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ABSTRACT

Topics in Two-Dimensional Systems with Spin-Orbit Interaction. (December 2008)

Mario Francisco Borunda Bermúdez, B.S., The University of Texas at El Paso

Chair of Advisory Committee: Dr. Jairo Sinova

This dissertation focuses on the study of spin-dependent transport in systems

with strong spin-orbit coupling within their band structure. In particular we focus

on the anomalous Hall effect, the spin Hall effect, and the Aharonov-Casher effect

whose origins, are linked to the presence of spin-orbit coupling. Given the theoretical

controversy surrounding these effects we further simplify our studies to semiconductor

systems where the band structure is much simpler than in metallic systems with heavy

elements. To obtain finite analytical results we focus on reduced dimensions (two and

one dimensions) which can be explored experimentally. To set the stage, we discuss

the origins of the strong spin-orbit coupling in semiconductors deriving the effective

interaction from the Dirac equation. We discuss in detail the skew scattering contri-

bution to the anomalous Hall effect in two-dimensional systems, which is dominant

for systems with low impurity concentrations, and find that it is reduced when the

two chiral subbands are partially occupied in an electron gas and vanishes for a hole

gas, regardless of the band filling. We also present calculations for all contributing

mechanisms. We propose a device to test this prediction and study the crossover from

the intrinsic to the extrinsic anomalous Hall effect. We calculate all contributions to

the anomalous Hall effect in electron systems using the Kubo-Streda formalism. We

find that all contributions vanish when both subbands are occupied and that the

skew scattering contribution dominates when only the majority subband is occupied.

We calculate the interference effects due to spin-orbit interaction in mesoscopic ring
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structures patterned from HgTe quantum wells related to the Aharonov-Casher effect

and the spin Hall effect. We find that the transport properties are affected by the

carrier density as well as the spin orbit interaction. We find that the conductivity is

larger in hole gas systems. We also show that devices with inhomogenous spin orbit

interaction exhibit an electrically controlled spin-flipping mechanism.
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CHAPTER I

INTRODUCTION

The study of solid sate devices relies in large part on the transport properties of

materials. Usually, resistance is of an ohmic nature:

V = IR

The above equation means that the voltage drop between the ends of a piece of ma-

terial is proportional to the current flowing in the material, with the proportionality

constant being R, the resistance of the material. A finer approach reveals that the

resistance depends on the geometry of the material, its chemical composition and

atomic arrangement [1]:

R =
ρ l

A
[3D], R =

ρ l

W
[2D] (1.1)

The quantity ρ is the electrical resistivity of the material and encapsulates its electrical

transport properties. The geometric aspect is enclosed in A, the cross-sectional area

of the material in three dimensional systems. In two dimensional systems, W is the

width of the material which plays the role of A in three dimensional systems. The

length of the material is denoted by l in both situations. In addition, ρ itself is in

general not a single coefficient but a tensor, whose inverse is the conductivity tensor

relating the applied electric fields in all directions and the induced currents.

In this dissertation, we explore the effect of spin-orbit interactions and disorder

scattering in the conductivity tensor of semiconductors with reduced dimensional-

ities. We are interested in the response of the two dimensional electron(hole) gas

The journal model is Physical Review Letters.
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in systems of infinite and mesoscopic sizes for semiconductors where the chemical

composition and atomic arrangements are such that the spin-orbit coupling plays an

important role in their transport properties. The main motivation of this research is

to understand spin-dependent electronic transport in these systems. Specifically, we

aim to understand the basic physics of the anomalous Hall effects in two-dimensional

bulk semiconductors and the spin Hall effect and Aharonov-Casher effect in one-

dimensional mesoscopic ring structures.

The area of research which focuses among other thing, on controlling the spin-

dependent transport using electrical means, is also know as spintronics [2]. Spin-

tronics has made its way into technological applications e.g., increases in the storage

capacity of computers (through the effect known as giant magnetoresistance) [3] and

nonvolatile, low-power, high-density magnetic random access memory (MRAM) [4]

which may soon replace dynamic random access memory (DRAM) in personal com-

puters. The two effects mentioned take place in metals. However, the majority of

modern electronic devices are based on semiconductors and more applications will

be possible when semiconductor devices can employ the spin degree of freedom as

another functional variable in computational processing.

We study the effects of spin-orbit interaction in semiconductors given that it

allows for the electrical control of the spin degree of freedom through gating acting

in low dimensionality devices. The spin-orbit interaction also gives rises to unusual

transport effects such as the anomalous Hall effect in ferromagnets, the spin Hall

effect in paramagnetic materials, and the Aharonov-Casher effect in mesoscopic ring

structures. This dissertation is devoted to topics in two-dimensional semiconductor

systems with spin-orbit interaction. Chapter II discusses the origins of the spin-

orbit coupling in semiconductors whose simple band structure is reviewed and derive

the effective interaction starting with the Dirac equation. The next two chapters
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pertain to the anomalous Hall effect. In Chapter III, we discuss in detail the skew

scattering contribution to the anomalous Hall effect. This contribution is dominant

for systems with low impurity concentrations. Chapter IV continues the treatment of

the anomalous Hall effect with calculations for all the contributing mechanisms of the

anomalous Hall effect within a simple two-dimensional system with strong spin-orbit

coupling. In Chapter V, we shift our attention to interference effects due to spin-orbit

interaction in mesoscopic ring structures patterned from HgTe quantum wells related

to the Aharonov-Casher effect and the spin Hall effect.
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CHAPTER II

SPIN ORBIT COUPLING IN THE WEAK RELATIVISTIC LIMIT

Open a graduate level quantum mechanics book to the section where the spin-orbit

(SO) interaction is presented and it is likely the author introduces SO coupling qual-

itatively and in the context of the fine structure of the hydrogen atom or more gen-

erally, the Alkali atoms. For example, both Sakurai [5] and Shankar [6] state that

the SO interaction is a relativistic effect. The electron and the nuclei interact via a

Coulomb-like interaction (Vc(r) ∝ −e2r−1). The electron experiences an electric field

due to the central force (e > 0):

E = −∇Vc(r)

e
(2.1)

Given that the electron moves at a velocity v under the influence of the electric field,

an effective magnetic field is present:

Beff = −v

c
× E (2.2)

Note that in the rest frame of the same electron, the nuclei moves at a velocity (−v),

so that the induced magnetic field can also be written as:

Beff = −e
c

v × r

r3
(2.3)

Then, the interaction energy of the electron’s magnetic moment (µ = −eS/mc) with

this field is:

Hint = −µ · Beff =
e

mcr3
µ · (p × r) = − e

mc

µ · L
r3

=
e2

m2c2r3
S · L (2.4)
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this interaction energy1 is the contribution to the Hamiltonian due to the SO inter-

action except that it is double the magnitude of the measured effect. Usually, the

textbook will offer an argument, mentioning the Thomas factor [7], and state the

correct result:

Hso =
e2

2m2c2r3
S · L (2.5)

As noted in Shankar’s book, the above equation can be derived from the Dirac

equation [6]. One fundamental aspect often overlooked in textbooks is that in solids

the SO interaction has an enhanced effect in the properties of the material and the

effective strength of the SO interaction is related to the band structure considered.

For instance, in two-dimensional semiconductor heterostructures, the spin degree of

freedom can be profoundly affected by SO coupling. This being an important topic of

the present dissertation, we use this chapter to derive the SO interaction, by looking

at the details that are commonly skipped in the textbook literature [8, 9]. We follow

here a different strategy that the usual one followed by textbooks. We first go in

detail through the derivation of the weak relativistic limit of the Dirac equation and

apply this afterwards to the band structure of semiconductors. In doing so we are

first going to arrive to the so called Pauli Hamiltonian (Eq. (2.57)), whose derivation

is shown in full detail in the subsection below, and find the connection with the effect

of SO coupling on the band structure of semiconductors.

1
Performing the same calculation but using Eq. 2.2 for the magnetic field, gives the interaction energy as [5]:

Hint = −µ · Beff = µ ·
(v

c
× E

)
= −

(
eS

mc

)
·
(

p

mc
× ∇Vc(r)

e

)

= − S

mc
·
(

p

mc
× r

r

dVc(r)

dr

)
=

1

m2c2
1

r

dVc(r)

dr
(S · L)
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A. Introduction to Dirac equation: from Schrödinger to Dirac

The Schrödinger equation as a quantum mechanical equation of motion is postulated

in correspondence to classical mechanics. For instance for a free particle:

E =
p2

2m
, (2.6)

and we know that the operators E → i~ ∂
∂t

and p → −i~∇ so that

i~
∂

∂t
Ψ(x, t) = − ~2

2m
∇2Ψ(x, t). (2.7)

Please note that throughout this chapter, whenever the gradient (∇) appears it is

specifically acting on the immediate expression to its right and not as an operator;

when acting as an operator we will write it as ip/~. To write a quantum relativistic

equation of motion, a logical first step is:

E2 = c2p2 +m2c4 (2.8)
(
i~
∂

∂t

)2

Ψ(x, t) =
[
c2(−~2∇2) +m2c4

]
Ψ(x, t) (2.9)

0 =

(
1

c2
∂2

∂t2
−∇2 +

m2c2

~2

)
Ψ(x, t) (2.10)

(2.11)

This is the Klein-Gordon (KG) equation. It is a scalar equation (particles with zero

spin), but it has two groups of solutions each with either positive or negative energy.

The continuity equation that follows from the KG equation is

~
2mc2

∂

∂t

(
Ψ∗∂Ψ

∂t
− Ψ

∂Ψ

∂t

∗)
=

~
2m

∇ (Ψ∗∇Ψ− Ψ∇Ψ∗) (2.12)

To maintain the usual probabilistic interpretation, we have to define the density as:

%KG ≡ i~
2mc2

(
Ψ∗Ψ̇ − ΨΨ̇∗

)
(2.13)
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The density is negative for eigenstates of negative energy. We could simply say, that

there are no physical states corresponding to these peculiar solutions, but it can be

shown that after confining a particle to a finite volume its wave packet will always

contain states with negative energy [10].

Another problem with the KG equation is the second time derivative, which

impairs the causality of an equation of motion. In order to obtain an equation that

yields the right probabilistic interpretation of the density, i.e. ρ > 0, the desired form

of an equation of motion is:

i~
∂Ψ

∂t
= HΨ, (2.14)

where

H = cαp + βmc2 (2.15)

H2 = c2(−~2∇2) +m2c4 = E2 (2.16)

Coefficients α and β must be determined from this restriction. The condition above

together with hermiticity of the Hamiltonian leads to conditions:

{αj, αk} = 2δjk, (2.17)

{αj, β} = 0, and (2.18)

β2 = 1, (2.19)

which form the so called Dirac algebra. Any matrices α and β fulfilling these condi-

tions are connected by a unitary transformation. The most commonly used represen-

tation in condensed matter physics is the Dirac realization:

α = σ1 ⊗σ and (2.20)

β = σ3 ⊗ 1, (2.21)
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which allows a simple spin interpretation (σj are Pauli matrices).

Now we are ready to write the Dirac equation for a free particle:

i~
∂

∂t
Ψ(x, t) = (cα · p + βmc2)Ψ(x, t) (2.22)

It is a vector equation. The object Ψ(x, t) has four components and it is called a

bispinor. There are still solutions with positive and negative energy but now the

continuity equation is

∂

∂t

(
Ψ+Ψ

)
= −c∇

(
Ψ+αΨ

)
. (2.23)

This time, the density %D ≡ Ψ+Ψ is positive for any solution (bispinor). That means

the equation has a reasonable probabilistic interpretation. The problem of negative

energies is addressed by quantum field theory. At the same time, the Dirac equation

contains only the first derivative with respect to time so we can use it as a relativistic

equation of motion in the following section.

B. From Dirac equation to spin orbit coupling

We start the derivation from the Dirac equation introduced in Eq. (2.22) and use

the electromagnetic field described by potentials A and V = −eϕ. These potentials

enter the equation through the usual substitution:

p → p − eA ≡ π and ε→ ε+ V, (2.24)

where

i~
∂

∂t
Ψ(x, t) = εΨ(x, t). (2.25)
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In the Dirac realization the bispinor is written as

Ψ(x, t) =




ϕ(x, t)

χ(x, t)


 , (2.26)

where, as we will see below, χ is smaller than ϕ in the non-relativistic limit by a

factor of v/c. We obtain then two coupled equations for the spinors

(i~ ∂
∂t

− V −mc2)ϕ = c σ · (p − eA)χ = c σ · πχ (2.27)

(i~ ∂
∂t

− V +mc2)χ = c σ · (p − eA)ϕ = c σ ·πϕ (2.28)

Here, mc2 is typically a large energy scale and V is usually smaller than this scale so

we look for energy solutions where the non-rest mass energy,

E ≡ ε−mc2, (2.29)

is small (|E| � mc2) i.e., the total energy is very close to the rest energy in this scale.

We proceed in two steps: First, we obtain the Dirac equation to first order in

v/c. Afterwards, we obtain the Dirac equation to second order in v/c. Throughout

this chapter we use the following identity:

(σ·X)(σ·Y) =
∑

ij

σiXiσjYj =
∑

i=j

σiXiσjYj +
∑

i 6=j

σiXiσjYj

=
∑

i

XiYi + i
∑

k

εijkσkXiYj = X · Y + iσ · [X ×Y] (2.30)

which simplifies the operator algebra,

(σ · p)(σ · p) = p2 (2.31)

(σ ·A)(σ · p) = A · p + iσ · [A × p] (2.32)

(σ · p)(σ · A) = p·A + iσ·[p× A] = p · A − iσ · [A × p] + ~σ·[∇× A]

= p · A − iσ · [A × p] + ~σ·B, (2.33)
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yielding

(σ · (p − eA))
2

= (p − eA)
2 − e~σ·B. (2.34)

1. Dirac equation to first in order in v/c: Pauli Hamiltonian

To obtain the Dirac equation to first order in v/c we rewrite Eq. 2.28,

(i~
∂

∂t
− V −mc2)χ+ 2mc2χ = c σ · (p − eA)ϕ = c σ ·πϕ (2.35)

For ε ≈ mc2, the lower spinor equation, can then be approximated by

χ =
c σ · (p − eA)

2mc2
ϕ+O

(
v2

c2

)
=

σ · π
2mc

ϕ+O

(
v2

c2

)
(2.36)

Note that χ is a factor of v/c smaller than ϕ. Inserting the above equation into Eq.

(2.27), results in an equation for the upper spinor:

(i~
∂

∂t
−mc2 − V )ϕ =

1

2m
(σ · π)2ϕ+O

(
v2

c2

)
(2.37)

i~
∂

∂t
ϕ =

1

2m
π2ϕ− e~

2m
σ · Bϕ+ (mc2 + V )ϕ (2.38)

Eq. 2.38 is the Pauli Hamiltonian which gives the relativistic correction to order v/c

and naturally gives the Zeeman contribution with the correct g-factor of 2.

2. Dirac equation to second order in v/c

In obtaining the Dirac equation to second order in v/c we need to first obtain the

equation for the lower spinor (χ) up to second order. The first task consists of

manipulating Eq. (2.28) by adding and subtracting 2mc2χ:

(i~
∂

∂t
− V −mc2)χ+ 2mc2χ = c σ · (p − eA)ϕ (2.39)
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Then, solving for χ:

χ =
1

2mc2

[
c σ · πϕ− (i~ ∂

∂t
− V −mc2)χ

]
(2.40)

This provides a recursive way of obtaining higher corrections in (v/c) of the equation

since now we can insert iteratively the first order approximation to the last term and

obtain the second order equation for χ:

χ =
1

2mc2

[
c σ · πϕ− (i~

∂

∂t
− V −mc2)

1

2mc
σ · πϕ

]
(2.41)

We can then substitute this into Eq. 2.27 (re-written below) for the upper spinor (φ)

and obtain:

(i~
∂

∂t
− V −mc2)ϕ = c σ ·πχ

=
(σ · π)2

2m
ϕ− σ · π

4m3c2
(i~

∂

∂t
− V −mc2)σ · πϕ (2.42)

Therefore, we need to evaluate the commutator of the expression (i~(∂/∂t) − V −

mc2)with σ · π in order to use the substitution found from Eq. 2.37.

[
(i~ ∂

∂t
− V −mc2),σ · (p − eA)

]
= [i~ ∂

∂t
,−eσ · A] + [−V,σ · p]

= −ie~σ · ∂A

∂t
− i~σ · ∇V

= i~eσ · E(r, t) (2.43)

Thus,

(
i~
∂

∂t
− V −mc2

)
σ · π = σ · π

(
i~
∂

∂t
− V −mc2

)
+ i~eσ · E(r, t) (2.44)
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Substituting Eq. (2.44) and using Eq. (2.37), the Pauli Hamiltonian, in the last term

of Eq. (2.42), we obtain

(
i~
∂

∂t
− V −mc2

)
ϕ =

[
(σ · π)2

2m
− 1

8m3c2
(σ · π)4 − i~e

4m2c2
(σ · π)σ · E

]
ϕ (2.45)

However, the equation presented above, which could be interpreted as the effective

Hamiltonian for ϕ, is not Hermitian. The reason is that we have looked for an

effective Hamiltonian that is a 2 × 2 matrix rather than the 4 × 4 which we started

with. Remember that the particle state is described by Ψ and not ϕ alone,

∫
ϕ†ϕ 6= 1 (2.46)

Since it is the bispinor ϕ̃ which is normalized, starting from the normalization condi-

tion of Ψ:

∫
Ψ†Ψ = 1 =

∫
ϕ†ϕ+ χ†χ ≈

∫
ϕ†
(

1 +
(σ · π)2

4m2c2

)
ϕ =

∫
ϕ̃†ϕ̃+O

(
v3

c3

)
(2.47)

where we used Eq. 2.36 and defined

ϕ̃ ≡
(

1 +
(σ · π)2

8m2c2

)
ϕ ≡ Ĝϕ, (2.48)

we can obtain an effective Hamiltonian for ϕ̃ rather than ϕ. To accomplish this, we

need to go back to Eq. 2.42 and multiply it by the operator Ĝ, acting from the left.

