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ABSTRACT 

 

Gas Ejector Modeling for Design and Analysis. 

(December 2008) 

Chaqing Liao, B.S., Zhejiang University; 

M.E., Texas A&M University 

Chair of Advisory Committee: Dr. Frederick R. Best 

 

A generalized ejector model was successfully developed for gas ejector design and 

performance analysis. Previous 1-D analytical models can be derived from this new 

comprehensive model as particular cases. For the first time, this model shows the 

relationship between the cosntant-pressure and constant-area 1-D ejector models.  The 

new model extends existing models and provides a high level of confidence in the 

understanding of ejector mechanics. “Off-design” operating conditions, such as the 

shock occurring in the primary stream, are included in the generalized ejector model. 

Additionally, this model has been applied to two-phase systems including the gas-liquid 

ejector designed for a Proton Exchange Membrane (PEM) fuel cell system.  

 

The equations of the constant-pressure and constant-area models were verified. A 

parametric study was performed on these widely adopted 1-D analytical ejector models. 

FLUENT, commercially available Computational Fluid Dynamics (CFD) software, was 

used to model gas ejectors. To validate the CFD simulation, the numerical predictions 
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were compared to test data and good agreement was found between them. Based on this 

benchmark, FLUENT was applied to design ejectors with optimal geometry 

configurations.  
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NOMENCLATURE 

 

A  Area 

CFD Computational fluid dynamics 

CR Compression ratio 

c  Sound speed 

pc  Specific heat capacity at constant pressure 

vc  Specific heat capacity at constant volume 

D A temporary parameter defined by equation (5.19) 

D  Diameter 

E A temporary parameter defined by equation (5.23) 

ER Entrainment ratio 

nη  Primary nozzle efficiency coefficient 

dη  Diffuser efficiency coefficient 

γ  Specific heat ratio 

h  Enthalpy 

κ  Area ratio, 2m tA Aκ =  

L  Length 

M  Mach number 

m  Mass flow rate 

µ  Pressure ratio, 1 0sP Pµ =  
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ω  Entrainment ratio 

P  Pressure 

PEM Proton exchange membrane 

R   Gas constant 

R   Universal gas constant 

ρ  Density 

s∆  Entropy change 

ψ  A temporary parameter defined by equation (3.59) 

T  Temperature 

τ  Pressure ratio, 0 2s mP Pτ =  

θ  Area ratio, 1 2mA Pθ =  

W  Molecular weight 

V  Velocity 

v  Specific volume 

x  Liquid quality 

ξ  A temporary parameter defined by equation (3.58) 

 

Subscripts   

0 Stagnation condition 

1 Ejector section 1 

2 Ejector section 2 
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3 Ejector section 3 

4 Ejector section 4 

* Critical flow 

a Flow station a 

b Flow station b 

e Exit 

g Gas phase 

i Isentropic 

l Liquid phase 

m Ejector mixed flow 

p Ejector primary stream 

s Ejector secondary stream 

t Nozzle throat 

tp Gas-liquid two-phase mixture 

x Shock wave 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

INTRODUCTION 

 

Ejectors are devices used to induce a secondary fluid by momentum and energy transfer 

from a high velocity primary jet. Ejectors can be operated with incompressible fluids 

(liquids), and in this application are normally referred to as jet pumps or eductors. On the 

other hand when ejectors are operated with compressible fluids (gases and vapors) the 

terms ejector and injector are generally employed. A major difference between the two, 

besides the working fluid states, is the supersonic, choked flow nozzle of the gas ejector 

system. The supersonic approach allows a greater conversion of primary fluid energy to 

secondary fluid pressure head increase. However, this occurs with the penalty of 

considerable thermodynamic complexity in the mixing and diffusion sections. Fig. 1.1 

and Fig. 1.2 are typical cross sectional views of liquid jet pumps and gas ejectors. 

 

The working process in a liquid jet pump or in a gas ejector is the same.  A high-pressure 

fluid with very low velocity at the primary inlet is accelerated to high velocity jet 

through a converging nozzle for the liquid jet pump or a converging-diverging 

supersonic nozzle for the gas ejector. The supply pressure at the inlet is partly converted  

 

______ 
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to be the jet momentum at the nozzle exit according to the Bernoulli equation. The high  

velocity, low static pressure primary jet induces a secondary flow from the suction port 

and accelerates it in the direction of the driving jet. The two streams then combine in the 

mixing section, and ideally the process is complete by the end of this section. A diffuser 

is usually installed at mixing chamber exit to lift the static pressure of mixed flow.  

 

 

Fig. 1.1 Cross sectional view of a typical liquid jet pump 

 

 

Fig. 1.2 Cross sectional view of a typical gas ejector 
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Ejectors have simple geometry and no moving parts. Their operation does not require 

electrical or mechanical shaft energy input. This greatly reduces equipment mass and 

increases reliability. Ejectors have found wide use in power plant, aerospace, propulsion 

and refrigeration application because of the above mentioned features. Liquid Jet pumps 

have very good resistance to cavitation compared to other types of pumps. Thus, jet 

pumping may be an attractive method for waste heat transport in new generations of 

spacecraft. The Inter-phase Transport Phenomenon (ITP) Laboratory of Texas A&M 

University [1] proposed a Rankine Cycle System, in which a liquid jet pump is used to 

increase pressure recovery for power generation systems of future spacecraft. However, 

the research and development of jet pump technology for incompressible fluids (liquid) 

is more mature than that for ejectors used for compressible fluids (gases). This 

dissertation focuses on gas ejector and discussion on liquid jet pump is limited. 

 

Gas ejectors are also found in high-altitude aircraft, thrust augmentation of aircraft and 

hydrogen fuel cells, etc. Lee et al. [2] studied the ejector systems used for a hydrogen 

fuel cell. The Center of Space Power (CSP) at Texas A&M University is designing a 

gas-liquid separation system for a Proton Exchange Membrane (PEM) fuel cell. In order 

to pump the exhaust from a PEM fuel cell, a two-phase gas ejector is integrated into the 

system. Fig. 1.3 is the schematic of PEM fuel cell system test bed. A gas tank supplies 

high pressure gas to the ejector primary nozzle inlet and the PEM fuel cell exhaust line is 

connected to the ejector secondary inlet (suction) port. PEM cell exhaust is sucked into 

the ejector and mixed with the motive stream; the mixed flow then is directed into the 
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vortex separator.  Gas and liquid are split by the separator; liquid is discharged and the 

gas is directed to the PEM inlet port. 

 

gas supply

PEM cell

gas ejector  

Liquid discharge

vortex separator

gas outlet

gas supply

PEM cell

gas ejector  

Liquid discharge

vortex separator

gas outlet

 

Fig. 1.3 Schematic of the PEM fuel cell system test bed 

 

The goal of the dissertation is to perform a comprehensive theoretical study of ejector 

energy and momentum transfer, to develop a universal ejector model which embodies all 

existing ejector models and provide answers to the problems left unsolved by these 

existing models, and to investigate the feasibility as well as limitations of using gas 

ejector to work for gas-liquid two-phase flow.  

 

The theoretical background of ejector working mechanism, the fundamental concepts 

and governing equations of aerodynamics are introduced as the first step. Equations of 

the constant-pressure ejector model and constant-area ejector model are then derived in 

great details. Parametric analysis is performed for these 1-D analytical models for gas 

ejector with single-phase flow. The general gas ejector design procedures and steps 
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using the 1-D analytical models are discussed. ESDUpac A9242, a computer program 

with comprehensive 1-D analytical models for gas ejector design, is introduced briefly.  

 

In order to gain a better understanding of the mixing process in the ejector, the 

commercial Computational Fluid Dynamics (CFD) software FLUENT is used to model 

the gas ejector. It will be shown that there is good agreement between the CFD 

simulation results and experimental data. Based on this benchmark, FLUENT is 

employed to optimize the ejector geometric configuration.  

 

Confidence in the ejector working mechanism is gained from the above-mentioned 

studies and simulations. A generalized, comprehensive ejector model is successfully 

developed based on the understanding of momentum and energy transfer between the 

primary and secondary streams. This novel model provides answers to the unsolved 

problems of existing models. Since the motivation of this research is to design a working 

ejector for the PEM fuel system, the new model was applied to study the limitations of 

design and operation of ejector working with a gas-liquid two-phase mixture. 

 

GAS EJECTORS LITERATURE REVIEW 

 

The ejector was introduced as an engineering device in the early 20th century. At the 

same time, researchers started to investigate its working mechanism. In a paper 

published in 1950, Keenan and Neumann [ 3 ] presented the first comprehensive 
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theoretical and experimental analysis of the ejector problem. The constant-pressure 

mixing model and the constant-area mixing model developed by Keenan and Neumann 

[3] became the basis of ejector design and performance analysis since then. Based on 

these 1-D analytical approaches, much research effort has been devoted to the 

improvement of ejector design methods and hundreds of papers relating to supersonic 

ejectors are published. In a review carried out by Bonnington and King [4], 413 ejector 

references about ejector dating prior to 1976 were cited; 1/3 of them are about gas 

ejectors. More recently, a comprehensive review of published research related to the 

design and application of supersonic ejectors is given by D.W. Sun and I.W. Eames 

(1995) [5].  

 

In the derivation of constant-pressure mixing model, Keenan and Neumann [3] assumed 

that the fluids of the primary flow and secondary flow were the same gas. Keenan and 

Neumann [3] also neglected nozzle and diffuser efficiencies and frictional effects. This 

method is not very accurate, but it avoids the complicated expressions of thermodynamic 

properties for mixed flow as well as the use of experimentally determined constants. In 

general, experimental values of pressure-rise and flow entrainment are found to be 

approximately 85% of the calculated values.  

 

DeFrate and Hoerl [6] modified the constant-pressure mixing model by taking the ideal 

gas law with molecular weight into their derivation, since gas constant is determined by 

the molecular weight and universal gas constant by the relationship of R R W= . 
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Different heat ratios of the primary and secondary fluids were also included in their 

method. Based on constant-pressure mixing and in terms of enthalpy, Emanuel [7] 

developed a simple analytical model for optimizing the steady-state performance of an 

ejector. Rice and Dandachi [8] derived equations for steam ejectors to predict the 

primary flow rate by including the friction and mixing losses which have usually been 

neglected.  Huang et al. [9] assumed constant-pressure mixing to occur inside the 

constant-area section of the ejector with the entrained flow in a choking condition. 

Huang et al. [9] determined various loss factor coefficients in their approach by 

matching the test data with the analytical results.  

 

Another 1-D analytical model, the constant-area mixing ejector, was also considered by 

Keenan and Neumann [3,10]. The mixing in a constant-area ejector operates in two 

distinct regimes, depending on whether the flow characteristics of the ejector are 

dependent or independent of the back pressure bP . Fabri and Siestrunck [11] introduced 

the concept of “aerodynamic throat” and included the primary nozzle wall thickness in 

their constant-area mixing model. They referred to the bP -dependent regime as the 

“mixed” regime (MR), and to the bP -independent regime as the “supersonic” regime 

(SR) and/or the “saturated-supersonic” regime (SSR). For a better understanding of the 

mixing mechanism, Addy and Chow [12,13], Dutton and Carroll [14] showed these 

regimes on a three-dimensional solution surface as shown in Fig. 1.4. This solution 

surface is based on three variables: primary-to-secondary stagnation pressure ratio 

0 0/p sP P , the static-to-secondary stagnation pressure-ratio 0/b sP P  and entrainment ratio 
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ω . A constant-area ejector is constrained to operate at some point on the solution 

surface. The entrainment ratio ω  is predicted by the other two variables, 0 0/p sP P  and 

0/b sP P .  

 

 

Fig. 1.4 Three-dimensional ejector solution surface, Addy & Dutton et al. [12, 13, 14] 

 

The conditions required by 1-D models are not as restrictive as they may appear. As long 

as the flow can be simplified to 1-D or suitable mean values can be used, these models 

can be applied for non-uniform flow conditions. However, for turbulent flow through 

very short sections this is not the case. A 1-D analysis can be utilized for the purposes of 

engineering design because, despite its relative simplicity, it has been shown to give 
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consistent and reasonably accurate results within its limitations. Significant progress has 

been made for these widely used analytical models since 1950, but some problems are 

still unsolved. There is no way to determine the optimum shape of the mixing section for 

constant-pressure ejector. Also, nobody has yet established a definite link between the 

performance of constant-area and constant-pressure ejectors. It is highly desired to 

develop a new ejector model which would unify all ejector models and provide answers 

for the unsolved problems of existing models. 

 

Many researchers have used various 2-D models in order to gain a better understanding 

of the flow process in ejectors, particularly within the mixing section. Goff and Coogan 

[15] were the first to consider the two-dimensional aspects of ejector performance. 

Mikhail [16] assumed various velocity profiles at each stage of the mixing process in a 

constant-area tube. The predictions of 2-D analytical models could be more accurate 

than those of 1-D models, but a number of disadvantages are associated with them. The 

2-D models are inherently more complicated, and generally require more specialist 

knowledge to implement. Fruthermore, there are usually empirical coefficients or 

constants to be determined from experiment, and they are usually applicable only for 

certain particular ejectors. 

 

Hedges and Hill [17] took a first step into Computational Fluid Dynamics (CFD) and 

developed a finite-difference scheme to model the flow process within a gas ejector. 

Gilbert and Hill [18] further refined this method and their theoretical results were 
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generally in good agreement with experimental results. Commercial CFD software 

programs now widely available enable researchers to look at the complicated supersonic 

flow and mixing problems in the gas phase. Neve [19] studied the flow in the diffuser 

section of an ejector. Riffat et al. [20] used CFD to analyze the performance of ejectors. 

A commercial code, FLUENT, was employed by Riffat et al. [20] to investigate the 

impact of the primary nozzle exit position on the performance of the ejector. In the CFD 

modeling, Riffat et al. [20] have adopted the standard k ε−  model and Renormalization 

Group (RNG) k ε−  model to solve the turbulence problems. Bartosiewicz et al. [21,22] 

also used FLUENT to simulate ejectors, but they concluded that the shear stress 

transport (SST) version of the k ω−  turbulence model agrees best with the test data. 

 

There is no study of the flow in a whole ejector channel, let alone using CFD to optimize 

the ejector design. Also, there are few comparisons between CFD predictions and data. 

In order to validate the CFD simulations, it is necessary to carry out more experimental-

CFD and analytical-CFD comparisons. The feasibility of whether CFD methods are 

capable of dealing adequately with supersonic flow, particularly shock and expansion 

wave in ejectors, has not been previously investigated.  

 

DISSERTATION ORGANIZATION 

 

The theoretical background and some important concepts used in the derivation of 

analytical models for gas ejectors will be introduced in Chapter II. Chapter III will 
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introduce the existing analytical models for gas ejectors with single phase flow; the 

Engineering Science Data Unit (ESDU) program ESDUpac A9242 Version 2 also will 

be introduced and analyzed.  Chapter IV consists of sing-phase gas ejector simulations 

using the CFD software FLUENT. This chapter also includes the introduction of 

simulation, benchmark, analysis of performance characteristics and flow field details of 

gas ejectors, and optimization of geometric configurations. Chapter V derives a novel 

generalized ejector model for the ejector design and performance analysis. Chapter VI 

studies the general features and limitations of design and operation of ejector working 

with gas-liquid two-phase flow. Chapter VII summarizes present work, address existing 

problems and suggest possible direction for future work. 
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CHAPTER II 

THEORETICAL BACKGROUND AND NOZZLES 

 

INTRODUCTION 

 

The theoretical background used in the derivation of 1-D analytical models for gas 

ejectors is introduced in this chapter. All 1-D analysis of compressible gas streams in the 

ejector are made by application of conservation equations of continuity, momentum, and 

energy, as well as the ideal-gas law. For compressible flow, an important dimensionless 

parameter, Mach number, usually is utilized to represent the velocity. Isentropic 

expansion is an important assumption during the derivations, though some researchers 

also use loss factor coefficients obtained from experimental data to represent the friction 

or other loss. To achieve better performance, modern gas ejectors are normally operated 

in a supersonic condition at the exit of primary nozzle. Therefore, it is necessary to 

introduce the choking phenomena occurs at the throat of primary nozzle.  

 

The basic idea of a gas ejector is to accelerate the motive flow to supersonic by a 

converging-diverging nozzle, primary flow exit at the suction chamber where secondary 

flow is induced by this high-velocity, depressurized flow. In most cases, there is also a 

diffuser installed at the exit of the mixing section to induce pressure recovery. The 

nozzles used to accelerate/decelerate or pressurize/depressurize the compressible flows 

are introduced in this chapter. 



 13

THEORETICAL BACKGROUND 

 

Conservation and Ideal Gas Law 

 

The conservation equations and idea gas law for steady 1-D compressible flow in an 

arbitrary variable-area control volume as sketched in Fig. 2.1 are given below. The 

definitions of termininologies can be found in the nomencluatre section. 

 

 

Fig. 2.1 Control volume for 1-D flow 

 

Continuity equation 

a a a b b bm V A V Aρ ρ= =                                                                                             (2.1) 
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Momentum equation 

b

a

A

a a a a b b b b
A

P A m V PdA P A m V+ + = +∫                                                                       (2.2) 

Energy equation 

2 2

2 2
a b

a b
V Vh h+ = +                                                                                                  (2.3) 

Ideal gas law 

P RT
ρ
=                                                                                                                 (2.4) 

Where R  is the gas constant with unit of ( ).J kg K . R  is related to its molecular weight 

by following equation: 

RR
W

=                                                                                                                   (2.5) 

In the above equation, R  is the universal gas constant with unit of ( ).J kmol K  and W  is 

the molecular weight with unit of ( )kg kmol . 
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Mach Number 

 

Mach number, M , is a very important dimensionless parameter for compressible flow, 

specially, for supersonic flow. Mach number is defined as the ratio of the fluid velocity 

to the local sonic speed.  

local fluid velocity
local sonic speed

VM
c

= =                                                                                (2.6) 

The local sound speed c  in a medium with temperature T  is given by: 

c RTγ=                                                                                                             (2.7) 

 

Isentropic Expansion of Ideal Gas 

 

Equation (2.8) is the process equation for isentropic flow of an ideal gas: 

constantP
γρ
=                                                                                                       (2.8) 

The basic equations: continuity, momentum, energy, second law, equation of state, as 

well as the above-mentioned process equation, the local pressure, temperature and 

density can be related with their corresponding values at stagnation condition by 

isentropic flow functions expressed in Equations (2.9) through (2.11). The parameters 

with subscript 0 refer to the stagnation properties. Stagnation properties are constant 

throughout a steady, isentropic flow field. 
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Pressure:   
120 11

2
P M
P

γ
γγ −−⎛ ⎞= +⎜ ⎟

⎝ ⎠
                                                                        (2.9) 

Temperature:   20 11
2

T M
T

γ −
= +                                                                         (2.10) 

Density:   
1

120 11
2

M
γρ γ

ρ
−−⎛ ⎞= +⎜ ⎟

⎝ ⎠
                                                                       (2.11) 

 

Choking Phenomena 

 

To explain the choking phenomena, a convergent-divergent nozzle with its static 

pressure distribution along the flow direction are shown in Fig. 2.2 [23]. Flow through 

the Converging-diverging nozzle of Fig. 2.2 is induced by an adjustable lower 

downstream pressure; upstream supply is constant and stagnation conditions with 0 0V ≅ . 

eP  and bP  represent the static pressure at the nozzle exit plane and the back pressure, 

respectively. Fig. 2.2 illustrates graphically the effect of variations in back pressure bP  

on the pressure distribution through the nozzle. 

 

The flow rate is low when back pressure bP  is slightly less than 0P ; curve i  shows the 

pressure distribution in the nozzle for this case. If the flow rate is low enough, the flow 

will be subsonic and essentially incompressible (if 0.3M < ) at all points on this curve. 

Under this condition, the nozzle will behave as a venturi, with flow accelerating in the 
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converging portion until a point of maximum velocity and minimum pressure is reached 

at the throat, then decelerating in the diverging portion to the nozzle exit. When the back 

pressure is reduced further, the flow rate increases but, is still subsonic everywhere and 

the pressure distribution is shown as curve ii  similar to curve i  although the 

compressibility effects become important. As bP  continues to be reduced, the flow rate 

will continue to increase. 

 

 

Fig. 2.2 Pressure pofile for isentropic flow in a converging-diverging nozzle [23] 
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If back pressure bP  is lowered far enough, ultimately the flow reaches 1M = at nozzle 

throat—the section of minimum flow area, as shown on curve iii  and the nozzle is 

choked. When curve  iii  is reached, critical conditions are present at the throat and the 

mass flow rate attains the maximum possible for the given nozzle and stagnation 

conditions. The corresponding pressure is the critical back pressure, *P . The definition of 

critical condition is the state at which the Mach number is unity. Substituting 1M =  into 

Equations (2.9) through (2.11) and considering the definition of Mach number, we have 

following relationships. 

1
*

0

2
1

P
P

γ
γ

γ

−⎛ ⎞
= ⎜ ⎟+⎝ ⎠

                                                                                                   (2.12) 

*

0

2
1

T
T γ

=
+

                                                                                                           (2.13) 

1
1

*

0

2
1

γρ
ρ γ

−⎛ ⎞
= ⎜ ⎟+⎝ ⎠

                                                                                                  (2.14) 

* * 0
2

1
V c RTγ

γ
⎛ ⎞

= = ⎜ ⎟+⎝ ⎠
                                                                                       (2.15) 

 

For air, 1.4γ = , and * 0 0.528P P = , * 0 0.833T T = , * 0 0.634ρ ρ = . The mass flow rate 

at critical condition is calculated by: 

* * *m V Aρ=                                                                                                          (2.16) 

Where, * tA A= . Using the definition of critical condition, it can be shown that: 
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1
1

0

0

2
1

tA Pm
T R

γ
γγ

γ

+
−⎛ ⎞

= ⎜ ⎟+⎝ ⎠
                                                                                     (2.17) 

Thus the maximum flow through a given nozzle depends only on the ratio 0 0P T . Fig. 

2.3, mass flow rate vs. pressure for various throat diameters, was generated according to 

Equation (2.17) for air with stagnation temperature 0 300T K= . 

 

As shown in Fig. 2.2, when back pressure is reduced further, below *P , such as 

conditions of iv  and v , information about the throat downstream conditions cannot be 

transmitted upstream. Consequently, reductions in bP  below *P  has no effect on flow 

conditions in the converging nozzle portion; thus, neither the pressure distribution 

through the converging nozzle, throat exit pressure, nor mass flow rate is affected by 

lowering bP  below *P .  

 

The diverging section accelerates the flow to supersonic speed from 1M =  at the throat. 

Accelerating the flow in the diverging section results in a pressure decrease. This 

condition is illustrated by curve iv  shown in Fig. 2.2. If the back pressure is set at ivP , 

flow will be isentropic through the nozzle, and supersonic at the nozzle exit. Nozzles 

operating at b ivP P=  are said to operate at design conditions. Lowering the back pressure 

below condition iv , say to condition v , has no effect on flow in the nozzle. The flow is 

isentropic from the plenum chamber to the nozzle exit (same as condition iv ) and then 

undergoes a three-dimensional irreversible expansion to the lower back pressure. A 
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nozzle operating under these conditions is said to be under-expanded, since additional 

expansion takes place outside the nozzle.  

 

 

Fig. 2.3 Maximum mass flow rate vs. stagnation pressure for various throat 

diameters, with air at 0 300T K=  
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Flow Acceleration and Deceleration 

 

Equation (2.18) and Equation (2.19) are convenient differential forms of the momentum 

and continuity equations, respectively, for isentropic flow. 

2

0
2

dP Vd
ρ

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
                                                                                                (2.18) 

constantVAρ =                                                                                                   (2.19) 

Starting from the above two equations, a relationship between the flow area change and 

the velocity change can be derived as given by Equation (2.20). 

( )21dA dV M
A V

= − −                                                                                            (2.20) 

From the above equation, it is clear that for 1<M  an area change causes a velocity 

change of opposite sign and a pressure change of the same sign; for 1>M  an area 

change causes a velocity change of the same sign and a pressure change of opposite sign. 

Fig. 2.4 summarizes these relationships. For subsonic flows ( 1<M ), flow acceleration 

in a nozzle requires a passage of diminishing cross section; area must decrease to cause a 

velocity increase. A subsonic diffuser requires that the passage area increase to cause a 

velocity decrease. In supersonic flows ( 1>M ), the effects of area change are the 

opposite. A supersonic nozzle must be built with an area increase in the flow direction. 

A supersonic diffuser must be a converging channel. Where 1=M and the above-
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mentioned choking phenomena occurs, the channel area is at its minimum. At that point, 

it is called the throat. 

 

Nozzle

Nozzle

Nozzle

Nozzle

 

Fig. 2.4 Nozzle and diffuser shapes for subsonic flow and supersonic flow 

 

To accelerate flow from rest to supersonic speed requires first a subsonic converging 

nozzle. Under proper conditions, the flow will be choked at the throat, where the area is 

a minimum. Further acceleration is possible if a supersonic divergent nozzle segment is 

added downstream of the throat. This is the reason for the primary nozzle of modern gas 

ejectors to be designed in the convergent-divergent shape, as shown in Fig. 2.2. 
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To decelerate flow from supersonic to subsonic speed requires first a supersonic 

converging diffuser. The flow will be at 1=M  at the throat, theoretically. In practice, 

supersonic flow cannot be decelerated to exactly 1=M  at a throat because sonic flow 

near a throat is unstable due to a rising, reverse, pressure gradient. Further isentropic 

deceleration could take place in a diverging subsonic diffuser section. Flow at the ejector 

mixing section exit is subsonic for this study, and a diverging subsonic diffuser is used. 

 

PRIMARY NOZZLE OF EJECTOR 

 

As discussed in previous paragraphs, a gas ejector is designed with a converging-

diverging primary nozzle which is intended to produce supersonic flow at the nozzle exit 

plane. Primary flow leaves the nozzle exit as supersonic when the back pressure is at or 

below nozzle design pressure. The exit Mach number is fixed once the area ratio, *eA A , 

is specified. Considering mass conservation and substituting Equations (2.7),  (2.10) and 

(2.11) into Equation (2.17), the relationship between *eA A  and Mach number is given 

by Equation (2.21).  

( )
1

2 12

*

111 2
11

2

e
MA

A M

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= ⎜ ⎟−⎜ ⎟+
⎝ ⎠

                                                                               (2.21) 

Where, * tA A=  is the nozzle throat area. All other exit plane properties (for isentropic 

flow) are uniquely related to stagnation properties by the fixed plane Mach number 



 24

according to the isentropic expansion functions, Equation (2.9) through (2.11). The 

properties of isentropic flow at the diverging nozzle exit, i.e., eT , eP , eρ  and eA  can 

therefore be calculated. Property ratios against Mach number at the nozzle exit plane are 

shown in Fig. 2.5. 
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Fig. 2.5 Property ratios at the nozzle exit for given Mach numbers 

 



 25

In the design of a gas ejector, determining primary nozzle size is the first step. Based on 

the given operating range of stagnation conditions, i.e., 0T  and 0p  at the primary inlet 

and desired mass flow rate with known specific heat ratio γ , the throat diameter can be 

determined by Equation (2.17). For air flow, Fig. 2.3 can also be applied for this purpose. 

Equation (2.21) is utilized to calculate the diameter of supersonic nozzle exit for desired 

Mach number. Thus, the geometry of the primary nozzle is computed by Equation (2.17) 

and (2.21). Meanwhile, the flow properties at the nozzle exit plane can be calculated 

using Equation (2.9),  (2.10) and (2.11).  

 

SUMMARY 

 

The basic concepts and governing equations of aerodynamics were introduced in this 

chapter. Since modern ejectors are usually designed and operated with supersonic 

primary flow, the mechanism of choking phenomena, supersonic flow and shock wave 

were described in detail. Fundamentals of isentropic nozzle and subsonic diffuser were 

provided so preliminary calculations could be made for the ejector design. These 

background knowledge enable the comprehensive theoretical study of ejector energy and 

momentum transfer.  
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CHAPTER III 

GAS EJECTOR 1-D ANALYTICAL MODELS 

 

INTRODUCTION 

 

This chapter is focus on 1-D analytical models for the design and performance analysis 

of ejectors with single phase gas flow. Analysis in detail will be performed on each 

section of ejector: supersonic primary nozzle, mixing chamber, and diffuser. The flow 

model for the mixing chamber is the key issue for ejector design. The two widely 

adopted ejector mixing models are the constant-pressure mixing model and the constant-

area mixing model [3, 6]. Equations of these analytical models, incorporating the 

different working gases with different molecular weight and different thermodynamic 

properties for the primary and secondary streams, are derived in great detail.  

 

Parametric study was performed on both models so ejector behaviors and working 

mechanism could be understood. Computer codes for various flow models are developed 

to predict and analyze the general features of an ejector with single-phase gas flow. The 

merits and problems of 1-D analytical models will be summarized and discussed. Gas 

ejector design can be implemented by employing equations of constant-area mixing 

approach and their corresponding figures generated in the parametric study. A general 

gas ejector design guide was developed in the format of design procedure and steps. 

 



 27

ESDUpac A9242 Version 2, developed and released by the Engineering Science Data 

Unit (ESDU), is a computer program for use in the design and performance evaluation of 

ejectors with gases as working fluids. The 1-D analytical gas ejector flow models 

constant-pressure mixing and constant-area mixing models, the latest improvements, as 

well as many coefficients obtained by experimental data, are all integrated in ESDUpac 

A9242. As an example,  this program will be introduced and used to design and evaluate 

a gas ejector performance. 

 

SUPERSONIC PRIMARY NOZZLE 

 

Fig. 3.1 shows a typical supersonic primary nozzle used in a gas ejector. The nozzle inlet 

section, throat section and exit section are represented by 0, t and 1, respectively. The 

supersonic primary nozzle has been mentioned in the previous chapter, and Equation 

(2.17) and Equation (2.21) were derived to calculate the maximum mass flow rate and 

the area ratio of nozzle exit to nozzle throat. However, those equations were derived 

based on the assumption of isentropic expansion in the primary nozzle. In reality, the 

downstream pressure of the ejector is normally not operated at the unique design 

conditions of the nozzle geometry. Irreversible over-expansion or under-expansion, i.e., 

shock waves, will occur outside the nozzle. Therefore a coefficient, nη , relating to the 

isentropic efficiency of the compressible flow in the diverging expansion part of the 

nozzle is utilized.  
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Fig. 3.1 Supersonic primary nozzle 

 

For the converging part through the nozzle throat, the isentropic assumption is still 

adopted. The flow parameters: *pP , *pT , *pρ  and *pV  at the nozzle throat can be 

calculated by using Equations (2.12), (2.13), (2.14) and (2.15). According to Equation 

(2.17), the mass flow rate of the primary stream is 

1
1

0

0

2
1

p

p
pt

p
p p

A Pm
RT

γ
γγ

γ

+

−⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

                                                                                (3.1) 

 

The isentropic efficiency of diverging expansion part of the nozzle is defined as [24]: 

0 1

0 1

p p
n

p p s

h h
h h

η
−

=
−

                                                                                                      (3.2) 

where 0ph  is the stagnation enthalpy ( total energy) of primary stream; 1ph  is the exit 

enthalpy under real, operating conditions; 1p sh  is the exit enthalpy under isentropic 
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conditions for the same exit pressure. The steady flow energy equation for the nozzle 

shown in Fig. 3.1 can be written as: 

2
1

0 1 2
p

p p

V
h h= +                                                                                                       (3.3) 

With ph c T= , Equation (3.4) can be obtained from Equation (3.2). 

1 1

0 0

11 1p s p

p n p

T T
T Tη

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
                                                                                          (3.4) 

According to the isentropic expansion function, the ratio of the stagnation to static 

temperature is 

20 11
2

T M
T

γ −
= +                                                                                                   (3.5) 

With the isentropic relations and Equations (3.4), (3.5) the primary nozzle pressure ratio 

can be derived as: 

( )

1

1
1
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1

1 11 , ,
1

1
2

p

p

p
p n

pp n
n p

P
f M

P
M

γ
γ

γ η
γη

η

−⎡ ⎤
⎢ ⎥
⎢ ⎥= − + =
⎢ ⎥−⎛ ⎞

+⎢ ⎥⎜ ⎟
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                                     (3.6) 

The mass flow rate through the nozzle is constant and can be expressed as: 

1
2

p
p p

p

m AV PAM
R T
γ

ρ
⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

                                                                               (3.7) 
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Considering mass conservation, i.e., 1 *p pm m= , the primary nozzle area ratio of exit to 

throat becomes 

1
2

1 * 1

1 1 *

1p p p

t p p p

A P T
A P M T

⎛ ⎞
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⎝ ⎠
                                                                                          (3.8) 

By using Equation (3.5) and Equation (3.6), Equation (3.8) can be expressed as: 
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                               (3.9) 

 

CONSTANT- AREA MIXING MODEL 

 

Fig. 3.2 shows the schematic of a gas ejector designed using the constant-area mixing 

model. The exit plane of the primary nozzle is located within the constant-area mixing 

section. The mixing process of primary stream and secondary stream starts at the inlet 

and completes at the exit of this mixing chamber. The aerodynamic throat as shown in 

Fig. 3.2, which could occur in the constant-area mixing chamber during ejector operation, 

is an important concept in Fabri’s theory [11]. Such an aerodynamic throat would have 

significant impact on ejector performance. When the static pressure of the primary 

stream is higher than that of secondary stream in the section between 1 and 2, the 

primary stream expands against secondary stream. Thus, the primary steam behaves as 
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an aerodynamic nozzle for the secondary stream and causes an aerodynamic throat to 

occur within the mixing chamber. The secondary stream could be choked at the 

aerodynamic throat if the downstream pressure is low enough. 

 

The first part of this section will derive the equations for a constant-area mixing model 

without an aerodynamic throat occurring in the mixing chamber. The second part of this 

section will derive equations including the aerodynamic throat phenomena.  

 

 

Fig. 3.2 Schematic of constant-area ejector model 
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Derivation of Constant-Area Mixing Model without Aerodynamic Throat 

 

Fig. 3.3 is the control volume selected to analyze the flow in the mixing chamber of a 

constant-area ejector. Derivation of the constant-area model is based on the following 

assumptions: 

1) Streams are in steady state; 

2) The primary and secondary streams at section 1 are uniform and they are fully 

mixed at section 3; 

3) Both streams can be considered as perfect gases; 

4) The inner wall between sections 1 and 3 is adiabatic. 

