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ABSTRACT 

A Linear Fluid Inertia Model for Improved Prediction of Force Coefficients in Grooved 

Squeeze Film Dampers and Grooved Oil Seal Rings. (December 2008) 

Adolfo Delgado-Marquez, B.S., Universidad Simón Bolívar;  

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Luis San Andrés 

 

In Squeeze Film Dampers, (SFD), grooves (deep or shallow) are used to feed oil into 

the damper and prevent oil starvation within the fluid film lands. In oil seals with film 

land of clearance c, short shallow grooves (depth ≤ 15c, length ≤ 30c) are machined to 

reduce the cross-coupled stiffness coefficients, and thus improve the seal stability 

characteristics. Moreover, test stands for these devices can also incorporate grooves or 

recesses as part of oil feeding/ discharge arrangements. A common assumption is that 

these grooves do not influence the test system forced response. However, unexpected 

large added mass coefficients are reported in these configurations and not adequately 

predicted. In the case of grooved oil seals, experimental results also show that 

circumferential grooves do aid to reduce cross-coupled force coefficients but to a lesser 

extent than predictions otherwise indicate.   

A linear fluid inertia model for analysis of multiple-groove SFD or oil seal 

configurations is advanced. A perturbation analysis for small motion about a journal 

centered and off-centered position yields zeroth and first order flow equations defined at 

each individual flow region (land and grooves) of constant clearance ( c ).The analysis 

considers both the circumferential and axial dynamic pressure variations across the 

groove and land regions. At the groove regions, an effective groove depth ( dη ) and 

effective clearance ( c d cη η= + ) are defined based on qualitative observations of the 

laminar flow pattern through annular cavities. This depth differs from the actual physical 

groove depth. The boundary conditions at the inlet and exit plane are a function of the 
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geometric configuration. Integration of the resulting dynamic pressure fields on the 

journal surface yields the force coefficients (stiffness, damping, and inertia).  

Comparisons between predicted and experimental force coefficients for a grooved 

oil seal and a SFD show excellent correlation over a narrow range of effective groove 

depths. The results confirm that large added mass coefficients are associated to the 

feed/discharge grooves in the scrutinized test configurations. Furthermore, predictions, 

benchmarking experimental data, corroborate that short inner land grooves in an oil seal 

do not isolate the pressure field of the adjacent film lands, and hence contribute greatly 

to the force response of the seal.  
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NOMENCLATURE 

Cij Direct damping coefficients [N.s/m] i,j=X,Y 

c Clearance [μm] 

(c,s)f,g Complex coefficients of dynamic pressure functions [Pa/m] 

cη  Effective clearance [m] 

dη
 Effective depth [m] 

e0 Journal eccentricity [m] 

fe Element external velocity vector (FEM) 

(f,g)X,Y Dynamic pressure functions [Pa/m] 

h Film thickness [m] 

L Axial length [m] 

Kij Direct stiffness coefficients [N/m] i,j=X,Y 

kij Cross-coupled stiffness coefficient [N/m] i,j=X,Y 

kx,z Shear flow factors 

ke, Se Element fluidity matrix (FEM) 

Mij Added mass coefficient [Kg] i,j=X,Y 

Nem Number of elements (FEM mesh) 

npe Number of Nodes per element (FEM) 

N Number of flow regions 

P Pressure [Pa] 

PX,PY First-order pressure field [Pa] 

Pe Element pressure matrix (FEM)  

q  Fluid flow rate [m/s3] 

i Imaginary number ( 1− ) 

R Journal radius [m] 

ReA VAcρ/μ. Axial flow Reynolds number  
*Re  ωc2/v Modified squeeze film Reynolds number 
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s Zeroth order pressure axial gradient [Pa/m] 

t Time [s] 

VA Axial velocity [m/s] 

Vx,Vz Bulk flow velocities [m/s] 

X,Y,Z Inertial coordinate system [m] 

x,z Circumferential and axial coordinates [m] 

Δe Displacement amplitude [m] 

ε Eccentricity ratio (e/c) 

Γe Finite element boundary (FEM) 

μ Absolute viscosity [Pa.s] 

ν Kinematic viscosity [m2/s] 

Ω Rotor rotational speed [rad/s] 

Ωe Finite element (FEM) 

ω Rotor whirling frequency [rad/s]  

ρ Oil density [kg/m3] 

θ Angular coordinate  [deg] 

ψ Interpolation functions (FEM) 

Subscripts  

0 Zeroth order solution 

exp. Derived from experiments 

g groove 

N  Last annular cavity section 

model Derived from predictions 

S Supply 

D Discharge 

α α-th annular cavity section 

σ X,Y coordinates 
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1. INTRODUCTION 

In squeeze film lubrication, the hydrodynamic pressures generated by the fluid film 

can be classified into viscous and inertial. The relative contribution of the viscous and 

inertial pressure fields to the thin film reaction force is quantified in terms of the squeeze 

film (or modified) Reynolds number (Re*=ωc2/v), where ω is frequency of vibration, c 

is the film clearance, and ν the fluid kinematic viscosity. Furthermore, the linearized 

representation of the fluid film bearing reaction force is expressed as F Kx Cx Mx= − − − , 

where K, C, M are the bearing stiffness, damping and mass coefficients, respectively. 

The three terms of the reaction force represent the elastic, viscous dissipation and inertia 

forces, respectively. In most practical applications of thin film hydrodynamic lubrication, 

like journal bearings, Re*< 1 due to the smallness of the bearing clearance [1]. In these 

cases, viscous film forces are much larger than fluid film inertial forces; and thus, the 

inertialess fluid flow assumption of classical lubrication theory is plausible. For other 

applications with large clearances or geometries including circumferential grooves (i.e. 

with Re*≥ 12), fluid inertia forces become significant and comparable to viscous forces. 

In these cases there is a so called “apparent mass effect” that generates a radial reaction 

force that opposes the acceleration of the journal. Thus, the net effect is a system with a 

larger mass. In short rotors, this mass is significant respect to the rotor mass and could 

appreciably change the natural frequency of the bearing system [2]. 

SFDs comprise of an annular thin film of lubricant between two non-rotating 

surfaces. Commonly, the inner surface or journal is the outer race of a ball bearing and 

the outer surface is the bearing housing, as shown in Fig. 1. Vibration in a machine 

induces a whirling (precessional motion) journal orbit that squeezes the oil film 

periodically. Hydrodynamic pressures are generated during the squeeze motion action 

on the whirling surface, thus reducing the amplitude of vibration. Large fluid inertia 

forces are apparent in squeeze film dampers since these operate with larger Re* than in 

typical journal bearings. SFDs usually include feeding and discharge grooves.1A groove 

                                                 
This dissertation follows the style of ASME Journal of Tribology. 



 

 

2

is a deep and wide channel machined around the bearing circumference. Grooves are  

thought to keep a uniform pressure and used to feed oil into the damper film land. 

Similarly, SFDs with end seals generally incorporate grooves at the side end of the 

damper land. These grooves provide an oil plenum that, when filled, prevents the 

ingestion of air into the damper land [1].  

 

 
Figure 1 Squeeze film damper (SFD) grooved configuration. a) SFD with central feed 
groove. b) SFD with end grooves and seals [1]. 

 

Fluid film inertia forces in single land SFDs have been extensively investigated. As 

early as 1967, Kuzma [3] analyzes the effect of fluid inertia effects on squeeze films in 

simple geometries (parallel plates). Later, Reinhart and Lund [4] obtain the force 

coefficients for plain journal bearings including the contribution of fluid inertia forces, 

and indicate that the added mass coefficient can be significant in small machines with 

short rotors. Later on, a number of researchers [5-17] conduct extensive work to qualify 

and quantify the fluid film inertia effects in squeeze films. In general, predictions of 

fluid film inertia coefficients present adequate correlation with experimental results only 
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for the simplest geometries tested (i.e. without grooves or end seals). In practical 

configurations, which include feeding grooves and recesses (mainly shallow ones, i.e. 

depth < 15c), added mass coefficient are underpredicted by about 50% [12]. The 

apparent discrepancies prompted many researches to investigate the effect of grooves 

(shallow ones) on the SFD forced response [18-26]. However, up to this date, added 

mass coefficients in SFDs remain to be properly predicted for most common geometries 

including deep and/or shallow grooves, as evidenced in recent experimental work [27]. 

This deficiency also extends to other grooved geometries like oil seal rings. However, in 

grooved oil seals not only the added mass coefficients are largely underpredicted, but the 

cross-coupled stiffness coefficients are also underpredicted by available models (i.e. Ref. 

[28]) as indicated by Graviss [29].  

Oil seal rings are used in centrifugal compressors to prevent leakage of the process 

gas into the support oil lubricated bearing cartridge as well as to ambient [30]. An oil 

seal, shown in Fig. 2, comprises of two spring loaded floating rings that, when locked 

due friction forces at the contact surfaces, act as a plain journal bearing [28]. These seals 

are known as potential sources of instability due to the generation of large cross-coupled 

stiffnesses [31-32]. A common practice to minimize the destabilizing effect of oil seals 

is to machine circumferential grooves to isolate and divide the seal land into shorter 

length lands, thus reducing the fluid film forces [33]. To date, there are major 

discrepancies between predicted and experimental force coefficients obtained in grooved 

seals. Experimental results detailed in Refs. [29, 30, 34] show that circumferential 

grooves do aid to reduce cross-coupled force coefficients but to a lesser extent than 

predictions otherwise indicate. Furthermore, experimental added mass coefficients are 

found to be very large; and worse yet, not even modeled in available predictive tools. 

More importantly, the test data reveals large magnitude added mass coefficients even for 

a smooth oil seal (i.e. without grooves) [29, 30, 34]. In actuality, the smooth seal 

configuration tested in Refs. [29, 30, 34] does include a deep central groove that feeds 

lubricant into two seals. The seals are installed in parallel in an axially symmetric 

arrangement with the purpose of balancing the test rig thrust force. The identification of 
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the force coefficients follows the premise that the force coefficients of each seal 

correspond to half the value of the force coefficients associated to the test configuration. 

Thus, it is assumed that the central groove does not affect the forced response based on 

the commonly accepted rationale that deep grooves do not generate dynamic pressures.  

 

 
Figure 2 Typical oil seal multi-ring assembly. 

 

The abundance of experimental data showing large added mass coefficients for seal 

and SFD configurations with grooves (i.e. Ref. [27, 29]), and the inadequacy of 

predictive models to address this issue are an urgent concern. In the case of grooved oil 

seals, damping and stiffness coefficients are also largely underpredicted by available 

models (i.e. Ref. [28]). The discrepancy between predictions and experimental results 

reveals that grooves do affect the forced response of these test configurations. Hence, 

the objective of this study is to incorporate shallow and/or deep grooves into a fluid film 

flow model for predicting force coefficients in grooved SFDs and grooved oil seals. 
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2. LITERATURE REVIEW 

This section presents a review of the existing experimental and analytical research 

quantifying fluid inertia effects on the dynamic force response of grooved SFDs and 

grooved oil seals.  The reader should refer to Della Pietra and Adilleta [35, 36] for a 

more general and comprehensive review of the state of the art in SFDs from 1963 to 

2002. In these references, the authors call for better models to predict force coefficients 

in SFDs with practical geometries (i.e. including circumferential grooves and recesses). 

The first section briefly describes early work to investigate fluid inertia forces in 

simple SFD geometries (i.e. without grooves or smooth land) and moves into an 

examination of the most relevant experimental work on SFD configurations including 

grooves, as well as analytical developments to predict the force coefficients in such 

configurations. Next, the review presents experimental results evidencing large added 

mass coefficients in SFD and oil seal test configurations including deep lubricant supply 

grooves. Finally, the last section presents a survey of experimental research related to 

the identification of force coefficients in grooved oil seals and the analytical tools 

available to predict their dynamic forced performance.  

2.1 Grooved SFDs 

Reinhart and Lund [4], in a classical paper, derive the force coefficients for journal 

bearings including fluid inertia effects. Prior to this work, fluid inertia effects were only 

considered in the analysis of simple geometries like parallel plates [3]. Reinhardt and 

Lund, using a perturbation analysis with the modified Reynolds number (Re*) as the 

small parameter Ο(1), corroborate that fluid inertia forces may be larger than the mass of 

the journal itself in long bearings, and henceforth significant in short length rotors.  