The terms in the right hand side of Eq. 2.42 commutes with Ĝ or are terms that are

already of order v2/c2 so we do not need to consider them:

Ĝ

[
(σ · π)2

2m
− 1

4m3c2
σ ·π(i~

∂

∂t
− V −mc2)σ · π

]
ϕ

=

[
(σ · π)2

2m
− 1

4m3c2
σ ·π(i~

∂

∂t
− V −mc2)σ · π

]
Ĝϕ+O

(
v2

c2

)
(2.49)
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For the left hand side of Eq. 2.42, we need to calculate the commutator of Ĝ and

(i~ ∂
∂t
− V −mc2):

[
Ĝ, (i~

∂

∂t
− V −mc2)

]
=

[
1 +

(σ · π)2

8m2c2
, (i~

∂

∂t
− V −mc2)

]
(2.50)

and,

[
(σ · π)2, (i~

∂

∂t
− V −mc2)

]

= (σ · π)

[
(σ · π), (i~

∂

∂t
− V −mc2)

]
+

[
(σ · π), (i~

∂

∂t
− V −mc2)

]
(σ · π)

= −i~e[(σ · π)(σ · E) + (σ · E)(σ · π)] (2.51)

We have computed the commutator explicitly, to obtain the effective Hamiltonian

defined by i~∂ϕ̃/∂t = Heff ϕ̃:

(
i~
∂

∂t
− V −mc2

)
ϕ̃+

[
(σ · π)2

8m2c2
, (i~

∂

∂t
− V −mc2)

]
ϕ̃

=

[
(σ · π)2

2m
− 1

8m3c2
(σ · π)4 − i~e

4m2c2
(σ ·π)σ · E

]
ϕ̃, (2.52)

We have obtained the final (although not simplified) expression for the effective Dirac

Hamiltonian to v2/c2 order:

Heff =
(σ · π)2

2m
− 1

8m3c2
(σ · π)4 +

i~e
8m2c2

[−(σ · π)(σ ·E) + (σ · E)(σ · π)] (2.53)

With the use of the identity Eq. 2.30, the last term can be rewritten:

−(σ ·π)(σ · E) + (σ · E)(σ · π) = −π · E − iσ · (π × E) + E · π + iσ · (E ×π)

= i~∇ · E + iσ · (E ×π) − ~σ · (∇×E) + iσ · (E ×π)

= i~∇ · E + i2σ · E × π − ~σ · (E × π) (2.54)



14

The (σ · π)4 term can also be simplified since

(σ · π)2 = π2 − e~σ · B, (2.55)

thus,

(σ · π)4 = π4 − e~(π2(σ · B) + (σ · B)π2) + e2~2B2

= π4 − e~(π · (−i~∇(σ · B) + (σ · B)π) + (σ · B)π2) + e2~2B2

= π4 − e~(−~2∇2(σ · B) − i2~∇(σ · B) · π + 2(σ · B)π2) + e2~2B2

(2.56)

Using the above equation and Eq. (2.54), the expression for the effective Hamiltonian,

which is also known as the Pauli Hamiltonian, becomes

Heff = mc2 + V +
1

2m

[
π2 − e~(σ · B)

]
− ~

8m2c2

[
eσ · (2E × π − i~

∂B

∂t
) + e~B2

−~
e
∇2V + π4 − e~(−~2∇2(σ ·B) − i2~∇(σ · B) · π + 2(σ · B)π2)

]
(2.57)

The terms in the Pauli Hamiltonian (Eq. (2.57)) have a riveting interpretation.

For instance, we see the kinetic energy term π2/(2m) and its correction of order (v/c)2

[9],

HK =
π2

2m
− π4

(2m)3c2
+O

(
v4

c4

)
(2.58)

which compare satisfactorily to the classical relativistic kinetic energy,

√
c2p2 −m2c4 −mc2 =

p2

2m
− p4

8m3c2
+O

(
1

c4

)
(2.59)

We also obtained the Zeeman term, e~σ · B/(2m), and its second order correc-

tions:

H
(2)
int =

(e~B)2

(2m)3c2
+

(σ · B)π2

4m3c2
+ ... (2.60)
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Fig. 1. Qualitative sketch of electron occupancy of allowed energy bands. Each of

the energy bands is represented by a rectangle. The colored region in each

rectangle indicates that at that energy level the band is occupied by charge

carriers.

Further, by going to this order we have derived the Pauli SO coupling term:

HSO =
~e

(2mc)2
σ · E × π =

~e
(2mc)2

σ ×∇V · p (2.61)

For a spherical potential this term becomes:

HSO =
1

2m2c2r

dV

dr
S · L. (2.62)

The preceding equation makes it clear why this term is known as the spin-orbit term.

The term proportional to ∇2V is called the Darwin term and it can be interpreted as a

fast shaking of the particle at a length scale corresponding to its Compton wavelength,

the so called Zitterbewegung.

C. Spin orbit coupling effects in bulk (3D) semiconductors

Just as the discrete energy levels are affected in atomic systems, spin-orbit coupling

can affect the energy of the electrons in solid systems. For electrons in atomic systems,

their energy states have gaps where no energy states are available. Once atoms are
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brought close together, the nearby energy levels mix forming energy bands but many

of the inherent energy gaps from the atomic structure remain. Hence, electrons in

solids are restricted to sets of energy ranges. However, in contrast with the discrete

energy levels of the atomic systems, the allowed energy states of the solid systems

form continuous bands of allowed energy states. As seen in Figure 1, the energy

bands are separated by gaps. The gaps can be the result of the interaction between

the conduction electron and the ions in the crystal as well as the intrinsic energy gaps

from the atomic levels. Solid state materials are classified in three groups depending

on how these bands are filled. Materials with a partially filled (10% to 90 %) band

behave as metals, as charge carriers in that band are mobile. Materials with a full

band behave as insulators, as all states are filled and a large finite energy is needed

to promote carriers to a higher band. In between a metal and an insulator we find

the semiconductors, which have smaller gaps than the insulators.

The semiconductor I in Figure 1, illustrates the band scheme for a semiconductor

at zero temperature. At such temperature, the main difference between an insula-

tor and a semiconductor is the size of the band gap. The semiconductor II panel

shows that carriers can be excited (thermally or optically) from an occupied band

to an unoccupied band making the material conducting. Also, by inserting impu-

rities or other means of additional carriers, the conductivity can be made non-zero

even at zero temperature. These later type of semiconductors are known as extrinsic

semiconductors.

In Figure 2, we present the band diagram of a direct gap semiconductor. It

features one conduction band and three valence bands (p like electron states) usually

known as the heavy holes band (hh), the light holes band (lh), and the split-off holes

band (∆). By assuming a perfectly periodic crystal, Bloch was able to establish that

electrons in a lattice behave like plane waves whose amplitude is modulated with
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Fig. 2. Band edge structure of a simplified direct gap semiconductor. The blue band

is the conduction band while bands in red represent the three valence bands:

heavy holes (hh), light holes (lh), and split-off holes (∆).

the period of the lattice [11]. Bloch’s theorem (Eq. 2.64) allows the transformation

of the original (infinite) Hamiltonian into an effective (finite) Hamiltonian. Band

structure calculations usually make use of Bloch’s theorem making it possible to study

a single electron in a periodic potential. This reduction to a periodic one-electron

problem is still a formidable problem. Thus, theoretical studies are carried out under

several approximations such as the envelope function approximation, which describes

carriers in the presence of slow-varying electromagnetic fields. The simplest of these

approximations is the effective mass approximation [12], where the bands are assumed

to be isotropic and parabolic. The curvature of each band in the neighborhood of the
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point k = 0 defines the effective mass of the electrons in that band,

Eµ(k) = E(0)
µ +

~2k2

2m∗
µ

(2.63)

where µ is the band index (µ = c, hh, lh,∆), k is the wave vector, and the effective

masses for each band are given by m∗
µ. More details can be obtained by using the

framework of k · p theory [13], which can account for non-parabolic bands, spin

splitting, and the coupling between heave holes and light holes.

The wavefunction of the carriers can be expanded as

Ψ(x) =
∑

µ,σ

ψµ,σ(x)uµ(x) |σ〉 (2.64)

where ψ is the slowly varying envelope function, u is the periodic Bloch function, and

|σ〉 is the spin eigenstate. In systems with spin-orbit interaction the spin quantum

number (σ) is not a good number and as such we replace the label with the index n

accommodating the orbital motion and the spin degree of freedom. Using the k · p

theory, the Hamiltonian can be expanded along a high symmetry point. In the case

of direct semiconductors, such as the one in Figure 2, the expansion is done around

the k = 0 point, which in the crystallographic literature is known as the Γ point. In

what follows we present how the k · p theory applies to bulk semiconductors, as was

illustrated by Winkler [14]. From the lattice-periodic Bloch functions we can obtain

a Schrödinger equation:

[
p2

2m
+ V +

~2k2

2m
+

~
m

k · p
]
uµk = Eµ(k)uµk = Eµ(k) |µk〉 (2.65)

The potential V is the periodic potential present in the system. For a fixed wave

vector (k0), the functions |µk0〉 and |nk0〉 are a complete orthonormal basis [14]. The
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expansion then is:

|nk0〉 =
∑

µ,σ=↑,↓

cnµσ(k0) |µσ〉 (2.66)

where the basis set at the band edge |µσ〉 contains no spin-orbit coupling, as the SO

interaction will be treated as a small perturbation [14]. Since this is a perturbative

approach, the best result is when the value of k is small. The dispersion relation

En(k) can be obtained from the algebraic eigenvalue problem,

∑

µ′ ,σ′

[(
Eµ′(k = 0) +

~2k2

2m

)
δµµ′δσσ′ +

~
m

k · Pµµ′ ;σσ′ + ∆µµ′ ;σσ′

]
= En(k)cnµσ(k)

(2.67)

where

Pµµ′ ;σσ′ =

〈
µσ

∣∣∣∣
(
p +

~
4mc2

σ ×∇V
)∣∣∣∣µ′σ′

〉
, (2.68)

∆µµ′ ;σσ′ =
~

4m2c2
〈µσ |(p · σ ×∇V )|µ′σ′〉 . (2.69)

In Eq. (2.67), the off-diagonal terms proportional to P are mixing the states of

the band edges |µk = 0〉. The mixing is stronger for energy bands that are closer

together and for large k. The matrix elements of the SO interaction (Eq. 2.69) lift

the degeneracy of bands even at k = 0. In semiconductors obeying the band edge

structure in Figure 2, the valence bands all have the same orbital angular momentum

(l = 1). It is due to the SO interaction term that the degeneracy is lifted since the

heavy holes and light holes states have total angular momentum j = 3/2 while the

split off holes have j = 1/2.

The Hamiltonians describing semiconductor systems are in principle of infinite

dimensional size. Therefore, it is wise to ignore bands that are far away from the

valence and conduction band. For direct semiconductors such as those formed from

the elements of the groups III and V (GaAs and InSb), and the II-IV compound CdTe,

the smallest gap is at the Γ (k = 0) point. These materials can be described accurately
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by the extended Kane model which is a 14×14 matrix and it is sometimes convenient

to consider even smaller k · p models such as the 8× 8 Kane Hamiltonian [13] or the

six-band Kohn-Luttinger Hamiltonian [15], depending on the energy scale of interest

in the problem at hand. The 8 × 8 Kane Hamiltonian would be able to describe

the system depicted in Figure 2, while the six-band Kohn-Luttinger Hamiltonian is

neglecting the conduction band. The four-band Kohn-Luttinger Hamiltonian is a

further simplification made by ignoring the split-off holes valence band while still

retaining the description of the heavy holes and light holes valence bands.

In the Kohn-Luttinger model one can choose the angular momentum quantization

along the z-axis and order the j = 3/2 and j = 1/2 basis functions according to the

total angular momentum eigenstates |j,mj〉 [16]:

|1〉 = |3/2, 3/2〉, |2〉 = |3/2,−1/2〉

|3〉 = |3/2, 1/2〉, |4〉 = |3/2,−3/2〉

|5〉 = |1/2, 1/2〉, |6〉 = |1/2,−1/2〉 (2.70)

so that the six-band Hamiltonian, including spin-orbit coupling, can be expressed as:

HL =




Hhh −c −b 0 b√
2

c
√

2

−c∗ Hlh 0 b − b∗
√

3√
2

−d

−b∗ 0 Hlh −c d − b
√

3√
2

0 b∗ −c∗ Hhh −c∗
√

2 b∗√
2

b∗√
2

− b
√

3√
2

d∗ −c
√

2 Hso 0

c∗
√

2 −d∗ − b∗
√

3√
2

b√
2

0 Hso




(2.71)

In Eq. (2.71), the four-band model Hamiltonian is highlighted. The Kohn-Luttinger

eigenenergies are measured down from the top of the valence band, i.e. they are hole
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energies. The expressions which define the quantities that appear in HL are

Hhh =
~2

2m

[
(γ1 + γ2)(k

2
x + k2

y) + (γ1 − 2γ2)k
2
z (2.72)

Hlh =
~2

2m

[
(γ1 − γ2)(k

2
x + k2

y) + (γ1 + 2γ2)k
2
z

]
(2.73)

Hso =
~2

2m
γ1(k

2
x + k2

y + k2
z ) + ∆so (2.74)

b =

√
3~2

m
γ3kz(kx − iky) (2.75)

c =

√
3~2

2m

[
γ2(k

2
x − k2

y) − 2iγ3kxky

]
(2.76)

d = −
√

2~2

2m
γ2

[
2k2

z − (k2
x + k2

y)
]
. (2.77)

The numerical value of the parameters used depends on the system being studied, for

instance in the binary compound gallium arsenide (GaAs), γ1 = 6.98, γ2 = 2.06 and

γ3 = 2.93 [17].

In metals, the multi-band nature of the Hamiltonian is needed due to the com-

plexity of the band structures and wavefunctions. For semiconductors an effective

Hamiltonian that includes the SO effects can be derived if one is interested only in

the conduction band electrons [18]. In essence, this simple two-band model works for

narrow gap materials. The work presented in this dissertation uses such effective two-

band models. In what follows we present the perturbation method used by Nozières

and Lewiner [19] to construct such an effective Hamiltonian.

We start with a single electron wavefunction projected on a complete basis,

ψn,k = eik·run0(r) (2.78)

where un0 is the Bloch function of the crystal at the zone center. The next step

consists of dividing ψ into two components: (1) ψ1 are components that belong to

the conduction band and (2) ψ2 are the components that belong to the other bands.
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The Hamiltonian is partitioned into 2 by 2 matrix operators and the Schrödinger

equation can be written as

i~
∂ψ1

∂t
= H1ψ1 + hψ2

i~
∂ψ2

∂t
= h†ψ1 +H2ψ2. (2.79)

The matrix element H1 is the intraband Hamiltonian for the conduction electrons.

Then, assume that Hg describes the band gap at the zone center and H2 can be

defined as

H2 = Hg +H ′
2 (2.80)

where H ′
2 is the intraband Hamiltonian for the other bands. By choosing the zero of

the energy at the bottom of the conduction band we can assume that H1 is of the

order of the conduction electron energy (εF ). The key assumption is that the band

gap is much larger than εF . Nozières and Lewiner [19] make an expansion in powers

of H−1
g . The procedure involves eliminating ψ2 from Eq. (2.79) and construction of

an effective Schrödinger equation for ψ1. Solving the second equation in Eq. (2.79)

by iteration, to second order in H−1
g ,

ψ2 = − 1

H2
h†ψ1 −

i

H2
2

(
∂h†

∂t
ψ1 + h†

∂ψ1

∂t

)
. (2.81)

Substitution of the above into the first equation of Eq. (2.79) results in:

i(1 + Λ)
∂ψ1

∂t
= H̄ψ1 (2.82)

where

Λ = h
1

H2
g

h†, (2.83)

H̄ = H1 − h
1

Hg
h† + h

1

Hg
H ′

2

1

Hg
h† − ih

1

H2
g

∂h†

∂t
(2.84)
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Unfortunately, ψ1 is not normalized. Disregarding terms of order higher than H−2
g ,

1 = 〈ψ1|ψ1〉 + 〈ψ2|ψ2〉 = 〈ψ1|1 + Λ|ψ1〉 (2.85)

and the normalized wavefunction is given by:

|ψeff〉 =

(
1 +

Λ

2

)
|ψ1〉 (2.86)

Using Eqs. (2.82) and (2.83) the effective Schrödinger equation in the conduction

band subspace is given by:

i
∂ψeff

∂t
=

[
H1 − h

1

Hg
h† −

Λ(H1 − h 1
Hg
h†) + (H1 − h 1

Hg
h†)Λ

2

+h
1

Hg

H ′
2

1

Hg

h† +
i

2

(
∂h

∂t

1

H2
g

h† − h
1

H2
g

∂h†

∂t

)]
ψeff (2.87)

Nozières and Lewiner [19] constructed an effective Hamiltonian and showed the

transformation necessary for all operators. With this construction, they have mapped

the effects of the valence bands into the conduction band. For an operator O, the

same procedure can be applied,

〈O〉 = 〈ψ1|O|ψ1〉 + 〈ψ2|O|ψ2〉 + 〈ψ1|o|ψ1〉 + 〈ψ1|o†|ψ2〉 (2.88)

〈O〉 = 〈ψ1|Ō|ψ1〉 = 〈ψeff |Oeff |ψeff〉 (2.89)

where the effective operator is given in the conduction band subspace. Within this

framework, and with the previous assumption that the material has a small band gap,

H1 = H2 =
k2

2m0

+ g0
e

2mc
S · B, h = k · Π (2.90)

where Π is the operator that couples the bands together. The matrix elements of Π

are

Πnn′ =

〈
un0

∣∣∣∣−i
∇
m0

∣∣∣∣un′0

〉
(2.91)
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and the matrix elements of Π between the six valence bands and the two conduction

bands are

Πα
1

Hn
g

Πβ =
P 2

3

[
δαβ

(
2

(−εg)n
+

1

(−εg −∆)n

)
+ 2iεαβγSγ

(
1

(−εg − ∆)n
− 1

(−εg)n

)]
,

(2.92)

where P is a parameter that for narrow gap semiconductors gives us an energy in the

range Ep = 2mP 2/~2 ≈ (21, 25) eV.

Finally, the effective Hamiltonian is

Heff =
~2k2

2m∗ + g∗
e

2mc
S · B − e

~2k2

4mm∗c
g∗

S · B
E0

− g∗
e

2mE2
(k × E) · S (2.93)

=
~2k2

2m∗ +
1

2
g∗µσ · B − ~2k2

4m∗E0

g∗µ σ · B

+λ∗(σ · (k ×∇V (r)) + g0µ(k× σ) · (k × B)) (2.94)

with

E0 =
Eg(Eg + ∆)(3Eg + 2∆)

9E2
g + 11Eg∆ + 4∆2

, (2.95)

E2 =
Eg(Eg + ∆)

2Eg + ∆
(2.96)

and the renormalized quantities,

1

m∗ =
1

m0
+

2

3
|P |2 3Eg + 2∆

Eg(Eg + ∆)
∝ 1

Eg
, (2.97)

g∗ = g0 −
4m0

3
|P |2 ∆

Eg(Eg + ∆)
∝ ∆

E2
g

, (2.98)

λ∗ =
P 2

3

(
1

E2
g

− 1

Eg + ∆2

)
∝ ∆

E3
g

(2.99)

We see how the effects of the valence band impart an effective spin-orbit coupling

term in the conduction band. Given the renormalization of the parameters that show

up in the Hamiltonian (effective mass m∗ < m0 and g∗ > g0), the SO term is strong
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for narrow gap semiconductors.

D. Spin orbit coupling effects in confined (2D) semiconductors

The energy band structure can be modified intensely by the SO interaction. For

instance, in Germanium, the SO coupling provides the splitting of the degenerate

valence band (P -states) [20]. In heterostructures, the inversion asymmetry can induce

a spin splitting. These systems with reduced dimensionality can exhibit bulk inversion

asymmetry (BIA), as a consequence of the crystal structure, and structure inversion

symmetry (SIA), due to the confinement potential [14]. The latter case is the focus of

the current volume. The motion of electrons close to the atomic cores in a crystalline

environment is what contributes to the SO coupling.

