) referred to these compounds as phytonutrients, meaning plant 

chemicals, and categorized them differently from vitamins and minerals. As more 

research findings support and confirm their ultimate necessity in the diets of animals and 

humans, they will be upgraded to the level of essential nutrients. 

 

The format and style of this dissertation follows that of the Journal of the American 
Society for Horticultural Science. 
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The prominence of phytochemicals comes from several epidemiological studies 

that have shown consumption of fruits, vegetables, and grains to be associated with 

reduced risk of chronic diseases such as cardiovascular disease, cancer, diabetes, 

Alzheimer’s, cataracts, and other age-related ailments (Arai et al., 2000; Joshipura et al., 

2001; Liu, 2003). It is established that fruits and vegetables are rich in phytochemicals 

such as phenolic acids, flavonoids, anthocyanins, and carotenoids.   

Currently, research has intensified on investigating the health benefits of 

phytonutrients. Several research reports have indicated that the benefit of plant foods is 

due not only to levels of vitamins, proteins, lipids or carbohydrates they provide, but also 

to activity of the non-nutritive factors found in plants. Many of these plant secondary 

components are antioxidants (Riedl et al., 2002). With the discovery of health benefits 

from certain phytochemicals, i.e. antioxidant capabilities, the meaning of a balanced diet 

is changing from provision of sufficient amounts of carbohydrates, proteins, fats and 

vitamins, to inclusion of such compounds as carotenoids, anthraquinones, flavonoids 

etc., that are believed to possess antioxidant activity (Nzaramba, 2004). 

Antioxidants are compounds that can quench free radicals (oxidants) thereby 

delaying or inhibiting oxidation of molecules and protect biological systems against 

potential harmful effects of free radical (Arnao, 2000; Morello et al., 2002). Oxidative 

stress induced by free radicals and other external agents can damage DNA and other 

molecules, and if not repaired may set off a cascade of events such as mutations, DNA 

strand breakage, and chromosomal breakage and rearrangement resulting in disease risks 

like cancer.   
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 Humans and animals are exposed to various disease-causing agents, ranging from 

external agents such as bacteria, fungi, viruses, radiation, chemical agents etc, and 

internally generated agents like reactive oxygen (ROS) and reactive nitrogen species 

(NOS) from body metabolic activities. Therefore, protection against these agents is 

paramount. Reactive oxygen and nitrogen radicals act as oxidants, thereby causing 

oxidative stress within the body. It is therefore, necessary to keep a balance between 

oxidants and antioxidants to maintain healthy physiologic conditions. Phytochemicals 

such as phenolics and carotenoids in plant foods have antioxidant capabilities that help. 

to protect cellular systems from oxidative damage (Chu et al., 2002; Eberhardt et al., 

2000; Liu, 2003). 

Several studies have reported that phytochemicals, especially antioxidants from 

plants, can inhibit metagenesis and carcinogenesis, and reduce cancer risks by 

scavenging oxidative radicals (Boyle et al., 2000; Giovannelli et al., 2000; Rodriguez et 

al., 2007; Shahidi, 2002), modulation of detoxifying enzymes, stimulation of the 

immune system, regulation of cell proliferation and apoptosis (Kern et al., 2007; Kim et 

al., 2006; Reddivari et al., 2007b), and antiviral and antibacterial effects (Friedman et al., 

2006).  

Le Marchand et al. (2000) indicated that consumption of quercetin from onions 

and apples was inversely associated with lung cancer risk in Hawaii. Similarly, 

Giovannelli et al. (2000) demonstrated that polyphenols from wine significantly 

decreased DNA oxidative damage in rat colon mucosal cells, and concluded that dietary 
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polyphenols can modulate in vivo oxidative damage in the gastrointestinal tract of 

rodents. 

Other studies have shown a link between intake of dietary phytochemicals and 

reduced risk of cardiovascular disease. Ridker et al. (2002) stated the inflammation is a 

critical factor in cardiovascular disease. Inflammation promotes initiation and 

development of atherosclerosis. Since phenolic compounds exhibit anti-inflammatory 

activity (Dai et al., 2007), they play a role in cardiovascular disease prevention. 

Joshipura et al. (2001) reported that high fruit and vegetable intake is associated with 

decreased risk of coronary artery disease. A study in Japan indicated that intake of 

flavonoids was inversely correlated with the amount of total cholesterol and low-density 

lipoprotein (LDL) in plasma (Arai et al., 2000).  

The importance of antioxidants in preventing diseases and maintenance of health 

has raised interest among scientists, food producers/manufacturers, and consumers 

towards functional foods (Robards et al., 1999; Velioglu et al., 1998). The Food and 

Nutrition Board of the National Academy of Sciences (FNB/NAS, 1994) defined 

functional foods as any “food or food ingredient that may provide a health benefit 

beyond the traditional nutrients it contains”. Several authors (Al-Saikhan et al., 1995; 

Hale, 2004; Kanatt et al., 2005; Kawakami et al., 2000) have suggested that potato is a 

functional food due to presence of antioxidant compounds in potato tubers. 

Significance of the Research 

 Given the importance of antioxidants in disease prevention, plant breeders need 

to develop cultivars with substantial amounts of antioxidants to complement medical and 
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social activities in preventing diseases. However, in developing high antioxidant 

cultivars, other traits such as high specific gravity have to be maintained if not increased. 

Therefore, breeders need to known the relationships among traits, information which 

helps in understanding how selection for one trait would affect others. Ascertaining the 

effect of other factors – genotype, environment, and genotype x environment, on traits of 

interest is also helpful.  

 Potato cultivars and breeding lines exhibit varying amounts of phenolic 

compounds and antioxidants (Kawakami et al., 2000; Reddivari et al., 2007a). 

Furthermore, identification of related wild species with desirable nutritional benefits 

would provide parental material in breeding improved cultivars with enhanced health 

benefits. Several wild species have been screened for antioxidant activity and some were 

reported to possess more antioxidant activity than currently grown potato cultivars. 

Species identified as containing high antioxidant activity were S. jamesii, S. 

pinnatisectum, S. megistacrolobum, and S. microdontum (Hale, 2004; Nzaramba et al., 

2007). In the above studies, only a few accessions of each species in the mini-core 

collection were screened.  

Having identified some species as containing more antioxidant activity than 

cultivated varieties, it was important to screen all populations of these species to identify 

specific accessions that are the highest in antioxidant activity and phenolic compounds. 

However, it should be noted that breeding with wild Solanum species can result in toxic 

levels of glycoalkaloids in new progenies (Laurila et al., 2001). Glycoalkaloids are 

known to be toxic to humans by acting as cholinesterase inhibitors, and also interact 
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synergistically in destabilizing cell membranes (Smith et al., 2001). Therefore, 

glycoalkaloid accumulation affects food quality and safety, and the accepted level in 

tubers is < 20 mg/100g fresh weight (Papathanasiou et al., 1998). Yet, wild potato 

species are believed to contain amount of glycoalkaloids above this level. 

Given that high glycoalkaloids levels, and in some cases very high amounts of   

antioxidants and phenolics are undesirable, wild potato species need to be evaluated for 

cytotoxicity before their introduction into breeding programs. Also, tuber extracts from 

wild potato species may contain other unknown cytotoxic compounds that might be 

undesirable for human consumption.  

Objectives 

One of the objectives of the present study was to investigate the relative 

importance of cultivars, environment, seasons, and their interaction on antioxidant 

activity, total phenolic content, and specific gravity in potato cultivars grown under 

widely diverse environmental conditions (nine states) for three years (2005, 2006, and 

2007 seasons), and also to determine the correlations among these traits to ascertain how 

selection for any of the traits would affect others.  

In addition, ninety-two wild accessions of S. jamesii and eighty-six of S. 

microdontum species in the US Potato Genebank, Sturgeon Bay, WI., were fine- 

screened for antioxidant activity, total phenolic content, and total glycoalkaloid levels. 

Also, the linear correlations among these traits were investigated. This information is 

necessary in selecting accessions to use in introgressing desirable traits into cultivated 
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potato varieties, while avoiding introducing or increasing levels of undesirable 

compounds such as glycoalkaloids.  

Finally, anti-proliferative activity and cytotoxicity potential of tuber extracts 

from 15 S. jamesii accessions, representing the whole range of glycoalkaloid content in 

this species, was investigated using human prostate (LNCaP) cells and colon (HT-29) 

cancer cell lines in vitro.  
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CHAPTER II 

LITERATURE REVIEW 

Origin of the Potato 

 The word “potato” commonly refers to the potato of commerce belonging to the 

species Solanum tuberosum L. and other cultivated tuber-bearing species found in South 

America. These plants belong to the family Solanaceae, genus Solanum, section Petota. 

Most species in section Petota possess underground stolons bearing potato tubers at their 

tips, but some species lack these characteristic structures. Therefore, section Petota was 

divided into two subsections; subsection Potatoe containing both cultivated and wild 

tuber-bearing species, and subsection Estolonifera that contains non-tuber-bearing series 

(Hawkes, 1992). The tuber is the edible part of the potato, which is a part of the stem 

that stores food and plays a role in propagation. The tuber is also regarded as an enlarged 

stolon. Stolons are formed from lateral buds at the bottom of the stem (Beukema and van 

der Zaag, 1990). 

Potatoes originated in many countries of South America: Peru, Ecuador, Chile, 

Colombia, and Bolivia (Harris, 1978; Hawkes, 1978a). According to Correll (1962) and 

Hawkes (1992), the potato was cultivated in South America long before the arrival of 

Europeans. Hawkes (1978a) stated that the cultivated potato was derived from one of the 

many wild species found in South America, more specifically in the Andes of Peru and 

Bolivia. He reported that the introduction of the potato into Europe was first into Spain 

in about 1570, then into England between 1588 and 1593, later spreading to almost 
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every part of the world. From Spain, it diffused into continental Europe, and from 

England it spread to Ireland, Scotland, and British overseas colonies, including the US. 

  The documented number of potato species has been increasing as more plant 

collection excursions are undertaken. Hawkes (1978b) indicated that there were seven 

cultivated species and 154 wild species, whereas Horton (1987) stated that eight 

cultivated and 200 wild species were known. Miller, Jr. (1992) estimated that more than 

2,000 species of potato exist, about 200 of which are tuber bearing. According to 

Spooner and Hijmans (2001), Solanum section Petota contains about 200 wild species 

distributed from the southwestern United States to central Argentina and Chile, with a 

secondary center of diversity in the central Mexican highlands. Spooner et al. (2004) 

provide a summary of recent morphological and molecular studies on interrelationships 

among potato species in North and Central America. They recognized twenty-five 

species and four nothospecies which they assigned to eleven informal species. 

According to Huamán and Spooner (2002), all landrace populations of cultivated 

potatoes are a single species, S. tuberosum, with eight cultivar groups. The landrace 

potato cultivars are highly diverse, containing diploids (2n = 2x = 24), triploids (2n = 3x 

= 36), tetraploids (2n = 4x = 48), and pentaploids (2n = 5x = 60). The tetraploids are the 

highest yielding and they are the sole cytotype of modern cultivars (Ames and Spooner, 

2008). 

The taxonomy of cultivated potatoes has been controversial with anywhere from 

one to 20 species recognized (Huaman and Spooner, 2002). Spooner et al. (2005) 

reported that all landraces of cultivated potato form a common gene pool and have a 
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monophyletic origin from Andean and Chilean landrace complex. Using simple 

sequence repeat (SSR) genotyping in combination with morphological analysis, (2007) 

suggested classifying the cultivated potatoes into four species; S. tuberosum, S. 

ajanhuiri, S. juzepczukii, and S. curtilobum. 

 Potatoes are among the most widely-grown crop plants in the world, giving good 

yield under various soil and weather conditions (Lisinska and Leszcynski, 1989). Potato 

has been ranked as the fourth important food crop worldwide after wheat, rice and corn, 

and one of the main vegetables consumed in European diets (Tudela et al., 2002). More 

recently, potato has been ranked third by the FAO. According to Lachman et al. (2001), 

annual world-wide production of potatoes is approximately 350 million tons (771,618 

million lbs). The US potato production was about 44 billion lbs (0.02 billion tons) in 

2006 (USDA, 2007). The world average per capita consumption in 2005 was estimated 

at 33.7 kg (74.3 lbs) (FAO, 2007), while the US per capita consumption of potatoes is 

about 57kg (126 lbs) (National Potato Council, 2008). Highest potato consumption is in 

Europe with a per capita consumption of about 96 kg, followed by North America at 57 

kg. Per capita consumption is low in Africa and Latin America, but is increasing (FAO, 

2007).   

The high consumption rate of potatoes is attributed to both their palatability and 

high nutritive value (Rytel et al., 2005). Potatoes serve as a major food source, as well as 

an inexpensive source of energy and good quality protein (Lachman et al., 2001). 
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Nutritional Value of the Potato 

Potato tubers are important sources of vitamins and minerals such as calcium, 

potassium, and phosphorous, and their value in the human diet is often understated or 

ignored, particularly as a source of ascorbic acid (Dale et al., 2003). The potato is a very 

low fat food, and is an important source of vitamins C, B, and A (Dale et al., 2003; 

Kolasa, 1993; Lachman et al., 2000). According to Kolasa (1993), the potato’s 

contribution of nutrients to diet or its role in human nutrition is actually greater than it 

appears on the nutrition label, because of the volume of potatoes consumed in the U.S. 

Therefore, the potato plays a more important role in nutrition than might be expected 

based on its absolute nutrient values.  

Kant and Block (1990) stated that potatoes are the third largest source of vitamin 

B6 for adults 19-74 years of age. They also reported that potatoes were the second most 

important contributor of vitamin B6 for the elderly, who are especially at risk of chronic 

disease. Vitamin B6 is involved in amino acid, nucleic acid, glycogen, and lipid 

metabolism. It influences hormone modulation, erythrocyte production, and immune and 

nervous system functions. It is also proposed to play a role in the etiology and /or 

treatment of various chronic diseases such as sickle cell anemia, asthma, and cancer 

(Kolasa, 1993).  

Potato tubers contain several minerals that are important in diet, including 

phosphorous, calcium, zinc, potassium, and iron (Andre et al., 2007; Yilmaz et al., 

2005). Potatoes are also a good source of high-quality protein such as lysine (Friedman, 



12 
 

 

2004). They also contain significant levels of functional compounds such as antioxidants 

and polyphenols (Breithaupt and Bamedi, 2002; Kanatt et al., 2005; Reyes et al., 2005).  

Tuber Specific Gravity 

Specific gravity is an important quality attribute and is one of the properties of 

potato that could be used as a basis for nondestructive quality evaluation especially in 

processing. The relationship between specific gravity and cooking quality of potato is 

well known (Gould, 1999; Komiyama et al., 2007), and the potato processing industry 

needs cultivars with high tuber specific gravity and acceptable color of processed 

products (Haynes, 2001). Processers usually pay less for tubers with low specific 

gravity. According to Gould (1999) potatoes with higher specific gravity are well 

formed, smooth, and firm, and every 0.005 increase in specific gravity results in an 

increase in the number of chips that can be processed from 100 pounds of raw potatoes 

by one pound. 

Specific gravity and solids-content have also been shown to have an effect on fat 

uptake into french fries. Potatoes with a high specific gravity (>1.090) have been shown 

to produce a high yield of French fries with a lower fat content than lower specific 

gravity potatoes (Lulai and Orr, 1979). Hagenimana et al. (1998) reported a linear 

relationship between dry matter content and fat uptake in thin sliced sweet potato crisps, 

with fat uptake decreasing as dry matter increased.  
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Antioxidant Activity 

Antioxidants are compounds which, when present in low concentrations 

compared to oxidizable substrates, can quench free radicals and significantly delay or 

inhibit oxidation of the substrate and protect biological systems against potential harmful 

effects of free radicals (Arnao, 2000; Diplock et al., 1998).  

Antioxidants are categorized as synthetic or natural. Synthetic antioxidants are 

compounds with phenolic structures of varying degrees of alkyl substitution, such as 

butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Their usage is 

being restricted, as they are suspected to cause negative health effects such as 

carcinogenicity (Barlow, 1990; Ito et al., 1983), and there is increasing interest in 

replacing synthetic antioxidants with naturally occurring antioxidants (Chang et al., 

2002; Koleva et al., 2002). 

 Antioxidants can also be categorized as either free radical scavengers (non-

enzymatic) that trap or decompose free radicals, or cellular and extracellular enzymes 

(enzymatic) that inhibit peroxidase reactions involved in the production of free radicals. 

Free radical scavengers or non-enzymatic antioxidants include ascorbate (vit. C) (Kojo, 

2004; Suh et al., 2003), tocopherols (vit. E) (Pryor, 2000), carotenoids (El-Agamey et 

al., 2004; Mortensen et al., 2001; Niles, 2004), flavonoids and polyphenols (Arts and 

Hollman, 2005; Aviram et al., 2005; Scalbert et al., 2005), α-lipoic acid (Holmquist et 

al., 2007; Smith et al., 2004) and glutathione (Giustarini et al., 2008; Jones et al., 2000; 

Masella et al., 2005). Antioxidant enzymes include glutathione peroxidase, superoxide 

dismutase, and catalase. Enzymatic antioxidants are important for intracellular defenses, 
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while non-enzymatic antioxidants are the major defense mechanism against extracellular 

oxidants.   

Natural antioxidants can be phenolic compounds (tocopherols, flavonoids, 

anthocyanins, and phenolic acids), nitrogen compounds (alkaloids, chlorophyll 

derivatives, amino acids, and amines), or carotenoids, as well as vitamins C and E, and 

phospholipids (Hudson, 1990; Shahidi, 2002). Most of these antioxidant compounds are 

present in foods as endogenous constituents and are referred to as dietary antioxidants 

(Siddhuraju et al., 2002). The Food and Nutrition Board of the National Academy of 

Sciences (National Academy of Science, 1998) defined a dietary antioxidant as a 

substrate in foods that significantly decreases the adverse effects of free radicals such as 

reactive oxygen species (ROS), reactive nitrogen species (RNS), or both on normal 

physiological function in humans.  

Free radicals are molecules or molecular fragments containing one or more 

unpaired electrons. The presence of unpaired electrons confers a considerable degree of 

reactivity to free radicals (Valko et al., 2004). Free radicals are ubiquitous in the body 

and can be generated by normal physiological processes, including aerobic metabolism 

and inflammatory responses, to eliminate invading pathogenic microorganisms (Hussain 

et al., 2003). Reactive oxygen species can be produced from endogenous sources such as 

mitochondria, cytochrome P450 metabolism, peroxisomes, and inflammatory cell 

activation (Inoue et al., 2003).  

Troszyńska et al. (2002) reported that imbalance between ROS/RNS and 

antioxidant defense systems may lead to chemical modification of biologically relevant 



15 
 

 

macromolecules like DNA, proteins, carbohydrates or lipids. To avoid such 

modifications, antioxidants inhibit oxidation of these molecules and prevent initiation of 

oxidizing chain reactions (Klein and Kurilich, 2000; Velioglu et al., 1998).  They 

scavenge free radicals by donation of an electron or hydrogen atom, or by deactivation 

of prooxidant metal ions and singlet oxygen (Shahidi, 2002).  

Antioxidants exert their effects through different mechanisms and functions; 

therefore, it is essential to clarify which function is being measured when analyzing 

samples (Niki and Noguchi, 2000). A wide array of assays has been suggested to 

measure antioxidant activity. Modes of antioxidant action are grouped into two 

categories based on the chemical reactions involved: hydrogen atom transfer reaction-

based assays and single electron transfer reaction-based assays. Hydrogen atom transfer 

reaction-based assays include total radical trapping antioxidant parameter (TRAP), 

oxygen radical absorbance capacity (ORAC), and crocin bleaching assays. Electron 

transfer reaction-based assays include trolox equivalence antioxidant capacity (TEAC), 

Cu (II) complex antioxidant potential, ferric ion reducing antioxidant power (FRAP), 

2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid (ABTS), and 2,2-Diphenyl-1-

picrylhydrazyl (DPPH) assays. Other methods used to measure antioxidant activity are 

superoxide, hydrogen peroxide, the hydroxyl radical, singlet oxygen and peroxynitrite 

scavenging capacity assays (Huang et al., 2005). The most commonly used assays are 

DPPH· and ABTS+· radicals because of their ease, speed, and sensitivity. The DPPH 

radical is only soluble in organic solvents, but ABTS+· is soluble in both hydrophilic and 
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lipophilic media and can be used over a wide range of pH (Arnao, 2000; Arnao et al., 

1999; Lemanska et al., 2001). 

Polyphenols 

 Polyphenolic compounds constitute one of the most commonly occurring 

ubiquitous groups of secondary plant metabolites and represent an integral part of the 

human diet (Rice-Evans et al., 1996). There are more than 8,000 known phenolic 

structures (Bravo, 1998; Harborne, 1998). Polyphenols range from simple molecules like 

phenolic acids (Fig. 2.1) to highly polymerized compounds such as tannins. Polyphenols 

are synthesized through two main pathways in plants: the shikimate pathway and the 

acetate pathway (Bravo, 1998).  

The common structural feature of polyphenolic compounds is the 

diphenylpropane moiety that consists of two aromatic rings linked through three carbon 

atoms, where together usually form an oxygenated heterocycle (Rodriguez et al., 2007; 

Sekher Pannala et al., 2001; Teixeira et al., 2005). Polyphenols usually occur as 

conjugates with one or more sugars, attached either to the hydroxyl group or to an 

aromatic carbon atom. The attached sugar can be a mono, di or an oligosaccharide, with 

glucose as the most common type.  

Phenolic compounds are essential for plant growth and reproduction. They act as 

anti-feedants, anti-pathogens, and also aid in recognition of symbionts (Shahidi and 

Naczk, 1995b). In live plants, phenolic compounds provide protection against oxidative 

stress and attack by herbivores, and act as UV filters and healing agents.  

 



17 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1. Chemical structure of four important phenolic acids in plants. 
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Many properties of plant products are associated with the presence and content of 

polyphenolic compounds. Phenolics and anthocyanins have been reported to possess a 

very high capacity to quench free radicals (Chu et al., 2000; Kalt et al., 2001). Studies 

have shown that polyphenols in plants such as flavonols, flavonoids (Comis, 2000; 

McBride, 1999), anthraquinones (Yen et al., 2000), xanthones and proanthocyanidins 

(Minami et al., 1994), and zeaxanthin (Stelljes, 2001) act as antioxidants or agents of 

mechanisms that exhibit cardioprotective or anti-carcinogenic effects. 