 

 

Fig. 3.3 Control volume for derivation of constant-area mixing model 

 

The entrainment ratio (ER) ω , i.e., the mass flow ratio of secondary to primary, at the 

inlet of the mixing chamber is 
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                                                  (3.10) 

Where, ( )2 ,f Mγ  is the mass flow function, 

( ) ( )
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1, 1
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mf M RT M M
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γγ γ⎡ − ⎤⎛ ⎞≡ = +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                                                (3.11) 

 

Solving for the static pressure ratio of the secondary stream to the primary stream at the 

mixing chamber inlet 1 1s pP P  from Equation (3.10), the following expression can be 

obtained: 
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                                                            (3.12) 

Considering the continuity equation for the control volume in Fig. 3.3, 

1 1 3p s mm m m+ =                                                                                                    (3.13) 

According to Equation (3.11), mass flow rate can be expressed as: 

( )
( )21

2
0

,PAm f M
RT

γ=                                                                                         (3.14) 

Substituting the mass flow rate expression of Equation (3.14) into mass conservation 

Equation (3.13), the following expression can be derived: 
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In the above equation, the gas constant mR  and specific heat ratio mγ  of the mixed flow 

are defined as: 
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                                                                               (3.17) 

Energy conservation over the control volume shown in Fig. 3.3, with the above 

assumptions, can be expressed as: 

0 0 0p p s s m mm h m h m h+ =                                                                                        (3.18) 

Using continuity Equation (3.13) and substituting 0 0ph c T=  into energy Equation (3.18), 

the stagnation temperature ratio of mixed flow to the primary flow is obtained: 
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                                                                            (3.19) 

The stagnation pressure ratio of the secondary stream to the primary steam is 
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The momentum conservation equation for the control volume is 

2 2 2
1 1 1 1 1 1 1 1 1 1 3 3 3 3 3p p s s p p p s s s m m m m mP A P A A V A V P A A Vρ ρ ρ+ + + = +                               (3.22) 

According to gas state equation, local gas density can be expressed as: 

( )P RTρ =                                                                                                        (3.23) 

The local velocity can be expressed as a function of Mach number: 

2 2V M RTγ=                                                                                                      (3.24) 

Substituting local density Equation (3.23) and local velocity Equation (3.24) into 

Equation (3.22), the momentum conservation can be rewritten as: 
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The Mach number at the mixing chamber exit can be solved by substituting Equation 

(3.12) and Equation (3.15) into Equation (3.25). 
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( ) ( )

( )

22 2 2

3
2

1 22 2 2
1

21
1

m m

m m
m

m
m

m

M

γ γα α α
γ γ

γγ α
γ

⎛ ⎞⎛ ⎞−
− − ± − + −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠=

⎛ ⎞
− −⎜ ⎟−⎝ ⎠

                             (3.26) 

Where, 

( ) ( )

( )

1 1
2 2

0
4 1 4 1

0
1 1
2 2

0

0

, ,

1

s s
s s p p

p p

m m

p p

T R f M w f M
T R

T R w
T R

γ γ
α

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=
⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                               (3.27) 

and 

( )
1

2 2
2

4
1 1, 1

2
Mf M M

M
γ γγ γ

−
+ ⎡ − ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                                                          (3.28) 

 

So far, the flow field parameters at the mixing chamber exit are all obtained by solving 

the conservation equations of mass, momentum and energy over the control volume as 

shown in Fig. 3.3. The velocity which is represented by Mach number can be calculated 

by using Equation (3.26); the static pressure and the stagnation temperature can be 

calculated by using Equation (3.15) and (3.19), respectively. To calculate these 

parameters, it may be more convenient to make the entrainment ratio, ω , be a function 

of the area ratio.  
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Considering that 1 3 1s m pA A A= +  and using Equation (3.9), the area ratio of secondary 

stream to primary stream at the mixing chamber inlet can be expressed as: 

( )
1 3

1 5 1

1 1
, ,

s m

p t n p p

A A
A A f Mη γ

= −                                                                             (3.29) 

Where ( )5 1, ,n p pf Mη γ  is defined as: 

( ) ( )

( )
( )

1

2 1
1

2 1

5 1
21

1

1 2 1 1, , 1
11

1
2

p

p
p

p

n p p
pp n

n p

f M
M

M

γ

γ
γ

γ
η γ

γγ η
η

− +

−
+

−

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎢ ⎥= − +⎜ ⎟ ⎢ ⎥−+ ⎛ ⎞⎝ ⎠ +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 (3.30) 

Rearranging Equation (3.20) to give, 

( )
( )

3 11 0

1 0 1 1

,
, ,

s ss s

p p p p n

f MP P
P P f M

γ
γ η

=                                                                                   (3.31) 

The relationship of ER with area ratio can be derived by substituting Equation (3.29) and 

Equation (3.31) into Equation (3.10), according to the definitions of ( )1 1, ,p p nf Mγ η , 

( )2 ,f Mγ  and ( )3 ,f Mγ . 

( )
( )
( )

( )
( )

11 1
22 2

00 1 3

0 0 1 5 1

1
2 12

1 1
2
11

2 12
1

1 1
, ,

11 112                       . 1
2

1
1

2

s

s p

p

p

p

p ps s s m

p s s p p t n p p

s
s

pn
p

n
p

p

T RP M A
P T R M A f M

M
M

M

γ
γ γ

γ

γ

γ

γω
γ η γ

γ
γη

η
γ

− +
− −

−

− +

−

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

−⎛ ⎞+⎜ ⎟ ⎡ ⎤−⎛ ⎞−⎝ ⎠ +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦−⎛ ⎞

+⎜ ⎟
⎝ ⎠

                   (3.32) 
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Derivation of Constant-Area Mixing Model with Aerodynamic Throat 

 

Fig. 3.4 shows a control volume of the initial interaction region in the constant-area 

mixing chamber. This control volume was used for derivation of equations for constant-

area mixing model operating in the supersonic regime (SR). In order to analyze the flow 

in this region, the following additional assumptions are made: 

5) Streams do not mix and are isentropic between sections 1 and 2. 

6) The secondary stream is choked at section 2, i.e., 2 1sM = . 

7) The primary static pressure at the inlet is greater than that of the secondary, i.e., 

1 1p sP P> . 

 

 

Fig. 3.4 Control volume for analysis of initial interaction region 
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The area ratio of primary stream at section 1 to nozzle throat can be derived starting 

from the following equation: 

2 2 1

1

p p p

t p t

A A A
A A A

=                                                                                                    (3.33) 

Considering that 2 3 2p m sA A A= −  and 1 3 1s m pA A A= −  and substituting Equation (3.9) into 

Equation (3.33), Equation (3.34) is obtained: 

( )
( )

( )
( )

1

2 1
1 3 1 2

12 12 1 2

21 3 1
1

1 11
1 2 21

11
1

2

p

p
p

p

p m p
p

p s s

pt p m p
n p

A A
MA A A

A A A M
M

γ

γ
γ

γ

γ

γγ
η

− +

−
+

−

− ⎡ ⎤−− ⎢ ⎥⎛ ⎞ ⎢ ⎥= −⎜ ⎟ ⎢ ⎥−+ ⎛ ⎞⎝ ⎠ +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

          (3.34) 

The above area ratio can also be derived, similar to Equation (3.8), in the following form: 

1
2

2 *

22 2
2

1
11 2

1
1

2

p

p p

pt p p
p

A P
A P M M

γ

γ

−⎛ ⎞
+⎜ ⎟

= ⎜ ⎟−⎜ ⎟+⎜ ⎟
⎝ ⎠

                                                                      (3.35) 

The * 2p pP P in Equation (3.35) can be expressed as: 

* * 0 1 * 2 1

0 1 02 0 1 2

p p p p p p p

p p pp p p p

P P P P P P P
P P PP P P P

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
                                                                (3.36) 

From Equation (3.5) and the isentropic relations, the following equation can be written 
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1
2
1

2

21
2

1
1

2
1

1
2

p

pp
p

p

pp
p

MP
P M

γ
γγ

γ

−−⎛ ⎞
+⎜ ⎟

= ⎜ ⎟−⎜ ⎟+⎜ ⎟
⎝ ⎠

                                                                                 (3.37) 

* 0p pP P in Equation (3.36) can be derived similarly to Equation (3.6). Substituting 

the * 0p pP P , Equation (3.6) and Equation (3.37) into Equation (3.35), the following 

expression is obtained: 

( ) ( ) ( )
1 1

2 1 12 12 2 2
2 1

2

1 11 2 1 1 1
1 2 2

p pp

p ppp p n
p p p

t p p n

A
M M

A M

γ γγ
γ γγγ η γ

γ η

+ −+
− −−⎛ ⎞ − ⎡ ⎤⎛ ⎞ −

= + + −⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟+ ⎝ ⎠ ⎣ ⎦⎝ ⎠
            (3.38) 

Thus, 2pM  can be found by using Equation (3.34) and Equation (3.38). 

 

The momentum equation for the control volume shown in Fig. 3.4 is 

2 2
1 1 1 1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2 2 2 2

    p p s s p p p s s s

p p s s p p p s s s

P A P A A V A V

P A P A A V A V

ρ ρ

ρ ρ

+ + +

= + + +
                                                          (3.39) 

Considering that 2 1sM =  and 1 3 1s m pA A A= −  from Fig. 3.4 and also solving for 

1 1s pP P from Equation (3.39), the inlet static pressure ratio can be obtained as: 

( ) ( )

( ) ( )

2 0 2 * 2 2
2 1

1 0 1 *1

1 1 3 2 2 0
1

1 3 1 0 1 2*

1 1

1 11

p p p p
p p p p

p p p ps

p p m s s s
s s

p m s s s s

P P A A
M M

P P A AP
P A A P PM

A A P P A A

γ γ

γγ

⎛ ⎞⎛ ⎞
+ − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠=
− ⎡ ⎤+

+ −⎢ ⎥
⎣ ⎦

                                     (3.40) 
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CONSTANT- PRESSURE MIXING MODEL 

 

The basic principles of constant-pressure mixing approach were introduced by Keenan 

and Neumann [3]. It was assumed that the mixing of the primary and the secondary 

streams occurs in a chamber with a uniform, constant pressure. As shown in Fig. 3.5, the 

mixing chamber is between section 1 and section 2 within which the pressure is assumed 

to be uniform. If the velocity of the fully mixed flow is supersonic ( 2 1mM > ), a normal 

shock wave is assumed to occur in the constant-area chamber between section 2 and 

section 3. The static pressure of the mixed flow leaving section 3 at uniform subsonic 

velocity is increased in the diffuser. 

 

 

Fig. 3.5 Constant-pressure ejector flow model 
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In the derivation of the constant-pressure mixing ejector model, the following 

assumptions are generally made: 

(1) The primary and secondary streams at the inlet of the ejector and the mixed flow at 

the exit of the ejector are at stagnation conditions. 

(2) Velocities are uniform at all sections. 

(3) Mixing of streams occurs at constant pressure between sections 1 and 2. 

(4) If the mixed flow is supersonic at section 2, a shock wave will occur between 

sections 2 and 3 and the flow is subsonic at section 3. 

 

The equations for supersonic primary nozzle and subsonic diffuser in the constant-

pressure mixing ejector flow model are the same as those equations in the constant-area 

ejector model. This section will therefore focus on the equation derivations for the 

mixing process of the primary stream and secondary stream. The conservation equations 

of continuity, energy and momentum as well as the perfect gas relations under the above 

assumptions are applied to analyze the flow field in the control volume shown in Fig. 3.6. 
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Fig. 3.6 Control volume of constant-pressure mixing chamber 

 

According to the constant-pressure assumption, 

1 1 2 1p s mP P P P= = =                                                                                               (3.41) 

Therefore, the mass flow ratio of secondary to primary at the inlet of the mixing 

chamber Equation (3.10) can be simplified to: 

( )
( )

1 1
2 2

0 2 11

1 0 2 1

,
,

p p s ss

p s s p p

T R f MA
A T R f M

γ
ω

γ
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                                  (3.42) 

Where, ( )2 ,f Mγ  is the mass flow function defined by Equation (3.11); 1pM  and 1sM  

are given by the following equations: 
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1

1

0

1 1

1

0

1

2
1

1 1

p

p

p

p

n
p

p
p

n
p

P
P

M

P
P

γ
γ

γ
γ

η

γ
η

−

−

⎡ ⎤
⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦=

− ⎡ ⎤
⎛ ⎞⎢ ⎥− − ⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

                                                                (3.43) 

1

1
1

0

2 1
1

s

s

s
s s

PM
P

γ
γ

γ

−
−⎡ ⎤

⎛ ⎞⎢ ⎥= −⎜ ⎟⎢ ⎥− ⎝ ⎠⎢ ⎥⎣ ⎦

                                                                         (3.44) 

The area ratio of the secondary stream to the primary stream can be obtained by 

rearranging Equation (3.42). 

( )
( )

1 1
2 2

2 11 0

1 0 2 1

,
,

p ps s s

p p p s s

f MA T R
A T R f M

γ
ω

γ
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                                  (3.45) 

 

The continuity equation for the selected control volume in Fig. 3.6, 

1 1 2p s mm m m+ =                                                                                                   (3.46) 

The area ratio of mixing chamber exit to the primary nozzle exit can be derived by 

substituting the mass flow function ( )2 ,f Mγ  into Equation (3.46). 

( )
( ) ( )

1 1
2 2

2 12 0

1 0 2 2

,
1

,
p pm m m

p p p m m

f MA T R
A T R f M

γ
ω

γ
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                        (3.47) 
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Where, mR , mγ  and 0mT  can be calculated by using Equation (3.16), Equation (3.17) and 

Equation (3.19), respectively. To design a constant-pressure gas ejector, it is desired to 

relate the entrainment ratio to the area ratio of the mixing chamber throat to the primary 

nozzle throat. This relationship can be derived by substituting Equation (3.9) and 

Equation (3.2) into Equation (3.48). 

12 2

1

pm m

t p t

AA A
A A A

=                                                                                                    (3.48) 

( ) ( )
( )

( )

( )
( )

111 1
22 2 2 1

2 0

0 2 2

2 1
1

2
1

21
, 1

1
                                       . 1

2 1

p

p

p

p

pm m m

t p p m m p

p p

n n p p

A T R
A T R f M

M

M

γ

γ

γ
γ

γ
ω

γ γ

γ

η η γ

+

−

−

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎡ ⎤−
−⎢ ⎥

+ −⎢ ⎥⎣ ⎦

                               (3.49) 

 

Since the static pressure in the mixing chamber is uniform and constant, the momentum 

conservation equation over the control volume in Fig. 3.6 can be simplified to be 

1 1 1 1 2 2p p s s m mm V m V m V+ =                                                                                     (3.50) 

Considering the continuity equation as well as the definition of ω , Equation (3.48) can 

be further simplified to be 

( )1 1 21p s mV V Vω ω+ = +                                                                                        (3.51) 

The uniform velocity of the flow at the mixing chamber exit is 
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1 1
2 1

p s
m

V V
V

ω
ω

+
=

+
                                                                                                 (3.52) 

Using Mach numbers to substitute for the velocities in Equation (3.50), 

( )

1 1 1
2 2 2

1
1 1

1
2 1 1 1

2 2 2
2

1

1

s s s
p s

p p p
m

m m m

p p p

R TM M
R T

M
R T
R T

γω
γ

γω
γ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠=
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                                                    (3.53) 

The 1 1s pT T  and 2 1m pT T  in above equation can be obtained by using the isentropic 

relationship between temperature and pressure: 

1 1

01 0 0

1 0 1 1

p s

p sps s s

p p

PT T P
T T P P

γ γ
γ γ
− −

−
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                                            (3.54) 

1 1

02 0 0

1 0 1 1

p m

p mpm m m

p p

PT T P
T T P P

γ γ
γ γ
− −

−
⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                                         (3.55) 

The 0 0m pT T in Equation (3.53)  can be calculated by using Equation (3.19). The 0 1mP P  

can be obtained by using the isentropic function: 

120
2

1

11
2

m

mm m
m

P M
P

γ
γγ −−⎛ ⎞= +⎜ ⎟

⎝ ⎠
                                                                                 (3.56) 

Substituting Equation (3.53) and Equation (3.54) into Equation (3.51), the Mach number 

at the mixing chamber exit is obtained: 
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2

2
11

2
m

mM γξ ξ
ψ ψ

− ⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
                                                                                (3.57) 

Where, 

1 1 1
2 2 2

1
1 1

1

s s s
p s

p p p

R TM M
R T

γξ ω
γ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
                                                                 (3.58) 

( )
1 1 1 1
2 2 2 2

00

0 1

1

p

ppm m m

p p p

PR T
R T P

γ
γγψ ω

γ

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                                                       (3.59) 

 

If the velocity is supersonic after constant-pressure mixing, i.e., 2 1.0mM > , a normal 

shock wave will occur between section 2 and section 3. Assuming the mixed flow after 

the shock undergoes an isentropic process, it has a uniform pressure 3mP  in the constant-

area section. The follow parameters after the shock wave can be calculated by the 

following gas dynamic relationships. 

23
2

2

2 1
1 1

m m m
m

m m m

P M
P

γ γ
γ γ

−
= −

+ +
                                                                                  (3.60) 

( )

2
23

2 2
2 2

1 2 21 1
1 1 1

m m m
m

m m m m m

T M
T M

γ γ
γ γ γ

⎡ ⎤⎛ ⎞ ⎛ ⎞−
= − +⎢ ⎥⎜ ⎟ ⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠ ⎣ ⎦

                                          (3.61) 
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γ

+
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                                                                                         (3.62) 
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SUBSONIC DIFFUSER 

 

By using the definition of diffuser efficiency, which is similar to that of the nozzle 

efficiency defined in Equation (3.2), the diffuser pressure ratio can be obtained: 

1240
3

3

11
2

m

mm
d m

m

P M
P

γ
γγη

−−⎡ ⎤= +⎢ ⎥⎣ ⎦
                                                                             (3.63) 

In addition, the over-all compression ratio through the gas ejector can be found from the 

following expression: 

1 040 40 3

0 3 1 0 0

p pm

s m p p s

P PP P P
P P P P P

=                                                                                         (3.64) 

 

PARAMETRIC ANALYSIS 

 

Supersonic Primary Nozzle 

 

As presented in Chapter II, the geometry of a supersonic primary nozzle could be 

designed based the desired mass flow rate and desired Mach number at the nozzle exit 

by using Equation (2.17) and (2.21), respectively. A set of unique flow parameters, i.e., 

the ratio of static pressure, static temperature and density to the stagnation values of the 

flow at the nozzle exit would be determined by Equation (2.9),  (2.10) and (2.11). These 

flow parameters are unique for a particular nozzle design. The supersonic nozzle is 
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operated at its design condition when the back pressure 1P  or 1pP  of the ejector, is equal 

to the exact value determined by its geometry. In this case, there is a continuous pressure 

distribution through the nozzle. In reality, the nozzle is normally operated with the 

downstream back pressure 1P  in a certain range instead of at a particular designed value. 

When the nozzle is operated in off design conditions, a shock may occur and the 

pressure distribution would no longer be continuous. 

 

A nozzle is called under-expanded if the nozzle exit area is too small so that designed 1P  

is above the operating back pressure. On the other hand, a nozzle is called over-

expanded if the nozzle exit area is too large so that a shock will occur and other 

phenomena such as separation. In any case of off design operation, the flow experiences 

irreversible expansion process in the nozzle and there is energy loss in this process. 

That’s why the isentropic efficiency coefficient nη  is defined and utilized in the previous 

derivations. The isentropic efficiency coefficient nη  should be determined from 

experimental data. For different nozzles, nη  is different and it would even be different 

under various operation conditions.  

 

Plots of the area ratio of nozzle exit to nozzle throat against the desired exit Mach 

number for various nη  using Equation (3.9) are shown in Fig. 3.7. As a comparison, the 

area ratio curve obtained by Equation (2.21) with isentropic assumption ( 1nη = ) is also 

plotted in Fig. 3.7. It is observed from Fig. 3.7 that a larger nozzle area ratio is required 
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to achieve the same desired exit Mach number if nη  decrease, i.e., the energy loss in the 

nozzle increases. Fig. 3.8 shows the relationship of pressure ratio of nozzle exit to throat 

against exit Mach number for various nη . For the smaller nη , the same Mach number 

will result in much smaller pressure ratios.  
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Fig. 3.7 Area ratio of nozzle exit to its throat vs. 1pM  for various nη  
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Fig. 3.8 Pressure ratio of nozzle exit to its throat vs. 1pM  for various nη  

 

Theoretically, the nozzle exit Mach number 1pM  can be obtained by solving Equation 

(3.9) if the isentropic efficiency coefficient nη  and the area ratio 1p tA A  are given. Two 

solutions are expected for Equation (3.9); one is subsonic, 1 1pM <  and the other is 

supersonic, 1 1pM > . As discussed, the primary stream is designed to be supersonic at the 

nozzle exit and the solution of 1 1pM >  is the correct answer for this case.  
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Once 1pM  is determined, the pressure ratio, 1 0p pP P  can be calculated from Equation 

(3.6). However, it is not possible to solve 1pM  analytically from Equation (3.9). There 

are two approaches used to avoid this trouble. One approach is to solve Equation (3.9) 

by using a numeric approach. The alternative method is use arbitrary but reasonable 

values of 1 0p pP P , then solve for 1pM  from Equation (3.6) which can be solved 

analytically. The area ratio 1p tA A  can be calculated by using Equation (3.9) once 1pM  

is determined. 

 

A least square data fit was used to solve Equation (3.9) numerically. The first step is to 

generate a set of arbitrary 1pM  values, which would cover the typical operating range of 

1pM . 11 2.6pM< <  could represent the 1pM  range of most ejectors according to Fig. 3.8.  

A set of 1p tA A  values can be calculated from (3.9) corresponding to the 1pM  values. 

An explicit function ( )1 1p p tM f A A= , such as in the form of polynomials, can be 

established by using a least square data fit on these two sets of data. Mach number 1pM  

then can be calculated easily by using this data fit function for any given 1p tA A . As an 

example, Fig. 3.9 shows the data fit curve obtained by the above-described method. This 

curve is generated by an 8th order polynomial.  
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Fig. 3.9 1pM  calculated by using least square data fit 

 

Constant-Area Mixing Model 

 

The plot of entrainment ratio (ER) against area ratio (AR) of mixing chamber to nozzle 

throat is an important gas ejector performance curve. To plot ER by using Equation 

(3.32), 1pM  and 1sM  should be calculated first. 1 1 1s pP P P= =  is a reasonable assumption 

made to calculate 1sM . 1pM , thus, 1pP  and 1sM  can be calculated by employing the 

previous numerical method for any given 1p tA A . Fig. 3.10 is developed in this way for 
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primary nozzles with various area ratios of nozzle exit to nozzle throat 1p tA A . For the 

purpose of design convenience, a performance curve of ER against the diameter ratio 

(for cylindrical ejectors) is also plotted as Fig. 3.11.  

 

The investigated range for the nozzle area ratio parameter 1p tA A  is very narrow in these 

calculations—from 1.77 to 2.17. According to Fig. 3.9, this 1p tA A  range corresponds to 

a range of 1.8 to 2.1 for 1pM , a typical ejector operational range. If the area ratio 1p tA A  

is too small, the corresponding static pressure 1pP  could be higher than 0sP  and no 

suction would happen. On the other hand, too big 1p tA A would result an unreasonable 

high 1pM  which results a  very low 1pP . That’s why the range of [ ]1 1.77,  2.17p tA A =  

was selected for the study.  

 

As expected, increased nozzle expansion area ratio 1p tA A should enhance ejector 

entrainment ratio since the bigger expansion results in a higher Mach number and lower 

static pressure at the nozzle exit. If the primary nozzle is always operated on its design 

point (corresponds to the value of 1p tA A ), large 1p tA A  may result an unreasonable 

low 1pP  such that 1 0p sP P , even a supersonic secondary flow. In reality, this 

phenomena never happen and 1pP  will not be much lower than 0sP . The reason for this 

discrepancy is that the isentropic efficiency coefficient nη  was given as a fixed value in 
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our calculations, while over-expansion shock, corresponding to different nη  values, will 

happen in real operation.  
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Fig. 3.10 Constant-area ejector ER vs. area ratio for various primary nozzles 
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Fig. 3.11 Constant-area ejector ER vs. diameter ratio for various primary nozzles 

 

An alternative approach for obtaining the ejector performance curve would be to use 

arbitrary but reasonable values of 1 1 1p sP P P= = . To operate the ejector, the 1P  value must 

be in a practical range such that 1 00 1sP P< < . Fig. 3.12 shows the ER curves obtained 

by this method for various 1P . Fig. 3.11 and Fig. 3.12 are very similar to each other, 

since they are predictions for the same nozzle but using different solution assproaches. 
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Fig. 3.12 Constant-area ejector ER curve for various 1P  values 

 

Ejector performance is affected by the temperatures of the primary stream and the 

secondary stream. Fig. 3.13 shows the impact of temperature ratio of secondary to 

primary streams on jector performance curve of ER against area ratio. Fig. 3.14  is a 

similar curve, but ER is plotted against the diameter ratio instead of area ratio for the 

purpose of design convenience. The investigation range of temperature ratio 0 0s pT T  

was arbitrarily selected in the range of [ ]0 0 0.90,  1.30s pT T = . 0pT  was set as a fixed 
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value, 0 300pT K= . Therefore, the secondary flow inlet temperature was in the range of 

[ ]0 270 ,  390KsT K= , which includes the most practical operating conditions.  

 

It is observed from Fig. 3.13 and Fig. 3.14 that ER is higher for the cooler secondary 

flow. The impact of 0 0s pT T  is more obvious in the big area/diameter ratio range. In the 

small area/diameter ratio range, the temperature ratios do not have significant influence 

on the ejector performance curve.  
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Fig. 3.13 Constant-area ejector ER vs. AR for various 0 0s pT T  
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Fig. 3.14 Constant-area ejector ER vs. DR for various 0 0s pT T  

 

The specific heat ratio γ  is a very important parameter in the gas ejector analytical 

model. Fig. 3.15 shows the influence of specific heat ratio on the ejector ER curve. In 

the plot of the performance curve, arbitrary values of  sγ  are set as the specific heat ratio 

for the secondary stream. Air, with 1.4pγ = , is set for the primary stream. It is observed 

from Fig. 3.15 that specific heat ratio does have some impact on the ejector performance 

curve. However, the influence of s pγ γ  on the ER is not significant. 
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Fig. 3.15 Impact of specific heat ratio on the constant-area ejector performance 

 

In practical ejector design, the details of the geometry are calculated. In previous 

discussions, a lot of effort has been put on the design of the primary nozzle and the 

mixing chamber. The previous discussion gives adequate information to determine the 

geometric parameters of those two parts in the design of a constant-area gas ejector for a 

desired entrainment ratio.  

 

More detail may be desired in the design of section 1 (suction station) in Fig. 3.2. A 

desired parameter of this station is the area ratio of secondary flow channel to primary 
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flow channel, 1 1s pA A . Actually, 1 1s pA A can be calculated by using Equation (3.29) for 

desired entrainment ratio. Fig. 3.16 shows the relationship of 1 1s pA A  with the 

entrainment ratio of a constant-area gas ejector. 

 

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Entrainment Ratio

A s1
/A

p1

 

Fig. 3.16 Relationship of 1 1s pA A with constant-area ejector ER 

 

The mixing chamber exit Mach number 3mM  is calculated by using Equation (3.26) for 

the desired entrainment ratio. Two real solutions are possible for Equation (3.26), though 

sometimes there is only one real solution. Should two real solutions happen, one is 
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supersonic value 3 1mM >  and the other one is subsonic value 3 1mM < . The subsonic 

solution is the one for our design and the supersonic solution is abandoned. Fig. 3.17 

shows the relationship of 3mM  with constant-area ejector entrainment ratio.  
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Fig. 3.17 Relationship of mixed flow Mach number with constant-area ejector ER 

 

The compression ratio (CR) is an important parameter in practical gas ejector design. It 

is desired to design an ejector which introduces more secondary flow and gain higher 

pressure recovery for the secondary flow. Fig. 3.18 is the plot of CR against ER on a 
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semi-log scale for a constant-area gas ejector. CR can be as higher as 4.0 if ER is 

extremely low, and it decreases sharply with the increase of ER. CR is below 1.2 when 

ER is more than 1.0. This phenomenon can be explained by momentum conservation. 

Larger ER means the same amount of momentum transferred from primary stream is 

shared by more mass of secondary stream; thus, lower pressure increase will be gained 

by each unit mass of secondary flow. On the other hand, smaller ER means the same 

amount of momentum transferred from primary stream is shared by less mass of 

secondary stream, and higher pressure increase will be gained. Fig. 3.19 shows this 

performance curve for a constant-area ejector in the region where ER is higher than 1.0 – 

the range of practical ejectors are usually operated.  

 

 
Fig. 3.18 Plot of CR vs. ER in semi-log scale for constant-area ejector 
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Fig. 3.19 Plot of CR vs. ER in higher ER region for constant-area ejector 

 

Constant-Pressure Mixing Model 

 

The calculations for the constant-pressure mixing ejector model can be performed 

similarly to the calculations for the constant-area mixing model. Since the design and 

performance analysis for constant-area ejector have been executed in great detail in the 

previous section, the analysis of constant-pressure ejector will not be in the same detail. 
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As for the constant-area model, the analysis for constant-pressure model is focused on 

ejector performance curves.  

 

It is possible that the mixed flow can be supersonic at the mixing chamber exit, i.e., 

2 1mM > , and a normal shock will occur between section 2 and section 3. This will 

happen in an ejector with a small area ratio of mixing chamber exit to the nozzle throat 

and extremely low entrainment ratio. In this case, shock wave Equations (3.60), (3.61) 

and (3.62) could be utilized to correct the flow field parameters. In reality, most practical 

ejectors are not designed in such configurations and it is not necessary to consider the 

situations of 2 1mM > . In this section, calculations will be performed only for the 

subsonic mixed flow cases, i.e., 2 1mM <  and 3 2m mM M= . 

 

The flow parameters at the nozzle exit 1pM , 1pP  can be calculated for a given nozzle 

area ratio of 1p tA A  by using least square fit numerical approach. As discussed in the 

previous section, it may be better to use arbitrary values of 1P  to solve 1pM  and 1sM  

with the assumption of 1 1 1P sP P P= = . Fig. 3.20 shows the relationship among 

entrainment ratio and the area ratio of mixing chamber exit to nozzle throat for various 

1P  values.  
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Fig. 3.20 Relationship of ER with AR for constant-pressure ejector with various 1P  

 

As a comparison, the ER calculations for constant-area ejector and for constant-pressure 

ejector are plotted together on Fig. 3.21. Solid lines represent the ER curves of constant-

pressure ejector and the dash lines represent the ER curves of constant-area ejector. In 

high ER region (ER>1.0), there is no significant difference between the plots obtained 

by these two mixing models. In low ER region, the difference between these two 

approaches could be obvious. Generally, the constant-pressure ejector has higher ER 

when 1 0 0.90sP P > , while the constant-area ejector has a higher ER if 1 0 0.90sP P < . 
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This observation is different from conclusions in the literature. In the literature, it is 

widely believed that a constant-pressure ejector has a better performance [3], though 

some researchers do not agree.  
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Fig. 3.21 ER curves for constant-area ejector and constant-pressure ejector 

 

The mixing chamber exit Mach number 2mM  is calculated by using Equation (3.57), 

thus the velocity and other flow parameters of this location can be determined. Unlike 

the constant-area model which may have two solutions of 3mM , only one solution can be 

obtained from Equation (3.57). Intuitively, 2mM  is certainly related with ER and the AR 
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of mixing chamber to nozzle throat. To explore this relationship, 2mM  is plotted against 

the AR in Fig. 3.22. The 2mM  value drops rapidly with the increase of AR. The possible 

supersonic mixed flow, i.e. 2 1mM > , happens in a limited region with small AR. 

Practically, it is not desired to design an ejector with a small AR, since small AR 

corresponds to small ER.  
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Fig. 3.22 Plot of 2mM  against 2m tA A  for constant-pressure ejector 
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As stated before, the CR and ER are the two most important design parameters. Higher 

ER as well as higher CR is desired. Fig. 3.23 shows the relationship between CR and ER 

for a constant-pressure ejector. The value of CR can be as high as 1.6 at the point of 

ER=0.1. However, it deceases rapidly with increase of ER, and CR is less than 1.2 when 

ER is higher than 1.0. The design goal of “higher CR as well as higher ER” is difficult to 

implement, but it is possible to design an ejector with a reasonable balance between ER 

and CR. The relationship between CR and 2mM  is potted in Fig. 3.24. The CR increases 

with increasing 2mM , since bigger 2mM  means smaller AR and smaller ER. 
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Fig. 3.23 Relationship between CR and ER for constant-pressure ejector 
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Fig. 3.24 Plot of CR against 2mM  for constant-pressure ejector 

 

EJECTOR DESIGN USING 1-D MODELS 

 

Gas ejectors are usually integrated into systems for specific operational conditions and 

limitations, which are specified in terms of temperature, pressure and flow rate. The 

designed ejectors should meet these constraints and other design specifications. 

Following is the procedure of a gas ejector design: 

1) Determine the ejector operation conditions or boundary conditions; 



 71

2) Determine desired ER and CR; 

3) Determine primary nozzle geometry according to operational conditions; 

4) Determine mixing model, constant-area approach or constant-pressure approach; 

5) Determine the mixing chamber geometry according to the relationship of ER vs. AR; 

6) Determine diffuser dimension for desired CR. 

The above design procedure can be implemented according to the equations and figures 

derived for the constant-area approach or constant-pressure approach accordingly.  

 

A computer program, ESDUpac A9242 Version 2, developed and released by the 

Engineering Science Data Unit (ESDU) can be used to do the calculations for the ejector 

design. All 1-D analytical models as well as their latest improvements are included in the 

package of ESDUpac A9242. Sets of coefficients collected from many experiments are 

utilized to correct the calculations due to various loss factors. It is a convenient and 

practical tool for gas ejector design and performance analysis.  

 

ESDUpac A9242 provides the following design and performance prediction procedures. 

A) Quick Design Procedure. Given a selection of entry and required exit pressures, 

temperatures, mass flow rates and dimensions the program will calculate primary 

nozzle and exit dimensions, using empirical data for air-air ejectors. The scope of 

Quick Design Method is restricted to ejectors with constant-area mixing and air as 

both working fluids. 

B) Detailed Design Procedure. Give a selection of entry and required exit pressures, 
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temperatures, mass flow rates, dimensions and loss factors as well as user defined 

constraints on the flow conditions, the program will calculate the primary nozzle 

and exit dimensions and flow conditions throughout the ejector. 