The emergence of fabrication techniques such as molecular beam epitaxy has

made possible the growth of materials with electrical properties that can be engi-

neered at will. For instance, a heterojunction is made by growing materials with

similar lattice constants but different band gaps. An example of such new materials

is the heterojunction made of the semiconductor gallium (Ga) and arsenide (As), and

aluminium (Al) metal with the alloy composition GaAs/AlxGa1−xAs, presented in

Figure 3. The difference in the two alloys in lattice constant is about 1% but the

difference between their band gaps can be significant and as such the conduction

and valence bands edges do not align. This abrupt discontinuity in the bands is also

known as the band offset [12]. When the material with the larger band gap is doped

with donors (ions willing to give away their electrons), the Fermi energy moves from

the middle of the band gap towards the donor levels. Since the chemical potential

has to remain constant between the interface, electrons flow from the AlGaAs side to

the GaAs. At the interface the band edges will bend and the electrons in the GaAs
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Fig. 3. Discontinuity in the energy bands for a heterojunction. (Top panel) A thin

layer of GaAs sits between two larger layers of AlxGa1−xAs. (Bottom panel)

The mismatch between the bandgaps is significant and discrete states (E1 and

Eh) can be formed in the valence (Ec) and conduction (Ev) bands of the GaAs

region.

are confined by a triangular potential near the interface of the two materials. The

electrons are effectively confined to the discrete states and form a two-dimensional

electron gas, as illustrated in Figure 4. Similarly, the preparation can be done such

that the holes (electron missing from the valence band) are confined so that a two-

dimensional hole gas is created. The confined electrons are separated from the ion

impurities in the doped material and as such they are only weakly scattered from

impurities producing highly mobile carriers [21].

As explained by Winkler [14], when there is inversion asymmetry, as there is in

a triangular potential, the Bloch part of the wavefunction feels the atomic fields and

the envelope function feels the macroscopic environment (electric field due to gates or
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Fig. 4. Formation of a two-dimensional electron gas. A heterojunction of

AlxGa1−xAs/GaAs, where the bands are discontinuous near the junction. (a)

The left side is doped with donors yet the chemical potential has to remain

constant in both materials. (b) Similar schematic as the one in panel (a) but

emphasizing the band bending. (c) An increase in the concentration of donors

shifts the chemical potential above the conduction band of the material in the

right. This confines the electrons to a triangular potential. (d) The inset shows

the resulting triangular potential well formed at the interface. Note the pres-

ence of the spatial quantization level, the potential has confined the electrons

into a 2D region, creating the 2DEG.

environment). The confinement makes for a macroscopic electric field and the atomic

cores a microscopic electric field. Therefore, structure inversion symmetry (SIA) spin

splitting is tunable via external gates that can modulate the electric field [14]. This

spin-splitting leads to the Rashba type spin-orbit coupling term [22] that for narrow

wells where the carriers are electrons (spin 1/2 particles):

He
SO =

α

~
(σ̂ × p)z , (2.100)
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and for heavy holes carriers (spin 3/2 particles) [14],

Hhh
SO =

α

~
(
σ̂+p3

− − σ−p3
+

)
, (2.101)

where the strength of the spin-orbit interaction is given by α. If the confinement is

not in narrow quantum wells the linear term mixes with the cubic term in the heavy

holes case and the form of the spin-orbit term will be different.
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CHAPTER III

REDUCED SKEW-SCATTERING IN TWO-DIMENSIONAL SYSTEMS:

TESTING THE ORIGINS OF THE ANOMALOUS HALL EFFECT*

In 1879, Edwin Hall ran a current through a gold foil and discovered that a transverse

voltage was induced when the film was exposed to a perpendicular magnetic field [23].

The ratio of this Hall voltage to the current density is the Hall resistivity. For para-

magnetic materials, the Hall resistivity is proportional to the applied magnetic field,

and Hall measurements give information about the concentration of free carriers and

determine whether they are holes or electrons. Magnetic films exhibit both this or-

dinary Hall response and an extraordinary or anomalous Hall response that does not

disappear at zero magnetic field and is proportional to the internal magnetization:

RHall = RoH +RsM, (3.1)

where RHall is the Hall resistance, Ro and Rs are the ordinary and anomalous Hall

coefficients,M is the magnetization, and H is the applied magnetic field. The anoma-

lous Hall effect (AHE) is the consequence of spin-orbit (SO) coupling and allows an

indirect measurement of the internal magnetization.

Despite the simplicity of the experiment, the theoretical basis of the AHE is

still hotly debated and a source of conflicting reports [24]. Different mechanisms

*Part of this chapter is reprinted with permission from “Absence of Skew Scatter-
ing in Two-Dimensional Systems: Testing the Origins of the Anomalous Hall Effect”
by Mario Borunda, Tamara S. Nunner, Thomas Lück, N. A. Sinitsyn, Carsten Timm,
J. Wunderlich, T. Jungwirth, A. H. MacDonald, and Jairo Sinova, 2007. Physical
Review Letters 99, 066604, c©(2007) by The American Physical Society and from
“Anomalous Hall Effect in a Two-Dimensional Electron Gas” by Tamara S. Nun-
ner, N. A. Sinitsyn, Mario F. Borunda, V. K. Dugaev, A. A. Kovalev, Ar. Abanov,
Carsten Timm, T. Jungwirth, Jun-ichiro Inoue, A. H. MacDonald, and Jairo Sinova,
2007. Physical Review B 76, 235312, c©(2007) by The American Physical Society.
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contribute to the AHE: an intrinsic mechanism and extrinsic mechanisms such as

skew-scattering and side-jump contributions. The intrinsic mechanism is based solely

on the topological properties of the Bloch states originating from the SO coupled

electronic structure as first suggested by Karplus and Luttinger [25]. Their approach

gives an anomalous Hall coefficientRs proportional to the square of the ordinary resis-

tivity, since the intrinsic AHE itself is insensitive to impurities. The skew-scattering

mechanism, as first proposed by Smit [26], relies on an asymmetric scattering of the

conduction electrons by impurities present in the material.1 Not surprisingly, this

skew scattering contribution to Rs is sensitive to the type and range of the scattering

potential and, in contrast to the intrinsic mechanism, scales linearly with the diago-

nal resistivity. The presence of impurities also leads to a side-step type of scattering,

which contributes to a net current perpendicular to the initial momentum. This is the

so-called side-jump contribution, whose semi-classical interpretation was pointed out

by Berger [27]. However, it is not trivial to correctly account for such contributions

in the semiclassical procedure, making a connection to the microscopic approach very

desirable.

The early theories of the AHE involved complex calculations with results that

were not easy to interpret and often contradicting each other [19]. The adversities

these theories had to overcome to obtain correct results stem from the origin of

the AHE: it appears due to the interband coherence and not just due to simple

changes in the occupation of Bloch states, as was recognized in the early works of

1Note that the origin of the asymmetry of this scattering arises from the spin-orbit
coupling present in the Bloch states and not from the very weak spin-orbit coupling
contribution of the disorder potential as noted originally by Smit. When projecting
a multi-band system to an effective conduction band system one can obtain a term
that looks as if it arises from such a spin-orbit coupling part of the disorder potential
but it truly originates from spin-orbit coupling induced by the valence band states
and the normal disorder that is felt by them.
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Luttinger and Kohn [28, 29]. Nowadays, most treatments of the AHE either use the

semiclassical Boltzmann transport theory or the diagrammatic approach based on the

Kubo-Streda linear-response formalism. The equivalence of these two methods for the

two-dimensional Dirac-band graphene system has recently been shown by Sinitsyn et

al. [30], who explicitly identified various diagrams of the more systematic Kubo-

Streda treatment with the physically more transparent terms of the semiclassical

Boltzmann approach. So far a rigorous connection of the more intuitive semiclassical

transport treatment with the more systematic diagrammatic treatment, providing a

clear-cut interpretation of the intrinsic, skew, and side-jump AHE terms, has only

been demonstrated for the Dirac Hamiltonian model [30]. It is therefore important to

also obtain a similarly cohesive understanding of the AHE in other systems such as the

two-dimensional (2D) spin-polarized electron gas with Rashba spin-orbit interaction

in the presence of point-like potential impurities, where a series of previous studies

has led to a multitude of results with discrepancies arising from the focus on different

limits and/or subtle missteps in the calculations [31, 32, 33, 34, 35, 36, 37]. A similar

debate over the origin of the AHE has carried over to the related phenomena of the

spin Hall effect [38, 39, 40, 41].

In this chapter we calculate the transport coefficients in these two complementary

approaches for asymmetrically confined 2D electron and hole gases in the presence

of spin-independent disorder. The two approaches are in perfect agreement. The

motivation for the study of these systems is threefold: First, they can be represented

by simple spin-orbit-coupled bands which, similar to the Dirac Hamiltonian model,

allows us to unambiguously identify the individual AHE contributions. Second, the

extrinsic skew-scattering term is reduced for two-subband occupation in the Rashba

2D electron gas and for any band occupation in the studied 2D hole gas. This provides

a clean test of the intrinsic AHE mechanism and of the transition between the intrinsic
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and skew-scattering-dominated AHE. Finally, we propose a 2D electron gas/2D hole

gas coplanar magneto-optical device in which the unique AHE phenomenology found

in our theoretical models can be systematically explored experimentally.

A. Model Hamiltonians

We study the following 2D model Hamiltonians derived in the previous chapter:

H =
~2k2

2m
σ0 + iαn(σ+k

n
− − σ−k

n
+) − hσz + V (r)σ0 (3.2)

with m being the effective in-plane mass, σ0 is the unity matrix, σi the 2 × 2 Pauli

matrices, σ± = σx ± iσy, k± = kx ± iky, h the exchange field, αn is the spin-orbit

coupling parameter, and V (r) a spin-independent disorder potential. The exponent

n = 1 (3) describes a 2D electron (hole) gas [14]. The eigenenergies of Eq. (3.2) for

a clean system (V (r) = 0) are

E± =
~2k2

2m
±
√
h2 + (αnkn)2. (3.3)

The eigenvectors in the clean system take the form |Ψ±
k 〉 = exp(ik · r)|u±k 〉 with

k = k (cos φ, sinφ) and

|u±k 〉 =
1√
2λ




±ie−niφ
√
λ± h

√
λ ∓ h


 , (3.4)

where λ =
√
h2 + (αnkn)2. We now define k±(E) as the wave number for the ± band

at a given energy E and define λ± ≡ λ(k±). If E is not specified, it is assumed to be

the Fermi energy. We consider the model of randomly located δ-function scatterers,

V (r) =
∑

i Vi δ(r − Ri), i enumerates impurities, and Ri is the random position of

the impurities. The moments of the disorder satisfy 〈Vi〉dis = 0, 〈V 2
i 〉dis = V 2

0 6= 0,

and 〈V 3
i 〉dis = V 3

1 6= 0. In our model the first nonzero disorder correlators in the basis



33

Eq. (3.4) are

〈V µ,µ′

k,k′ V
µ′ ,µ
k′ ,k 〉dis = niV

2
0 |〈u

µ
k|u

µ′

k′〉|2 (3.5)

and

〈V µ,µ′

k,k′ V
µ′,µ′′

k′ ,k′′ V
µ′′ ,µ
k′′ ,k 〉dis = niV

3
1 〈u

µ
k|u

µ′

k′〉〈uµ′

k′ |uµ′′

k′′〉〈uµ′′

k′′ |uµ
k〉, (3.6)

where ni is the impurity concentration. Note that the model we consider is different

from the standard white-noise disorder (V1 = 0). The deviation from white noise

is quantified by V1 6= 0, and is necessary to capture part of the skew-scattering

contribution to the AHE.

B. Calculations

1. Semiclassical approach

We give the details of the semiclassical procedure used in the calculation. Further

details can be found in the work of Sinitsyn et al. [30] and a companion review by

Sinitsyn [42]. The multi-band Boltzmann equation in a weak electric field E is given

by

∂fl

∂t
+ eE · vl

dfl

dε
= I[f ]coll (3.7)

where l = (k, µ), µ = ± is the subband index, and the impurity collision integral is

I[f ]coll = −
∑

µ′

∫
d2k′/(2π)2 wll′ (fl − fl′) . (3.8)

The distribution function fl is the sum of the equilibrium function and a correc-

tion, fl = f0
l +gl. The angle between the direction of the velocity (v) in a given phase

space volume and the direction of the electric field is given by φ. The scattering rate

encodes the details of the scattering potential. For the disorder potential considered

(δ-function type) the quantum mechanical scattering matrix is given by the golden
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rule [42]. The scattering rates wll′ are related to the T -matrix elements through

wll′ =
2π

~
|Tl′l|2δ(εl′ − εl), (3.9)

and we can use the expression of the T -matrix in terms of the Born series in powers

of disorder potential matrix elements:

Tl′l = 〈l′|V |ψl〉 ≈ Vl′l +
∑

l′′

Vl′′lVl′l′′

εl − εl′′ + iη
+ ..., (3.10)

where the operator V̂ is the impurity potential, Vl′l = 〈l′|V̂ |l〉, and |ψl〉 are eigenstates

of the complete Hamiltonian, and |l〉 of the disorder free Hamiltonian.

2. Skew scattering

Skew scattering appears in the Boltzmann equation through the asymmetric part of

the scattering rate, i.e., wll′ 6= wl′l [26]. The scattering rates to second and third order

in disorder strength are given by wll′ = w
(2)
ll′ + w

(3)
ll′ + · · · , where

w
(2)
ll′ =

2π

~
〈|Vll′ |2〉disδ(εl − εl′), (3.11)

is symmetric. Here Vl′l = 〈l′|V |l〉. We break up the third-order contribution into

symmetric and antisymmetric parts. We ignore the first, since only the second gives

rise to skew scattering. This antisymmetric term is given by [30]:

w
(3a)
ll′ = −(2π)2

~
∑

l′′

δ(εl − εl′′)Im〈Vll′Vl′l′′Vl′′l〉disδ(εl − εl′). (3.12)

The solution of the Boltzmann equation Eq. (3.7) is found by first looking at the

deviation of the distribution function from equilibrium [30],

gl = −
∂f0

µ

∂ε
eE|vµ|(Aµ cos φ+Bµ sinφ). (3.13)
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Assuming that the transverse conductivity is much smaller than the longitudinal

one (Aµ � Bµ) and substituting Eq. (3.13) into Eq. (3.7) one finds Aµ = τ
‖
µ and

Bµ = (τ
‖
µ)2/τ⊥µ , where the above scattering times are given by:

1

τ
‖
µ

=
∑

µ′

∫
d2k′

(2π)2
w

(2)
ll′

[
1 − |vl′|

|vl|
cos(φ− φ′)

]
, (3.14)

1

τ⊥µ
=

∑

µ′

∫
d2k′

(2π)2
w

(3a)
ll′

|vl′|
|vl|

sin(φ− φ′), (3.15)

where φ and φ′ are the angles between the velocities vl and vl′.

For symmetric Fermi surfaces, the skew-scattering contribution to the conduc-

tivity tensor at zero temperature can now be expressed using the scattering times,

σxx = e
∑

µ

∫
d2k

(2π)2
gµvµ cos(φ) =

e2

4π~
∑

µ

τ ‖µvF,µkµ, (3.16)

σskew
xy = e

∑

µ

∫
d2k

(2π)2
gµvµ sin(φ) =

e2

4π~
∑

µ

(τ
‖
µ)2

τ⊥µ
vF,µkµ. (3.17)

where above we have assumed zero-temperature. Hence, within the semiclassical

approach the focus is in calculating the scattering times from Eqs. (3.15) and (3.14).

The calculation of (τ
‖
µ)−1 and (τ⊥µ )−1 uses the matrix elements of Eq. (3.12). To

simplify the notation we define

〈µµ′, µ′µ′′, µ′′µ〉 ≡ Im

∫ 2π

0

dφ′′〈uµ
k|u

µ′

k′〉〈uµ′

k′ |uµ′′

k′′〉〈uµ′′

k′′ |uµ
k〉, (3.18)

where all momenta are taken on the Fermi surface. Note that in Eq. (3.18) the

magnitude of k′′ can be different from that of k′ or k since the Fermi momenta of

different bands do not coincide.

The matrix elements appearing in Eq. (3.18) can be calculated directly from the
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basis functions u±k of Eq. (3.4),

〈uµ
k|u

µ
k′〉 = 1

2λµ

[
Aµe

−ni(φ′−φ) + Cµ

]
, (3.19)

〈u−k |u−k′〉 = 1
2λ−

[
C−e

−ni(φ′−φ) + C+

]
, (3.20)

〈u∓k |u±k′〉 = 1

2
√

λ−λ+

[
−B+e

−ni(φ′−φ) +B−
]
, (3.21)

where Aµ = λµ +µh, Cµ = λµ −µh, and B± =
√

(λ− ∓ h)(λ+ ± h). This can be used

to obtain the simplified result for Eq. (3.18):

〈µµ′, µ′µ′′, µ′′µ〉 = −
hπα2

nk
n
µk

n
µ′

2λµλµ′λµ′′
sin(nφ− nφ′), (3.22)

from which we obtain the final expression for the skew-scattering rate, which yields

the transverse relaxation time:

w
(3a)
ll′ = −1

~
niV

3
1 δ(εl − εl′)

∑

µ′′

νµ′′〈µµ′, µ′µ′′, µ′′µ〉, (3.23)

where ν± is related to the density of states of each band at the Fermi energy,

(ν±)−1 =

∫
k dk δ(EF − ε±(k)) = ~2/m± n(αnk

n−1
± )2/λ± (3.24)

The relaxation times are found by inserting Eq. (3.24) into Eq. (3.14) and Eq. (3.23)

into Eq. (3.15). For n = 1, i.e., for the 2D electron gas, the relaxation rates are then,

from Eqs. (3.14) and (3.15),

1

τ
‖
µ

=
1

~
niV

2
0

[
νµ

λµ

(
h2

λµ
+
α2

1k
2
µ

4λ+
+
α2

1k
2
−

4λ−

)
+
νµ̄

2

(
1 − h2

λ−λ+

)]
, (3.25)

1

τ⊥µ
= −niV

3
1 hα

2
1ν

µ

8~λµ

(
k2

µ

λµ

−
k2

µ̄

λµ̄

)(
νµ

λµ

− νµ̄

λµ̄

)
, (3.26)

where µ̄ ≡ −µ. If both subbands are occupied, the last factor in Eq. (3.26) van-

ishes and there is no skew-scattering contribution. If only the majority subband is

occupied (EF < h), (τ⊥µ )−1 is non-zero and skew scattering contributes to the total
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Hall conductivity. For the skew-scattering Hall conductivity and the longitudinal

conductivity we obtain in this case, from Eqs. (3.25), (3.26), (3.16) and (3.17),

σxx =
e2

π~niV 2
0

(
λ−k−
ν−

)2
1

3h2 + λ2
−
, (3.27)

σskew
xy = − e2V 3

1

2π~niV 4
0

hλ−α
2
1k

4
−

ν−(3h2 + λ2
−)2

. (3.28)

If n = 3, i.e., for the 2D hole gas, we obtain from Eqs. (3.14) and (3.15),

1

τ
‖
µ

=
1

~
niV

2
0

[
νµ

2λ2
µ

(λ2
µ + h2) +

νµ̄(λ−λ+ − h2)

2λ−λ+

]
, (3.29)

1

τ⊥µ
= 0 (3.30)

and skew scattering vanishes irrespective of band filling.