Other authors, like Brennen [5] and Mulcahy [11], included the effects of fluid 

inertia when analyzing other applications including long whirling shafts. In the case of 

Brennen [5], the author presents a laminar flow analysis to determine the fluid forces in 

liquid sodium pumps for cooling nuclear reactors. The analysis includes the case of pure 

whirling and whirling with rotation for increasing clearance ratios and Reynolds 
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numbers (Re*). The results show that fluid inertia reaction forces dominate the viscous 

forces for large values of Re*. Similarly, in the analysis of fluid film forces in long 

whirling helicopter shafts, Mulcahy [11] obtains a closed-form solution for predicting 

force coefficient on finite length thin films for small translational journal motion about 

its centered position. This analytical solution is elegant and simple, and most 

importantly, it served as a starting point for other authors [12, 24] to obtain closed-form 

solutions for predicting force coefficients in finite-length SFDs for small circular orbits 

about a centered position.  

Tichy [5] later focuses on analyzing fluid inertia forces from a quantitative point of 

view. Tichy gives an insightful physical interpretation of the fluid inertia film forces and 

their importance in the forced performance of dampers and journal bearings. In general, 

fluid inertia forces become significant in thin film flows in the case that the component 

of the flow induced by whirling motions (Poiseuille flow) is comparable to the shear 

flow component (Couette flow). Theses findings imply that in a thin film flow system 

with purely whirling motions (i.e. SFDs), or with whirling and rotating motion but with 

relatively large clearances (i.e. annular grooves), the forces of inertial nature can not be 

neglected. These remarks explain, from a qualitative point of view, the amplification of 

fluid inertia effects in oils seal and SFD test configurations including grooves (i.e. large 

clearance regions). Also, in more practical terms, Tichy quantifies the significance of 

fluid inertia forces in smooth-land squeeze-film flows with the analysis of viscoelastic 

fluids for small centered journal and off-centered journal whirling motions [8-10]. The 

analyses show that fluid inertia forces are indeed comparable to viscous forces in 

squeeze film dampers when Re*>12. More importantly, Tichy also shows that solutions 

using Re* as a small parameter are accurate for values up to Re*=20.  

Modest and Tichy [7] analyze the relative contribution of the temporal and 

convective fluid inertia terms to the resulting inertia force. The authors demonstrate, 

with an order of magnitude analysis, that inertia advection (nonlinear) terms are 

negligible with respect to temporal inertia terms for small amplitude motions about a 

static equilibrium position. This leads to an important simplification that makes the fluid 
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film equation including inertial effects linear and thus amenable for closed-form 

solutions. 

Since the early 1980’s, an extensive analytical and experimental investigation to 

study fluid inertia forces in SFDs has been conducted at the Texas A&M 

Turbomachinery Laboratory. The research effort extends from experiments to analytical 

developments to understand and predict the fluid inertia forces in SFDs. First, San 

Andrés [12] extensively investigates fluid inertia effects in single land SFDs. The author 

derives expressions to calculate force coefficient on SFDs for small, large, center and 

off-centered journal orbits using various approaches. The work strives to provide 

predictions of added mass coefficients for most common SFD operating conditions. The 

most important findings include that, for circular centered journal orbits, the fluid inertia 

coefficient or added mass decreases as the orbit radius increases due to the effect of 

convective acceleration terms. The maximum difference of the added mass coefficient 

calculated using an inviscid flow assumption (i.e. Re*= ∞ ) or Re*=0 is within 20%. 

Also, for small amplitude circular centered orbits, San Andrés presents a closed-form 

solution for the fluid film force coefficients. The solution for whirling motions, based on 

Mulcahy’s analysis for translational motions [12], is obtained by considering that the 

flow is steady in a coordinate system rotating with the same journal precessional speed. 

Similar considerations are included in the hereby proposed analysis, to be discussed later. 

In addition, San Andrés’ keen observation that added mass coefficients are proportional 

to 1/c while the damping coefficients are proportional 1/c3 proves to be fundamental in 

the development of the presently proposed model. 

Besides the contributions to the analysis of single land SFDs, Ref. [12] presents tests 

on two SFD configurations that include a central feed groove and O-rings sealing the 

damper ends. One configuration has an inlet groove clearance (cg) of 6 times the land 

clearance (cg/c = 6); while in the other configuration cg/c = 10 and also includes a 

groove at the sealed end of the damper (cg/c = 3). Dynamic pressure measurements at 

the grooves reveal large amplitudes and out of phase with the film land dynamic 

pressures. The experimental results evidence that in both configurations, the central and 
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end grooves largely influence the film land pressure profiles and the SFD fluid film 

reaction forces.  

The findings in Ref. [12] prompted the investigation of the effect of circumferential 

grooves on the force response of SFDs, and more importantly, lead to question the 

common rationale that there is no generation of dynamic pressure in (deep) grooves. To 

this end, San Andrés and Vance [37] present further experimental work with measured 

dynamic pressures at the central feeding groove (cg/c = 6) that are 1/3 of those recorded 

at the film land. Zeidan and Vance [38] also report forces at the central feed groove (cg/c 

=7) as large as 60% of those identified at the damper film lands. From this point on, 

many researchers concentrated their efforts on quantifying the effects of central feed 

grooves on the forced response of SFDs to improve the prediction of force coefficients.  

San Andrés [18] presents an analysis, based on the short length bearing model and 

for small centered journal motions, that treats the fluid volume at the groove as a 

capacitance and the liquid as slightly compressible. Based on experimental evidence, the 

analysis assumes that the dynamic pressure at the groove is not null. This pressure is 

obtained through a mass flow balance at the groove-land interface. The correlation of 

predictions and experimental data from Ramli et al. [39], show that a SFD with a 

shallow groove (cg/C= 3) behaves at low frequencies as a single land damper (i.e. w/o 

groove). Furthermore, dynamic force coefficients are determined to be frequency 

dependent at high excitation frequencies. However, the groove volume-liquid 

compressibility effects are limited to large frequencies of no practical interest.  

Arauz [40] extends the analytical work in Ref. [18] by considering the 

circumferential flow in the central feed groove. He also conducts experiments to 

quantify the fluid film forces developed in SFD incorporating a central supply groove 

(cg = 6c, 11c) . The work is condensed and presented in two technical publications by 

Arauz and San Andrés [19, 20]. In Ref. [19], Arauz and San Andrés solve analytically 

the bulk flow equations at the grooves without including fluid compressibility and 

considering both the circumferential and axial pressure variations. The closed-form 

solution is valid for small amplitude motions around a centered position. The pressure 



 

 

9

distribution at the film land is predicted using the short length bearing model including 

fluid inertia. Predictions of tangential and radial forces (per unit axial length) at the 

groove and at the SFD lands are compared to experimental results from Ref. [40]. The 

predictions reproduce well dynamic forces at the groove, but underestimate the radial 

force and overestimate the tangential (damping) force at the damper film land. This 

might be related to the fact that the authors considered the full volume of the groove for 

the local mass balance at the groove-land interface. In addition, the use of the short 

length bearing model to analyze the SFD land may also add to the discrepancy between 

the forces predicted and measured at the SFD land. Arauz and San Andrés [20] also 

present tests revealing the importance of a circumferential feeding groove and 

recirculation annuli on the forced response of a test damper. The test results show that 

the radial forces in a damper with grooves, clearance ratios (cg/c) of 6 to 11, are similar 

or larger to those at the SFD film land (depending on the journal whirl orbit amplitude). 

For uncavitated lubricant conditions, the tangential (damping) forces at the groove are 

smaller than at the damper film land but still of comparable magnitude. 

Zhang and Roberts [21] present an analysis to predict SFD force coefficients 

including the effects of a shallow central groove (cg/c= 3) and oil supply system. The 

authors make a balance of the flow and pressure starting at the upstream supply line, 

passing through a recirculation groove, and into the damper film lands. The pressure 

magnitudes at the groove are a function of four correction factors that depend on the 

flow resistance of the lubricant supply lines and size of the groove. The expression of 

the pressure drop at the groove-film land interface is obtained by using an inertialess 

axial velocity profile and integrating the axial momentum and continuity equations 

across the film thickness. Predictions of damping and inertia force coefficients are 

compared to experimental values obtained by Ellis et al. [22] and Zhang et al. [23]. The 

comparisons show that the new analytical formulas render better predictions of damping 

coefficients but only improve marginally the predictions of added mass coefficients with 

respect to classical predictions without including the effect of the grooves [4, 12]. 
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Qingchang et al. [24] analyze the effect of circumferential grooves on the forced 

response of SFDs. The authors analyze the grooved portion of the damper following the 

model described in Ref. [18], and for the squeeze-film land the authors use a similar 

approach to that by Tichy and Bou-said [41]. The predictions are presented in terms of 

the radial and tangential reaction forces. From these expressions, the authors conclude 

that a groove affects the fluid film tangential forces but does not influence the radial 

force component. In other words, the authors indicate that the fluid inertia effects in a 

groove are not important. This conclusion contradicts experimental and analytical results 

found in the open literature on grooved SFDs. The authors compare predictions of fluid 

film forces to experimental results for journal amplitude up to 80% of the clearance, 

although the equations included in the analysis are not valid for such large motions. The 

predictions show good correlation for the tangential force at the lowest test journal orbit 

amplitudes, but the radial (inertia) force is underpredicted for all test amplitudes. 

Lund et al. [25] present predictions and experimental results of dynamic force 

coefficients of a SFD with a central groove and sealed at both ends with O-rings. An 

equivalent first-order Reynolds equation is derived and solved using a perturbation 

analysis for small amplitude journal motion. The authors invoke the short-length bearing 

assumption in the solution of the pressure field even though the damper ends are sealed 

with O-rings. A bulk flow model describes the conditions in the central groove and the 

pressure is obtained through a flow balance at the groove-land interface. The authors 

consider the flow at the grooves as inviscid and the expression for the axial flow does 

not include the acceleration term. The damping and added mass coefficients predictions 

are presented in dimensionless form and compared with experimental results for 

different groove-to-land volume ratios, but there is not indication of the actual values of 

the damper clearance or groove depth. In any case, the experimentally identified fluid 

inertia force coefficients are largely overpredicted (up to 70 %) as the groove volume 

increases. 

Kim and Lee [23] present experiments and predictions of the force coefficients in a 

sealed SFD with feed and discharge grooves. The theoretical development follows from 
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the bulk-flow equations with the pressure and velocity fields as originally given by 

Mulcahy [11] and San Andrés [12]. The dynamic film pressure at the groove is obtained 

as in Ref. [18] where the fluid at the groove is regarded as slightly compressible, 

although their experimental study is limited to low excitation frequencies (< 50Hz). The 

tests and analysis includes a two-stage (step-journal) seal configuration. Predictions of 

the fluid inertia coefficient correlate well with experimental data while the damping 

coefficients are underestimated. Interestingly, the curve fit of the experimentally 

identified inertia force seems to underpredict the actual slope described by the 

experimental data points. The actual groove depth-to-clearance ratio of the inlet groove 

is not reported.  

To date, the analytical work on SFDs with grooves is mainly limited to relatively 

small groove clearance ratios (cg/c= 5) with the few exceptions as in Ref. [40] (i.e. cg/c = 

11). Even for such shallow grooves, there are still discrepancies in the prediction of SFD 

added mass coefficients. In addition, recent experiments by San Andrés and Delgado 

[27] show large added mass coefficients for SFD configurations with much deeper 

grooves that those previously considered. In this experimental work, the authors identify 

the force coefficients of an end sealed SFD describing circular centered orbits. The 

vertical SFD is fed from a plenum, and incorporates deep circumferential grooves at the 

inlet (cg = 78c) and outlet (cg= 36c) of the damper film land section. The identified 

damping coefficients are presented as a function of the amplitude of motion and 

correlate well with well known formulas found in the literature [42]. On the other hand, 

the added mass coefficients are largely underpredicted. Dynamic pressure measurements 

at the end groove reveal significant magnitudes, and with peak pressures 180o offset 

with respect to the minimum film thickness. This result suggests that even deep grooves 

have an important influence on the forced response of the damper and that the dynamic 

pressure field generated at the groove is mainly due to fluid inertia. Similar results, 

showing large added mass coefficients, are also seen in oil seal test configuration for 

both smooth and grooved oil seals, as explained next.  
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2.2 Grooved Oil Seals 

As advanced in Section 1, oil seal rings are well known sources of rotordynamic 

instability [30], and it is a common practice to machine grooves within the oil seal land 

to partition the film into smaller segments. The expected effect is to reduce the 

magnitudes of the seal cross-coupled stiffness coefficients. However, the archival 

literature for laminar flow oil grooved seals is rather scant [30, 43]. Most annular seal 

work has been conducted to analyze turbulent flow annular pressure seals typical in high 

pressure compressors and pumps [43]. This literature review includes the current 

available computational tools and experimental results for laminar-flow grooved oil 

seals, i.e. axial flow Reynolds number (ReA=Va*c/ν) ≤ 2000, with Va as the axial mean 

flow velocity, c as the film clearance, and ν is the kinematic viscosity. 