C) Performance Prediction Calculation. Given the ejector dimensions, loss factors and a 

range of flow conditions at entry, the program will calculate the outlet conditions 

and the flow conditions through the ejector.  

 

Fig. 3.25 is the typical gas ejector configuration utilized by ESDUpac A9242 for the 

calculations of design and performance prediction. The procedure and steps of deign a 

gas ejector which meets the system operational flow conditions and constraints are 

shown in Fig. 3.26.  

 

 

Fig. 3.25 Typical ejector configuration used by ESDUpac A9242 
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Fig. 3.26 Ejector design procedure for using ESDUpac A9242 
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SUMMARY AND DISCUSSION 

 

Two general 1-D models for gas ejector design, the constant-pressure mixing model and 

constant-area mixing model, have been derived based on the conservation equations of 

continuity, momentum and energy. A parametric study was performed on both models. 

Gas ejector design can be implemented by employing equations of constant-area mixing 

and their corresponding figures generated in the parametric study. The general gas 

ejector design procedure and steps were discussed. ESDUpac A9242, a computer 

program with comprehensive 1-D analytical models for gas ejector design, has been 

introduced briefly. A flow chart of gas ejector design using ESDUpac A9242 has been 

developed.  

 

It is widely believed that the constant-pressure mixing approach results in ejectors with 

superior performance. However, this belief is not supported by the present work. These 

calculations show that a constant-pressure mixing ejector could have better performance 

than that of constant-pressure mixing ejector for certain operating conditions, while it 

could be the reverse for other operating conditions. Actually, Keenan and Neumann also 

expressed the opinion that the theoretical results obtained by using the constant area 

ejector flow model agreed with experimental results and that it was difficult to obtain an 

agreement between the theoretical and experimental results for the constant pressure 

ejector flow model.  
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The ideal design method should provide information on flow-channel shape to give the 

best performance. In reality, it is impossible to determine the optimal shape and the 

dimensions of a constant-pressure mixing chamber. Even if it could be determined for 

one operating condition, different ejector geometries would be required for every 

different operating condition. It is still not practical to design a gas ejector with the 

constant-pressure mixing approach. Although a number of modifications have been 

proposed, there appears to be a need for further improvement.  

 

As discussed preciously, ejector design procedures determine performance at the 

primary nozzle “on-design” point—a unique operating point. However, the practical 

ejector may be required to operate over a range of primary pressures or secondary Mach 

numbers. Actually, operating conditions critically affect the optimum performance of an 

ejector. Slight changes in operating conditions result in the ejector operating away from 

its designed optimum performance. Therefore, in this study, arbitrary but reasonable 1P  

and 1 1 1p sP P P= =  were adopted for the calculations for the constant-pressure model and 

the constant-area model, respectively.  

 

To design and predict the performance of a gas ejector integrated in a system with a 

range of operation conditions, more definitive design and prediction methods are needed. 

Theoretically, 2-D analytical methods could be utilized for this purpose; however, the 

technique is ruled out as an effective method because of the number of empirical 

coefficients required.  
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Commercial Computational Fluid Dynamics (CFD) software are now widely available. 

These CFD programs allow researchers to model complicated supersonic flows and 

mixing problems in complicated geometries. Local details of flow fields can be also 

obtained by CFD software, thus, it enable researchers to gain better understanding of the 

mixing process in a ejector. In next chapter, a CFD program will be used to model and 

design gas ejectors. 
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CHAPTER IV 

SINGLE PHASE GAS EJECTOR CFD SIMULATIONS 

 

INTRODUCTION 

 

Previously introduced 1-D analytical approaches do not provide the details of the flow 

field, such as the local velocity, pressure, temperature profiles of the streams in the 

ejector. Knowledge of these details is very important to understand the complex 

compressible phenomena happening in the nozzles and the mixing process occuring in 

the mixing chamber. This understanding is crucial to model and predict the performance 

of ejectors with better accuracy and to design ejectors with optimal performance curves. 

Those flow parameters could be obtained by 2-D analytical models. However, 2-D 

analytical models are complicated and haven’t been well established yet. The alternative 

is numerical simulation using CFD codes. The computer program FLUENT, a 

commercial CFD software, is utilized for this simulation purpose. 

 

A brief introduction of the FLUENT code and the details of ejector simulation procedure 

is the first part of this chapter. The second part is a benchmark of the simulation. Data of 

ejectors are compared with the simulation results, reasonable agreement is found. The 

next part of this study is to find the best geometrical configuration which achieves the 

optimal ejector performance curves in terms of entrainment ratio (ER) or compression 

ratio (CR). Details of the flow field in a gas-ejector with single-phase flow obtained 
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from the CFD simulations are included in the fourth part. As an example of using the 

CFD tool to design a particular gas ejector, the fifth part of this chapter talks about 

ejector design for a scalable PEM fuel system. 

 

FLUENT AND SIMULATION ASPECTS 

 

FLUENT is a commercial CFD software released by Fluent Inc. [25]. It is designed to 

simulate dynamics of flow processes. In simulations, the system or device is constructed 

as a computational model—geometry and grid system using a preprocessor. The 

computational model is then imported to the appropriate solver. The computation can be 

executed after the boundary conditions, initial conditions, and the fluid flow physics are 

applied to this virtual prototype. The solver can output the various predictions of the 

fluid dynamics, including the fluid flow behavior, heat transfer and mass transfer etc.  

 

Preprocessing is the first step in building and analyzing a flow model. It includes 

building the model, applying a mesh, and entering the data. Three preprocessing tools, 

GAMBIT, G/Turbo and TGrid are provided by FLUENNT Inc. Third-party 

preprocessing tools, such as ANSYS, PATRAN, GridGen, can also be used. The meshes 

generated by GAMBIT can be structured or unstructured. After preprocessing, the CFD 

solver of FLUENT does the calculations and produces the results. This solver is capable 

of complicated geometry simulation, and has complete mesh flexibility. It is capable of 

solving flows of all speed regimes from the low subsonic flow to transonic, supersonic, 
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and hypersonic flows. The flow can be steady-state or transient; it can be inviscid, 

laminar, or turbulent. 

 

GAMBIT 2.2 was used as the preprocessor for all simulations in this study. The ejector 

geometry was constructed to be 2-D axis-symmetric as shown in Fig. 4.1. The 

computational domain was discretized to be a grid system with structured or 

unstructured meshes. The geometry and grid system were then imported to the solver 

FLUENT 6.3.  As shown in Fig. 4.1, the boundaries of the geometry were defined as 

pressure-inlet, pressure-outlet, axis (symmetric) and wall. The wall was set to be a 

stationary, non-slip wall. The fluid in the domain was set to be air or nitrogen with the 

density being that of ideal gas, and other properties being constant. In solving the flow 

field, standard gravity was considered as the operating condition.  

 

 

Fig. 4.1 2-D axis-symmetric ejector design 

 

A density-based solver was used instead of pressure-based solver for all calculation 

cases. As mentioned before, “2-D axis-symmetric” was adopted as the spatial approach. 
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The fluid flow was set as steady state. Though Reynolds number could be low in certain 

areas, the flow is generally turbulent in the computational domain. Spalart-Allmaras 

turbulence model, with “Strain/Vorticity” as eddy generation method, was employed for 

all calculations. Heat transfer was enabled. 

 

BENCHMARK 

 

The Inter-Phase Transport Phenomena (ITP) Laboratory at Texas A&M University 

(TAMU) has designed ejectors which meet the operating condition of PEM fuel system. 

FLUENT was applied to design the ejector and predict its performance. A system with 

ejector was developed to validate the CFD predictions. Fig. 4.2 shows a schematic of 

ejector test system used for the benchmark test.  

 

 

Fig. 4.2 Schematic of ejector performance test system 
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Initially, ejector performance is evaluated for open loop system, i.e. the suction port and 

the outlet port are open to atmosphere.  Fig. 4.3 shows the schematic of ITP homemade 

ejector. A Thread to Barb Orifice with 0.0145" orifice diameter was used as a primary 

nozzle and 1/4" tube with the inner diameter of 0.152" was used as mixing section. On 

the outlet side of the port connector, a hole was bored through the connector body and 

ultra-torr fitting was attached so that 1/4" stainless tube can be moved through the 

connector body.  

 

 

Fig. 4.3 ITP ejector structure 

 

To evaluate ejector performance, the ratio of outlet flow rate to primary flow rate was 

plotted against the primary flow rate as shown in Fig. 4.4. At the low end of primary 

flow rate, the ER is also low. ER increases rapidly with the increase of primary flow rate, 

and it reaches the maximum value of 5.5 at the primary flow rate of 3 SLPM. ER turns 
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down at primary flow rate of 4 SLPM, and it decrease with further increases of primary 

flow rate.  

 

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14

Primary Flow Rate (SLPM)

ER

 

Fig. 4.4 ITP ejector performance curve 

 

This ejector was simulated by using FLUENT with the geometry shown in Fig. 4.5. 

Numerical simulation results and test data of primary flow rate vs. driving pressure are 

plotted in Fig. 4.6. Fig. 4.6 shows that the relationship between primary flow rate and 

driving pressure is linear. Very good agreement was found between CFD results and test 

data. 

 



 83

 

Fig. 4.5 Ejector geometry configuration simulated by FLUENT 
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Fig. 4.6  Primary flow rate vs. gas supply pressure 
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Fig. 4.7 shows ejector flow ratio against driving pressure. The error bar of data is 10%± . 

The optimal performance region in terms of ER is in the driving pressure range of 40-80 

psia. The simulation results show a good agreement with data. These compare very well 

in the ejector optimal performance region. Bigger discrepancies are found in the higher 

driving pressure region. A possible reason is that the friction effect of tubing in the 

experimental tests is no longer negligible for the higher flow rate. The CFD simulation 

only considered the configuration of ejector itself, and the simulated length of mixing 

tube is 1 inch. However, the actual length of orifice downstream tube is about 20 inches 

with flow meter, which causes a pressure drop. For higher flow rates, the pressure drop 

across this tube and flow meter will be relatively significant. 

 

Based on the comparisons of CFD simulation results with data from the Texas A&M 

University ITP group, it is proper to conclude that there is very good agreement between 

the CFD predictions and test data, validating CFD simulations. Commercial CFD 

software FLUENT can be used to simulate the supersonic gas ejector, and it is capable 

of predicting the performance of an ejector to a satisfactory degree.  
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Fig. 4.7 ER vs. driving pressure 

 

EJECTOR OPTIMIZATION 

 

The ejector geometry optimization goal is to find the optimal geometry configuration 

which can achieve the highest entrainment ratio (ER) as well as reasonable pressure 

recovery. The optimal configuration is obtained by investigating the influence of 

geometry parameters on the ejector performance. The investigation includes adjustment 

of the following geometry parameters: the diameter ratio of mixer to throat ( m tD D ), the 
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position of nozzle exit to the entrance of constant-area mixer, the mixing tube length, the 

subsonic diffuser angle etc.  

 

The ejector configurations shown in Fig. 4.5 and Fig. 4.8 were used as the basic 

geometric set up. Geometry modifications and parameter adjustments were done based 

on Fig. 4.5 or Fig. 4.8 to obtain the optimal configuration.  

 

 

Fig. 4.8, Ejector geometry used for optimization 

 

To investigate the impact of a certain geometry parameter on ejector performance, that 

parameter was adjusted while other parts of the ejector geometry were fixed. The same 

boundary conditions and operating conditions were then set up for all these 

configurations. The performance curve was obtained by plotting the resulting ERs of all 

simulation cases against the values of that geometry parameter.  

 

To set boundary conditions in absolute pressure, the operating environment pressure is 

set to be zero. The operating environment temperature was set to be 300 K. Also, gravity 

was included in the operating conditions. For the purpose of comparison, the same 
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boundary conditions were set for all simulation cases which were based on adjusting the 

geometry configuration shown in Fig. 4.8. The primary inlet was 164.7 psia and 300K; 

the suction inlet was 59.3 psia and 300K; the outlet was 59.7 psia and 300K. The 

investigation of the influence of primary nozzle exit position on performance was based 

on modifying the geometry configuration shown in Fig. 4.5. Boundary conditions for 

this investigation were 59 psia, 14.7 psia and 14.7 psia for primary pressure inlet, suction 

pressure inlet and pressure outlet respectively. 300 K is the temperature set for all 

boundaries. 

 

Primary Nozzle Exit Position 

 

For a given nozzle geometry, sL  in Fig. 4.9 describes the geometry between the suction 

plenum and the mixing tube, i.e., = +s n gapL L L . Where, nL  is the nozzle length and gapL  

is the distance between the nozzle exit and constant-mixing tube entrance. The position 

of the nozzle exit to the entrance of the constant-area mixer can be represented by sL . 

<s nL L  means that the nozzle is inserted to the constant-area tube; >s nL L  means there 

is certain distance between the nozzle exit and the entrance of constant-area mixing tube.  

 

The simulation results are shown in Fig. 4.9. The entrainment ratio, ER, is plotted 

against the value of sL . It is observed that ER is much higher for >s nL L   than that of 

for <s nL L , i.e., the ejector has better performance when its nozzle was taken out of 
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mixing tube than the nozzle was inserted in the mixing tube. This phenomenon is 

consistent with our expectation. The cross sectional area of secondary flow path is 

smaller when the nozzle was inserted in the mixing tube than when the nozzle exit 

located at outside of the mixing tube. A dimensionless parameter gap mL D , the ratio of 

gapL  to mixer diameter mD , is more convenient to use in gas ejector design when 

>s nL L . It is observed from Fig. 4.9 that the gas ejector has the best performance when 

gap mL D  is in the range of 0.25 ~ 1.5 . When gap mL D  increases further, the ER starts to 

decrease rapidly.  

 

 

Fig. 4.9 Ejector performance against sL  
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Diameter Ratio of Mixer to Throat 

 

Investigation of the influence of diameter ratio m tD D  on ejector performance was 

based on the gas ejector configuration shown in Fig. 4.8. The nozzle throat diameter tD  

was fixed at 0.013” and the mixer diameter mD  was then adjustable. Fig. 4.10 shows that 

ER increases with the increase of m tD D  and reaches its maximum value at 11=m tD D . 

The ER then decreases rapidly with the further increase of m tD D . The ejector has the 

best performance when m tD D  is in the range of 8 to 14. When m tD D  is larger than 17, 

the ejector can not induce any secondary flow. 
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Fig. 4.10 Influence of diameter ratio m tD D on ejector performance 
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Mixer Length 

 

Investigation of the influence of mixing tube length mL  on ejector performance was 

again based on the gas ejector configuration shown in Fig. 4.10. The ratio of mixing tube 

length to mixing tube diameter, m mL D , was used as a dimensionless parameter. The 

ejector performance curve was obtained by plotting ER against the m mL D  value as 

shown in Fig. 4.11. The ER decreases slightly with the increase of m mL D . In reality, 

m mL D  is usually designed to be in the range of 8 to 12. 
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Fig. 4.11 Influence of mixing tube length on ejector performance 
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Diffuser Angle 

 

A subsonic diffuser is adopted to enhance pressure recovery. Diffuser exit cross-

sectional area should determine ejector pressure recovery. The diffuser exit flow area is 

determined by its expansion angle and its length. It is more practical to adjust expansion 

angle rather than to adjust length. The simulation results are shown in  Fig. 4.12. The ER 

increases slightly with the increase of diffuser expansion angle and it reaches a 

maximum value at diffuser angle of 5 degree, then, the ER decreases slightly with the 

increase of diffuser expansion angle. The optimal diffuser expansion angle is in the 

range of 2 to 6 degrees. 
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Fig. 4.12 Influence of diffuser expansion angle on ejector performance 
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The ejector configuration optimization was performed in order to achieve the highest ER 

as well as reasonable pressure recovery. The investigations have been implemented on 4 

geometry parameters: the diameter ratio of mixer to throat ( m tD D ), the position of 

nozzle exit to the entrance of constant-area mixer, the mixing tube length, and the 

subsonic diffuser angle. The study shows that the diameter ratio of mixer to throat and 

the position of nozzle exit to the entrance of constant-area mixer have the most 

significant impact on the gas ejector ER curve. The influence of mixing tube length and 

the subsonic diffuser angle is relatively less important. To achieve optimal performance, 

the gas ejector may designed in such a way that the m tD D is in the range of 8~12, the 

gap mL D  is in the range of 0.25 ~ 1.5 , the m mL D  is in the range of 8 to 12, and the 

diffuser expansion angle is in the range of 2 to 6 degrees. 

 

FLOW FIELD DETAILS OF GAS EJECTOR 

 

The detailed information of the flow field in a gas ejector is very helpful in 

understanding its performance characteristics. Obtaining the local details of the flow 

field is one of the purposes of using CFD to simulate gas ejector. Static pressure and 

velocity are the most important flow field parameters. Gas density, temperature and local 

Mach number are also desired information for compressible gas flow, especially for 

supersonic flow. The local profiles of these parameters are provided by post-processing 

of CFD simulations in forms of contours, vector plots or X-Y plots. 
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A gas ejector with following boundary conditions: (1) 0 164.7=P psia, 0 300=T K for 

primary pressure inlet, (2) 0 59.3=P psia, 0 300=T K for secondary pressure inlet, and (3) 

0 59.7=P psia, 0 300=T K for pressure outlet is simulated using FLUENT. The local 

information on gas ejector obtained from the simulation results are shown in the 

following figures. Fig. 4.13, Fig. 4.14 and Fig. 4.15 are contours of static pressure, axial 

velocity and static temperature respectively. Since the primary nozzle is very small 

compared to other parts of the ejector and it is this location that the flow experiences the 

most significant change, the contours of this part are enlarged.  

 

A shock wave due to the overexpansion of supersonic flow is observed clearly at the exit 

of the nozzle throat as shown in the contours of static pressure, axial velocity and static 

temperature. This demonstrates that FLUENT has the ability to capture supersonic shock 

wave phenomenon, which used to be a difficult task for CFD simulations.  
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Fig. 4.13 Contours of static pressure in gas ejector 

 

 
Fig. 4.14 Contours of axial velocity in gas ejector 
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Fig. 4.15 Contours of static temperature in gas ejector 

 

Fig. 4.16, Fig. 4.17 and Fig. 4.18 are plots of local gas density, Mach number and static 

temperature along the centerline of the gas ejector respectively. Due to the static 

pressure change, the gas density experiences a big change. The gas density is around 

12.8 kg/m3 at the primary inlet where static pressure is highest; the density is as low as 

4.4 kg/m3 at the nozzle throat exit where static pressure is lowest; the density suddenly 

jumps back to about 6 kg/m3 after a shock wave which increase static pressure; then, the 

density decreases along the centerline since the flow cross sectional area increases. The 

Mach number plot indicates that the primary flow is almost stagnation at the primary 

inlet; the stream is accelerated to supersonic by the convergent-divergent nozzle and the 

zoom in 
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Mach number is as high as 1.7 at the exit of nozzle throat (a little bit down stream of the 

throat); then, an overexpansion shock wave occurrs at this location and the down stream 

flow becomes subsonic. The plot of static temperature shows the expected opposite trend 

of Mach number.  

 

 

Fig. 4.16 Plot of gas density along the centerline of gas ejector 
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Fig. 4.17 Plot of Mach number along the centerline of gas ejector 

 

 
Fig. 4.18 Plot of static temperature along the centerline of gas ejector 
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EJECTOR DESIGN FOR SCALABLE PEM FUEL SYSTEM 

 

Efforts have been made to design a gas ejector which meets the operating conditions of a 

PEM fuel cell system with gas-driven vortex separator. Fig. 4.19 shows the schematic of 

the PEM fuel system.  Both vortex separator driving flow and gas ejector motive flow 

are supplied by a high pressure gas bottle. The separator gas outlet is connected to the 

suction port of the gas ejector. The mixed flow is then supplied to PEM fuel cell.  The 

two-phase flow coming from the PEM fuel cell, including gas and liquid, is introduced 

into the vortex separator through a low pressure drop nozzle.  
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Fig. 4.19 Schematic of PEM fuel system 
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The constraints on gas ejector are: (1) the PEM fuel cell consuming flow rate 1.5 SLPM 

to 10 SLPM, (2) the lowest limit of vortex driving flow rate at 4 SLPM or less, (3) 

pressure recovery from ejector suction to outlet, which is equal to pressure difference 

(DP) from gas ejector outlet port to suction port through the PEM fuel cell. As shown in 

Fig. 4.20, ejector performance is very sensitive to the DP which includes the pressure 

drop due to tubing friction, PEM cell itself and instrumentation, etc. DP is assumed to be 

0.4 psi for this design purpose. To meet with these constraints, it desirable to design an 

ejector that can induce at least 4 SLPM secondary flow with motive flow rate as low as 

possible, ideally, 1-2 SLPM, as well as 0.4 psi pressure recovery. 
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Fig. 4.20 ER sensitivity 
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The first step of the design is to determine the primary nozzle. To achieve the best 

performance, it is desired to operate ejector motive flow at supersonic speed at nozzle 

exit as stated previously.  A convergent-divergent nozzle is adopted in order to 

accelerate the motive flow to supersonic.  Since the motive flow is choked at nozzle 

throat, its flow rate is linear against supply pressure if supply gas temperature is constant. 

Fig. 4.21 is a plot of primary flow rate against supply pressure for various nozzle 

diameters.  
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Fig. 4.21 Primary flow rate vs. gas supply pressure 
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An ejector with nozzle diameter 0.013"=tD  and mixer diameter 0.125"=mD  has been 

studied previously. The low limit of motive flow rate is about 7 SLPM to operate this 

ejector to gain 0.4 psi pressure recovery. To decrease the low limit of motive flow rate, a 

smaller nozzle diameter is desired. Fig. 4.22 shows the interpolation of ejector 

performance for the purpose of this scoping study. ER curve for 0.013"=tD  is obtained 

by CFD simulations using FLUENT, and ER curves for other nozzles are interpolated 

from the 0.013"=tD  curve according to the linear relationship between the motive flow 

rate and supply gas pressure. It is observed from Fig. 4.22 that the nozzle diameter 

should be 0.006"  or smaller for the ejector to be operable within the system constraints.  

 

 

Fig. 4.22 Interpolation of ejector performance curve 
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According to the above analysis, ejectors with nozzle diameters of 0.008"=tD , 0.007" , 

0.006" , 0.005" and 0.004" , with corresponding optimal mixer diameters ( 12=m tD D ), 

were investigated. The investigation found that the ejector with 0.005"=tD  is operable 

for a PEM fuel system. The geometry details of the designed ejector are shown in Fig. 

4.23 and Table 4.1.  The performance curve of this ejector is shown in Fig. 4.24.  

 

 

Fig. 4.23 Geometry details of designed gas ejector 

 

Table 4.1 Geometry parameters of gas ejector with Dt=0.005” 

L1 (in) L2 (in) L 3(in) L4 (in) L5 (in) L6 (in) L7 (in) L8 (in) 

0.5 0.2 0.1 0.17 0.05 0.04 0.5 1 

D1 (in) D2 (in) D3 (in) D4 (in) D5 (in) D6 (in) D7 (in) D8 (in) 

0.17 0.07 0.005 0.328 0.06 0.019 0.06 0.235 
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Fig. 4.24 Performance curve of designed gas ejector 

 

Table 4.2 are the PEM fuel system operating parameters with this gas ejector design. 

The listed parameters, 1m , ..., 5m , and 1P , 2P , 3P  refer to those parameters in Fig. 4.19. 

PEMm_  is the PEM fuel cell consuming mass flow rate. 

 

One of the advantages of this design is that the gas ejector motive flow rate can be set to 

a constant value, i.e. the ejector flow would not require any active flow controls.  PEM 

fuel cell consuming rate can be adjusted by adapting the separator driving flow rate only, 

which would be able to be controlled passively by a pressure regulator with external 
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sensing line connecting to outlet of the PEM fuel cell. This feature can greatly reduce the 

number of system control devices and increase the stability of system operation.  

 

Table 4.2 PEM fuel system operating parameters 

m1 (SLPM) 2.2 2.2 2.2 2.2 2.2 

m2 (SLPM) 11.4 11.4 11.4 11.4 11.4 

m3 (SLPM) 13.6 13.6 13.6 13.6 13.6 

m4 (SLPM) 7.44 6.44 5.44 4.44 3.44 

m5 (SLPM) 4 5 6 7 8 

m_PEM (SLPM) 6.2 7.2 8.2 9.2 10.2 

p1 (psia) 289.2 289.2 289.2 289.2 289.2 

p2 (psia) 59.3 59.3 59.3 59.3 59.3 

p3 (psia) 59.7 59.7 59.7 59.7 59.7 

 
 
 
CONCLUSIONS 

 

Commercial CFD software, FLUENT, was used to simulate a gas ejector with single-

phase gas flow. The simulation procedure as well as FLUENT itself was introduced in 

this chapter. The simulation results have very good agreement with experimental data. 

FLUENT was then used to optimize the ejector geometric configuration. The 

optimization study shows that the diameter ratio of mixing tube to throat and the primary 
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nozzle exit position have the most significant impact on ejector performance. The 

geometry parameters optimal ranges are obtained by this optimization study. The results 

of CFD simulations give very detailed profiles of flow field in a gas ejector, which are 

very helpful to understand the mixing process of the primary and secondary streams. The 

simulations also demonstrated that FLUENT has the ability to capture the supersonic 

shock waves occurring in the ejector. Also, a specific gas ejector for scalable PEM fuel 

system was designed as an example of using FLUENT as a design tool.  
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CHAPTER V 

A NOVEL GENERALIZED EJECTOR MODEL 

 

INTRODUCTION 

 

A new 1-D generalized ejector model was developed for gas ejector design and analysis. 

In an important literature review, Sun and Eames [5] wrote “These advances have not 

been matched by the progress in constant-pressure mixing methods; ... and the question 

of the optimum shape of mixing section has still not been answered.” The generalized 

model provides an answer for this question. In the same paper, Sun and Eames also 

wrote “However, nobody has yet established a definite link between the performance of 

constant-area and constant-pressure ejectors”. This problem can also be solved by the 

present generalized ejector model. A definite link is established between the 

performance of these ejectors by using the new model.  

 

Unlike the widely used constant-pressure model and constant-area model, this new 

model does not require the assumption of either constant-area mixing chamber or 

constant, uniform pressure in the mixing chamber. The geometry of the mixing chamber 

can be any configuration, and both the constant-pressure model and the constant-area 

model can be derived from this model as particular cases.  
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For most of the existing models, there are three ways to determine the static pressures at 

the mixing chamber entrance ( 1pP  and 1sP  or 1P ): (1) the unique design value for a given 

nozzle, (2) the design value corrected by coefficients obtained from experimental data 

for some particular ejectors, (3) arbitrarly given. In the presnet novel model, 1P  is 

represented by the product of two parameters, µ  and τ , which relate the boundary 

conditions to ejector performance. The parameter τ  is a parameter given as a down 

stream boundary condition.  

 

The first part of this chapter is the derivation of the new model. The general features of 

gas ejectors are analyzed and discussed in the second part by applying this model. The 

third part of this chapter discusses optimal ejector performance. Definite links between 

the new model and the constant-pressure model, between the new model and constant-

area model, as well as between the constant-pressure model and the constant-area model 

are established in the fourth part. The performance of constant-area ejectors and 

constant-pressure ejectors could be compared based on these links. The new model is 

employed to discuss gas ejector operation and design limitations in the fifth part. The 

last part is a summary section.  

 

GENERALIZED EJECTOR MODEL 

 

The generalized ejector model is developed for gas ejectors having the schematic as 

shown in Fig. 5.1.  Similar to the constant-pressure ejector, these ejectors could be 



 108

divided into four sections, i.e., supersonic primary nozzle, mixing chamber, constant-

area section and subsonic diffuser. In practical applications, the subsonic diffuser may or 

may not be installed. Different from the constant-pressure mixing ejector, the area ratio 

of mixing chamber entrance to mixing chamber exit can be any given value as long as it 

is not less than unity. If this area ratio is equal to unity, it becomes the constant-area 

mixing ejector.  

 

 

Fig. 5.1 Schematic of generalized ejector model 

 

As discussed in previous chapters, the geometry of the primary nozzle determines a 

unique nozzle exit static pressure, but practical ejectors are usually not operated at this 

design point. It is very difficult to determine the exact value of nozzle exit static pressure. 

Some researchers use the design value to calculate the optimal ejector performance, and 
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others use coefficients obtained from experimental data for some particular ejectors to 

correct the design values, while some researchers use arbitrary values to calculate a 

range of the ejector performance.  

 

In practical operation, a shock will happen due to under-expansion or over-expansion. 

The under-expansion shock usually happens at the nozzle exit. The over-expansion 

shock may occur in the nozzle supersonic part or at the nozzle exit. If the shock occurs 

in the nozzle due to overexpansion, separation may also happen in the nozzle. There is 

no way to determine the exact location of the overexpansion shock. In this model, it is 

assumed that 1 1 1p sP P P= = . 1P  will be calculated by entropy analysis or determined by 

the given down stream operational conditions. A parameter µ  is used to relate 1P  with 

secondary supply pressure 0sP . µ  is defined by Equation (5.1). 

1

0s

P
P

µ =                                                                                                                 (5.1) 

Therefore, 

1 1 1 0p s sP P P Pµ= = =                                                                                              (5.2) 

The following assumptions are made for the generalized ejector model. 

1) The inner wall of the ejector is adiabatic. 

2) Friction loss is negligible. 

3) The flow streams are uniform 1-D and in steady state. 

4) Gases are in stagnation at the primary inlet and suction port. 
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5) The secondary flow is not supersonic. 

6) The primary stream and secondary stream have the same static pressure at the 

entrance of the mixing chamber, i.e., 1 1 1p sP P P= =  

7) The mixed flow is subsonic. 

8) Both primary stream and secondary stream can be considered as perfect gases with 

constant specific heat ratio γ .  

 

Mixing Chamber Entrance Flow Properties 

 

It is reasonable to assume that the secondary stream expands from suction port to the 

mixing chamber entrance isentropically. According to Equation (2.9), the secondary 

stream pressure ratio, 1 0sP P , is related to the Mach number 1sM  by Equation (5.3). 
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Rearranging the above equation, 
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1
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⎛ ⎞
= −⎜ ⎟⎜ ⎟− ⎝ ⎠

                                                                                       (5.4) 

 Substituting 1sM  expressed by Equation (5.4) into Equation  (2.10), the secondary 

stream temperature ratio, 1 0s sT T , is expressed in Equation (5.5). 
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If the primary nozzle is operated at its design condition, the primary flow experiences 

isentropic expansion from the nozzle throat to the nozzle exit. The isentropic Mach 

number 1p iM  can be obtained by solving Equation (5.6) and the static pressure 1p iP  is 

given by Equation (5.7). 
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                                                                                 (5.7) 

 

If the nozzle is operated under off-design conditions, the shock will occur in the nozzle 

or at the nozzle exit. The subscript x  represents the flow properties after the shock. The 

primary stream static pressure and Mach number at the nozzle exit are 1 1 0p sP P Pµ= =  

and 1pM , respectively. For off-design operations, 1 1p p iP P≠  and 1 1p p iM M≠ . After the 

shock, the total pressure will change 0 0p i p xP P≠ , but the stagnation temperature will not 

change 0 0 0p i p x pT T T= =  since it is an adiabatic process. 1pM  can be related to 1pP  by the 

mass conservation equation. The primary mass flow rate is given by Equation (2.17).  
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1
1

0

0

2
1

p

p
p t p

p
p p

P A
m

RT

γ
γγ

γ

+

−⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

                                                                             (2.17) 

 

According to Equation (3.11), the definition of mass flow function ( )2 ,f Mγ , mass flow 

rate can also be expressed by Equation (3.14).  

( )
1
2

2
2

1, 1
2

f M M Mγγ γ⎡ − ⎤⎛ ⎞≡ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                                                                    (3.11) 

( )
( )21

2
0

,PAm f M
RT

γ=                                                                                         (3.14) 

Therefore, 

( )
( )

( )

1
1 2
1

1 1 02
2 11 1

2 2
0 0

2,
1

p

p
p p p t

p p p
p

p p p p

P A P A
f M

R T R T

γ
γ

γ γ
γ

+

−
⎛ ⎞

⎛ ⎞⎜ ⎟
= ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎜ ⎟

⎝ ⎠

                                         (5.8) 

Substitute 1 0p sP Pµ=  into the above equation and rearrange into the following form: 

( )

1
1 2
1

02
2 1

0 1

2,
1

p

p
p t

p p p
s p p

P A
f M

P A

γ
γ

γ γ
µ γ

+

−
⎛ ⎞

⎛ ⎞⎜ ⎟
= ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎜ ⎟

⎝ ⎠

                                                           (5.9) 

According to Equation (3.11), the definition of mass flow function ( )2 ,f Mγ , 
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1
11 2
12

02
1 1

0 1

1 21
2 1

p

p
p p t

p p
s p p

P A
M M

P A

γ
γγ

µ γ

+

−
⎛ ⎞
⎛ ⎞⎛ − ⎞⎛ ⎞ ⎜ ⎟

+ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

                                          (5.10) 

Rearranging the above equation,  

( )
1

2
1

02 4 2 2
1 1

0 1

21 2 2 0
1

p

p
p t

p p p
s p p

P A
M M

P A

γ
γ

γ µ µ
γ

+

−⎛ ⎞ ⎛ ⎞
− + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

                                    (5.11) 

( )

( )

1
2

1
02

0 12
1

22 1
1

1

p

p
p t

p
s p p

p
p

P A
P A

M

γ
γ

µ µ γ
γ

γ µ

+

−⎛ ⎞ ⎛ ⎞
− + + − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠=

−
                                         (5.12) 

 

The primary stream total pressure after the shock wave can be expressed by the 

following equation. 

1 1
2 2

0 1 1 0 1

1 1
1 1

2 2

p p

p pp p
p x p p s pP P M P M

γ γ
γ γγ γ

µ
− −− −⎛ ⎞ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                 (5.13) 

The ratio of total pressure before shock to total pressure after the shock is 

0 0

0 1
2

0 1

1
1

2

p

p

p i p

p x
p

s p

P P
P

P M

γ
γγ

µ
−

=
−⎛ ⎞

+⎜ ⎟
⎝ ⎠

                                                                        (5.14) 
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Momentum Conservation Equation 

 

The momentum conservation equation over a control volume shown in Fig. 5.2 is solved 

to find 2
2mM , the Mach number at the mixing chamber exit. Equation (5.15) is the 1-D, 

x-direction momentum equation expressed in Mach numbers. 