Phenolic compounds acting as antioxidants may function as terminators of free 

radicals and as chelators of redox-active metal ions that are capable of catalyzing lipid 

peroxidation (Schroeter et al., 2002). According to Milde et al. (2007), phenolics 

together with carotenoids protect low-density lipoproteins (LDL) from oxidation. 

Oxidation of LDL is believed to lead to development of atherosclerosis and 

accompanying disorders. Phenolic antioxidants interfere with the oxidation of lipids and 

other molecules by donation of hydrogen atoms to radicals. The phenoxyl radical 

intermediates are relatively stable so they do not initiate further radical reactions. The 

key factors affecting the biological activity of polyphenols are the extent, nature, and 

position of the substituents and the number of hydroxyl groups (Schroeter et al., 2002). 

In vitro and in vivo studies have shown that polyphenols induce responses consistent 

with the protective effects of diets rich in fruits and vegetables against degenerative 

conditions like cardiovascular diseases and carcinogenesis (Chung et al., 2003; Manach 

et al., 2005). 
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Interest in phenolic compounds has increased recently owing to their antioxidant 

capacity and their possible beneficial effects on human health. These include the 

treatment and prevention of cancer, cardiovascular disease, and other pathological 

disorders (Babich et al., 2007; Damianaki et al., 2000; Polovka et al., 2003; Rice-Evans, 

2001; Seeram et al., 2005; Sharma et al., 2007). Regular intake of polyphenols has been 

linked to lower rates of stomach, pancreatic, lung, and breast cancer (Damianaki et al., 

2000).   

 Kim et al. (2006) reported that these polyphenols induced cell death in SNU-C4 

human colon cancer cells in a dose-dependent manner. They observed that polyphenol 

treatment of cells resulted in the regulation of the expression of apoptotic-regulating 

genes, decreased expression of the Bcl-2 gene, and increased expression of both the Bax 

gene and Caspase-3 activity. Friedman et al. (2006) reported that flavonoids in green tea 

exhibited antimicrobial activities at nanomolar levels and that most compounds were 

more active than medicinal antibiotics, such as tetracycline or vancomycin, at 

comparable concentrations. 

Antioxidants and Phenolics in Human Health 

Antioxidants play a role in balancing the effect of reactive oxygen and nitrogen 

species and other free radicals to protect biological sites (Valko et al., 2006). 

Antioxidants quench free radicals, chelate redox metals, and interact with other 

antioxidants within the antioxidant network, thereby enabling living organisms to 

overcome the deleterious effects of free radicals while maintaining the beneficial effects 

of free radicals (Morello et al., 2002; Valko et al., 2007). Enzymatic and non-enzymatic 
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antioxidants protect living organisms from various oxidative stresses by controlling the 

redox status and maintaining the redox homeostasis in vivo (Droge, 2002).  

 Antioxidants help maintain or restore cell integrity by preventing reactive oxygen 

species from damaging cell structures, nucleic acids, lipids, protein, and DNA. 

Permanent modification of genetic material resulting from oxidative damage represents 

the initial stages of mutagenesis, carcinogenesis, and ageing (Valko et al., 2007). Several 

studies have implicated oxidative stress in various pathological conditions, including 

cardiovascular disease, cancer, neurological disorders, diabetes, and ageing (Dalle-

Donne et al., 2006; Makazan et al., 2007; Tappia et al., 2006).    

 In addition to scavenging deleterious free radicals and maintaining cell integrity, 

antioxidants modulate cell-signaling pathways (Mates et al., 1999). According to Valko 

et al. (2007), modulation of cell signaling pathways by antioxidants could help prevent 

cancer by preserving normal cell cycle regulation, inhibiting proliferation and inducing 

apoptosis, inhibiting tumor invasion and angiogenesis, suppressing inflammation, and 

stimulating phase II detoxification enzyme activity. 

Enzymatic antioxidants such as L-cysteine, N-acetyl cysteine, and non-enzymatic 

antioxidants such as polyphenols and vitamin E can block activation of nuclear 

transcription factor κB (NF-κB). The NF-κB regulates several genes involved in cell 

transformation, proliferation, and angiogenesis (Thannickal and Fanburg, 2000), and its 

activation has been linked to the carcinogenesis process (Leonard et al., 2004). 

 Kaneto et al. (1999) reported that antioxidants can help in diabetes prevention. 

They observed that antioxidant treatment preserved the amounts of insulin content and 
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insulin mRNA, and also resulted in increased expression of pancreatic and duodenal 

homeobox factor-1, a β-cell-specific transcription factor.  Valko et al. (2007) also 

reported that antioxidant treatment can exert beneficial effects in diabetes by preserving 

in vivo β-cell function. They noted that antioxidant treatment suppresses apoptosis in β-

cells without changing the rate of β-cell proliferation.  

Several studies have indicated that consumption of fruits and vegetables helps 

prevent a wide range of diseases. These observations are attributed to presence of 

polyphenolic compounds in these fruit and vegetable products. It is believed that the 

beneficial effects derived from fruits and vegetables include antioxidant nutrients such as 

vitamins C and E, carotenoids, and phenolics that are thought to be involved in the 

pathophysiology of many chronic diseases (Stanner et al., 2004). 

Epidemiological data have shown that people with a high consumption of fruits 

and vegetables are at a lower risk of developing several types of cancer (Riboli and 

Norat, 2003), and cardiovascular disease and stroke (Hu, 2003) than those with low fruit 

and vegetable consumption. In a study aimed at assessing the relationship between 

overall mortality in Spanish adults and consumptions of fruit and vegetables, Agudo et 

al. (2007) reported that a reduction in mortality was associated with increased intake of 

fresh fruits and vegetables. They also observed that a lower risk of death seemed to be 

associated with high intakes of vitamin C, provitamin A, carotenoids, and lycopene. 

They concluded that antioxidant capacity could explain  the potential effect of ascorbic 

acid and provitamin A. Similar results were observed in cohort studies in Greece 

(Trichopoulou et al., 2003) and in the United States (Steffen et al., 2003).  
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Hwang and Yen (2008) reported that citrus flavanones, hesperidin, hesperetin, 

and neohesperidin, which exhibit antioxidant activities have neuroprotective effects 

against H2O2-induced cytotoxicity in the rat pheochromocytoma PC12 cell line. They 

concluded that these dietary antioxidants are potential candidates for use in intervention 

for neurodegenerative diseases.   

Antioxidants in the diet contribute or exhibit antibacterial, antiviral, anti-

inflammatory, and antiallergic actions (Cook and Samman, 1996). Plants vary in 

composition of phytochemicals with protective functions; therefore, to attain maximum 

health benefits, sufficient amounts of phytochemicals from a variety of sources such as 

vegetables, fruits and grains are necessary (Adom and Liu, 2002).  

Health benefits of individual phenolic compounds have been investigated. 

Caffeic acid increased the sensitivity of tumor cells to chemotherapeutic agents in vitro 

(Ahn et al., 1997). Shimizu et al. (1999) and Matsunaga et al. (2002) observed that 

chlorogenic acid reduced the number of tumors in both colon and stomach at initiation 

and post initiation stages in F344 rats. Gallic acid from grape seed extract inhibited cell 

proliferation and induced apoptotic death in DU145 human prostate carcinoma cells. It 

activated caspase-3 and caspase-9, and cleavage of PARP (Veluri et al., 2006). However, 

most studies have indicated that complex mixtures of phytochemicals in foods provide 

better protective benefits than single phytochemicals through additive and/or synergistic 

effects (Eberhardt et al., 2000). 
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Glycoalkaloids 

Glycoalkaloids are steroidal nitrogen–containing metabolites found in potatoes 

and many solanaceous plants (McCue et al., 2007). Steroidal glycoalkaloids are found in 

almost all parts of the potato, with the highest concentrations associated with tissues that 

are undergoing high metabolic activity (Jadhav et al., 1973). These include flowers, 

unripe berries, young leaves, sprouts, peels, and the area around the eyes. Small 

immature tubers are normally high in glycoalkaloids since they are still metabolically 

active (Papathanasiou et al., 1998). Glycoalkaloids are concentrated in a 1.5 to 3.0 mm 

layer immediately under the skin in normal tubers (Pęksa et al., 2006).  

 The two major glycoalkaloids in potatoes are α-solanine and α-chaconine (Fig. 

2.2), which together comprise approximately 95 % of the total glycoalkaloids in the 

plant (Edwards and Cobb, 1999). The ratio of α-solanine to α-chaconine differs 

depending on the anatomical part of the potato plant or its variety, and ranges from 1:2 

to 1:7 (Bejarano et al., 2000). The other glycoalkaloids found in cultivated potatoes are 

β- and γ-solanines and chaconines, α- and β-solamarines, demissidine, and 5-β-

solanidan-3-a-ol, and in wild potatoes leptines, commersonine, demissine, and tomatine 

(Lachman et al., 2001).  
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Fig. 2.2. Chemical structure of the two major glycoalkaloids in potato tubers. 
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Various factors influence the concentration of glycoalkaloids in tubers - physical 

injury due to pest or mechanical injury during harvesting and handling, fungal attack, 

climate, growing environment, and poor storage conditions. Light exposure during 

growth, harvesting, and storage is the most important factor influencing the amount of 

glycoalkaloids in potato tubers (Sengul et al., 2004). Also, breeding with wild Solanum 

species can also result in high glycoalkaloid levels in the new progenies (Laurila et al., 

2001). 

Steroidal glycoalkaloids are involved in defense against microbial and insect 

pests (Hollister et al., 2001). However, they are undesirable when present in large 

amounts in potato tubers. Glycoalkaloids are known to be toxic by acting as 

cholinesterase inhibitors, causing sporadic out-breaks of poisoning in humans (Smith et 

al., 1996), and also interact synergistically in destabilizing cell membranes (Smith et al., 

2001). Due to their poisonous nature, potato glycoalkaloids have been of major concern 

and investigated since their discovery in 1820 by the pharmacist Desfosses (Bergers, 

1980). 

 Safety of gylcoalkaloids for humans is still being debated (Friedman et al., 2003; 

Korpan et al., 2004; Rietjens et al., 2005). Most potato cultivars for human consumption 

have about 7.5 mg/100g of both α-solanine and α-chaconine (Lachman et al., 2001). 

Tubers with glycoalkaloid levels greater than 14 mg/100g are bitter in taste, and those 

with more than 20 mg/100g cause a burning sensation in the throat and mouth. The 

permitted level of glycoalkaloids in tubers is 20 mg/100g fresh weight (Papathanasiou et 
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al., 1998). Therefore, new varieties must contain less than 20 mg/100g fresh weight, and 

varieties containing 2 to 13 mg/100g fresh weight are preferred (Smith et al., 1996). 

Wild Solanum species are commonly used in potato breeding as a source of 

valuable germplasm. They are often used to introduce pest and disease resistance into 

cultivated potato. However, some of these species have high levels of glycoalkaloids 

such that, together with desirable characteristics, toxic glycoalkaloids may be transferred 

to potato cultivars (Laurila et al., 2001). Therefore, screening of wild species for 

glycoalkaloid content is important to determine their suitability as potential parental 

material in breeding programs.  

Cancer and Carcinogenesis 

According to the American Cancer Society (2008), cancer refers to a group of 

diseases characterized by uncontrolled growth and spread of abnormal cells. Abnormal 

or cancerous cells are caused by both external factors such as chemical toxins, tobacco, 

radiation, and infectious organisms, and internal factors such as hormones, immune 

conditions, and mutations from metabolism or inherited mutations. The causal factors 

may act together or in sequence to initiate and promote carcinogenesis. 

Oxidative stress caused by free radicals has been implicated in oncogenic 

stimulation by inducing cellular redox imbalance. Elevated levels of cellular oxidative 

stress might result in permanent modification of genetic material (DNA), RNA, proteins, 

and lipids which normally represent the initial steps involved in mutagenesis and 

carcinogenesis (Marnett, 2000; Valko et al., 2007). 
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   In addition to causing mutations in cancer-related genes or post-translational 

modification of proteins, free radicals can also modulate cell growth and tumor 

promotion by activating signal-transduction pathways that results in the transcriptional 

induction of proto-oncogenes, including c-FOS, c-JUN, and c-MYC, involved in 

stimulating growth (Hussain et al., 2003; Vogelstein and Kinzler, 2004). Proteins such as 

DNA-repair enzymes, those involved in signal transduction, apoptotic modulators, and 

the p53 protein can be modified both structurally and functionally when exposed to free 

radicals (Hussain et al., 2003). 

Reactive oxygen species can structurally and functionally modify DNA, resulting 

in single- or double-stranded DNA breaks, purine, pyrimidine, or deoxyribose 

modifications, arrest or induction of transcription and signal transduction pathways, 

replication errors, and genomic instability (Marnett, 2000; Poli et al., 2004). Reactive 

nitrogen species (RNS) such as peroxynitrites and nitrogen oxides have also been 

implicated in DNA damage. In addition, various redox metals with the ability to generate 

free radicals, and non-redox metals with the ability to bind to critical thiols, have been 

implicated in the mechanism of carcinogenesis (Leonard et al., 2004; Roy et al., 2002; 

Valko et al., 2005; Waalkes et al., 2004). Valko et al (2001) reported that iron-induced 

stress is considered to be a principal determinant of human colorectal cancer.  

Carcinogenesis is a complex multi-sequence/stage process leading a cell from a 

healthy to a precancerous state and finally to an early stage of cancer (Klaunig and 

Kamendulis, 2004; Trueba et al., 2004). The process of cancer development involves 

initiation, promotion, and progression stages occurring in a single cell. The initiation 
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stage involves non-lethal mutation of DNA that produces an altered cell followed by at 

least one round of DNA synthesis to fix the damage that occurred during initiation (Loft 

and Poulsen, 1996). The promotion stage is characterized by clonal expansion of 

initiated cells by the induction of cell proliferation and/or inhibition of programmed cell 

death (apoptosis). This stage requires a continuous presence of the tumor promoting 

stimulus and is therefore reversible by eliminating the stimuli. The progression stage 

involves cellular and molecular changes that occur from preneoplastic to neoplastic 

states. This stage is irreversible and involves additional genetic damage, genetic 

instability, and disruption of chromosome integrity resulting in transition of the cell from 

benign to malignant. Because tumor promotion may be the only reversible event during 

cancer development, its suppression is regarded as an effective way to inhibit 

carcinogenesis (Friedman et al., 2007). 

Two mechanisms have been proposed for the induction of cancer. One suggests 

that an increase in DNA synthesis and mitosis by nongenotoxic carcinogens may induce 

mutations in dividing cells through misrepair. These mutations may then clonally expand 

from an initiated preneoplastic cell state to a neoplastic cell state (Ames and Gold, 1990; 

Guyton and Kensler, 1993). The other mechanism stipulates that a breakdown of 

equilibrium between cell proliferation and cell death induces cancer. Therefore, 

carcinogenesis can be described as an imbalance between cell proliferation and cell 

death shifted towards cell proliferation (Valko et al., 2006).  

During cell proliferation, protein p53 plays a primordial role, checking the 

integrity of DNA (Oren, 2003; Zurer et al., 2004). It triggers mechanisms that eliminate 
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the oxidized DNA bases that cause mutations. And when cell damage is great, p53 

triggers cell death by apoptosis. According to Hussain et al. (2003), uncontrolled 

apoptosis can be harmful to an organism, leading to destruction of healthy cells. Hence, 

there is a regulatory system consisting of pro-apoptotic factors such as p53 and anti-

apoptotic factors. Most cancers have defects in upstream or downstream genes of p53 

function. 

Colon Cancer 

 Colorectal cancer is the third most common cancer in both men and women in 

the U.S. (American Cancer Society, 2008). It accounted for about 10% of cancer 

mortality in the United States, and caused about 57,000 deaths in 2004 (Jemal et al., 

2004). It is estimated that colon and rectal cancer will account for 9% of all cancer 

deaths in 2008 (American Cancer Society, 2008). 

 Colon cancer development is often characterized in an early stage by a hyper-

proliferation of the epithelium leading to the formation of adenomas. Colon 

carcinogenesis is a multi-step process, and early intervention should target inhibition of 

enhanced cell proliferation in transformed cells by induction of the apoptotic pathway to 

delete cells carrying mutations (Hawk et al., 2005).  

Diet and lifestyle are thought to be major risk factors for developing colorectal 

cancer (Bray et al., 2002). Other studies have associated the risk of developing colorectal 

cancer to inflammatory bowel disease (IBD) (Munkholm, 2003; Podolsky, 2002). 
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Prostate Cancer 

The prostate is a small sex accessory gland surrounding the urethra at the base of 

the bladder and consists of epithelial and stromal cells (Cunha et al., 2004). A normal 

human prostate is divided into three regions according to their position in relation to the 

urethra – the transition the transition zone comprising 5%–10%, the central zone 

comprising approximately 25%, and the peripheral zone which makes the bulk (70%) of 

the prostate glandular tissue (Dehm and Tindall, 2006). The cells within these zones vary 

significantly in their contribution to the prevalence of prostate cancer (Che and Grignon, 

2002). 

The American Cancer Society (2006) reported that prostate cancer is the most 

frequently diagnosed cancer and the third leading cause of cancer death among men in 

the US. At the time, it was estimated that 27,350 deaths would occur due to prostate 

cancer. Current estimates have placed prostate cancer as the second leading cause of 

cancer death in men, with about 28,660 deaths expected to occur in 2008 (American 

Cancer Society, 2008). 

Prostate cancer initially develops as a high-grade intraepithelial neoplasia 

(HGPIN) in the peripheral and transition zones of the prostate gland. The HGPIN 

eventually becomes a latent carcinoma, which may subsequently progress to a large, 

higher grade, metastasizing carcinoma (Abate-Shen and Shen, 2000; Bosland et al., 

1991; Shukla and Gupta, 2005). Promotion and progression stages are controlled by 

signal transduction molecules triggered by hormones such as androgens (Giovannucci, 

1999; Shukla and Gupta, 2005). Androgen receptor (AR) signaling, cell proliferation and 
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cell death play a critical role in regulating the growth and differentiation of epithelial 

cells in the normal prostate (Cunha et al., 2004).  

Occurrence of prostate cancer is influenced by both genetic and non-genetic 

factors. About 43% of cancer cases are attributed to genetic factors and these factors are 

important at younger ages. Aging increases the risk of prostate cancer development 

(Brothman, 2002).  

Prostate cancer is classified as androgen-dependent or androgen-independent 

(Dehm and Tindall, 2006; Eder et al., 2000; Haag et al., 2005). In androgen-dependent 

prostate cancers, the cells depend on androgens for their growth and survival and can be 

treated by either blocking the androgen pathway or using anti-androgens. Androgen 

ablation initially inhibits androgen receptors and reduces prostate specific antigen (PSA). 

Androgen-independent type of cancer appears in later stages of cancer reoccurrence and 

is resistant to hormonal treatment (Roy-Burman et al., 2005).  

Cell Proliferation 

Cell proliferation is the increase in number of cells as a result of cell growth and 

division. Cancerous cells are characterized by uncontrolled increase in cell numbers. 

Cell proliferation is balanced by programmed cell death in normal organs, while mutated 

cells gain a proliferative advantage resulting in excessive growth (Denmeade et al., 

1996; Magi-Galluzzi et al., 1998). 

According to Vogelstein and Kinzler (2004) cancer-gene mutations enhance net 

cell growth or proliferation, and they suggested that there are fewer pathways than genes 

involved in carcinogenesis. In normal cells, the cell cycle is regulated at two check 
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points; G1–S and G2–M phases. Most of the cancer genes control transitions from the 

resting stage (G1) to a replicating phase (S) of the cycle. Some of the products of these 

genes include proteins such as kinases and cyclins. 

Studies in human tumors have shown that some of the molecules often altered in 

cancer are those involved in the control of the G1–S transition of the cell cycle, 

particularly the cyclin-dependent kinase (CDK) and CDK inhibitors.  These cell cycle 

regulators have been found to be altered in more than 80% of human neoplasias, either 

by mutations within the genes encoding these proteins or in their upstream regulators 

(Ortega et al., 2002). 

Mutations in tumor-suppressor genes encoding CDK inhibitors such as p16 

(Ortega et al., 2002) and in genes encoding transcription factors such p53 (Oren, 2003) 

result in enhanced cell proliferation.  Expression of the nuclear transcription factor kappa 

B (NF-κB) has been shown to promote cell proliferation, while inhibition of NF-κB 

activation blocks cell proliferation. Several studies reported that tumor cells from colon, 

breast, and pancreas cell lines expressed activated NF-κB (Storz, 2005; Valko et al., 

2006).    

Several studies have also shown that mitogen-activated protein kinase (MAPK) 

signaling pathways also play a critical role in both cell proliferation and apoptosis. The 

three sub-groups of MAPKs in mammalian cells are extracellular signal-regulated kinase 

(ERK), the c-Jun NH2-terminal Kinase (JNK), and the p38 MAPK (Kyriakis and 

Avruch, 2001; Zhao et al., 2006).  The extracellular signal-regulated kinase (ERK) 

pathway is activated by growth factors and JNK by a variety of environmental stressors. 
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These kinases can induce both survival and apoptotic responses in cells depending on 

cell type and environment (Lu and Xu, 2006). Valko et al (2007) reported that the 

balance between ERK and JNK activation is important for cell survival since both a 

decrease in ERK and an increase in JNK are required for the induction of apoptosis. 

 There are several assays for measuring cell proliferation in vitro by using 

colorimetric methods such as the tetrazolium salt assay (Lawnicka et al., 2004). The 

number of cells in vitro can be counted using a haemocytometer or coulter counter. Cell 

proliferation can also be measured in vivo by tumor volume (Nakanishi et al., 2003). 

Apoptosis 

Apoptosis is an evolutionarily conserved form of programmed cell death that 

requires a specialized mechanism to get rid of excess or potentially dangerous cells 

(Thornberry and Lazebnik, 1998). Programmed cell death (apoptosis) is required for 

proper development and to destroy cells that represent a threat to the integrity of the 

organism. According to Hengartner (2000), apoptosis is as important as cell division and 

cell migration, since regulated cell death allows the organism to tightly control cell 

numbers and tissue size, and to protect itself from rogue cells that threaten homeostasis. 