3. Microscopic approach

Within the diagrammatic Kubo formalism the skew-scattering contribution to the

off-diagonal conductivity is obtained from the expression

σI(a)
xy =

e2~
2πV

∑

k

Tr
[
vxG

R
k (EF )vyG

A
k (EF )

]
, (3.31)

where the bare velocity vertex factors in the linear-in-k Rashba model are given by

vx =
~kx

m
σ0 −

α1

~
σy, vy =

~ky

m
σ0 +

α1

~
σx. (3.32)

As shown in a previous study [30], the skew-scattering contribution proportional

to V 3
1 /(niV

4
0 ) corresponds to the diagrams shown in Fig. 5. This diagram represents

the conductivity, it has the current vertices jx, jy on both sides thus it is the Hall

conductivity and not the diagonal conductivity. The bare velocities vx, vy are renor-

malized by ladder vertex corrections. Only the skew-scattering diagrams with a single

third-order vertex, shown in Fig. 5, contribute to order V 3
1 /(niV

4
0 ). The disorder lines
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jy x y xj j j

Fig. 5. Diagrammatic representation of the skew-scattering contribution to the Hall

conductivity (σyx). Both current vertices, denoted by squares, are renormal-

ized by ladder vertex corrections. Disorder lines represent the asymmetric

scattering. The red part of the diagram represents Eq. (3.33), the sum of the

skew-scattering vertices.

represent the type of asymmetric scattering rates that contribute to skew-scattering,

which is third order in the Born approximation. All other terms from a ladder-type

summation of third-order vertices are smaller because they are either not of the order

1/ni or of higher order in V1/V0. Only the single third-order skew-scattering diagram

contributes to order V 3
1 /(niV

4
0 ), whereas the summation of several third-order dia-

grams leads to terms of higher order in niV
2

0 . The sum of the skew-scattering vertices

(i.e., the bold/red part of Fig. 5) gives

i

4
niV

3
1 h

(
ν−
λ−

− ν+

λ+

)
(σ0 ⊗ σz − σz ⊗ σ0) . (3.33)

In the linear Rashba model we find ν+/λ+ = ν−/λ−, implying that the contribution

of order V 3
1 /(niV

4
0 ) of the skew scattering vanishes if both subbands are occupied. In

the case that only one subband is occupied the evaluation of Fig. 5 to order V 3
1 /(niV

4
0 )

yields exactly the same expression for σskew
xy as in the semiclassical Eq. (3.28). The

only effect of the ladder vertex corrections is to renormalize each bare velocity by a

factor of 2(h2 + λ2
−)/(3h2 + λ2

−) which reduces to a factor of 1 in the limit of small

α1kF and to a factor of 2 in the limit of small h.

For the 2D hole-gas model Hamiltonian, Eq. (3.2) with n = 3, the bare velocity
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vertex factors are

vx,y =
~kx,y

m
σ0 −

6α3

~
kxkyσy,x ± 3α3

~
(k2

x − k2
y)σx,y. (3.34)

Here the vertex corrections disappear because integrals of the type
∑

k G
R
k vx,yG

A
k = 0

vanish. This implies the absence of skew scattering for any subband filling [43], con-

sistent with the semiclassical result. We note that the same consistency between

semiclassical and microscopic quantum theory calculations for the studied 2D models

is also obtained for the intrinsic and side-jump terms similar to the results in the

graphene model [30]; the details of those calculations are shown in the next chap-

ter [44] and are in general agreement with calculations by Inoue et al. [35].

The absence of skew scattering of order V 3
1 /(niV

4
0 ) is akin but not equivalent

to the results of spin-Hall-effect calculations in 2D systems [45]. For the Rashba 2D

electron gas the disappearance of the DC spin Hall conductivity is guaranteed by sum

rules that relate the spin current to the dynamics of the induced spin polarization

[46, 47]. In the case of a charge current no similar sum rule is known. As we have

shown, the skew-scattering contribution in fact becomes finite when the minority band

is depleted. Please note that we do not say that the Hall conductivity remains zero,

since once higher order corrections are included, as was done by Kovalev et al [48],

there will be a skew scattering contribution. Yet, Kovalev et al [48] find a contribution

that is not of the order V 3
1 /(niV

4
0 ), rather, they find that it is proportional to 1/ni,

independent of the strength of the impurity potential, V0. Thus, this ‘hybrid’ skew

scattering contribution is similar to the side-jump contribution in that it does not

depend on the impurity strength but still has the 1/ni dependence of the normal skew

scattering. This calculation shows agreement with our expressions and by calculating

these higher order terms, Kovalev et al [48] obtained agreement with the numerical

results by Onoda et al. [36].
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The reduction of the Hall conductivity in the Rashba 2D electron gas for EF > h

is attributed to the simplicity of the Hamiltonian. In particular the relation ν+/λ+ =

ν−/λ− does not hold generally beyond the case of the linear-in-k Rashba coupling.

The absence of skew scattering in the 2D hole system has a different origin: Due

to the cubic dependence of spin-orbit coupling on momentum, the matrix elements,

Eq. (3.22), in the antisymmetric part of the collision term behave like sin(3φ− 3φ′).

Together with the sin(φ − φ′) dependence of the velocity factor in Eq. (3.15), this

makes the integral over k′ vanish.

Our results predict that the AHE in 2D electron and hole systems can be dom-

inated by contributions independent of the impurity concentration, for which the

anomalous Hall resistance is ∝ σ−2
xx . We also predict that in the Rashba 2D elec-

tron gas with only one subband occupied the extrinsic skew-scattering contribution,

leading to anomalous Hall resistance proportional to σ−1
xx , is non-zero. Note that

this term has not been identified in previous works that considered only white-noise

disorder [32, 33, 34, 35, 36]. Since the extrinsic skew scattering corresponding con-

ductivity contribution is inversely proportional to the impurity concentration, the

skew-scattering mechanism can dominate in clean samples. Finally, the recent result

by Kovalev et al [48] shows that this hybrid skew scattering present when both sub-

bands are occupied is weaker than the skew scattering contribution we have found in

the case that one subband is occupied.

C. Proposed experimental setup

The unique phenomenology of the AHE in the studied 2D systems, in particular the

sudden disappearance of skew scattering when the Fermi level crosses the depletion

point of the minority 2D Rashba band, represents an opportunity for a clean test
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Fig. 6. Proposed experimental setup to test the anomalous Hall theory. Top panel:

Schematics of the Hall bar with coplanar 2D hole and electron gases.

Spin-polarized carriers are generated by shining circularly polarized light on

the p-n junction. Center bottom panel: Cross section of the heterostructure

containing p-type and n-type AlGaAs/GaAs single junctions. The left band

diagram corresponds to the unetched part of the wafer with the 2D hole gas,

the right band diagram shows the 2D electron gas in the etched section.

of the presence of intrinsic and extrinsic sources of the AHE and of the transition

between these two regimes. In the absence of 2D ferromagnetic system with Rashba

like spin-orbit interaction, we proposed an experimental setup for this test as shown

in Fig. 6. The device is based on a AlGaAs/GaAs heterostructure containing a

coplanar 2D hole gas/2D electron gas p-n junction [40]. The cross section of the

heterostructure and corresponding band diagrams are shown in the lower panels of

Fig. 6. Under a forward bias the junction was successfully utilized as a light-emitting-

diode spin detector for the spin Hall effect [40]. Here we propose to operate the

junction in the reverse-bias mode, while shining monochromatic, circularly polarized
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light of tunable wavelength on the p-n junction. The photogenerated spin-polarized

holes and electrons will propagate in opposite directions through the respective 2D

hole and electron channels. The longitudinal voltage and the generated anomalous

Hall voltage can be detected by the successive sets of Hall probes, as shown in the

upper panel of Fig. 6. For the 2D electron gas the macroscopic spin diffusion length

allows to use standard lithography for defining the Hall probes. Surface or back gates

in close proximity to the 2D electron system can be used to modify the effective 2D

confinements, carrier density, and spin-orbit coupling in order to control the transition

between the intrinsic and extrinsic AHE regimes. The exploration of the AHE in the

2D hole gas is more challenging due to the expected sub-micron spin-diffusion length

in this system but may still be feasible in the proposed experimental setup.
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CHAPTER IV

ANOMALOUS HALL EFFECT IN A TWO-DIMENSIONAL ELECTRON GAS*

The observed Hall resistance of a magnetic film contains the ordinary Hall response

to the external magnetic field and the anomalous Hall response to the internal mag-

netization. Although the anomalous Hall effect (AHE) has been used for decades as

a basic characterization tool for ferromagnets, its origin is still being debated, also in

the context of a closely related novel phenomenon, the spin Hall effect [38, 39, 40, 41].

Three mechanisms giving rise to AHE conductivity have been identified: (1) an in-

trinsic mechanism based solely on the topological properties of the Bloch states orig-

inating from the spin-orbit-coupled electronic structure [25], (2) a skew-scattering

mechanism originating from the asymmetry of the scattering rate [26], and (3) a

side-jump contribution, which semiclassically is viewed as a side-step-type of scat-

tering and contributes to a net current perpendicular to the initial momentum [27].

Luttinger [29] uses quantum transport theory and calculates the conductivity ex-

actly. He included impurity scattering as well as spin orbit coupling which causes

the renormalization of the current operator. The interpretation by Berger [27] of the

current renormalization is that when electrons scatter of impurities, in addition to the

usual change of direction there is an additional side-jump (coordinate shift) during

the collision.

*Part of this chapter is reprinted with permission from “Absence of Skew Scatter-
ing in Two-Dimensional Systems: Testing the Origins of the Anomalous Hall Effect”
by Mario Borunda, Tamara S. Nunner, Thomas Lück, N. A. Sinitsyn, Carsten Timm,
J. Wunderlich, T. Jungwirth, A. H. MacDonald, and Jairo Sinova, 2007. Physical Re-
view Letters 99, 066604, c©(2007) by The American Physical Society and “Anomalous
Hall Effect in a Two-Dimensional Electron Gas” by Tamara S. Nunner, N. A. Sinit-
syn, Mario F. Borunda, V. K. Dugaev, A. A. Kovalev, Ar. Abanov, Carsten Timm,
T. Jungwirth, Jun-ichiro Inoue, A. H. MacDonald, and Jairo Sinova, 2007. Physical
Review B 76, 235312, c©(2007) by The American Physical Society.
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Recent experimental and theoretical studies of transition-metal ferromagnets and

of less conventional systems, such as diluted magnetic semiconductors, oxide and

spinel ferromagnets, etc., have collected numerous examples of the intrinsic AHE and

of the transition to the extrinsic AHE dominated by disorder scattering [49]. The

unambiguous determination of the origin of the AHE in these experimental systems

is hindered, in part, by their complex band structures, which has motivated studies

of simpler model Hamiltonians, such as the two-dimensional (2D) Rashba and Dirac

band models [32, 33, 34, 35, 36].

Since in the previous chapter it was demonstrated the equivalence of the Kubo-

Streda formalism and the semiclassical Boltzmann approach with respect to skew

scattering in the two-dimensional electron gas [50], we will focus here exclusively

on the diagrammatic formalism based on the Kubo-Streda treatment. It is also the

purpose of this chapter to review and analyze the previous attempts and to provide

a detailed analysis of all contributions to the AHE in a two-dimensional electron gas.

The outline of the chapter is as follows. We start by reviewing and commenting

on previous studies of the AHE in the two-dimensional electron gas in Sec. A, where

we compare them with our results and discuss the discrepancies and their possible

origins. In Sec. B we present details of our calculation within the diagrammatic

Kubo-Streda formalism. In Sec. C we provide simple analytical limits of all terms of

the anomalous Hall conductivity and discuss the full evaluation in Sec. D. Finally, in

Sec. E we present our conclusions.

A. Comparison with previous approaches

Currently, there are several publications on the AHE in two dimensional systems

reaching different quantitative predictions even in the same limits and parameters [31,
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32, 33, 34, 35, 36, 37]. In this study we present a calculation with conclusions that are

in disagreement with some previous studies. On such a background, we believe that

previous articles have to be discussed in some detail. Below we review the history of

the problem and explain why we think the subject has to be reconsidered.

A first study of the AHE in two dimensional systems was done by Culcer et

al. [31], who calculated only the intrinsic contribution to the Hall conductivity for a

wide class of two-dimensional systems, including the Rashba two-dimensional electron

gas as a special case. The intrinsic contribution plays a special role in the theory of

the AHE because it is not related to the scattering of electrons but is rather caused

by the unusual trajectories of electrons under the action of the electric field. However,

the disorder contributions can also be important and further insight was needed in

the quest for a quantitatively rigorous theory of the dc-AHE.

The first attempts to understand the disorder effects were done independently

by two groups [32, 33], each employing different approaches. Dugaev et al. [32] used

the version of the Kubo formula which expresses the Hall conductivity in terms of the

causal Green functions. The intrinsic contribution appears as a result of calculations

with bare Green functions, while disorder effects renormalize the quasi-particle life

time and the current vertex. This approach is formally rigorous and is similar to the

one we adopt in our work. However, our results are quantitatively different from those

found by Dugaev et al. [32] due to a subtlety in the calculation of the vertex at the

Fermi surface which was later corrected in the appendix of a follow up article [30].

Starting with the equation for the renormalized vertex Tx = akx + bσx + cσy and

with the assumption that the density of impurities is low, Dugaev et al. [32] find

correctly that b = 0 to leading order in ni, i.e. b/a ∝ ni. However, such a term

gets multiplied by an equivalent divergent term within the Kubo formula leading to

a non-zero contribution to the AHE conductivity to zeroth order in ni.
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The expression for the Hall conductivity can be split into two parts as was done

by Streda [51].

σxy = σI
xy + σII

xy (4.1)

The first term is depends on the crystalline structure of the solid and the disorder

potential. For the free electron model, in the limit where the vertex corrections are

not considered, this term results in the classical Drude-Zener result [51]:

σI
xy ∝ τσxx (4.2)

where τ is the lifetime and σxx is the diagonal conductivity. The second term has no

classical counterpart. It does not depend on the crystalline structure of the solid or the

disorder present in the sample. Rather, the only material dependence is in the number

of carriers in the sample [51]. Therefore, the breakup of the Hall conductivity (σyx)

into the contribution from electrons at the Fermi surface (σI
yx) and the contribution

of all states of the Fermi sea (σII
yx) [51].

The breakup of the Hall conductivity (σyx) into the contribution from electrons

at the Fermi surface (σI
yx) and the contribution of all states of the Fermi sea (σII

yx)

introduced by Streda [51] is not strictly followed by Dugaev et al. [32] who instead

defined σII
yx to be all terms that arrive from the integration of the Fermi sea. This

integration of the Fermi sea approach corresponds to the Hall conductivity in the

clean limit and terms evaluated at the Fermi surface. As we show here and was also

shown in the study of the Dirac Hamiltonian [30], σII
yx can be evaluated directly or as

a subtraction of the clean limit σyx and σI
yx, leading to the correct result when both

bands are occupied.

In contrast to the previous quantum mechanical approach, Sinitsyn et al. [33]

employed the semiclassical wave-packet approach focusing only on the understanding
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of the side-jump contribution and formulating the semi-classical problem in a gauge

invariant form. That work [33] intentionally avoids a discussion of the skew-scattering

contribution due to the asymmetry of the collision term kernel, which is also an

important mechanism of the Hall current and can even be parametrically similar to

all other contribution [30] in the case of Gaussian correlations. Therefore, the work

by Sinitsyn et al. [33] was meant as an intuitive introduction into the physics of the

anomalous velocity and the side-jump effect, but does not offer a rigorous quantitative

comparison even in the considered limit of smooth disorder potential.

Subsequently, two papers by Liu et al. [34, 37] studied the problem using the

Keldysh technique for linear transport. The Keldysh technique leads to the quantum

Boltzmann equation for the diagonal elements of the density matrix in momentum

space when only elastic scattering events are considered. In the steady state limit of

a weak electric field this equation can be written as follows:

eE·∇pρ̂(p) + i[Ĥ0, ρ̂(p)] = Îcol(ρ̂(p)) , (4.3)

where Îcol contains all disorder dependent terms that become zero when ρ̂(p) is the

density matrix in thermodynamic equilibrium and Ĥ0 is the disorder free part of

the Hamiltonian. The “hat” means that ρ̂ and Îcol are matrices in the band index

space. The term containing the electric field is called the driving term. In the linear

response approximation it only depends on the equilibrium part of the density matrix.

To start with Eq. (4.3) is correct and is also the starting point of the pioneering work

by Luttinger [29] and therefore one can compare Luttinger’s work directly with the

steps taken by Liu et al. [34, 37].

Luttinger split the density matrix into equilibrium and nonequilibrium parts

ρ̂ = ρ̂eq + ρ̂neq, where ρ̂neq is linear in electric field, and is responsible for nonzero
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currents. The quantum Boltzmann equation can be grouped as follows [42].

E[DT ](ρ̂eq) − i[Ĥ0, ρ̂neq] = Icol(ρ̂neq), (4.4)

where Ĥ0 is the part of the Hamiltonian that is independent of the electric field and

for the clean system (V = 0) since Luttinger used the disorder-free Bloch states in his

calculation. The equilibrium term of the density matrix (ρ̂eq) contains the disorder.

The driving term ([DT ]) couples to the electric field (E). In the Bloch basis the

driving term can be expressed as a series in powers of the disorder potential [42],

[DT ](ρ̂eq) = [DT ](0) + V 2[DT ](2) + · · · (4.5)

The collision term can also be expressed as a series in powers of V , but it starts at V 2

since it is the term with the information of the elastic scattering from the impurities

in the system,

Icol(ρ̂neq) = V 2I
(2)
col (ρ̂neq) + V 3I

(3)
col (ρ̂neq) + · · · (4.6)

For weak disorder potential V̂ , Luttinger looked for ρ̂neq as a series in powers of

the disorder potential. The equations can be ordered into terms of the same power of

potential. Since the collision term is linear in the non-equilibrium part of the density

matrix, Luttinger found that the non-equilibrium part of the density matrix series

starts from the term of the order V̂ −2,

ρ̂neq = V −2ρ̂(−2)
neq + V −1ρ̂(−1)

neq + V 0ρ̂(0)
neq + · · · (4.7)

As pointed out by Luttinger, the leading order term ρ̂
(−2)
neq does not contribute to the

Hall effect and is only responsible for the longitudinal diffusive current. The term

ρ̂
(−1)
neq was identified with skew scattering. This term, however, is parametrically very

distinct and vanishes in the approximation of purely Gaussian correlations of disorder
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Fourier components; therefore, Luttinger went to next order and calculated the term

ρ̂
(0)
neq. He found a number of contributions, whose physical meaning he did not clarify.