Semanate and San Andrés [28] present an isoviscous flow analysis to predict force 

coefficients of a grooved oil seal operating under either laminar or turbulent flow 

regimes. The model does not account for fluid inertia terms in the film land. The 

analysis does model fluid inertia and viscous edge effects at the seal inlet and includes a 

variable clearance tapered seal. The force coefficients are presented in terms of the ring 

eccentricity ratio for three seal cases: single land, two lands and three lands. The 

numerical results show that both the cross-coupled stiffness and direct damping 

coefficients are substantially reduced. These findings imply that the grooves effectively 

separate the seal lands and thus reduce the seal force coefficients.  However, the whirl 

frequency ratio (WFR) remains relatively constant, and thus there is not significant 

improvement of the seal dynamic stability characteristics. Regarding the entrance effects 

due to viscous and inertia effects, the predictions indicate that such effects are of 

importance only in very high pressure applications. Ref. [44] presents similar 

conclusions and a more detailed discussion on fluid inertia and viscous entrance effects.  

Baheti and Kirk [33] analyze the dynamic response of grooved oil seals including 

thermal effects. The coupled pressure and temperature transport equations, developed in 

terms of a perturbation analysis for small amplitude motions, are solved with a finite 

element solution scheme. The study includes arc and square groove geometries. The 
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numerical results show a reduction of 40% in the direct damping and cross-coupled 

stiffness coefficients of an oil seal when including a square groove with a groove-depth 

to clearance ratio (cg/c) of 6. On the other hand, when using a deeper groove (cg/c = 15) 

the force coefficients are reduced by a factor of 4 when adding a single groove seal, and 

by 10 when adding two grooves. Thus, for the latter case, the results indicate that the 

groove effectively isolates the pressure distribution of the contiguous film lands.  

Childs et al. [30] experimentally identify the rotordynamic force coefficients and 

leakage characteristics of a smooth oil seal and grooved oil seals operating in the 

laminar flow regime. The test configuration used in Ref. [30] is similar to that employed 

in Refs. [29, 34] as described in Section 1. The test rig includes a deep inlet central 

plenum (~136 c) that feeds a pair of parallel seals installed in an axially symmetric 

arrangement to balance the thrust load generated due to the pressure drop across the 

seals. Nevertheless, it is assumed that the central groove does not affect the test system 

forced response. The authors aim to identify the influence of the inner land groove on 

the rotordynamic performance of oil seals and evaluate the accuracy of the existing 

predictive models. The paper includes a detailed description of smooth and grooved oil 

seals and their operating features, and a comprehensive literature review of the previous 

work conducted in oil seals operating in the laminar flow regime. Particularly, prior to 

this publication, the only experimental work on laminar-flow oil seals was conducted by 

Kaneko [45] on smooth seals. In Ref. [30], static and dynamic force coefficients are 

identified for a smooth seal, a 1-groove seal, and 3-groove seal (with cg/c = 6). The 

experimental force coefficients for the smooth seal correlate well with predictions from 

Zirkelback and San Andrés [46] except for the added mass coefficient that are 

underestimated by a factor of 10. Precisely, the authors mention the large oil supply 

groove as a possible source for the large discrepancy between experimental and 

predicted added mass coefficients. However, pressure measurements at both the inlet 

groove and exit cavity show no significant magnitudes for the dynamic pressures. Hence, 

they discard the rationale that the groove is responsible for such unusually large added 

mass coefficient (~20 kg). Furthermore, the experimental stiffness and damping 
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coefficients for the grooved oil seal are largely underestimated by the prediction model 

in Ref. [28]. These results suggest that, contrary to the predictive model assumptions, 

the grooves are not deep enough to isolate the hydrodynamic film pressure from 

contiguous seal lands.  

Childs et al. [34] present experimental results, extracted from Graviss’ thesis [29], 

evidencing the effect of groove depth on the dynamic forced response and leakage 

performance of a test oil seal. Similarly to Ref. [30], the experimental set up includes a 

deep inlet central plenum feeding a pair of parallel seals. Force coefficients are 

identified for three grooved seals with three groove clearance ratios (cg/c): 6, 11, and 16. 

The laminar flow oil seal force coefficients and leakage measurements are presented as a 

function of the operating static journal eccentricity for increasing rotor speeds (up to 

10,000 rpm) and oil supply pressures (up to 70 bar). The test results indicate that the 

force coefficients decrease for increasing groove depths except for the added mass 

coefficients. However, predictions based on Ref. [28] largely underestimate the grooved 

seal oil stiffness and damping coefficients even for the configuration with the deepest 

groove. Thus, the experiments suggest that even for groove-depths to clearance ratios of 

15 the grooves do not completely isolate the hydrodynamic pressures of the two adjacent 

seal lands (i.e. Kxy (2 lands) ≠ ¼ Kxy (1 land), Cxx(2 lands) ≠ ¼ Cxx(1 land). In addition, 

similar to Ref. [30], the experimental results also show relatively large added mass 

coefficients that increase as the groove depth increases (up to 30 kg). However, 

predictions of added mass coefficients using formula in Ref. [4] yield 2.8 kg (i.e. nearly 

10 times smaller than the experimental value).  

In addition to the work in laminar flow oil ring seals, it is also important to mention 

the analytical models to analyze the dynamic forced performance of Lomakin bearings 

[47, 48], since their geometry closely resembles the test configuration in Ref. [29, 30, 

34] (i.e. parallel thin film lands separated by a central deep groove). Although the 

process liquid is injected in an angle (against the journal rotation) and the fluid flow is 

turbulent, the analysis of these bearings focuses on incorporating the inlet feed groove 

into the fluid film model to predict the whole bearing force coefficients. Both, San 
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Andrés et al. [47] and Arghir et al. [48], analyze the flow at the film land using a two 

dimensional bulk-flow model, while the flow at the groove is represented as purely 

circumferential. However, while Ref. [47] neglects fluid film effects at the groove (i.e. 

inertialess though turbulent flow), Ref. [48] considers that the flow is dominated by 

inertia forces based on the large Reynolds number values at the groove (Re* ~ 26,000). 

Nevertheless, the large Re* value is based on the surface circumferential velocity of the 

flow at the groove, which is related to fluid jet injected through the angled supply 

orifices and not to squeeze film motions. In fact, the Reynolds number (Re*) in the 

groove based on the journal whirl frequency (ω) is as low as 0.02. Thus, considering that 

inertia effects are related to flow field driven by squeeze motions [5], the Re* reported in 

Ref. [48] is not a good indicator of the relative contribution of fluid inertia effects 

respect to viscous effects. Interestingly enough, both models (Refs. [47, 48]) overpredict 

experimental added mass coefficients of a test water Lomakin bearing [49]. 
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3.  FLUID FLOW MODEL AND MAJOR ASSUMPTION IN GROOVED FILM 

GEOMETRIES 

3.1 Introduction 

The analysis aims to predict fluid film forces developed in annular thin film 

geometries including deep/shallow grooves or annular recesses. Unlike prior fluid film 

analyses of grooved geometries, the current development treats both the groove and film 

land sections similarly, based on a major consideration derived from the experimental 

results in Refs. [27, 29]. The development of this approach is already advanced in prior 

reports [50, 51] also part of this research effort. The formulation of the fluid film flow 

equations and a detailed explanation of the assumptions involved in the proposed 

analytical development follow. 

3.2 Fundamental Fluid Flow Equations  

Presently, the formulation is illustrated for an axially symmetric annular cavity that 

includes a central (mid-plane) feeding groove, as shown in Fig. 3. In particular, this 

geometry is representative of the test configuration in Ref. [29].  

Only half of the system is considered due to symmetry. The flow region, including 

land and groove portions, is divided into sub-flow regions (α= I, II,…N). Within each 

individual sub-flow region the fluid flow rates ( qα ) in the circumferential (x) and axial 

(z) directions are:   

 
;x x z zq h V q h V

α α α αα α= =        , , ...I II Nα =  (3.1) 
  
where hα is the film thickness and ( ,x zV V

α α
) are bulk-flow velocities in each flow region 

α . 
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Figure 3 Schematic view of grooved annular cavity divided into flow regions and 
coordinate system for the analysis.  

 

The bulk-flow continuity and moment transport equations are linear and given as 

[52]: 
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with kx=kz=12 for laminar flow and (ρ, μ) as the lubricant density and viscosity. These 

equations do not included fluid advection terms since these are negligible compared to 
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the temporal fluid inertia terms for small amplitude motions as detailed in Refs. [7,12]. 

Equations (3.3) and (3.4) are written as:  

( )
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    (3.5) 

 
Differentiating xq

α
 with respect to x, and zq

α
 with respect to zα, adding both 

equations and disregarding second order terms yields a Reynolds-like equation for the 

film pressure of an incompressible fluid [4]    
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(3.6) 

A closed-form solution of the pressure field defined by Eq. (3.6) can be obtained for 

small journal perturbations about a centered equilibrium position. In the case of journal 

static off-centered operation, a finite element formulation is employed to obtain the 

pressure field and the resulting force coefficients also assuming small amplitude journal 

perturbations. Both solutions are based on the following major assumption.  

3.3 Major Assumption: Effective Groove Clearance  

There is abundant experimental evidence from SFD test configurations with shallow 

grooves (depth < 15c) confirming the generation of significant dynamic pressures in the 

grooves [12, 37, 38, 40]. Current predictive models [19, 23, 24, 25, 26] provide from 

moderate to good correlations with experimental force coefficients. However, these 

models show large discrepancies for either the damping [19, 26] or added mass 

coefficient [23, 24, 25]. In the case of relatively deep grooves, the experimental results 

evidence large added mass coefficients but relatively small variation of the damping 

coefficients [27]. Large added mass coefficients are also reported in oil seals tested in 

configurations with deep grooves [29], with relatively small variation of the damping 
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coefficients respect to predictions assuming null dynamic pressures at the grooves. In 

both cases, SFDs and oil seals, the added mass coefficients are largely underpredicted. 

In addition, in oil seals with short and shallow grooves in the film land (i.e. grooved oil 

seals) the force coefficients are also not accurately predicted [29, 30, 34]. Furthermore, 

current models predicting force coefficients in grooved seals altogether neglect fluid 

inertia effects.   

Most of the discrepancies between experimental results and predictions of fluid film 

reaction forces in grooved SFDs are mainly related to the combination of different 

analytical treatments for the flows in the land and in the groove regions. The use of 

different approaches and unnecessary simplifications leads to inaccurate formulations at 

the groove-land interface. In the case of deep grooves, the discrepancies between 

predictions and experiments are simply related to assuming a null dynamic pressure at 

the grooves by considering the full volume of the groove in the fluid film flow analysis. 

In the current analysis, only a fraction of the groove volume is considered based on the 

fact that the laminar flow pattern at the grooves is characterized by a thru flow and a 

recirculation flow regions. Figure 4(a) shows a representation of the streamlines pattern 

for a pressure driven flow through a (symmetric) annular cavity with a supply groove 

and two mid-land grooves. This schematic representation shows a single vortex at the 

grooves. In actuality, the number and distribution of the vortices within the recirculation 

region depend on the geometry and flow conditions at the entrance of the groove [53]; 

though the only assumption made in the proposed analysis is that there are two 

distinctive flow regions. Figure 4(b) depicts a close-up of the streamline field obtained 

from CFD simulations of the pressure driven flow at the mid-land groove of the seal 

tested by Graviss [29] for two groove depths (10c and 15c). In this configuration not 

only the flow pattern at the inner-land grooves is characterized by two regions, but also 

the dividing streamlines for the 10c and 15c groove depths present a similar penetration 

depth.  