 

 

Fig. 5.2 Control volume of mixing chamber for generalized ejector model 

 

( ) ( ) ( )2 2 2
1 1 1 1 1 1 2 2 21 1 1p p p p s s s s m m m mP A M P A M P A Mγ γ γ+ + + = +                              (5.15) 

Rearranging Equation (5.15), 

( ) ( ) ( )0 1 2 2 20 1
1 1 2

2 2 2 2

  
1 1 1s p s s

p p s s m m
m m m m

P A P AM M M
P A P A
µ µγ γ γ+ + + = +                                 (5.16) 

2

2

2

m

m

m

P
T
M

1

1

1

s

s

s

P
T
M

 

1

1

1

p

p

p

P

T

M

 

Control Volume
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Define a pressure ratio parameter τ , 

0

2

s

m

P
P

τ ≡                                                                                                               (5.17) 

Rearranging Equation (5.16), the 2
2mM  can be expressed in Equation (5.18). 

2
2

1
m

m

DM µτ
γ
−

=                                                                                                   (5.18) 

Where, 

( ) ( )1 2 21
1 1

2 2

  
1 1p s

p p s s
m m

A AD M M
A A

γ γ= + + +                                                              (5.19) 

 

There are two unknown variables, µ  and τ , in the expression of 2
2mM . It is desired to 

express one of these variables as a function depending on the other variable. To find 

such a function, the mass conservation equation is used. The mass flow rate at the 

mixing chamber exit is related to the mass flow rate of the secondary stream by Equation 

(5.20).  

( )
( )

( )
( )

1
2

0 2 22 2
1

1 1 2 12
0

,1
,

s s m mm m m

s s s s s
m m

R T f Mm P A
m P A f MR T

γω
ω γ
+

= =                                                     (5.20)  

According to the definitions of µ  and τ , Equation (5.21) can be readily obtained. 
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( )
( )

( )
( )

1
2

0 2 22
1

1 2 12
0

,1 1
,

s s m mm

s s s
m m

R T f MA
A f MR T

γω
ω µτ γ
+

=                                                              (5.21)  

Substituting the expression of ( )2 2,m mf Mγ  into Equation (5.21) and rearranging, 

1
2

2
2 2

11 1
2

m
m m mEM Mγω µτ γ

ω
⎡ − ⎤+ ⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

                                                           (5.22)  

Where, 

( )
( ) ( )

1
2

02
1

1 2 12
0

1
,

s sm

s s s
m m

R TAE
A f MR T γ

=                                                                           (5.23) 

 

Substituting the 2mM  expressed by Equation (5.18) into Equation (5.22), the following 

equation is obtained.  

( ) ( )
2 11 1 1 1

2
m

m

D D
E

γω µτ µτ µτ
ω γ

⎡ ⎤−+⎛ ⎞ = − + −⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

                                                 (5.24) 

Rearrange the above equation in the following form, 

( ) ( )
2

2 2 212 1 2 1 0m m mD D
E

ω µγ γ µ τ µτ γ
ω

⎡ ⎤+⎛ ⎞ − − − + + =⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

                               (5.25) 

In Equation (5.25), variable τ  has two solutions. Correspondingly, the 2
2mM  also has 

two solutions. Further calculations show that one of them corresponding to the 
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supersonic mixed flow and the other one is a stable, subsonic solution. In this study, the 

supersonic solution is discarded.  

( ) ( )

( )

2
2 2

2
2

1 12 1 1

1 12 1

m m m

m m

D D D
E

D
E

ωγ γ γ
ω

τ
ωγ µ γ µ

ω

⎡ ⎤+⎛ ⎞− − − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦=
+⎛ ⎞ − −⎜ ⎟

⎝ ⎠

                                     (5.26) 

Substituting the expression for τ  into Equation (5.18), the Mach number at the mixing 

chamber exit, 2
2mM , is given by following equation.  

( ) ( )

( )

2
2 2

2
2 2

2

1 12 1 1
1

1 12 1

m m m

m
m m

m m

D D D
EDM

D
E

ωγ γ γ
ω

γ γωγ γ
ω

⎡ ⎤+⎛ ⎞− − − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦= −
+⎛ ⎞ − −⎜ ⎟

⎝ ⎠

                  (5.27) 

 

With the knowledge of τ  and 2mM , the parameters 1 2mP P  and 2 1m pT T  can be 

calculated by using their relationship with these two parameters.  

01 1

2 0 2

s

m s m

PP P
P P P

µτ= =                                                                                             (5.28) 

( ) ( )

( )

2
2 2

1
2

2 2

1 12 1 1

1 12 1

m m m

m
m m

D D D
EP

P
D

E

ωγ γ γ
ω

ωγ γ
ω

⎡ ⎤+⎛ ⎞− − − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦=
+⎛ ⎞ − −⎜ ⎟

⎝ ⎠

                                 (5.29) 
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0 22 0
2

0 11

11
2

pm m m
m

p pp

TT T M
T TT

γ −⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                                                      (5.30) 

 

Entrainment Ratio And Area Ratio 

 

In previous derivations, entrainment ratio ω  is treated as a known value. Actually, ω  is 

determined by the flow properties at the entrance of the mixing chamber if the mixing 

chamber geometry configuration is given. For the 1-D analytical model, the mixing 

chamber geometry configuration can be represented by two area ratio parameters, κ  and 

θ , which are defined by following equations.  

2m

t

A
A

κ ≡                                                                                                              (5.31) 

1

2m

A
A

θ ≡                                                                                                               (5.32) 

All dimensions of the mixing chamber are determined by the given parameters of 

primary nozzle geometry together with κ  and θ . 

2

1 1

m t

p p

A A
A A

κ=                                                                                                        (5.33) 

According to the definition of θ  given by Equation (5.32),  

1 1 1 1

2 2 1

1p s s p

m m p

A A A A
A A A

θ
+ +

= =                                                                                  (5.34) 
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Therefore,  

1

1 1

1s t

p p

A A
A A

κθ= −                                                                                                  (5.35) 

 

According to its definition, ω  is given by the following equation. 

( )
( )

( )
( )

1 1
2 11

2
0

1 1
2 11

2
0

,

,

s s
s s

s ss

p pp
p p

p p

P A f M
R Tm
P Am f M
R T

γ

ω
γ

= =                                                                        (5.36) 

Since 1 1p sP P= , Equation (5.36) can be simplified and rearranged to Equation (5.37). 

( )
( )

1
2

0 2 11

1 0 2 1

,
,

p p s ss

p s s p p

R T f MA
A R T f M

γ
ω

γ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                                         (5.37) 

Substituting the expression of 1 1s pA A  into Equation (5.37), ω  is related to κ  and θ  as 

well as the Mach numbers of each stream.  

( )
( )

1
2

0 2 1

1 0 2 1

,
1

,
p p s st

p s s p p

R T f MA
A R T f M

γ
ω κθ

γ

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                                           (5.38) 
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Entropy Change 

 

The total entropy change includes (1) the entropy change due to the primary stream 

shock, and (2) the entropy change due to the mixing of the two streams. 

x ms s s∆ = ∆ + ∆                                                                                                    (5.39) 

Where, xs∆  is the entropy change due to the primary stream shock; ms∆  is entropy 

change due to the two streams mixing. 

( )1 1 1 2 1 2p i p p m s m
p pp p s

m

m s s m s
s

m

→ → →∆ + ∆ + ∆
∆ =                                                       (5.40) 

Considering mass conservation and the definition of ER, s pm mω = , Equation (5.40) 

can be rewritten as: 

1 1 1 2 1 21 1
1 1 1

p i p p m s m

p p s
s s s sω

ω ω ω
→ → →∆ = ∆ + ∆ + ∆

+ + +
                                           (5.41)  

 

Th definition of entropy is 

dq du Pdvds
T T

+
= =                                                                                            (5.42) 

Substituting the ideal gas law to Equation (5.42), the following equation can be derived. 

( )lnvds c d Pvγ⎡ ⎤= ⎣ ⎦                                                                                             (5.43) 
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The entropy change of a stream experiencing a certain process from state a  to state b  

can be obtained by integrating Equation (5.43). 

1
ln a b

a b
b a

P Ts R
P T

γ
γ −

→

⎡ ⎤
⎛ ⎞⎢ ⎥∆ = ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

                                                                                 (5.44) 

 

According to Equation  (5.44),  

1
1 1 1 1

1 1

ln

p

pp i p p i p
pp

p p i

P T
s R

P T

γ
γ −

→

⎡ ⎤
⎛ ⎞⎢ ⎥∆ = ⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

                                                                      (5.45) 

1 1 1
1 1 0 0 0 1

0 1 1 1

ln

p p p

p p pp i p p i p i p x p
pp

p x p i p p i

P T T T
s R

P T T T

γ γ γ
γ γ γ

−
− − −

→

⎡ ⎤
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥∆ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

                                  (5.46) 

Equation (5.46) can be simplified to Equation (5.47) 

since it is an adiabatic process and stagnation temperature will not change, i.e., 

0 0 0p i p x pT T T= = . 

1 1 0

0

lnp i p p i
pp

p x

P
s R

P
→ ⎛ ⎞

∆ = ⎜ ⎟⎜ ⎟
⎝ ⎠

                                                                                     (5.47) 

0 0p i p xP P  is given by Equation (5.14). Substituting Equation (5.14) into Equation (5.47) 

 an explicit expression of 1 1p i p

p
s →∆  with respect to the variable µ  is derived. 
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1 1 0 2
1

0

11ln ln ln 1
1 2

p i p p p p
p pp

s p

P
s R M

P
γ γ

µ γ
→ ⎧ ⎫−⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪∆ = + − +⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

                          (5.48) 

 

Similarly, 

1
1 2 1 2

2 1

ln

p

pp m p m
pp

m p

P Ts R
P T

γ
γ −

→

⎡ ⎤
⎛ ⎞⎢ ⎥∆ = ⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

                                                                       (5.49) 

11 2 1 2

2 1

ln
s

ss m s m
ss

m s

P Ts R
P T

γ
γ −→

⎡ ⎤
⎛ ⎞⎢ ⎥∆ = ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

                                                                        (5.50) 

Considering 1 1 1p sP P P= =  and substituting Equations (5.49), (5.50) into Equations (5.39) 

(5.41), ms∆  is given by the following equation. 

( ) 11

2 1

2

1

ln ln
11

1
ln

1 1

ps
p s s

m s s

m
p s m

p s
p s p

TPR R R
P T

s
TR R
T

γω ω
γ

ω γ γω
γ γ

⎧ ⎫⎛ ⎞ ⎛ ⎞
+ +⎪ ⎪⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎪ ⎪∆ = ⎨ ⎬+ ⎛ ⎞ ⎛ ⎞⎪ ⎪+ +⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎩ ⎭

                                   (5.51) 

 

To calculate ms∆  using Equation (5.51), it is necessary to find the expressions for 

1 2mP P , 1 1p sT T  and 2 1m pT T . 1 1p sT T  may be expanded as Equation (5.52), while 

1 2mP P  and 2 1m pT T  are given by Equations  (5.29) and (5.30).  
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1 1 0 0

1 0 0 1

p p p s

s p s s

T T T T
T T T T

=                                                                                                 (5.52) 

Where, 

1
1 2

1
0

1
1

2
p p

p
p

T
M

T
γ −−⎛ ⎞

= +⎜ ⎟
⎝ ⎠

                                                                                     (5.53) 

20
1

1

11
2

s s
s

s

T M
T

γ −⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                                                                         (5.54) 

 

Find µ  by Entropy Minimization 

 

Should there exist a minimum value of total entropy change, a µ  value corresponding to 

the ejector optimal performance could be found. A curve of total entropy change with 

respect to the µ  values is plotted in Fig. 5.3. In the physically meaningful range of 

0 1µ< < , the total entropy change curve does have a minimum point. This optimal 

value of µ  is found at the point of ( ) 0d s dµ∆ = . 
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Fig. 5.3 Plot of total entropy change with respect to µ  

 

Differentiating the total entropy change function s∆  respect to µ  is the first step to find 

the optimal µ  value.  

( ) ( ) ( )x md s d s d s
d d dµ µ µ
∆ ∆ ∆

= +                                                                                (5.55) 

( ) ( )1 11
1

p i px
xp

d s d ds s
d d d

ω
µ ω µ µ

→∆ ⎡ ⎤
= ∆ −∆⎢ ⎥+ ⎣ ⎦

                                                        (5.56) 



 125

Assuming the parameter 1 2mP P  be a constant respect to µ , since it only weakly 

depends on µ . 

( ) 1 2

1 1

21

2 1

1 ln ln
1 1 1 1

1             ln ln
1 1

p p pm s s s s m

s s p s p

s m
s s m

m s s

T Rd s R R Td d
d d T d T

TP dR R s
P T d

γω γ ω γ
µ ω γ µ γ γ µ

γ ω
ω γ µ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤∆ ⎛ ⎞⎪ ⎪= + + ⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ − − − ⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪+ + −∆⎨ ⎬⎜ ⎟ ⎜ ⎟+ −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

    (5.57) 

 

Each derivative component in Equation (5.56) and Equation     (5.57) is given in 

following. 

1) ( )1 1p i p

p

d s
dµ

→∆  

( ) ( ) ( )1 1 2
12

1

1
2 1

p i p p
p pp

p p

d ds R M
d dM

γ
µ µ µγ

→
⎧ ⎫⎪ ⎪∆ = − +⎨ ⎬

+ −⎪ ⎪⎩ ⎭
                                    (5.58) 

Where,  

( )

( )

1
2

1
0 3

0 12
1 1

2
1

0
2

0 1

22
1

2 11 2 1
1

p

p

p

p

p pt

s p p
p

p pt
p

s p p

P A
P Ad M

d
P A
P A

γ
γ

γ
γ

µ
γ

µ

γ
γ µ

+

−
−

+

−

⎛ ⎞ ⎛ ⎞
− ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠=

⎛ ⎞ ⎛ ⎞
+ − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

                                      (5.59) 

 

2) d
d
ω
µ
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( )

( )

( )
( )

2 1 2 1

2 1 2 1

, ,

, ,

s s p p

s s p p

d df M f M
d d d
d f M f M

γ γ
ω µ µω
µ γ γ

⎧ ⎫
⎪ ⎪⎪ ⎪= −⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

                                                   (5.60) 

It can be shown that, 

( ) ( ) ( ) ( )2
2 22 2

1 1 1, ,
2 2 1

d df M f M M
d M M d

γγ γ
µ γ µ

⎡ ⎤−
= +⎢ ⎥+ −⎣ ⎦

                           (5.61) 

Therefore, 

( ) ( )

( ) ( )

2
12 2

1 1

2
122

11

1 1
2 1

2 1 1
2 1

s
s

s s s

p
p

pp p

d M
M M dd

d d M
M dM

γ
γ µω ω

µ γ
µγ

⎧ ⎫⎡ ⎤−
+⎪ ⎪⎢ ⎥+ −⎪ ⎪⎣ ⎦⎪ ⎪= ⎨ ⎬⎡ ⎤−⎪ ⎪− +⎢ ⎥⎪ ⎪+ −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

                                              (5.62) 

Where,  

( )
2 1

2
1

2 s

s
s

s

d M
d

γ
γµ

µ γ

− +

= −                                                                                       (5.63) 

 

3) 1

1

ln p

s

Td
d Tµ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

1 1 0 10 0

1 0 0 1 0 1

ln ln ln lnp p p ps s

s p s s p s

T T T TT Td d d d
d T d T T T d T d Tµ µ µ µ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞
= = +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦

               (5.64) 

The two parts of Equation (5.64) are presented by Equations (5.65) and (5.66). 
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                                               (5.66) 

Therefore, the term of 1

1

ln p

s

Td
d Tµ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 can be expressed as Equation (5.67). 
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Where, 

( ) ( ) ( )12 2 211
2 1 1

2 2 2

  1 p s
m p p s s

m m m m

A APd d dM M M
d P A d A d

γ γ
µ γ µ µ

⎛ ⎞ ⎡ ⎤
= +⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎦
                        (5.69) 

 

The µ  value corresponding to the minimum total entropy change is one of the solutions 

of Equation (5.70). It is very difficult if not impossible to solve Equation (5.70) 
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analytically due to the complexity of the equation itself. Numerical approaches may be 

used to find the solutions of Equation (5.70). 

( ) 0
d s

dµ
∆

=                                                                                                           (5.70) 

 

GENERAL FEATURES OF GENERALIZED EJECTOR MODEL  

 

Entropy change is a function of variable µ  if the ejector geometry and the boundary 

conditions are given. The specified geometric parameters are tA  and 1p tA A  for the 

primary nozzle and κ  and θ  for the mixing chamber. The given boundary conditions 

are the stagnation pressure and temperature at the inlets, i.e., 0pP , 0pT , 0sP  and 0sT . Of 

course, the thermodynamic properties of working fluids for the primary stream and the 

secondary stream should be specified as well. An ejector with geometry and operating 

conditions listed in Table 5.1 is used for the general investigation of this new model. Air 

is supplied as the working fluid for both the primary flow and the secondary flow. 

 

Table 5.1 Geometry and operating parameters used for the new model investigation 

tA  
(m2) 1p tA A  κ  θ  0pP  

(psia) 
0pT  

(K) 
0sP  

(psia) 
0sT  

(K) 

1.07e-7 7.61 80 1.2 364.7 300 34.7 300 
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To investigate the features of entropy change function of ( )s f µ∆ = , the total entropy 

change s∆  and its two components xs∆  and ms∆  are plotted against µ  in Fig. 5.4. As 

discussed before, µ  should be in the range of 0 1µ< <  for it to have physical meaning. 

It is observed that the entropy change curves increase or drop dramatically in the regions 

of very low µ  ( 0.15µ < ) and very high µ  ( 0.95µ > ). Obviously, a gas ejector can not 

be operated in these two regions. Actually, xs∆  is less than zero in the 0.15µ <  region. 

It violates the second law of thermodynamics, which means that the shock will not occur 

in this region at all. The entropy change curves are relatively flat in the region of 

0.30 0.95µ< < , which can be the stable operation range.  Since the total entropy change 

is arbitrary decomposed of xs∆  and ms∆ , some portion of entropy change due to the two 

stream mixing or primary stream separation may be lined out from ms∆  and included 

into the xs∆ . Therefore, even if 0ms∆ <  the two streams mixing is physically possible as 

long as the total entropy change s∆  and its component of xs∆  are positive.  
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Fig. 5.4 Plots of the total entropy change and its two components 

 

Fig. 5.5 is the plot of entrainment ratio against the parameter µ . ER increases rapidly 

with the increase of µ  and will reach its maximum value at the point of 0d dω µ = ; 

after that point, ER decreases. The location of the highest ER should be different from 

the point of minimum total entropy change, since they are determined by different 

equations, i.e., Equation (5.62) and Equation (5.55) respectively. However, the total 

entropy change curve in Fig. 5.4 and the entrainment ratio curve in Fig. 5.5 show that 

these two points are very close. In other words, the ejector has the best performance in 
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term of ER when it is operated in a region around the location of minimum total entropy 

change.  

 

The value of entropy change indicates the irreversibility of a process. Mixing is a 

process in which the primary stream transfers part of its momentum to the secondary 

stream. Therefore, the irreversibility of this adiabatic mixing process represents the 

conversion degree of momentum to enthalpy which is irreversible. Higher entropy 

change means higher irreversibility—more momentum is converted to be enthalpy; in 

other word, lower entropy change means less momentum is converted to be enthalpy. In 

a region around the point of minimum entropy change, the conversion of momentum to 

enthalpy is the least and the secondary stream gains the maximum momentum from the 

primary stream. Higher secondary mass flow rate results if more momentum is provided 

for suction with a given, fixed flow area 1sA . This explains the optimal ER is achieved 

when the total entropy change is the minimum value.  

 

The Mach number at the mixing chamber exit is plotted in Fig. 5.6. Similar to the 

entrainment ratio, 2mM  increases with the decrease of s∆  and reaches the maximum 

point when s∆  is the least. The reason is similar to the explanation of relationship 

between ER and s∆ , since the 2mM  is the crucial indicator of mixed flow momentum. 

Lower s∆  means less momentum is converted to be enthalpy and higher momentum 

provided for mixed flow; thus bigger 2mM  results.  
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There are two solutions of τ  corresponding to each µ  value. One corresponds to the 

supersonic mixed flow, and the other corresponds to the subsonic mixed flow. The 

supersonic solution is discarded. Fig. 5.7 is the plot of subsonic solution of τ  vs. µ . It is 

interesting to notice that in the regions of very low µ  and very high µ , there is a one to 

one relationship between µ  and τ . Between the above-mentioned two regions, there 

could be two or even three µ  correspond to each τ . Of course, it is not feasible to 

operate the gas ejector in the very low µ  region since 0xs∆ <  as previously discussed. 

Even so, it is still possible for one τ  to have two solutions of µ . 
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Fig. 5.5 Plot of entrainment ratio against variable  µ  
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Fig. 5.6 Plot of the mixing chamber exit Mach number against  µ  
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Fig. 5.7 Plot of τ  against µ  
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OPTIMAL EJECTOR PERFORMANCE  

 

The optimal µ  for the highest ER is solved from 0d dω µ = , where d dω µ  is given 

by Equation (5.62). It is very difficult to solve this equation analytically due to the 

complexity of Equation (5.62). Numerically, it is very easy to obtain the solution for 

0d dω µ =  since d dω µ  is explicitly expressed in variable µ  by Equation (5.62). The 

numerical solution can also be calculated directly from the expression of ( )fω µ=  

itself. If the operating domain of ( )0,1µ ∈  is uniformly discretized to be { }1 2, ,..., Nµ µ µ  

with the cell size of µ∆ , d dω µ  can also be expressed in discrete form given by 

Equation (5.71) according to the definition of derivative.   

( ) ( )1

2k

k kd
d µµ

ω µ ω µω
µ µ

+

∆
+

−
=

∆
                                                                             (5.71) 

The numerical solution of 0d dω µ =  is 
2opt I
µµ µ ∆

= + , if  

2

min
opt k

d d
d d µµ µ

ω ω
µ µ ∆

+

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

                                                                                 (5.72) 

Similarly, the solutions of ( ) 0d s dµ∆ = , ( )2 0md M dµ =  and 0d dτ µ = , etc. can be 

found by this numerical approach. 
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To investigate the relationship between ER and the stream Mach numbers at the mixing 

chamber entrance, normalized ER, 1pM  and 1sM  are plotted together in Fig. 5.8. There 

is an intersection between the 1sM  curve and normalized ER. The intersection locates 

the point of maximum ER and 1 1sM = . This means that the ejector best performance 

happens when secondary stream is choked at the mixing chamber entrance. The 

calculations also support this observation. The solution of 0d dω µ =  can be found by 

using the above-introduced numerical approach, the calculation result is 0.529optµ = . 

Substituting the secondary flow (air) properties and 1 1sM =  into Equation (5.3), the 

calculation shows that choking happens at 0.528chokingµ = . Considering the error due to 

the numerical calculation, optµ  does equal to chokingµ .  Intuitively, this is physically true. 

The higher ER means the higher secondary mass flow rate is induced. As well known, 

the maximum mass flow rate is reached when the flow is choked.  

 

The relationship between optimal ER and the area ratio of mixing chamber exit to the 

primary nozzle throat (AR or κ ) is linear as shown in Fig. 5.9. The optimal ER is 

obtained at 1 1sM =  as discussed previously. It is observed from the figure that the 
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parameter θ  has significant impact on the ejector performance. Actually, the secondary 

mass flow rate is linearly proportion to θ  which represents the flow channel area 1sA  

when the flow is choked at this point.  
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Fig. 5.8 Plots of 1pM , 1sM  and normalized ER 
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Fig. 5.9 Plots of optimal ER against κ  for various θ  

 

Fig. 5.10 shows the relationship between optimal compression ratio (CR) and κ . CR 

decreases rapidly with the increase of κ  in low κ  (κ < 100) region. In high κ  region, 

CR may still decrease but very slowly, almost a constant. The reason is that lower κ  

corresponds to smaller ER, which means that the portion of momentum transferred from 

the primary stream is shared by less secondary flow. The large κ  results in big ER. 

When κ  is high enough, the limited portion of momentum provided by the primary 

stream is shared by a high secondary flow rate so that the momentum gained by per unit 

mass is negligible compared to their own momentum.  
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Fig. 5.10 Plots of optimal CR against κ  for various θ  

 

LINKS AMONG VARIOUS EJECTOR MODELS 

 

The constant-pressure mixing model assumes that the static pressure in the mixing 

chamber is uniform and constant, i.e., 1 1 2 1p s mP P P P= = = . In the generalized ejector 

model, 1 1 1p sP P P= =  and 1 2mP P  is related to µ  and τ  by Equation  (5.28). This model 

becomes the constant-pressure mixing model if the ejector is operated under such 

conditions that 1 2 1mP P µτ= = , i.e., 1τ µ= . Should the constant-pressure mixing 
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operation exist, it will be located at the intersection point or the overlap parts between 

the curve of τ  determined by Equation (5.26) and the curve of 1τ µ= .  

 

To find the parameters of µ  and τ  for the constant-pressure mixing operation, the τ  

curves for various θ , at 200κ = , are plotted together with 1τ µ=  in Fig. 5.11. The 

influence of parameter θ  on τ  is obvious—τ  decreases with the increase of θ  for a 

given µ . All τ  curves are below the 1τ µ=  curve. For 1.0θ = , part of the τ  curve in 

the high µ  region ( 0.6µ > ) is very close to the curve of 1τ µ= , though they do not 

actually overlap and there is no any intersection. For 1.0θ > , the τ  curves are further 

apart from the 1τ µ=  curve. Therefore, true constant-pressure mixing operation is 

impossible. The assumptions made for the constant-pressure mixing model are valid for 

an ejector with geometric parameter θ  small enough (close to 1.0). The constant-

pressure model can predict the ejector performance accurately under such condition. If 

θ  is large and far from 1.0θ = , the assumptions made for the constant-pressure mixing 

model are invalid.  
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Fig. 5.11 Plots of τ  against µ  for various θ  

 

To investigate the influence of another geometric parameter κ ,  the τ  curves for various 

κ  at 1.0θ =  are plotted together with 1τ µ=   as shown in Fig. 5.12. For 60κ > , the 

part of τ  curves in the high µ  region ( 0.6µ > ) are very close to that part of the 1τ µ=  

curve and all curves are indistinguishable from each other. The τ  curves  for 60κ <  are 

distinguishable from the 1τ µ=  curve. 
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Fig. 5.12 Plots of τ  against µ  for various κ  

 

The constant-area mixing ejector is a particular case, i.e. 1θ = , for this new ejector 

model. All equations of the new model are valid for this particular case, though some of 

them could be simplified. The constant-area mixing ejector also has all generic features 

predicted for other ejectors. As a particular case, the constant-area mixing ejector has its 

own special characters. From the standpoint of geometry configuration, unity is the 

lowest possible value for parameter θ .  It is observed from Fig. 5.9 and Fig. 5.10, this 

particular ejector has the lowest optimal performance in terms of both entrainment ratio 

and compression ratio. Actually, the constant-area mixing ejector gives the lowest 
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performance not only at the optimal point but also in the whole range of µ . This can be 

proved clearly by Fig. 5.13, the plots of ER against µ  for various θ . Fig. 5.13 is plotted 

at 100κ = . 
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Fig. 5.13 Plots of ER against µ  for various θ  

 

The observations and discussions of Fig. 5.11 and Fig. 5.12 show that the assumptions 

made for constant-pressure mixing ejector are most close to the truth when 1θ = . The 

constant-pressure model makes its most accurate predictions when the ejector has a 

constant-area mixing chamber. There is almost no difference between the predictions of 
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the constant-pressure ejector model and constant-area ejector model when the area ratio 

is bigger than 60 ( 60κ > ).  For a constant-area mixing ejector with small area ratio 

( 20κ < ), the predictions made by those two models may be significantly different.  

 

LIMITATIONS ON EJECTOR DESIGN AND OPERATION 

 

This new comprehensive model can be applied to design ejectors with specified 

requirements and operating conditions. The performance of any ejector with a given 

geometric configuration can be predicted theoretically by using this model. However, it 

is impossible to design an ejector which meets any arbitrary given requirements and 

operating conditions. It is infeasible for an ejector with any arbitrarily given geometry to 

function properly. Instead, every particular ejector has its own operational range; some 

ejector designs are practical and feasible for operation, but others are not. The 

performance features are analyzed and the operation ranges are calculated for arbitrary 

ejectors by adopting this new model in following sections. These analysis and 

calculations give definite limitations for ejector design and operation.  

 

Design Limitations 

 

Ejectors are usually designed to be components of certain systems. Each ejector has its  
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own particular boundary conditions, operating conditions and constraints determined by 

the system. Defining those conditions and constraints clearly is the first step of designing 

an ejector. Once the operating parameters and constraints are specified, the requirements 

on ejector performance could be determined. With the ejector performance range given, 

the second step of designing is to investigate the feasible geometry configurations 

according to their limitations of ER or CR.  

 

As an example, Fig. 5.14 is the optimal ER surface (upper limits) for ejectors with 

various mixing chamber configurations. Fig. 5.14 is generated for the case of working 

fluids, operating conditions and other geometric parameters listed in Table 5.1. Similar 

limitation surfaces could be plotted for ejectors under other operating conditions by 

using this new model.  Fig. 5.14 shows that the upper limit of ER increases with the 

increase of parameters θ  and κ . The upper limit of ER is lowest at 1θ =  (the constant-

area mixing ejector) for a given, fixed κ . 
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Fig. 5.14 Upper limits of ER for ejectors 

 

According to Fig. 5.14, the ejector should be designed with large θ  and κ  if high ER is 

desired. It is intuitively understandable that θ  and κ  can not be infinity. What are the 

limits for θ  and κ ? The calculations of total entropy change during the mixing process 

will answer this question.   

 

As discussed previously, the mixing process is physically possible only when the total 

entropy change is positive. In other words, ejectors fail to work if total entropy change is 

negative, i.e., 0s∆ < . Fig. 5.15 is the surface plot of s∆  for various ejectors under the 
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working conditions specified in Table 5.1. Obviously, a large part of this surface is 

below the plane of 0s∆ = , which means many ejectors can not achieve the optimal ER 

values given by the surface shown in Fig. 5.14.  

 

 

Fig. 5.15 s∆  surface for ejectors working at the optimal point 

 

To give a more definitive picture of operable range of mixing chamber configurations, 

the s∆  surface shown in Fig. 5.15 is intercepted by 0s∆ =  plane. Fig. 5.16 is the top-

downward view of this intercepted s∆  surface. The shadowed area is the 0s∆ >  area, 
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and the blank area is the 0s∆ <  area. It is obvious that very limited geometric 

configurations could achieve the optimal ER. Generally, an ejector could work at the 

optimal point only if it is designed with small κ  or small θ . At 1.0θ =  (constant-area 

mixing ejector), the κ  can be as high as 1000 or even beyond 1000. When θ  is within 

1.1, the value of κ  can be up to 200.  At 1.2θ = , κ  can not be bigger than 100. From 

the stand point of another parameter κ , the ejectors can achieve optimal ER even at 

2.0θ =  if κ  is less than 10. However, the feasible θ  value decreases very rapidly.  

 

 

Fig. 5.16 Top-downward view of s∆  surface intercepted by 0s∆ =  plane 
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Fig. 5.14 through Fig. 5.16 and the corresponding discussions are made for upper limits 

of ejector performance. Usually, ejector designers pay more attention to the operable 

range instead of the particular optimal point though it may be desired. To meet this 

interest, it is necessary to investigate the operation feasibility of the whole operation 

range for each ejector. In the new model, µ  is the parameter which describes the range 

of ejector operation. Theoretically, µ  can be any value between 0 and 1. This study does 

not consider the supersonic flow for secondary stream, and the lower boundary of µ  is 

* 0s sP Pµ = . Therefore, the operation range means * 0 1.0s sP P µ≤ < . In order to develop 

a guide for ejector design, the relationships among the parameters µ , κ , θ  and s∆  are 

investigated.  

 

Constant-area mixing ejectors, i.e., ejectors with 1.0θ = , are particular interesting to 

designers since they are the most widely used ejectors. Fig. 5.17 is the s∆  surface plot of 

the whole operation range of µ  for constant-area mixing ejectors with κ  up to 1000. 

The s∆  is positive in the whole operation range of µ  as well as the investigated κ  

range. From this standpoint, the constant-area mixing ejector has the widest possible 

geometry choice in whole operation range of µ , though its performance is the worst. 

 

Fig. 5.18 is the surface plot of s∆  against parameters of µ  and θ , for the ejectors with 

AR=100 and operating parameters listed in Table 5.1.  Fig. 5.19 is the top-downward 

view of Fig. 5.18 intercepted by the 0s∆ =  plane. It is clearly observed that the operable 
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range of µ  shrinks rapidly with the increase of parameter θ .  The whole range of 

* 0 1.0s sP P µ≤ <  is feasible for operation if θ  is less than 1.2.  At 1.3θ = , the operable 

range shrinks to be 0.9 1.0µ≤ < , and the ejectors can not be operated at all when θ  is 

bigger than 1.8. 

 

 

Fig. 5.17 s∆  surface for constant-area mixing ejector 
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Fig. 5.18 s∆  surface of ejectors with various θ  

 

 
Fig. 5.19 s∆  surface of ejectors with various θ ,  intercepted by 0s∆ =  plane 
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Operation Limitations 

 

In the new model, the two important operational parameters µ  and τ   are related to 

each other by Equation (5.26). If one of them is given, the other can be calculated. It is 

more practical and convenient to specify the ejector outlet static pressure as a boundary 

condition, thus, τ  is usually given. Due to its complexity, it is very difficult if not 

impossible to obtain µ  by solving Equation (5.26) analytically. In this study, a 

numerical technique is applied to circumvent this trouble. The least square curve fitting 

approach, similar to the method introduced in Chapter III, is employed to solve µ  from 

Equation (5.26).  