The main conclusion was that at this order, both the diagonal and off-diagonal parts

of the density matrix become nonzero and contribute to the Hall conductivity. The

Hall conductivity becomes formally independent on the strength of disorder V̂ in the

DC limit, although disorder has to be included in the intermediate calculations.

Comparing the Luttinger approach with the first work of Liu and Lei [34], we find

that they determined self-consistently only the off-diagonal part of the density matrix

in band index. This is, however, not enough for a rigorous quantitative result because

the diagonal part of the ρ̂
(0)
neq contribution has been known to be important since

Luttinger’s pioneering work. In their next effort Liu et al. [37] studied the problem of

2D Rashba systems in small gap semiconductor materials, in which a projection to the

conduction band leads to extrinsic type spin-dependent contributions. In this work

they noticed that the diagonal part is important and calculated it numerically. For

the driving term in Eq. (4.3) Liu et al. assume that ρ̂eq is just a diagonal equilibrium

Fermi distribution. This assumption would be correct if one was using the basis of

the eigenstates of the full Hamiltonian with impurities. However, both Liu et al. and

Luttinger work in the chiral basis of the disorder free Hamiltonian Ĥ0. In this basis

the equilibrium state density matrix is no longer diagonal and can also be written as

a series in powers of the disorder potential:

ρ̂eq = ρ̂(0)
eq + ρ̂(2)

eq + · · · (4.8)

Luttinger has shown that in order to properly evaluate the non-equilibrium part ρ̂
(0)
neq,

one should include the second term ρ̂
(2)
eq of the expansion of the equilibrium density

matrix in Eq. (4.8) into the driving term of Eq. (4.3). This was not done in the work

of Liu et al. [37] and therefore we believe that their work is incomplete due to such
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omission. We also note that the correction of order V̂ 2 in Eq. (4.8) leads to the Hall

current contribution, which was identified in the semiclassical approach [52] as the

anomalous distribution correction and if omitted leads to errors of factors of two in the

typical side-jump type contributions [19]. In the Kubo formula approach, neglecting

this correction would be equivalent to the unjustified omission of an important subset

of Feynman diagrams [30]. Within the calculation presented here, all these terms are

present.

Inoue et al. [35] calculated the AHE contribution using the same approach we

use with a focus on the limit of both subbands being occupied and, in addition

to the disorder that we consider, incorporating magnetic impurities in the model

Hamiltonian. They found that for paramagnetic impurities the Hall conductivity

vanishes. Our more general calculations confirm this result. However, we point to

one important difference in its derivation. In both cases, the dc-limit Kubo formula,

where the conductivity is expressed via retarded and advanced Greens functions, has

been employed to calculate the Hall conductivity. As was shown by Streda [51],

this version of the Kubo formula contains two parts: σI
xy a contribution from the

Fermi surface and σII
xy a contribution from all states of the Fermi sea. The latter

part is less known because it does not appear in the expression for the longitudinal

conductivity. Inoue et al. [35] calculated only σI
xy and indeed we find that for their

choice of parameters the second part of the conductivity σII
xy vanishes, explaining the

agreement with our results. In a more general analysis, beyond the limit of weak

spin-orbit and Zeeman couplings, we find a non-vanishing σII
xy. The present work

provides the missing estimate of σII
xy and extends the calculations of Inoue et al. [35].

Finally, recent work by Onoda et al. [36] used a reformulated Keldysh tech-

nique appropriate for multiband problems in a gauge invariant formalism. They also

derived a self-consistent equation, which is the analog of the standard quantum Boltz-
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mann equation, and solved it numerically. Onoda et al. [36] find numerically a skew

scattering contribution. We find that for the Rashba model with randomly placed

delta-function impurities the leading part of the skew-scattering vanishes when both

subbands are occupied. Onoda et al [36] consider the limit of dilute impurities ni → 0

independently of the disorder strength Vimp. Using the Keldysh formalism in the dis-

order free basis it has been possible to verify analytically our results [48]. Kovalev

et al [48], find that a hybrid skew scattering appears when considering higher order

terms of the Born series, these contributions do not depend on the disorder potential

Vimp, and result in agreement with the work by Onoda et al. [36], putting an end to

the discrepancies.

B. Anomalous Hall conductivity of the 2DEG

1. Model Hamiltonian

We consider a spin-polarized two dimensional electron gas with Rashba spin-orbit

interaction, i.e. same model that what was considered in the previous chapter in Eq.

(3.2) for n = 1,

H =
k2

2m
σ0 + α(σxky − σykx) − hσz + V (r)σ0 (4.9)

where m is the effective in-plane mass of the quasiparticles, α the spin-orbit coupling

parameter, h the exchange field, and σi the 2 × 2 Pauli matrices. The eigenenergies

of the clean system are

Ek± =
k2

2m
± λk with λk =

√
h2 + α2k2 (4.10)

and are shown in Fig. 7.
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Fig. 7. Dispersion relations in two limits. (a) Single particle dispersion for small

spin-orbit interaction αkF /h = 0.2 and (b) large spin-orbit interaction

αkF /h = 2.0.

2. Green’s functions

The retarded and advanced Green’s functions are given by

GR/A(EF ) =
1

EF +H ± i0+
(4.11)

In the chiral Bloch eigenstate basis, the retarded Greens function of the clean system

(disorder free) is:

G
R/A
0 =

|u+
k 〉〈u+

k |
E − E+

k ± i0+
+

|u−k 〉〈u−k |
E − E−

k ± i0+
(4.12)

G(0)R =

(
ω − k2

2m
+ i0+

)
σ0 + αkyσx − αkxσy − hσz

(
ω − k2

2m
+ i0+

)2 − h2 − α2k2

= G
(0)R
0 σ0 +G(0)R

x σx +G(0)R
y σy +G(0)R

z σz , (4.13)
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with

G
(0)
± =

1

ω − Ek± + i0+
, G

(0)R
0 =

1

2

(
G

(0)
+ +G

(0)
−

)
(4.14)

G(0)R
z = −1

2

h

λk

(
G

(0)
+ −G

(0)
−

)
, G(0)R

x =
1

2

αky

λk

(
G

(0)
+ −G

(0)
−

)
, (4.15)

and

G(0)R
y = −1

2

αkx

λk

(
G

(0)
+ −G

(0)
−

)
. (4.16)

The disorder potential V (r) in Eq. (4.9) is assumed to be spin-independent. We

consider the model of randomly located δ-function scatterers: V (r) =
∑

i Viδ(r−Ri)

and strength distributions satisfying 〈Vi〉dis = 0, 〈V 2
i 〉dis = V 2

0 6= 0 and 〈V 3
i 〉dis =

V 3
1 6= 0. This model is different from the standard white noise disorder model in which

only the second order cumulant is nonzero; 〈|V 0
k′k|2〉dis = niV

2
0 where ni is the impurity

concentration. This deviation from white noise disorder in our model is quantified

by V1 6= 0 and is necessary to capture part of the skew scattering contribution to the

anomalous Hall effect.

3. Self energy

Although the disorder-free Green’s functions are simple in the basis we have chosen,

the disorder matrix of the Hamiltonian now contains non-zero off-diagonal matrix

elements. We first look at interband elements of the disorder which lead to a finite

life time for the quasiparticles and a renormalization of the velocity vertex. This type

of calculation allows us to write the self energy as:

ΣR =
∑

k′

V ++
kk′ G

R+V ++
k′k (4.17)

where the bare Green’s function is given by:

GR+
0 =

|u+
k 〉〈u+

k

E − E+
k ± i0+

(4.18)
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and the renormalization produces:

GR+ =
|u+

k 〉〈u
+
k

E − E+
k + i(2τ+)−1

(4.19)

where

1

τ+
= −2Im(ΣR) = 2π

∫
d2k′

(2π)2
|V ++

k′k |2δ(E − E+
k′). (4.20)

The self energy can be rewritten as:

ΣR = −i(Γσ0 + Γzσz) = − i

4
niV

2
0

(
(ν+ + ν−)σ0 − h

[
ν+

λ+

− ν−
λ−

]
σz

)
, (4.21)

where ν± is related to the density of states at the Fermi levels of the two subbands

ν± = k

∣∣∣∣
dEk±

dk

∣∣∣∣
−1

=
mλ±√

λ2
F + (α2m)2

, (4.22)

with

λ± =
√
h2 + α2k2

± =
√
λ2

F + (α2m)2 ∓ α2m, (4.23)

where λF =
√
h2 + 2α2mεF , and

k± =

√
2m

(
εF + α2m∓

√
λ2

F + (α2m)2

)
(4.24)

are the Fermi momenta of the two subbands.

Including the self energy, the impurity averaged Green’s function becomes:

GR =

(
ω − k2

2m
+ iΓ

)
σ0 + αkyσx − αkxσy − (h+ iΓz)σz

(
ω − k2

2m
+ iΓ

)2 − (h+ iΓz)2 − α2k2

= GR
0 σ0 +GR

x σx +GR
y σy +GR

z σz . (4.25)

By comparing this expression with Eq. (4.13) one observes that the impurity averaged

Green’s function can be obtained from the Greens function of the clean system by
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the following replacements:

ω → ω + iΓ , h→ h+ iΓz . (4.26)

In the limit of small Γz one can therefore expand

λk →
√

(h+ iΓz)2 + α2k2 ≈ λk

(
1 + i

hΓz

λ2
k

)
. (4.27)

Using this approximation, and the following definitions,

GR
± =

1

ω − Ek± + iΓ±
(4.28)

and

Γ± = Γ ∓ Γz
h

λ±
(4.29)

the impurity averaged Green’s function can also be written as

GR
0 =

1

2
(GR

+ +GR
−) (4.30)

GR
x = sin φ G̃R

x =
1

2

αkyλk

λ2
k + iΓzh

(GR
+ −GR

−)

GR
y = cos φ G̃R

y = −1

2

αkxλk

λ2
k + iΓzh

(GR
+ −GR

−)

GR
z = −1

2

λk(h+ iΓz)

λ2
k + iΓzh

(GR
+ −GR

−).

4. General expression for the anomalous Hall conductivity

The fully quantum mechanical calculation for the conductivity is preformed using

the linear response formalism of the Kubo formula. We use the approach that is

suitable for the dc conductivity (no ω → 0 limit to worry about once the calculation

is performed). The starting point is the Kubo-Streda formula at T = 0. According
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to the Kubo-Streda formalism [51], the off-diagonal conductivity can be written as

σyx = σI(a)
yx + σI(b)

yx + σII
yx (4.31)

where

σI(a)
yx =

e2

2πV
Tr
〈
vyG

R(εF )vxG
A(εF )

〉
, (4.32)

σI(b)
yx = − e2

4πV
Tr
〈
vyG

R(εF )vxG
R(εF ) + vyG

A(εF )vxG
A(εF )

〉
, (4.33)

σII
yx =

e2

4πV

∫ ∞

−∞
dεf(ε)Tr

〈
vyG

R(ε)vx
∂GR(ε)

∂ε
− vy

∂GR(ε)

∂ε
vxG

R(ε)

−vyG
A(ε)vx

∂GA(ε)

∂ε
+ vy

∂GA(ε)

∂ε
vxG

A(ε)

〉
. (4.34)

Here, σI results from the electrons at the Fermi surface, whereas σII denotes the

contribution of all states of the Fermi sea. For σI(b) and σII , it is sufficient to cal-

culate the bare bubble contribution in the weak scattering limit [30] because vertex

corrections are of higher order in the scattering rate Γ. Substituting in the Green’s

function of Eq. (4.30) and using the velocity vertices

vx =
kx

m
σ0 − ασy , vy =

ky

m
σ0 + ασx (4.35)

one finds that σI(b) vanishes

σI(b)
yx =

e2

4π

∫
d2k

(2π)2

(
iα2GR

0 G
R
z − iα2GR

z G
R
0 + iα2GA

0 G
A
z − iα2GA

z G
A
0

)
= 0. (4.36)

The bare contribution of σII in the clean limit, i.e., for Γ+ = Γ− = 0+ can be

calculated by integration (see Appendix A) and yields

σII
yx =

e2

4π

(
1− h√

h2 + 2α2mεF + (α2m)2

)
Θ(h− εF ) (4.37)
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Fig. 8. Diagrammatic representation of the contributions to the conductivity. (a) the

bare bubble diagram, representing Eq. 4.39, (b) the ladder vertex corrections,

representing Eq. (4.44), with the expression on the right being given by Eq.

(4.40), and (c) the skew scattering contribution, representing Eq. (4.47).

where ∂G
R/A
± /∂ε = −(G

R/A
± )2 has been used. Including the real scattering rates Γ+

and Γ− does not lead to qualitatively different results but mainly causes a slight

smearing. Thus we consider it as sufficient to focus on the clean limit contribution of

σII .

For σI(a), vertex corrections can be of similar magnitude as the bare bubble and

thus have to be considered carefully. In the weak scattering limit, contributions of

higher order impurity scattering vertices are small leaving only ladder type vertex cor-

rections and the V 3
1 /(niV

4
0 ) skew scattering contribution as the important terms [50].
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Thus, we decompose σI(a) in the following way:

σI(a)
yx = σI(a),b

yx + σI(a),l
yx + σI(a),s

yx (4.38)

where σ
I(a),b
yx is the bare bubble contribution (Fig. 8(a)), σ

I(a),l
yx the ladder vertex

corrections (Fig. 8(b)), and σ
I(a),s
yx the skew-scattering contribution (Fig. 8(c)). With

respect to the skew-scattering contribution we have shown in the previous chapter [50]

that only the diagrams with a single third order vertex (see Fig. 8(c)) contribute to

order V 3
1 /(niV

4
0 ). In this diagram both vertices have to be renormalized by ladder

vertex corrections.

a. Bare bubble

The calculation of the bare bubble contribution proceeds as follows:

σI(a),b
yx =

e2

2π

∫ ∫
dkkdφ

(2π)2
Tr
[
vyG

R(εF )vxG
A(εF )

]

= 2iα

∫
dkk

2π

(
k

m
(G̃R

y G
A
z −GR

z G̃
A
y ) − α(GR

0 G
A
z −GR

z G
A
0 )

)

= 2iα(2I3 − αI2) (4.39)

where G̃
R/A
y are defined in Eq. (4.30) and each Ii represents the following integrals:

I1 =

∫
dk

2π
k
(
GR

0 G
A
0 −GR

z G
A
z

)
≈ 1

8

[(
1 − h2

λ2
+

)
ν+

Γ+
+

(
1 − h2

λ2
−

)
ν−
Γ−

]
,

I2 =

∫
dk

2π
k
(
GR

0 G
A
z −GR

z G
A
0

)
≈ − i

4

[
ν+h

λ2
+

+
ν−h

λ2
−

− Γz

Γ+

ν+α
2k2

+

λ3
+

+
Γz

Γ−

ν−α
2k2

−

λ3
−

]
,

I3 =

∫
dk

2π

k2

2m

(
G̃R

y G
A
z −GR

z G̃
A
y

)
≈ − i

4
αΓz

[
ν+

Γ+λ+

(
εF
λ+

− 1

)
+

ν−
Γ−λ−

(
εF
λ−

+ 1

)]
,

I4 =

∫
dk

2π

k2

2m

(
GR

0 G̃
A
y + G̃R

y G
A
0

)
≈ −1

4
α

[
εF

(
ν+

Γ+λ+
− ν−

Γ−λ−

)
−
(
ν+

Γ+
+
ν−
Γ−

)]
.

The explicit evaluation of integrals I1, I2, I3 and I4 can be found in Appendix B.
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b. Ladder diagrams

For the ladder terms σ
I(a),l
yx , we first need to sum the vertex corrections in front of

the vx vertex as indicated in Fig. 8(b). Starting from the momentum integrated bare

velocity vertex, the expression corresponding to Fig. 8(b) is:

∫ ∫
dkkdφ

(2π)2
GR(εF )vxG

A(εF ) = γxσx + γyσy, (4.40)

with

γx = i(I3 − αI2) , γy = I4 − αI1 (4.41)

one finds for the renormalized vertex

Γvx = Γxσx + Γyσy

= γxσx + γyσy + niV
2
0

∫ ∫
dkkdφ

(2π)2
GR(εF )(γxσx + γyσy)G

A(εF )

= γxσx + γyσy + niV
2
0 ((I1Γx + iI2Γy)σx + (I1Γy − iI2Γx)σy) (4.42)

and thus



Γx

Γy


 =

1

(1 − niV 2
0 I1)

2 − (niV 2
0 I2)

2




1 − niV
2
0 I1 iniV

2
0 I2

−iniV
2
0 I2 1 − niV

2
0 I1






γx

γy


 .(4.43)

The complete expression for the ladder diagrams are given by

σI(a),l
yx =

e2

2π

∫ ∫
dkkdφ

(2π)2
Tr[GA(εF )vyG

R(εF )(Γxσx+Γyσy)] = − e2

2π
2(γyΓx + γxΓy)

= −e
2

π

niV
2
0 (2γxγy(1 − niV

2
0 I1) + iniV

2
0 I2(γ

2
y−γ2

x))

(1 − niV 2
0 I1)

2 − (niV 2
0 I2)

2
. (4.44)

In the weak scattering limit the above reduces to

σI(a),l
yx = −e

2

π

niV
2
0

(
2γxγy(1−niV

2
0 I1) + iniV

2
0 I2γ

2
y

)

(1 − niV 2
0 I1)

2
. (4.45)
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c. Skew scattering

For skew-scattering we consider only diagrams with a single third order impurity

vertex and both external current vertices renormalized by ladder vertex corrections

as indicated in Fig. 8(c). In analogy to the renormalized vx vertex in Eq. (4.42), also

the renormalized vy-vertex can be calculated and expressed via Γx and Γy as

Γvy = −Γyσx − Γxσy . (4.46)

Using these expressions the skew scattering diagram of Fig. 8(c) yields

σI(a),s
yx =

e2

2π

niV
3
1

2π

∫
dkkTr[ΓvyG

R(εF )Γvx + ΓvyΓvxG
A(εF )]

=
e2

2π
i
V 3

1

V 2
0

Tr[−Γvy(Γσ0 + Γzσz)Γvx + ΓvyΓvx(Γσ0 + Γzσz)]

=
e2

2π
i
V 3

1

V 2
0

ΓzTr[(Γyσx + Γxσy)(σz(Γxσx + Γyσy) − (Γxσx + Γyσy)σz)]

=
e2

2π

V 3
1

V 2
0

4Γz(Γ
2
y − Γ2

x). (4.47)

From this expression it is evident that the skew scattering contribution vanishes

as soon as Γz = 0 implying that the lifetimes in both bands become equal since

Γ− − Γ+ = Γz(h/λ− + h/λ+) vanishes for Γz = 0. Plugging in Γx and Γy from

Eq. (4.43) one finds [50] in the weak scattering limit, i.e., neglecting higher order

impurity terms:

σI(a),s
yx =

e2

2π

4V 3
1 Γzγ

2
y

V 2
0 (1 − niV 2

0 I1)
2

(4.48)

=
e2

2π

V 3
1

niV 4
0

hλ−α
2k4

−

ν−(3h2 + λ2
−)2

. (4.49)

When considering the weak scattering limit of the full vertex shown in Fig. 9, it

yields exactly the same result as Eq. (4.48), i.e., to order V 3
1 /(niV

4
0 ) it reduces to the

elementary skew scattering diagram depicted in Fig. 8(c).
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vx vx vxvxvx
= + + +

with = +

Fig. 9. Diagrammatic representation of the full vertex including ladder and skew scat-

tering diagrams.