Apoptosis is not random but normally occurs in cells with damaged DNA. When 

a cell becomes mutated and does not repair itself, apoptosis selectively eliminates the 

altered cells. Programmed cell death results in morphological changes in cells such as 

shrinkage, development of blebs, chromatin condensation, and biochemical changes 

such as DNA fragmentation (Chaudhary et al., 1999). 
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  According to Hale et al. (1996), there are three mechanisms by which a cell 

commits suicide by apoptosis: one triggered by an internal signal (the intrinsic or 

mitochondrial pathway), another triggered by an external signal (extrinsic or death 

receptor pathway), and a third by apoptosis inducing factor (AIF). The major component 

of the apoptotic machinery is a proteolytic system involving a family of cysteine 

proteases called caspases (Thornberry and Lazebnik, 1998). Caspases are considered the 

central executioners of the apoptotic pathway and over a dozen of them have been 

identified in humans (Hengartner, 2000). 

Valko et al (2007) stated that the intrinsic or mitochondrial pathway is 

represented by intracellular damage of the cell causing Bc1-2 protein in the outer 

membranes of mitochondria to activate Bax that causes cytochrome c to release from the 

mitochondria. This pathway can be caspase-dependent or caspase-independent. In the 

released caspase-dependent pathway, cytochrome c binds to apoptotic protease 

activating factor-1 (APAF-1) forming apoptosomes. The apoptosome complex binds to 

and activates caspase-9. Cleaved caspase-9 activates other caspases (3 and 7) leading to 

digestion of structural proteins in the cytoplasm, degradation of DNA, and phagocytosis 

of the cell. The caspase-independent pathway involves activation of apoptosis inducing 

factor (AIF) or endonuclease G through translocation from mitochondria to nucleus 

(Mohamad et al., 2005) 

The transmembrane pathway of apoptosis involves the tumor necrosis factor 

(TNF) ligand and receptor superfamily members (TNFα, Fas ligand and TNF-related 

apoptosis-inducing ligand; TRAIL). Apoptosis pathways can start at the plasma 
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membrane by death receptor ligation (transmembrane or Fas-ligand dependent pathway) 

or at the mitochondria (mitochondrial or Fas-ligand independent pathway) (Delmas et 

al., 2003; Fulda and Debatin, 2006; Huang et al., 2006).  
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CHAPTER III 

RELATIONSHIPS AMONG ANTIOXIDANT ACTIVITY, PHENOLICS, AND 

SPECIFIC GRAVITY IN POTATO (SOLANUM TUBEROSUM L.) CULTIVARS 

GROWN IN DIFFERENT ENVIRONMENTS  

Introduction 

Antioxidant compounds are present in foods as endogenous constituents or 

phytochemicals (Siddhuraju et al., 2002) and efforts are underway to extract them from 

plant sources. Some of the phytochemicals present in plants are polyphenols, and these 

compounds, such as flavonols, flavonoids (Comis, 2000; McBride, 1999), 

anthraquinones (Yen et al., 2000), xanthones and proanthocyanidins (Minami et al., 

1994) and zeaxanthin (Stelljes, 2001) act as antioxidants and agents of mechanisms that 

exhibit cardioprotective or anticarcinogenic effects. Phenolics and anthocyanins have 

been reported to possess a very high capacity to quench free radicals (Chu et al., 2000; 

Kalt et al., 2001), hence attracting scientists to investigate fruits and vegetables for their 

antioxidant properties.  

Plants vary in composition of phytochemicals with protective functions; 

therefore, to attain maximum health benefits, sufficient amounts of phytochemicals from 

a variety of sources such as vegetables, fruits and grains are necessary (Adom and Liu, 

2002). Previous studies have also indicated that complex mixtures of phytochemicals in 

foods provide better protective benefits than single phytochemicals through additive 

and/or synergistic effects (Eberhardt et al., 2000). 
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Tuber specific gravity is an important quality factor and is one of the properties 

of potato tubers used as a measure of tuber quality. Processors usually pay less for tubers 

with low specific gravity. Environmental factors influence tuber specific gravity 

(Davenport, 2000; Sterrett et al., 2003). According to Gould (1999) potatoes with higher 

specific gravity are well formed, smooth, and firm, and every 0.005 increase in specific 

gravity results in increase of the number of potato chips that can be processed from 100 

pounds of raw potatoes by one pound. 

Specific gravity and solids-content have also been shown to have an effect on fat 

uptake into French fries. Potatoes with a high specific gravity (>1.090) have been shown 

to produce a high yield of French fries with a lower fat content than lower specific 

gravity potatoes (Lulai and Orr 1979). Hagenimana et al. (1998) reported that there is a 

linear relationship between dry matter content and fat uptake in thin sliced sweet potato 

crisps, with fat uptake decreasing as dry matter increased.  

Environmental conditions influence crop productivity and quality, including 

phytonutrient levels. Crops perform differently under different environments, thereby 

exhibiting genotype-by-environment interaction. Genotype-environment interaction in 

crops is the differential response of genotypes to changing environmental conditions. 

Such interactions complicate testing and selection in breeding programs and result in 

reduced overall genetic gain (Goncalves et al., 2003). Differential performance of 

genotypes due to genotype-by-environment interaction results in yield and quality 

parameter instability in crops. Peterson et al. (1992) suggested that for breeders, stability 

is important in terms of changing ranks of genotypes across environments and affects 
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selection efficiency. For end-users, such as wheat millers and bakers, consistency in 

quality characteristics of cultivars is very important regardless of changing cultivar ranks 

(Rharrabti et al., 2003a). 

Becker and Léon (1988) suggested that a stable genotype is one with an 

unchanged performance in various environments, i.e. static stability concept. According 

to Rharrabti et al. (2003a) stability of quality parameters in crop products is an important 

requirement in product development and may result into economic instability for end-

users. Economic instability is commonly caused by both environment and genotype-by-

environment interaction effects. Grausgruber et al. (2000) stated that the quality of a 

genotype usually reacts like other quantitative characters to changing environmental 

conditions. Therefore, a genotype is considered economically stable if its contribution to 

G x E interaction is low.  

Several studies have investigated effects of genotype and environment on yield, 

nutrients and antioxidant activity in potato (Dale et al., 2003; Nzaramba et al., 2006), 

oats (Emmons and Peterson, 2001), wheat (del Moral et al., 2003; Grausgruber et al., 

2000; Graybosch et al., 2004), barley (Atlin et al., 2000), and maize (Epinat-Le Signor et 

al., 2001). All these studies aimed at gaining an understanding of genotype x 

environment interactions. Producers experience local and annual variations in crop yield 

and quality, yet the industry and consumers demand a constant quality of crop products. 

Breeding programs normally select for local adaptation in order to exploit 

genotype x environment interactions. Before new cultivars are released, they have to be 

tested at several locations and for many years. Multi-environment trials encounter 
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problems with genotype x environment interactions, especially differential genotypic 

responses to environmental condition which limit identification of superior and stable 

genotypes (Epinat-Le Signor et al., 2001).  However, in so doing, stable genotypes for 

broad adaption and unstable ones for local adaption are identified.  

Given the importance of antioxidants in disease prevention, developing potato 

cultivars with high antioxidant levels would complement physical, medical, and social 

activities in preventing diseases. Also, to ensure tuber quality, high specific gravity in 

newly developed varieties should be maintained.  However, to accomplish this there is 

need to understand the relative importance of cultivar, environment, and their interaction 

on antioxidant activity, phenolic compounds, and specific gravity, and also understand 

the relationship among these traits. Relationships among traits provide information on 

how selection for one trait would affect other traits. Therefore, the objective of this study 

was to investigate the relative importance of cultivar, environment and season, and their 

interaction on antioxidant activity, total phenolic content, and specific gravity in potato 

cultivars grown under widely diverse environmental conditions (nine states) for three 

years (2005, 2006, and 2007 seasons). Also, correlations among antioxidant activity, 

total phenolics, individual phenolic compounds, and specific gravity were investigated. 

Materials and Methods 
Plant Materials 

Four popular potato cultivars representing different market classes, Yukon Gold 

(fresh, yellow flesh), Atlantic (chipper), Red La Soda (fresh, red) , and Russet Norkotah 

(fresh, russet), were selected for this study. These cultivars were grown in nine states 
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(locations): Springlake, TX., Tulelake, CA., Becker, MN., Plymouth, NC., Aberdeen, 

ID., Powell Butte, OR., East Lansing, MI., Rhinelander, WI., and Pitstown, NJ. 

Agronomic practices at all locations were assumed to be typical for potato production in 

these areas. Potato samples were collected in the 2005, 2006, and 2007 growing seasons. 

Fifteen advanced selections from the Texas A&M University Potato Improvement 

Program grown near Springlake, TX were also analyzed. 

Chemicals 

DPPH (2,2-Diphenyl-1-picrylhydrazyl), Trolox (6-Hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid), ABTS (2,2’-azinobis(3-ethylbenzothiazoline-6-

sulfonic acid) diammonium salt), potassium persulfate, monobasic sodium phosphate 

(NaHPO4), dibasic sodium phosphate (Na2HPO4), sodium chloride, sodium carbonate, 

and Folin-Ciocalteu reagent were purchased from Fisher Scientific (Pittsburgh, PA). 

Methanol and acetonitrile were obtained from VWR International (Suwanee, GA). Pure 

phenolic compounds (chlorogenic acid, rutin hydrate, caffeic acid, myricetin, and sinapic 

acid) were obtained from Acros Organics (Pittsburgh, PA).  

Specific Gravity Measurement 

Specific gravity of each cultivar from every location was measured by weighing 

ten tubers in air and then when immersed in water.  Specific gravity was estimated as the 

quotient of weight in air and the difference between weight in air and weight in water. 

Sample Extraction 

Three samples were randomly selected from tubers whose specific gravity had 

been measured. Each sample contained three tubers. The tubers in each sample were 



41 
 

 

diced together, and five grams of diced material were placed in Corning centrifuge tubes, 

and 15 ml of HPLC-grade methanol was added. Samples were homogenized with an 

IKA Utra-turrax tissuemizer for 3 min. Tuber extract was centrifuged at 31,000 g for 20 

min. with a Beckman model J2-21 refrigerated centrifuge. One and one half ml of 

supernatant was collected into microcentrifuge tubes for antioxidant and total phenolic 

content analysis. Seven ml of supernatant were collected in glass vials for individual 

phenolics compound analysis with HPLC. Sample extracts were stored at -20o C until 

analysis. 

Antioxidant Analysis 

DPPH assay 

Antioxidant activity in tuber extracts was estimated using the DPPH (2,2-

Diphenyl-1-picrylhydrazyl) method (Brand-Williams et al., 1995). One-hundred-fifty μl 

of extract was placed in a scintillation vial, 2,850 μl of DPPH methanol solution was 

added, and the mixture was placed on a shaker for 15 min. The mixture was transferred 

to UV-cuvettes and absorbance recorded using a Shimadzu BioSpec-1601 

spectrophotometer at 515 nm. Trolox (6-Hydroxy-2,5,7,8-tetramethylchroman-2-

carboxylic acid), a synthetic antioxidant, was used as a standard, and total AOA was 

expressed as micrograms of trolox equivalents per gram of tuber fresh weight (μg 

TE/gfw). 

ABTS assay 

Radical scavenging capacity of potato methanolic extracts was measured against 

the ABTS (2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) 



42 
 

 

radical (Awika et al., 2003). Seventy-five µl of methanol was added to 25 µl of potato 

extract to make 100 µl of diluted sample extract.  Two-thousand-nine-hundred µl of the 

working solution was added to the diluted sample extract and reacted for 30 min. on a 

shaker. Absorbance of the solution was measured at 734 nm with a Shimadzu BioSpec-

1601 spectrophotometer. The working solution composed of a mixture of 5 ml of mother 

solution [mixture of equal volumes of 8 mM of ABTS and 3 mM of potassium persulfate 

solutions] and 145 ml of phosphate buffer solution pH 7.4 [40.5 ml of 0.2 M Na2HPO4 

(dibasic), 9.5 ml of 0.2 M NaHPO4 (monobasic) and 150 mM NaCl. Trolox (6-Hydroxy-

2,5,7,8-tetramethylchroman-2-carboxylic acid), a synthetic antioxidant, was used as a 

standard, and total AOA was expressed as micrograms of trolox equivalents per gram of 

potato fresh weight (μg TE/gfw). 

Total Phenolic Analysis 

Total phenolic content was determined following the method of Singleton et al. 

(1999). One-hundred-fifty µl of sample extract was pipetted into scintillation vials, and 

2.4 ml of nanopure water was added. One-hundred-fifty µl of 0.25 N Folin-Ciocalteu 

reagent was added and, after 3 min of reaction, 0.3 ml of 1N Na2CO3 reagent was added 

and allowed to react for 2 hours. The spectrophotometer (Shimadzu BioSpec-1601) was 

zeroed with a blank (0.150 ml methanol, 2.4 ml H2O, 150 µl of 0.25 N Folin, and 0.3 ml 

1 N Na2CO2) before sample analysis. Absorbance of sample extracts was read at 725 

nm. Chlorogenic acid was used as a standard, and total phenolic content expressed as 

milligrams of chlorogenic acid equivalents per 100 grams of potato fresh weight (mg 

CGA/100gfw). 
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Phenolic Composition 

Composition of tuber methanolic extracts was determined using a HPLC system. 

Samples were concentrated before analysis by drying 5 ml of potato extract with a speed 

vac concentrator, and then re-dissolved in 1 ml of methanol. The concentrated extracts 

were filtered through 0.45 µm syringe filters. The phenolic acid composition of extracts 

was analyzed using an Atlantis C-18 reverse-phase column (4.6 x 150 mm, 5 µm) from 

Waters, Milford, MA, maintained at 400 C. The HPLC system consisted of a binary 

pump system (Waters 515), autoinjector (Waters 717 plus), a photodiode array (PDA) 

detector (Waters 996), and column heater (SpectraPhysics SP8792). Separation of 

phenolic acids was done using a linear gradient elution with mobile phase solvents A 

(acetonitrile) and B (water/acetic acid, pH 2.3). Solvent flow rate was set at 1 ml/min 

and gradient 15 to 100% in 35 min. Pure phenolic compounds were used as standards for 

HPLC analysis: chlorogenic acid, rutin hydrate, caffeic acid, myricetin, and sinapic acid. 

Identification and quantification of phenolic acids present in the potato extracts was 

done by comparing retention time and area of the peaks in the extracts with that of the 

standard compounds. Quantities of the phenolic acids were expressed as µg/g of fresh 

weight. 

Statistical Analysis 

Data from each location in each year were analyzed separately using analysis of 

variance (ANOVA). In some locations not all four cultivars were grown in all years. 

Therefore, cultivar, location, year, and their interaction effects were determined 

following a factorial design using data from locations in which all cultivars were grown 
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in all years. A combined analysis of variance for all the factors (cultivars, locations, and 

years) was performed using the following factorial general linear model (GLM); Yijkl = μ 

+ αi + βi + γk + (αβ)ij + (αγ)jk + (βγ)ik + (αβγ)ijk + εijkl , where Yijkl is the ith value of the lth 

variety in jth location in the kth year. The four terms, μ, αi, βi, and γk are the mean and the 

main effects of cultivars, locations, and years, respectively. The terms, αβij, αγjk, and βγik 

are first order interactions, and αβγijk is a second order interaction involving all three 

factors, and the environmental deviation within locations and years was denoted as εijkl 

(Lentner and Bishop, 1993). The model was a mixed effects model with cultivars and 

locations considered as fixed effects while years were random.  

Mean separation was by least squares analysis. Phenotypic correlations between 

traits were computed following Pearson’s correlation method. Principal component 

analysis (PCA) was performed on the mean data of all replicates. General linear 

regression was performed with SAS software version 9.1 (SAS, 2002), while principal 

component analysis was performed with GGEbiplot software version 5.2 (Yan, 2001). 

 

Results 

Location, Year, Cultivar, and Interaction Effects 

The combined analysis of variance showed a strong influence of the main effects 

of cultivar, location, and year on antioxidant activity, total phenolic content, and specific 

gravity (Table 3.1). Two-way interaction effects of location x year and cultivar x 

location were significant for all measured traits. Interaction effect between cultivar and 

year was significant for antioxidant activity (both DPPH and ABTS assays) and specific 
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gravity but not significant for total phenolic content. The three-way interaction effect 

was also significant for all parameters. 

Growing location accounted for 16% of the total observed variability in 

antioxidant activity measured by the DPPH assay (Table 3.2). This percentage was equal 

to variability due to cultivar differences, and also close to that due to seasons (year). 

More than 50% of the observed variability in antioxidant activity measured by the ABTS 

assay, total phenolic content, and specific gravity was attributed to the cultivar main 

effect. 

The location main effect accounted for 10.3, 11.8, and 20% of the variability in 

the ABTS assay, total phenolics, and specific gravity, respectively (Table 3.2). All 

interaction effects accounted for less than 10% of the variability in ABTS assay, total 

phenolics, and specific gravity. However, interaction between location and year 

(Location x Year) was responsible for 29.8% of the observed variability for antioxidant 

activity measured by the DPPH assay. 

According to Rharrabti et al. (2003b), the ratio of variances associated with 

environmental effects (σ2
e) to variances associated with genotypes (σ2

g) shows the 

relative influences of genotype and environment on traits of interest. In this study, the 

environmental variance component was considered as that due to location, year and their 

effects (σ2
e = σ2

l + σ2
y + σ2

lxy), and the genotype x environment component was the sum 

of cultivar x location, cultivar x year, and their three-way interaction effects (σ2
gxe = σ2

gxl 

+ σ2
gxy + σ2

gxyxl).  
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Table 3.1. Analysis of variance mean squares and significance of cultivar, location, year, and interaction effects for antioxidant 

activity, phenolic content, and specific gravity of four potato cultivars grown in five locations during the 2005, 2006, and 
2007 growing seasons. 

 

  Mean squares 

  Antioxidant activity 

Source of variation df DPPH Assay ABTS Assay Total phenolics Specific gravity

Location  4 108097.7** 2319774.1** 2078.0** 0.00148**

Year  2 204787.4** 1596437.3** 577.1** 0.00029**

Location x Year  8     98080.3**    278589.1** 724.9** 0.00016**

Rep (Location x Year) 30   1230.5               86266.3                53.8             0.00001 

Cultivar  3 143602.1** 18053028.2** 14588.4** 0.00519**

Cultivar x Year  6 19758.5** 476911.0**                88.5 0.00014**

Cultivar x Location 12 9441.9** 207621.9** 158.9** 0.00015**

Cultivar x Year x Location 24 6375.8** 230659.7** 119.0** 0.00008**

Residual 90   1675.2               85260.2               48.4             0.00001 
 
*significance at p-value <0.05 
**significant at p-value <0.01 
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Table 3.2. Percentage of total observed variability in antioxidant activity, total phenolics, and specific gravity contributed by 

each variance component- cultivar, location, year, and interactions.  
 

 Antioxidant activity 

Source of variation DPPH Assay ABTS Assay Total phenolics Specific gravity

Location 16.5         10.3           11.8          20.0 

Year 15.6 3.5 1.6 1.9 

Cultivar 16.4         60.2           62.3          52.8 

Location x Year 29.8 2.5 8.2 4.4 

Cultivar x Year   4.5 3.2 0.8 2.8 

Cultivar x Location   4.3 2.8 2.7 6.0 

Cultivar x Year x Location   5.8 6.2 4.1 6.4 



 

 

48

The ratio σ2
e ⁄ σ

2
g was greater than 1 for the DPPH assay (Table 3.3), which 

implies that environmental effects were greater than genetic effects. Ratios less than 1 

were observed for the ABTS assay, total phenolics, and specific gravity, indicating more 

genetic influence than environmental effects on these traits. All traits, antioxidant 

activity (both DPPH and ABTS assays), total phenolic content, and specific gravity 

exhibited a ratio σ2
g ⁄ σ

2
gxe greater than 1 (Table 3.3). This demonstrates that genetic 

effects (cultivar differences) were greater than variability due to interaction of genotype 

and environment. 

Table 3.4 shows actual values of cultivar performances in each location. Russet 

Norkotah exhibited the highest amount of antioxidants (DPPH and ABTS assays) and 

total phenolics, whereas Atlantic had the lowest antioxidants and phenolics in all 

locations. Rankings of Red La Soda and Yukon Gold for antioxidants and phenolic 

content changed over locations, with one performing better than the other in some states 

and worse in other states. As for specific gravity, Atlantic consistently exhibited highest 

specific gravity, while Russet Norkotah, Red La Soda, and Yukon Gold switched 

rankings from state to state. 
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Table 3.3. Ratios of environmental (σ2

e) to genetic (cultivar) (σ2
g) variance components and genetic to genotype-by 

environment (σ2
gxe) interaction effects for antioxidant activity, total phenolics, and specific gravity of four potato cultivars 

grown in five states for three seasons. 
 