In the proposed analysis, the domain for the pressure induced due to dynamic journal 

motions is delimited to the thru flow region. Thus, the fluid film clearance at the groove 
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is represented in terms of an effective clearance cη= (dη+ c), with dη as an effective 

groove depth and c as the clearance of the ungrooved portion or smooth land. This 

assumption is complemented by the observation that, even for small effective groove 

clearances (i.e. cη=5c), the damping contribution from the groove remains significantly 

lower than that related to the ungrooved portion since a damping coefficient is roughly 

proportional to 1/cη
3 [12]. On the other hand, the added mass term is proportional to 1/cη 

[12]. Thus, the added mass coefficient derived from an effective groove clearance (cη) is 

of the same order of magnitude at the grooves as in the film lands (i.e. ungrooved 

portion). The assumption substantiates experimental results evidencing that the grooves 

in oil seals, regardless of depth, do not isolate the pressure fields in contiguous lands [29, 

30, 34]. Also, this assumption implies that the contribution of deep grooves to the fluid 

film forces is of inertial nature (i.e. a radial force), which is also supported by 

experimental findings [27].  A similar rationale can be also extended to inlet (central) 

deep grooves. For larger volumes there is the formation of multiple vortices, but the 

assumption that the domain for the perturbed flow is limited to the thru flow region 

remains. Figure 5 depicts a schematic view of the SFD tested in Ref. [27] and a close-up 

view of CFD simulations of the pressure driven streamline field in the inlet groove. Note 

that, although the recirculation region extends to the feed plenum, a thru flow and 

recirculation regions are observed at the inlet groove. As shown in Section 6, the present 

analysis provides an explanation to the large added mass coefficients generated in a test 

seal configuration with deep grooves (SFDs [27] and smooth land oil seals [29]). 
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Figure 4 a) Schematic view of streamlines in axially symmetric grooved annular cavity 
(ΔP= Ps-Pd). b) CFD simulation of pressure driven streamlines across a 10c and 15c 
circumferential mid-land groove in an oil seal tested in Ref. [29]. (c= 86 μm, ω=7000 RPM, 
D= 117 mm). 
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Figure 5 Schematic view of SFD tested in Ref. [27] and close-up of CFD simulation of 
pressure driven streamlines across the inlet groove (ΔP= Ps-Pd). (c= 127 μm, D= 127 mm). 

 

The distinction of a thru flow region and a recirculation region and their application 

in the analysis of grooved seals is not a novel concept. Wyssmann et al. [54] first 

included such considerations in the formulation of a two-control-volume model to 

analyze the flow across labyrinth seal cavities. This concept was also implemented by 

Florjancic [55] and Marquette [56] to formulate a three control volume theory to obtain 

fluid film dynamic forces in grooved liquid seals. In both references, the flow is 

turbulent and the streamline dividing the flow regions at the grooves is used to define 

control volumes.  

In the present analysis, this concept is implemented in a simpler manner by using a 

constant depth boundary to define a single flow region. This boundary is estimated 

based on experimental results and may differ from the streamline dividing the through 

and recirculation flow regions obtained from CFD calculations. In fact, for the grooved 

oil seal tested by Graviss [29], the comparison of experimental and analytical results 
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1/5 of the groove depth (see Fig. 4). Interestingly, the effective groove depth of about 

1/2 of the groove depth coincides with the center of the main recirculation vortices 

depicted in Fig. 4b. The vortex center, as illustrated with the vector field in Fig. 6, 

represents the boundary between the forward and backward axial flow fields (i.e. null 

axial velocity boundary).  

 

 
Figure 6 CFD simulation of pressure driven velocity vector field across a 10c and 15c 
circumferential mid-land groove in an oil seal tested in Ref. [29]. (c= 86 μm, ω=7000 RPM, 
D= 117 mm). 

 

A description of the perturbation analysis and boundary conditions to obtain the 
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15c 

2 mm

10c 

VA ~0 



 

 

24

4. FLOW ANALYSIS FOR SMALL AMPLITUDE MOTIONS ABOUT A 

JOURNAL CENTERED POSITION 

4.1 Analysis  

This section details the fluid flow analysis to obtain the dynamic pressure field and 

force coefficients in axially symmetric annular cavities with groove arrangements, 

including a central feeding groove, as shown in Fig. 7. Figure 8 depicts the journal, 

annular cavity geometry, and the coordinate system for small journal motions about a 

centered position. As explained in Section 3, the multiple groove annular cavity is 

divided into individual flow regions with uniform clearance. In case of a groove, its 

effective groove depth (dη) replaces the actual physical groove depth. The following 

derivation applies to a flow region of constant clearance, and with the local coordinate 

system origin at the entrance of the corresponding grooved or ungrooved region.  

 

 
Figure 7 Schematic view of grooved annular cavity divided into flow regions.  
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Figure 8 View of rotating and whirling journal and coordinate system for bulk-flow 
analysis. 

 

The Reynolds fluid film equation presented in the previous section adds temporal 

inertia terms (Eq. 3.6), 

( ) ( ) ( ) ( )
2

3 3 2
2

, , ...

12 6

                                                                                                         I II N

P Ph h h R h h h
x x z z t x t

α α
α α α α α α

α α

α

μ μ ρ

=

⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂ ∂ ∂
+ = + Ω +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

(3.6) 

and is to be solved within each individual flow region for journal motions of small 

amplitude (ΔeX , ΔeY )<< c  
αη  and frequency ω about the centered position. For the 

center journal operation condition, the film thickness (hα) equals 

{ } , , ...; , , 1;   i t
X X Y Y X Y I II Nh  = c +  e h + e  h e e  < < c   i  = e

α α

ω
α η η α =Δ Δ Δ Δ −  (4.1) 

 
with ( ) ( )cos , sinX Yh hθ θ= = . The pressure is the superposition of a zeroth order field 

(Po) and a first order (dynamic) fields ( ,X YP P
α α

) 

{ }0 , , ...  ;   i t
X X Y Y I II NP  = P  +   e  P  + e  Pe

α α α

ω
α α =Δ Δ  (4.2) 

x= θR 

Y 

X

Δe 

ω 
h Ω 

R 

Ω= rotational speed 

Δe= journal displacement 
ω= whirling frequency 
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Substitution of Eqs. (4.1) and (4.2), into Eq. (3.6) gives the zeroth order equilibrium 

pressure equations 

( )
2

0 02 , , ...0   ; 

                                                          

I II N
d P P a s z

d z α α α α α
α

α == → = +   (4.3) 

since the static component of film thickness does not change along the axial or 

circumferential directions.  Above sα denotes the axial pressure gradient in each flow 

region. The first order equations for the perturbed pressure fields due to journal motions 

along the X and Y directions are 

 

{ }

{ }

2 2

*2 2 3 3

2 2

*2 2 3 3 , , ...

612 1 Re cos sin( )

612 1 Re sin cos( )      ;      

X X

Y Y
I II N

P P
i i  ( )

x z c c

P P
i i  ( )

x z c c

α α
α

α α

α α
α

α α

α η η

α η η

α

μ ω μθ θ

μ ω μθ θ =

⎧ ⎫∂ ∂ Ω⎪ ⎪+ = + − ⎨ ⎬
∂ ∂ ⎪ ⎪⎩ ⎭

⎧ ⎫∂ ∂ Ω⎪ ⎪+ = + + ⎨ ⎬∂ ∂ ⎪ ⎪⎩ ⎭

 (4.4) 

 

where 
2

*Re
12

c
α

α

ηρω
μ

=  is a modified local squeeze film Reynolds number

1. PDEs (4.4) are linear with solution 
 

( ) ( )

( ) ( ) , , ...

( ) cos( ) sin( )

( ) cos( ) sin( )         
X X z X z

Y Y z Y z I II N

P z f g

P z f g
α α α α α

α α α α α
α

θ θ

θ θ =

= +

= +
 (4.5) 

 
Replace the first of Eqs. (4.5) into the first of Eqs. (4.4) to obtain   
 

{ }
2 2

*2 2 3 2 2 3 , , ...
612 1 Re ;     ;    X X X X

I II N
d f f d g g

i i
d z R c d z R c

α α α α

α

α αη η

α
μ ω μ

=
Ω

− = + − = −

 

(4.6) 

  
whose solution are ( ) ( )H PX z X z Xf f f

α αα α α
= +  and ( ) ( )H PX z X z Xg g g

α αα α α
= + . The particular 

and homogenous solutions are 

                                                 
1 The equations show that fluid inertia effects are of importance for *Re

α
>1. 
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( )
cosh sinh ;      , ,...

( )
H

H

X f f

X g g

f z c sz z I II NR Rg z c s
α α α

α αα

α
α α

α

α
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎛ ⎞ ⎛ ⎞= − + =⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎩ ⎭ ⎩ ⎭⎩ ⎭

 (4.8) 

   
The evaluation of YP

α
is similar. The analysis shows that ;   Y X Y Xg f f g

α α α α
= = − . For 

evaluation of boundary conditions at the interfaces between adjacent flow regions, axial 

flow rates are needed. Hence, let { }0 X Y

i t
z z X z Y zq  = q  +   e  q  + e  qe
α α α α

ω Δ Δ , and from Eqs. 

(3.5), the first order axial flow rates are 

( )

( )

3 2

*

3 2

*

3 cos( )
1 Re

12 12

3 sin( )
1 Re

12 12

X

Y

X
z

Y
z

c P c
q i s

z

c P c
q i s

z

α α α
α

α

α α α
α

α

η η
α

α

η η
α

α

θ
μ μ

θ
μ μ

∂
+ = − −

∂

∂
+ = − −

∂

 (4.9) 

 
Note that for journal motions along the X-direction, 
 

( )
3 2

* , , ...
3 cos( )

1 Re cos( ) sin( ) ;
12 12X

X X
z I II N

c df dg c
q i s

dz dz
α α α α

α
α

η η
α

α α

α
θ

θ θ
μ μ

=
⎡ ⎤

+ = − + −⎢ ⎥
⎣ ⎦

 
(4.10)

A similar expression follows for  
Yz

q
α

.  

4.2 Boundary Conditions 

The pressure field must be single-valued2 and the axial flow rates leaving one region 

and entering the next must be equal. Application of these conditions at the interface 

groove-film land, and given specified pressure (or flow) at the inlet and exit planes of 

the whole flow region leads to a set of algebraic equations for determination of the 

coefficients , ,..( , , , )f g f g I II Nc c s s
α α α α α =  Specified supply (inlet) and discharge pressures (P1, 

                                                 
2 At the edge of a groove-land region no fluid inertia pressure drop or rise are accounted for. This 
oversimplification is acceptable for laminar flow conditions (low whirl frequencies). 

{ }
2 2

*3 3

612 1 Re    ;    
P PX X

R Rf i i g
c cα

α α
α αη η

μ ω μΩ
= − + = −  (4.7) 
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Pn+1) easily determine the static pressure fields, see Eq.(4.3), and dPs
dz

α
α

α

= . The 

boundary and interface conditions for the dynamic pressure field ( XP
α

) are: 

a) Due to geometrical symmetry, the axial flow rate must be null at z1=0 (groove 

middle plane). Hence, from Eq. (4.9), 
1gs = 0. This boundary condition, also 

implemented in Refs [18, 40], supports the experimental findings in Ref. [40] as it 

implies a non-zero dynamic pressure at the groove middle plane3.  

b) The last (N) flow region exits to ambient pressure ( )0 0
N

N Nz L
P

=
= ; and thus there is 

no generation of dynamic pressure at zN=LN. Thus, 
 

0 ( )cos( ) ( )sin( )
N N N

N N
X x N x Nz L

P f L g Lθ θ
=

= = +  (4.11)
 

Since the sine and cosine functions are linearly independent, then it follows   
2

3

2

3

cosh sinh ; 12

6cosh sinh  ; 

N N N N

N

N N N N

N

N N
f f

N N
g g

RL Lc s F F iR R c

RL Lc s G GR R c

η

η

μ ω

μ

⎛ ⎞ ⎛ ⎞+ = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Ω⎛ ⎞ ⎛ ⎞+ = = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4.12)

 
c) At the interface groove and land, he first-order pressures and axial flow rates must be 
equal, i.e.  
 