 

To investigate the relationships between ejector performance and boundary conditions—

pressures of primary inlet, secondary inlet and outlet, a performance surface is plotted 

against pressure rations of 0 0p sP P  and 0b sP P . Where bP  is the back pressure, or the 

outlet static pressure, for an ejector without diffuser.  Fig. 5.20 is such a surface plot for 

a constant-area mixing ejector with 100κ = . Fig. 5.20 is similar and comparable to the 

“three-dimensional ejector solution surface” as shown in Fig. 1.4, constructed by Addy 

and Dutton et al. [12, 13, 14] for a constant-area ejector. The entrainment ratio of the 

ejector could be predicted once the boundary conditions— all boundary pressures are 

given. It is observed from the performance surface that the outlet pressure bP  is 

constrained in a certain range. Actually, the operable range of 0b sP P  is very limited. 
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Fig. 5.20 Performance surface plotted against ejector boundary pressures 

 

Obviously, the range of operable 0b sP P  is related to the ratio of inlet supply pressures, 

i.e., 0 0p sP P . To investigate the relationship between the range of operable 0b sP P  and 

the ratio of inlet supply pressures, both maximum 0b sP P  and minimum 0b sP P  are 

plotted against 0b sP P  in the same figure, Fig. 5.21. For a given 0 0p sP P , the ejector 

would work properly if 0b sP P  is a value between maximum 0b sP P  and minimum 

0b sP P . In Fig. 5.21, the zone between the maximum 0b sP P  curve and minimum 0b sP P  

curve is ejector operable area.  
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Fig. 5.21 Operable range of pressure ratio of outlet flow to secondary supply 

 

CONCLUSIONS 

 

A novel generalized comprehensive gas ejector analytical model is developed. A definite 

link is established between the widely used constant-pressure model and constant-area 

model, which are two particular cases of the new model. Analysis shows that it is 

physically impossible to build an ejector with an exact constant-pressure mixing 

chamber. However, the predictions of the constant-pressure ejector model could be very 
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accurate if the geometry of the ejector is close to the constant-area mixing ejector. If the 

mixing chamber is far different from constant-area mixing, a big error could result from 

the predictions of the constant-pressure model. The constant-area mixing ejector has the 

lowest performance, but it has the widest operating range. Also, the constant-area ejector 

has the biggest range of AR, the area ratios of mixing exit to primary nozzle throat.  
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CHAPTER VI 

EJECTOR WORKING WITH TWO-PHASE FLOW 

 

INTRODUCTION 

 

The motivation for this research is to design an ejector for a Proton Exchange Membrane 

(PEM) fuel system. In this system, an ejector is used to transfer and compress the PEM 

fuel cell exhaust which contains gas and very small portion of liquid water. Theoretically, 

the portion of liquid water in PEM exhaust can be any value depends on operating 

conditions. To improve the transport of both reactants and exhaust, high reactant flow 

rates are desired. The reactant delivery flow rate associated with delivering exactly the 

reactant needed by the electrochemical reaction taking place is called the stoichiometric 

flow rate [26]. The use of these higher-than-stoichiometric flow rates not only improves 

transport, but it also helps to ensure that no portion of the fuel cell is ever starved for 

reactants. Usually, more than 2.0 stoichiometric flow rate of hydrogen/oxygen is 

required to circulate in a recirculation scheme [26]. 

 

The proportion of liquid water is so low that the exhaust behaves like a gas. The 

thermodynamic properties of this gas-like mixture will be discussed in this chapter. The 

generalized ejector model developed in last chapter is applied to design of the ejector 

working for such kind of two-phase mixture.  
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Theoretical development of the gas-liquid mixture model is the first part of this chapter. 

The second part performs parametric analysis and discussions on the thermodynamic 

properties of this two-phase mixture. In the third part, the generalized ejector model is 

used to design an ejector working with this mixture; the ejector performance will be 

studied parametrically. The summary and conclusions are made in the last part. 

 

GAS-LIQUID MIXTURE MODEL 

 

The gas-liquid two-phase mixture is assumed to behave like a gas since the proportion of 

the liquid is so low [27]. In addition, thermal equilibrium was assumed to exist between 

the gas and the liquid. The homogeneous two-phase model is applied to determine the 

thermodynamic properties of the mixture.  

 

Gas, liquid and gas-liquid two-phase mixtures are denoted by the subscripts of “g”, “l” 

and “tp” respectively. The proportion of liquid is described by the liquid quality x , 

which is defined as the mass flow ratio of liquid to gas. In this study, the liquid quality is 

very small, 1x ≤ . Otherwise, a liquid jet pump instead of a gas ejector should be adopted, 

since the dimensions of the gas ejector do not allow it to transport high flow rate liquid. 

l

g

mx
m

=                                                                                                                  (6.1) 

The density of the mixture is related to the gas density by: 
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( )1tp gxρ ρ= +                                                                                                      (6.2) 

The state equations for the gas and the gas-like mixture are 

g
g g

g

P
R T

ρ
=                                                                                                             (6.3) 

tp
tp tp

tp

P
R T

ρ
=                                                                                                            (6.4) 

Since the gas and liquid are in thermal equilibrium, g tpP P P= =  and g tpT T T= = . 

Combining Equations (6.2), (6.3) and (6.4), the gas constant is obtained for the mixture. 

1
g

tp

R
R

x
=

+
                                                                                                            (6.5) 

 

Let ,p lc  represent the specific heat of the liquid phase. The liquid phase entropy change 

accompanying the gas-liquid mixing process is given by Equation (6.6).  

,l p l l
dQ dTds c m
T T

= =                                                                                            (6.6) 

While, the gas phase entropy change is given by following equation, if the gas has the 

specific heats of ,p gc  and ,v gc .  

,g p g g g g
dQ dT dPds c m R m
T T P

= = −                                                                        (6.7) 
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The total entropy should remain constant if the gas and liquid are in thermal equilibrium. 

Therefore, the total entropy change is zero.  

0l gds ds+ =                                                                                                          (6.8) 

Substituting Equations (6.6) and (6.7) into Equation (6.8),   

, , 0p l l p g g g g
dT dT dPc m c m R m
T T P

+ − =                                                                   (6.9) 

Equation (6.10) is derived by rearranging the above equation,  

, ,

g

p l p g

RdT dP
T xc c P

=
+

                                                                                          (6.10) 

Integrating Equation (6.10), 

, ,

ln lng

p l p g

R
T P C

xc c
= +

+
                                                                                  (6.11) 

Where, C  is an arbitrary constant. Therefore, 

, , constant
g

p l p g

R
xc cTP

−
+ =                                                                                         (6.12) 

According to the isentropic expansion law, the state properties P  and T  of the gas-like 

mixture have following relationship, 

1

constant
tp

tpTP
γ
γ
−

−

=                                                                                               (6.13) 
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Comparing Equation (6.12) and (6.13), tpγ  is related to the gas and liquid properties by 

Equation (6.14). 

, ,

, ,

p g p l
tp

v g p l

c xc
c xc

γ
+

=
+

                                                                                                 (6.14) 

Therefore, the mixture behaves as if it possessed a specific gas constant given by 

Equation (6.5) and a value of the specific heat ratio tpγ  given by Equation (6.14). 

 

PARAMETRIC ANALYSIS OF MIXTURE PROPERTIES 

 

To study the thermodynamic properties of the gas-like flow, the derived tpR  and tpγ  are 

analyzed parametrically. In the parametric analysis, air is used as the gas phase and the 

water is used as the liquid phase. The investigation rang of x  is from 0 to 1.0. Fig. 6.1 is 

the plot of tpR  against liquid quality x . As a comparison, the gas constant of the air is 

plotted on the same figure. At the point of 0x = , the tpR  has the highest value, tp gR R= ; 

then, the parameter tpR  decreases with the increase of liquid quality x .  
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Fig. 6.1 Plot of mixture gas constant against the liquid quality x  

 

The specific heat ratio of mixture is plotted against the liquid quality x  is plotted in Fig. 

6.2. Similar to the tpR , tpγ  has the highest value at the point of 0x =  and then decreases 

with the increase of x . Unlike the tpR  curve, the tpγ  does not decrease as fast as tpR .  At 

1.0x = , tpR  is only half of the gR , but the tpγ  is about 75% of gγ .  
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Fig. 6.2 Plot of mixture specific heat ratio against the liquid quality x  

 

EJECTOR WORKING WITH TWO-PHASE MIXTURE 

 

The gas-like mixture has its own equivalent specific heat ratio and molecular weight, 

which are different from the original single-phase gas. Both the ejector operational range 

and its performance are affected by the thermodynamic properties of working fluids, γ  

and R  (reflecting the molecular weight). It is desired to investigate the impact of the 

liquid quality x  on the ejector operability and ejector performance.  
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In this study, the generalized ejector model is used to design an ejector working with this 

gas-like two-phase flow. The impact of the liquid quality x  on the ejector entrainment 

ratio is investigated for two cases: (1) the two-phase mixture supplied as the primary 

stream and the single-phase gas supplied as the secondary stream, (2) the two-phase 

mixture supplied as the secondary stream and the single-phase gas supplied as the 

primary stream. The operational range of gas ejector is also investigated for each case by 

the analysis of the total entropy change.  

 

Mixture Supplied as Primary Stream 

 

First case of investigation is that the two-phase mixture is supplied at the primary inlet 

and the single-phase gas is supplied at the suction port. The ejector operation range in 

terms of the boundary pressure ratio, 0b sP P , is calculated and plotted for liquid quality 

from 0.0=x  to 1.0=x . Since the liquid portion is assumed to be very low, this study 

didn’t include the case of 1.0>x  though it could be much higher. 

 

Fig. 6.3 shows the operational range of 0b sP P  in 3-D plot. The bottom surface is the 

plot of minimum operable 0b sP P  against the 0 0p sP P  and x , while the top surface is 

that plot of maximum operable 0b sP P . These two surface define the lower and upper 

limits of 0b sP P , and the space between them are the operation range. It is observed that 
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the operable 0b sP P  range is bigger for smaller 0 0p sP P  and it shrinks with the increase 

of the liquid quality x .  

 

 
Fig. 6.3 3-D plot of operational 0b sP P  against 0 0p sP P  and x , 

two-phase mixture supplied as the primary stream 

 

The above 3-D plot gives a general picture of the operational 0b sP P  range. To provide 

closer and more parametrical observation, a 2-D plot of this range is made. The curves of 

maximum 0b sP P  and minimum 0b sP P  are plotted against 0 0p sP P  for various x  

together in Fig. 6.4. For a given x , the operation range narrows with the increase of the 
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0 0p sP P . The upper limit 0b sP P  curves do not differ much from each other for various 

x . Actually, those curves overlap together when 0 0p sP P  is less than 20, and they 

deviate from each other when 0 0p sP P  is bigger than 20. In contrast, the lower limit 

0b sP P  curves clearly differ from each other in the whole range of 0 0p sP P .  

 

The zone between curves of upper limit and lower limit is the rang of operable 0b sP P . 

As observed from Fig. 6.4, the operation range shrinks with the increase of 0 0p sP P  for 

all x  , and the operable 0b sP P range of big x  shrinks fast than that of the small x . 

When 0 0p sP P  is less than 15, the ranges are almost the same for all x . At 0 0 30p sP P = , 

the operable 0b sP P  range is about 0.3 for 0x = , but it is less than 0.05 for 1.0x = . 

 

To investigate the influence of mixture properties on ejector performance, the optimal 

ER is plotted against liquid quality x  together with geometry parameters of κ  and θ , 

respectively. These surfaces are generated for the ejectors with boundary conditions of 

0 364.7 psiapP =  and 0 34.7 psiasP = . Fig. 6.5 is the surface plot of optimal ER against 

κ  combined with x , for a constant-area mixing ejector ( 1θ = ). It is obvious that the 

upper limit of ER decreases with the increase of x  for a given κ . This trend is also 

reflected in Fig. 6.6, the surface plot of optimal ER against θ  combined with x , for 

ejector with κ =100. The optimal ER decreases with the increase of x  for a given θ .  
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Fig. 6.4  2-D plot of operational 0b sP P  against 0 0p sP P for various x , 

two-phase mixture supplied as the primary stream 
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Fig. 6.5 Optimal ER surface against κ  and x , two-phase mixture 

supplied as the primary stream 

 

 
Fig. 6.6 Optimal ER surface against θ  and x , two-phase mixture  

supplied as the primary stream 
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Mixture Supplied as Secondary Stream 

 

Similar to the study for the case of two-phase mixture supplied as the primary stream, 

Fig. 6.7 through Fig. 6.10 are plotted to analyze the operation range and performance of 

the ejector with mixture supplied as secondary stream. Fig. 6.8 shows that the curves of 

0b sP P  upper limit overlap with each other for all x  and the lower limit curves of 

0b sP P  do differ from each other for various x . The operation range also shrinks slowly 

with the increase of 0 0p sP P  for a given x . The shrinking rates are almost the same for 

various x  values. When 0 0p sP P  is bigger than 20, these curves are almost parallel lines.  

 

Fig. 6.9 and Fig. 6.10 are surface plots of optimal ER against κ  combined with x  and θ  

combined with x , respectively. Contrast to the case of mixture supplied as primary 

stream, the optimal ER increases with the increase of liquid quality x  for given κ  or 

given θ . This may imply that the ejector performance could be enhanced by adding 

small portion of liquid droplets to the secondary gas stream. Of course, the feasibility of 

this operation needs investigation. The test data from experiments could be very helpful 

to analyze this feature. In this study, the total entropy change method is employed to 

investigate this feasibility theoretically.  
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Fig. 6.7  3-D plot of 0b sP P  vs. 0 0p sP P  and x , mixture supplied at suction port 
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Fig. 6.8 2-D plot of 0b sP P  vs. 0 0p sP P for various x ,  mixture supplied at suction port 
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Fig. 6.9 Optimal ER surface vs. κ  and x , mixture supplied at suction port 

 

 
Fig. 6.10 Optimal ER surface vs. θ  and x , mixture supplied at suction port 
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Operation Range Obtained by Entropy Analysis 

 

In the previous sections, the optimal ER surface were generated for arbitrary ranges of 

κ , θ  and x . Can ejectors be operated in those arbitrary ranges? This question will be 

answered by the analysis of the total entropy change.  

 

The total entropy change is plotted against parameters of κ , θ  and x , for both the case 

of mixture supplied as primary stream and the case of mixture supplied as the secondary 

stream. The ejector operation is feasible only when s∆  is real and positive. The 

calculations shows that complex s∆  could result in certain unreasonable ranges of κ , θ  

and x . The practical operation ranges are obtained by ruling out the areas of complex 

s∆  and negative s∆ . In order to plot s∆ , the complex s∆  are removed by converting 

them to be negative real numbers, which will be categorized to be “un-operable range”. 

The s∆  surface then is intercepted by the 0s∆ =  plane and only the positive s∆  part is 

left.  

 

Fig. 6.11 and Fig. 6.12 are s∆  surfaces for the case of two-phase mixture supplied as 

primary stream. Fig. 6.11 is s∆  plotted against κ  and x  for constant-area mixing 

ejector. The impact of liquid quality x  on the operational κ  range is significant. When 

x  is less than 0.3, the ejector could work properly in the whole given κ  range. At the 

point of 0.4x = , κ  can not be designed to more than 100.  Fig. 6.12 is s∆  plotted 

against θ  and x . This figure shows that the operable θ  range is very limited. 
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Fig. 6.13 and Fig. 6.14 are s∆  surfaces for the case of mixture supplied at the suction 

port. These plots are very similar to those for the case of two-phase mixture supplied as 

primary stream. The operable ranges of κ  and θ  are even narrower than those shown in 

previous case. 

 

 

Fig. 6.11 Top-down view of s∆  surface intercepted by 0s∆ =  plane,  

mixture supplied as primary stream, 1θ =  
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Fig. 6.12 Top-down view of s∆  surface intercepted by 0s∆ =  plane, 

mixture supplied as primary stream, 100κ =  

 

 
Fig. 6.13 Top-down view of s∆  surface intercepted by 0s∆ =  plane, 

mixture supplied at suction port, 1θ =  
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Fig. 6.14 Top-down view of s∆  surface intercepted by 0s∆ =  plane,  

mixture supplied at suction port, 100κ =  

 

CONCLUSIONS 

 

The thermodynamic properties of gas-like two-phase mixture flow are studied since the 

motivation of the dissertation research is to design a gas ejector which could work for 

gas-liquid flow. The ejector performance and operation range are investigated for two 

cases of operating conditions. One case is that mixture is supplied as the primary stream 

and the other case is that mixture is supplied as the secondary stream. The operational 

feasibility and operational ranges are analyzed and obtained by using the total entropy 

change method.  
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

SUMMARY 

 

The ejector was introduced in the early 20th century. In a paper published in 1950, 

Keenan and Neumann [3] presented the first comprehensive theoretical and experimental 

analysis of an ejector. Since then, the constant-pressure mixing model and the constant-

area mixing model developed, both by Keenan and Neumann [3], have become the basis 

of ejector design and performance analysis. Based on these methods, much research has 

been devoted to the improvement of ejector design methods including hundreds of 

papers related to supersonic ejectors. Significant progress has been made for these 

widely used ejector analytical models, but some problems remain outside their scope. 

The objective of this research was to develop a comprehensive ejector model which 

would embody all existing 1-D analytical ejector models and provide answers to the 

problems left unsolved by these existing models. 

 

In the comprehensive theoretical study of ejector energy and momentum transfer, the 

basic concepts and governing equations of aerodynamics were introduced. The 

mechanism of choking phenomena, supersonic flow and shock wave have been 

described before the derivations of ejector models (since ejectors are usually designed 

and operated with supersonic primary flow). Fundamentals of an isentropic nozzle and 



 175

subsonic diffuser were provided before preliminary calculations were made for the 

ejector design.  

 

Effort has been devoted to the detailed derivations and verifications of constant-pressure 

ejector model and constant-area ejector model. A parametric study was then performed 

on these models. The figures generated by the parametric analysis could be utilized to 

determine the geometry configurations for ejector design or to predict the ejector 

performance. An ejector design procedure and steps were developed for the use of the 

constant-area mixing model. It is still not practical to design a gas ejector with a 

constant-pressure mixing chamber since the geometry of a constant-pressure ejector can 

not be determined. Both the constant-area model and constant-pressure model were 

integrated into ESDUpac A9242, which is a computer program with comprehensive 1-D 

analytical models for gas ejector design and performance analysis. A flow chart of gas 

ejector design using ESDUpac A9242 has been developed.  

 

The geometry of the supersonic primary nozzle determines a unique “on-design” point, 

but the practical ejector may be required to operate over a certain range. Thus, ejectors 

are usually operated under “off-design” conditions. Operating conditions critically affect 

the performance of an ejector. Some researchers have used coefficients and constants 

obtained from experimental data for particular ejectors to correct their performance 

predictions. However, these constants are only valid for the tested ejectors.  
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The CFD simulations provide the local details of the flow field which would be very 

helpful in understanding the complex mixing process. FLUENT, a commercial CFD 

software, was used to simulate gas ejector with single-phase gas flow. Very good 

agreement was found between the numerical calculations and the test results. The 

simulations also demonstrated FLUENT’s ability to capture the supersonic shock waves 

which occurred in the primary nozzle. Upon validation, FLUENT was used to optimize 

the ejector geometric configuration. The optimization study shows that two parameters 

which most significantly impact ejector performance: the ratio of the mixing tube 

diameter to the nozzle throat diameter, the primary nozzle exit position. As an example 

of using FLUENT as a design tool, a specific gas ejector for a scalable PEM fuel system 

was designed. 

 

CONCLUSIONS 

 

A generalized ejector model was successfully developed for the gas ejector design and 

analysis. This new model has the following features. 

1) It is a comprehensive model without assumptions made to simplify the momentum 

conservation equation for the mixing chamber. The geometry of the mixing chamber 

can be any given configuration; the mixing chamber entrance pressure can be 

different from mixing chamber exit pressure.  

2) It is a generalized model. Both the constant-pressure model and the constant-area 

model can be derived from this model as particular cases. 
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3) For the first time, this novel model shows the relationship between the constant-

pressure and constant-area 1-D ejector models. 

4) The “off-design” operations are included in this new model. As discussed before, 

shock waves usually occur in the primary nozzle or at the nozzle exit. This 

phenomena is considered in the new model and the nozzle geometry determined 

unique “design value” of 1pP  and 1pM  are not adopted.  

5) The static pressure at the mixing chamber entrance 1P  ( 1 1 1p sP P P= = ) is represented 

by the product of two parameters, µ  and τ , which relate the boundary conditions to 

ejector performance.  

6) The limitations of gas ejector design and operation can be obtained by the analysis 

of total entropy change. The total entropy change is split into two parts, the entropy 

change due to the shock of primary stream and the entropy change due to the mixing 

of the two streams.  

 

Both the constant-pressure model and the constant-area model can be derived as 

particular cases of the new model. The generalized ejector model is simplified to be the 

constant-pressure model, when 1 2 1= =mP P µτ , i.e., 1=τ µ . The constant-area ejector 

model is derived from the new model at 1=θ .  

 

The generalized ejector model provides answers for the unresolved problems of existing 

models. Currently, there is no way to determine the geometry of an ejector constant-

pressure mixing chamber. The generalized model demonstrates that an ejector with an 
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exact constant-pressure mixing chamber is physically impossible to build. Also, It is 

generally believed in literature that the constant-pressure mixing ejector has better 

performance than the constant-area mixing ejector. The definitive or parametric 

explanation of this phenomenon is currently not available in the existing literature. The 

parametric analysis, used in this new model proves that the constant-area mixing ejector 

has the lowest performance. However, the new model also shows that the constant-area 

mixing ejector has the widest operating range as well as the biggest range of κ , the area 

ratios of mixing exit to primary nozzle throat.  

 

For the first time, the generalized ejector model shows the relationship between the 

constant-pressure and constant-area models. The uniform, constant mixing pressure can 

not exactly established, but it can be very close to the real operation condition in a 

constant-area ejector. The predictions of constant-pressure ejector model could be very 

accurate if the geometry of the ejector is close to the constant-area mixing ejector. If the 

mixing chamber is far different from the constant-area mixing, large error could result 

from the predictions of the constant-pressure model.  

 

The gas ejector and liquid jet pump have different design features. Using a gas ejector to 

transfer two-phase flow with a very high portion of liquid is impractical, however it is 

feasible if the liquid portion is very low and the mixture behaves like a gas. This 

dissertation studied the thermodynamic properties of gas-like two-phase mixture flow. 

The generalized ejector model is used to design an ejector working with this kind of two-
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phase mixtures. The two-phase mixture can be supplied as the primary or secondary 

stream. The ejector performance and operation range are investigated for both operating 

cases. The operation feasibility and ranges are analyzed by the total entropy change 

method. 

 

RECOMMENDATIONS 

 

As discussed previously, there are two solutions of τ  for each given µ ; one corresponds 

to the supersonic mixed flow, and the other corresponds to the subsonic mixed flow. The 

supersonic solution is not considered since this study is limited to the design of a gas 

ejector for a PEM fuel cell system. The static pressure at the ejector downstream is either 

higher or slightly lower than the pressure at the suction port. Thus, the ejector mixed 

flow will be subsonic for this system. For most of the ejectors designed to compress 

secondary flow in a closed system, the mixed flow would be subsonic. In some 

applications, the ejector mixed flow could be supersonic. For example: the ejectors used 

for thrust in aerospace, the ejector used in the refrigeration system and discharging to a 

condenser. This is an area worthy of exploration using the generalized ejector model.  

 

The generalized ejector model neglects wall friction and assumes the ejector inner wall 

to be adiabatic. This model would be more accurate if the friction, form loss and wall 

heat transfer were included. Two kinds of shock waves are possible within the nozzle or 

at the nozzle exit—the over-expansion shock or under-expansion shock. Should the 
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over-expansion shock occur, separation would usually happen. This is another area of 

study that can improve the predictions of analytical ejector models.   

 

The generalized ejector model is a 1-D model, which only considers the areas of the 

flow channel. For the purpose of ejector design, it is necessary to know more about the 

details of the ejector geometry, such as the optimal length of the mixing chamber. 

Therefore, the development of a 2-D analytical model could be very helpful for gas 

ejector design.  

 

This dissertation analyzed the performance of a gas ejector by use of the analytical 

models. It is desired to have further tests to compare the data with the analytical 

predictions. A better understanding of the behavior of a gas-like mixture in an ejector 

could be gained from numerical simulatioins. However, the feasibility of using CFD 

simulations to model gas ejectors working with gas-liquid two-phase flow is yet to be 

demonstrated. 
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APPENDIX A 

MATLAB PROGRAM DEVELOPED FOR PARAMETRIC STUDIES 

ON CONSTANT-PRESSURE EJECTOR MODEL 

 

Main Programs 

 

1) ER-AR_P1.m 

 
% Main Program for constant-pressure gas ejector AR-ER plots 
% It is an 1-D analytical model for constant-pressure gas ejector calculations 
% There is a separate parameter input file 
% 
clear all;                                               % clear previous variables, clear the figures 
 
load parameters;                                   % load the input data 
P_S0=para{8}; 
 
PR=[1.0,0.98,0.95,0.90,0.80,0.70];     % vector of P1/P_s0 
 
 
for L=1:6 
    P1(L)=P_S0*PR(L);                         % vector of P1 
end 
 
N=30; 
ER=zeros(N,1);                                    % initialize the ER vector 
AR=zeros(N,6);                                    % initialized the AR vector 
 
for I=1:10 
    ER(I)=I*0.1;                                     % give arbitrary value to ER 
end 
 
for I=11:19 
    ER(I)=ER(10)+(I-10)*1; 
end 
 
for I=20:28 
    ER(I)=ER(19)+(I-19)*10; 
end 
 
for I=29:N 
    ER(I)=ER(28)+(I-28)*50; 
end 
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for K=1:6 
    P1_TMP=P1(K); 
    for J=1:N 
        ER_TMP=ER(J); 
        [AR_M2T,AR_M2P1,AR_P1T]=ARM2T(P1_TMP,ER_TMP);       % call function ARM2T 
        AR(J,K)=AR_M2T;                                                                             % AR 
    end 
end 
 
% Plot the AR vs.ER 
figure(1); 
plot(AR(1:N,1),ER(1:N),'-',AR(1:N,2),ER(1:N),'--',AR(1:N,3),ER(1:N),'-',AR(1:N,4),ER(1:N),'--
',AR(1:N,5),ER(1:N),'-',AR(1:N,6),ER(1:N),'--')        
title(sprintf('Entrainment Ratio vs.Area Ratio')) 
xlabel('AR') 
ylabel('ER')   
legend('P1/P_S0=1.0','P1/P_S0=0.98','P1/P_S0=0.95','P1/P_S0=0.90','P1/P_S0=0.80','P1/P_S0=0.70') 
 

2) ER-CR-AR.m 

 
% Main Program for constant-pressure ejector for the relationship of ER, AR and CR 
% 
clear all;                                % clear previous variables, clear the figures 
 
load parameters;                    % load input data 
P_S0=para{8};                       
 
PR=0.95;                               % P1/P_s0=0.95 
P1=P_S0*PR;                        % P1 
 
N=30; 
ER=zeros(N,1);                     % initialize the ER vector 
AR=zeros(N,1);                     % initialize the AR vector 
CR=zeros(N,1);                     % initialize the CR vector 
 
% Give arbitrary values to ER 
for I=1:10 
    ER(I)=I*0.1; 
end 
 
for I=11:19 
    ER(I)=ER(10)+(I-10)*1; 
end 
 
for I=20:28 
    ER(I)=ER(19)+(I-19)*10; 
end 
 
for I=29:N 
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    ER(I)=ER(28)+(I-28)*50; 
end 
 
% calculate CR and AR 
for J=1:N 
    ER_TMP=ER(J); 
    [AR_M2T,AR_M2P1,AR_P1T]=ARM2T(P1,ER_TMP); 
    [CR_TP]=PRCR(P1,ER_TMP); 
    CR(J)=CR_TP; 
    AR(J)=AR_M2T; 
end 
 
% Plot the ER vs.AR 
figure(1); 
plot(AR,ER,'-') 
title(sprintf('Entrainment Ratio vs.Area Ratio')) 
xlabel('AR') 
ylabel('ER')   
 
% Plot the CR vs.AR 
figure(2); 
plot(AR,CR,'-') 
title(sprintf('Compression Ratio vs.Area Ratio')) 
xlabel('AR') 
ylabel('CR')   
 
% Plot the CR vs.ER 
figure(3); 
plot(ER,CR,'-') 
title(sprintf('Compression Ratio vs.Entrainment Ratio')) 
xlabel('ER') 
ylabel('CR')   
 

3) AR-Mm2-CR.m 

 
% Main Program developed to investigate the relationships of AR, M_m2 and CR 
% 
clear all;                                     % clear previous variables, clear the figures 
 
load parameters;                        % load input data 
P_S0=para{8}; 
 
PR=0.95;                                   % give arbitrary value, P1/P_S0=0.95 
P1=P_S0*PR; 
 
N=30; 
ER=zeros(N,1);                         % initialize the ER vector 
AR=zeros(N,1);                         % initialize the AR vector 
CR=zeros(N,1);                         % initialize the CR vector 
M_M2=zeros(N,1);                    % initialize the M_m2 vector 
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% give arbitrary value to ER 
 
for I=1:10 
    ER(I)=I*0.1; 
end 
 
for I=11:19 
    ER(I)=ER(10)+(I-10)*1; 
end 
 
for I=20:28 
    ER(I)=ER(19)+(I-19)*10; 
end 
 
for I=29:N 
    ER(I)=ER(28)+(I-28)*50; 
end 
 
% calculate M_M2, CR, AR 
 
for J=1:N 
    ER_TMP=ER(J); 
    [AR_M2T,AR_M2P1,AR_P1T]=ARM2T(P1,ER_TMP); 
    [CR_TP]=PRCR(P1,ER_TMP); 
    [MM2_TMP]=MM2(P1,ER_TMP); 
    M_M2(J)=MM2_TMP; 
    CR(J)=CR_TP; 
    AR(J)=AR_M2T; 
end 
 
% Plot the M_m2 vs.AR 
figure(1); 
plot(AR,M_M2,'-') 
title(sprintf('M_M2 vs.Area Ratio')) 
xlabel('AR') 
ylabel('M_M2')   
 
% Plot the M_m2 vs.CR 
figure(2); 
plot(M_M2,CR,'-') 
title(sprintf('Compression Ratio vs.M_M2')) 
xlabel('M_M2') 
ylabel('CR')   
 

Subroutines 

 

4) ParametersInput.m 
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clear all; clf;             % clear previous variables, clear the figures 
 
% input the boundary conditions 
GAMMA_P=1.4;            % Primary stream gas specific heat ratio, Cp/Cv  
GAMMA_S=1.66;           % Secondary stream gas specific heat ratio, Cp/Cv  
MW_P=28.97;             % Primary stream gas molecular weight, kg/kg-mol 
MW_S=4;                 % Secondary stream gas molecular weight, kg/kg-mol         
P0_P=264.7              % Primary stream stagnation pressure, psia 
P0_S=34.7               % Secodnary stream stagnation pressure, psia 
T0_P=300;               % Primary stream gas stagnation temperature, K 
T0_S=300;               % Secodnary stream gas stagnation temperature, K 
DT=0.0145;              % Nozzle throat diameter, inch 
D1=0.02;                % Nozzle exit diameter, inch 
D2=0.17;                % Mixing chamber diameter, inch 
D3=0.20;                % Diffuser exit diameter, inch 
ETA_N=0.95;             % Nozzle isentropic efficiency coefficient 
ETA_D=0.96;             % Diffuser isentropic efficiency coefficient 
 
% Gas constant 
R_BAR=8312;             % Universal gas constant, J/(kg-mol.K) 
R_P=R_BAR/MW_P;         % Primary stream gas constant, J/(kg.K) 
R_S=R_BAR/MW_S;         % Secondary stream gas constant, J/(kg.K) 
 
% Units conversion 
P0_P=P0_P*6894.76;      % Primary stream stagnation pressure, Pa 
P0_S=P0_S*6894.76;      % Secodnary stream stagnation pressure, Pa 
DT=DT*2.54/100;         % Nozzle throat diameter, m 
D1=D1*2.54/100;         % Nozzle exit diameter, m 
D2=D2*2.54/100;         % Mixing chamber diameter,m 
D3=D3*2.54/100;         % Diffuser exit diameter, m 
 
% Area calculations 
AT=pi*DT*DT/4;          % Nozzle throat area, m2 
A1=pi*D1*D1/4;          % Nozzle exit area, m2 
A2=pi*D2*D2/4;          % Mixing chamber area, m2 
A3=pi*D3*D3/4;          % Diffuser exit area, m2 
 
%***************************** 
para{1}=GAMMA_P;          
para{2}=GAMMA_S; 
para{3}=R_P; 
para{4}=R_S; 
para{5}=T0_P; 
para{6}=T0_S; 
para{7}=P0_P; 
para{8}=P0_S; 
para{9}=AT; 
para{10}=A1; 
para{11}=A2; 
para{12}=A3; 
para{13}=ETA_N; 
para{14}=ETA_D; 
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%***************************** 
save parameters para 
 

5) NOZZLE.m 

 
function [M_P,P_P1,AR_P1T,P_PT,T_PT,C_PT]=NOZZLE(M_P1); 
 
load parameters; 
 
GAMMA_P=para{1}; 
R_P=para{3}; 
T_P0=para{5}; 
P_P0=para{7}; 
AT=para{10}; 
ETA_N=para{13}; 
 
TMP1=2/(GAMMA_P+1); 
TMP2=GAMMA_P/(GAMMA_P-1); 
 
P_PT=P_P0*(TMP1^TMP2); 
T_PT=T_P0*TMP1; 
C_PT=sqrt(R_P*T_P0*TMP1*GAMMA_P); 
V_PT=C_PT; 
 
TMP3=(GAMMA_P+1)/(GAMMA_P-1); 
TMP4=sqrt((GAMMA_P/R_P)*(TMP1^TMP3)); 
TMP5=sqrt(T_P0); 
TMP6=AT*P_P0; 
 
M_P=(TMP6/TMP5)*TMP4; 
 
TMP7=ETA_N*(1+(GAMMA_P-1)*M_P1*M_P1/2); 
TMP8=1-1/ETA_N+1/TMP7; 
P_P1=P_P0*(TMP8^TMP2); 
AR_P1T=(1/M_P1)*(TMP1^(TMP3/2))/(TMP8^(TMP3/2)); 
% end of function 
 

6) ARM2T.m 

 
function [AR_M2T,AR_M2P1,AR_P1T]=ARM2T(P1,ER); 
 
M_P1=MP1(P1); 
 
[AR_M2P1]=ARM2P1(P1,ER); 
[M_P,P_P1,AR_P1T,P_PT,T_PT,C_PT]=NOZZLE(M_P1); 
AR_M2T=AR_M2P1*AR_P1T; 
 
% end of function 
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7) FUN2.m 

 
function [F2]=FUN2(GAMMA,M); 
 
F2TM1=1+(GAMMA-1)*M*M/2; 
F2TM2=sqrt(GAMMA*F2TM1); 
 