 Antioxidant activity   

Ratio DPPH Assay ABTS Assay Total phenolics Specific gravity 

σ2
e ⁄σ2

g 2.9   0.2   0.2   0.4 

σ2
g ⁄σ2

gxe 4.0 19.7 39.8 14.3 
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Table 3.4. Mean values of antioxidant activity (DPPH and ABTS), total phenolics, and specific gravity over three years for 

four potato cultivars grown at nine locations (States). 
  Locations 

Parameter Cultivar CA ID MI MN NJ NC OR TX WI LSDa

 Russet Norkotah 315 379 303 144 217 257 171 241 254 201
DPPH Red La Soda 274 332  193 171 148 242 168
 Yukon Gold 226 264 170 153 171 212 149 239 236 100
 Atlantic 168 177 155 90 90 129 82 133 130 111
  LSDb 92 154 199 70 53 79 42 77 105  
 Russet Norkotah 2875 2587 3009 2656 2023 2501 2087 2410 2565 544
ABTS Red La Soda 2605 2033  1811 1911 1651 2157 638
 Yukon Gold 2454 1748 2157 2199 1509 1887 1676 1816 1971 606
 Atlantic 1214 929 1046 944 898 1010 1028 799 1033 369
  LSDb 408 402 577 353 180 768 439 342 289  
 Russet Norkotah 91 90 91 77 81 92 71 80 78 21
Total phenolics Yukon Gold 83 69 80 67 64 63 53 70 62 15
 Red La Soda 80 70  56 61 60 70 21
 Atlantic 46 40 44 34 35 40 34 38 37 10
  LSDb 10 10 11 14 8 34 8 15 6  
 Atlantic 1.107 1.082 1.089 1.071 1.086 1.089 1.088 1.089 1.084 0.013
Specific gravity Yukon Gold 1.088 1.083 1.059 1.061 1.079 1.077 1.083 1.077 1.074 0.011
 Red La Soda 1.078 1.065  1.066 1.068 1.067 1.057 0.008
 Russet Norkotah 1.074 1.064 1.066 1.047 1.075 1.079 1.073 1.073 1.063 0.013
  LSDb 0.005 0.009 0.014 0.035 0.005 0.009 0.006 0.005 0.005  

a LSD among location means of a cultivar trait; bLSD among cultivars within a location  
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Relationships among Antioxidant Activity, Phenolic Content, and Specific Gravity 

 Regression analysis revealed significant relationships among antioxidant activity, 

total phenolics, and specific gravity (Fig. 3.1). Correlation coefficient between 

antioxidant activity (AOA) measured by the DPPH assay and AOA measured by the 

ABTS assay was significant (p-value <0.01) with a value of r = 0.508. Antioxidant 

activity (measured by both DPPH and ABTS) and total phenolic content were 

significantly correlated with correlation coefficients (r) = 0.579 and 0.876, respectively. 

Similar results showing significant correlation between AOA and total phenolic content 

in the potato (Reddivari et al 2007) and sweet potatoes (Huang et al., 2004) were 

reported. Negative relationships between antioxidant activity (DPPH and ABTS assays) 

and specific gravity, and between total phenolic content and specific gravity were 

observed (Fig. 3.1). The correlation coefficient between AOA (DPPH assay) and 

specific gravity was -0.232 and significant at p-value = 0.01. Relationship between the 

ABTS assay and specific gravity was also significant (p-value = 0.01) with a correlation 

coefficient of -0.494. Likewise, total phenolic content was negatively correlated (r = -

0.452) with specific gravity. These results indicate that breeding for high antioxidants 

and phenolic content may result in reduced specific gravity of the tubers.  

  



 

 

52
 

Fig. 3.1. Regression analysis and correlation coefficients among antioxidant activity (DPPH and ABTS assays), phenolic 
content, and specific gravity of four potato cultivars grown over three years at nine locations. 
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 This study used cultivars that are commonly grown in the United States or grown 

by most potato breeders as standard checks. However, given the small sample of 

cultivars used, correlations of antioxidant activity and phenolic content with specific 

gravity may have been biased due to sampling size. Also, the cultivar Atlantic was 

consistently the lowest in antioxidant activity and total phenolic content, and the highest 

in specific gravity, thereby behaving as an influential outlier. Therefore, several 

advanced selections from the Texas A&M University Potato Improvement Program, 

College Station, were used to confirm the observed correlation analysis results above. 

Tuber specific gravity, antioxidant activity, total phenolic content, and individual 

phenolic compounds in the breeding lines are shown in Table 3.5. Phenolic compounds 

quantified with HPLC analysis were chlorogenic acid, rutin hydrate, caffeic acid, 

myricetin, and sinapic acid. Results showed no significant linear relationship between 

antioxidant activity and specificity gravity in potato breeding lines. Also there was no 

significant correlation between total phenolic content and specific gravity, or between all 

individual phenolic compounds and specific gravity (Table 3.6).                       .                            
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Table 3.5. Mean values of antioxidant activity, phenolic content, specific gravity, and individual phenolic compounds of potato 

advanced selections grown near Spring Lake, TX in the 2005 growing season. 
 

 Antioxidant activity  Phenolic composition 

Genotype DPPH ABTS Total phenolics Specific gravity Sinapic Rutin Myricetin Caffeic Chlorogenic

A833501-9R   59.7 2273.3 65.6 1.066 3.1 14.6 12.0 29.8   60.9 
Atlantic 190.7   713.4 44.8 1.086 3.4 7.7 10.4 29.6 109.2 
ATTX961014-1AR/Y 96.4 2339.9 66.6 1.062 7.9 6.5 10.9 29.6 123.4 
ATTX98444-16R/Y 225.7 2620.3 89.0 1.074 2.6 25.4 11.2 36.2 276.5 
ATTX98462-9R/Y 169.5 2478.8 71.9 1.071  11.3 7.1 10.7 30.0 215.7 
ATTX98468-3R/Y 296.2 3448.2 92.5 1.070 4.2 5.8 11.2 33.8 344.4 
ATTX98493-2P/P 422.1 3037.5 96.4 1.067  10.3 14.3 11.8 31.8 441.0 
ATTX98510-1R/Y 336.7 3999.0         104.6 1.063 2.9 7.2 10.4 32.9 363.0 
COTX01403-4R/Y 204.2 2602.8 80.5 1.061 7.4 8.6 10.7 31.7 250.2 
NDTX4271-5R 122.5 2389.2 68.8 1.058 2.8 4.1 10.8 30.8 104.8 
NDTX4304-1R 138.6 2478.4 69.6 1.058 5.0 8.9 11.2 29.2   61.3 
NDTX4756-1R/Y 359.2 3684.7         101.6 1.062 8.4 7.1 11.4 31.9 315.2 
NDTX731-1R 113.0 2133.1 66.2 1.058 4.1 9.7 10.9 30.1 142.9 
POTX03PG19-1Pu/YR 394.2 2731.9 92.1 1.082 5.5 7.3 10.7 31.8 542.7 
PORTX03PG25-2R/P 471.1 3558.7         106.1 1.057  22.7 22.8 11.5 42.3 659.1 
Russet Norkotah 201.9 2103.1 86.5 1.068 6.0 10.6 11.3 31.6 231.6 
TX1674-W/Y 196.8 2884.0 86.3 1.080 4.2 5.2 11.1 30.0 179.3 
Yukon Gold 268.3 1682.6 76.0 1.072  10.1 6.8 11.7 30.1   47.4 

LSD   86.3   816.5 13.2 0.005    4.5 12.5   1.2  4.5 134.2 
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Table 3.6. Correlation analysis among antioxidant activity (DPPH and ABTS assays), total phenolics (TP), specific gravity, 
and individual phenolic compounds of potato advanced selections grown near Spring Lake, TX in the 2005 growing 
season. 

 
  ABTS TP Sinapic Rutin hydrate Myricetin Caffeic Chlorogenic Specific gravity 

DPPH 0.58* 0.80**   0.55* 0.27 0.14 0.65** 0.88**  0.09 

ABTS  0.88** 0.26 0.14 0.11 0.52* 0.65** -0.39 

TP   0.38 0.29 0.23 0.65** 0.79** -0.18 

Sinapic    0.36 0.32 0.60**     0.54* -0.28 

Rutin hydrate     0.43 0.71**     0.40 -0.11 

Myricetin      0.18     0.02 -0.20 

Caffeic       0.77** -0.20 

Chlorogenic          0.00 

*significance at p-value <0.05 
**significant at p-value <0.01 
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 Despite the lack of a significant relationship between specific gravity and any of 

the measured traits, principal component analysis was done to further elucidate the 

particularity of the relationships (Yan and Hunt, 2001). The first two principal 

components (PC1 and PC2) were used to construct a biplot consisting of the measured 

traits and the potato genotypes (Fig. 3.2). The two principal components accounted for 

66.8% of the total variance: 50.6 and 16.2% for PC1 and PC2, respectively. The first PC 

axis (PC1) separated specific gravity from all other traits. Specific gravity was placed on 

the negative direction of the PC1 axis, whereas antioxidant activity, total phenolic 

content, and individual phenolic compounds were all on the positive side of the axis 

(Fig. 3.2). This clearly demonstrates that there is no positive relationship between 

specific gravity and any of these traits. The biplot (Fig. 3.2) also shows that, among the 

individual phenolic compounds quantified, chlorogenic acid was the most closely 

associated with antioxidant activity and total phenolic content followed by caffeic acid.  

Discussion 

This study demonstrated the influence of genotype and environment on 

antioxidant activity, total phenolic content, and specific gravity, and also elucidated the 

relationships among these traits in potato tubers. Results from this investigation showed 

that antioxidant activity measured by the ABTS assay, total phenolic content, and 

specific gravity are mostly governed by genotype. This is so because more than 50% of 

the observed variability in the ABTS assay, total phenolic content, and specific gravity 

was attributed to the cultivar main effect (Table 3.2). However, for DPPH assay, 

location, season and cultivar main effects were equally influential to antioxidant activity. 
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Fig. 3.2. A biplot of genotypes-by-trait in potato advanced selections grown near 
Springlake, TX, in the 2005 growing season. Traits are in red and upper case and 
accessions are in blue and lower case. Traits are abbreviated as SPG- specific 
gravity, DPPH and ABTS- antioxidant activity, TP- total phenolics, CGA- 
chlorogenic acid, CA- caffeic acid, SA- sinapic acid, RH- rutin hydrate, and MYC 
myricetin. 
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Relationships among traits are of interest in plant breeding as they influence 

strategies employed by breeders in improving crops. A significant positive correlation 

between desirable traits makes breeding for one or both traits easier, while a negative 

correlation poses challenges, as increasing one trait results in reduced value of the other. 

However, if one trait is desirable and the other undesirable, a negative correlation makes 

breeding easier, while a positive correlation makes trait improvement difficult.  

Observations from this study indicated that antioxidant activity and phenolic 

content in potato tubers have a significant positive linear relationship. These results are 

in agreement with previous studies in potato tubers (Kanatt et al., 2005; Reddivari et al., 

2007a), bamboo extracts (Kweon et al., 2001), fruits (Kim et al., 2003), and vegetables 

(Troszynska et al., 2002). Therefore, breeding for high antioxidant activity in potatoes 

can be achieved by increasing the amount of phenolic compounds available in potato 

tubers. 

Specific gravity is the solids content of potato tubers and is an important quality 

factor for processing. It is one of the properties of potato tubers that could be used as a 

basis for nondestructive quality evaluation (Chen et al., 2005). Correlation analysis of 

data from the four common cultivars showed a significant negative relationship between 

antioxidant activity (DPPH and ABTS assays) and specific gravity, and between total 

phenolic content and specific gravity. However, correlation analysis of data from 

advanced selections indicated no significant relationship between antioxidant and 

specific gravity or between total phenolic content and specific gravity. 
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The difference in observed results from the two analyses was due to sample 

sizes. Only cultivars, which could be obtained from breeding programs in the nine states, 

were used. Therefore, the small sample, in addition to cultivar Atlantic being 

consistently the lowest in antioxidant activity and total phenolic content and the highest 

in high specific gravity, could have resulted in biased correlation results. With a larger 

sample (15 advanced selections and 3 cultivars) with distributed trait values, there was 

no significant relationship/correlation between antioxidant activity and specific gravity 

or between total phenolic content and specific gravity. Also, none of the individual 

phenolic compounds, caffeic acid, chlorogenic acid, myricetin, rutin hydrate and sinapic 

acid were significantly correlated with specific gravity.   

The important finding of the investigation is that there is no significant 

relationship between antioxidant activity and specific gravity. And also there were no 

relationships observed between total phenolic content and specific gravity, and between 

individual phenolic compounds and specific gravity. Therefore, breeding for high 

antioxidants and phenolic compounds in potato tubers would increase their nutritional 

value without compromising tuber quality in terms of specific gravity. However, 

significant genotype-by-environment interactions may hinder rapid progress.  
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CHAPTER IV 

TOTAL GLYCOALKALOIDS, ANTIOXIDANT ACTIVITY, AND PHENOLIC 

LEVELS IN SOLANUM MICRODONTUM AND SOLANUM JAMESII 

ACCESSIONS 

Introduction 

Research has intensified on investigating the health benefits of phytonutrients 

(Duyff, 2002), and several research reports have indicated that the benefit of plant foods 

is due not only to levels of vitamins or other nutritive compounds they provide, but also 

to activity of the non-nutritive factors they contain. Many of these plant secondary 

components are antioxidants (Riedl et al., 2002). Food-derived antioxidants, such as 

vitamins and phytochemicals, are receiving much attention for their function as 

chemopreventive agents against oxidative damage (Hwang and Yen, 2008). 

The importance of antioxidants in preventing diseases and maintenance of health 

has raised interest among scientists, food producers/manufacturers, and consumers, as 

the trend of the future is towards functional foods (Robards et al., 1999; Velioglu et al., 

1998). Many authors (Al-Saikhan et al., 1995; Hale, 2004; Kanatt et al., 2005; 

Kawakami et al., 2000) have reported presence of antioxidant compounds in potatoes. 

 In order to further improve the nutritional value of the potato, plant breeders need 

to develop cultivars with substantial amounts of antioxidants. Kolasa (1993) proposed 

analyzing the nutrient value of potatoes not commonly grown in the U.S. to determine if 

there are significant quantities of antioxidants, like vitamin E and beta-carotene, or other 

cancer preventing phytochemicals, such as butyric acid, and suggested enhancing the 
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contribution of potato to human nutrition through education, marketing, breeding, field 

management, and preparation for consumption. Also, related wild species with desirable 

nutritional benefits can be used as parental material in developing improved varieties 

with enhanced health benefits. Several wild species were analyzed for antioxidant 

activity and total phenolic content by the Potato Improvement Program at Texas A&M 

University, and many were reported to possess more antioxidant activity and phenolic 

content than currently grown cultivars. Some of the species identified as containing high 

antioxidant activity were Solanum jamesii, S. pinnatisectum, S. megistacrolobum, and S. 

microdontum (Hale, 2004; Nzaramba et al., 2007). However, in the above studies, only a 

few accessions of each species from a “mini-core” collection were analyzed. The mini-

core collection was assembled by Dr. John Bamberg, Curator, US Potato Genebank to 

represent the gene bank’s diversity as well as facilitate pioneering research and 

preliminary evaluation of the germplasm for various traits, given the large number of 

populations and species held in the gene bank. 

Having identified some species as containing more antioxidant activity than 

cultivated varieties, it was decided to screen all populations of these species to identify 

specific accessions that are the highest in antioxidant activity and phenolic content. 

However, many wild potato species are reported to contain high levels (>20 mg/100g) of 

glycoalkaloids which are toxic to humans. 

Therefore, the objective of this study was to screen all accessions of S. jamesii 

and S. microdontum species in the US Potato GeneBank for antioxidant activity, total 

phenolic content, and total glycoalkaloid levels. Also, linear correlations among 
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glycoalkaloid (TGA) levels, antioxidant activity, and total phenolic content were 

investigated. Solanum jamesii and S. microdontum species were selected for this study 

because they are known to be efficient in tuber calcium accumulation. Also, S. 

microdontum is easily crossable to varieties of tetraploid S. tuberosum, while S. jamesii 

is native to southern US and northern Mexico therefore would easily be adaptable to the 

North American climate. The information obtained from this study would be helpful in 

selecting accessions to use in introgressing desirable traits into cultivated potato 

varieties, while avoiding introducing or increasing levels of undesirable compounds such 

as glycoalkaloids.  

Materials and Methods 

Plant Material 

Ninety-two accessions of S. jamesii and 86 accessions of S. microdontum were 

obtained from the US Potato Genebank, Sturgeon Bay, WI. Tubers analyzed were 

obtained from seedlings transplanted into 10 cm - 400ml pots filled with commercial 

soilless potting medium in the greenhouse. The seedlings were watered as needed with 1 

g/L 20-20-20 fertilizer with micronutrients. Supplementary lighting was provided with 

400 W alternating sodium and metal halide lamps 2.5 m apart and 1.5 m above the 

benchtops for 16 h days. Temperatures were maintained at 22o C day and 13o C night 

until harvest. Triplicates of five grams of fresh tubers from each accession were washed 

with water, diced and placed in 50 ml falcon tubes. Samples were store at -20o C until 

extraction of phytochemicals. 
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Chemicals 

DPPH (2,2-Diphenyl-1-picrylhydrazyl), Trolox (6-Hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid), ABTS (2,2’-azinobis(3-ethylbenzothiazoline-6-

sulfonic acid) diammonium salt), potassium persulfate, dibasic sodium phosphate, 

monobasic sodium phosphate, sodium chloride, Folin-Ciocalteu reagent, ammonium 

phosphate, and sodium carbonate were purchased from Fisher Scientific (Pittsburgh, 

PA). Methanol, acetonitrile, acetone, and chloroform were obtained from VWR 

International (Suwanee, GA). Chlorogenic acid, rutin hydrate, caffeic acid, myricetin, α-

chaconine and ammonium hydroxide were purchased from Sigma-Adrich (St. Louis, 

MO). Alpha-solanine and tomatine were obtained from MP Biomedicals (Solon, OH).  

Sample Extraction 

Five grams of diced tubers were extracted with 20 ml of HPLC-grade methanol. 

The samples were homogenized with an IKA Utra-turrax tissuemizer for 3 min. The 

extract was centrifuged at 31,000 g for 20 min. with a Beckman model J2-21 refrigerated 

centrifuge. Two ml of supernatant was collected into microcentrifuge tubes for AOA 

determination and total phenolic content analysis, and 5 ml of supernatant was collected 

in glass vials for individual phenolic compound analysis with HPLC. Sample extracts 

were stored at -20o C until analysis. 

Antioxidant Analysis  

Antioxidant activity was measured using two assays, the 2,2-diphenyl-1-

picrylhydrazyl (DPPH) assay (Brand-Williams et al., 1995) and the 2,2-azinobis (3-

ethyl-benzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assay (Awika et al., 
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2003; Miller and Rice-Evans, 1997). Intense sample color interferes with the DPPH 

assay estimates; therefore the ABTS assay was used to confirm the results.  

DPPH assay: 

Antioxidant activity in extracts was estimated using the DPPH (2,2-Diphenyl-1-

picrylhydrazyl) method (Brand-Williams et al., 1995). The DPPH method is commonly 

used to determine antioxidant activity of pure compounds as well as natural plant 

extracts. DPPH
.
 is a stable free radical that absorbs at 515 nm, and when reduced by an 

antioxidant its absorbance is lost and the change in absorbance is determined 

spectrophotometrically (Brand-Williams et al., 1995; Fukumoto and Mazza, 2000; 

Mahinda and Shahidi, 2000). The method is commonly used due to its good repeatability 

but has little relevance to biological systems. Samples that contain anthocyanins may 

lead to color interference of DPPH
.
, resulting in underestimation of antioxidant activity 

(Arnao, 2000). A 150 μl aliquot was placed into a scintillation vial, 2,850 μl of DPPH 

methanol solution was added, and the mixture was placed on a shaker for 15 min. The 

mixture was transferred to UV-cuvettes and its absorbance recorded using a Shimadzu 

BioSpec-1601 spectrophotometer at 515 nm. Trolox (6-Hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid), a synthetic antioxidant, was used as a standard 

to generate a standard curve, and antioxidant activity was expressed as micrograms of 

trolox equivalents per gram of tuber fresh weight (μg TE/gfw).  

ABTS assay: 

 The ABTS assay measures the relative ability of antioxidants to scavenge the 

ABTS
.+ radicals generated in an aqueous phase, as compared to a trolox standard which 
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is a water soluble vitamin E analogue. The ABTS
.+ is generated by reacting a strong 

oxidizing agent (potassium permanganate or potassium persulfate) with ABTS salt. The 

reduction of the blue-green ABTS
.+ radical by a hydrogen-donating antioxidant is 

measured by the suppression of its characteristic long-wave absorption spectrum (Miller 

and Rice-Evans, 1997). It is a rapid method and can be used over a wide range of pH 

values (Arnao et al., 1999; Lemanska et al., 2001) in both aqueous and organic solvent 

systems. The assay has good repeatability and is simple to perform. Radical scavenging 

capacities of potato methanolic extracts were measured against the ABTS radical (Awika 

et al., 2003). Seventy-five µl of methanol was added to 25 µl of potato extract to make 

100 µl of diluted sample extract. Two-thousand-nine hundred µl of the working solution 

was added to the diluted sample extract and reacted for 30 min. on a shaker. The 

working solution was composed of a mixture of 5 ml of mother solution [mixture of 

equal volumes of 8 mM of ABTS and 3 mM of potassium persulfate solutions] and 145 

ml of phosphate buffer solution pH 7.4 [40.5 ml of 0.2 M Na2HPO4 dibasic, 9.5 ml of 

0.2 M NaHPO4 monobasic and 150 mM NaCl]. Absorbance of the solution was 

measured at 734 nm with a Shimadzu BioSpec-1601 spectrophotometer. Trolox, a 

synthetic antioxidant, was used as a standard, and total antioxidant activity was 

expressed as micrograms of trolox equivalents per gram of potato tuber fresh weight (μg 

TE/gfw).  

Total Phenolic Analysis 

Phenolic content was determined following the method of Singleton et al. (1999). 

One-hundred-fifty µl of tuber extract were pipetted into scintillation vials, and 2.4 ml of 
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nanopure water was added. One-hundred-fifty µl of 0.25 N Folin-Ciocalteu reagent was 

added, and after 3 min of reaction 0.3 ml of 1N Na2CO3 reagent was added and allowed 

to react for 2 hours. The spectrophotometer (Shimadzu BioSpec-1601) was zeroed with a 

blank (0.150 ml methanol, 2.4 ml H2O, 150 µl of 0.25 N Folin-Ciocalteu, and 0.3 ml 1 N 

Na2CO2) before sample analysis. Absorbance of tuber extracts was read at 725 nm. 

Chlorogenic acid was used as a standard, and total phenolic content was expressed as 

milligrams of chlorogenic acid equivalents per 100 grams of potato tuber fresh weight 

(mg CGA/100gfw). 