1
1 0

1... 1;X Xz L z
NP P

α α
α α α

α
+

+= =
= −=  

1 1
   ( ) (0);   ( ) (0)X X X Xf L f g L g

α α α αα α+ +
→ = =  

(4.13)

 

( ) ( )1
1

1

* *
0

1... 11 Re 1 Re ;   
X Xz z

z L z
Nq i q iα α

α α
α α α

α+
+

+= =
= −+ = +  

1

1 1

3 3
2 2

1sinh cosh 3 3f f f

c cL Lc s s c s c sR RR R
α α

α α α α α

η ηα α
η α η α

+

+ + +
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤→ + − = − +⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

1

1

3 3

sinh cosh 0g g g

c cL Lc s sR RR R
α α

α α α

η ηα α +

+

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤+ − =⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

(4.14)

                                                 
3 Importantly enough, measurements in Ref. [29] showing no significant dynamic pressure oscillations at 
the inlet groove are not an exception nor are in conflict with the proposed model. As detailed in Section 6, 
the seemingly null magnitudes of dynamic pressure measurements are related to the test conditions and to 
the inertial nature of the pressure field within the groove. 
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Integration of the first-order pressure fields around the journal surface renders the 

fluid film reaction forces 

{ }
2

1 0 0

cos( )
2

sin( )

L RN
X i t

X X Y Y
Y

F
  e  P  + e  P dx dzeF

α

α α

π
ω

α
α

θ
θ=

⎧ ⎫⎧ ⎫ ⎧ ⎫⎡ ⎤= Δ Δ⎨ ⎬ ⎨ ⎨ ⎬ ⎬⎣ ⎦ ⎩ ⎭⎩ ⎭ ⎩ ⎭
∑ ∫ ∫  (4.15)

These forces are expressed in terms of stiffness (K), damping (C), and inertia (M) 

force coefficients, i.e.  
2

2

i  -  + i
 -  + i i

2
XX XX XY XYXXX XXY

2
YX YX YY YY YYY YYX

F e -  + CCK M K M
F eC  -  + CK M K M

ω ωω ω
ω ωω ω

Δ⎡ ⎤⎧ ⎫ ⎧ ⎫
= −⎨ ⎬ ⎨ ⎬⎢ ⎥ Δ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (4.16)

where, 

( )22
( )

22
1 10 0 0( )

2 2
cos( )i

 -  + i sin( )

zL R2 N N XX zXX XX XX

YX YX XYX X z

R
ff -  + CK M dx dz dz
gC gK M

α α
αα α

αα α

π

α α
α α

π
θωω

ω θω = =

⎧ ⎫⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎪⎪ ⎪ ⎪ ⎪ ⎪− = =⎨⎨ ⎬ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦ ⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭⎩ ⎭

∑ ∑∫ ∫ ∫  

                                                                                                                              
                (4.17)  

 
Note that KYY =KXX, CYY =CXX, KXY=-KYX for motions about the center of the bearing or 

seal.  

The next two sections illustrate the system of equations to determine the force 

coefficients of a single-land SFD and an oil seal (two lands separated by a central grove). 

The force coefficients obtained from the open ends SFD reproduce well known formulas 

derived by Reinhart and Lund [4].  

4.3 Case I: SFD-Classical Solution 

Figure 9 presents a schematic view of a single SFD land extending from 

2 2
L Lz− ≤ ≤ . Both ends are exposed to ambient pressure, and there is no static axial 

pressure drop. 
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Figure 9 Schematic view of a simple SFD and boundary conditions. 

 

The first order pressure fields must be symmetric about z=0; hence, the hyperbolic 

sine terms disappear in Eq. (4.8), i.e. sf=sg=0. Thus, for motion perturbations along the x 

direction 

( ) ( )( ) cosh ; ( ) cosh
X P XX f X X g

z zf z c f g z cR R= + =  (4.18)

 
At the ends the pressure is ambient (Pa), and thus the dynamic pressure is set to zero at 

both ends, hence  

 

( )2

0;   ; 0
cosh

P

Lz

X
X X f g

fLP f c cLD D=

−⎛ ⎞= = → = =⎜ ⎟
⎝ ⎠

 (4.19)

 
with 

PXf defined in Eq.(4.7).  Integrating the pressure across the damper land  
   

( )
( )

/ 2

/ 2

tanh
i ( ) 1

L
2

XX XX XX P
L

L
D -  + R f z dz f R LCK M L

D
ω π πω

−

⎡ ⎤
⎢ ⎥= − = − −
⎢ ⎥
⎣ ⎦

∫  (4.20)

 
yields the force coefficients  
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tanh
12 1XX

LR L DC Lc
D

μπ
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0; 1XX XX
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 (4.21) 
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which coincide with the classical damping and inertia force coefficients derived by 

Reinhart and Lund [4].  

4.4 Case II: Oil Seal-Two Lands Separated by a Central Groove 

Figure 10 shows a schematic view of two thin film lands separated by a central 

groove. The analysis considers only half of the system due to its geometrical symmetry. 

The system is divided into ½ groove and land section of lengths L1 and L2, respectively. 

The clearance at the land is cL=c , and at the groove section is cG= (dη+ c), where dη is 

the effective groove depth.  

 

 
Figure 10 Schematic view of two film lands separated by a central groove. 

 

A static pressure (Ps) is specified at the middle plane, while the pressure is ambient 

at the discharge planes (PD =Pa). The equations for static pressure fields across the 

groove and land lengths are  

 
1 2

1 1 2 2
0 1 0 2

1 1 2 2

( ) 1 ; ( ) 1S E E a
z z z zP z P P P z P P
L L L L

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − + = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (4.22)

where PE, the pressure at the groove-land interface, is determined from matching axial 

flow rates, i.e. 

h2 

h1

z1 

L2 

L1 

L2 
A 

C 

2y 

z 

B 

L1 

1

z2 

PS 

PD 



 

 

32

 
3

1

2
3

1

2

1

L
S a

G
E

L

G

L cP P
L c

P
L c
L c

⎛ ⎞⎛ ⎞
+ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠=
⎛ ⎞⎛ ⎞

+ ⎜ ⎟⎜ ⎟
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 (4.23)

 
Note that if cL<<cG then, PE ~ PS.  The analysis shows that the coefficients of the 

first order pressure fields, here grouped as { }1 1 2 2
;

T

f f f fc s c s=f  

{ }1 1 2 2g g g gc s c s=g  are determined from solution of the algebraic system of 

equations: 

[ ][ ] [ ]=H f g F G  (4.24)

 
where 
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( ) ( )

( ) ( )
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2 2

1 13 3 3

cosh sinh 1 0

0 0 cosh sinh

sinh cosh 0

0 1 0 0

L L
R R

L L
R R

L L
G G LR Rc c c

⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎝ ⎠

H  (4.25) 

and  
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Rc s Rc s
s R
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s s

L L
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= =  (4.26) 

 
with 

( )
2 2

*
3 312 1 Re ,    6 ;     ,s

L

R RF i i G L G
c cββ β

β

μ ω μ βΩ
= − + = =  (4.27) 

Once the coefficients of the pressure function are obtained, the resulting force 

coefficients are obtained from integrating the pressure function, as shown in Eq. (4.17).  
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5. FLOW ANALYSIS FOR SMALL AMPLITUDE MOTION ABOUT A 

JOURNAL OFF-CENTERED POSITION 

5.1 Analysis  

Similar to the previous sections, the following derivation applies to multiple groove 

cavities and the flow domain is divided into flow region with constant clearance as 

shown in Fig. 7. Presently, the analysis contemplates small amplitude motion of the 

journal about an off-centered or eccentric operation. Figure 11 depicts the journal, 

annular cavity geometry, and the coordinate system used in the analysis for small 

amplitude journal motions about an off-centered position.   

 
Figure 11 View of rotating and whirling journal and coordinate system for bulk-flow 
analysis. 

 

Starting from the fluid film equation presented in Section 3,  

( ) ( ) ( ) ( )
2

3 3 2
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, , ...
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                                                                                                               I II N

P Ph h h R h h h
x x z z t x t
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α α α α α α
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⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂ ∂ ∂
+ = + Ω +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

(3.6) 

Ω= rotational speed 

Δe= journal displacement 
ω= whirl frequency 
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the film thickness (hα), for small amplitude journal motions (ΔeX , ΔeY )<< c  
αη  and 

frequency ω about an static position (eXo, eYo),  equals [1] 

 

{ }0 0 ,

, , ...

cos sin ;  1;  i t i t
X Y X Y

I II N

h  = h +  e   ( ) +  e   ( ) h +  e h  i  = e e
α α

ω ω
α σ σ σ

α

θ θ =

=

Δ Δ = Δ −
 (5.1) 

with  
( ) ( )

00 cos sinX Yh c e e  c e h
α α αη η σ σθ θ= + + = + ;  ( ) ( )cos , sinX Yh hθ θ= =    (5.2) 

 

and c
αη  as the effective clearance, defined as c c dη η= +  over the grooved flow regions 

with dη  as the effective groove depth,  and c c
αη =  for ungrooved (seal land) flow 

regions. Similarly, as in the previous section, the pressure is expressed as a superposition 

of a zeroth order field (Po) and first order (dynamic) fields ( ,X YP P
α α

) 

0 , , ... ;   i t I II NP  = P  + e  P    e
α α

ω
α σ σ α =Δ  (5.3) 

 
Substitution of Eqs. (5.1) and (5.3), into Eq. (3.6) gives the zeroth order equations for the 

equilibrium pressure  

( )0 03 3
0 0 0 , , ...6 ;       I II N
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  (5.4) 

         
and the first order equations for journal dynamic displacements along the X and Y 
directions  
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(5.5)

where 
2

*Re
12

c
α

α

ηρω
μ

=  is a local squeeze film Reynolds number. Once the first order 

pressure fields (Eq. (5.4) and Eq. (5.5)) are obtained, the fluid film reaction forces at the 

given static journal position (eXo, eYo) are 
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0 0 , ;  
1 0

;   
LN

X YF  h P R d dz
α

ασ σ α σ
α θ

θ =
=

= ∑ ∫ ∫  (5.6) 

 
and force coefficients are also obtained by integrating the dynamic pressure fields over 

the flow domain [1], 

( ) ( ), ,  
1 0

, , ...

i ; ; = cos , =sin
LN

2
X Y X Y

I II N

- +  h P R d dz h hCK M
α

α α α ασβ σβ σβ σ β α σ β
α θ

α

ω θ θ θω =
=

=

= −∑ ∫ ∫

 

(5.7) 

5.2 Finite Element Formulation  

The procedure implemented for solving the PDEs (5.4, 5.5) on a grooved seal with 

the finite element method (FEM) is similar to that presented in Ref. [57, 58]. The 

implementation of the current development into a FORTRAN® code follows from 

modifying an existing code that predicts force coefficient for smooth land seals or 

journal bearings without fluid inertia effects [59]. In addition, Appendix A presents a 

Microsoft Excel® user interface developed for integrating the present formulation into 

the XLTRC2® rotordynamic software 5 . Without loss of generality, the solution is 

presented for a symmetric oil seal with an inlet plenum and a single mid-land groove 

similar to the seal tested in Ref. [29]. A similar solution can be applied to multi-groove 

seals.  

Following the discretization of the domain into elements ( eΩ ), as shown in Fig. 12, 

the static and dynamic pressure fields are represented as the linear combination of nodal 

values 
i

eP within each element as 

YX

n

i

e
i

e
n

i

e
i

e
pe

i

pe

i
PPPP ,

11
00   ;   , =

==
∑∑ Ψ=Ψ= σσσ  (5.8) 

 

                                                 
5 XLTRC2® is a rotordynamic software suite only available to members of the Turbomachinery Research 
Consortium (TRC).  
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where ψe are bilinear interpolation functions.  The equation to be solved for each 

element follows from the representation of the fluid differential equations (Eq. (5.4), Eq. 

(5.5)) in its variational or weak form [58] using the interpolation functions as weight 

functions.  

 

`  
Figure 12 Coordinate system and sample mesh for oil seal FEM computational code. 

 

The variational form of Eq. (5.4) for the zeroth order pressure yields  
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Similarly for the first order perturbed pressure fields, PX and PY, the set of equations 

for the nodal pressures in a finite element are  
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with n  as the normal vector to the boundary eΓ of an element. Note that Eq. (5.14) 

includes the temporal fluid inertia term (second term in first integral).  The integrals in 

Eq. (5.10) through Eq. (5.16) are evaluated numerically over a master element ( Ω̂ ) with 
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normalized coordinates (isoparametric element). Reddy and Gartling [60] detail the 

coordinate transformation and numerical integration procedure using Gauss-Legendre 

quadrature formulas.  

Equations (5.9) and (5.13), for each element of the flow domain, are assembled to 

form a linear system of equations represented as  

[ ] { } { } { }

[ ] { } { } { } [ ] { }

0

0

  ;   : 0

;  : ,

Global Global Global Global

Global Global GlobalGlobal Global Global

k P Q F

k P Q F S P X Y

γ γ

γ γ γ

γ

γ

= +

= + +

 (5.17) 

                      
where 
 

[ ] [ ] { } { } { } { }
1 1 1

, ,
Nem Nem Neme ee

Global Global Global
e e e

k k Q q F fγ γ γ γ
= = =

= = =∪ ∪ ∪ , γ:0,X,Y.  (5.18)

 
The resulting global fluidity matrix [ ]Global

k  is symmetric and can be easily 

decomposed into its upper and lower triangular form, i.e.  