F2=M*F2TM2; 
% end of function 
 

8) MP1.m 

 
function [M_P1]=MP1(P1); 
 
load parameters; 
GAMMA_P=para{1}; 
P_P0=para{7}; 
ETA_N=para{13}; 
 
PR=P1/P_P0; 
MP1T1=GAMMA_P-1; 
MP1T2=2/MP1T1; 
MP1T3=MP1T1/GAMMA_P; 
 
TM1=ETA_N*(1-PR^MP1T3); 
TM2=TM1/(1-TM1); 
 
M_P1=sqrt(MP1T2*TM2); 
% end of function 
 

9) MS1.m 

 
function [M_S1]=MS1(P1); 
 
load parameters; 
GAMMA_S=para{2}; 
P_S0=para{8}; 
 
PR_S=P1/P_S0; 
MS1T1=GAMMA_S-1; 
MS1T2=2/MS1T1; 
MS1T3=-MS1T1/GAMMA_S; 
 
TM1_S=PR_S^MS1T3-1; 
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M_S1=sqrt(MS1T2*TM1_S); 
% end of function 
 

10) MIX.m 

 
function [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
 
load parameters; 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
R_P=para{3}; 
R_S=para{4}; 
T_P0=para{5}; 
T_S0=para{6}; 
 
GMTM1=1/(GAMMA_P-1); 
GMTM2=GAMMA_P/(GAMMA_P-1); 
GMTM3=1/(GAMMA_S-1); 
GMTM4=GAMMA_S/(GAMMA_S-1); 
GMTM5=R_S/R_P; 
 
GAMMA_M=(GMTM2+GMTM4*GMTM5*ER)/(GMTM1+GMTM3*GMTM5*ER); 
R_M=(R_P+ER*R_S)/(1+ER); 
 
TR=T_S0/T_P0; 
TR_M0P0=(GMTM2+GMTM4*GMTM5*TR*ER)/(GMTM2+GMTM4*GMTM5*ER); 
T_M0=T_P0*TR_M0P0; 
% end of function 
 

11) MM2.m 

 
function [M_M2]=MM2(P1,ER); 
 
load parameters; 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
R_P=para{3}; 
R_S=para{4}; 
P_P0=para{7}; 
 
RR_SP=R_S/R_P; 
GMR_SP=GAMMA_S/GAMMA_P; 
TR_S1P1=TRS1P1(P1); 
M_P1=MP1(P1); 
M_S1=MS1(P1); 
ZETA=M_P1+ER*M_S1*sqrt(GMR_SP*RR_SP*TR_S1P1); 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
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GMR_MP=GAMMA_M/GAMMA_P; 
RR_MP=R_M/R_P; 
PR_POP1=P_P0/P1; 
SAI=(1+ER)*sqrt(GMR_MP*RR_MP*TR_M0P0)*(PR_POP1^((GAMMA_P-1)/(2*GAMMA_P))); 
 
CR=ZETA/SAI; 
M_M2=CR*sqrt(1-CR*CR*(GAMMA_M-1)/2); 
% end of function 
 

12) ARM2P1.m 

 
function [AR_M2P1]=ARM2P1(P1,ER); 
 
load parameters; 
GAMMA_P=para{1}; 
R_P=para{3}; 
T_P0=para{5}; 
 
M_P1=MP1(P1); 
F2_P=FUN2(GAMMA_P,M_P1); 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
M_M2=MM2(P1,ER); 
F2_M=FUN2(GAMMA_M,M_M2); 
RR_MP=R_M/R_P; 
 
AR_M2P1=sqrt(TR_M0P0*RR_MP)*(F2_P/F2_M)*(1+ER); 
% end of function 
 

13) TRS1P1.m 

 
function [TR_S1P1]=TRS1P1(P1); 
 
load parameters; 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
T_P0=para{5}; 
T_S0=para{6}; 
P_P0=para{7}; 
P_S0=para{8}; 
 
TRTM1=(GAMMA_P-1)/GAMMA_P; 
TRTM2=-(GAMMA_S-1)/GAMMA_S; 
TRTM3=T_S0/T_P0; 
TRTM4=P_P0/P1; 
TRTM5=P_S0/P1; 
 
TR_S1P1=TRTM3*(TRTM4^TRTM1)*(TRTM5^TRTM2); 
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% end of function 
 

14) PRCR.m 

 
function [CR]=PRCR(P1,ER); 
 
load parameters; 
P_S0=para{8}; 
ETA_D=para{14}; 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
M_M2=MM2(P1,ER); 
M_M3=M_M2; 
 
TP1=ETA_D*M_M3*M_M3*(GAMMA_M-1)/2; 
TP2=GAMMA_M/(GAMMA_M-1); 
 
PR_40M3=(1+TP1)^TP2; 
PR_M3P1=1; 
PR_P1S0=P1/P_S0; 
 
CR=PR_40M3*PR_M3P1*PR_P1S0; 
% end of function 
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APPENDIX B 

MATLAB PROGRAM DEVELOPED FOR PARAMETRIC STUDIES 

ON CONSTANT-AREA EJECTOR MODEL 

 

Main Programs 

 

1) ER-AR-variousP1.m 

 
% Main Program for the relationship of ER-AR 
% The pressure ratio P1/P_S0 are 0.95, 0.90, 0.80, 0.70, 0.60, 0.50. 
% P_S0 is fixed so that P1 is various according to the pressure ratio of P1/P_s0. 
% It is an 1-D analytical model for constant-pressure gas ejector calculations 
% There is a separate parameter input file 
clear all;                                                       % clear previous variables, clear the figures 
 
load parameters;                                          % load input data 
P_S0=para{8}; 
 
PR=[0.95,0.90,0.80,0.70,0.60,0.50];           % P1/P_S0 vector 
 
for L=1:6 
    P1(L)=P_S0*PR(L);                                % P1 
end 
 
N=41; 
AR=zeros(N,1);                                           % initialize AR vector 
DR=zeros(N,1);                                           % initialize DR vector 
ER=zeros(N,6);                                            % initialize ER vector 
 
% give arbitrary values to AR 
for I=1:10 
    AR(I)=I*1.0; 
end 
 
for I=11:28 
    AR(I)=AR(10)+(I-10)*5.0; 
end 
 
for I=29:36 
    AR(I)=AR(28)+(I-28)*50.0; 
end 
 
for I=37:N 
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    AR(I)=AR(36)+(I-36)*100.0; 
end 
 
% calcualte ER 
for K=1:6 
    P1_TMP=P1(K); 
    M_P1=MP1(P1_TMP); 
    M_S1=MS1(P1_TMP); 
    for J=1:N 
        AR_TMP=AR(J); 
        [ER_TP]=OMEGA(M_P1,M_S1,AR_TMP); 
        ER(J,K)=ER_TP; 
    end 
end 
  
% convert ER to DR 
for I=1:N 
    DR(I)=sqrt(AR(I)); 
end 
 
% write AR and ER to EXCEL files 
wk1write('CAAR.xls',AR); 
wk1write('CAER.xls',ER); 
 
% Plot the ER vs.AR 
figure(1); 
plot(AR(1:N),ER(1:N,1),'-',AR(1:N),ER(1:N,2),'--',AR(1:N),ER(1:N,3),'-',AR(1:N),ER(1:N,4),'--
',AR(1:N),ER(1:N,5),'-',AR(1:N),ER(1:N,6),'--')        
title(sprintf('Entrainment Ratio vs.Area Ratio')) 
xlabel('Area Ratio of Mixing Chamber to Nozzle Throat') 
ylabel('Entrainment Ratio') 
legend('P1/P_S0=0.95','P1/P_S0=0.90','P1/P_S0=0.80','P1/P_S0=0.70','P1/P_S0=0.60','P1/P_S0=0.50') 
 
% Plot the ER vs.DR 
figure(2); 
plot(DR(1:N),ER(1:N,1),'-',DR(1:N),ER(1:N,2),'--',DR(1:N),ER(1:N,3),'-',DR(1:N),ER(1:N,4),'--
',DR(1:N),ER(1:N,5),'-',DR(1:N),ER(1:N,6),'--')        
title(sprintf('Entrainment Ratio vs.Area Ratio')) 
xlabel('Diameter Ratio of Mixing Chamber to Nozzle Throat') 
ylabel('Entrainment Ratio') 
legend('P1/P_S0=0.95','P1/P_S0=0.90','P1/P_S0=0.80','P1/P_S0=0.70','P1/P_S0=0.60','P1/P_S0=0.50') 
 

2) ER-AR-variousT0.m 

 
% Main Program for plots of ER-AR,for various temperature ratio of T_S0/T_P0 
% T_P0 is fixed at 300K, T_S0 is various according to the value of T_S0/T_P0 
% P1 is a fixed value, P1=0.90*P_S0 
% It is an 1-D analytical model for constant-area gas ejector calculations 
% There is a separate parameter input file 
% 
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clear all;                                                                   % clear previous variables and figures 
 
load parameters;                                                       % load input data  
P_S0=para{8};    
T_P0=para{5}; 
 
TR=[0.90,0.95,1.0,1.05,1.10,1.20,1.30];                  % Temperature ratio of T_S0/T_P0 vector 
PR=0.90;                                                                   % Pressure ratio P1/P_S0 is given as 0.90 
P1=P_S0*PR;                                                           % Calculate P1 
 
N=41; 
AR=zeros(N,1);                                                        % Initialize AR vector 
DR=zeros(N,1);                                                        % Initialize DR vector 
ER=zeros(N,7);                                                        % Initialize ER vector 
TS0=zeros(7,1);                                                       % Initialize T_S0 vector 
 
for L=1:7 
    TS0(L)=T_P0*TR(L);                                         % Calculate T_S0 
end 
 
% Give arbitrary values to AR 
for I=1:10 
    AR(I)=I*1.0; 
end 
 
for I=11:28 
    AR(I)=AR(10)+(I-10)*5.0; 
end 
 
for I=29:36 
    AR(I)=AR(28)+(I-28)*50.0; 
end 
 
for I=37:N 
    AR(I)=AR(36)+(I-36)*100.0; 
end 
 
M_P1=MP1(P1);                                                     % Calculate M_P1 
M_S1=MS1(P1);                                                     % Calculate M_S1 
 
for K=1:7     
    TS0_TMP=TS0(K); 
    for J=1:N       
        AR_TMP=AR(J); 
        [ER_TP]=OMEGA(M_P1,M_S1,AR_TMP,TS0_TMP);    % Calculate ER, call function OMEGA 
        ER(J,K)=ER_TP; 
    end 
end 
  
for I=1:N 
    DR(I)=sqrt(AR(I));                                                            % Convert AR to DR 
end 
 



 198

 
% Plot the ER vs.AR 
figure(1); 
plot(AR(1:N),ER(1:N,1),'-',AR(1:N),ER(1:N,2),'--',AR(1:N),ER(1:N,3),'-',AR(1:N),ER(1:N,4),'--
',AR(1:N),ER(1:N,5),'-',AR(1:N),ER(1:N,6),'--',AR(1:N),ER(1:N,7),'-')        
title(sprintf('Entrainment Ratio vs.Area Ratio')) 
xlabel('Area Ratio of Mixing Chamber to Nozzle Throat') 
ylabel('Entrainment Ratio') 
legend('T_S0/T_P0=0.90','T_S0/T_P0=0.95','T_S0/T_P0=1.0','T_S0/T_P0=1.05','T_S0/T_P0=1.10','T_S0/
T_P0=1.20','T_S0/T_P0=1.30') 
 
% Plot the ER vs.AR 
figure(2); 
plot(DR(1:N),ER(1:N,1),'-',DR(1:N),ER(1:N,2),'--',DR(1:N),ER(1:N,3),'-',DR(1:N),ER(1:N,4),'--
',DR(1:N),ER(1:N,5),'-',DR(1:N),ER(1:N,6),'--',DR(1:N),ER(1:N,7),'-')        
title(sprintf('Entrainment Ratio vs.Area Ratio')) 
xlabel('Diameter Ratio of Mixing Chamber to Nozzle Throat') 
ylabel('Entrainment Ratio') 
legend('T_S0/T_P0=0.90','T_S0/T_P0=0.95','T_S0/T_P0=1.0','T_S0/T_P0=1.05','T_S0/T_P0=1.10','T_S0/
T_P0=1.20','T_S0/T_P0=1.30') 
 

3) CR-ER.m 

 
% Main Program for plots of ER-CR, ER-M_M3 
% ER and M_M3 are clacualted by using arbitrary AR values 
% P1 is a fixed value, P1=0.90*P_S0 
% It is an 1-D analytical model for constant-area gas ejector calculations 
% There is a separate parameter input file 
% 
clear all;                           % clear previous variables, clear the figures 
 
load parameters;                     % load input data 
P_S0=para{8}; 
 
PR=0.90;                             % P1/P_S0=0.90 
P1=P_S0*PR;                          % calcualte P1 
 
N=41;                            
AR=zeros(N,1);                       % initialize AR vector 
ER=zeros(N,1);                       % initialize ER vector 
MM3A=zeros(N,1);                     % initialize M_M3A vector, there are two solutions for each AR 
MM3B=zeros(N,1);                     % initialize M_M3B vector, there are two solutions for each AR 
CR=zeros(N,1);                       % initialize CR vector 
 
for I=1:10 
    AR(I)=I*1.0;                     % give arbitrary values to AR 
end 
 
for I=11:28 
    AR(I)=AR(10)+(I-10)*5.0;         % give arbitrary values to AR 
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end 
 
for I=29:36 
    AR(I)=AR(28)+(I-28)*50.0;        % give arbitrary values to AR 
end 
 
for I=37:N 
    AR(I)=AR(36)+(I-36)*100.0;       % give arbitrary values to AR 
end 
 
M_P1=MP1(P1);                        % calucalte M_P1 
M_S1=MS1(P1);                        % calucalte M_S1 
for J=1:N 
    AR_TMP=AR(J); 
    [ER_TP]=OMEGA(M_P1,M_S1,AR_TMP);              % calucalte ER 
    [MM3_1,MM3_2]=MM3(M_P1,M_S1,ER_TP);           % calucalte M_M3 
    [CR_TP]=PREJ(AR_TMP,ER_TP,M_P1,MM3_1,P1);     % calucalte CR 
     
    ER(J)=ER_TP; 
    MM3A(J)=MM3_1; 
    MM3B(J)=MM3_2; 
    CR(J)=CR_TP; 
end 
 
% Plot the AR_S1P1 vs.ER 
figure(1); 
plot(ER,MM3A,'-',ER,MM3B,'--') 
title(sprintf('MM3 vs.ER')) 
xlabel('Entrainment Ratio') 
ylabel('MM3') 
 
% Plot the AR_S1P1 vs.ER 
figure(2); 
plot(ER,MM3A,'-') 
title(sprintf('MM3 vs.ER')) 
xlabel('Entrainment Ratio') 
ylabel('MM3') 
 
% Plot the AR_S1P1 vs.ER 
figure(3); 
plot(ER,CR,'-') 
title(sprintf('CR vs.ER')) 
xlabel('Entrainment Ratio') 
ylabel('Compression Ratio') 
 

4) AR-AR-variousGAMMA.m 

 
% This a program developed to investigate the impact of specific heat ratio on the ejector performance 
% ER is plotted against AR for various gamma_s/gamma_p, with gamma_p fixed 
% P1 is a fixed value, P1=0.90*P_S0 



 200

% It is an 1-D analytical model for constant-area gas ejector calculations 
% There is a separate parameter input file 
% 
clear all;                                                                            % clear previous variables, clear the figures 
 
load parameters;                                                               % load input data 
GAMMA_P=para{1}; 
P_S0=para{8};     
 
GR=[0.80,0.90,1.0,1.20,1.40,1.60,1.80];                         % gamma_s/gamma_p ratio vector 
PR=0.90;                                                                          % P1/P_S0 =0.90 
P1=P_S0*PR;                                                                  % calculate P1 
 
N=41; 
AR=zeros(N,1);                                                               % initialize the AR vector 
DR=zeros(N,1);                                                                % initialize the DR vector 
ER=zeros(N,7);                                                                % initialize the ER vector 
GAMMA_S=zeros(7,1);                                                  % initialize the GAMMA_S vector 
 
for L=1:7 
    GAMMA_S(L)=GAMMA_P*GR(L);                        % calcualte GAMMA_S 
end 
 
% give arbitrary values to AR 
for I=1:10 
    AR(I)=I*1.0; 
end 
 
for I=11:28 
    AR(I)=AR(10)+(I-10)*5.0; 
end 
 
for I=29:36 
    AR(I)=AR(28)+(I-28)*50.0; 
end 
 
for I=37:N 
    AR(I)=AR(36)+(I-36)*100.0; 
end 
 
M_P1=MP1(P1);                                                           % calculate M_P1 
for K=1:7 
    GAMMAS=GAMMA_S(K) 
    M_S1=MS1(P1,GAMMAS)                                     % calculate M_S1 
    for J=1:N 
        AR_TMP=AR(J); 
        [ER_TP]=OMEGA(M_P1,M_S1,AR_TMP,GAMMAS);    % calcualte ER 
        ER(J,K)=ER_TP; 
    end 
end 
  
for I=1:N 
    DR(I)=sqrt(AR(I));                                                                   % convert AR to DR 
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end 
 
% Plot the ER vs.AR 
figure(1); 
plot(AR(1:N),ER(1:N,1),'-',AR(1:N),ER(1:N,2),'--',AR(1:N),ER(1:N,3),'-',AR(1:N),ER(1:N,4),'--
',AR(1:N),ER(1:N,5),'-',AR(1:N),ER(1:N,6),'--',AR(1:N),ER(1:N,7))        
title(sprintf('Entrainment Ratio vs.Area Ratio')) 
xlabel('Area Ratio of Mixing Chamber to Nozzle Throat') 
ylabel('Entrainment Ratio') 
legend('gamma_s/gamma_p=0.8','gamma_s/gamma_p=0.9','gamma_s/gamma_p=1.0','gamma_s/gamma_p
=1.2','gamma_s/gamma_p=1.4','gamma_s/gamma_p=1.6','gamma_s/gamma_p=1.8') 
 
% Plot the ER vs.AR 
figure(2); 
plot(DR(1:N),ER(1:N,1),'-',DR(1:N),ER(1:N,2),'--',DR(1:N),ER(1:N,3),'-',DR(1:N),ER(1:N,4),'--
',DR(1:N),ER(1:N,5),'-',DR(1:N),ER(1:N,6),'--',DR(1:N),ER(1:N,7),'-')        
title(sprintf('Entrainment Ratio vs.Area Ratio')) 
xlabel('Diameter Ratio of Mixing Chamber to Nozzle Throat') 
ylabel('Entrainment Ratio') 
legend('gamma_s/gamma_p=0.8','gamma_s/gamma_p=0.9','gamma_s/gamma_p=1.0','gamma_s/gamma_p
=1.2','gamma_s/gamma_p=1.4','gamma_s/gamma_p=1.6','gamma_s/gamma_p=1.8') 
 

5) ER-AR-variousETAN.m 

 
% This a program developed to investigate the impact of primary nozzle efficiency coefficient 
% ETA_N on the ejector performance curve ER 
% ER is plotted against AR for various ETA_N 
% P1 is calcualted according to the primary nozzle geometry and ETA_N values 
 
clear all;                                           % clear previous variables, clear the figures 
 
load parameters;                               % load input data 
P_P0=para{7}; 
P_S0=para{8}; 
 
ETA_N=[0.98,0.95,0.90,0.85,0.8,0.7,0.60];      % define ETA_N vector 
 
N=41; 
AR=zeros(N,1);                                 % initialize AR vector 
DR=zeros(N,1);                                 % initialize DR vector 
ER=zeros(N,7);                                 % initialize ER vector 
 
% give arbitrary values to AR 
for I=1:10 
    AR(I)=I*1.0;                          
end 
 
for I=11:28 
    AR(I)=AR(10)+(I-10)*5.0; 
end 
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for I=29:36 
    AR(I)=AR(28)+(I-28)*50.0; 
end 
 
for I=37:N 
    AR(I)=AR(36)+(I-36)*100.0; 
end 
 
% Calcualte P1, ER 
for K=1:7 
 
    ETA_TMP=ETA_N(K) 
    [M_P1,PR_P1P0]=CFMP1(ETA_TMP);                % calcualte P1 according to nozzle geometry, by 

least square data fit skill 
    P1=P_P0*PR_P1P0 
    PR_P1S0=P1/P_S0 
 
    M_S1=MS1(P1);                                                            % calcualte M_S1 
   for J=1:N 
       AR_TMP=AR(J); 
       [ER_TP]=OMEGA(M_P1,M_S1,AR_TMP,ETA_TMP); % calculate ER 
       ER(J,K)=ER_TP; 
   end 
end 
 
for I=1:N 
    DR(I)=sqrt(AR(I));                         % convert AR to DR 
end 
 
% Plot the ER vs.AR 
figure(1); 
plot(AR(1:N),ER(1:N,1),'-',AR(1:N),ER(1:N,2),'--',AR(1:N),ER(1:N,3),'-',AR(1:N),ER(1:N,4),'--
',AR(1:N),ER(1:N,5),'-',AR(1:N),ER(1:N,6),'--',AR(1:N),ER(1:N,7),'-')        
title(sprintf('Entrainment Ratio vs.Area Ratio')) 
xlabel('Area Ratio of Mixing Chamber to Nozzle Throat') 
ylabel('Entrainment Ratio') 
legend('eta_n=0.98','eta_n=0.95','eta_n=0.90','eta_n=0.85','eta_n=0.80','eta_n=0.70','eta_n=0.60') 
 
% Plot the ER vs.DR 
figure(2); 
plot(DR(1:N),ER(1:N,1),'-',DR(1:N),ER(1:N,2),'--',DR(1:N),ER(1:N,3),'-',DR(1:N),ER(1:N,4),'--
',DR(1:N),ER(1:N,5),'-',DR(1:N),ER(1:N,6),'--',DR(1:N),ER(1:N,7),'-')        
title(sprintf('Entrainment Ratio vs.Diameter Ratio')) 
xlabel('Diameter Ratio of Mixing Chamber to Nozzle Throat') 
ylabel('Entrainment Ratio')   
legend('eta_n=0.98','eta_n=0.95','eta_n=0.90','eta_n=0.85','eta_n=0.80','eta_n=0.70','eta_n=0.60') 
 

Subroutines 
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6) ParametersInput.m 

 
clear all; clf;             % clear previous variables, clear the figures 
 
% input the boundary conditions 
GAMMA_P=1.4;            % Primary stream gas specific heat ratio, Cp/Cv  
GAMMA_S=1.66;           % Secondary stream gas specific heat ratio, Cp/Cv  
MW_P=28.97;             % Primary stream gas molecular weight, kg/kg-mol 
MW_S=4;                 % Secondary stream gas molecular weight, kg/kg-mol         
P0_P=264.7;             % Primary stream stagnation pressure, psia 
P0_S=34.7;              % Secodnary stream stagnation pressure, psia 
T0_P=300;               % Primary stream gas stagnation temperature, K 
T0_S=300;               % Secodnary stream gas stagnation temperature, K 
DT=0.0145;              % Nozzle throat diameter, inch 
D1=0.0195;                % Nozzle exit diameter, inch 
D2=0.17;                % Mixing chamber diameter, inch 
D3=0.20;                % Diffuser exit diameter, inch 
ETA_N=0.95;             % Nozzle isentropic efficiency coefficient 
ETA_D=0.96;             % Diffuser isentropic efficiency coefficient 
 
% Gas constant 
R_BAR=8312;             % Universal gas constant, J/(kg-mol.K) 
R_P=R_BAR/MW_P;         % Primary stream gas constant, J/(kg.K) 
R_S=R_BAR/MW_S;         % Secondary stream gas constant, J/(kg.K) 
 
% Units conversion 
P0_P=P0_P*6894.76;      % Primary stream stagnation pressure, Pa 
P0_S=P0_S*6894.76;      % Secodnary stream stagnation pressure, Pa 
DT=DT*2.54/100;         % Nozzle throat diameter, m 
D1=D1*2.54/100;         % Nozzle exit diameter, m 
D2=D2*2.54/100;         % Mixing chamber diameter,m 
D3=D3*2.54/100;         % Diffuser exit diameter, m 
 
% Area calculations 
AT=pi*DT*DT/4;          % Nozzle throat area, m2 
A1=pi*D1*D1/4;          % Nozzle exit area, m2 
A2=pi*D2*D2/4;          % Mixing chamber area, m2 
A3=pi*D3*D3/4;          % Diffuser exit area, m2 
 
AR_P1T=(D1/DT)*(D1/DT); 
 
%***************************** 
para{1}=GAMMA_P;          
para{2}=GAMMA_S; 
para{3}=R_P; 
para{4}=R_S; 
para{5}=T0_P; 
para{6}=T0_S; 
para{7}=P0_P; 
para{8}=P0_S; 
para{9}=AT; 
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para{10}=A1; 
para{11}=A2; 
para{12}=A3; 
para{13}=ETA_N; 
para{14}=ETA_D; 
para{15}=AR_P1T; 
%***************************** 
save parameters para 
 

7) CFMP1.m 

 
function [MP1_N,PR_N]=CFMP1(ETA); 
 
load parameters; 
AR_NOZZLE=para{15}; 
 
N=40; 
MP1_CF=zeros(N,1); 
AR_CF=zeros(N,1); 
PR_CF=zeros(N,1); 
 
A=1.0; 
B=2.6; 
DM=(B-A)/N; 
 
for I=1:N 
    MP1_CF(I)=1.0+I*DM; 
end 
 
for J=1:N 
        MP1_TMP=MP1_CF(J); 
        [PR1,AR1]=NOZLCF(MP1_TMP,ETA); 
        PR_CF(J)=PR1; 
        AR_CF(J)=AR1; 
end 
 
 
X=AR_CF; 
Y=MP1_CF; 
P=polyfit(X,Y,6); 
 
MP1_N=polyval(P,AR_NOZZLE); 
[PRTMP,ARTMP]=NOZLCF(MP1_N,ETA); 
PR_N=PRTMP; 
% end of function 
 

8) NOZLCF.m 

 
function [PR_P1P0,AR_P1T]=NOZZLE(MP1,ETA_TMP); 
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load parameters; 
GAMMA_P=para{1}; 
 
TMP1=(GAMMA_P+1); 
TMP2=(GAMMA_P-1); 
TMP3=GAMMA_P/(GAMMA_P-1); 
TMP4=(GAMMA_P+1)/(2*(GAMMA_P-1)); 
TMP5=ETA_TMP*(1+TMP2*MP1*MP1/2); 
TMP6=1-1/ETA_TMP; 
 
PR_P1P0=(TMP6+1/TMP5)^TMP3; 
AR_P1T=(1/MP1)*((2/TMP1)^TMP4)/((TMP6+1/TMP5)^TMP4); 
% end of function 
 

9) FUN5.m 

 
function [F5]=FUN5(M,ETA_N); 
 
load parameters; 
GAMMA_P=para{1}; 
%ETA_N=para{13}; 
 
TM1=2/(GAMMA_P+1); 
TM2=(GAMMA_P+1)/(2*(GAMMA_P-1)); 
TM3=(GAMMA_P-1)/2; 
TM4=ETA_N*(1+TM3*M*M); 
TM5=1-1/ETA_N+1/TM4; 
 
F5=(1/M)*(TM1^TM2)/(TM5^TM2); 
% end of function 
 

10) FUNP.m 

 
function [FP]=FUNP(ETA,GAMMA,M); 
 
FP_TM1=(ETA-1)/ETA; 
FP_TM2=(GAMMA-1)*M*M/2; 
FP_TM3=GAMMA/(GAMMA-1); 
 
FP=(FP_TM1*FP_TM2+1)^FP_TM3; 
% end of function 
 

11) FUNT.m 

 
function [FT]=FUNT(GAMMA,M); 
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FT_TM1=(GAMMA+1)/(2*(GAMMA-1)); 
FT_TM2=1+(GAMMA-1)*M*M/2; 
 
FT=FT_TM2^FT_TM1; 
% end of function 
 

12) MS1.m 

 
function [M_S1]=MS1(P1); 
 
load parameters; 
 
GAMMA_S=para{2}; 
P_S0=para{8}; 
 
PR_S=P1/P_S0; 
MS1T1=GAMMA_S-1; 
MS1T2=2/MS1T1; 
MS1T3=-MS1T1/GAMMA_S; 
 
TM1_S=PR_S^MS1T3-1; 
 
M_S1=sqrt(MS1T2*TM1_S); 
% end of function 
 

13) OMEGA.m 

 
function [ER_TMP]=OMEGA(MP1,MS1,AR,ETA_N); 
 
load parameters; 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
R_P=para{3}; 
R_S=para{4}; 
T_P0=para{5}; 
T_S0=para{6}; 
P_P0=para{7}; 
P_S0=para{8}; 
%ETA_N=para{13}; 
 
T1=P_S0/P_P0; 
T2=T_P0/T_S0; 
T3=R_P/R_S; 
T4=GAMMA_S/GAMMA_P; 
T5=MS1/MP1; 
 
F5=FUN5(MP1,ETA_N); 
FT_S=FUNT(GAMMA_S,MS1); 
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FT_P=FUNT(GAMMA_P,MP1); 
FP=FUNP(ETA_N,GAMMA_P,MP1); 
 
ERTM1=T1*T5; 
ERTM2=sqrt(T2*T3*T4); 
ERTM3=AR/F5-1; 
ERTM4=FT_P/(FT_S*FP); 
 
ER_TMP=ERTM1*ERTM2*ERTM3*ERTM4; 
% end of function 
 

14) MP1.m 

 
function [M_P1]=MP1(P1); 
 
load parameters; 
GAMMA_P=para{1}; 
P_P0=para{7}; 
ETA_N=para{13}; 
 
PR=P1/P_P0; 
MP1T1=GAMMA_P-1; 
MP1T2=2/MP1T1; 
MP1T3=MP1T1/GAMMA_P; 
 
TM1=ETA_N*(1-PR^MP1T3); 
TM2=TM1/(1-TM1); 
 
M_P1=sqrt(MP1T2*TM2); 
% end of function 
 

15) FUN2.m 

 
function [F2]=FUN2(GAMMA,M); 
 
F2TM1=1+(GAMMA-1)*M*M/2; 
F2TM2=sqrt(GAMMA*F2TM1); 
 
F2=M*F2TM2; 
% end of function 
 

16) FUN4.m 

 
function [F4]=FUN4(GAMMA,M); 
 
F4TM1=(1+GAMMA*M*M)/M; 
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F4TM2=(GAMMA-1)/2; 
F4TM3=1+F4TM2*M*M; 
F4TM4=1/sqrt(GAMMA*F4TM3); 
 
F4=F4TM1*F4TM4; 
% end of function 
 

17) ALPHA.m 

 
function [ALFA]=ALPHA(MP1,MS1,ER); 
 
load parameters; 
 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
R_P=para{3}; 
R_S=para{4}; 
T_P0=para{5}; 
T_S0=para{6}; 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
 
F4_S=FUN4(GAMMA_S,MS1); 
F4_P=FUN4(GAMMA_P,MP1); 
 
TR=T_S0/T_P0; 
RR=R_S/R_P; 
 
TRM=T_M0/T_P0; 
RRM=R_M/R_P; 
 
TMP1=sqrt(TR*RR); 
TMP2=sqrt(TRM*RRM); 
 
ALFA=(TMP1*F4_S*ER+F4_P)/(TMP2*(1+ER)); 
% end of function 
 

18) MIX.m 

 
function [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
 
load parameters; 
 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
R_P=para{3}; 
R_S=para{4}; 
T_P0=para{5}; 
T_S0=para{6}; 
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GMTM1=1/(GAMMA_P-1); 
GMTM2=GAMMA_P/(GAMMA_P-1); 
GMTM3=1/(GAMMA_S-1); 
GMTM4=GAMMA_S/(GAMMA_S-1); 
GMTM5=R_S/R_P; 
 
GAMMA_M=(GMTM2+GMTM4*GMTM5*ER)/(GMTM1+GMTM3*GMTM5*ER); 
R_M=(R_P+ER*R_S)/(1+ER); 
 
TR=T_S0/T_P0; 
TR_M0P0=(GMTM2+GMTM4*GMTM5*TR*ER)/(GMTM2+GMTM4*GMTM5*ER); 
T_M0=T_P0*TR_M0P0; 
% end of function 
 

19) MM3.m 

 
function [MM3_1,MM3_2]=MM3(MP1,MS1,ER); 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
[ALFA]=ALPHA(MP1,MS1,ER); 
 
C1=ALFA*ALFA-2; 
C2=2*GAMMA_M/(GAMMA_M-1); 
C3=(GAMMA_M-1)/GAMMA_M; 
C4=GAMMA_M-1; 
C5=ALFA*ALFA-C2; 
 
TERM1=sqrt(C1*C1+2*C3*C5); 
TERM2=C4*C5 
TERM3=-C1+TERM1 
TERM4=-C1-TERM1 
 
MM3_1=sqrt(TERM3/TERM2); 
MM3_2=sqrt(TERM4/TERM2); 
% end of function 
 

20) PREJ.m 

 
function [CR]=PREJ(AR,ER,MP1,MM3,P1); 
 
load parameters; 
 
P_S0=para{8}; 
ETA_D=para{14}; 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
 
TP1=ETA_D*MM3*MM3*(GAMMA_M-1)/2; 
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TP2=GAMMA_M/(GAMMA_M-1); 
 
PR_40M3=(1+TP1)^TP2; 
[PR_M3P1]=PRM3P1(AR,ER,MP1,MM3); 
PR_P1S0=P1/P_S0; 
 
CR=PR_40M3*PR_M3P1*PR_P1S0; 
% end of function 
 

21) PRM3P1.m 

 
function [PR_M3P1]=PRM3P1(AR,ER,MP1,MM3); 
 
load parameters; 
 
GAMMA_P=para{1}; 
R_P=para{3}; 
T_P0=para{5}; 
 
[AR_M3P1]=ARM3P1(AR,MP1); 
AR_P1M3=1/AR_M3P1; 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
 
T1=T_M0/T_P0; 
T2=R_M/R_P; 
T3=sqrt(T1*T2); 
 
F2P=FUN2(GAMMA_P,MP1); 
F2M=FUN2(GAMMA_M,MM3); 
 
PR_M3P1=T3*AR_P1M3*F2P*(1+ER)/F2M; 
% end of function 
 

22) ARM3P1.m 

 
function [AR_M3P1]=ARM3P1(AR,MP1); 
 
[M_P,P_P1,AR_P1T,P_PT,T_PT,C_PT]=NOZZLE(MP1); 
 