Phenolic Composition 

Five ml of tuber extract was concentrated before analysis by drying the extract 

with a SpeedVac concentrator, and re-dissolved in 1 ml of aqueous methanol (50:50 

v/v). The concentrated extracts were filtered through 0.45 µm syringe filters and injected 

into the HPLC system. The HPLC system consisted of a binary pump system (Waters 

515), an auto-injector (Waters 717 plus), a photodiode array (PDA) detector (Waters 

996), and a column heater (SpectraPhysics SP8792). An Atlantis C-18 reverse-phase 

column (4.6 x 150 mm, 5 µm) (Waters, Milford, MA.) maintained at 400 C was used to 

separate phenolic acids in the sample extracts. Twenty μl of extract was injected into the 

system, and the mobile phase used consisted of two solvents: solvent A acetonitrile and 

B nano-pure water adjusted to pH 2.3 with acetic acid. Solvent flow rate was set at 1 

ml/min with a gradient of 0/85, 6-35/85-0, 36-45/85 (min/%A). Pure phenolic 

compounds - chlorogenic acid, rutin hydrate, caffeic acid and myricetin, previously 

reported in potato tubers were used as standards to identify and quantify some of the 
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phenolic compounds present in the sample extracts. Identification of phenolic acids 

present in the potato extracts was done by comparing retention time and spectra of peaks 

detected at 280 nm in the extracts with retention times and spectra of peaks of the 

standard compounds. Quantification of individual phenolic acids in the sample extract 

was done by comparing peak area of a known concentration of standards, and results 

were expressed as µg/g of tuber fresh weight (µg/gfw). 

Total Glycoalkaloid Extraction 

Extraction of glycoalkaloids followed the method of (Rodriguez-Saona et al., 

1999). Five g of fresh tubers was homogenized with 10 ml of acetone to a uniform 

consistency. The extract was centrifuged at 13,000 g for 15 min., and the clear 

supernatant collected into a falcon tube. The residue was re-extracted with 10 ml of 

aqueous acetone (acetone:water 30:70 v/v). The extract was centrifuged and the 

supernatant combined with the first extract. Chloroform was added to the acetone extract 

(2 volumes of chloroform for each volume of acetone extract), thoroughly mixed by 

shaking the tubes and stored overnight at 1o C. The top aqueous portion was collected 

into glass vials and concentrated in a rotovapor SpeedVac at 40o C until all residue 

acetone was evaporated. The extract was brought to a known volume with nano-pure 

water and analyzed for glycoalkaloids. 

Glycoalkaloid Analysis 

The sample extracts and solvents were filtered through 0.45 µm filters. 

Glycoalkaloid analysis with a high performance liquid chromatography (HPLC) system 

followed the method of Sotelo and Serrano (2000) with some modifications. A Waters 
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HPLC with an Atlantis C-18 reverse-phase column (4.6 x 150 mm, 5 µm) from Waters 

(Milford, MA.) maintained at 350 C was used. The mobile phase used for glycoalkaloid 

elution was (35:65 v/v) acetonitrile : 0.05 M monobasic ammonium phosphate buffer 

((NH4)H2PO4), adjusted with NH4OH to pH 6.5. The solvent flow was isocratic at a rate 

of 1 ml/min and the UV absorbance detector set at 200 nm with 5% AUFS sensitivity. 

Amount of sample extract injected was 20 µl. Different concentrations of commercially 

obtained α-solanine, α-chaconine, and tomatine were injected into the HPLC system and 

their peaks used to identify glycoalkaloids in the tuber extracts by comparing peak 

retention times and spectra detected at 200 nm in the extracts with retention times and 

spectra of peaks of the commercial standard compounds. Also, standard curves prepared 

by regressing known concentrations to their corresponding peak areas were used to 

quantify amounts of glycoalkaloids in the extracts.  

Statistical Analysis 

Analysis of variance (ANOVA) was performed using SAS version 9.1 software 

(SAS, 2002) to determine the variability of the measured parameters in the potato 

accessions. Mean separation was by least squares analysis. Phenotypic correlations 

between traits were computed following Pearson’s correlation method and principal 

component analysis was performed by GGEBiplot software version 5.2 (Yan, 2001).  
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Results 

Antioxidant Activity 

Antioxidant activity values determined with the DPPH and ABTS assays were 

widely variable in both S. jamesii (Table 4.1) and S. microdontum (Table 4.2) 

accessions. Antioxidant activity values measured by ABTS were greater than those 

measured by DPPH. This may be due to differences in the absorption maxima of the two 

radicals. The DPPH maximum absorption wavelength (515 nm) is in the visible region, 

and the interference due to sample color is much more pronounced in this region as 

compared to the ABTS maximum absorption wavelength (725 nm), which is not in the 

visible region (Kanatt et al., 2005). However, consistency in relative ranking is probably 

more important than consistency in absolute numerical scores.  

The DPPH values in S. jamesii ranged from 173 (PI 592408) to 961 μg TE/gfw 

(PI 620875), while values from the ABTS assay ranged from 1,383 (PI 592408) to 3,513 

(PI 275172) μg TE/gfw. Analysis of variance also showed significant differences (p-

value <0.01) in AOA (DPPH and the ABTS assays) among S. jamesii accessions (Table 

4.1). The DPPH values in S. microdontum ranged from 202 (PI 558097) to 1,535 (PI 

498127) μg TE/gfw, while the ABTS values ranged from 1,084 (PI 558097) to 6,288 (PI 

498127) μg TE/gfw (Table 4.2), and analysis of variance showed significant differences 

among accessions.  

Total Phenolic Content 

 Significant differences among S. jamesii and S. microdontum accessions in total 

phenolic content were revealed by analysis of variance. Wide variation in TP was also  
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Table 4.1. Mean values of antioxidant activity (DPPH and ABTS assays), total phenolic 
content (TP), α-solanine (SOL), α-chaconine (CHA), total glycoalkaloids (TGA), 
chlorogenic acid (CGA), caffeic acid (CA), rutin hydrate (RH), myricetin (MY), and 
ratio of solanine to chaconine (S:C) in S. jamesii accessions (ACCESS). 

 
ACCESS DPPH ABTS TP SOL CHA  TGA CGA CA RH MY S:C 
PI 275172 784 3513 151 2.2 4.0 6.3 432 282 24 2 0.6 
PI 564047 476 1502 87 4.2 5.6 9.8 197 32 12 1 0.8 
PI 564048 618 2412 111 4.6 4.5 9.2 282 133 22 2 1.0 
PI 564049 647 2618 128 9.3 8.3 17.5 270 132 29 3 1.1 
PI 564051 626 1920 128 6.7 7.4 14.2 344 72 51 3 0.9 
PI 564052 653 1939 128 6.3 7.4 13.7 344 159 53 2 0.8 
PI 564053 711 2145 129 5.1 7.2 12.3 346 138 63 2 0.7 
PI 564054 744 2530 140 5.8 6.5 12.3 521 311 54 3 0.9 
PI 564055 572 2139 130 6.7 6.6 13.2 397 122 58 2 1.0 
PI 564056 820 2279 139 7.9 6.3 14.2 409 223 30 4 1.2 
PI 564057 695 2770 131 7.4 8.7 16.0 250 235 27 3 0.8 
PI 578236 656 2075 121 5.6 7.5 13.1 308 132 54 5 0.7 
PI 578237 636 2245 123 6.5 5.2 11.7 344 121 51 2 1.3 
PI 578238 465 1769 92 7.7 6.6 14.3 207 80 28 2 1.2 
PI 585116 827 2467 137 20.0 16.8 36.8 292 101 33 3 1.2 
PI 585118 397 1474 97 6.2 6.8 13.0 146 123 25 4 0.9 
PI 585119 627 1884 125 10.0 6.1 16.1 381 186 34 4 1.6 
PI 592397 321 1987 88 12.5 8.6 21.1 178 247 15 4 1.5 
PI 592398 589 2051 118 12.9 6.5 19.4 222 254 24 5 2.0 
PI 592407 925 2897 145 6.7 9.1 15.8 217 180 34 4 0.7 
PI 592408 173 1383 50 9.6 7.2 16.8 123 76 9 2 1.3 
PI 592410 682 2449 122 12.7 7.1 19.8 239 129 23 4 1.8 
PI 592411 607 2121 124 5.5 6.0 11.4 339 76 44 6 0.9 
PI 592413 503 2136 113 8.0 13.6 21.5 213 156 50 5 0.6 
PI 592414 289 2122 81 5.5 5.7 11.2 133 124 7 4 1.0 
PI 592416 598 2074 107 4.3 6.0 10.3 280 231 41 4 0.7 
PI 592417 709 2281 124 11.6 7.4 18.9 309 273 28 8 1.6 
PI 592418 458 2074 96 7.0 5.8 12.9 172 231 27 6 1.2 
PI 592419 608 2222 119 4.2 6.4 10.6 341 172 60 6 0.7 
PI 592422 752 2515 139 5.9 5.9 11.8 393 159 72 3 1.0 
PI 592423 846 2372 141 8.5 5.4 13.8 504 339 36 4 1.6 
PI 595775 879 2607 161 5.0 6.4 11.3 368 136 71 15 0.8 
PI 595777 719 2001 126 8.5 4.3 12.8 440 110 21 4 2.0 
PI 595778 829 2497 140 13.1 7.5 20.6 403 167 48 12 1.8 
PI 595780 731 2449 129 9.0 5.7 14.7 330 131 31 6 1.6 
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Table 4.1. Continued.. 
 

ACCESS DPPH ABTS TP SOL CHA  TGA CGA CA RH MY S:C 
PI 595782 556 2273 113 11.9 5.8 17.6 227 148 39 9 2.1 
PI 595783 644 2647 125 9.8 4.8 14.7 320 186 27 2 2.0 
PI 595784 789 2641 137 11.0 5.6 16.7 503 117 40 3 2.0 
PI 595785 540 2320 113 9.4 4.6 14.0 319 133 35 3 2.1 
PI 595786 588 2064 114 9.1 4.6 13.7 342 63 33 2 2.0 
PI 595787 793 3037 140 5.1 6.6 11.7 468 347 42 3 0.8 
PI 595788 531 1927 109 6.0 7.4 13.4 226 191 43 3 0.8 
PI 596519 707 2444 114 5.1 7.0 12.1 318 156 14 4 0.7 
PI 603051 758 2904 129 4.9 6.5 11.4 282 209 32 5 0.8 
PI 603052 672 2146 121 2.9 4.6 7.5 289 205 29 4 0.6 
PI 603053 572 2401 154 5.3 10.9 16.2 440 314 65 3 0.5 
PI 603054 783 2206 140 13.6 6.4 20.0 466 205 31 3 2.1 
PI 603055 684 1981 119 6.3 6.3 12.6 349 73 26 2 1.0 
PI 603056 599 2021 110 7.1 6.9 14.0 277 113 24 3 1.0 
PI 603057 620 2276 123 7.0 6.1 13.1 322 265 31 2 1.2 
PI 603058 525 1802 102 6.0 5.9 12.0 270 102 21 3 1.0 
PI 605357 875 2573 144 11.5 6.2 17.8 585 140 55 3 1.9 
PI 605358 703 2078 126 10.0 5.1 15.1 309 327 32 4 1.9 
PI 605359 735 2172 128 8.4 6.1 14.6 353 359 33 4 1.4 
PI 605360 624 1858 114 7.0 3.7 10.8 334 202 23 5 1.9 
PI 605361 813 2406 132 7.2 4.5 11.7 323 242 40 7 1.6 
PI 605362 783 2678 130 3.7 3.2 6.9 350 267 39 6 1.1 
PI 605363 622 2502 115 6.5 3.5 10.0 266 221 25 3 1.8 
PI 605364 958 2947 140 4.1 4.5 8.6 413 154 42 3 0.9 
PI 605365 667 2399 108 2.8 3.4 6.1 189 142 18 4 0.8 
PI 605366 703 2161 120 4.9 3.8 8.7 260 114 26 3 1.3 
PI 605367 564 1922 102 2.4 3.6 5.9 223 119 24 4 0.7 
PI 605368 560 1857 99 4.8 5.1 9.9 217 157 23 3 1.0 
PI 605369 750 2163 124 4.2 4.4 8.7 348 278 18 4 0.9 
PI 605370 714 2201 118 8.5 4.9 13.5 263 123 34 3 1.7 
PI 605371 610 2965 145 7.7 12.2 19.9 297 297 62 6 0.6 
PI 605372 687 2687 128 4.3 5.1 9.4 363 254 34 3 0.8 
PI 612450 648 2237 112 8.9 6.2 15.0 306 213 21 5 1.4 
PI 612451 685 2257 120 6.4 6.6 13.0 356 127 29 3 1.0 
PI 612452 531 1807 113 5.9 6.1 12.0 242 242 35 3 1.0 
PI 612453 814 1998 127 4.1 4.6 8.7 370 211 31 3 0.9 
PI 612454 620 2429 126 3.1 5.0 8.2 359 218 34 5 0.6 
PI 612455 662 2461 118 7.0 6.5 13.4 325 173 26 4 1.1 
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Table 4.1. Continued.. 
 

ACCESS DPPH ABTS TP SOL CHA  TGA CGA CA RH MY S:C 
PI 612456 585 2312 112 4.4 4.9 9.3 238 197 15 4 0.9 
PI 620869 604 2098 109 3.4 4.3 7.7 248 168 14 4 0.8 
PI 620870 895 2727 141 13.3 6.6 19.9 351 221 36 7 2.0 
PI 620872 832 2628 125 4.9 5.9 10.8 342 41 33 3 0.8 
PI 620875 961 2786 136 5.0 6.3 11.3 347 261 27 3 0.8 
PI 620876 652 2000 104 6.3 5.9 12.2 254 106 26 3 1.1 
PI 620877 833 2420 124 9.4 5.6 15.0 301 354 30 5 1.7 
PI 620878 631 2293 124 10.5 6.0 16.4 372 309 39 7 1.8 
PI 632322 713 2555 125 7.1 6.4 13.5 311 108 42 2 1.1 
PI 632323 313 2737 87 6.8 9.0 15.8 234 36 25 3 0.7 
PI 632324 797 2537 126 6.7 6.7 13.4 363 91 27 3 1.0 
PI 632325 416 1906 92 4.1 4.7 8.9 164 44 16 2 0.9 
PI 632326 659 2088 115 5.1 6.1 11.2 289 82 20 3 0.8 
PI 632329 738 3034 124 3.2 4.9 8.0 205 83 21 4 0.7 
PI 632331 627 2534 113 5.8 6.6 12.3 163 48 13 5 0.9 
PI 634361 752 2017 112 8.7 9.8 18.5 308 187 27 2 0.9 
PI 634362 787 2684 121 6.3 7.5 13.8 372 55 29 2 0.8 
PI 634363 847 2843 137 7.7 7.7 15.5 457 272 41 4 1.0 
PI 634364 680 2679 118 5.7 7.0 12.7 296 268 25 6 0.8 
Mean 665 2311 121 7.1 6.3 13.4 313 175 33 4  
LSD 53 212 3 1.2 0.9 1.6 37 29 5 1  
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observed in accessions of both species. Total phenolic content in S. jamesii accessions 

ranged from 50 (PI 592408) to 161 (PI 595775) mg CGA/100gfw. The range of TP 

values in S. microdontum was from 51 (PI 558097) to 269 (PI 498127) mg 

CGA/100gfw. Generally, values from S. microdontum were higher than those of S. 

jamesii accessions (Tables 4.1 and 4.2). 

Phenolic Composition 

 Identification of individual phenolics present in the sample extract was 

accomplished by comparing retention times and spectra of peaks in tuber sample extracts 

detected at 280 nm with retention times and peaks’ spectra of the standard compounds. 

Quantification was done by comparing peak area of a known concentration of standard 

with peak areas of the sample extract. Four compounds (chlorogenic acid, caffeic acid, 

rutin hydrate, and myricetin) were observed in all accessions of S. jamesii and S. 

microdontum (Tables 4.1 and 4.2). The most abundant phenolic compounds in all 

accessions were chlorogenic and caffeic acids. 

Relative amounts of these acids varied from one accession to another, with some 

accessions containing more chlorogenic than caffeic acid, and others containing more 

caffeic than chlorogenic acid. Estimates of chlorogenic acid in S. jamesii ranged from 

123 (PI 592408) to 585 (PI 605357) μg/gfw, caffeic acid values ranged from 32 (PI 

564047) to 359 (PI 605359) μg/gfw, rutin hydrate from 7 (592414) to 72 (PI 592422) 

μg/gfw, and myricetin ranged from 1 (PI 564047) to 15 (PI 595775) μg/gfw. Similarly, 

amounts of these phenolic compounds were widely variable in S. microdontum. 

Chlorogenic acid values ranged from 21 (PI 473362) to 147 (PI 545902) μg/gfw and  



 

 

74

Table 4.2. Mean values of antioxidant activity (DPPH and ABTS assays), total phenolic 
content (TP), α-solanine (SOL), α-chaconine (CHA), dehydrotomatine (DTO), 
tomatine (TOM), total glycoalkaloids (TGA), chlorogenic acid (CGA), caffeic acid 
(CA), rutin hydrate (RH), myricetin (MY), and ratio of solanine to chaconine (S:C) 
in S. microdontum accessions (ACCESS). 

 
ACCESS DPPH ABTS TP SOL CHA DTO TOM TGA CGA CA RH MY S:C 
PI 195185 543 2340 117 65.5 52.1 3.9 2.7 121.9 115 96 2.7 6.3 1.3 
PI 208866 738 2536 133 43.3 38.0   81.2 74 164 3.8 11.3 1.1 
PI 218222 968 3145 155 72.0 77.6 12.0 4.3 155.0 79 136 3.2 6.6 0.9 
PI 218223 798 2944 134 73.9 71.3 6.2 3.3 148.3 76 108 2.3 5.2 1.0 
PI 218226 999 3174 151 57.5 57.6 1.2 3.9 118.5 62 109 2.8 6.5 1.0 
PI 265575 683 2792 120 66.4 58.9 15.3 4.8 138.7 52 124 3.1 4.8 1.1 
PI 265881 980 3289 157 91.6 63.4   155.1 104 85 5.2 3.3 1.4 
PI 275150 357 2078 86 52.3 41.9 9.0 5.4 105.1 69 77 6.2 2.7 1.2 
PI 310979 884 3028 150 109.8 114.3 24.7 19.4 268.0 51 140 6.9 3.9 1.0 
PI 320304 572 2181 106 38.2 44.3 1.4 3.6 84.1 69 35 1.1 3.0 0.9 
PI 320305 255 1225 60 37.8 41.1 0.8 0.7 79.4 52 57 1.3 2.4 0.9 
PI 320306 1004 3809 151 81.5 82.1 69.9 27.4 260.8 79 70 2.3 4.5 1.0 
PI 320307 408 1988 91 99.8 85.1 15.6 3.2 203.8 60 76 1.7 2.6 1.2 
PI 320309 735 2859 132 74.8 71.3   146.1 72 47 2.3 4.4 1.0 
PI 320310 569 2290 114 52.2 44.2 5.6  98.2 38 100 2.1 4.4 1.2 
PI 320311 982 3001 150 100.8 114.0 27.5 13.7 256.0 47 138 1.2 2.3 0.9 
PI 320312 985 2850 160 90.1 91.6 6.6 3.2 191.6 53 51 2.3 3.2 1.0 
PI 320313 422 1463 81 34.1 39.9 0.2 0.4 74.1 46 65 2.4 4.5 0.9 
PI 320315 545 2345 110 81.6 75.8 2.9 4.5 160.8 58 99 1.1 4.0 1.1 
PI 320316 384 1819 86 52.8 50.7 7.0 4.7 109.8 29 29 1.3 2.6 1.0 
PI 320319 1201 3789 197 79.7 61.6 5.9 2.8 146.2 122 176 6.9 4.7 1.3 
PI 320320 268 1872 70 80.2 54.4 2.9  136.5 54 57 2.8 3.7 1.5 
PI 458353 738 2524 126 57.4 84.3 32.5 50.5 224.6 28 192 2.3 5.9 0.7 
PI 458354 1047 3698 173 104.1 98.6 4.4 1.6 206.7 119 147 5.0 6.6 1.1 
PI 458355 1499 4099 237 93.1 84.6 16.8 7.7 185.9 111 70 1.4 12.0 1.1 
PI 458356 1419 3622 219 97.9 61.6 4.0  162.2 71 127 4.0 7.0 1.6 
PI 458357 639 2206 119 83.8 55.1  20.6 145.8 97 49 2.1 4.2 1.5 
PI 458358 257 2009 77 24.3 14.5 46.9 19.0 104.8 49 50 2.8 3.6 1.7 
PI 473166 866 2367 139 49.9 67.4 11.9 5.4 134.5 75 41 3.0 6.9 0.7 
PI 473167 939 2863 150 122.7 98.3 28.5 6.1 232.6 93 96 1.6 5.3 1.2 
PI 473168 309 1741 73 11.5 8.8 83.2 9.8 113.4 79 65 3.6 3.9 1.3 
PI 473169 682 2341 118 77.0 63.9 6.3 1.6 143.5 81 49 2.3 6.5 1.2 
PI 473170 329 1874 81 33.6 32.0   65.6 48 30 2.8 3.2 1.0 
PI 473171 498 2038 94 8.0 5.2   13.2 67 50 2.3 3.7 1.5 
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Table 4.2. Continued… 
  