[ ] [ ] [ ] [ ] [ ]T
GGGGG LLULk ==  (5.19)

       
Thus, once the L, LT and F matrices are obtained, and defining the pressure at the 

inlet and the exit of the flow domain, a process of back- and forward-substitutions 

renders the discrete zeroth order pressure field { }0 G
P . Using the results from the fluidity 

matrix and the zeroth order pressure field, the first order pressure field, { }
G

Pγ , are 

obtained. As in the previous case for journal centered operation, the selection of the 

appropriate boundary conditions, based on the physics of the problem, is essential for 

obtaining the force coefficients in the grooved seal geometry.  

5.2.1 Boundary Conditions  

Figure 13 shows the mesh for the flow domain on an oil seal with an inlet plenum 

and an inner groove, and the nodes of interest to enforce boundary conditions. For the 

studied flow domain the boundary conditions are: 
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Both the zeroth and first order fields are periodic in the circumferential direction 

( , ) ( 2 , )P z P zγ γθ θ π= + ; γ=0,x,y (5.20)

The fluid pressure must be greater than the lubricant cavitation pressure (Pcav=0). In 

the occurrence of oil cavitation, the zeroth and dynamic pressure field vanishes. 

Equations (5.12) and (5.16) automatically satisfy the flow continuity at boundary 

between smooth land and groove, for example.  

5.2.1.1 Zeroth Order Pressure Field 

A) Constant static pressure at inlet plane (z= 0). This condition is set to the lower 

nodes of an element along the inlet plane.  

0 S0

e

z
P P

=
=  (5.21)

 

B) Constant static pressure at exit plane (z= L). This condition is set to the upper 

nodes of an element along the exit plane.  

0 D  e

z L
P P

=
=  (5.22)

  
Figure 13 FEM mesh depicting nodes of interest for implementation of boundary 
conditions.  
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5.2.1.2 First Order Pressure Field 

A) Null dynamic pressure at exit plane (z= L). While the static pressure is constant, 

it is assumed that there is not generation of dynamic pressure at the exit 

(discharge) plane. This condition is set to the upper nodes of an element along 

the exit plane.  

0  e

z L
Pγ =

=  (5.23)
 

B) At the inlet plane (inlet to feed plenum) the axial flow induced by the dynamic 

(fluid squeezing) motions is set to zero due to geometrical symmetry.  

z=0
= 0 

z
q  (5.24)

 

This boundary condition implies that the “perturbed” axial flow does not 

cross the middle plane and that there is a non-zero dynamic pressure field at this 

plane. This is a Neumann type B.C. implemented by treating the nodes at inlet 

plane as internal nodes.  
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6. PREDICTIONS OF DYNAMIC PRESSURE AND FORCE COEFFICIENTS 

FOR A GROOVED SFD AND A GROOVED OIL SEAL AND COMPARISONS 

TO EXPERIMENTAL DATA  

This section presents predictions of dynamic pressure fields and dynamic force 

coefficients in a grooved SFD and a grooved oil seal, both operating with small 

amplitude journal motion. The geometry of both devices replicates the configurations 

tested in Refs. [27, 29]. Predictions of the pressure distribution in the damper and the 

seal stand to qualitatively describe the relative contribution of fluid inertia and viscous 

forces to the overall force response in each test device. In addition, the pressure profiles 

also help illustrating the influence of the grooves in the pressure distribution and overall 

force response of each test configuration.  

Predictions of force coefficients are presented and compared to experimental results. 

In the case of the SFD, only test data for centered journal operation is available although 

with large orbit radii. On the other hand, the grooved oil-seal test data includes centered 

and off-centered journal operation for small amplitude motion. The predicted force 

coefficients for journal centered operation are presented as a function of the effective 

groove clearance values (cη) and compared to experimental data. The analysis of the 

results indicates that there is a narrow range of effective groove depths (cn) that yield 

excellent correlation to the experimental force coefficients, including added mass 

coefficients. The description of the SFD tested in Ref. [27] follows.   

6.1 Squeeze Film Damper 

The test SFD included in this study has been operated extensively, consistently 

evidencing large added mass coefficients (~ 10 kg, i.e. as large as the mass of the 

system), while predictions based on the classical theory [4] are ~5 times smaller that the 

experimental results. Figure 14 shows a cut view of the test SFD. The damper 

incorporates a mechanical seal at the discharge end that effectively prevents oil leakage. 

The lubricant is fed from the top and fills the inlet groove, film land, and end discharge 
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groove before exiting the damper radially through four outlet ports. Measurements of the 

dynamic pressure are available at the discharge groove.  

 

 
Figure 14 Sealed-end SFD assembly cut view [27]. 

 

6.1.1 Geometry and Model Descriptions 

Table 1 shows the SFD dimensions and test conditions. Figure 15 depicts a 

schematic view of the SFD detailing the groove and land dimensions, and the flow 

region subdivisions.   

The flow domain for the analysis encompasses the inlet groove, fluid film land and 

discharge groove. The boundary conditions for predicting the fluid film pressure and 

reaction forces are: 

• Null axial flow at the feeding groove inlet, Eq. 4.20. This condition implies that 

the dynamic pressure in the plenum does not allow for backflow at the damper 

inlet.  

• Continuity of pressure and flow rates at the groove-land interfaces.  

• Amplitude of dynamic pressure amplitude set at discharge groove from 

measurements reported in Ref. [61]. 
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Table 1 Test conditions for dynamic load tests (CCO). Lubricated SFD. 

Dimensions  
Diameter (D) 127 mm  
Clearance (c) 125-127 μm (4.9-5  mils) 
Land length (L) 25.4 mm 
Inlet groove clearance (

Igc ) 78c 
Inlet groove length 6.36 mm 
Discharge groove clearance (

IIIgc ) 31c 
Discharge groove length  4.1 mm 
Parameters  
Discharge groove pressure (PD)* 8.6 kPa-15.5 kPa                   
Inlet pressure (PS)* 31 kPa           
Frequency range  20-70 Hz  
Lubricant temperature (T) 23-25 0C (73-77 0F) 
Viscosity (η) (ISO VG-2 oil) 3.1 cP- 2.8 cP 
Density (ρ) 800 kg/m3 
Orbit amplitude (e) 12-50 μm (0.5-2 mils) 
Flow restrictors (hole diameter) 2.8 mm  

  *: Gauge pressure. 

 

 
Figure 15 Test squeeze film damper geometry and flow regions [27].  
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6.1.2 Results from Analytical Solution  

6.1.2.1 Dynamic Pressure  

This section presents the predicted dynamic pressure field generated within the SFD 

due to small amplitude journal motion about a centered position. The dynamic pressure 

field in the damper adds pressures generated due to viscous and inertia fluid effects. The 

pressure field due to viscous effects generates a tangential force that is proportional and 

opposes the journal velocity vector (i.e. damping force). On the other hand, the pressure 

field due to fluid inertia generates a radial force that is proportional and opposes the 

journal acceleration vector. Thus, the pressure field solely due to inertia effects are 180 0 

out of phase respect to the acceleration of the film gap (d2h/dt2), i.e. the maximum peak 

occurs at the instantaneous maximum film thickness (i.e. θ  = 0). Similarly, the pressure 

field due to viscous effects are 180 0  out of phase respect to the motion (velocity) of the 

film thickness (dh/dt), i.e. as the local film thickness decreases the pressure in the 

squeeze-film land increases, and vice versa. Thus, the maximum peak is π/2 radians 

away from the minimum film thickness (i.e. θ = π). In the pressure plots presented in 

this and the next section the minimum film thickness takes place at θ =π and the 

maximum film gap is at θ=0.   

Figure 16 shows the dynamic pressure field due to circular centered motions of 12 

μm in amplitude (i.e. 0.1c) at 50 Hz. The figure also depicts the film thickness and its 

time derivatives (velocity and acceleration). Note that the pressure field is a function of 

the time and the angular coordinate; though for circular centered orbits, the pressure is 

stationary in a coordinate system rotating with the journal center precessional speed [12]. 

Figure 16 shows the pressure field assuming no pressure generation at the inlet and 

outlet grooves. This pressure field corresponds closely with the classical finite-length 

solution for a single SFD land [4] as derived in Section 4.  Note that the magnitude of 

the pressure induced by fluid inertia effects is much smaller that the peak of the pressure 

field due to viscous effects. Indeed, the Reynolds number (Re*) at the SFD land is 0.2 

(i.e. very low).  
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Figure 16 Predicted dynamic pressure field across SFD due to journal circular centered 
orbit (12 μm, 50 Hz). Classical theory [4] ( Finite length model, null dynamic pressure at 
inlet and discharge grooves).  

 

Figure 17 depicts predicted and measured dynamic pressures at the film land and 

discharge groove versus dimensionless time (tω) for forced excitation at 50 Hz resulting 

in circular orbits of ~12 μm in amplitude. The graph displays full-scale and zoomed 

views of two full periods of circular whirl motion and includes a depiction of the film 

thickness recorded at the location of pressure measurements. The measured dynamic 

pressure at the discharge grove is used as boundary conditions; thus the predictions 

obviously match the measurements at this location. The magnitude and phase of the 

pressure wave respect to the film thickness provides the necessary information to define 

the inertial and viscous components of the pressure field. In this case, the pressure is 

1800 out of phase with respect to the film gap acceleration (d2h/dt2), which indicates that 

the pressure field is mainly inertial. Indeed the ratio of the inertial forces to viscous 
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forces associated to this test conditions is ~10:1. The dynamic pressure in the mid-span 

of the film land is obtained from predictions using the given measurements at the 

discharge groove and considering an effective inlet groove clearance (
I

cη = 14c). As 

detailed next, in Section 6.1.2.2, this effective clearance yields the best correlation 

between the predicted and experimental force coefficients. Predictions of the film 

pressure profile mach the experimental results well considering the magnified scale. A 

more detailed discussion of this pressure field is included in the next graph.  

 

 
Figure 17 Dynamic pressure measurements and predictions at SFD land and discharge 
groove and film thickness. Frequency 50 Hz, 12 μm orbit amplitude, supply pressure= 1.31 
bar. Dynamic pressure measurements at discharge groove used (matched) as boundary 
values. Dynamic pressure at the land predicted using an effective inlet groove clearance 
(

I
cη = 14). 

 

Figure 18 depicts the pressure field from the improved model considering the 

generation of dynamic pressure at the inlet groove and using an effective discharge 
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the groove is mainly due to fluid inertia effects as it is 1800 out of phase with respect to 

the film thickness acceleration (d2h/dt2). These results are similar to the test data 

presented by Arauz and San Andrés [19], who reached the same conclusion about the 

inertial nature of the pressure field at the grooves. Note that squeeze film Reynolds 

number (Re*-based on the effective groove clearance - cη ) at the inlet and discharge 

grooves is 28 and 40, respectively. Thus as indicated by Tichy [8] and San Andrés [12], 

for Re*>12 the fluid inertia forces are indeed dominant at the grooves. Furthermore, 

although the peak dynamic pressure at the SFD land (due to viscous effects) is similar to 

that shown in Fig. 16, the contribution of the inertial pressure field is more noticeable 

than in Fig. 16. Thus, the influence of the inertial pressure field generated at the groove 

extends to the film land and enhances the fluid inertia effects (radial force) over the 

entire axial length of the damper land. Of course, these observations apply to the chosen 

effective groove depth since the relative contribution of the groove to the damping and 

inertia forces is a strong function of this parameter. A detailed description of the 

correlation between the damping and inertia force coefficients respect to the groove 

clearance follows.  
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Figure 18 Predicted dynamic pressure distribution across end seal SFD due to journal 
excitations (12 μm, 50 Hz). Improved model incorporating contribution of grooves to 
dynamic pressure field using an effective inlet groove clearance (

I
cη = 14 c). 

 

6.1.2.2 SFD Force Coefficients  

This section includes comparisons of experimental and predicted force coefficients 
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Figure 19 depicts the damping and added mass coefficients versus effective inlet 

groove-to-film clearance ratios. The predictions show that the damping coefficient 

rapidly converges to a constant value (CXX=5 kNs/m) for 10
I

c cη ≥ . Hence, as illustrated 

with the pressure profiles, a deep groove contributes little to the test seal tangential 

(damping) force.  On the other hand, the direct added mass coefficient (MXX) converges 

more slowly towards an asymptotic value.  However, note the predicted added mass 

coefficient is in good correlation with the experimental results for effective depths (dη) 

where the damping coefficient is already insensitive. Thus, the best estimates of mass 

coefficients correspond to the smallest effective groove clearances (i.e. 14
I

c cη ∼ ) that do 

not have a significant impact (>10%) on the SFD tangential (damping) forces. 