AR_M3P1=AR/AR_P1T; 
% end of function 
 

23) NOZZLE.m 

 
function [M_P,P_P1,AR_P1T,P_PT,T_PT,C_PT]=NOZZLE(M_P1); 
 



 211

load parameters; 
 
GAMMA_P=para{1}; 
R_P=para{3}; 
T_P0=para{5}; 
P_P0=para{7}; 
AT=para{10}; 
ETA_N=para{13}; 
 
TMP1=2/(GAMMA_P+1); 
TMP2=GAMMA_P/(GAMMA_P-1); 
 
P_PT=P_P0*(TMP1^TMP2); 
T_PT=T_P0*TMP1; 
C_PT=sqrt(R_P*T_P0*TMP1*GAMMA_P); 
V_PT=C_PT; 
 
TMP3=(GAMMA_P+1)/(GAMMA_P-1); 
TMP4=sqrt((GAMMA_P/R_P)*(TMP1^TMP3)); 
TMP5=sqrt(T_P0); 
TMP6=AT*P_P0; 
 
M_P=(TMP6/TMP5)*TMP4; 
 
TMP7=ETA_N*(1+(GAMMA_P-1)*M_P1*M_P1/2); 
TMP8=1-1/ETA_N+1/TMP7; 
P_P1=P_P0*(TMP8^TMP2); 
AR_P1T=(1/M_P1)*(TMP1^(TMP3/2))/(TMP8^(TMP3/2)); 
% end of function 
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APPENDIX C 

MATLAB PROGRAM DEVELOPED FOR PARAMETRIC STUDIES 

ON GENERALIZED EJECTOR MODEL 

 

Main Programs 

 

1) General-Features.m 

 
% This is a program developed to investigate the general features of generalized ejector model 
% Relationships of MU, TAO, ER, ENTROPY,M_P1, M_S1, M_M3, etc. will be plotted as figures 
% Values of MU are given arbitrary 
% It is an 1-D analytical model for generalized ejector model 
% There is a separate parameter input file 
% 
clear all;                                               % clear previous variables, clear the figures 
 
THETA=1.2;                                        %  theta=1.2, arbitrary given 
AR_M2T=80;                                      %  KAPPA=80, arbitrary given 
    
N=500; 
TESTMU=zeros(N-1,1);                      %  initialize MU vector 
ENTROPY=zeros(N-1,1);                    %  initialize total entropy,i.e.,delta_S_total, vector 
ENTROMIX=zeros(N-1,1);                  %  initialize entropy component, delta_s_mix, vector 
ENTROPX=zeros(N-1,1);                     %  initialize entropy component, delta_s_x, vector 
ERR=zeros(N-1,1);                               %  initialize ER vector 
MMIX=zeros(N-1,1);                            %  initialize M_MIX vector 
TM2=zeros(N-1,1);                               %  initialize T_M2 vector 
PRS0M=zeros(N-1,1);                          %  initialize TAO vector 
MUTAO=zeros(N-1,1);                         %  initialize MU*TAO vector 
MS1S=zeros(N-1,1);                             %  initialize M_S1 vector 
MP1S=zeros(N-1,1);                             %  initialize M_P1 vector 
 
DETAMU=1.0/N; 
 
for K=1:N-1 
    TESTMU(K)=K*DETAMU;            % give arbitrary values to MU 
end 
 
for J=1:N-1 
 
    MU=TESTMU(J); 
    [M_S1]=MS1(MU);                                                                 % calcualte M_S1 
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    [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR_M2T);     % calculate area ratios 
    [M_P1,MP1SQ]=MP1(MU);                                                    % calculate M_P1 
    [S_PX,PR_0I0X]=SPX(MU,M_P1);                                        % calculate entropy change  

% component delta_S_shock 
 
    [ER]=OMEGA(M_P1,M_S1,THETA,AR_M2T);                  % calcualte ER 
    [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER);                 % calcualte properties of mixed flow 
    [TR_P1S1]=TRP1S1(M_P1,M_S1);                              % calcualte temperature ratio of T_P1/T_S1 
    [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2);              % calcualte temporary parameter D 
    [E]=TME(ER,M_S1,ARS1M2);                                    % calcualte temporary parameter E 
    [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M);           % calcualte TAO, there are two solutions 
 
    PR_S0M2=TAO2;                                         % the supersonic TAO is discarded,and subsonic is kept 
 
    [M_M2,MM2SQ]=MM2(GAMMA_M,MU,D,PR_S0M2);       % calculate M_M2 
 
    [TR_M2P1]=TRM2P1(M_M2,ER,M_P1);                % calculate the temperature ratio of T_M2/T_P1 
    [PR_1M2]=PR1M2(MU,PR_S0M2);                       % calculate the pressure ratio of P1/P_M2 
    [S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2);   % calculate the entropy change 

% component of delta_s_mix 
    [S_TOT]=STOT(M_M2,M_P1,M_S1,ER,MU,PR_S0M2);   % calculate the total entropy change 

% delta_S 
 
    PRS0M(J)=PR_S0M2; 
    TM2(J)=T_M0/TFUN(GAMMA_M,M_M2); 
    ENTROPX(J)=S_PX/(1+ER); 
    ENTROMIX(J)=S_MIX; 
    ENTROPY(J)=S_TOT; 
 
    MUTAO(J)=TESTMU(J)*PRS0M(J); 
 
    ERR(J)=ER; 
    MMIX(J)=M_M2; 
 
    MS1S(J)=M_S1; 
    MP1S(J)=M_P1; 
end 
 
ER_MAX=max(ERR);                                     % find the maximum ER value 
 
% Plot total entropy change and its two components against MU 
figure(1); 
plot(TESTMU,ENTROPY,'-',TESTMU,ENTROPX,'-.',TESTMU,ENTROMIX,'--') 
title(sprintf('Entropy Change vs.MU')) 
xlabel('MU') 
ylabel('delta_S')  
legend('s_total','s_shock,','s_mixing') 
 
% Plot ER against MU 
figure(2); 
plot(TESTMU,ERR,'-') 
title(sprintf('ER vs.MU')) 
xlabel('MU') 
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ylabel('ER') 
 
% Plot M_MIX against MU 
figure(3); 
plot(TESTMU,MMIX,'-') 
title(sprintf('Mach Number of Mixed Flow vs.MU')) 
xlabel('MU') 
ylabel('M_MIX')  
 
% Plot total entropy change against MU 
figure(4); 
plot(TESTMU,ENTROPY,'-') 
title(sprintf('Total Entropy Change vs.MU')) 
xlabel('MU') 
ylabel('delta_S')  
 
% Plot T_M2 against MU 
figure(5); 
plot(TESTMU,TM2,'-') 
title(sprintf('Mixing Flow Temperature vs.MU')) 
xlabel('MU') 
ylabel('T_M2')  
 
% Plot TAO against MU 
figure(6); 
plot(TESTMU,PRS0M,'-') 
title(sprintf('TAO vs.MU')) 
xlabel('MU') 
ylabel('TAO')  
 
% Plot M_P1, M_S1 and normalzied ER against MU 
figure(10); 
plot(TESTMU,ERR/ER_MAX,'-',TESTMU,MP1S,'--',TESTMU,MS1S,'-.') 
title(sprintf('ER,M_P1 and M_S1vs.MU')) 
xlabel('MU') 
ylabel('ER and Mach Numbers')  
legend('ER','M_P1','M_S1') 
 

2) OPTIMAL_CURVES.m 

 
% This is a program developed to plot the optimal ER as a function of AR for various theta 
% Values of MU calcualted at M_S1=1, i.e. the secondary stream is choked at station 1. 
% It is an 1-D analytical model for generalized ejector model 
% There is a separate parameter input file 
% 
clear all;                                                          % clear previous variables, clear the figures 
 
load parameters;                                             % load the input data 
GAMMA_S=para{2}; 
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N=100; 
THE_TA=[1.0,1.2,1.4,1.6,1.8,2.0];                % the THETA vector, arbitrary given 
  
AR_M2T=zeros(N,1);                                    % initialize the AR (KAPPA) vector 
ERR=zeros(N,6);                                            % initialize the ER vector 
ENTROPY=zeros(N,6);                                  % initialize the total entropy change vector 
MMIX=zeros(N,6);                                         % initialize the M_MIX vector 
PRS0M=zeros(N,6);                                        % initialize TAO vector 
PCR=zeros(N,6);                                             % initialize the CR vector 
 
for I=1:N 
    AR_M2T(I)=10*I;                                      % give arbitrary values to AR 
end 
 
MU=CHOKE(GAMMA_S);                       % calculate MU, which corresponds to the choked secondary 
stream 
[M_S1]=MS1(MU);                                        % calculate M_S1, actually, M_S1=1 
[M_P1,MP1SQ]=MP1(MU);                          % calculate M_P1 
[S_PX,PR_0I0X]=SPX(MU,M_P1);              % calculate delta_S due to the primary stream shock 
[TR_P1S1]=TRP1S1(M_P1,M_S1);              % calculate the temperature ratio of _P1/T_S1 
 
for K=1:6 
    THETA=THE_TA(K); 
     
for J=1:N 
     
    AR=AR_M2T(J) 
    [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR);  % calculate area ratios 
    [ER]=OMEGA(M_P1,M_S1,THETA,AR);               % calculate ER 
    [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER);   % calcualte properties of MIXED flow 
    
    [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2);          % calcualte the temporary parameter D 
    [E]=TME(ER,M_S1,ARS1M2);                               % calcualte the temporary parameter E 
    [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M);   % calcualte TAO, there are two solutions for TAO 
 
    PR_S0M2=TAO2;                                                      % supersonic solution of TAO is discarded 
 
    [M_M2,MM2SQ]=MM2(GAMMA_M,MU,D,PR_S0M2);   % calculate M_M2 
    [TR_M2P1]=TRM2P1(M_M2,ER,M_P1);           % calcualte the temperature ratio of T_M2/T_P1 
    [PR_1M2]=PR1M2(MU,PR_S0M2);                   % calcualte the pressure ratio of P1/P_M2 
    [S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2);  % calcualte the entropy change  

% due to the flow mixing 
    [S_TOT]=STOT(M_M2,M_P1,M_S1,ER,MU,PR_S0M2); % calculate the total entropy change 
 
    [CR]=PRCR(M_M2,GAMMA_M,PR_S0M2);                     % calcualte CR 
     
    ENTROPY(J,K)=S_TOT; 
    ERR(J,K)=ER; 
    MMIX(J,K)=M_M2; 
    PRS0M(J,K)=PR_S0M2; 
    PCR(J,K)=CR; 
end 
end 
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% Plot the ER vs.AR for various THETA 
figure(1); 
plot(AR_M2T,ERR(1:N,1),'-',AR_M2T,ERR(1:N,2),'-',AR_M2T,ERR(1:N,3),'-',AR_M2T,ERR(1:N,4),'-
',AR_M2T,ERR(1:N,5),'-',AR_M2T,ERR(1:N,6),'-') 
title(sprintf('Optimal ER vs.AR')) 
xlabel('AR') 
ylabel('ER')  
legend('theta=1.0','theta=1.2','theta=1.4','theta=1.6','theta=1.8','theta=2.0') 
 
% Plot the CR vs.AR for various THETA 
figure(2); 
plot(AR_M2T,PCR(1:N,1),'-',AR_M2T,PCR(1:N,2),'-',AR_M2T,PCR(1:N,3),'-',AR_M2T,PCR(1:N,4),'-
',AR_M2T,PCR(1:N,5),'-',AR_M2T,PCR(1:N,6),'-') 
title(sprintf('Optimal CR vs.AR')) 
xlabel('AR') 
ylabel('CR')  
legend('theta=1.0','theta=1.2','theta=1.4','theta=1.6','theta=1.8','theta=2.0') 
 

3) CONP_THETA.m 

 
% This is a program developed to investigate the relationship between generalized ejector model 
% and the constant-pressure mixing model. Should the assumption of constant-pressure mixing possible,  
% there exist some values of MU so that the curve of TAO will intersect with the curve of 1/MU. 
% The curves of TAO vs. MU are plotted together with 1/MU for various THETA 
% AR (KAPPA) is set to be arbitrary value of 100. 
% It is an 1-D analytical model for generalized ejector model 
% There is a separate parameter input file 
% 
clear all;          % clear previous variables, clear the figures 
 
THE_TA=[1.0,1.1,1.2,1.3,1.4,1.5];                    % The vector of THETA 
AR_M2T=100;                                                   % AR (KAPPA)=100 
 
N=500; 
TESTMU=zeros(N-1,1);                                    % initialize the MU vector 
ERR=zeros(N-1,6);                                            % initialize the ER vector 
PRS0M=zeros(N-1,6);                                       % initialize the TAO vector 
TAO_CP=zeros(N-1,1);                                    % initialize the vector of 1/MU  
 
DETAMU=1.0/N; 
 
for K=1:N-1                                                  % calcualte 1/MU  
    TESTMU(K)=K*DETAMU;                                
    TAO_CP(K)=1/TESTMU(K); 
end 
 
for J=1:N-1 
 
    MU=TESTMU(J); 
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    [M_S1]=MS1(MU);                                   % calcualte M_S1 
    [M_P1,MP1SQ]=MP1(MU);                      % calcualte M_P1 
         
    for I=1:6 
     
        THETA=THE_TA(I); 
        [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR_M2T);     % calculate area ratios 
        [ER]=OMEGA(M_P1,M_S1,THETA,AR_M2T);                  % calculate ER 
        [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER);                 % calculate properties of mixed flow 
        [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2);                   % calculate the temporary parameter of D 
        [E]=TME(ER,M_S1,ARS1M2);                                         % calculate the temporary parameter of E 
        [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M);   % calculate TAO, there are two solutions of TAO 
 
        PRS0M(J,I)=TAO2;                                                            % discarded supersonic solution of TAO 
        ERR(J,I)=ER; 
    end 
 
end 
 
% Plot TAO vs. MU, as well as 1/MU vs. Mu 
figure(1); 
plot(TESTMU,PRS0M(1:N-1,1),'-',TESTMU,PRS0M(1:N-1,2),'-',TESTMU,PRS0M(1:N-1,3),'-
',TESTMU,PRS0M(1:N-1,4),'-',TESTMU,PRS0M(1:N-1,5),'-',TESTMU,PRS0M(1:N-1,6),'-
',TESTMU,TAO_CP,'--') 
title(sprintf('MU and TAO')) 
xlabel('MU') 
ylabel('TAO')  
legend('theta=1.0','theta=1.1','theta=1.2','theta=1.3','theta=1.4','theta=1.5','TAO_CP') 
 
% Plot ER vs. MU 
figure(2); 
plot(TESTMU,ERR(1:N-1,1),'-',TESTMU,ERR(1:N-1,2),'-',TESTMU,ERR(1:N-1,3),'-
',TESTMU,ERR(1:N-1,4),'-',TESTMU,ERR(1:N-1,5),'-',TESTMU,ERR(1:N-1,6),'-') 
title(sprintf('ER vs. MU')) 
xlabel('MU') 
ylabel('ER')  
legend('theta=1.0','theta=1.1','theta=1.2','theta=1.3','theta=1.4','theta=1.5') 
 

4) CONP_AR.m 

 
% This is a program developed to investigate the relationship between generalized ejector model 
% and the constant-pressure mixing model. Should the assumption of constant-pressure mixing possible,  
% there exist some values of MU so that the curve of TAO will intersect with the curve of 1/MU. 
% The curves of TAO vs. MU are plotted together with 1/MU for various KAPPA (AR) 
% THETA is set to be arbitrary value of 1.0, or set to be constant-area ejector 
% 
clear all;                                      % clear previous variables, clear the figures 
 
THETA=1.0;                                      % THETA set to be 1.0, i.e., constant-area ejector 
KAPPA=[20,60,100,140,400,600];                  % KAPPA (AR) vector 
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N=500; 
TESTMU=zeros(N-1,1);                            % initialize the MU vector 
ERR=zeros(N-1,6);                               % initialize the ER vector 
PRS0M=zeros(N-1,6);                             % initialize the TAO vector 
TAO_CP=zeros(N-1,1);                            % initialize the 1/MU vector 
 
DETAMU=1.0/N; 
 
for K=1:N-1 
    TESTMU(K)=K*DETAMU;                         % calculate the 1/MU value 
    TAO_CP(K)=1/TESTMU(K); 
end 
 
for J=1:N-1 
 
    MU=TESTMU(J); 
    [M_S1]=MS1(MU);                             % calculate M_S1 
    [M_P1,MP1SQ]=MP1(MU);                       % calcualte M_P1 
         
    for I=1:6 
     
        AR_M2T=KAPPA(I); 
        [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR_M2T); % calculate area ratios 
        [ER]=OMEGA(M_P1,M_S1,THETA,AR_M2T);       % calculate ER 
        [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER);       % calculate properties of mixed flow 
        [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2);         % calculate the temporary parameter of D 
        [E]=TME(ER,M_S1,ARS1M2);                  % calculate the temporary parameter of E 
        [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M);       % calculate TAO 
 
        PRS0M(J,I)=TAO2; 
        ERR(J,I)=ER; 
    end 
 
end 
 
% Plot TAO vs. MU,as well as 1/MU for various AR 
figure(1); 
plot(TESTMU,PRS0M(1:N-1,1),'-',TESTMU,PRS0M(1:N-1,2),'-',TESTMU,PRS0M(1:N-1,3),'-
',TESTMU,PRS0M(1:N-1,4),'-',TESTMU,PRS0M(1:N-1,5),'-',TESTMU,PRS0M(1:N-1,6),'-
',TESTMU,TAO_CP,'--') 
title(sprintf('MU and TAO')) 
xlabel('MU') 
ylabel('TAO')  
legend('kappa=20','kappa=60','kappa=100','kappa=140','kappa=400','kappa=600','TAO_CP') 
 

5) SolutionSURFACE.m 

 
% This is a program developed to generate the surface plot of ER against P_P0/P_S0 and P_b/P_S0 
% It is an 1-D analytical model for generalized ejector model 
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% There is a separate parameter input file 
% 
clear all;                                   % clear previous variables, clear the figures 
 
load parameters;                      % load input data 
GAMMA_S=para{2}; 
P_S0=para{8}; 
 
PR0=2; 
PRBS0=0.05; 
 
N=15; 
M=30; 
THETA=1.0; 
AR=100; 
 
PR_P0S0=zeros(N,1); 
PP0=zeros(N,1); 
TAOMAXS=zeros(N,1); 
TAOMINS=zeros(N,1); 
PRBS0_MIN=zeros(N,1); 
PRBS0_MAX=zeros(N,1); 
MU_CF=zeros(M,N); 
PRBS=zeros(M,1); 
PRSOB=zeros(M,1); 
ERR=zeros(M,N); 
 
for P=1:N 
    PR_P0S0(P)=P*PR0; 
    PP0(P)=PR_P0S0(P)*P_S0; 
end 
 
for Q=1:M 
    PRBS(Q)=0.50+PRBS0*Q; 
    PRSOB(Q)=1/PRBS(Q); 
end 
 
for I=1:N 
     
    P_P0=PP0(I); 
    [TAOMAX,TAOMIN]=TAOLM(THETA,AR,P_P0); 
    TAOMAXS(I)=TAOMAX; 
    TAOMINS(I)=TAOMIN; 
 
    for J=1:M 
        TAO_CF=PRSOB(J); 
        if ( TAO_CF<TAOMIN | TAO_CF>TAOMAX) 
           ER=0; 
        else 
           MU_CF(I,J)=CFMU(THETA,AR,TAO_CF,P_P0); 
           MU=MU_CF(I,J); 
    
          [M_S1]=MS1(MU); 
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          [M_P1,MP1SQ]=MP1(MU,P_P0); 
 
          [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR); 
          [ER]=OMEGA(M_P1,M_S1,THETA,AR); 
       end 
     
       ERR(J,I)=ER; 
   end 
end 
 
for R=1:N 
    for S=1:M 
        A=imag(ERR(S,R)); 
        B=abs(A); 
        if ( B > 0 ) 
            ERR(S,R)=0; 
        end 
    end 
end 
 
for K=1:N 
    PRBS0_MIN(K)=1/TAOMAXS(K); 
    PRBS0_MAX(K)=1/TAOMINS(K); 
end 
 
% Plot the ER surface 
figure(1); 
surf(PR_P0S0,PRBS,ERR) 
title(sprintf('ER Surface')) 
xlabel('P_P0/P_S0') 
ylabel('P_b/P_SO') 
zlabel('ER') 
 

6) Limitations_opt.m 

 
% This is a program developed to generate the surface plot of optimal ER 
% Relationship between optimal ER and the parameters of AR, THETA, CR are investigated and plotted 
% The total entropy change is plotted to investigate the feasibility of ejector design 
% 
 
clear all;          % clear previous variables, clear the figures 
 
load parameters; 
GAMMA_S=para{2}; 
 
N=100; 
THE_TA=[1.0,1.2,1.4,1.6,1.8,2.0]; 
 
AR_M2T=zeros(N,1); 
ERR=zeros(N,6); 
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ENTROPY=zeros(N,6); 
MMIX=zeros(N,6); 
PRS0M=zeros(N,6); 
PCR=zeros(N,6); 
 
for I=1:N 
    AR_M2T(I)=10*I; 
end 
 
MU=CHOKE(GAMMA_S); 
[M_S1]=MS1(MU); 
[M_P1,MP1SQ]=MP1(MU); 
[S_PX,PR_0I0X]=SPX(MU,M_P1); 
[TR_P1S1]=TRP1S1(M_P1,M_S1); 
 
for K=1:6 
    THETA=THE_TA(K); 
     
for J=1:N 
     
    AR=AR_M2T(J); 
    [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR); 
    [ER]=OMEGA(M_P1,M_S1,THETA,AR); 
    [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
    
    [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2); 
    [E]=TME(ER,M_S1,ARS1M2); 
    [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M); 
 
    PR_S0M2=TAO2; 
 
    [M_M2,MM2SQ]=MM2(GAMMA_M,MU,D,PR_S0M2); 
    [TR_M2P1]=TRM2P1(M_M2,ER,M_P1); 
    [PR_1M2]=PR1M2(MU,PR_S0M2); 
    [S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2); 
    [S_TOT]=STOT(M_M2,M_P1,M_S1,ER,MU,PR_S0M2); 
 
    [CR]=PRCR(M_M2,GAMMA_M,PR_S0M2); 
     
    ENTROPY(J,K)=S_TOT; 
    ERR(J,K)=ER; 
    MMIX(J,K)=M_M2; 
    PRS0M(J,K)=PR_S0M2; 
    PCR(J,K)=CR; 
end 
end 
 
% Plot the ER vs.AR 
figure(1); 
plot(AR_M2T,ERR(1:N,1),'-',AR_M2T,ERR(1:N,2),'-',AR_M2T,ERR(1:N,3),'-',AR_M2T,ERR(1:N,4),'-
',AR_M2T,ERR(1:N,5),'-',AR_M2T,ERR(1:N,6),'-') 
title(sprintf('Optimal ER vs.AR')) 
xlabel('AR') 
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ylabel('ER')  
legend('theta=1.0','theta=1.2','theta=1.4','theta=1.6','theta=1.8','theta=2.0') 
 
figure(2); 
plot(AR_M2T,PCR(1:N,1),'-',AR_M2T,PCR(1:N,2),'-',AR_M2T,PCR(1:N,3),'-',AR_M2T,PCR(1:N,4),'-
',AR_M2T,PCR(1:N,5),'-',AR_M2T,PCR(1:N,6),'-') 
title(sprintf('Optimal CR vs.AR')) 
xlabel('AR') 
ylabel('CR')  
legend('theta=1.0','theta=1.2','theta=1.4','theta=1.6','theta=1.8','theta=2.0') 
 
figure(3); 
surf(THE_TA,AR_M2T,ERR) 
title(sprintf('ER vs. AR and theta')) 
xlabel('AR') 
ylabel('theta') 
legend('ER') 
 
figure(4); 
surf(THE_TA,AR_M2T,PCR) 
title(sprintf('CR vs. AR and theta')) 
xlabel('AR') 
ylabel('theta') 
legend('CR') 
 
figure(5); 
surf(THE_TA,AR_M2T,ENTROPY) 
title(sprintf('ENTROPY vs. AR and theta')) 
xlabel('AR') 
ylabel('theta') 
legend('ENTROPY') 
 

7) Limitations_S-MU-AR.m 

 
% This is a program developed to generate the surface plot total entropy change 
% against the parameters of AR and MU 
% The ENTROPY surface give the ejector design limitations 
% 
clear all;          % clear previous variables, clear the figures 
 
load parameters; 
GAMMA_S=para{2}; 
 
THETA=1.0; 
 
N=100; 
M=100; 
 
AR_M2T=zeros(N,1); 
ERR=zeros(N,M); 
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ENTROPY=zeros(N,M); 
MMIX=zeros(N,M); 
PRS0M=zeros(N,M); 
PCR=zeros(N,M); 
 
for I=1:N 
    AR_M2T(I)=10*I; 
end 
 
DETAMU=0.50/M; 
 
for K=1:M 
    TESTMU(K)=0.50+(K-1)*DETAMU; 
end 
 
for I=1:M 
    MU=TESTMU(I); 
    [M_S1]=MS1(MU); 
    [M_P1,MP1SQ]=MP1(MU); 
    [S_PX,PR_0I0X]=SPX(MU,M_P1); 
    [TR_P1S1]=TRP1S1(M_P1,M_S1); 
     
    for J=1:N 
     
        AR=AR_M2T(J); 
        [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR); 
        [ER]=OMEGA(M_P1,M_S1,THETA,AR); 
        [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
    
        [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2); 
        [E]=TME(ER,M_S1,ARS1M2); 
        [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M); 
 
        PR_S0M2=TAO2; 
 
        [M_M2,MM2SQ]=MM2(GAMMA_M,MU,D,PR_S0M2); 
        [TR_M2P1]=TRM2P1(M_M2,ER,M_P1); 
        [PR_1M2]=PR1M2(MU,PR_S0M2); 
        [S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2); 
        [S_TOT]=STOT(M_M2,M_P1,M_S1,ER,MU,PR_S0M2); 
 
        [CR]=PRCR(M_M2,GAMMA_M,PR_S0M2); 
     
        ENTROPY(J,I)=S_TOT; 
        ERR(J,I)=ER; 
        MMIX(J,I)=M_M2; 
        PRS0M(J,I)=PR_S0M2; 
        PCR(J,I)=CR; 
    end 
end 
 
% Surface plot of DELTA_S_TOT vs. AR and MU 
figure(1); 
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surf(TESTMU,AR_M2T,ENTROPY) 
title(sprintf('Total Entropy Change')) 
xlabel('MU') 
ylabel('AR') 
legend('Delta_S') 
 

8) Limitations_S-MU-theta.m 

 
% This is a program developed to generate the surface plot total entropy change 
% against the parameters of THETA and MU 
% The ENTROPY surface give the ejector design limitations 
% 
clear all;          % clear previous variables, clear the figures 
 
load parameters; 
GAMMA_S=para{2}; 
 
AR=100; 
N=20; 
M=100; 
 
THE_TA=zeros(N,1); 
ERR=zeros(N,M); 
ENTROPY=zeros(N,M); 
MMIX=zeros(N,M); 
PRS0M=zeros(N,M); 
PCR=zeros(N,M); 
 
for I=1:N 
    THE_TA(I)=1.0+(I-1)*(1.0/N); 
end 
 
DETAMU=0.50/M; 
 
for K=1:M 
    TESTMU(K)=0.50+(K-1)*DETAMU; 
end 
 
for I=1:M 
    MU=TESTMU(I); 
    [M_S1]=MS1(MU); 
    [M_P1,MP1SQ]=MP1(MU); 
    [S_PX,PR_0I0X]=SPX(MU,M_P1); 
    [TR_P1S1]=TRP1S1(M_P1,M_S1); 
     
    for J=1:N 
     
        THETA=THE_TA(J); 
        [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR); 
        [ER]=OMEGA(M_P1,M_S1,THETA,AR); 
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        [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
    
        [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2); 
        [E]=TME(ER,M_S1,ARS1M2); 
        [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M); 
 
        PR_S0M2=TAO2; 
 
        [M_M2,MM2SQ]=MM2(GAMMA_M,MU,D,PR_S0M2); 
        [TR_M2P1]=TRM2P1(M_M2,ER,M_P1); 
        [PR_1M2]=PR1M2(MU,PR_S0M2); 
        [S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2); 
        [S_TOT]=STOT(M_M2,M_P1,M_S1,ER,MU,PR_S0M2); 
 
        [CR]=PRCR(M_M2,GAMMA_M,PR_S0M2); 
     
        ENTROPY(J,I)=S_TOT; 
        ERR(J,I)=ER; 
        MMIX(J,I)=M_M2; 
        PRS0M(J,I)=PR_S0M2; 
        PCR(J,I)=CR; 
    end 
end 
 
% Surface plot DELTA_S_TOT vs. MU and THETA 
figure(1); 
surf(TESTMU,THE_TA,ENTROPY) 
title(sprintf('Total Entropy Change')) 
xlabel('MU') 
ylabel('theta') 
legend('Delta_S') 
 

Subroutines 

 

9) ParametersInput.m 

 
clear all; clf;                              % clear previous variables, clear the figures 
% input the boundary conditions 
GAMMA_P=1.4;                     % Primary stream gas specific heat ratio, Cp/Cv  
GAMMA_S=1.4;                     % Secondary stream gas specific heat ratio, Cp/Cv  
MW_P=28.97;                         % Primary stream gas molecular weight, kg/kg-mol 
MW_S=28.97;                         % Secondary stream gas molecular weight, kg/kg-mol         
P0_P=364.7;                            % Primary stream stagnation pressure, psia 
P0_S=34.7;                              % Secodnary stream stagnation pressure, psia 
T0_P=300;                                % Primary stream gas stagnation temperature, K 
T0_S=300;                               % Secodnary stream gas stagnation temperature, K 
DT=0.0145;                             % Nozzle throat diameter, inch 
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D1=0.04;                                  % Nozzle exit diameter, inch 
D2=0.17;                                  % Mixing chamber diameter, inch 
D3=0.20;                                  % Diffuser exit diameter, inch 
ETA_N=0.95;                            % Nozzle isentropic efficiency coefficient 
ETA_D=0.96;                           % Diffuser isentropic efficiency coefficient 
 
% Gas constant 
R_BAR=8312;                           % Universal gas constant, J/(kg-mol.K) 
R_P=R_BAR/MW_P;                % Primary stream gas constant, J/(kg.K) 
R_S=R_BAR/MW_S;                 % Secondary stream gas constant, J/(kg.K) 
 
% Area ratio of A_P1 to A_t 
ARP1T=(D1/DT)*(D1/DT); 
 
% Units conversion 
P0_P=P0_P*6894.76;                 % Primary stream stagnation pressure, Pa 
P0_S=P0_S*6894.76;                 % Secodnary stream stagnation pressure, Pa 
DT=DT*2.54/100;                      % Nozzle throat diameter, m 
D1=D1*2.54/100;                       % Nozzle exit diameter, m 
D2=D2*2.54/100;                       % Mixing chamber diameter,m 
D3=D3*2.54/100;                       % Diffuser exit diameter, m 
 
% Area calculations 
AT=pi*DT*DT/4;          % Nozzle throat area, m2 
A1=pi*D1*D1/4;           % Nozzle exit area, m2 
A2=pi*D2*D2/4;           % Mixing chamber area, m2 
A3=pi*D3*D3/4;           % Diffuser exit area, m2 
 
%***************************** 
para{1}=GAMMA_P;          
para{2}=GAMMA_S; 
para{3}=R_P; 
para{4}=R_S; 
para{5}=T0_P; 
para{6}=T0_S; 
para{7}=P0_P; 
para{8}=P0_S; 
para{9}=AT; 
para{10}=A1; 
para{11}=A2; 
para{12}=A3; 
para{13}=ETA_N; 
para{14}=ETA_D; 
para{15}=ARP1T; 
 
%***************************** 
save parameters para 
 

10) ARS.m 
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function [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR_M2T); 
 
load parameters; 
 
AR_P1T=para{15}; 
 
ARP1M2=AR_P1T/AR_M2T; 
ARS1P1=(AR_M2T*THETA/AR_P1T)-1; 
ARS1M2=ARP1M2*ARS1P1; 
% end of function 
 

11) CFMP1.m 

 
function [MP1_N,PR_N]=CFMP1(AR_NOZZLE); 
 
N=40; 
MP1_CF=zeros(N,1); 
AR_CF=zeros(N,1); 
PR_CF=zeros(N,1); 
 
A=1.0; 
B=2.6; 
DM=(B-A)/N; 
 
for I=1:N 
    MP1_CF(I)=1.0+I*DM; 
end 
 
for J=1:N 
        MP1_TMP=MP1_CF(J); 
        [PR1,AR1]=NOZLCF(MP1_TMP); 
        PR_CF(J)=PR1; 
        AR_CF(J)=AR1; 
end 
 
X=AR_CF; 
Y=MP1_CF; 
P=polyfit(X,Y,8); 
 
MP1_N=polyval(P,AR_NOZZLE); 
[PRTMP,ARTMP]=NOZLCF(MP1_N); 
PR_N=PRTMP; 
% end of function 
 

12) FUN2.m 
 

function [F2]=FUN2(GAMMA,M); 
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F2TM1=1+(GAMMA-1)*M*M/2; 
F2TM2=sqrt(GAMMA*F2TM1); 
 
F2=M*F2TM2; 
% end of function 
 

13) GTS.m 
 

function [G1,G2,G3,G4,G5,G6]=GTS(GAMMA); 
 
G1=GAMMA/(GAMMA+1); 
G2=(GAMMA-1)/(GAMMA+1); 
G3=GAMMA/(GAMMA-1); 
G4=(GAMMA+1)/(GAMMA-1); 
G5=(GAMMA-1)/GAMMA; 
G6=(GAMMA+1)/GAMMA; 
% end of function 
 

14) MIX.m 
 

function [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
 
load parameters; 
 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
R_P=para{3}; 
R_S=para{4}; 
T_P0=para{5}; 
T_S0=para{6}; 
 
GMTM1=1/(GAMMA_P-1); 
GMTM2=GAMMA_P/(GAMMA_P-1); 
GMTM3=1/(GAMMA_S-1); 
GMTM4=GAMMA_S/(GAMMA_S-1); 
GMTM5=R_S/R_P; 
 
GAMMA_M=(GMTM2+GMTM4*GMTM5*ER)/(GMTM1+GMTM3*GMTM5*ER); 
R_M=(R_P+ER*R_S)/(1+ER); 
 