C. Simple limits

1. Both subbands occupied

In the situation that both subbands are partially occupied, i.e., εF > h, all contribu-

tions to the anomalous Hall conductivity vanish. For σII
yx, this is immediately evident

from Eq. (4.37). For the skew scattering contribution, which is proportional to Γz

(see Eq. (4.48)), one observes that σ
I(a),s
yx = 0 because Γz = 0 (see Eq. (4.21)) due to

ν+/λ+ − ν−/λ− = 0 (see Eq. (4.22)).

With respect to the bare bubble and ladder diagrams, we will show in the follow-

ing that those contributions cancel each other. For εF > h the integrals in Eq. (4.40)

simplify to

I1 =
α2m2εF
2λ2

F Γ
, I2 = −ihm

2λ2
F

, I3 = 0 , I4 =
αm

2Γ
(4.50)

and the bare momentum integrated vertices in Eq. (4.41) are

niV
2
0 γx = −αhΓ

λ2
F

, niV
2
0 γy = α

(
1 − α2mεF

λ2
F

)
. (4.51)
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This gives for the bare bubble in Eq. (4.39)

σI(a),b
yx = − e2

2π

α2mh

λ2
F

. (4.52)

For the ladder diagrams we need also

1 − niV
2
0 I1 =

niV
2
0 γy

α
, −iniV

2
0 I2 =

niV
2
0 γx

α
, (4.53)

yielding

σI(a),l
yx = −e

2

π

α

niV 2
0

2γxγ
2
y − γxγ

2
y + γ3

x

γ2
x + γ2

y

= −e
2

π

αγx

niV 2
0

=
e2

2π

α2mh

λ2
F

(4.54)

and thus

σI(a),b
yx + σI(a),l

yx = 0 , (4.55)

i.e., the contribution of the bare bubble and the ladder diagrams cancel mutually.

2. Only majority band occupied

In the opposite situation, where only the majority band is partially occupied, we have

ν+ = 0 and therefore Γz 6= 0. In this case, all terms contribute to the anomalous Hall

conductivity. In the following, we restrict our analysis to Fermi energies εF > −h,

i.e., we disregard the region of very small Fermi energies, where the valley structure

of the majority band becomes important (see Fig. 7(b)) and discuss the results in two

simple limits: (1) small spin orbit interaction, αkF � h, and (2) small magnetization,

h� αkF .

In the limit of small spin-orbit interaction, αkF � h, the sum of bare bubble

and ladder vertex corrections becomes

σI(a),b
yx + σI(a),l

yx =
e2

2π

(αkF )2

16hεF

(
3
εF
h

+ 1
) (

−εF
h

+ 1
)

(4.56)
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the contribution from the states of the full Fermi sea

σII
yx = − e2

4π

(αkF )2

2h2
, (4.57)

and the skew-scattering term

σI(a),s
yx =

e2

2π

(αkF )2

8εFniV0

V 3
1

V 3
0

(εF + h)2

h2
. (4.58)

In the opposite limit of small exchange field h � αkF , considering first a spin-

orbit interaction still smaller than the Fermi energy αkF � εF , we find for the sum

of bare bubble and ladder vertex corrections

σI(a),b
yx + σI(a),l

yx = − e2

2π

3hεF
(αkF )2

, (4.59)

for the contribution from the states of the full Fermi sea

σII
yx =

e2

4π

(
1 − h

αkF

)
, (4.60)

and for the skew scattering term

σI(a),s
yx =

e2

2π

V 3
1

V 3
0

2hεF
niV0αkF

. (4.61)

In the same limit where the exchange field is small, h� αkF , but the spin-orbit

interaction is now larger than the Fermi energy, αkF � εF , we find for the sum of

bare bubble and ladder vertex corrections

σI(a),b
yx + σI(a),l

yx = − e2

2π

2hε3F
(αkF )4

, (4.62)

for the contribution from the states of the full Fermi sea

σII
yx =

e2

4π

(
1 − 2hεF

(αkF )2

)
, (4.63)
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and the for skew scattering term

σI(a),s
yx =

e2

2π

V 3
1

V 3
0

h

niV0

. (4.64)

D. Discussion

We now discuss the full evaluation of the anomalous Hall conductivity in the limit of

small spin orbit interaction αkF � h and in the opposite limit of strong spin orbit

interaction αkF � h, εF . For the following discussion we will express all quantities

in terms of the exchange field h, which we define as h = 1. Furthermore, we will set

m = 1, we choose V1 = V0 and use an impurity concentration of ni = 0.1.

In Fig. 10 we show the anomalous Hall conductivity for a small spin orbit inter-

action of αkF /h = 0.2 as a function of the Fermi energy εF/h and the scattering rate

1/τ = niV
2
0 m for an impurity concentration of ni = 0.1. Figure 10(a) shows the total

anomalous Hall conductivity, i.e., the sum of skew scattering (shown in Fig. 10(b)),

of bare bubble and ladder diagrams (shown in Fig. 10(c)) and of the contribution

from the whole Fermi sea (Fig. 10(d)). All contributions to the total conductiv-

ity vanish for εF > h, i.e., when both subbands are occupied in agreement with the

analysis in Sec. 1. Furthermore, we observe that not only σII
yx but also the bare bub-

ble and ladder vertex corrections σ
I(a),b
yx + σ

I(a),l
yx (see Eq. (4.56)) are independent of

impurity scattering. Both contributions are small: σII
yx contains a small prefactor of

(αkF /h)
2 (see Eq. (4.57)) and σ

I(a),b
yx + σ

I(a),l
yx a small prefactor of (αkF )2/(hεF ) (see

Eq. (4.56)). The skew-scattering contribution, on the other hand, has a prefactor of

αkF /(niV0) which diverges for V0 → 0, i.e, 1/τ → 0 (see Eq. (4.58)), and therefore

overcompensates the small prefactor of αkF /εF (see Eq. (4.58)) when the impurity

potentials V0 becomes small enough. Thus, for the parameters chosen in Fig. 10,

the skew-scattering term outweighs the other contributions by orders of magnitude
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Fig. 10. The anomalous Hall conductivity in the limit of small spin-orbit coupling.

Assuming that αkF /h = 0.2 and an impurity concentration of ni = 0.1 the

anomalous Hall conductivity is plotted as a function of εF/h (from right

to left) and as a function of 1/τ = nimV
2
0 in units of h (from back to

front). (a) Total anomalous Hall conductivity (Eq. (4.31)), (b) skew scatter-

ing contribution (Eq. (4.48)), (c) bare bubble plus ladder vertex corrections

(Eq. (4.39)+Eq. (4.44)), (d) σII (Eq. (4.37)). All conductivities are plotted

in units of e2.

and therefore the total anomalous Hall conductivity is almost identical to the skew

scattering term. The anomalous Hall conductivity increases quadratically with εF/h

(see Eq. (4.58)) and then vanishes suddenly for εF > h.

Figure 11 displays the anomalous Hall conductivity in a similar way as Fig. 10

only for a large spin orbit interaction of αkF /h = 10. Again, σ
I(a),b
yx +σ

I(a),l
yx turns out

to be independent of the impurity parameters and even smaller in magnitude as before

because now it is suppressed by a small prefactor of (hε3F )/(αkF )4 (see Eq. (4.62)).
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Fig. 11. The anomalous Hall conductivity in the limit of large spin-orbit coupling.

Assuming that αkF /h = 10.0 and an impurity concentration of ni = 0.1,

the anomalous Hall conductivity is plotted as a function of εF/h (from right

to left) and as a function of 1/τ = nimV
2
0 in units of h (from back to

front): (a) total anomalous Hall conductivity (Eq. (4.31)), (b) skew scatter-

ing contribution (Eq. (4.48)), (c) bare bubble plus ladder vertex corrections

(Eq. (4.39)+Eq. (4.44)), and (d) σII (Eq. (4.37)). All conductivities are plot-

ted in units of e2.

Analogously to the limit of small spin orbit interaction, the total anomalous Hall con-

ductivity is dominated by the skew-scattering contribution, which contains no small

prefactor and, due to the factor of h/(niV0), grows rapidly for small impurity poten-

tials V0 → 0, i.e., 1/τ → 0 (see Eq. (4.64)). In the limit of large spin-orbit interaction,

αkF � εF , the skew-scattering and thus the total anomalous Hall conductivity is in-

dependent of the Fermi energy εF for εF < h (see Eq. (4.64)) and then abruptly drops

to zero for εF > h.
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E. Conclusions

In summary, we have investigated the anomalous Hall conductivity in a spin-polarized

two-dimensional electron gas with Rashba spin-orbit interaction in the presence of

pointlike potential impurities. Our calculations have been performed within diagram-

matic perturbation theory based on the Kubo-Streda formula, an approach which

has previously been shown to yield equivalent results to the semiclassical Boltzmann

treatment [30, 50].

Comparing our results with previous calculations, we have been able to sort

out contradictions existing in the literature. We have found that within the model

Hamiltonian considered, all contributions to the anomalous Hall conductivity vanish

as soon as the minority band becomes partially filled, i.e., as soon as the Fermi

energy becomes larger than the internal Zeeman field. For smaller Fermi energies,

all contributions are finite with σII
yx, the contribution from all states of the Fermi

sea, being the smallest term at least in the limits of weak and of strong spin orbit

interaction. The vertex corrections, which represent disorder contributions, can be

of similar magnitude as the intrinsic contribution and turn out to be independent

of the impurity concentration and impurity potential at least in the limits of small

and of strong spin orbit interaction. In the weak scattering limit, the dominant

contribution originates from skew-scattering; due to its 1/(niV0)-dependence, skew-

scattering outweighs all other terms. Moreover, the intrinsic and the side jump terms

contain higher orders of small prefactors than the skew scattering contribution.
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CHAPTER V

MESOSCOPIC RINGS*

In recent decades, advances in technology have allowed the fabrication of electronic

components of mesoscopic dimensions. Given the nanometer spatial confinement

of the charge carriers, some of the important features exhibited are due entirely to

quantum mechanical effects. Notwithstanding the future applications that will exploit

such effects, several areas of fundamental physics will benefit from the study of such

devices [53].

One such area is the study of geometric phases [54]. When a quantum particle

undergoes cyclic evolution motion in the system’s parameter space, it acquires a

geometric phase that will strongly influence the transport properties of the system.

Pancharatnam [55], when studying polarized light in crystals, found from interference

experiments that the path that the light travels (or the sequence of measurements

performed during that path) was responsible for an additional phase component. In

the same manner, the path taken by a beam of electric charges is important when in

the presence of electromagnetic vector potentials. Even in the case of the potential not

producing a field that results in a force acting on the particles, the particles may gain a

quantum phase that depends on the path traversed. Examples of such phase gains are

the Aharonov-Bohm (AB) effect and its relativistic cousin the Aharonov-Casher (AC)

effect. In the AB effect the particle gains a phase as it moves in a path enclosing a

magnetic flux [56]. In the AC effect the phase acquired follows readily from spin-orbit

*Part of this chapter is reprinted with permission from “Aharonov-Casher and
spin Hall effects in mesoscopic ring structures with strong spin-orbit interaction”
by M. F. Borunda, Xin Liu, A. A. Kovalev, Xiong-Jun Liu, T. Jungwirth, and Jairo
Sinova, 2008. Physical Review B in press, c©(2008) by The American Physical Society.
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(SO) coupling instead of a magnetic field [57]. The generalized explanation to these

phase dependent phenomena in adiabatically and non-adiabatically evolving quantum

systems was given by Berry [58] and by Aharonov and Anandan [59], respectively.

These geometric phases can be studied most readily in mesoscopic ring structures.

Studies on mesoscopic rings with inhomogeneous magnetic fields showed analogies

between geometric phases due to SO interaction and the phases acquired by moving

electrons in an effective inhomogeneous magnetic field with opposite sign for each

spin [60]. At the same time, it was found that SO interaction shifts the AB oscillations

and adds destructive interference to the conducting rings [61].

Applications arising from tuning the phase of the carriers have been widely dis-

cussed [62, 63, 64, 65, 66, 67], starting with the proposal by Nitta et. al. of an

spin-interference device to modulate the current flow [62]. The proposed device con-

sists of a paramagnetic electrode lead injecting charge into a ring section fitted with a

gate and another lead that would extract the charge carriers. In narrow-gap semicon-

ductor systems (electron or heavy hole) the SO coupling strength can be controlled by

applying a gate voltage [68]. Thus, the phase difference acquired in each of the arms

of the ring and the ensuing interference effect can be modified by the gate voltage

which results in periodic oscillations of the conductance [62].

Recent experiments have confirmed that a gate bias modifies the oscillations in

the magneto-conductance curves which demonstrates gate-controlled changes in the

geometric phase [69, 70, 71]. The magneto-conductance oscillations as a function of

both magnetic field and gate voltage that controls the SO interaction strength in

HgTe ring structures have been studied by König and coworkers [70]. Their mea-

surements exhibit a nonmonotonic phase change as a function of the gate voltage

and establish the connection between this observation and the AC effect by finding

a quantitative agreement between their experimental results and Landauer-Büttiker
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numerical calculations of a multichannel ring with Rashba SO interaction [70]. Koga

et. al. measured the sheet conductivity of square loops arrays observing a gate volt-

age mechanism influencing the spin interference of electrons [69]. Habib et. al. also

measured resistance oscillations in a two-dimensional hole ring structure [71]. The

oscillations depend on a front gate voltage but are not completely attributed to SO

splitting due to asymmetry in the structure and the low density of the system [71].

Similarly AB oscillations in the magneto-conductance have been measured in p-type

ring structures lacking a gate to control the SO splitting but in systems with consid-

erable SO splitting (∆SO/EF ∼ 0.3) where the SO induced field is reported to be as

strong as Beff = 0.25T [72].

In the theoretical front the modulation of the electric current driven by quantum

interference effects in 1D coherent electron systems was calculated analytically and

compared to numerical simulations of a 2D ring in which only one mode is conduct-

ing [63, 64]. Both calculations confirmed that the spin-dependent transport results in

strong quasiperiodic modulations to the conductivity. Molnár and coworkers calcu-

lated the conductance as a function of the Fermi wave vector of the incident electrons

and the SO coupling in the mesoscopic rings [64]. Souma and Nikolić numerically com-

pared the conductance modulation of the mesoscopic rings as more channels open for

conduction and they found that the modulation pattern remains but is affected as

more modes become available. Moreover, they concluded that the spin-interference of

the channels is not cumulative, given that for single-channel devices the conductivity

can be null at certain values of the SO interaction and the same does not hold in

the multi-channel devices [65]. In addition, Souma and Nikolić calculated the spin-

Hall conductance of ring structures and found that the spin Hall conductance is also

modulated by the SO interaction [66]. In their proposed four-probe ring, a pure spin

current is induced in the transverse probes when unpolarized current flows in the lon-
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gitudinal probes. A recent calculation also considers the effect of an inhomogeneous

SO coupling in the 2DEG ring structures [67]. By mapping the SO interaction to a

spin dependent magnetic field, Tserkovnyak and Brataas found that in the weak SO

regime quantum-interference effects can be stronger due to the inhomogeneity of the

field [67].

In this chapter, we revisit the problem of transport characteristics of ring struc-

tures in electron and hole doped system. In section A we present Hamiltonians that

describe electron and heavy-hole systems in thin ring geometries and outline the two

methods used to calculate their transport properties. In section B we confirm numer-

ically analytical results [73] for a single channel ring embedded in a narrow quantum

well. The first part of the section focuses on the consequences for the conductance

of the change in the Hamiltonian from wave-vector k-linear spin splitting term com-

pared to a k-cubic term. In the second part of the section we explain the results and

the dependence on the carrier concentration. In the last part of section B we present

the calculation of the spin Hall conductivity in a four probe ring geometry for heavy-

hole carriers and compare it to the conductivity obtained for electrons. Section C

explores numerically the effect of inhomogeneous SO in mesoscopic rings. We study

how the AC effect is affected by having a region with no SO coupling within the ring

and show increases in the strength of the signals obtained from the conductivities.

In this section we also demonstrate that devices with inhomogeneous SO interaction

exhibit an electrically controlled spin-flipping mechanism not present in the case of

homogeneous SO coupling. In section D we summarize the results and present our

conclusions.
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Fig. 12. Semiconductor quantum well patterned as a ring. Semiconductor quantum

well patterned as a ring of radius r0 in the presence of a magnetic field B0

and of spin-orbit coupling. An electron(hole) spin traveling around the ring

acquires phase due to the sum of the magnetic fields acting on it. The effective

field, Beff , is given by the yellow(o markings) arrow, the applied out-of-plane

magnetic field, B0, is represented by the gray(x markings) arrow, and the

momentum dependent in-plane magnetic field due to spin-orbit interaction,

BSO, seen in green(• markings) arrow. The orientation of the spin-orbit field

changes at different rates depending on the carriers, due to the holes (solid

arrow) having a cubic in momentum spin splitting and the electrons (dashed

arrow) having a spin splitting that depends linearly on the momentum.

A. Model Hamiltonians and calculation methods

1. Hamiltonians

In two-dimensional systems the effective mass Hamiltonian in the presence of both

SO coupling and a perpendicular magnetic field, Bz, is:

H =
Π2

2m
+Hz +Hconf +HSO (5.1)
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where Π = p + (e/c)A, Hz = 1
2
gµgσzBz, and the electrostatic confining potential

is given by Hconf . The SO terms in the single particle Hamiltonian is given by

He
SO = α1 (σ̂ ×Π)z /~ for electrons and Hhh

SO = α3

(
σ̂+Π3

− − σ−Π3
+

)
/~3 for heavy

holes. We limit our study to Rashba type SO coupling in narrow quantum wells,

i.e. the structure inversion asymmetry is responsible for SO. The strength of the

spin-orbit interaction is given by αn. The system is illustrated in Fig. 12.