Furthermore, comparisons of the damping values for decreasing dη with that for a deep 

groove may be used to obtain an effective groove clearance cη that accurately predicts 

the mass coefficients. Importantly enough, note that added mass coefficients reaches a 

peak value for a specific clearance. In particular, for the current case, inlet groove 

clearances (cI) of 2 to 3 times the damper clearance would yield added mass coefficients 

above 20 kg (i.e. twice the mass of the test SFD).   
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Figure 19 Predicted SFD added mass coefficient versus effective inlet groove clearance. 
Solid lines represent predictions( 18

III
c cη ∼ ). Dotted lines represent range of experimental 

values from [27].  
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6.2 Grooved Oil Seal 

Graviss [29] reports experimental data for a multiple groove oil seal. Figure 20 

depicts the actual configuration of the grooved oil seal. The test configuration is an 

axially symmetric arrangement, and includes two oil seals separated by a central feed 

plenum. This configuration allows balancing the thrust force due to the pressure drop 

across the seals. The added mass coefficients reported for this configurations range from 

~15 to ~30 kg, while the classical predictions [4] yield around ~3 kg (i.e. 5 times 

smaller). In addition, for the groove seal, the force coefficients (stiffness and damping) 

are underpredicted (~2 times) by Semanate and San Andrés [28]. 

 

 
Figure 20 Configuration of parallel oil seals tested in [29].  

 

6.2.1 Geometry and Model Description 

Figure 21 depicts the modeled portion of the oil seal and the partition into flow 

regions. Table 2 lists the physical dimensions, fluid properties and operating conditions 

of the test seal. The seal is divided into 4 flow regions with the following boundary 

conditions: 

• Dynamic pressure set to zero at exit plane. 

• Continuity of pressure and flow rates at the groove-land interfaces.  

• First order (perturbed) axial flow rate at inlet plenum (symmetry plane) is set to 

zero (no back flow). 
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Figure 21 Partial view of test grooved oil seal geometry [29] and flow regions for 

predictions. 

 
Table 2 Oil seal configuration, operating conditions and fluid properties. 

Dimensions   
Journal Diameter  117 mm 
Seal land length  24.89 mm 
Land clearance (nominal @ 25 oC)  85.9 μm 
½ central plenum length 17 mm 
½ central plenum clearance (

Igc ) 136c 
Inner land groove length 2 mm  
Inner land groove clearance (

IIIgc ) (c, 6c, 11c, 16c)   (tests) 

Parameters  
Shaft speed 4000 rpm -10000 rpm 
Whirl frequency, ω  0-200 Hz 
Supply Pressure (Ps) 24-70 bar 
Oil density (ISO VG32) 850 kg/m3 

Oil viscosity 0.02 Pa.s 
 

6.2.2 Results from Analytical Solution  

6.2.2.1 Dynamic Pressure  

Figures 22 and 23 show the predicted dynamic pressure field for the smooth seal due 

to small amplitude journal motions about a centered position (5 μm, 200 Hz) while 
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pressure of 70 bar. Figure 22 depicts the dynamic pressure field assuming a null dynamic 
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pressure at the central plenum. Figure 23 shows the pressure field from the improved 

predictive model using an effective central plenum clearance (
I

cη  = 12c). The results are 

similar to those observed for the SFD case, although the pressure field due to fluid 

inertia effects is not as large compared to the pressure field due to fluid viscous effects. 

Similarly to the SFD case study, the pressure field in Fig. 21 yields added mass 

coefficients (~3 kg) that are nearly five times smaller than those identified from 

experiments (~15 kg).  

 

 
Figure 22 Predicted dynamic pressure distribution across smooth seal due to journal 
excitations (5 μm, 200 Hz). Classical theory [4] (Finite length model, null dynamic 
pressure at plenum). 

 

The pressure fields show dimensional units to illustrate an important fact related to 

the amplitude of the pressure fluctuations at the central plenum section. Note that the 

amplitude of the pressure field is a function of the excitation amplitude, but more 

importantly it also varies with the excitation frequency, which depends on the nature of 

the pressure field (i.e. viscous or inertial). While the forces due to viscous effects are 
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directly proportional to the excitation frequency (ω), the inertia forces are proportional 

to ω2. Thus, as Fig. 23 illustrates, the pressure fluctuations at the plenum associated to 

the 10 μm journal perturbation at 200 Hz are relatively small (~ 0.35 bar), though this 

entire pressure field corresponds to a relatively large added mass coefficient (~18 kg). 

Now, considering that the inlet pressure for the test seal ranges from 24-70 bar, the 

dynamic pressure field at the groove is almost imperceptible for the given test frequency 

range (0-200 Hz). This may explain the seemingly insignificant dynamic pressure at the 

central plenum mentioned in Refs. [29, 34].   

 

 
Figure 23 Predicted dynamic pressure distribution across smooth seal due to journal 
excitations (5 μm, 200 Hz). Improved model incorporating contribution of grooves to 
dynamic pressure field using an effective inlet groove clearance (

I
cη = 12c). Film 

thickness noted.  

 

Figures 24 and 25 show predicted dynamic pressure fields for the seal with the 

deepest inner land groove (cIII =15 c). The pressure field corresponds to small journal 
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assuming a null dynamic pressure at the central plenum and the inner land groove. Note 

that the peak pressure in the land is much smaller (around 1/4) than that of the smooth 

seal. This pressure profile will determine direct damping and added mass coefficients 

smaller by a factor 2 and 5 with respect to test data, respectively. Figure 25 shows the 

pressure field using an effective plenum (
I

cη ) and inner land (
III

cη ) groove clearance of 

12c and 7c, respectively. In this case both the plenum and inner-land groove enhance the 

fluid inertia effects across the seal lands. In fact, as the experimental results show, the 

added mass coefficients identified from the grooved seal (~30 kg) are larger than those 

associated to the smooth land seal (~20 kg).    

 

 
Figure 24 Predicted dynamic pressure distribution across seal with inner land groove due 
to journal excitations (5 μm, 200 Hz). Classical theory [4] (Finite length model, null 
dynamic pressure at plenum and groove). 
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Figure 25 Predicted dynamic pressure distribution across seal with inner land groove due 
to journal excitations (5 μm, 200 Hz). Improved model incorporating contribution of 
grooves to dynamic pressure field using an effective plenum and inner land groove 
clearances (

I
cη = 12 c, 

III
cη =7 c ). 

 

6.2.2.2 Seal Force Coefficients  

Figure 26 presents the predicted damping (CXX) and added mass coefficients (MXX) 

versus an effective central plenum-to-seal clearance ratios for the smooth seal 

configuration, i.e. without an inner land (internal) groove (i.e. 
III

c c= ). The dotted lines 

enclose the range of experimental values reported in [29] for a three oil supply pressures 

(24-70 bar). Regarding the inlet groove, the results are similar to those found for the 

SFD. Again, the best estimates of mass coefficients are within the neighborhood of cη 

magnitudes for which the overall damping becomes insensitive to the groove depth. 

From the results shown, one easily determines that the effective inlet or central plenum 

clearance that reproduces the experimental results is 10c < cη < 15c. 
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Figure 26 Predicted direct damping and added mass coefficients versus smooth seal 
effective central plenum-to-land clearance ratio. Solid lines represent predictions and 
dotted lines enclose the range of experimental values from [29] for a smooth seal (no 
inner land groove).  
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for increasing inner-land groove clearances. On the other hand, the added mass (MXX) 

increases as the effective inner-groove clearance increases to a peak value (i.e. 
III

6c cη = ). 

As in the previous figure, the added mass coefficient correlates best with predictions for 

the smallest cη ,  i.e. 6c. This clearance has a minimum impact on the damping force 

developed by the seal.  

Figure 28 depicts the direct damping and added mass coefficients versus inner land 

groove-to-seal clearance ratios, including two effective clearances for the central groove. 

These values are within the range of best correlation with experimental data in Fig. 27.  

The damping steadily decreases as the inner land groove effective clearance (
III

cη ) 

increases, whereas the mass presents a maximum value at 
III

cη ≈ 5. In this case, the inner-

land groove is relatively shallow and short (2 mm) and its effective depth is ~ 1/3 of its 

physical depth to give good correlation with the experimental results.  

Figure 29 displays the cross-coupled stiffness coefficient (KXY) versus rotor speed. 

The results include experimental data for smooth (no inner-land groove) and with a inner 

land groove 15c deep (i.e. 
III

=16c c ). The predictions are based on an effective central 

groove clearance (
I

cη ) of 12c and an inner-land effective groove clearance (
III

cη ) of 7c 

(i.e. ~half of actual groove size).  The predictions correlate best for the lowest rotor 

speeds. More importantly, the variation (reduction) of the cross-coupled stiffness is 

properly captured using effective groove clearances (
,I III

cη ).  
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Figure 27 Predicted direct damping and added mass coefficients versus seal effective 
central groove-to-clearance ratio. Solid lines represent predictions for three effective 
inner land seal groove clearances              . Dotted lines enclose the range of 
experimental values from [29] for two seal clearances

III
( = , +15 )gc c c c . 
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Figure 28 Direct damping and added mass coefficients versus effective inner land groove 
clearance. Solid lines represent predictions for two effective central plenum clearances                              
V                .Dotted lines enclose the range of experimental values from [29] for two seal 
clearances

III
( =0, 16 )gc c .  
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Figure 29 Cross-coupled stiffness coefficients versus rotor speed. Solid lines represent 
predictions for smooth seal and an effective inner land groove clearance with               .       
Dotted lines represent experimental values from [29] for a smooth seal and an inner land 
grooved seal (with clearance =16c).  
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Table 3 Operating conditions fluid properties and number of elements for FE mesh . 

Parameters  
Shaft speed 4000-10000 rpm 
Oil density  850 kg/m3 

Static journal eccentricity ratios 0-0.7 
Oil viscosity (smooth seal) 0.016 Pa.s (54 0C) 
Oil viscosity (grooved seal) 0.019 Pa.s (49 0C) 
Supply pressure 70 bar 
FEM mesh (elements)   
Circumference  60 
Seal land 12 
Plenum 12 
Inner land groove 6 

 

Similar to the analytical development, the analysis reports results for half of the axially 

symmetric seal configuration. The comparisons include results for the oil seal without 

the inner groove (smooth land throughout) and with a machined (15c) depth groove at 

the inner land (i.e. cIII = c+15c). Following results from the parametric study, the 

effective clearance for the inlet oil supply (central) plenum (
I

cη ) is set to 12c. This 

effective clearance presents the best correlation with all the force coefficients obtained 

for the smooth seal (i.e. no inner-land groove).  For the oil seal with an inner-land 

groove, the inlet oil supply plenum effective clearance (
I

cη ) remains constant and the 

inner-land groove effective clearance (
III

cη ) is set to 7c.  
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Figure 30 Measured journal centerline locus for smooth and grooved seal (cIII =16c). (70 
bar, 10000 rpm) [29]. 

 
Figure 31 shows the seal reaction forces versus the static journal eccentricity. 

Predictions and experimental results present good correlation for journal eccentricities 

up to e/c = 0.5 for both the grooved and smooth seals. For the largest journal eccentricity 

(e/c=0.7), predictions are within 20 % of the experimental results for the smooth seal. On 

the other hand, the reaction force of the grooved seal is underpredicted by a factor of 2 

for the largest journal eccentricity. For the largest journal eccentricities the oil 

temperature is significantly increases due to the small film thickness (i.e. large shear 

forces and power loss). Thus, the seal clearance and oil properties for the largest journal 

eccentricity ratio may differ significantly from the nominal values and have a large 

uncertainty. Ref. [29], however, does not include detailed information on the probable 

variation of the nominal values at such large journal eccentricity. Therefore, the 

predictions are compared with experimental results only for the low to mid-range 

eccentricities (i.e. ε= 0, 0.3, 0.5).  
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Figure 31 Oil seal reaction force versus journal eccentricity. Measurements in a smooth 
seal and a seal with inner land groove (cIII = 16c), 10000 rpm, 70 bar [29]. Predictions for 
smooth seal and seal with inner land groove (

III
cη  = 7c).   