ACCESS DPPH ABTS TP SOL CHA DTO TOM TGA CGA CA RH MY S:C 

PI 473172 505 2227 100 60.0 72.1   132.2 75 57 2.7 5.3 0.8 
PI 473173 383 2037 98 52.4 54.0   106.4 58 95 2.3 3.9 1.0 
PI 473174 643 2540 128 64.8 66.2   131.0 68 104 1.7 8.3 1.0 
PI 473175 425 2152 91 84.1 92.8 9.3 4.3 186.0 78 61 2.2 5.4 0.9 
PI 473176 759 2365 123 52.2 53.8   106.0 64 70 1.9 3.5 1.0 
PI 473177 465 2436 104 92.3 86.3  7.5 181.0 84 69 2.9 3.9 1.1 
PI 473178 987 2821 154 82.4 108.1 3.7 2.4 193.3 62 106 1.8 3.2 0.8 
PI 473179 637 2420 122 131.5 144.2  13.4 280.1 131 76 3.8 10.5 0.9 
PI 473180 993 2997 170 72.3 66.3 0.2 2.0 139.3 79 106 5.2 7.9 1.1 
PI 473362 984 4843 181 151.0 148.0  67.7 321.6 21 65 3.2 7.8 1.0 
PI 473363 505 1995 107 140.7 139.4  42.5 294.2 35 60 2.6 6.5 1.0 
PI 473525 291 1567 68 108.3 105.6   214.0 47 57 1.6 3.2 1.0 
PI 498121 978 3478 173 121.7 109.6 36.8 12.0 280.0 69 141 3.1 6.5 1.1 
PI 498123 1171 4236 208 120.8 125.1 206.0 110.2 562.2 36 29 2.1 8.2 1.0 
PI 498124 1398 3175 223 190.0 134.3 27.4 8.8 360.5 72 106 2.6 8.1 1.4 
PI 498125 1005 4767 175 130.6 115.6 16.6 7.5 264.8 79 76 7.2 13.2 1.1 
PI 498126 995 4738 176 115.1 89.3 1.3 1.0 205.6 100 131 19.8 12.8 1.3 
PI 498127 1535 6288 269 176.2 191.0  1.6 367.8 91 127 4.3 5.8 0.9 
PI 498128 995 3773 170 85.9 72.4  12.7 162.6 79 130 9.5 12.0 1.2 
PI 500032 426 2171 84 8.2 7.9 33.9 13.7 63.8 69 56 6.8 7.5 1.0 
PI 500033 602 2599 108 62.3 61.5 15.7 5.1 137.7 80 57 4.1 9.0 1.0 
PI 500034 523 2008 101 39.0 34.7   73.7 87 97 2.8 7.6 1.1 
PI 500035 773 2324 123 43.1 32.1 454.5 196.8 726.6 78 53 1.4 8.5 1.3 
PI 500036 321 1783 77 38.5 36.9 1.2 5.1 81.6 53 35 1.4 3.4 1.0 
PI 500037 545 2155 102 51.3 45.5   96.7 81 125 1.4 9.3 1.1 
PI 500038 379 1845 83 4.8 5.5 136.6 62.4 209.4 77 70 2.4 7.3 0.9 
PI 500039 358 1972 84 18.3 18.8 402.3 334.4 773.7 88 63 3.4 7.8 1.0 
PI 500040 478 2207 94 15.8 17.7 19.9 14.9 68.2 53 39 1.5 5.9 0.9 
PI 500041 770 3026 130 9.3 6.5   15.9 89 51 5.9 10.2 1.4 
PI 500044 371 2430 83 27.8 35.7 40.5 18.2 96.5 55 37 2.1 9.1 0.8 
PI 500064 413 1472 82 92.6 87.1  5.7 181.5 73 28 1.0 9.9 1.1 
PI 545901 763 2919 130 64.6 62.0 8.0 4.5 133.4 121 109 7.2 6.7 1.0 
PI 545902 995 4639 176 109.4 95.4 69.6 16.9 291.2 147 153 7.7 11.7 1.1 
PI 545904 803 2013 133 109.9 129.5  10.9 243.0 35 32 1.4 6.6 0.8 
PI 545905 977 2967 161 115.6 108.0 53.2 21.3 298.0 62 120 4.3 7.6 1.1 
PI 558097 202 1084 51 67.6 57.9 16.0 7.9 133.5 59 45 1.1 5.2 1.2 
PI 558098 263 1501 62 46.2 39.9   86.1 101 43 1.2 5.2 1.2 
PI 558099 1000 3712 172 69.3 71.0 5.1 4.2 143.4 63 32 1.9 10.0 1.0 
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Table 4.2. Continued… 
 

ACCESS DPPH ABTS TP SOL CHA DTO TOM TGA CGA CA RH MY S:C 

PI 558100 770 2969 144 133.0 104.5 9.3 15.1 250.7 97 73 2.5 5.7 1.3 
PI 558101 566 2322 109 33.8 26.1   59.9 82 78 1.2 5.5 1.3 
PI 558218 432 2710 101 22.4 24.4   46.8 75 68 4.0 8.4 0.9 
PI 565075 331 1696 69 8.3 6.8 304.8 228.1 548.1 57 82 3.3 3.4 1.2 
PI 595505 1003 3477 171 89.1 63.9 43.7 18.4 215.0 26 89 2.2 4.2 1.4 
PI 595506 722 2337 139 105.3 98.7  10.6 207.5 49 41 1.0 4.8 1.1 
PI 595508 416 1843 93 90.9 72.2 13.7 9.4 186.1 88 76 2.0 14.1 1.3 
PI 595509 319 1255 72 44.4 34.9   79.3 91 29 1.8 8.1 1.3 
PI 595510 445 1684 98 115.4 126.0 99.5 41.8 382.6 55 30 1.9 12.6 0.9 
PI 595511 941 2789 157 100.2 95.2 447.9 164.1 807.3 29 45 2.6 5.2 1.1 
PI 597756 829 2290 143 135.9 131.3 33.5 10.6 311.4 42 35 1.5 6.4 1.0 
PI 597757 652 2187 135 200.3 180.9  19.7 387.7 70 63 1.9 11.0 1.1 
PI 631211 862 2641 137 45.9 38.4   84.2 59 55 2.2 3.8 1.2 
Mean 699 2636 127 75.9 71.0 52.0 27.1 198.6 71 79 3.1 6.4  
LSD 22 194 4 9.4 8.1   19.5 14 16 0.8 1.2  
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caffeic acid ranged from 28 (PI 500064) to 192 (PI 458353) μg/gfw. Rutin hydrate 

ranged from 1 (PI 500064) to 20 (PI 498126) μg/gfw, and myricetin ranged from 2 (PI 

320311) to 14 (PI 595508) μg/gfw. The analysis of variance for these compounds 

showed significant differences (p-value <0.01) among accessions of both S. jamesii 

(Table 4.1) and S. microdontum (Table 4.2).    

Glycoalkaloid Composition 

The main glycoalkaloids in potato tubers are α-solanine and α-chaconine, and they 

comprise more than 95 % of all glycoalkaloids in the potato plant. Pure compounds of α-

solanine, α-chaconine, and tomatine were used as standards in HPLC analysis of 

glycoalkaloids present in the tuber extracts. Figure 4.1 shows examples of typical 

chromatographs obtained from HPLC glycoalkaloid analysis of S. jamesii accession PI 

593408 and S. microdontum PI 498123, respectively. High amounts of α-solanine and α-

chaconine were found in all S. jamesii and S. microdontum accessions. Tomatine and 

dehydrotomatine were identified and quantified in several S. microdontum accessions 

but not in S. jamesii (Table 4.2). Total glycoalkaloid values for S. microdontum 

accessions reported in Table 4.2 are sums of all glycoalkaloids quantified, including 

tomatine and dehydrotomatine for the accessions that exhibited it.  

Generally, the amount of glycoalkaloids in S. microdontum was higher than the 

levels in S. jamesii accessions. The amount of α-solanine was significantly different (p-

value <0.01) in S. jamesii, with values ranging from 2.3 (PI 275172) to 20 (PI 585116) 

mg/100g fresh weight. Alpha-solanine in S. microdontum ranged from 4.8 (PI 500038) 

to 200.3 (PI 597757) mg/100gfw. Also, α-chaconine was appreciably variable in both  



 

 

78

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4.1. Typical chromatographs from HPLC analysis of glycoalkaloids in S. 
jamesii and S. microdontum tuber extracts.
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species, ranging from 3.2 (PI 605362) to 16.8 (PI 585116) mg/100gfw and from 5.2 (PI 

473171) to 191 (PI 498127) mg/100gfw in S. jamesii and S. microdontum, respectively. 

Ratios between α-solanine and α-chaconine varied among accessions, with values 

ranging from 0.5 to 2.1 in S. jamesii (Table 4.1) and from 0.7 to 1.7 in S. microdontum 

(Table 4.2). Several accessions of S. microdontum exhibited high amounts of tomatine 

and dehydrotomatine. Some accessions such as PIs 500039, 565075, 500035, 595511, 

498123, 500038, 500032, and 473168 exhibited more dehydrotomatine and tomatine 

than α-solanine and α-chaconine (Table 4.2). 

The reported safety level of potato tuber total glycoalkaloids (TGA) for human 

consumption is 20 mg/100gfw (Friedman et al., 2003). Therefore, any variety to be 

released must contain less than 20 mg/100gfw of total glycoalkaloids.  

To avoid high levels of glycoalkaloids in progenies, accessions to be used in any 

breeding programs should contain less than 20 mg/10gfw TGA. Results from this study 

show that only eight of the 92 S. jamesii accessions screened (PI 585116, PI 592413, PI 

592397, PI 595778, PI 605371, PI 620870, PI 592410, and PI 603054) contain total 

glycoalkaloid levels close to or greater than the safety limit (20 mg/100gfw). Only two 

accessions (PI 473171 and PI 500041) of S. microdontum exhibited total glycoalkaloid 

levels less than 20 mg/100gfw. Therefore, most S. jamesii accessions and the two 

accessions of S. microdontum can potentially be used in breeding for traits of interest 

without increasing amounts of glycoalkaloids in the progenies, since they contain low 

levels.   
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Comparison of Wild Accessions with Common Cultivars 

 Antioxidant  activity, total phenolics and glycoalkaloids in S. jamesii and S. 

microdontum accessions and in three cultivars, Atlantic, Yukon Gold, and Red La Soda 

were compared (Table 4.3). This was done to determine whether the two wild species 

contain some accessions that are lower in total glycoalkaloids and higher in antioxidant 

activity than popular commercial cultivars. Such accessions would be potential 

candidates as parental material for breeding for high antioxidant activity and phenolic 

compounds in new cultivars. Results in Table 4.3 show that the common cultivars are at 

the lower end distribution of the traits of interest in wild species. This implies that most 

accessions of both species exhibit higher levels of these traits than the cultivars. 

Therefore, those accessions with higher values of the desirable traits can be used as 

parents in breeding of new cultivars. 

Relationships among Antioxidant Activity, Phenolics, and Glycoalkaloid Content 

 Accessions screened contained high levels of both desirable (antioxidants and 

phenolics) and undesirable (glycoalkaloids) compounds. Hence, there may be a risk of 

increasing glycoalkaloids in progenies if these wild species are used as parental material 

for breeding. This is of much concern in instances where there are linear positive 

relationships between antioxidant activity and total glycoalkaoids, and between 

phenolics and glycoalkaloids, implying that increasing antioxidant and/or phenolics 

might result in increased levels of glycoalkaloids. 
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Table 4.3. Range of antioxidant activity (AOA), total phenolic content (TP), α-solanine 
(SOL), α-chaconine (CHA), and total gylcoalkaloids (TGA) in S. jamesii and S. 
microdontum, and means of three commercial cultivars, Atlantic, Red La Soda, and 
Yukon Gold. 

 
 Wild species  Cultivars 

  S. jamesii S. microdontum  Atlantic Red La Soda Yukon Gold 
AOA (DPPH) 173 - 961   202 - 1535    48     96          133 
AOA (ABTS) 1383 - 3513 1084 - 6288  819 1405 1674 
TP 50 - 161        51 - 269    27    39     52 
SOL 2.2 – 20.0 4.8 – 200.3    3.1    2.3     1.3 
CHA 3.2 – 16.8 5.2 – 191.0    7.8    6.4    4.6 
TGA 5.9 – 36.8 13.2 – 807.3  10.9    8.7    5.9 
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 Principal component analysis (PCA) was used to investigate relationships among 

antioxidants, phenolics, and glycoalkaloids (Yan and Hunt, 2001). PCA is a technique 

used to reduce multidimensional data sets to lower dimensions for analysis. It is mostly 

used as a tool in exploratory data analysis and for making predictive models. Results 

from PCA are shown as plots of primary principal component PC1 versus PC2 (Figs 4.2 

and 4.3). On the plots, accessions are in blue and lower case, traits are in red and upper 

case, and the two principal components explained at least 60% of the variations in traits 

in both S. jamesii accessions (Fig. 4.2) and S. microdontum accessions (Fig. 4.3). These 

plots show relationships among traits and the performance of each accession. 

Relationships among traits are indicated by the angle between trait vectors. These angles 

show the extent of the correlations among traits, acute angles indicate positive 

correlation, obtuse angles indicate negative correlation, and a right angle means that 

there is no correlation between the traits of interest. Strongly correlated traits are 

normally grouped together in the biplot.  

 Figures 4.2 and 4.3 show that the traits are grouped in two; one group consists of 

glycoalkaloids and the other contains phenolic compounds and antioxidant activity. The 

observation that glycoalkaloids are grouped separately from antioxidant activity and 

phenolics suggests that there is no linear relationship between glycoalkaloids and 

antioxidant activity, or between glycoalkaloids and phenolic content.  
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Fig. 4.2. A biplot of principal component 1 (PC1) vs. principal component 2 (PC2) 
demonstrating interrelationships among traits; antioxidant activity (ABTS & DPPH 
assays), total phenolic content (TP), chlorogenic acid (CGA), caffeic acid (CA), 
rutin hydrate (RH), myricetin (MYC), α-solanine (SOL), α-chaconine (CHA), and 
total glycoalkaloids (TGA) in S. jamesii accessions. Traits are in red and upper case 
while accessions are in blue and lower case. 
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Fig. 4.3. A biplot of principal component 1 (PC1) vs. principal component 2 (PC2) 
demonstrating interrelationships among traits; antioxidant activity (ABTS & DPPH 
assays), total phenolic content (TP), chlorogenic acid (CGA), caffeic acid (CA), rutin 
hydrate (RH), myricetin (MYC), α-solanine (SOL), α-chaconine (CHA), and total 
glycoalkaloids (TGA) in S. microdontum  accessions. Traits are in red and upper case 
while accessions are in blue and lower case.  
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 The significance of the relationships observed from PCA results were confirmed 

by correlation analysis shown in Table 4.4. Results show that there were significant 

correlations (p-value <0.01) between antioxidant activity (DPPH) and total phenolics, 

with correlation coefficients (r) = 0.83 and 0.98 in S. jamesii and S. microdontum, 

respectively. Also, correlations between antioxidant activity (ABTS) and total phenolics 

were highly significant with values of r = 0.64 and 0.89 in S. jamesii and S. 

microdontum, respectively. Similar results showing significant correlation between 

antioxidant activity and total phenolic content were previously reported in potatoes 

(Reddivari et al., 2007a; Reyes et al., 2005) and sweet potatoes (Huang et al., 2004). 

Glycoalkaloids were not significantly correlated to antioxidant activity or total phenolic 

content in S. jamesii. However, in S. microdontum, α-solanine and α-chaconine were 

significantly correlated with antioxidant activity and total phenolic content, but there 

was no significant correlation between total glycoalkaloids and antioxidant activity, or 

between total glycoalkaloids and total phenolic content (r = 0.27). Individual phenolic 

compounds analyzed with HPLC showed no significant correlation with glycoalkaloids 

in either S. jamesii or S. microdontum accessions (Table 4.5). 

Results from this study indicate that antioxidant activity and total phenolic 

content are not correlated with total glycoalkaloids. Also, there was no significant 

correlation between individual phenolic compounds and glycoalkaloids. Therefore, using 

wild accessions in breeding for high antioxidant activity and total phenolics would not 

necessarily increase glycoalkaloids in the developed potato progenies. 
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Table 4.4. Correlation analysis of antioxidant activity (AOA), total phenolic content 
(TP), α-solanine (SOL), α-chaconine (CHA), and total glycoalkaloids (TGA) in S. 
jamesii and S. microdontum accessions. 

  

S. jamesii 

 AOA (ABTS) TP SOL CHA TGA 

AOA (DPPH) 0.599** 0.832** 0.069    -0.047 0.026 

AOA (ABTS)  0.642**  -0.048 0.086 0.007 

TP   0.105 0.124 0.131 

SOL       0.462** 0.909** 

CHA     0.789** 

S. microdontum 

 AOA (ABTS) TP SOL CHA TGA 

AOA (DPPH) 0.847** 0.982** 0.553** 0.517** 0.260 

AOA (ABTS)  0.888** 0.491** 0.469** 0.212 

TP   0.610** 0.561** 0.279 

SOL    0.951** 0.396** 

CHA     0.404** 
     
    ** refers to significant values at p-value < 0.01  
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Table 4.5. Correlation analysis of individual phenolic compounds [chlorogenic acid (CGA), caffeic acid (CA), rutin hydrate 

(RH) and myricetin (MYC)], total phenolic content (TP), antioxidant activity (DPPH and ABTS), individual glycoalkaloids 
[α-solanine (SOL) and α-chaconine (CHA)], and total glycoalkaloids (TGA) in S. jamesii and S. microdontum accessions. 

 

            S. jamesii 

 CA RH MYC DPPH ABTS TP SOL CHA TGA 

CGA 0.328** 0.526**    0.016 0.652**  0.391** 0.749** 0.115 -0.057 0.055 

CA  0.177    0.239* 0.283**  0.275** 0.401** 0.069 -0.006 0.046 

RH     0.285** 0.315**    0.213* 0.612** 0.043    0.274* 0.158 

MYC    0.187    0.138 0.269** 0.184   0.032 0.139 

   S. microdontum    

 CA RH MYC DPPH ABTS TP SOL CHA TGA 

CGA 0.288** 0.423**    0.389**  0.185    0.246*        0.188 0.033 -0.051 -0.102 

CA  0.418** 0.108  0.462**  0.462**        0.456** 0.197  0.173 -0.006 

RH     0.272* 0.246*  0.459**        0.271* 0.031 -0.003 0.016 

MYC    0.238*  0.313**        0.279**   0.239*  0.207 0.154 

 
* refers to significant values at p-value < 0.05 
** refers to significant values at p-value < 0.01 
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Discussion 

Glycoalkaloids have several roles both in plant and in humans. They provide a 

defense mechanism for potato plants against different pests and pathogens, such as 

insects, viruses, bacteria, and fungi (Friedman, 2006; Lachman et al., 2001). However, 

glycoalkaloids are known to be toxic to humans by acting as cholinesterase inhibitors 

and cause sporadic out-breaks of poisoning (Mensinga et al., 2005; Smith et al., 1996), 

and may also affect reproduction in animals (Wang et al., 2005). Despite their toxic 

nature to humans and animals, recent studies have suggested that glycoalkaloids do have 

health promoting effects in humans. Studies by Friedman et al (2005), Yang et al. 

(2006), and Reddivari et al. (2007b) reported that glycoalkaloids exhibit anticancer 

properties by inhibiting proliferation of various cancer cell lines through induction of 

apoptosis. 

The multi-effect of glycoalkaloids makes determining their necessity in plants 

and humans difficult. Hence, their safety to humans is still being debated (Korpan et al., 

2004; Rietjens et al., 2005). Since the beginning of the 20th century, the acceptable level 

of glycoalkaloids in the potato of commerce has been 20 mg/100g tuber weight 

(Papathanasiou et al., 1998; Smith et al., 1996). This threshold value has largely 

remained unchanged to date. Therefore, care is always taken in breeding new varieties to 

ensure that they do not contain glycoalkaloid levels above 20 mg/100g fresh weight. 

Most potato varieties released contain less than 10 mg/100gfw of both α-solanine and α-

chaconine (Lachman et al., 2001).  
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 Wild Solanum species are commonly used in potato breeding as a source of 

valuable germplasm. They are often used to introduce pest and disease resistance into 

cultivated potato. Some of the wild species contain more health-benefiting 

phytochemicals such as antioxidants and phenolics than currently grown popular 

cultivars (Hale, 2004; Nzaramba et al., 2007). Therefore, not only could wild species 

provide genes for pest and disease resistance, but also genes for high antioxidants and 

phenolic compounds. However, some of these species have high levels of glycoalkaloids 

such that, together with desirable characteristics, toxic glycoalkaloids might be 

transferred to potato cultivars. 

 Much as there is need to develop new potato varieties resistant to pests and 

diseases, and which can provide more health-benefiting phytochemicals like 

antioxidants, prior screening of wild species for glycoalkaloid content is important to 

ascertain their suitability as potential parental material in breeding programs. In this 

study, accessions from two wild species (S. jamesii and S. microdontum) previously 

observed to contain high levels of antioxidants were fine-screened for antioxidant 

activity, total phenolics, and total glycoalkaloid content.  

Results from this study showed that most accessions of both species exhibited 

higher levels of both desirable (antioxidants and phenolics) and undesirable 

(glycoalkaloids) traits than three important common cultivars (Table 4.3). Most (95%) of 

the S. jamesii accessions exhibited glycoalkaloid levels less than 20 mg/100gfw 

compared to only two accessions of S. microdontum that were below this value. 



 

 

90

Therefore, accessions with low glycoalkaloid values and higher antioxidants could be 

used as parents in breeding for high antioxidant and phenolic content.  

If there is a relationship between antioxidant activity and glycoalkaloids or 

between phenolic content and glycoalkaloids, the use of wild species in breeding 

becomes challenging depending on the nature of the correlations among the traits. 

According to Falconer and Mackay (1996), different traits can be correlated if the same 

loci affect the traits (pleiotropy), different loci affect the traits but these loci are linked 

together - linkage in coupling causing positive correlation and in repulsion negative 

correlation, or the environment may affect the traits in the same way creating correlation. 

To elucidate the relationships among these traits principal component analysis was 

carried out on their values. 

Principal component analysis results illustrating genetic phenotypic correlations 

among traits in both species are shown in Figs 4.2 and 4.3. The figures show two 

groupings of traits, one consisting of glycoalkaloids and the other phenolic compounds 

and antioxidant activity. This suggests that no linear relationship exist between 

glycoalkaloids antioxidant activity or between glycoalkaloids and phenolic content. 

Therefore, there is no correlation between either glycoalkaloids and antioxidant activity 

or glycoalkaloids and phenolics. Therefore using wild accessions in breeding for high 

antioxidant activity and total phenolics would not necessarily increase glycoalkaloids in 

the developed potato progenies, if the selected parental materials (accessions) are low in 

glycoalkaloids. 
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CHAPTER V 

ANTI-PROLIFERATIVE ACTIVITY AND CYTOTOXICITY OF SOLANUM 

JAMESII TUBER EXTRACTS TO HUMAN COLON AND PROSTATE 

CANCER CELLS IN VITRO 

Introduction 

According to the American Cancer Society (2008), colorectal cancer is the third 

most common cancer in both men and women in the United States. It accounted for 

about 10% of cancer mortality in the US, and caused about 57,000 deaths in 2004 (Jemal 

et al., 2004). It is estimated that about 49,960 deaths from colon and rectal cancer will 

occur in 2008, accounting for 9% of all cancer deaths. 