As outlined by Meijer et al. [74], to obtain the effective 1D Hamiltonian and due

to the subtleties introduced by the SO interactions, it does not suffice to discard the

derivatives in the radial direction and set r = r0 in the 2D Hamiltonian. The single

particle 1D Hamiltonian is found by assuming that the confining potential of the 2D

system is such that the electron wave functions are confined to a 1D ring [74]:

He(ϕ,Φ) =
(~ ∂̃ϕ)2

2m∗r2
0

+Hz −
~2Qe

2m∗r2
0

(
σ̂1,r∂̃ϕ − i

2
σ̂1,ϕ

)
(5.2)

where Qe ≡ 2m∗α1r0/~2 characterized the strength of the spin-orbit coupling splitting

in the thin ring limit relative to the angular leading term. The same process was used

in finding the effective 1D heavy-hole Hamiltonian [73]:

Hhh(ϕ,Φ) =
(~ ∂̃ϕ)2

2m∗r2
0

+
α3

r3
0

σ̂3,r

(
(∂̃ϕ)3 + ∂̃ϕ

[
3r3

0

w2
− 7

2

])

+
iα3

2r3
0

σ̂3,ϕ

(
3r3

0

w2
+ 1 + 3(∂̃ϕ)2

)
+Hz (5.3)

with r0 being the radius of the ring, w is the half width of the ring channel, m∗

the effective particle mass, ϕ the angular coordinate, ∂̃ϕ = i ∂
∂ϕ

+ Φ, the Pauli spin

operators (σ̂x and σ̂y) assume their usual values. To allow a cleaner notation, we

use the following generalization of the Pauli spin operators in cylindrical coordinates:

σ̂n,r = cos(nϕ) σ̂x+sin(nϕ) σ̂y and σ̂n,ϕ = cos(nϕ) σ̂y−sin(nϕ) σ̂x. The magnetic field

is included by its corresponding magnetic flux, Φ = πr2
0B/Φ0, where Φ0 = hc/e is the
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magnetic flux quantum. We model the heavy hole character of the band in that the

SO interaction is cubic in momentum and the 2D Hamiltonian contains terms with

rn and nth derivatives with respect to r, n = 1, 2, 3. The projection of the lowest

radial solution of the 2D Hamiltonian into a 1D Hamiltonian has as a consequence

that in the heavy-hole calculation there are terms that depend on the width of the

channel. As a contrast, in the electron system there are only terms dependent on

the first power of r and the first derivatives with respect to r, thus the desired 1D

Hamiltonian does not have the dependence on the width. In order to have a fully 1D

systems the radius of the ring has to be larger than the width of the arms. In the

electron systems the limit w = 0 can be taken; this is not possible in the heavy-hole

systems. Nevertheless, we can obtain a simpler Hamiltonian than the one in Eq. (5.3)

by assuming that the width of the channel is of the order of the Fermi wavelength

(kfw . 1) [73]:

Hhh(ϕ,Φ) =
(~ ∂̃ϕ)2

2m∗r2
0

+Hz +
~2Qhh

2m∗r2
0

(
σ̂3,r∂̃ϕ +

3i

2
σ̂3,ϕ

)
(5.4)

where Qhh ≡ 6α3m
∗r0/(~2w2) characterized the strength of the spin-orbit coupling

splitting in the thin ring limit relative to the angular leading term and controls the

precessions angle over the circumference of the ring. If the lateral confinement is

not very strong leading to thick rings (the width of the channel is comparable to

the Fermi wavelength), then we are not truly in the lowest radial mode. Although

from Eq. (5.3) it is possible to write a Hamiltonian where the terms w−2 are not

dominant, this will not be realistic unless those higher radial modes are taken into

account. Unfortunately, current experiments have not reached the limit of single

channel rings. We also consider structures where the SO interaction varies along the
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azimuthal direction. Then an additional term appears in the Hamiltonian:

He(ϕ,Φ) = − ~
2m∗r2

0

∂̃2
ϕ − i

r0
α1(ϕ)

(
σ̂1,r∂̃ϕ +

1

2
σ̂1,ϕ

)

−iσ̂1,r

2r0

∂α1(ϕ)

∂ϕ
, (5.5)

Our calculations do not consider the mixing of heavy-hole and light-hole states that is

induced by the confinement. This neglected coupling has been shown to be responsible

for an additional energy dependent non-adiabatic phase [75].

2. Landauer-Büttiker formalism

Numerical modeling of the rings is performed using the Landauer-Büttiker formal-

ism [65, 76, 77]. We assume that the ring is attached to semi-infinite paramagnetic

leads that act as reservoirs for the quasiparticles. The procedure is as follows. First,

the 1D Hamiltonians of the ring structure are discretized in a tight-binding model [78],

and used to find the retarded/advanced Green’s function:

GR/A(E) = (E −H −ΣR/A)−1 (5.6)

The last term is the self-energy (ΣR/A). It holds the connection between the structure

and the semi-infinite leads. ΣR =
∑

p ΣR
p involves a sum over all leads because we

are assuming that all the leads are independent and thus their effects are additive.

The description of the probes attached to our sample is made by solving the Green’s

function of a semi-infinite strip analytically. To do so, we need to calculate the

self-energy terms which involves solving for the wave functions of the quasiparticles

flowing from each lead into and out of the sample. With both the Green’s functions

and the self-energies at hand, we can write the transmission function:

Tpq = Tr
[
ΓpG

RΓqG
A
]

(5.7)
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where

Γp = i
[
ΣR

p − ΣA
p

]
(5.8)

The Green’s function describes the dynamics of the charge carrier in the conductor

taking the leads into account where Γp represents the strength of the coupling of

the leads to the sample. The total current flowing in each lead is obtained from the

Landauer-Büttiker formula:[76, 77]

Ip =
e2

h

∑

q 6=p

Tpq(Vp − Vq) = I↑p + I↓p (5.9)

The spin current can be defined as:[79, 80]

Ispin
p,σ =

~
2e

(I↑p − I↓p) =
e

4π

∑

q 6=p,σ′

T σσ′

pq (Vp − Vq) (5.10)

where σ, σ′ are the spin indices and the transmission function T σσ′
pq gives us the prob-

ability of a particle with spin σ′ injected in lead q is extracted from lead p with spin

σ. In the four probe structure current is injected in the right lead and extracted in

the left lead. The transverse leads (top and bottom) act as voltage probes. Thus, the

longitudinal and spin Hall conductance are [80]:

GL =
IR

VL − VR

(5.11)

GsH =
Ispin
T,↑ − Ispin

T,↓

VL − VR
(5.12)

3. Boundary condition tight-binding model

In a ring system, the point where a lead and a ring subsection join can be considered

as a three-way junction, as illustrated in Fig. 13. In this section we show how this

method works in one dimensional structures but it can be easily extended to more

dimensions. We first find the boundary condition for a three-way junction by assum-
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Fig. 13. Tight-binding representation of a ring attached to two leads. The ring at-

tached to two leads can be modeled as two three-way junctions. Each of this

three-way junctions connects to one lead and the subsections corresponding

to each of the arm in the ring.

ing that the wave function used in the scattering S-matrix is also the eigenfunction of

the system. Generally, the lattice distance in the three leads are a1, a2, and a3, with

tn = ~2/2mnan and n = 1, 2, 3. The potential at the joint point, where the three leads

come together, is t0. Under this assumption, the eigenfunction and eigenenergy of

the electron in each lead can be obtained except at the joint point. Our aim is to find

the boundary condition that will combine the three eigenfunctions in the leads and

at the joint point to obtain the wave function for the whole system. Let us assume

that the three eigenfunction corresponding to the three leads are Ψ1,Ψ2 and Ψ3 and

the function at the joint point is Ψ(0). Thus, we have four equations:

(E − 2tn)Ψn(an) + tnΨn(2an) + tnΨ(0) = 0 (5.13)

(E − 2t0)Ψ(0) +
∑

i=1,2,3

tiΨi(ai) = 0 (5.14)

where n = 1, 2, 3 represents each of the leads. Since Ψn satisfies (E − 2tn)Ψn(an) −

tnΨn(2an) − tnΨn(0) = 0 and comparing this with Eq. (5.13), we obtain the first
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boundary condition:

Ψ1(0) = Ψ2(0) = Ψ3(0), (5.15)

which is equivalent to the condition that the wave function is continuous at the

boundary. As a result, Eq. (5.14) can be rewritten as

(E − (2t0 − t1 − t2 − t3))Ψ(0)

+t1(Ψ1(a1) − Ψ1(0)) + t2(Ψ2(a2) − Ψ2(0))

+t3(Ψ3(a3) − Ψ3(0)) = 0 (5.16)

and we see that Eq. (5.16) is equivalent with saying that the first derivative is con-

tinuous except for a δ function at the junction point [81].

Using these boundary conditions in the tight binding model, the S-matrix of a

three-way or multi-way junction can be calculated. It should be noted that the matrix

we directly calculate is the so called S’-matrix which is not unitary [77]. The relation

between the S-matrix and the S’-matrix can be given as

Smn = S ′
mn

√
vm

vn
, (5.17)

where vm,n is the velocity of the particle in them(n)-th lead. The ring system attached

to two leads can be considered as two three-way junctions each of which connects

to one lead. These two junction S-matrices can be combined using the boundary

conditions (Eqs. 5.13 and 5.14). With both S-matrices, the transmission function

can be calculated by combining S-matrices with the advantage that we are able to

see the contribution of each Feynman paths, as outlined in the book by Datta [77].

Having computed this S-matrix under proper boundary conditions, we can use it

recursively to compute the transmission probabilities in order to study the effects of
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Fig. 14. Interference effects seen in the conductivity of mesoscopic rings. Calculation

of the zero temperature conductance in a single-moded ring connected to

two leads based on the Landauer-Büttiker formula. The conductance in both

electron and heavy-hole systems is modulated as a function of the spin-orbit

coupling and the carrier concentration. In the left panel we present the result

for an electron system and in the right panel for a heavy-hole system; both

systems have an effective mass of m∗ = 0.031 m0.

the transparent lead approximation done in prior analytical works.

B. Effects due to the heavy-hole nature of the carriers

1. Aharonov-Casher effect

Approximate analytical forms for the conductance in ring structures have been found

for electrons [62, 63, 64] and heavy-hole systems [73]:

G =
e2

h

[
1 − cos

(
π
√

1 +Q2
e

)]
(5.18)

G =
e2

h

[
1 − cos

(
3π

√
1 +

Q2
hh

9

)]
(5.19)

The key approximation of the formulas above is that the coupling between the lead

and the ring is perfectly transparent, neglecting backscattering effects that may lead
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to resonances and other self-interference effects. Another assumption is that the

transport of the quasiparticles is just from one lead to the other, traveling in one

of the two arms only once, i.e. it does not take into account that the quasiparticles

could wind around the ring structure more than half the ring’s circumference. Eq.

(5.19) is derived under an the assumption of a thin channel ring (kFw . 1) [73].

In Figure 14 we show the contour plot of the zero temperature conductance in a

single moded rings as a function of both the electron density and the dimensionless

SO interaction strength using the full Landauer-Buttiker formalism. The left plot

corresponds to electrons traveling in the ring (uses the Hamiltonian in Eq. (5.2)),

and the right plot corresponds to the heavy-hole system (uses the Hamiltonian in

Eq. (5.4)). In this and all subsequent calculations we considered a ring of radius

r0 = 1µm, an effective mass m∗ = 0.031 m0, and starting from zero, we ramp up

the dimensionless parameter controlling the strength of the SO splitting energy to 8.

In the plots presented in Figure 14, we vary the carrier concentration from n2D =

1.873 × 1012cm−2 to n2D = 1.912 × 1012cm−2. These parameters correspond to the

system measured in Ref. [70]. Further, we have chosen the carrier concentration

assuming an infinite two-dimensional (2D) gas, the situation in the semi-infinite leads

which are the particle reservoirs. As is evident in Fig. 14, the character of the SO

coupling of the particles traversing the ring is of importance. As a function of the

dimensionless parameter Qe/Qhh the heavy holes start at a slower rate reaching the

same rate at higher values as the electron system. However, in experiments, where

these parameters are a function of the gate voltage, we speculate that the oscillations

as a function of gate voltage will likely be higher in the thin ring heavy hole system

since the effective spin-orbit coupling is enhance with respect to the bulk value due

to the confinement.

A comparison of the relative oscillation frequency in experiments, assuming a
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splitting proportional to the top gate voltage in most set-ups where spin-orbit coupling

can be tuned, would require a translation of the above figures to those parameters

together with an accounting of the rate of change of the carrier density with gate

voltage. For typical parameters, ignoring the carrier dependence on the oscillations,

same parameters for electrons give a slower frequency of oscillation in the conductance

as compared to the heavy-holes system when (kF . 1) [73].

Our calculation is in partial agreement with the analytical formulas in that the

conductance is modulated by the strength of the SO parameter and also exhibits, at

certain values of Q (but independent of the particle density, i.e. Fermi energy), a zero

conductance. As Souma and Nikolić [65] pointed out, these null values correspond

to the zeroes of Eq. (5.18) and in the heavy-hole case to zeroes of Eq. (5.19).

Similarly, the numerical results of Molnár and coworkers [64] found a dependence

of the conductance in the Fermi wave-vector. These conductance oscillations as a

function of the particle concentration not captured by the analytical treatment are

due the neglect of backscattering from the leads and related to resonance energies of

the rings as we show below.

Using a recursive S-matrix method we have performed calculations assuming the

boundary condition tight-binding model to study the effects of backscattering at the

leads and the validity of the transparent leads approximation. With this method

we are able to obtain the conductance for different paths taken by the particles.

In Fig. 15 we present contour plots of the conductance as a function of both the

electron density and the dimensionless SO interaction strength for the same electron

system as in Fig. 14 while increasing the number of allowed backscattering events.

In this calculations, one lead is used for injecting electrons and the other will allow

the electrons to exit the ring once they completed at most N scattering events from

that same lead. The transparent leads case corresponds to Fig. 15 (a), where no
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Fig. 15. Conductivity analysis based on the path taken by the charge carriers. Calcu-

lation based on the tight-binding model of the zero temperature conductance

in a single-moded ring connected to two leads using a recursive S-matrix

method. Each panel shows the conductance modulation as a function of

both the spin-orbit interaction and the carrier density of the electrons when

backscattering from the exit lead N times. N → ∞ corresponds to the full

calculation shown in Fig. 14.

backscattering is allowed in exact agreement with Eq. (5.18). If we allow for at most

a single scattering event at the right lead before exiting the structure while accounting

for all such possible paths, we obtain the contour plot in Fig. 15 (b). The continuous

structure now gives way to a conductance that depends on the carrier density and

it is further divided into periodic sub-structures. Each of these sub-structures shows

that as a function of the SO coupling the conductance has either one or two peaks,

depending on the carrier density. If the carrier concentration is chosen so that the

Fermi energy is in resonance with an eigenenergy of the discretized ring then there

is only one peak in the substructure and it happens at the same maximum value as

when the lead was transparent. When the carrier density is chosen so that the Fermi

energy is not very close to a value of the eigenvalues of the ring then the electron gets

backscattered once and as it travels around the ring the path taken and the same
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path but time-reversed are interfering with each other, similar to weak localization

corrections to the conductance [82]. The Qe = 0 result is also in agreement with

the results obtained by Lucignano et. al. [83] for AB rings where once they allowed

scattering at the leads, the Fourier spectrum of the magneto-conductance displays an

additional peak at double the fundamental frequency (2/Φ0).

The rest of the panels show the result of more backscattering events being al-

lowed. Finally, the periodic structures seen with this ”path” calculations get closer

to the structures found using the full Landauer-Büttiker calculation and these two

methods are the same in the limit where the number of allowed backscattering events

is taken to infinity. One thing we need to note is that in the heavy-hole calculation,

as Qhh is increased there is a small curvature followed by the sub-structures in the SO

coupling axis. The reason for that deviation is a numerical artifact. We have repeated

the calculation varying the number of lattice points used to represent the discretized

ring and as more points are used the sub-structures shift is reduced. This curvature

is apparent in previous numerical calculations [65] but not recognized as numerical

artifact. In our calculations we have chosen the carrier concentration such that the

Fermi energy of the system is close to the bottom of the band and hence model in

this way the continuous effective mass model appropriate for these semiconductor

systems.

2. Spin Hall effect

The proposal of intrinsic spin Hall effect [84] and the experimental observation of the

effect (both extrinsic and intrinsic) [39, 40] has generated a lot of interest in the semi-

conductor spintronics community. Numerical calculations based on the Landauer-

Büttiker formalism on quantum coherent ballistic rings have shown that the spin

Hall conductance exhibits quasi-periodic oscillations as a function of the Rashba SO
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Fig. 16. Interference effects seen in the spin Hall conductivity. Calculation of the

zero temperature spin-Hall and longitudinal conductance in four terminal ring

structure based on the Landauer-Büttiker formula. The spin-Hall conductance

(top panels) and longitudinal conductance (bottom panels) in electron and

heavy-hole systems is modulated as a function of the spin-orbit coupling and

carrier concentration. We present on the left the electron system where the

spin Hall conductivity has a maximum value of A = 0.72 × e/(8π) and the

longitudinal conductance has a maximum value of B = 1.2 × e2/h. In the

heavy-hole system, shown on the right, the maximum value of the spin Hall

conductivity is A = 1.0 × e/(8π) and the longitudinal conductance reaches a

maximum value of B = 1.7 × e2/h.

coupling [66]. The calculation found several interesting predictions including the pos-

sibility of generating a spin Hall current in a ring with two longitudinal probes that

inject/extract current and two transverse probes that would measure the voltage.

Although experimental realization of such four-probe rings could prove difficult, we

are interested in how the cubic SO term would affect the spin Hall effect.

As we show in Fig. 16, there are oscillations in the spin Hall conductance as the

carrier density is increased. This oscillations have similar nature as those found in

the conductance of the two-probe rings. The pattern seen by Souma and Nikolić [66]
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is recognized from the figure, as we also observe that the spin Hall conductance

oscillates in sign and that as the SO interaction increases the oscillations in the

spin Hall conductance dampen. The longitudinal conductance of the four-probe ring

shows common features with the conductance of the two-probe ring with two distinct

features: (1) it does not vanish at specific values of the SO interaction and (2) the

maximum value of the conductance is now lower than 2e2/h due to the dephasing

effects of the additional voltage probes. The addition of the transverse leads has

shifted the structures to the left and now the structures we see are overlapping. It

is at this overlap that the spin Hall conductance shows the x-like structures. The

parameters used in these plots are similar to those used in the two-probe rings: the

effective mass m∗ = 0.031 m0 is the same in both systems, we vary the carrier

concentration from n2D = 1.873× 1012cm−2 to n2D = 1.912× 1012cm−2, and starting

from zero, we ramp up the dimensionless parameter controlling the strength of the

SO splitting energy to 8. We note that the strength of the signal is larger for the

heavy-hole system: maximum spin Hall conductance is GsH
e = 0.72 × e/(8π) for

electrons and GsH
hh = e/(8π) for heavy-hole system and the longitudinal conductance

has a maximum value of GL
e = 1.2 × e2/h and GL

hh = 1.7× e2/h. As explained in the

previous section, the curvature followed by the sub-structures as SO increases in the

heavy-hole plots is a numerical artifact.

C. Inhomogeneous spin orbit coupling

Experimental efforts in mesoscopic rings have manipulated the SO splitting (in both

the ring structure and the leads) via a gate voltage. Since the SO interaction depends

on the surface electric field, there is a natural interest in studying the effects of a gate

that covers only part of the system [85, 86]. Tserkovnyak and Brataas have predicted
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Fig. 17. Interference effects seen in the spin Hall conductivity of structures with inho-

mogeneous spin-orbit coupling. Calculation of the zero temperature spin-Hall

conductance (four terminal device) based on the Landauer-Büttiker formula.