 

Figures 32 and 33 depict the direct (KXX, KXY) and crossed-coupled (KXY, KYX)  
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of knowledge of the actual seal clearance variation due to thermal effects. 
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Figure 32 Direct stiffness coefficient (Kii) versus journal eccentricity. Measurements in a 
smooth seal and a seal with inner land groove (cIII = 16c), 10000 rpm, 70 bar [29]. 
Predictions for smooth seal and seal with inner land groove (

III
cη  = 7c). 
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Figure 33 Cross-coupled stiffness coefficients (Kij) versus journal eccentricity. 
Measurements in a smooth seal and a seal with inner land groove (cIII = 16c), 10000 rpm, 
70 bar [29]. Predictions for smooth seal and seal with inner land groove (

III
cη  = 7c).   
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Figure 34 Cross-coupled stiffness coefficients (Kxy) versus shaft speed at two journal 
eccentricities (0, 0.3). Measurements in a smooth seal and a seal with inner land groove 
(cIII = 16c), 10000 rpm, 70 bar [29]. Predictions for smooth seal and seal with inner land 
groove (

III
cη  = 7c).  

 

Figures 35 and 36 present the direct (CXX, CYY) and cross-coupled (CXY, CYX) damping 

coefficients versus static journal eccentricity ratio, respectively. The direct damping 

coefficients (CXX, CYY) show excellent correlation for the all the eccentricity ratios, 

except for the CXX coefficient of the smooth seal that is 20% underpredicted for e/c=0.5. 
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The cross-coupled coefficients are much smaller than the direct damping coefficients 

and present moderate to good correlation for the different test journal eccentricities.   
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Figure 35 Direct damping coefficients (Cii) versus eccentricity. Measurements in a smooth 
seal and a seal with inner land groove (cIII = 16c), 10000 rpm, 70 bar [29]. Predictions for 
smooth seal and seal with inner land groove (

III
cη  = 7c).     
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Figure 36 Cross-coupled damping coefficients (Cij) versus eccentricity. Measurements in 
a smooth seal and a seal with inner land groove (cIII = 16c), 10000 rpm, 70 bar [29]. 
Predictions for smooth seal and seal with inner land groove (

III
cη  = 7c).   

 

Figure 37 depicts the direct added mass coefficients versus the static journal 

eccentricity ratio. Predicted and experimental cross-coupled added mass coefficients 

(MXY, MYX) are nearly null. The direct added mass coefficients (MXX, MYY) present good 
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correlation with the experimental data. In particular, the analysis predicts a larger added 

mass coefficient for the grooved oil seal as the experiments also reveal. Note that the 

predicted added mass coefficient is nearly constant for all the test journal eccentricities.  
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Figure 37 Added Mass coefficient (MXX, MYY) versus eccentricity. Experiments for smooth 
seal and seal with inner land groove (cIII = 16c), 10000 rpm, 70 bar [29]. Predictions for 
smooth seal and seal with inner land groove using (

III
cη  = 7c). 
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Figure 38 present the seal leakage versus the static journal eccentricity at 10,000 rpm 

and 70 bar feed pressure. The results show good correlation between experiments and 

predictions with a variation of less than ~15 % in both seals. Note that, contrary to 

intuition, the experiments and predictions show that the smooth seal leaks more than the 

grooved seal because its effective viscosity (land clearance) is slightly lower (larger) due 

to larger power losses inducing a temperature rise.     
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Figure 38 Seal leakage versus eccentricity. Experiments for smooth seal and seal with 
inner land groove (cIII = 16c), 10000 rpm, 70 bar [29]. Predictions for smooth seal and seal 
with inner land groove using (

III
cη  = 7c).  
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7.  SUMMARY AND CONCLUSIONS  

This dissertation presents a fluid flow model towards improving the prediction of the 

force coefficients in grooved oil seals and SFDs. In particular, the analysis focuses on 

the prediction of force coefficients in a SFD and oil ring seal test configurations (Ref. 

[27, 29]), both including feed/discharge grooves.  

In SFDs, grooves are used to feed oil into the damper or as part of end sealing 

arrangements. The SFD test configuration in Ref. [27], yields unexpectedly large added 

mass coefficients that are largely underpredicted by classical theory [4]. Similarly, an oil 

seal test configuration tested in Ref. [29] shows large added mass coefficients that are 

also not accurately predicted. This test configuration includes a central plenum that feeds 

lubricant to two seals. The seals are installed in parallel as an axially symmetric 

arrangement to balance the test rig thrust forces. In addition, this configuration holds a 

grooved oil seal. Grooves are typically machined in oil ring seals to isolate and to divide 

the seal land into shorter length lands and hence to minimize the destabilizing effect 

(cross-coupled coefficients) [33]. However, predictions of force coefficients for grooved 

oil seals from available models (i.e. Ref. [28]) largely underpredict experimental results, 

which is a clear indication that the grooves do not completely isolate the dynamic 

pressure field of the contiguous lands.   

The proposed model to improve the predictions of force coefficients in grooved 

SFDs and oil seals is based on a fluid flow analysis that divides the multiple groove 

annular cavities into flow regions of constant clearance. The analysis treats both the 

groove and film land sections similarly in terms of the fluid flow equations, and it 

considers both the circumferential and axial dynamic pressure variations across the 

groove and land regions. At the groove regions, an effective groove depth ( dη ) and 

clearance ( c d cη η= + ) are defined based on qualitative observations of the laminar flow 

pattern through annular cavities, and supported by experiments [27] evidencing the 

generation of relatively large dynamic pressures in deep grooves. Solutions for small 
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amplitude journal circular centered and off-centered orbits are presented. A closed-form 

solution is obtained for circular centered orbits  

The predictions of force coefficients for the oil seal and SFD are presented as a 

function of effective groove depths and compared to experimental results (SFD [27] and 

oil seal [29]). Comparisons of predicted and experimental force coefficients show 

excellent correlation for a narrow range of effective groove clearances. Most importantly, 

the parametric study shows that the best analytical correlation for the force coefficients 

is obtained for the minimum effective groove depths for which the overall damping is 

not substantially modified (<10%) from that calculated using the actual physical 

feeding/discharge groove or plenum depth for both the oil seal and SFD. In the case of 

the SFD, the boundary conditions include actual pressure measurements at the discharge 

groove. The pressure field measurements, also available at the film land are compared to 

predictions based on an effective groove clearance (cη = 14) obtained from the 

parametric study.  

For the oil seal test rig, the force coefficients are compared to experimental force 

coefficients from centered and off-centered journal positions. The effective groove depth 

for the central plenum is obtained as in the case of the SFD from comparisons of 

damping and added mass coefficients to experimental results for the smooth oil seal. In 

terms of a inner-land groove in a seal, the parametric study shows good correlation with 

the experimental data for effective clearance (cη ) values smaller or equal to 50% of the 

groove depth.  

A finite element method based on Ref. [54] is extended and implemented to obtain 

the force coefficients for journal off-centered operation. Predictions of force coefficients 

are compared to experimental results from Ref. [29] for three journal eccentricities ε = 0, 

0.3 ,0.5. The force coefficients, leakage and reaction forces of a smooth and grooved oil 

seal are predicted and compared to experimental results. The test grooved oil seal 

includes a rectangular central groove located at the seal mid-land plane with a depth of 

15 times the seal clearance (c=85.9 μm). The predicted parameters are compared to 
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experimental results for four journal eccentricities (e/c=0, 0.3, 0.5, 0.7) at 10,000 rpm 

and with a 70 bar oil feed pressure.   

Predicted and experimental force coefficients present good correlation for the direct 

force coefficients for the lower journal eccentricities (e/c=0, 0.3) and moderate to good 

correlation for e/c=0.5. The cross-coupled stiffness coefficients are also accurately 

predicted for the lower journal eccentricities. In particular, the current model accurately 

predicts the reduction of the direct stiffness, direct damping, and cross-coupled stiffness 

coefficients when adding a circumferential groove to the seal land. The added mass 

coefficients for both seals are also predicted accurately (within 20 %). Furthermore, the 

analysis and experimental results indicate that a grooved seal shows larger direct added 

mass coefficient than a smooth seal.   

For journal eccentricity ratios (ε) up to 70% there are discrepancies between the 

experimental results and predictions for some force coefficients. These discrepancies are 

attributed to changes of seal clearance and oil properties due the large shear drag torque 

and forces at such large eccentricity. Nevertheless, the test data reported in Ref. [7] does 

not offer details on operating conditions and the probable variation of the lubricant 

properties and seal clearance. Therefore, the predictions are compared with experimental 

results only for the low to mid-range eccentricities (i.e. ε= 0, 0.3, 0.5). 

The current analysis represents a significant improvement over the current predictive 

tools available to analyze SFD and oil seal configurations that include deep and/or 

shallow grooves. The proposed model and assumptions prove to be adequate based on 

the correlation between the predicted and experimental force coefficients. The present 

work delivers a FORTRAN code for prediction of leakage and force coefficients (K, M, 

C) in grooved SFD and grooved oil seals, as well as a GUI for direct integration into the 

XLTRC2® rotordynamic software. See Appendix A for details.   

The most important conclusions from the current study are: 

• Force coefficients in test configurations, like SFD and oil seals, are a function of 

the ancillary geometries like feeding/discharge arrangements. Deep grooves or 

plenums do generate dynamic pressures of mainly inertial nature, which lead to 
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large added mass coefficients. These, however, can now be predicted. 

Furthermore, there is a specific groove depth where the added mass coefficient 

peaks. This groove depth value for the studied configurations is < 10c.    

• The dynamic pressure field in deep grooves or plenums may be difficult to 

measure for most practical excitation frequency ranges, especially in the presence 

of large static pressure differentials. This follows from the inertial nature of the 

filed and the simple observation that the fluid inertia pressures are proportional to 

ω2.  

• In grooved oil seals, grooves (short: L <30c and shallow: cg <16c) do not isolate 

the pressure field of adjacent smooth film lands. While force coefficients are 

reduced to a lesser extend of what theory [28] otherwise predicts, fluid inertia 

forces are enhanced for the same reasons above described (i.e. large Re* values). 

Furthermore, the effective clearance values that yield the best correlation with 

experimental data in Ref. [29] (i.e. dη smaller or equal to 50% of the groove 

depth) could be generalized for short deep grooves like those found in oil seals.  

A more detailed study of the fluid flow in grooved SFDs, including either 3D CFD 

simulations or experimental flow visualization of the flow induced due to journal 

whirling motions is in order. Such study could provide actual magnitudes of the velocity 

and acceleration of the fluid film in grooved SFDs. Furthermore, it would serve to 

scrutinize the assumptions put forth in the course of this investigation.  

An experimental study of the influence of grooves in force coefficients for a wide 

range of groove depths could also complement this research effort. The investigation 

should focus on measuring the dynamic pressure field at the grooves and correlating the 

results to given Re* values for a number of groove depths. In specific, it would be 

important to observe the behavior of the added mass coefficients and verify that there is 

and maximum value for a given groove depth. Also, it would be relevant to study the 

correlation between the effective groove depth and the penetration depth of the 

streamline dividing the thru and recirculation flow regions.  
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APPENDIX A                                                                     

EXCEL PROGRAM INTERFACE FOR PREDICTION OF 

LEAKAGE AND FORCE COEFFICIENTS IN GROOVED OIL 

SEALS 
 

The Microsoft Excel® user interface is named XLFEGLOSeal® (Excel Finite 

element grooved laminar oil seal), as depicted in Fig. A.1. This GUI is part of the 

rotordynamic software XLTRC2®, and available to members of the Texas A&M 

University Turbomachinery Research Consortium. The user inputs include: 

-Fluid properties: Density and viscosity 

-Operating conditions: Inlet and outlet pressures, static journal eccentricity (ratio).  

-Geometry: Rotor diameter, clearance, groove depth, number of grooves, inlet and outlet 

land length, inter-groove length, groove length. The groove depth is set to the actual 

physical value for groove depths less than (6c), considering that the effective and actual 

groove depths are relatively similar. For deeper grooves, the pressure driven flow 

streamlines remain relatively constant regardless of the actual depth, as shown in Fig. 4b. 

For this case, a constant effective groove depth of dη=6c is used.  

The code outputs direct and cross-coupled force coefficients, seal reactions forces, 

and leakage as a function of shaft speed.  
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Figure A 1Graphical user interface for XLFEGLOSeal® code. (SI units) 



 

 

83

VITA 

Name: Adolfo Delgado-Marquez 
 
Address: Texas A&M Turbomachinery Laboratory, College Station, TX 77843-3123  
 c/o Dr. David Forrest 
 
Email Address: adelgam@gmail.com 
 
Education:  B.S., Mechanical Engineering, Universidad Simón Bolívar at Caracas 

(Venezuela), 2002.  
                   M.S., Mechanical Engineering, Texas A&M University, 2005 
        Ph.D., Mechanical Engineering, Texas A&M University, 2008 
 
Interests: Turbomachinery- rotordynamics and lubrication.  
 
 
 

 