  Prostate cancer is the most frequently diagnosed cancer and is the leading cause 

of cancer death in men. The American Cancer Society (2006) reported that prostate 

cancer is the third leading cause of cancer death among men in the US. At the time, it 

was estimated that 27,350 deaths would occur due to prostate cancer. Current estimates 

(American Cancer Society, 2008) of about 28,660 deaths expected to occur in 2008, has 

placed prostate cancer as the second leading cause of cancer death in men. 

Cancer development or carcinogenesis is a complex, multi-sequence/stage 

process that leads a normal cell into a precancerous state and finally to an early stage of 

cancer (Klaunig and Kamendulis, 2004; Trueba et al., 2004). Carcinogenesis involves 

initiation, promotion, and progression stages. According to Friedman et al. (2007) tumor 

promotion is the only reversible event during cancer development. Therefore, Hawk et 
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al. (2005) and Friedman et al. (2007) suggested that early intervention should target 

inhibition of cell proliferation and induction of apoptotic pathways in cancerous cells.   

Cancer is characterized by uncontrolled growth of abnormal cells. The abnormal 

or cancerous cells are caused by both external factors such as chemical toxins, tobacco, 

radiation, and infectious organisms, and internal factors such as inherited mutations or 

mutations from metabolism, hormones, and immune conditions. The causal factors may 

act together or in sequence to initiate and promote carcinogenesis (American Cancer 

Society, 2008). 

Endogenous cellular processes such as metabolism as well as external factors like 

chemical toxins and radiation generate free radicals known as reactive oxygen (ROS) 

and reactive nitrogen (RNS) species (Inoue et al., 2003). The free radicals create an 

oxidative or nitrosative stress within cells that may result in oxidative damage of DNA, 

lipids, and proteins (Chu et al., 2002; Hussain et al., 2003; Kovacic and Jacintho, 2001).  

High levels of cellular oxidative stress might result in permanent modification of 

genetic material which normally represents the initial steps involved in mutagenesis, 

carcinogenesis, and aging. Elevated levels of oxidative DNA lesions have been noted in 

various tumors, strongly implicating such damage in the etiology of cancer (Valko et al., 

2007). Several studies have implicated oxidative stress in initiation of various diseases 

like cardiovascular disease, cancer, neurological disorders, diabetes, and aging (Dalle-

Donne et al., 2006; Makazan et al., 2007; Tappia et al., 2006). Cellular oxidative stress is 

assuaged by enzymatic and non-enzymatic antioxidants that maintain cellular 
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homeostasis. A chronic shift in the maintenance of cellular homeostasis can lead to 

permanent changes associated with carcinogenesis (Droge, 2002; Hussain et al., 2003).  

Antioxidants derived from fruits and vegetables complement enzymatic 

antioxidants in reducing oxidative stress, and thereby help boost defensive mechanisms 

against the risk of chronic diseases. Some of the beneficial phytochemicals from fruits 

and vegetables are vitamins C and E, carotenoids, and phenolics, and are thought to be 

involved in the pathophysiology of many chronic diseases (Stanner et al., 2004; Steffen 

et al., 2003; Trichopoulou et al., 2003).  

Onset of colon cancer is characterized by hyperproliferation of the epithelial cells 

resulting in formation of adenomas (Hawk et al., 2005). Prostate cancer initially 

develops as a high-grade intraepithelial neoplasia (HGPIN) in the peripheral and 

transition zones of the prostate gland. The HGPIN eventually becomes a latent 

carcinoma, which may subsequently progress to a large, higher grade, metastasizing 

carcinoma (Abate-Shen and Shen, 2000; Bosland et al., 1991; Shukla and Gupta, 2005). 

Promotion and progression stages are controlled by signal transduction molecules which 

are triggered by hormones such as androgens (Giovannucci, 1999; Shukla and Gupta, 

2005; Thompson, 1990). Androgen receptor (AR) signaling, cell proliferation and cell 

death play a critical role in regulating the growth and differentiation of epithelial cells in 

the normal prostate (Cunha et al., 2004). 

Several studies have reported that phytochemicals present in fruits and 

vegetables are important in prevention of chronic diseases, such as cancer, 

cardiovascular diseases, and diabetes, (Chu et al., 2002; Hu, 2003; Liu, 2004; Riboli and 
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Norat, 2003). Benefits derived from phytochemicals in regard to disease prevention are 

attributed to their antioxidant capabilities (Agudo et al., 2007; Stanner et al., 2004). 

Several anti-inflammatory, anti-necrotic, and neuroprotective drugs have an antioxidant 

and/or radical scavenging mechanism as part of their activity (Liu et al., 2004; Perry et 

al., 1999; Repetto and Llesuy, 2002). 

Juan et al. (2006) reported that olive fruit extract inhibited proliferation of HT-29 

human colon cancer cells by inducing apoptosis. Crude extracts from sweet potato 

(Ipomoea batatas) inhibited proliferation of the human leukemia NB4 cell line in vitro 

(Huang et al., 2004). Romero et al. (2002) observed that polyphenols in red wine inhibit 

proliferation and induce apoptosis in prostate LNCaP cancer cells. Several studies have 

demonstrated that tea extracts exhibit anticancer properties on breast (MCF-7), liver 

(HepG2), colon (HT-29) (Friedman et al., 2007), lung (Yang et al., 2005), stomach (Mu 

et al., 2005), prostate (PC-3) (Bettuzzi et al., 2006; Friedman et al., 2007), and skin 

(Camouse et al., 2005).    

Potato tuber extracts have also been tested on several cancer types. Chu et al. 

(2002) observed minor anti-proliferative activity of potato tuber extract to HepG2 human 

liver cancer cells in vitro. Reddivari et al. (2007b) reported that whole potato tuber 

extract and anthocyanin fractions inhibited proliferation and induced apoptosis in both 

LNCaP and PC-3 prostate cancer cells. Glycoalkaloids from commercial potato cultivars 

have also been reported to inhibit growth of human colon (HT-29), liver (HepG2), 

cervical (HeLa), lymphoma (U937), stomach (AGS and KATO III) (Friedman et al., 
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2005; Lee et al., 2004), and both LNCaP and PC-3 human prostate (Reddivari et al., 

2007b) cancer cell lines. 

Most recent research is focusing on increasing the amount of beneficial 

phytochemicals in food crops and also increasing the variety of plant products consumed 

by introducing exotic and wild fruits and vegetables (Nzaramba et al., 2006), spices and 

herbs (Ko et al., 2007; Siddhuraju et al., 2002). Some of the wild and exotic products 

contain natural toxicants at levels that might cause health problems. Development of pest 

resistant varieties or changes in methods of cultivation, storage, and preparation can 

change the balance between beneficial and toxic compounds in staple foods, with 

significant consequences to human health (Phillips et al., 1996). This has been especially 

observed in the potato of commerce as regards glycoalkaoids (Abreu et al., 2007; 

Griffiths and Dale, 2001; Laurila et al., 2001; Pęksa et al., 2002; Rytel et al., 2005). 

Plant products contain a mixture of complex compounds with both toxic and 

beneficial effects. Also, compounds that are toxic at high concentrations may be 

beneficial at lower concentrations; therefore, it is appropriate to test whole plant 

products. In vitro techniques such as mammalian cell culture were developed to screen 

complex materials like plant extracts for inhibition of diseased cell proliferation and 

toxicity to normal cells and organs (Hostanska et al., 2007; Phillips, 1996). 

Several in vitro assays have been developed and vary in sensitivity to different 

types of toxins. Potato extracts were reported to be more toxic in the LDH (Lactate 

dehydrogenase) release assay than in the protein synthesis assay (Phillips, 1996). Despite 
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having little value per se, in vitro techniques of measuring cytotoxicity are useful in 

initial screening of exotic plant materials. 

 Wild potato species have been reported to contain higher amounts of antioxidants 

and polyphenolic compounds (Nzaramba et al., 2006) and glycoalkaloids (Laurila et al., 

2001) than the potato of commerce. Given that high levels of glycoalkaloids in tubers are 

undesirable, wild potato species should be screened for cytotoxicity before their 

introduction in breeding programs. Tuber extracts from wild potato species may also 

contain other unknown compounds that may be toxic to humans.  

Therefore, the objective of this study was to investigate anti-proliferative activity 

and cytotoxicity potential of tuber extracts from Solanum jamesii accessions with 

different antioxidant, phenolic, and glycoalkaloid contents on human prostate (LNCaP) 

and colon (HT-29) cancer cell lines in vitro. Also, the study sought to determine 

correlations among antioxidant activity, anti-proliferative activity and cytotoxicity, and 

among glycoalkaloids, anti-proliferative activity and cytotoxicity. 

Materials and Methods 

Plant Material  

Ninety-two accessions of S. jamesii were obtained from the US Potato Genebank, 

Sturgeon Bay, WI. Fifteen accessions, representing the range of total glycoalkaloids in 

the 92 accessions, were selected for evaluation of anti-proliferative effects and 

cytotoxicity on human prostate (HT-29) and colon (LNCaP) cancer cells lines in vitro.  
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Chemicals 

The DPPH (2,2-Diphenyl-1-picrylhydrazyl), Folin-Ciocalteu reagent, Trolox (6-

Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), ABTS (2,2’-azinobis(3-

ethylbenzothiazoline-6-sulfonic acid) diammonium salt), potassium persulfate, Na2HPO4 

(dibasic), NaHPO4 (monobasic), NaCl, ammonium phosphate, and Na2CO3 were 

purchased from Fisher Scientific (Pittsburgh, PA). Methanol, dimethly sulfoxide 

(DMSO), and acetonitrile were obtained from VWR International (Suwanee, GA). 

Alpha-chaconine and ammonium hydroxide were purchased from Sigma-Adrich (St. 

Louis, MO). Alpha-solanine and tomatine were obtained from MP Biomedicals (Solon, 

OH). The cell proliferation reagent WST-1 [4-(3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-

5-tetrazolio)-1,3-benzene disulfonate] and cytotoxicity detection kit were obtained from 

Roche Applied Sciences (Indianapolis, IN).  

Cell Lines  

Human prostate cancer LNCaP (androgen-dependent) cells and HT-29 colon 

cancer cells were obtained from the American Type Culture Collection (Manassas, VA). 

The cells were maintained at 370 C in 5% CO2 jacketed incubator in RPMI 1640 (Sigma; 

St. Louis, MO) supplemented with 2.38 g/L HEPES 2.0 g/L sodium bicarbonate, 0.11 

g/L sodium pyruvate, 4.5 g/L glucose, 100 ml/L FBS, and 10 mL/L antibiotic 

antimycotic solution (Sigma). 

Sample Extraction 

Five grams of diced tubers were extracted with 20 ml of HPLC-grade methanol. 

The samples were homogenized with an IKA Utra-turrax tissuemizer for 3 min. The 
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tuber extract was centrifuged at 31,000 g for 20 min. with a Beckman model J2-21 

refrigerated centrifuge. Five ml of supernatant was collected in glass vials, and the 

methanol evaporated using a Speed Vac. The dried extract was re-dissolved in DMSO 

and filtered through 0.45 µm syringe filters. Sample extracts were stored at -20o C until 

analysis of antioxidant activity (AOA), phenolics and glycoalkaloids. 

Antioxidant Activity Analysis  

Total antioxidant activity was estimated using both the DPPH (2,2-Diphenyl-1-

picrylhydrazyl) assay (Brand-Williams et al., 1995) and ABTS [2,2’-azinobis(3-

ethylbenzothiazoline-6-sulfonic acid) diammonium salt] assay (Miller and Rice-Evans, 

1997).  

DPPH assay: 

A 150 μl aliquot was placed into scintillation vials, 2,850 μl of DPPH methanol 

solution was added, and the mixture was placed on a shaker for 15 min. The mixture was 

transferred to UV-cuvettes and its absorbance recorded using a Shimadzu BioSpec-1601 

spectrophotometer at 515 nm. Trolox (6-Hydroxy-2,5,7,8-tetramethylchroman-2-

carboxylic acid), a synthetic antioxidant, was used as a standard to generate a standard 

curve (Figure 1), and total AOA in tuber extracts was expressed as micrograms of 

Trolox equivalents per gram of potato tuber fresh weight (μg TE/gfw). 

ABTS assay:   

The ABTS
.+ radical was generated by reacting potassium persulfate with ABTS 

salt [2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt]. A 

working solution composed of a mixture of 5 ml of mother solution and 145 ml of 
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phosphate buffer was prepared. The mother solution contained equal volumes of 8 mM 

of ABTS and 3 mM of potassium persulfate solutions, and the phosphate buffer solution 

pH 7.4 was composed of 40.5 ml of 0.2 M Na2HPO4 dibasic, 9.5 ml of 0.2 M NaHPO4 

monobasic and 150 mM NaCl.  One-hundred µl of tuber extract were used for analysis. 

Two-thousand-nine hundred µl of the working solution was added to tuber extracts and 

reacted for 30 min on a shaker. Absorbance of the solution was measured at 734 nm with 

a Shimadzu BioSpec-1601 spectrophotometer. Trolox was used as a standard, and total 

AOA was expressed as micrograms of Trolox equivalents per gram of tuber fresh weight 

(μg TE/gfw).  

Total Phenolic Analysis 

Total phenolic content was determined following the method of Singleton et al. 

(1999). One-hundred-fifty µl of tuber extract was pipetted into scintillation vials, and 2.4 

ml of nanopure water was added. One-hundred-fifty µl of 0.25 N Folin-Ciocalteu 

reagent was added, and after 3 min of reaction 0.3 ml of 1 N Na2CO3 reagent was added 

and allowed to react for two hours. The spectrophotometer (Shimadzu BioSpec-1601) 

was zeroed with a blank (150 µl methanol, 2.4 ml H2O, 150 µl of 0.25 N Folin-

Ciocalteu, and 0.3 ml 1 N Na2CO2) before sample analysis. Absorbance of tuber extracts 

was read at 725 nm. Chlorogenic acid was used as a standard, and total phenolic content 

was expressed as milligrams of chlorogenic acid equivalents per 100 grams of potato 

tuber fresh weight (mg CGAequ/100gfw). 
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Determination of Glycoalkaloids 

Glycoalkaloids were analyzed with a high performance liquid chromatography 

(HPLC) system following the method of Sotelo and Serrano (2000). An HPLC system 

(Waters, Milford, MA) and Atlantis C-18 reverse-phase columns (4.6 x 150 mm, 5 µm) 

were used for glycoalkaloid analysis. The mobile phase used for separating 

glycoalkaloids was (35:65 v/v) acetonitrile:0.05 M monobasic ammonium phosphate 

buffer ((NH4)H2PO4), adjusted to pH 6.5 with NH4OH. The solvent flow was isocratic at 

a rate of 1 ml/min, with the UV absorbance detector set at 200 nm with 5% AUFS 

sensitivity. The amount of extract sample injected was 20 µl. Different concentrations of 

pure α-solanine, α-chaconine, and tomatine standards were used to identify 

glycoalkaloids in the tuber extracts by comparing peak retention times and spectra 

detected at 280 nm. Standard curves were prepared by regressing known concentrations 

of glycoalkaloid standards to their corresponding peak areas, and these curves were used 

to quantify amounts of glycoalkaloids in the tuber extracts. 

Cell Proliferation  

Cells were plated at a density of 1x104 /well in 96 well plates. They were allowed 

to attach to the plate for 24 h. After 24 h, media was replaced with DMEM F-12 media 

containing 2.5% charcoal-stripped serum and tuber extracts. Two concentrations (5 and 

10 μl/ml) of tuber extract were tested. After every 24 h, cell proliferation was measured 

using the WST assay. The assay required pre-incubation of cells in media with the 

tetrazolium salt WST-1 (4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-

benzene disulfonate) (10 μl/well) for 4 h, followed by measuring absorbance at 450 nm 
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with the ELISA plate reader. The cell proliferation assay was repeated at 48 and 72 h of 

incubation with potato extracts. Percent cell proliferation due to each tuber extract 

treatment was calculated based on control (DMSO) absorbance (100%) after each 

incubation period. All extracts were tested in triplicate.  

Cytotoxicity Analysis 

Cytotoxicity of tuber extracts to cancer cells was determined by measuring the 

amount of lactate dehydrogenase (LDH) enzyme leaked from the cytosol of damaged 

cells into the medium (Phillips, 1996) after exposure of the cells to the extracts for 24 h. 

The LDH release represents necrosis as opposed to apoptosis. Lactate dehydrogenase in 

the supernatant was measured using the Cytotoxicity Detection Kit (LDH) (Roche 

Applied Science, Mannheim, Germany) following the manufacturer’s protocol. One-

hundred μl of the supernatant from the cells was placed in a 96, well plate and 100 μl of 

LDH assay solution [mixture of catalyst lyophilisate (catalyst, diaphoraase/NAD+, 

lyophilizate) and dye solution (iodotetrazolium chloride and sodium lactate)] were added 

to each well and incubated for 30 min in the dark. Absorbance of the mixture was read 

with an ELISA plate reader at 490 nm. Extract cytotoxicity was calculated as a percent 

of the control (DMSO) absorbance (100%). All samples were analyzed in triplicate. 

Statistical Analysis 

Results for each treatment were expressed as means ± standard error. Analysis of 

variance (ANOVA) was performed to determine the variability of anti-proliferative 

activity and cytotoxicity of the accessions’ tuber extracts. Mean separation procedure 

(LSD) was done to compare accessions for each measured variable. Correlations among 
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antioxidant activity, total phenolics, and glycoalkaloid content were computed following 

Pearson’s correlation method. All statistical analyses were done using SAS Version 9.1 

software (SAS, 2002). 

Results 

Effect of Tuber Extract on Cell Proliferation 

Analysis of variance results for anti-proliferative activity exhibited by 15 tuber 

extracts from S. jamesii accessions on human colon (HT-29) and prostate (LNCaP) 

cancer cells in vitro are presented in Figures 5.1 and 5.2, respectively. The tuber extracts 

decreased proliferation of HT-29 colon cancer and LNCaP prostate cancer cells in a dose 

and time-dependent manner. Proliferation of both HT-29 colon cancer cells and LNCaP 

prostate cancer cells decreased with increased time of incubation with extracts. Cell 

proliferation was least after 72 h of incubation. Also, accessions exhibited varying 

degrees of cell proliferation inhibition at each incubation period, and all accessions 

showed more anti-proliferative activity with longer times of incubation.  

A significant reduction in proliferation of HT-29 colon cancer cells by all 

extracts was observed. All accession extracts at concentrations of 5 and 10 μg/ml 

significantly reduced proliferation of HT-29 cells compared to the DMSO control (Fig. 

5.1). Cell proliferation was less than 60 % of the control (DMSO) after 24 h of cell 

incubation with tuber extracts of either 5 or 10 μg/ml concentration (Fig. 5.1A and D).  
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After 48 and 72 h of incubation with any of the extracts (5 and 10 μg/ml), HT-29 cell 

proliferation was less than 40% of the DMSO control (Fig. 5.1B, E, C and F). 

Prostate (LNCaP) cancer cells were not as responsive to tuber extract treatment 

as were the HT-29 colon cancer cells. At the 5 μg/ml extract concentration, only three 

accessions (PI 595784, PI 592411, and PI 620870) significantly reduced LNCaP cell 

proliferation more than the control (DMSO) after 24 and 48 h of incubation (Fig 5.2A 

and B). However, after 72 h of incubation, seven accessions in the following order- PI 

620870 > PI 595784 > PI 592411 > PI 603054 > PI 605372 > PI 592398 > PI 564049 

significantly inhibited LNCaP cell proliferation compared to the DMSO control (Fig. 

5.2C). With a higher extract concentration (10 μg/ml) all accessions exhibited significant 

inhibition of LNCaP cell proliferation compared to the DMSO control after 24, 48, and 

72 h of incubation (Fig. 5.2D, E and F). After 72 h of incubation with 10 μg/ml extracts, 

all accessions reduced cell proliferation by about 60% of the DMSO control (Fig. 5.2F). 
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Fig. 5.1. Cell proliferation of HT-29 colon cancer cells measured after 24, 48, and 72 h of 
incubation with 5 and 10 μg/ml of tuber extracts from 15 S. jamesii accessions. Results are 
presented as means ± SE of three experiments.  
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Cytotoxicity of Tuber Extract 
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Fig. 5.2. Cell proliferation of LNCaP prostate cancer cells evaluated after 24, 48, and 72 h of 
incubation with 5 and 10 μg/ml of tuber extracts from 15 S. jamesii accessions. Results 
are presented as means ± SE of three experiments. Significantly lower values than the 
DMSO control (LSD at p < 0.05) are indicated by an asterisk. 
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 Cytotoxicity of tuber extracts to cancer cells in vitro due to necrosis was 

determined by measuring the amount of lactate dehydrogenase (LDH) enzyme leaked 

from the damaged cells into the medium (supernatant) after exposure of the cells to the 

extracts for 24 h. Two concentrations (5 and 10 μg/ml) of the extracts were used and the 

amount of LDH released was expressed as percent of the control (DMSO). Results are 

reported as mean ± standard error of three replicated analyses. Accessions PI 595784 

and PI 620870 at a concentration of 5 μg/ml caused slightly more but not significant 

LDH leakage from HT-29 cells than the DMSO control. Only PI 592398, PI 592411, PI 

603051, PI 603054, and PI 632325 caused significantly less LDH leakage than the 

control (Fig . 5.3A). At a higher concentration of extract (10 μg/ml), nine accessions- PI 

564049, PI 592411, PI 595784, PI 603051, PI 603054, PI 605364, PI 605368, PI 

605372, and PI 612453 were significantly less toxic than the control (Fig. 5.3B). All 

other accessions were not significantly different from the control in cytotoxicity to HT-

29 cells. 

 Lactate dehydrogenase released by LNCaP prostate cells after treatment with 5 

μg/ml of tuber extracts of PI 564056, PI 595775, PI 595784, PI 605368, and PI 605372 

accessions was significantly lower than that of the control (DMSO) (Fig. 5.4A). Five 

μg/ml of tuber extracts from PI 592398, PI 612450, and PI 620870 caused more LDH 

leakage than the control, but they were not significantly different. At twice the 

concentration (10μg/ml), PI 612453 caused significantly less LDH leakage from LNCaP 

prostate cells than the DMSO control. Two accessions (PI 595784 and PI 620870) at 

10μg/ml concentration caused significantly higher LDH leakage than the control (Fig. 
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5.4B). It appears that at high concentrations, the two accessions, PI 595784 and PI 

620870, might be toxic to LNCaP cells. The other accessions tested were not 

significantly different from the DMSO control.  