The spin-Hall conductance in electron systems is modulated as a function of

the spin-orbit coupling and electron density. When the spin-orbit coupling is

homogeneous (Left picture), the spin Hall conductivity has a maximum value

of A = 0.72 × e/(8π). When the spin-orbit coupling is present in only one

half of the ring structure (Right picture), the maximum value of the spin Hall

conductivity is A = 1.07 × e/(8π).

and enhancement of the interference effects in mesoscopic rings with inhomogeneous

SO splitting for weak SO coupling systems [67]. We study those effects with our

numerical techniques in spatially varying SO coupling systems. We observe an en-

hancement in the spin Hall conductivity in the four-probe rings and an unexpected

modulation of the conductivity in the two-probe rings.

In the last two figures, we present the conductivities for a ring with a constant

SO coupling (αo) and compare it to the conductivities obtained in a ring where the

electrostatic gate covers half of the ring. The SO coupling depends on the position
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as:

α(x) =
αo

2

(
1 + tanh

x− xo

∆

)
(5.20)

Although not shown in the sketches in Figures 17 and 18, the value of ∆ in the

calculation allows for a transition region in the range of one tenth of the radius of

the ring. This transition region would account for the electric field from the gate

affecting parts of the ring not covered by the gate. Previous studies have shown that

if the SO interaction is turned on abruptly there are strong scattering effects in the

two regions [80, 87]. We have found that the sharpness of the transition region does

not significantly change the conductivity patterns apart from the noticeable effect of

a higher ’effective’ SO coupling along the ring.

Fig. 17 shows the spin Hall conductivity as a function of Qe and carrier density

for a fully covered and a partially covered configuration. The oscillations are slower in

the partially covered one due to the fact that the configuration of the right ring has a

lower effective SO coupling. Yet, the pattern is significantly stronger (∼ 35%). Also

important is that the spin Hall conductivity does not dampen as the SO interaction

is raised.

Next we study the spin-dependent conductivity for inhomogeneous SO interac-

tion. The configuration we consider for the measurement would require the injection

of spin polarized electrons into the ring structure and a means to detect their po-

larization as they exit the ring. Both the spin injection and the detection of the

spin direction could be probed by electrical [88] or optical [89] means with current

experimental techniques.

In Fig. 18, we show the contour plot of zero temperature conductances (total

and spin resolved) in single moded rings as a function of both the electron density and

the dimensionless SO interaction strength for three different spatial configurations of
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the SO interaction. In the top panel we show the homogeneous case, which has been

previously analyzed [65]. As the SO increases from zero, the injected electrons flip

their spin direction. While the total conductance has the familiar periodic structure,

these oscillations are only present in the spin-flipped (spin up injected on left lead

and spin down detected on the right lead) conductivity. The spin conductivity for

spin-conserved components (spin up injected and spin up detected) decays rapidly.

The next two panels present the same calculation when only half of the ring is covered

by the gate. As we see, the total conductivity is devoid of null values and is identical

for the two configurations. In contrast, the spin-flipped and the same-spin conduc-

tivity show a marked difference from the homogeneous SO case. The spin-conserved

conductivity does not decay as the SO increases but rather oscillates. Meanwhile, the

spin-flipped conductivity is also oscillating and both conductivities contribute to the

total value equally. This behavior illustrates that the reversal of the spin polarization

could be controlled in ring structures by changing the voltage in a top-gate.

D. Summary

We have studied the quantum interference effects induced by the Aharonov-Casher

phase in asymmetrically confined two-dimensional electron and heavy-hole ring struc-

ture systems taking into account the electrically tunable SO interaction. We calcu-

lated the non-adiabatic transport properties of charges in ring structures and confirm

the analytic result [73]. We have found that the interference effects depend both on

the SO splitting of the bands and the carrier density. Further, we are able to show

that the contribution to the conductivity of non-transparent leads affect the conduc-

tivity and fully explains the Landauer-Büttiker result dependence on carrier density.

We have calculated the spin Hall conductivity and longitudinal conductivity in four-
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probe rings. Our analysis suggests that for hole doped systems both conductivities

are stronger than the conductivities found in electron doped system. Finally, we have

investigated the conductance of mesoscopic rings with spatially inhomogeneous SO

coupling. In this case the spin Hall conductivity oscillates in a similar fashion as in the

homogeneous SO case but, as the gate voltage is increased, the signal strength does

not weaken in contrast to the homogeneous case. We have also found that devices

with inhomogeneous SO interaction exhibit intriguing spin resolved conductivities

which could lead to the modulation of the spin direction of polarized carriers.
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Fig. 18. Spin flipping mechanism seen in ring structures with spatially varying

spin-orbit interaction.
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CHAPTER VI

SUMMARY

A. Spin-orbit coupling in the weak relativistic limit

We have studied the Dirac equation to second order in the weak relativistic limit.

We obtained the corrections to the kinetic energy terms, the Zeeman term and its

second order corrections and by going to this order we have derived the spin-orbit

coupling: ~e(2mc)−2σ · E × π = ~e(2mc)−2σ ×∇V · p. We also describe how this

term is important in semiconductors and how the structure inversion symmetry of the

systems studied gives origin to the Rashba term used in throughout the calculations.

B. Reduction of skew scattering in two-dimensional systems: testing the origins of

the anomalous Hall effect

We have studied the anomalous Hall conductivity in spin-polarized, asymmetrically

confined two-dimensional electron and hole systems, taking into account the intrinsic,

side-jump, and skew-scattering contributions to the transport. We found that the

skew scattering, principally responsible for the extrinsic contribution to the anomalous

Hall effect, is reduced for the two-dimensional electron system if both chiral Rashba

subbands are partially occupied, and vanishes always for the two-dimensional hole

gas studied here, regardless of the band filling. Our prediction can be tested with

the proposed coplanar two-dimensional electron-hole gas device and can be used as a

benchmark to understand the crossover from the intrinsic to the extrinsic anomalous

Hall effect.
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C. Anomalous Hall effect in a two-dimensional electron gas

We have studied the anomalous Hall effect in a magnetic two-dimensional electron gas

with Rashba spin-orbit coupling within the Kubo-Streda formalism in the presence of

pointlike potential impurities. We find that all contributions to the anomalous Hall

conductivity vanish to leading order in disorder strength when both chiral subbands

are occupied. In the situation that only the majority subband is occupied, all terms

are finite in the weak scattering limit and the total anomalous Hall conductivity is

dominated by skew scattering. We compare our results to previous treatments and

resolve some of the discrepancies present in the literature.

D. Transport in two-dimensional mesoscopic ring structures with strong spin-orbit

interaction

We have studied the quantum interference effects induced by the Aharonov-Casher

phase in asymmetrically confined two-dimensional electron and heavy-hole ring struc-

tures systems taking into account the electrically tunable spin-orbit (SO) interaction.

We have calculated the non-adiabatic transport properties of charges (heavy-holes

and electrons) in two-probe thin ring structures and compare how the form of the SO

coupling of the carries affects it. We show that both the SO splitting of the bands

and the carrier density can be used to modulate the conductance through the ring.

We show that the dependence on carrier density is due to the backscattering from

the leads which shows pronounce resonances when the Fermi energy is close to the

eigenenergy of the ring. We also calculate the spin Hall conductivity and longitudinal

conductivity in four-probe rings as a function of the carrier density and SO interac-

tion, demonstrating that for heavy-hole carriers both conductivities are larger than

for electrons. Finally, we investigate the transport properties of mesoscopic rings with
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spatially inhomogeneous SO coupling. We show that devices with inhomogeneous SO

interaction exhibit an electrically controlled spin-flipping mechanism.
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[65] S. Souma and B.K. Nikolić, Phys. Rev. B 70, 195346 (2004).
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APPENDIX A

DEFINITIONS AND INTEGRATION OF σII

Here, we discuss and further clarify the meaning of the contributions from all

states of the Fermi sea (σII
yx) to the anomalous Hall conductivity presented in Chapter

IV. The definition of the conductivity tensor in the form of a sum, σyx = σI
yx + σII

yx,

was proposed by Streda [51]. The idea behind this separation is that the first term,

σI
yx, corresponds to the classical Drude-Zener formula of conductivity, whereas the

second term, σII
yx, has no classical analogy. Another important point is that σII

yx

does not depend on scattering from impurities. Later on, Streda’s separation of the

off-diagonal conductivity in two parts was rederived using the Kubo formalism [90].

The contribution σI
yx (see Chapter IV) is related only to the states at the Fermi

surface, whereas σII
yx formally includes the contribution of all states with energies

below the Fermi level. However, in the integral over energy in σII
yx, a part with ε = εF

can be additionally separated so that we can present σII
yx as

σII
yx = σ( int)

yx − σI( int)
yx , (A.1)

where σ
(int)
yx includes integration over all states with ε < εF . Mathematically, the

reason for this is a singularity at the point ε = εF related to the Fermi function f(ε)

in the zero temperature limit. It was already discussed in Appendix C of Ref. [30] in

the context of the two-dimensional Dirac model.

A. σII
yx Calculation: using the theorem of residues

Let us demonstrate it now within the model of two-dimensional electron gas with

Rashba SO interaction. Starting from Eq. 4.34 with the Green’s functions of a clean
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crystal (Eq. 4.13),and calculating the trace, we can rewrite it as

σII
yx = −ie

2α2h

2π

∫
d2k

(2π)2

1

λk

∫ ∞

−∞
dεf(ε)

(
−G(0)R

−
∂G

(0)R
+

∂ε
+G

(0)R
+

∂G
(0)R
−

∂ε

+G
(0)A
−

∂G
(0)A
+

∂ε
−G

(0)A
+

∂G
(0)A
−

∂ε

)
(A.2)

The integral over energy runs over the real axis, while the poles of the Green’s function

are located in the plane near the real axis. Assuming that the temperature is very

small but finite, the poles of the Fermi function, f(ε), are located at a finite distance

form the real axis, εn = εF + i(2n + 1)πT . Using Eq. (4.16) as the definition of

the Green’s functions and substituting in the above equation, along with the identity

G
(0)A
± = (G

(0)R
± )∗

±
, we present

σII
yx = −ie

2α2h

2π

∫
d2k

(2π)2

1

λk

∫ ∞

−∞
dεf(ε)

[
1

(ε−Ek− + i0+)(ε−Ek+ + i0+)2

− 1

(ε− Ek+ + i0+)(ε− Ek− + i0+)2
− 1

(ε− Ek− − i0+)(ε−Ek+ − i0+)2

+
1

(ε−Ek+ − i0+)(ε− Ek− − i0+)2

]
(A.3)

The integral over ε contains simple and double poles, and they can be shifted to the

real axis. Correspondingly, the integration contour should be deformed to encircle

each singularity in the complex plane. Thus, the contour would consist of some lines

at the real axis and half circles around the poles. Each of the half circles gives half of

the whole residue associated with the pole. Only the contribution of the poles give a

real value for σyx. Thus, we take into account only this contribution. Then, we find

σII
yx = −ie

2α2h

2π

∫
d2k

(2π)2

1

λk

∫ ∞

−∞
dε

{
f(ε)

[
4
−iπδ(ε− Ek−)

(Ek− − Ek+)2
− 4

−iπδ(ε− Ek+)

(Ek+ −Ek−)2

]

+
∂f(ε)

∂ε

[
2
−iπδ(ε−Ek+)

Ek+ − Ek−
+ 2

−iπδ(ε− Ek−)

Ek− − Ek+

]}
(A.4)
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The terms with ∂f(ε)/∂ε are related to the contribution from the Fermi surface. We

obtain

σII− clean
yx = σ clean

yx − σI− clean
yx , (A.5)

where

σ clean
yx = 4e2α2h

∫
d2k

(2π)2

f(Ek+) − f(Ek−)

Ek+ − Ek−
, (A.6)

and

σI− clean
yx = −2e2α2h

∫
d2k

(2π)2

[(
∂f(Ek+)

∂ε

)
+

(
−∂f(Ek−)

∂ε

)]
1

(Ek+ − Ek−)2
(A.7)

Equation (A.6) is the formula for the intrinsic Hall conductivity in the clean limit.

Iti is relates to all filled states (Fermi sea). From Eq. (A.5), the contribution to

σII− clean
yx from the Fermi surface defined as σI− clean

yx partly compensates the intrinsic

Hall conductivity σ clean
yx . By integrating Eq. (A.5) we obtain

σ clean
yx = − e2

4π

[
1 − h

λ−
− Θ(εF − h)

(
1 − h

λ+

)]
(A.8)

Using Eq. (A.7) and the one presented above, we find

σI− clean
yx = −e

2α2h

4π

(
ν+

λ2
+

Θ(εF − h) +
ν+

λ2
+

)
(A.9)

and with Eqs (A.5), (A.8), and (e:A9), Eq. (4.37) is obtained.

Let us emphasize that σII
yx corresponds to Streda’s definition [51]. Dugaev et al.

used a different method in their calculation [32]. In principle, both methods lead to the

same result for the conductivity, as demonstrated in the two-dimensional Dirac model

[30]. However, the contribution to the conductivity from the filled states, which was

identified as σII
yx by Dugaev and coworkers [32], corresponds only to the ”Fermi sea”

term of Eq. (A.6) which corresponds to the clean limit calculation of the anomalous

Hall conductivity calculated by Culcer et al. [31]. In turn, the contribution σI− clean
yx



105

related to the Fermi surface but not affected by impurities was included into the σI
yx

by Dugaev et al. [32] and the vertex correction should not appear in this term as was

corrected later [30]. Hence, although initially the σI
yx and σII

yx are defined in Ref. [32]

as in this work, in that article, their actual definitions were changed to terms only

including Fermi sea integrals and Fermi surface integrals. Hence, they are not defined

by Eqs. (A.5) and (A.6). We should emphasize here this difference of notations to

avoid possible misunderstandings.

B. σII
yx Calculation: using the eigenstates

An alternative to the contour integration is to use the disorder free eigenstates

of the Rashba Hamiltonian,

| ±〉 = e±iφ/2



±e±iφ/2

(
cos γ

2
± sin γ

2

)

eiφ/2
(
cos γ

2
∓ sin γ

2

)


 , (A.10)

where sin γ = h/λ and tan φ = ky/kx to calculate the clean limit of σII− clean
yx as the

difference given in Eq. (A.5). In the clean limit, the calculation of σyx is as follows:

σclean
yx =

e2

m2V

∑

k,n 6=n′

(fnk − fn′k)Im [〈n′k|p̂x|nk〉 〈nk|p̂y|n′k〉]
(Enk − En′k)2

= − e2

(2π)2

∫
dk
∑

n

fnk2Im

〈
∂un,k

∂ky

∣∣∣∣
∂un,k

∂kx

〉

= − e2

(2π)2

∑

n

∫

C

dk · fnk

〈
nk

∣∣∣∣i
∂

∂k

∣∣∣∣nk
〉

= − e2

(2π)2

∑

n

∫ 2π

0

dφfnk

〈
nk

∣∣∣∣i
∂

∂φ

∣∣∣∣nk
〉
, (A.11)

where, got the eigenstates given in Eq. (A.10), one finds

〈
±, k

∣∣∣∣i
∂

∂φ

∣∣∣∣±, k
〉

= ∓λ− h

2λ
(A.12)
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thus

σclean
yx = − e2

4π

[
λ− − h

2λ−
− Θ(ε− h)

λ+ − h

2λ+

]
(A.13)

which is identical to the result obtained in Eq. (A.8).

The clean limit contribution to σI
yx is

σI−clean
yx =

e2

m2V
Tr
[
v̂yG

(0)R(εF )v̂xG
(0)A(εF )

]

=
e2

2πV

∑

k,s,s′

〈s |v̂y| s′〉G(0)R
s′ 〈s′ |v̂x| s〉G(0)A

s , (A.14)

using the eigenstates of the Rashba Hamiltonian, one finds

σI−clean
yx =

e2

2πV

∑

k

(〈+ |v̂y| −〉 〈− |v̂x|+〉G(0)R
− G

(0)A
+

+ 〈− |v̂y|+〉 〈+ |v̂x| −〉G(0)R
+ G

(0)A
− )

=
e2

2πV

∑

k

2Im [〈+ |v̂y| −〉 〈− |v̂x|+〉]
(
πδ(ε− Ek−)

ε− Ek+

− πδ(ε− Ek+)

ε− Ek−

)

=
e2

4π
〈Im 〈+ |v̂y| −〉 〈− |v̂x|+〉〉φ

(
ν+

λ+
+
ν−
λ−

)
, (A.15)

where the subscript φ indicates averaging over the momentum angle φ. For the

Rashba model, one finds

〈Im 〈+ |v̂y| −〉 〈− |v̂x|+〉〉φ = −α
2h

λ
, (A.16)

therefore Eq. (A.15) simplifies to Eq. (A.8). The two methods yield the same

expressions for the contributions from all states of the Fermi sea (σII
yx).
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APPENDIX B

INTEGRALS IN THE WEAK SCATTERING LIMIT

In the weak scattering limit (Γ,Γz small) the integrals over two Greens functions

simplify to:

1

2π

∫
dkkf(k)GR

+(k)GA
+(k) =

1

2π

∫
dkkf(k)

1

εF −Ek+ + iΓ+

1

εF − Ek+ − iΓ+

=
1

2π

∫
dEk+ν+f(k(Ek+))

1

Γ+

Γ+

(E2
k+ − ε2F )2 + Γ2

+

≈ ν+f(k+)

2Γ+
, (B.1)

similarly,

1

2π

∫
dkkf(k)GR

−(k)GA
−(k) ≈ ν−f(k−)

2Γ−
, (B.2)

and

1

2π

∫
dkkf(k)GR

+(k)GA
−(k) =

1

2π

∫
dkkf(k)

1

εF − Ek+ + iΓ+

1

εF −Ek− − iΓ−

≈ 1

2π

∫
dkkf(k)

(
1

εF − Ek+

− iπδ(εF − Ek+)

)(
1

εF − Ek−
+ iπδ(εF − Ek−)

)

≈ i

2

∫
dkkf(k)

(
δ(εF − εk + λk)

1

εF − εk − λk
− δ(εF − εk − λk)

1

εF − εk + λk

)

+
1

2π

∫
dkkf(k)

1

εF − εk − λk

1

εF − εk + λk
(B.3)

yielding

1

2π

∫
dkkf(k)(GR

+(k)GA
−(k) −GR

−(k)GA
+(k))

≈ i

∫
dEk−

ν−f(k(Ek−))δ(εF − Ek−)

εF − Ek− − 2λk(Ek−)

− i

∫
dEk+

ν+f(k(Ek+))δ(εF − Ek+)

εF − Ek+ + 2λk(Ek+)

= − i

2

(
ν+f(k+)

λ+
+
ν−f(k−)

λ−

)
. (B.4)
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Now we find for the integrals I1, I2, I3 and I4 in the weak scattering limit:

I1 =
1

2π

∫
dkk

(
GR

0 G
A
0 −GR

z G
A
z

)

=
1

4

1

2π

∫
dkk

(
GR

+G
A
+ +GR

−G
A
− +GR

+G
A
− +GR

−G
A
+ − (h2 + Γ2

z)

× λ2
k

λ4
k + h2Γ2
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Mexico on 1978. His parents are Mario Eĺıas Borunda Escobedo and Silvia Lorenza

Bermúdez de Borunda. He attended public schools in Mexico City, Ciudad Juárez,
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