TR=T_S0/T_P0; 
TR_M0P0=(GMTM2+GMTM4*GMTM5*TR*ER)/(GMTM2+GMTM4*GMTM5*ER); 
T_M0=T_P0*TR_M0P0; 
% end of function 
 

15) MM2.m 
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function [M_M2,MM2SQ]=MM2(GAMMA_M,MU,D,TAO); 
 
MM2SQ=(D*MU*TAO-1)/GAMMA_M; 
M_M2=sqrt(MM2SQ); 
% end of function 
 

16) MP1.m 
 

function [M_P1,MP1SQ]=MP1(MU); 
 
load parameters; 
 
GAMMA_P=para{1}; 
P_P0=para{7}; 
P_S0=para{8}; 
ARP1T=para{15}; 
 
[GM1,GM2,GM3,GM4,GM5,GM6]=GTS(GAMMA_P); 
 
GTT1=GAMMA_P-1; 
GTT2=2/(GAMMA_P+1); 
GTT3=GM4; 
 
TT1=((P_P0/P_S0)/ARP1T)^2; 
TT2=2*GTT1*(GTT2^GTT3); 
TT3=MU*MU+TT1*TT2; 
 
MP1SQ=(-MU+sqrt(TT3))/(GTT1*MU); 
M_P1=sqrt(MP1SQ); 
% end of function 
 

17) MS1.m 
 

function [M_S1]=MS1(MU); 
 
load parameters; 
 
GAMMA_S=para{2}; 
 
MS1T1=GAMMA_S-1; 
MS1T2=2/MS1T1; 
MS1T3=-MS1T1/GAMMA_S; 
 
TM1_S=MU^MS1T3-1; 
 
M_S1=sqrt(MS1T2*TM1_S); 
% end of function 
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18) NOZLCF.m 
 

function [PR_P1P0,AR_P1T]=NOZLCF(MP1); 
 
load parameters; 
GAMMA_P=para{1}; 
 
TMP1=(GAMMA_P+1); 
TMP2=(GAMMA_P-1); 
TMP3=1+TMP2*MP1*MP1/2; 
TMP4=TMP1/2; 
TMP5=TMP1/TMP2; 
 
AR_P1T=(1/MP1)*sqrt((TMP3/TMP4)^TMP5); 
PR_P1P0=(TMP3)^(-GAMMA_P/TMP2); 
% end of function 
 

19) OMEGA.m 
 

function [ER]=OMEGA(M_P1,M_S1,THETA,AR_M2T); 
 
load parameters; 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
R_P=para{3}; 
R_S=para{4}; 
T_P0=para{5}; 
T_S0=para{6}; 
 
F2_S1=FUN2(GAMMA_S,M_S1); 
F2_P1=FUN2(GAMMA_P,M_P1); 
[ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR_M2T); 
 
TM1=ARS1P1; 
TM2=sqrt((R_P*T_P0)/(R_S*T_S0)); 
TM3=F2_S1/F2_P1; 
 
ER=TM1*TM2*TM3; 
% end of function 
 

20) PR1M2.m 
 

function [PR_1M2]=PR1M2(MU,PR_S0M2); 
 
PR_1M2=MU*PR_S0M2; 
% end of function 
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21) SMIX.m 
 

function [S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2); 
 
load parameters; 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
R_P=para{3}; 
R_S=para{4}; 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
 
TGM1=GAMMA_P/(GAMMA_P-1); 
TGM2=GAMMA_S/(GAMMA_S-1); 
 
[TR_M2P1]=TRM2P1(M_M2,ER,M_P1); 
[TR_P1S1]=TRP1S1(M_P1,M_S1); 
[PR_1M2]=PR1M2(MU,PR_S0M2); 
 
PT1=1/(ER+1); 
PT2=(R_P+ER*R_S)*log(PR_1M2); 
PT3=ER*R_S*TGM2*log(TR_P1S1); 
PT4=(R_P*TGM1+ER*R_S*TGM2)*log(TR_M2P1); 
 
S_MIX=PT1*(PT2+PT3+PT4); 
% end of function 
 

22) SPX.m 
 

function [S_PX,PR_0I0X]=SPX(MU,M_P1); 
 
load parameters; 
GAMMA_P=para{1}; 
R_P=para{3}; 
P_P0=para{7}; 
P_S0=para{8}; 
 
[GM1,GM2,GM3,GM4,GM5,GM6]=GTS(GAMMA_P); 
 
[TFPX]=TFUN(GAMMA_P,M_P1); 
 
PR_0I0X=((P_P0/P_S0)/MU)*(TFPX^(-GM3)); 
 
S_PX=R_P*log(PR_0I0X); 
% end of function 
 

23) STOT.m 
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function [S_TOT]=STOT(M_M2,M_P1,M_S1,ER,MU,PR_S0M2); 
 
[S_PX,PR_0I0X]=SPX(MU,M_P1); 
[S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2); 
 
WT=1/(1+ER); 
S_TOT=WT*S_PX+S_MIX; 
% end of function 
 

24) TAO.m 
 

function [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M); 
 
GT1=GAMMA_M+1; 
GT2=GAMMA_M-1; 
GT3=2*GAMMA_M; 
ET=(ER+1)/ER; 
TMP=GT3*(ET/E)*(ET/E)-GT2*D*D; 
 
NUM1=D+sqrt(D*D-TMP*GT1); 
NUM2=D-sqrt(D*D-TMP*GT1); 
DEN=TMP*MU; 
 
TAO1=NUM1/DEN; 
TAO2=NUM2/DEN; 
% end of function 
 

25) TFUN.m 
 

function [TRS]=TFUN(GAMMA,M); 
 
TRS=1+(GAMMA-1)*M*M/2; 
% end of function 
 

26) TMD.m 
 

function [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2); 
 
load parameters; 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
 
TERM1=ARP1M2*(1+GAMMA_P*M_P1*M_P1); 
TERM2=ARS1M2*(1+GAMMA_S*M_S1*M_S1); 
 
D=TERM1+TERM2; 
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% end of function 
 

27) TME.m 
 

function [E]=TME(ER,M_S1,ARS1M2); 
 
load parameters; 
GAMMA_S=para{2}; 
R_S=para{4}; 
T_S0=para{6}; 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
F2S1=FUN2(GAMMA_S,M_S1); 
 
TM1=1/ARS1M2; 
TM2=sqrt((R_S*T_S0)/(R_M*T_M0)); 
TM3=1/F2S1; 
 
E=TM1*TM2*TM3; 
% end of function 
 

28) TRM2P1.m 
 

function [TR_M2P1]=TRM2P1(M_M2,ER,M_P1); 
 
load parameters; 
GAMMA_P=para{1}; 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
 
TR_P0P1=TFUN(GAMMA_P,M_P1); 
DEN=TFUN(GAMMA_M,M_M2); 
 
TR_M2P1=TR_M0P0*TR_P0P1/DEN; 
% end of function 
 

29) TRP1S1.m 
 

function [TR_P1S1]=TRP1S1(M_P1,M_S1); 
 
load parameters; 
GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
T_P0=para{5}; 
T_S0=para{6}; 
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TR_S=TFUN(GAMMA_S,M_S1); 
TR_P=TFUN(GAMMA_P,M_P1); 
 
TR_P1S1=(T_P0/T_S0)*(TR_S/TR_P); 
% end of function 
 

30) CHOKE.m 
 

function [MU_STAR]=CHOKE(GAMMA); 
 
TGM=-GAMMA/(GAMMA-1); 
MU_STAR=(1+(GAMMA-1)/2)^TGM; 
% end of function 
 

31) PRCR.m 
 

function [CR]=PRCR(M_M2,GAMMA_M,PS0M2); 
 
load parameters; 
ETA_D=para{14}; 
 
TP1=ETA_D*M_M2*M_M2*(GAMMA_M-1)/2; 
TP2=GAMMA_M/(GAMMA_M-1); 
 
PR_40M2=(1+TP1)^TP2; 
CR=PR_40M2/PS0M2; 
% end of function 
 

32) CFMU.m 
 

function [MU_CF]=CFMU(THETA,AR,TAO_CF,P_P0); 
 
load parameters; 
GAMMA_S=para{2}; 
 
M=60; 
TESTMU=zeros(M,1); 
PRS0M=zeros(M,1); 
 
MU_OPT=CHOKE(GAMMA_S); 
DETAMU=(1.0-MU_OPT)/M; 
 
for K=1:M 
    TESTMU(K)=MU_OPT+(K-1)*DETAMU; 
end 
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for I=1:M 
    MU=TESTMU(I); 
    [M_S1]=MS1(MU); 
    [M_P1,MP1SQ]=MP1(MU,P_P0); 
 
        [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR); 
        [ER]=OMEGA(M_P1,M_S1,THETA,AR); 
        [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
    
        [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2); 
        [E]=TME(ER,M_S1,ARS1M2); 
        [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M); 
 
        PRS0M(I)=TAO2; 
end 
 
X=TESTMU; 
Y=PRS0M; 
P=polyfit(Y,X,6); 
MU_CF=polyval(P,TAO_CF); 
% end of function 
 

33) TAOLM.m 
 

function [TAOMAX,TAOMIN]=TAOLM(THETA,AR,P_P0); 
 
load parameters; 
GAMMA_S=para{2}; 
 
MU_OPT=CHOKE(GAMMA_S); 
MU_UP=0.995; 
MUS=[MU_OPT,MU_UP]; 
TAOM=zeros(2,1); 
 
for I=1:2 
    MU=MUS(I); 
    [M_S1]=MS1(MU); 
    [M_P1,MP1SQ]=MP1(MU,P_P0); 
    [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR); 
    [ER]=OMEGA(M_P1,M_S1,THETA,AR); 
    [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER); 
    [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2); 
    [E]=TME(ER,M_S1,ARS1M2); 
    [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M); 
    TAOM(I)=TAO2; 
end 
 
TAOMAX=TAOM(1); 
TAOMIN=TAOM(2); 
% end of function 
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APPENDIX D 

MATLAB PROGRAM DEVELOPED FOR PARAMETRIC STUDIES 

ON EJECTOR WORKING WITH TWO-PHASE FLOW 

 

Main Programs 

 

1) PRIMARYmixture.m 

 
% Main Program for investigations of performance and limitations of ejector  
%  working with gas-liquid two-phase mixture. The two-phase mixture is supplied 
%  as the primary flow, and the single-component gas is supplied as the secondary flow. 
% Ejector performance ER as well as its limitation based on the total entropy change are 
%  investigated and plotted as surface figures against various parameters. 
% The generalized ejector model is utilized for this study 
% % There is a separate parameter input file 
% 
 
clear all;                          % clear previous variables, clear the figures 
 
load parameters;                    % load input data 
GAMMA_S=para{2}; 
P_S0=para{8}; 
R_G=para{4}; 
CP_G=para{16}; 
CV_G=para{17}; 
CP_L=para{18}; 
 
PR0=2;                               
PRBS0=0.05;                         % P_b/P_S0=0.05 
THETA=1.0;                          % THETA=1.0, i.e., constant-area gas ejector 
AR=100;                             % AR(KAPPA)=100 
 
N=15; 
M=100; 
NAR=50; 
NTH=20; 
 
DX=0.01; 
RTP=zeros(M+1,1);                 % initialize the vector of two-phase mixture gas constant, R_TP 
GAMMATP=zeros(M+1,1);             % initialize the vector of two-phase mixture specific heat ratio, 
GAMMA_TP 
RG=zeros(M+1,1);                  % initialize the vector of single-component gas constant, R_G 
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GAMMA_G=zeros(M+1,1);             % initialize the vector of single-component gas specific heat ratio, 
GAMMA_G 
 
PR_P0S0=zeros(N,1);               % initialize the vector of pressure ratio P_P0/P_S0 
PP0=zeros(N,1);                   % initialize the vector of primary inlet pressure P_P0 
TAOMAXS=zeros(N,M+1);             % initialize the matrix of upper limits of TAO 
TAOMINS=zeros(N,M+1);             % initialize the matrix of lower limits of TAO 
PRBS0_MIN=zeros(N,M+1);           % initialize the matrix of lower limits of P_B/P_S0 
PRBS0_MAX=zeros(N,M+1);           % initialize the matrix of upper limits of P_B/P_S0 
 
AR_M2T=zeros(NAR,1);              % initialize the vector of AR 
ER_AR=zeros(NAR,M+1);             % initialize the matrix of ER for AR as the variable 
SAR=zeros(NAR,M+1);               % initialize the matrix of DELTA_S_TOTAL for AR as the variable 
 
THE_TA=zeros(NTH+1,1);            % initialize the vector of THETA 
ER_TH=zeros(NTH+1,M+1);           % initialize the matrix of ER for THETA as the variable 
STH=zeros(NTH+1,M+1);             % initialize the matrix of DELTA_S_TOTAL for THETA as the 
variable 
 
for I=1:NAR 
    AR_M2T(I)=15*I;               % give values to AR 
end 
 
for I=1:NTH+1 
    THE_TA(I)=1.0+0.05*(I-1);     % give values to THETA 
end 
 
for I=1:M+1 
    X(I)=(I-1)*DX;                % give values to X, the liquid quality 
end 
 
% calculate the thermodynamic properties of gas-liquid two-phase mixture 
for J=1:M+1 
    LQ=X(J); 
    [R_TP,GAMMA_TP]=TWOPHASE(LQ,R_G,CP_G,CV_G,CP_L); 
    RTP(J)=R_TP; 
    GAMMATP(J)=GAMMA_TP; 
    RG(J)=R_G; 
    GAMMA_G(J)=CP_G/CV_G; 
end 
 
% Define boundary conditions 
for P=1:N 
    PR_P0S0(P)=P*PR0; 
    PP0(P)=PR_P0S0(P)*P_S0; 
end 
 
% calculate the upper and lower limits of TAO 
% calcualte the upper and lower limits of P_b/P_S0 
for L=1:M+1 
    RP=RTP(L); 
    GP=GAMMATP(L); 
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    for K=1:N 
        P_P0=PP0(K); 
        [TAOMAX,TAOMIN]=TAOLM(THETA,AR,P_P0,RP,GP); 
        TAOMAXS(K,L)=TAOMAX; 
        TAOMINS(K,L)=TAOMIN; 
        PRBS0_MIN(K,L)=1/TAOMAX; 
        PRBS0_MAX(K,L)=1/TAOMIN; 
    end 
end 
 
% should the P_b/P_S0 be a complex number, set it to be zero 
for R=1:N 
    for S=1:M+1 
        A=imag(PRBS0_MIN(R,S)); 
        B=abs(A); 
        if ( B > 0 ) 
            PRBS0_MIN(R,S)=0; 
        end 
    end 
end 
 
for U=1:M+1 
    for V=1:N 
        if ( PRBS0_MIN(V,U) == 0 ) 
            PRBS0_MIN(V,U)=PRBS0_MIN(V-1,U); 
        end 
    end 
end 
 
% calculate ER, DELTA_S_TOT for AR as the variable 
P_P0=para{7}; 
MU=CHOKE(GAMMA_S); 
[M_S1]=MS1(MU); 
for L=1:M+1 
    RP=RTP(L); 
    GP=GAMMATP(L); 
    [M_P1,MP1SQ]=MP1(MU,P_P0,GP); 
    [S_PX,PR_0I0X]=SPX(MU,M_P1,P_P0,GP,RP); 
    [TR_P1S1]=TRP1S1(M_P1,M_S1,GP);    
     
    for J=1:NAR 
        AR=AR_M2T(J); 
        [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR); 
        [ER]=OMEGA(M_P1,M_S1,THETA,AR,GP,RP); 
 
        [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER,GP,RP);         
        [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2,GP); 
        [E]=TME(ER,M_S1,ARS1M2,GP,RP); 
        [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M); 
 
        PR_S0M2=TAO2; 
 
        [M_M2,MM2SQ]=MM2(GAMMA_M,MU,D,PR_S0M2); 
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        [TR_M2P1]=TRM2P1(M_M2,ER,M_P1,GP,RP); 
        [PR_1M2]=PR1M2(MU,PR_S0M2); 
        [S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2,GP,RP); 
        [S_TOT]=STOT(M_M2,M_P1,M_S1,ER,MU,PR_S0M2,P_P0,GP,RP); 
 
        A=real(S_TOT); 
        B=abs(imag(S_TOT)); 
        if ( B > 0 ) 
            if ( A > 0 ) 
                SAR(J,L)=-A; 
            else 
                SAR(J,L)=A; 
            end 
        else 
            SAR(J,L)=S_TOT; 
        end         
 
        ER_AR(J,L)=ER; 
    end   
end 
 
% calculate ER, DELTA_S_TOT for THETA as the variable 
AR=100; 
for L=1:M+1 
    RP=RTP(L); 
    GP=GAMMATP(L); 
    [M_P1,MP1SQ]=MP1(MU,P_P0,GP); 
    [S_PX,PR_0I0X]=SPX(MU,M_P1,P_P0,GP,RP); 
    [TR_P1S1]=TRP1S1(M_P1,M_S1,GP);      
    
    for J=1:NTH+1 
        THETA=THE_TA(J); 
        [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR); 
        [ER]=OMEGA(M_P1,M_S1,THETA,AR,GP,RP); 
         
        [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER,GP,RP);         
        [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2,GP); 
        [E]=TME(ER,M_S1,ARS1M2,GP,RP); 
        [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M); 
 
        PR_S0M2=TAO2; 
 
        [M_M2,MM2SQ]=MM2(GAMMA_M,MU,D,PR_S0M2); 
        [TR_M2P1]=TRM2P1(M_M2,ER,M_P1,GP,RP); 
        [PR_1M2]=PR1M2(MU,PR_S0M2); 
        [S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2,GP,RP); 
        [S_TOT]=STOT(M_M2,M_P1,M_S1,ER,MU,PR_S0M2,P_P0,GP,RP); 
 
        A=real(S_TOT); 
        B=abs(imag(S_TOT)); 
        if ( B > 0 ) 
            if ( A > 0 ) 
                STH(J,L)=-A; 
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            else 
                STH(J,L)=A; 
            end 
        else 
            STH(J,L)=S_TOT; 
        end 
  
        ER_TH(J,L)=ER; 
        
    end   
end 
 
% Surface plots of the parameters, ER, DETA-S, TAO_MAX, TAO_MIN, etc. 
figure(1); 
surf(X,PR_P0S0,PRBS0_MIN) 
hold on 
surf(X,PR_P0S0,PRBS0_MAX) 
hold off 
title(sprintf('P_b/P_S0 Surface')) 
xlabel('X') 
ylabel('P_P0/P_S0') 
zlabel('P_b/P_S0') 
 
figure(2); 
plot(PR_P0S0,PRBS0_MIN(1:N,1),'-',PR_P0S0,PRBS0_MIN(1:N,26),'-
.',PR_P0S0,PRBS0_MIN(1:N,51),'--',PR_P0S0,PRBS0_MIN(1:N,76),'-
',PR_P0S0,PRBS0_MIN(1:N,M+1),'-.') 
legend('x=0,P_b/P_S0 min','x=0.25,P_b/P_S0 min','x=0.50,P_b/P_S0 min','x=0.75,P_b/P_S0 
min','x=1.0,P_b/P_S0 min') 
hold on 
plot(PR_P0S0,PRBS0_MAX(1:N,1),'-',PR_P0S0,PRBS0_MAX(1:N,26),'-
.',PR_P0S0,PRBS0_MAX(1:N,51),'--',PR_P0S0,PRBS0_MAX(1:N,76),'-
',PR_P0S0,PRBS0_MAX(1:N,M+1),'-.') 
legend('x=0,P_b/P_S0 max','x=0.25,P_b/P_S0 max','x=0.50,P_b/P_S0 max','x=0.75,P_b/P_S0 
max','x=1.0,P_b/P_S0 max') 
hold off 
title(sprintf('P_b/P_S0 Surface')) 
xlabel('P_P0/P_S0') 
ylabel('P_b/P_S0') 
 
figure(3); 
surf(X,AR_M2T,ER_AR) 
title(sprintf('ER Surface')) 
xlabel('X') 
ylabel('AR') 
zlabel('ER') 
 
figure(4); 
surf(X,THE_TA,ER_TH) 
title(sprintf('ER Surface')) 
xlabel('X') 
ylabel('THETA') 
zlabel('ER') 
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figure(5); 
surf(X,AR_M2T,SAR) 
title(sprintf('Entropy Surface')) 
xlabel('X') 
ylabel('AR') 
zlabel('Delta_S') 
 
figure(6); 
surf(X,THE_TA,STH) 
title(sprintf('Entropy Surface')) 
xlabel('X') 
ylabel('THETA') 
zlabel('Delta_S') 
 

Subroutines 

 

2) ParametersInput.m 

 
clear all; clf;             % clear previous variables, clear the figures 
 
% input the boundary conditions 
GAMMA_P=1.4;            % Primary stream gas specific heat ratio, Cp/Cv  
GAMMA_S=1.4;            % Secondary stream gas specific heat ratio, Cp/Cv  
MW_P=28.97;             % Primary stream gas molecular weight, kg/kg-mol 
MW_S=28.97;             % Secondary stream gas molecular weight, kg/kg-mol         
P0_P=364.7;             % Primary stream stagnation pressure, psia 
P0_S=34.7;              % Secodnary stream stagnation pressure, psia 
T0_P=300;               % Primary stream gas stagnation temperature, K 
T0_S=300;               % Secodnary stream gas stagnation temperature, K 
DT=0.0145;              % Nozzle throat diameter, inch 
D1=0.04;                % Nozzle exit diameter, inch 
D2=0.17;                % Mixing chamber diameter, inch 
D3=0.20;                % Diffuser exit diameter, inch 
ETA_N=0.95;             % Nozzle isentropic efficiency coefficient 
ETA_D=0.96;             % Diffuser isentropic efficiency coefficient 
 
CP_S=1.01*1000;         % Secondary stream specific heat Cps, J/(kg.K) 
CV_S=0.72*1000;         % Secondary stream specific heat Cvs, J/(kg.K) 
CP_L=4.186*1000;        % Liquid water specific heat at 25 degree,J/(kg.K)  
 
% Gas constant 
R_BAR=8312;             % Universal gas constant, J/(kg-mol.K) 
R_P=R_BAR/MW_P;         % Primary stream gas constant, J/(kg.K) 
R_S=R_BAR/MW_S;         % Secondary stream gas constant, J/(kg.K) 
 
% Area ratio of A_P1 to A_t 
ARP1T=(D1/DT)*(D1/DT); 
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% Units conversion 
P0_P=P0_P*6894.76;      % Primary stream stagnation pressure, Pa 
P0_S=P0_S*6894.76;      % Secodnary stream stagnation pressure, Pa 
DT=DT*2.54/100;         % Nozzle throat diameter, m 
D1=D1*2.54/100;         % Nozzle exit diameter, m 
D2=D2*2.54/100;         % Mixing chamber diameter,m 
D3=D3*2.54/100;         % Diffuser exit diameter, m 
 
% Area calculations 
AT=pi*DT*DT/4;          % Nozzle throat area, m2 
A1=pi*D1*D1/4;          % Nozzle exit area, m2 
A2=pi*D2*D2/4;          % Mixing chamber area, m2 
A3=pi*D3*D3/4;          % Diffuser exit area, m2 
 
%***************************** 
para{1}=GAMMA_P;          
para{2}=GAMMA_S; 
para{3}=R_P; 
para{4}=R_S; 
para{5}=T0_P; 
para{6}=T0_S; 
para{7}=P0_P; 
para{8}=P0_S; 
para{9}=AT; 
para{10}=A1; 
para{11}=A2; 
para{12}=A3; 
para{13}=ETA_N; 
para{14}=ETA_D; 
para{15}=ARP1T; 
para{16}=CP_S; 
para{17}=CV_S; 
para{18}=CP_L; 
 
%***************************** 
save parameters para 
 

3) ARS.m 

 
function [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR_M2T); 
 
load parameters; 
AR_P1T=para{15}; 
 
ARP1M2=AR_P1T/AR_M2T; 
ARS1P1=(AR_M2T*THETA/AR_P1T)-1; 
ARS1M2=ARP1M2*ARS1P1; 
% end of function 
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4) CHOKE.m 

 
function [MU_STAR]=CHOKE(GAMMA); 
 
TGM=-GAMMA/(GAMMA-1); 
MU_STAR=(1+(GAMMA-1)/2)^TGM; 
% end of function 
 

5) FUN2.m 

 
function [F2]=FUN2(GAMMA,M); 
 
F2TM1=1+(GAMMA-1)*M*M/2; 
F2TM2=sqrt(GAMMA*F2TM1); 
 
F2=M*F2TM2; 
% end of function 
 

6) GTS.m 

 
function [G1,G2,G3,G4,G5,G6]=GTS(GAMMA); 
 
G1=GAMMA/(GAMMA+1); 
G2=(GAMMA-1)/(GAMMA+1); 
G3=GAMMA/(GAMMA-1); 
G4=(GAMMA+1)/(GAMMA-1); 
G5=(GAMMA-1)/GAMMA; 
G6=(GAMMA+1)/GAMMA; 
% end of function 
 

7) MIX.m 

 
function [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER,GAMMA_P,R_P); 
 
load parameters; 
%GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
%R_P=para{3}; 
R_S=para{4}; 
T_P0=para{5}; 
T_S0=para{6}; 
 
GMTM1=1/(GAMMA_P-1); 
GMTM2=GAMMA_P/(GAMMA_P-1); 
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GMTM3=1/(GAMMA_S-1); 
GMTM4=GAMMA_S/(GAMMA_S-1); 
GMTM5=R_S/R_P; 
 
GAMMA_M=(GMTM2+GMTM4*GMTM5*ER)/(GMTM1+GMTM3*GMTM5*ER); 
R_M=(R_P+ER*R_S)/(1+ER); 
 
TR=T_S0/T_P0; 
TR_M0P0=(GMTM2+GMTM4*GMTM5*TR*ER)/(GMTM2+GMTM4*GMTM5*ER); 
T_M0=T_P0*TR_M0P0; 
% end of function 
 

8) MM2.m 

 
function [M_M2,MM2SQ]=MM2(GAMMA_M,MU,D,TAO); 
 
MM2SQ=(D*MU*TAO-1)/GAMMA_M; 
M_M2=sqrt(MM2SQ); 
% end of function 
 

9) MP1.m 

 
function [M_P1,MP1SQ]=MP1(MU,P_P0,GAMMA_P); 
 
load parameters; 
%GAMMA_P=para{1}; 
%P_P0=para{7}; 
P_S0=para{8}; 
ARP1T=para{15}; 
 
[GM1,GM2,GM3,GM4,GM5,GM6]=GTS(GAMMA_P); 
GTT1=GAMMA_P-1; 
GTT2=2/(GAMMA_P+1); 
GTT3=GM4; 
TT1=((P_P0/P_S0)/ARP1T)^2; 
TT2=2*GTT1*(GTT2^GTT3); 
TT3=MU*MU+TT1*TT2; 
 
MP1SQ=(-MU+sqrt(TT3))/(GTT1*MU); 
M_P1=sqrt(MP1SQ); 
% end of function 
 

10) MS1.m 

 
function [M_S1]=MS1(MU); 
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load parameters; 
GAMMA_S=para{2}; 
 
MS1T1=GAMMA_S-1; 
MS1T2=2/MS1T1; 
MS1T3=-MS1T1/GAMMA_S; 
 
TM1_S=MU^MS1T3-1; 
 
M_S1=sqrt(MS1T2*TM1_S); 
% end of function 
 

11) OMEGA.m 

 
function [ER]=OMEGA(M_P1,M_S1,THETA,AR_M2T,GAMMA_P,R_P); 
 
load parameters; 
%GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
%R_P=para{3}; 
R_S=para{4}; 
T_P0=para{5}; 
T_S0=para{6}; 
 
F2_S1=FUN2(GAMMA_S,M_S1); 
F2_P1=FUN2(GAMMA_P,M_P1); 
[ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR_M2T); 
 
TM1=ARS1P1; 
TM2=sqrt((R_P*T_P0)/(R_S*T_S0)); 
TM3=F2_S1/F2_P1; 
 
ER=TM1*TM2*TM3; 
% end of function 
 

12) PR1M2.m 

 
function [PR_1M2]=PR1M2(MU,PR_S0M2); 
 
PR_1M2=MU*PR_S0M2; 
% end of function 
 

13) SMIX.m 

 
function [S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2,GAMMA_P,R_P); 
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load parameters; 
%GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
%R_P=para{3}; 
R_S=para{4}; 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER,GAMMA_P,R_P);   
 
TGM1=GAMMA_P/(GAMMA_P-1); 
TGM2=GAMMA_S/(GAMMA_S-1); 
 
[TR_M2P1]=TRM2P1(M_M2,ER,M_P1,GAMMA_P,R_P); 
[TR_P1S1]=TRP1S1(M_P1,M_S1,GAMMA_P); 
[PR_1M2]=PR1M2(MU,PR_S0M2); 
 
PT1=1/(ER+1); 
PT2=(R_P+ER*R_S)*log(PR_1M2); 
PT3=ER*R_S*TGM2*log(TR_P1S1); 
PT4=(R_P*TGM1+ER*R_S*TGM2)*log(TR_M2P1); 
 
S_MIX=PT1*(PT2+PT3+PT4); 
% end of function 
 

14) SPX.m 

 
function [S_PX,PR_0I0X]=SPX(MU,M_P1,P_P0,GAMMA_P,R_P); 
 
load parameters; 
 
%GAMMA_P=para{1}; 
%R_P=para{3}; 
%P_P0=para{7}; 
P_S0=para{8}; 
 
[GM1,GM2,GM3,GM4,GM5,GM6]=GTS(GAMMA_P); 
[TFPX]=TFUN(GAMMA_P,M_P1); 
 
PR_0I0X=((P_P0/P_S0)/MU)*(TFPX^(-GM3)); 
 
S_PX=R_P*log(PR_0I0X); 
% end of function 
 

15) STOT.m 

 
function [S_TOT]=STOT(M_M2,M_P1,M_S1,ER,MU,PR_S0M2,P_P0,GAMMA_P,R_P); 
 
[S_PX,PR_0I0X]=SPX(MU,M_P1,P_P0,GAMMA_P,R_P); 
[S_MIX]=SMIX(M_M2,M_P1,M_S1,ER,MU,PR_S0M2,GAMMA_P,R_P); 
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WT=1/(1+ER); 
S_TOT=WT*S_PX+S_MIX; 
% end of function 
 

16) TAO.m 

 
function [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M); 
 
GT1=GAMMA_M+1; 
GT2=GAMMA_M-1; 
GT3=2*GAMMA_M; 
ET=(ER+1)/ER; 
TMP=GT3*(ET/E)*(ET/E)-GT2*D*D; 
 
NUM1=D+sqrt(D*D-TMP*GT1); 
NUM2=D-sqrt(D*D-TMP*GT1); 
DEN=TMP*MU; 
 
TAO1=NUM1/DEN; 
TAO2=NUM2/DEN; 
% end of function 
 

17) TAOLM.m 

 
function [TAOMAX,TAOMIN]=TAOLM(THETA,AR,P_P0,RP,GP); 
 
load parameters; 
GAMMA_S=para{2}; 
 
MU_OPT=CHOKE(GAMMA_S); 
MU_UP=0.995; 
MUS=[MU_OPT,MU_UP]; 
TAOM=zeros(2,1); 
 
for I=1:2 
         
    MU=MUS(I); 
    [M_S1]=MS1(MU); 
    [M_P1,MP1SQ]=MP1(MU,P_P0,GP); 
 
    [ARS1P1,ARS1M2,ARP1M2]=ARS(THETA,AR); 
    [ER]=OMEGA(M_P1,M_S1,THETA,AR,GP,RP); 
    [GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER,GP,RP); 
    
    [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2,GP); 
    [E]=TME(ER,M_S1,ARS1M2,GP,RP); 
    [TAO1,TAO2]=TAO(ER,MU,D,E,GAMMA_M); 
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    TAOM(I)=TAO2; 
end 
 
TAOMAX=TAOM(1); 
TAOMIN=TAOM(2); 
% end of function 
 

18) TFUN.m 

 
function [TRS]=TFUN(GAMMA,M); 
 
TRS=1+(GAMMA-1)*M*M/2; 
% end of function 
 

19) TMD.m 

 
function [D]=TMD(M_P1,M_S1,ARS1M2,ARP1M2,GAMMA_P); 
 
load parameters; 
%GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
 
TERM1=ARP1M2*(1+GAMMA_P*M_P1*M_P1); 
TERM2=ARS1M2*(1+GAMMA_S*M_S1*M_S1); 
 
D=TERM1+TERM2; 
% end of function 
 

20) TME.m 

 
function [E]=TME(ER,M_S1,ARS1M2,GAMMA_P,R_P); 
 
load parameters; 
GAMMA_S=para{2}; 
R_S=para{4}; 
T_S0=para{6}; 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER,GAMMA_P,R_P); 
F2S1=FUN2(GAMMA_S,M_S1); 
 
TM1=1/ARS1M2; 
TM2=sqrt((R_S*T_S0)/(R_M*T_M0)); 
TM3=1/F2S1; 
 
E=TM1*TM2*TM3; 
% end of function 
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21) TRM2P1.m 

 
function [TR_M2P1]=TRM2P1(M_M2,ER,M_P1,GAMMA_P,R_P); 
 
load parameters; 
%GAMMA_P=para{1}; 
 
[GAMMA_M,R_M,T_M0,TR_M0P0]=MIX(ER,GAMMA_P,R_P);  
 
TR_P0P1=TFUN(GAMMA_P,M_P1); 
DEN=TFUN(GAMMA_M,M_M2); 
 
TR_M2P1=TR_M0P0*TR_P0P1/DEN; 
% end of function 
 

22) TRP1S1.m 

 
function [TR_P1S1]=TRP1S1(M_P1,M_S1,GAMMA_P); 
 
load parameters; 
%GAMMA_P=para{1}; 
GAMMA_S=para{2}; 
T_P0=para{5}; 
T_S0=para{6}; 
 
TR_S=TFUN(GAMMA_S,M_S1); 
TR_P=TFUN(GAMMA_P,M_P1); 
 
TR_P1S1=(T_P0/T_S0)*(TR_S/TR_P); 
% end of function 
 

23) TWOPHASE.m 

 
function [R_TP,GAMMA_TP]=TWOPHASE(X,R_G,CP_G,CV_G,CP_L); 
 
R_TP=R_G/(1+X); 
 
GN=CP_G+X*CP_L; 
GD=CV_G+X*CP_L; 
GAMMA_TP=GN/GD; 
 
% end of function 
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