In general, all accessions tested exhibited as much as or significantly lower LDH 

leakage than the control in both HT-29 (Fig. 5.3) and LNCaP cells (Fig. 5.4). Only two 

accessions (PI 595784 and PI 620870) at a high concentration (10μg/ml) showed 

significantly higher LDH leakage than the control in LNCaP cells.  

The accessions of S. jamesii tested for cytotoxicity were not necessarily toxic to 

HT-29 colon cancer and LNCaP cancer cell lines, since the amount of LDH released 

after cell incubation with tuber extracts was not significantly different from cells 

incubated without extracts (only DMSO). Therefore, the observed reduction in 

proliferation of HT-29 and LNCaP cancer cells after incubation with tuber extracts of S. 

jamesii accessions was not due to necrosis but rather to enhanced apoptosis. A previous 

study (Reddivari et al., 2007b) reported that tuber extracts from speciality potato 

cultivars contain phytochemicals that can inhibit LNCaP and PC-3 cell growth and 

induce apoptosis.   
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Fig. 5.3. Cytotoxicity of tuber extracts from 15 S. jamesii accessions (5 and 10 μg/ml) to HT-
29 human colon cancer cells expressed as percentage of lactate dehydrogenase enzyme 
(LDH) released from the cells after 24 hours of incubation. Results are presented as means 
± SE of three experiments. Significantly lower values than the DMSO control (LSD at p < 
0.05) are indicated by an asterisk. 
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* * *
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Fig. 5.4. Cytotoxicity of tuber extracts from 15 S. jamesii accessions (5 and 10 μg/ml) to 
LNCaP human prostate cancer cells expressed as percentage of lactate dehydrogenase 
enzyme (LDH) released from the cells after 24 hours of incubation. Results are presented 
as means ± SE of three experiments. Significantly lower values than the DMSO are 
indicated by an asterisk, and values significantly higher (LSD at p < 0.05) than the DMSO 
control are indicated by a symbol ε.  
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* * * * *

*

ε ε
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Correlations among Antioxidants, Phenolics, Glycoalkaloids and Anti-proliferative 

Activity 

 Several studies have associated consumption of foods rich in antioxidants and 

polyphenols with decrease in prevalence of degenerative diseases such as cancer (Lui et 

al., 2002). Other studies have investigated polyphenols extracted from plants for their 

potential effect in curing colon (Juan et al., 2008; Kim et al., 2006; McCann et al., 2007) 

and prostate cancers (Bettuzzi et al., 2006; Reddivari et al., 2007b; Romero et al., 2002). 

Glycoalkaloids have also been reported to play a role in reducing cancer cell 

proliferation (Friedman et al., 2005; Lee et al., 2004; Reddivari et al., 2007b) by up-

regulating apoptosis in these cells. Therefore, relationships among antioxidant activity, 

phenolic and glycoalkaloid content in tuber extracts, and their anti-proliferative activity 

in HT-29 colon and LNCaP prostate cancer cell lines were also investigated. 

 Results from correlation analysis among antioxidant activity, total phenolics, 

glycoalkaloids, and anti-proliferation activity on HT-29 colon cancer cells show 

inconsistent relationships (Table 5.1). At 5 μg/ml of tuber extract concentration, the 

correlation between inhibition of HT-29 cell proliferation after 24 h of incubation and 

antioxidant activity measured by the DPPH and ABTS assays was positive with 

correlation coefficients r = 0.749 and r = 0.389, respectively. Also, correlation between 

inhibition of HT-29 cell proliferation and total phenolics after 24 h of incubation with 5 

μg/ml of tuber extract was significant (r = 0.81). These results suggest that cell 

proliferation was inhibited by increasing the amount of antioxidants and phenolics after 

24 h of incubation. However, after 48 and 72 h of incubation, there were no significant
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Table 5.1. Correlation analysis of antioxidant activity (DPPH and ABTS), total phenolics (TP), α-solanine (SOL), α-chaconine 

(CHA), and total glycoalkaloids (TGA) in Solanum jamesii accessions, and inhibition of HT-29 colon cancer cell 
proliferation. 

 
       Inhibition of cell proliferation 

      5 μg/ml  10 μg/ml 

  ABTS TP SOL  CHA TGA   24 h   48 h 72 h  24 h 48 h 72 h 

DPPH 0.647** 0.887** 0.144 -0.047 0.109  0.749** -0.072 0.090  0.407** 0.579**  0.089 

ABTS  0.657** -0.025  0.142 0.013  0.398* -0.104 0.044  0.184 0.496** -0.269 

TP    0.338*  0.225 0.337*  0.810**  0.092 0.128  0.378* 0.675** -0.081 

SOL   0.600** 0.981**  0.255  0.346* 0.344*  0.278 0.009 -0.184 

CHA    0.744** -0.058  0.253 0.423  0.142 0.009 -0.274 

TGA      0.198  0.350* 0.389*  0.267 0.009 -0.220 

 
* refers to significant values at p-value < 0.05   
** refers to significant values at p-value < 0.01  
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correlations between inhibition of cell proliferation and antioxidant activity or total 

phenolic content (Table 5.1).  

Individual glycoalkaloids and total glycoalkaloids showed no significant 

correlation with inhibition of HT-29 cell proliferation after 24 h. But after 48 and 72 h α-

solanine showed a significant correlation with cell proliferation inhibition, r = 0.346 and 

r = 0.344, respectively. Similarly, total glycoalkaloid was significantly correlated with 

inhibition of cell proliferation after 48 h (r = 0.35) and 72 h (r = 0.389) of incubation. 

Actual proliferation values (Fig 5.1) show that proliferation of HT-29 cells was 

significantly inhibited by treatment with tuber extracts even after 24 h of incubation. 

Therefore, correlation results, together with cell proliferation data, suggest that not a 

single but a combination of compounds (acting together) are responsible for inhibiting 

cell proliferation. 

With a higher concentration of tuber extract (10 μg/ml), antioxidant activity 

(DPPH) and inhibition of cell proliferation were significantly correlated after 24 h (r = 

0.407) and 48 h (r = 0.579) of incubation. The ABTS assay was correlated with cell 

proliferation inhibition only after 48 h (r = 0.496) of incubation, and total phenolic 

content was significantly correlated with inhibition of cell proliferation after 24 h (r = 

0.378) and 48 h (r = 0.675) of incubation. There were no significant correlations 

between either antioxidant activity (DPPH and ABTS assays) and inhibition of HT-29 

cell proliferation or total phenolic content and inhibition of HT-29 cell proliferation after 

72 h of incubation. Also α-solinine, α-chaconine, and total glycoalkaloids showed no 
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significant correlation with inhibition of HT-29 cell proliferation after 24, 48, and 72 h 

of incubation. 

Generally, correlation analysis indicated that LNCaP prostate cancer cell 

proliferation was significantly reduced with increasing amounts of antioxidants, total 

phenolics, and glycoalkaloids in tuber extracts.  After 24 h of incubation with 5 μg/ml of 

tuber extract, total phenolic content and α-solanine exhibited a significant negative 

correlation with inhibition of LNCaP cell proliferation with correlation coefficients (r) of 

-0.301 and -0.293 (p-value <0.05), respectively (Table 5.2). At 72 h of incubation, α-

solanine (r = -0.411) and total glycoalkaloid (r = -0.386) were negatively and 

significantly correlated with inhibition of LNCaP prostate cancer cell proliferation.  

Antioxidant activity measured by ABTS was negatively and significantly 

correlated with inhibition of LNCaP cell proliferation after 24 h (r = -0.358) and 72 h (r 

= -0.343) of incubation with 10 μg/ml of tuber extract. Also, after 72 h of incubation 

with 10 μg/ml of extract, α-solanine showed a significantly negative correlation with 

inhibition of LNCaP prostate cancer cell proliferation, while total glycoalkaloid were 

positively correlated with inhibition of LNCaP prostate cancer cell proliferation (Table 

5.2).  
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Table 5.2. Correlation analysis of antioxidant activity (DPPH and ABTS), total phenolics (TP), α-solanine (SOL), α-

chaconine (CHA), and total glycoalkaloids (TGA) in Solanum jamesii accessions, and inhibition of LNCaP prostate cancer 
cell proliferation. 

  
      Inhibition of cell proliferation 

      5 μg/ml  10 μg/ml 

 ABTS TP SOL CHA TGA   24 h 48 h  72 h  24 h 48 h     72 h 

DPPH 0.647** 0.887**   0.144 -0.047 0.109 -0.113 -0.019 -0.033  -0.259 -0.121     -0.083 

ABTS  0.657** -0.025  0.142 0.013 -0.236 -0.151 -0.238   -0.358* -0.031 -0.343*

TP    0.338*  0.225 0.337* -0.301* -0.173 -0.276  -0.226 -0.216      0.018 

SOL    0.600** 0.981** -0.293* -0.205 -0.411**   0.245 0.147 -0.346*

CHA     0.744** -0.093 -0.011 -0.173  -0.189 -0.232      0.178 

TGA      -0.268 -0.174 -0.386*    0.159 0.067 0.332*

 
* refers to significant values at p-value < 0.05   
** refers to significant values at p-value < 0.01  
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Correlations among Antioxidants, Phenolics, Glycoalkaloids and Cytotoxicity 

 Induction of cell death in cancerous cells may be due to induction of apoptosis 

(programmed cell death) or necrosis. Necrosis can be determined by measuring the 

amount of lactate dehydrogenase (LDH) enzyme released from cells into the culture 

medium. Results of cytotoxicity analysis using the LDH assay exhibited significant 

positive correlation between antioxidant activity measured with the DPPH assay and the 

amount of LDH released (r = 0.381), and between the ABTS assay and amount of LDH 

released (r = 0.471) from HT-29 colon cancer cells (Table 5.3) after incubation with 5 

μg/ml of tuber extract. Total phenolics and glycoalkaloids showed no significant 

correlation with LDH released from HT-29 colon cancer cells at the 5 μg/ml 

concentration. At 10 μg/ml of extract, there was no significant correlation between LDH 

released from HT-29 cells and antioxidant activity, total phenolics or glycoalkaloids.  

 Lactate dehydrogenase released from LNCaP prostate cancer cells was positively 

correlated with α-solanine (r = 0.369) and total glycoalkaloids (r = 0.356) after 

incubation with 5 μg/ml tuber extract (Table 5.3). However, no significant correlation 

was observed between antioxidant activity and LDH, between total phenolics and LDH, 

and between glycoalkaloids and LDH in LNCaP prostate cancer cells after incubation 

with 10 μg/ml tuber extract (Table 5.3). 
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Table 5.3. Correlation analysis of antioxidant activity (DPPH and ABTS), total phenolics (TP), α-solanine (SOL), α-

chaconine (CHA), and total glycoalkaloids (TGA) in Solanum jamesii accessions, and cytotoxicity to HT-29 colon cancer 
and LNCaP prostate cancer cell lines. 

  
      %LDH 

    HT-29  LNCaP 

  ABTS TP    SOL CHA  TGA 5 μg/ml 10 μg/ml  5 μg/ml 10 μg/ml 

DPPH 0.647** 0.887**    0.144       -0.047 0.109    0.381* 0.084  0.054 0.012 

ABTS  0.657**   -0.025 0.142 0.013      0.471** 0.012   -0.002 0.269 

TP     0.338* 0.225 0.337*  0.247 0.052  0.106 0.074 

SOL       0.600** 0.981** -0.023 0.246    0.369* 0.264 

CHA    0.744** -0.136 0.263  0.195 0.003 

TGA         -0.052 0.269  0.356* 0.222 
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Discussion 

Wild potato accessions contain higher amounts of beneficial phytochemicals, 

such as antioxidants and polyphenols, than the potato of commerce, and are therefore 

potential sources of parental material in breeding for these phytochemicals. However, 

wild species are also known to contain higher amounts of toxic compounds such as 

glycoalkaloids that are considered a health hazard for human consumption.  

Solanum jamesii accessions significantly inhibited HT-29 and LNCaP cell 

proliferation. However, the important finding of this study is that the cytotoxicity of 

many of these accessions is not necessarily due to necrosis. Therefore, these accessions 

might not pose a health problem if used as parental material in improving the nutritional 

value of potato cultivars. 

Tuber extracts from 15 accessions of S. jamesii, representing the range of total 

glycoalkaloids in S. jamesii, inhibited proliferation of colon (HT-29) and prostate 

(LNCaP) cancer cell lines. The amount of LDH released from cells incubated with tuber 

extracts was not significantly different from amounts of LDH released from cells 

incubated without tuber extracts (DMSO as a control). This implies that the cytotoxic 

effects of the tuber extracts were not due to necrosis, but probably to induction of 

apoptosis.  

Colon and prostate cancer cells responded differently to tuber extract treatments. 

Colon (HT-29) cancer cell lines seemed more responsive to tuber extract treatment than 

prostate (LNCaP) cancer cell lines. Proliferation of colon (HT-29) cancer cells was 

significantly reduced by all extracts at 5μg/ml (Fig. 5.1), yet a higher concentration 



 

 

118

(10μg/ml) of extract was required for all accessions to inhibit proliferation of LNCaP 

prostate cancer cells (Fig. 5.2). These results agree with Kim et al. (2006) who reported 

that polyphenol concentrations required for anti-cancer effects depend on the type of 

cancer cell line. Friedman et al. (2005) and Lee et al. (2004) came to a similar 

conclusion while investigating anti-carcinogenic effects of glycoalkaloids against 

cervical, liver, lymphoma, and stomach cancer cells.   

Correlation analysis results from this study suggest that compounds, other than 

those evaluated in this investigation, may also be contributing to anti-proliferative 

effects of potato tuber extracts. Antioxidants, phenolics, and glycoalkaloids, together 

with other compounds present in tuber extracts may be acting competitively, additively, 

and/or antagonistically to inhibit proliferation of colon and prostate cancer cells. This 

may be the reason why correlations between anti-proliferation and levels of antioxidants, 

phenolics, and glycoalkaloids in the tuber extracts were not consistent. Chu et al. (2002) 

reported that correlations between phytochemical contents of five vegetables and anti-

proliferative activity of HepG2 human liver cells were not significant. They observed that 

inhibition of human liver cancer cells by vegetables does not solely depend on their 

phenolic content, but that other chemicals in the vegetables were also responsible for 

anti-proliferative activities. The above observations support the idea proposed by Liu 

(2004), Cirico and Omaye (2006), and Milde et al. (2007) that combinations of different 

phytochemicals synergistically confer more health benefits than individual chemicals. 

It has been reported that antioxidants or phytochemicals with antioxidant 

capacity can become pro-oxidants depending on their concentration and the environment 
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in which they act (Mortensen et al., 2001). Therefore, a network of phytochemicals is 

necessary in promoting health. This may further explain the inconsistencies observed in 

correlation analysis between single chemicals in tuber extracts and inhibition of cell 

proliferation. These results suggest that not only concentration of phytochemicals is 

important in inhibiting cell proliferation, but also moderate combination of diverse 

phytochemicals. In fact, very high levels of phenolic compounds and certainly 

glycoalkaloids are toxic for human consumption.  

Other studies have explained why no single antioxidant can replace the 

combination of natural phytochemicals in fruits and vegetables in achieving greater 

health benefits. This was based on observations that combinations of extracts from 

different fruits resulted in greater antioxidant activity that was additive and synergistic 

(Eberhardt et al., 2000; Liu, 2003; 2004; Sun et al., 2002) than individual extracts. 

Friedman et al. (2005) demonstrated that certain combinations of the two major potato 

glycoalkaloids (α-solanine and α-chaconine) act synergistically in inhibiting cell 

proliferations of several human cancer cell lines. Likewise, Rayburn et al. (1995) and 

Smith et al. (2001) reported that combinations of α-solanine and α-chaconine acted 

synergistically to cause cytotoxicity and disruption of cell membranes.  

Phytochemicals in foods differ in molecular size, polarity, and solubility, and 

these differences may affect the bioavailability and distribution of each phytochemical in 

different macromolecules, organelles, cells, organs, and tissues (Liu, 2003). This implies 

that biological effects of phytochemical mixtures are greater than the expected additive 

effects of individual compounds. Currently it is not clear how single nutrients and 
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combinations of nutrients affect one’s risk of specific cancers. Many questions remain 

unanswered until more is known about the specific components of diet that influence 

cancer risk. Presently the best advice is to consume wholesome foods in a balanced diet 

(American Cancer Society, 2008). 

The complexities of cancer research make it difficult to translate in vitro cell 

assay results to in vivo applications. But since previous studies have shown that several 

plant extracts inhibit cancer cell proliferation, more in vivo, i.e. animal experiments, are 

necessary to confirm the in vitro observations and design more and probably better 

chemotherapeutic compounds.  

Dietary constituents in the relevant foods must be sufficient to attain the cellular 

concentrations that display sufficient bioactivity and chemopreventive capacity (Juan et 

al., 2008). Presence of high amounts of chemopreventive compounds in plant foods such 

as the potato of commerce would increase bioavailability of the bioactive 

phytochemicals. Therefore, crop improvement or breeding to increase health-promoting 

phytochemicals in plant foods is important.  

 

 

 

 

 

 

 



 

 

121

CHAPTER VI 

CONCLUSIONS 

Results from this investigation show that antioxidant activity measured by the 

ABTS assay, total phenolic content, and specific gravity are governed more by genetic 

factors than environmental conditions. More than 50% of the variability in antioxidant 

activity (ABTS assay), total phenolic content, and specific gravity was attributed to the 

cultivar main effect. As for antioxidant activity (DPPH assay), location, season, and 

cultivar main effects are equally influential in variability of antioxidant activity. 

Interactions of cultivar, location, and season effects were also significant, and these may 

obscure progress in breeding for high antioxidants.  

There was no significant relationship between antioxidant activity and specific 

gravity, or between total phenolic content and specific gravity. Also, there was no 

significant correlation between any of the individual phenolic compounds and specific 

gravity. Therefore, breeding for high antioxidants and phenolic compounds in potato 

tubers would not compromise tuber quality in terms of specific gravity.  

Accessions of S. jamesii and S. microdontum species exhibited higher levels of 

antioxidants, phenolics, and glycoalkaloids than the commonly grown cultivars. 

Antioxidant activity in S. jamesii accessions ranged from 173 (PI 592408) to 961 μg 

TE/gfw (PI 620875), and 1,383 (PI 592408) to 3,513 (PI 275172) μg TE/gfw, for the 

DPPH and ABTS assays, respectively. Values in S. microdontum ranged from 202 (PI 

558097) to 1,535 (PI 498127) μg TE/gfw, and from 1,084 (PI 558097) to 6,288 (PI 

498127) μg TE/gfw, for the DPPH and ABTS assays, respectively. Total phenolic 
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content in S. jamesii accessions ranged from 49.7 (PI 592408) to 161 (PI 595775) mg 

CGA/100gfw, and in S. microdontum from 51 (PI 558097) to 269 (PI 498127) mg 

CGA/100gfw. 

High amounts of α-solanine and α-chaconine were found in S. jamesii and S. 

microdontum accessions. Tomatine and dehydrotomatine were identified and quantified 

only in some S. microdontum accessions. Generally, amounts of glycoalkaloids in S. 

microdontum were higher than in S. jamesii accessions. Most (95%) of the S. jamesii 

accessions exhibited glycoalkaloid levels less than 20 mg/100g, while only two 

accessions of S. microdontum were below this value. The following S. jamesii 

accessions; PI 585116, PI 592413, PI 592397, PI 595778, PI 605371, PI 620870, PI 

592410, and PI 603054 exhibited total glycoalkaloid levels close to or greater than the 

safety limit (20 mg/100g). Only two accessions- PI 473171 and PI 500041 of S. 

microdontum exhibited total glycoalkaloid levels less than 20 mg/100g. Therefore, most 

S. jamesii accessions and the two accessions of S. microdontum can potentially be used 

in breeding without increasing amounts of glycoalkaloids in the progenies, since they 

contain low levels of glycoalkaloids.     

Principal component analysis results showed that there is no significant linear 

relationship between glycoalkaloids and antioxidant activity, or between glycoalkaloids 

and phenolic content. Therefore, using wild accessions in breeding for high antioxidant 

activity and total phenolics would not necessarily increase glycoalkaloids in the 

developed potato progenies if selected parental materials (accessions) are low in 

glycoalkaloids. 
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Tuber extracts from S. jamesii accessions inhibited proliferation of colon (HT-

29) and prostate (LNCaP) cancer cell lines. The anti-proliferation activity exhibited by 

the tuber extracts is not due to necrosis, because the amount of LDH released from cells 

incubated with tuber extracts was not significantly different from that released by cells 

incubated without tuber extracts (DMSO as a control). Also, the results indicate that 

accessions of S. jamesii are not necessarily cytotoxic to HT-29 colon and LNCaP 

prostate cancer cell lines. 

Colon (HT-29) cancer cell lines were more responsive to tuber extract treatment 

than prostate (LNCaP) cancer cell lines. Proliferation of colon (HT-29) cancer cells was 

significantly inhibited by all extracts at 5 μg/ml but a concentration of 10 μg/ml was 

required for all accessions to inhibit proliferation of LNCaP prostate cancer cells. 

Correlations between anti-proliferation and levels of antioxidants, phenolics, and 

glycoalkaloids in the extracts were not significant. This suggests that compounds, other 

than the ones measured, may also be contributing to anti-proliferative effects of potato 

tuber extracts. Antioxidants, phenolics, and glycoalkaloids, together with other 

compounds present in tuber extracts, may be acting competitively, additively, and/or 

antagonistically to inhibit proliferation of colon and prostate cancer cells.  

In summary, crop improvement or breeding to increase health-promoting 

phytochemicals in plant foods is necessary in order to boost the bioavailability of the 

active phytochemicals. However, some of the health-promoting compounds such as 

glycoalkaloids are required in very low amounts as they are toxic when consumed in 
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larger quantities. Therefore breeding strategies should ensure that such phytochemicals 

are not increased but maintained at the necessary low levels. 
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