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ABSTRACT 

 
Continuum- based Computational Models of Biological Living Cell. (December 2008) 

Feifei Cheng, B. E., Dalian University of Technology, China 

Chair of Advisory Committee: Dr. J.N. Reddy 

 

All living creatures, despite their profound diversity, share a common 

architectural building block: the cell. Cells are the basic functional units of life, yet are 

themselves comprised of numerous components with distinct mechanical characteristics. 

It is well established that cells have the ability to sense and respond to externally applied 

forces. However, the detailed mechanism of mechanosensation is still not clearly 

understood, and is an active area of research involving experimental and theoretical 

works. Mathematical modeling of the mechanical stimulus correlating to different 

experimental stimulation procedures forms the first step to understanding the 

mechanosensation in cellular system. In this thesis, a continuum -based computational 

model of living cells that explicitly incorporate the material properties of various cellular 

components are developed. In the constitutive modeling of cell, the continuum standard 

linear solid viscoelastic model (SLS), its natural extension for large scale deformation 

standard Neo-Hookean solid viscoelastic model (SnHS) as well as polymer mechanics- 

based dynamic shear modulus model was introduced. Finite element simulations of three 

widely used experiments- atomic force microscopy (AFM), magnetic twisting cytometry 

(MTC) and micropipette aspiration in the quantification of cell properties were carried 

out to verify the developed constitutive model.  
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From the results of AFM finite element simulation, it was observed that the 

force-deformation and strain-relaxation curves obtained fit the experimental results very 

well. The influences of cytoplasm shear modulus which varies due to the formation of 

stress fiber, and cortex shear modulus which alters with the actin filament concentration 

factors and load frequency were systematically studied. Similarly, in magnetic twisting 

cytometry (MTC) simulation, the role of cytoplasm material properties, 

constant/sinusoidal forcing rates and various frequencies on the overall mechanical 

response of a cell was obtained. Numerical results are validated against experiments 

results. Micropipette aspiration simulation was also carried out in which the typical 

creep deformation test was carried out to study the viscoelastic behavior of the cell. 

Based on the results from finite element simulation, the effect of pipette radius, effect of 

cortex shear modulus and effect of pressure rate have been derived for the interpretation 

of the mechanical parameters from the micropipette aspiration.  
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CHAPTER I 

INTRODUCTION 

 

A. Background 

All living creatures, despite their profound diversity, share a common 

architectural building block: the cell. Cells are the basic functional units of life, yet are 

themselves comprised of numerous components with distinct mechanical characteristics. 

To perform their various functions, cells undergo or control a host of intra- and 

extracellular events, many of which involve mechanical phenomena which are guided by 

the external mechanical stimuli experienced by the cell. Cell mechanics describe and 

evaluate mechanical properties of cells and cellular structures and the mechanical 

interaction between cells and their environment [1].  

Nowhere is the importance of biology in cell mechanics more evident than in the 

ability of the cell to sense and respond to externally applied forces. Perhaps all cells are 

able to sense when a physical force is applied to them. They respond through a variety of 

biological pathways that lead to such diverse consequences as changes in membrane 

channel activity, up- or- down- regulation of gene expression, alterations in protein 

synthesis, or altered cell morphology. One reason for the strong interest in 

mechanosensation is that many cells have shown that they can both sense and respond to 

a mechanical stimulus. While many of these responses appear designed to help the cell 

resist large deformations and possible structural damage, others have an undesirable out- 
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come, including atherosclerosis, arthritis, and pulmonary hypertension. However, the 

detailed mechanism of mechanosensation is still not clearly understood, and is an active 

area of research involving experimental and theoretical works. Mathematical modeling 

of the mechanical stimulus correlating to different experimental stimulation procedures 

forms the first step leads to understanding the mechanosensation in cellular system.  
 

B. Motivations 

The main parts of a generalized cell, shown in Figure 1.1, are cellular membrane, 

cytoplasm, nucleus and organelles. The cytoplasm consists of biopolymer filaments 

called cytoskeleton which is a spatially sparse tangled matrix of rods and rod-like 

elements held together by smaller proteins. Actin, microtubule, and intermediate 

filaments are the three types of cytoskeletal polymers- actin filaments that maintain the 

cell structure. 

 
Intermediate Filaments 

 
Figure 1.1 Schematic representation of a generalized cell. 
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Numerous experimental techniques have been developed to quantify cytoskeletal 

mechan

ist for cytoskeletal mechanics [2-

4] whi

ics, typically involving a mechanical perturbation of the cell in the form of either 

an imposed deformation or force and observation of the static and dynamic responses of 

the cell. Novel methods to measure the viscoelasticity of soft materials and new theories 

relating these measurements to the underlying molecular structures have the potential to 

revolutionize our understanding of complex viscoelastic material like cytoplasm. Much 

of the progress in this field has been in methods to apply piconewton forces and to detect 

motion over distance of nanometers, thus performing mechanical manipulations on the 

scale of single- macromolecules and measuring the viscoelastic properties of volumes as 

small as fraction of a cell. Exogenous forces ranging from pN to nN are applied by 

optical traps, magnetic beads, glass needles, and atomic force microscope cantilevers, 

while deformations on a scale of nanometers to microns are measured by deflection of 

lasers onto optical detectors or by high resolution light microscopy. Complementary to 

the use of external forces to probe material properties of the cell are analyses of the 

thermal motion of refractile particles such as internal vesicles or submicron- sized beads 

imbedded within the cell. Measurements of local viscoelastic parameters are essential for 

mapping the properties of small but heterogeneous material like cytoplasm; some 

methods, most notably atomic force microscopy and optical tracking methods, enable 

high- resolution mapping of the cell’s viscoelasticity. 

A wide range of computational models also ex

ch use to relate the experimental results. But these derived material properties 

vary by orders of magnitude, even for the same cell type. The main reason for such a 

disparity is due to the stimulation process and the different theoretical models used in 

interpreting the experimental data [5].  
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The roles of three types of cytoskeletal polymers- actin filaments, intermediate 

filaments, and microtubules, especially the actin stress fibers, in contribution to the 

mechanical properties of cells is well studied in literature [6-9]. And it is reported that 

the mechanical properties of the cells, like adhesion and viscoelastic nature, are 

depended on cytoskeletal frameworks .The changes caused by pathological conditions 

like malaria; aging and cancer on the cellular behavior have also been correlated to the 

structural and morphological changes in the cytoskeleton [10, 11]. Therefore, a precise 

representation of the anisotropic, nonlinear behavior of the cytoskeletal architecture is 

needed for computational analysis of living cell which can accurately capture inter-

atomic and intermolecular interactions and cytoskeletal dynamics as the cytoskeletal 

network is altered by the disease state. This approach further leads to establish 

comprehensive connections between cell mechanics and chemical and biological cell 

functions in human health and disease which can provide novel and powerful 

developments for disease diagnostics, prophylactics and therapeutics. 

It is well established that cells respond physiologically to mechanical stimuli. To 

explain how cells generate mechanical stresses in response to external mechanical 

stimuli (for example, deformations or forces), and how those stresses affect cellular 

functions, various models applicable to distinct type and functions of cell are available in 

the literature [7,21]. These cell models can be divided into two distinct classes: discrete 

models and continuum models. 

Discrete cell models like the cellular tensegrity models [12], which represent the 

cell using a finite number of discrete elements, subjected to conditions of mechanical 

equilibrium and geometrical compatibility at every node. At this point, a coarse-graining 

average can be applied and local stresses and strain can be obtained as continuous filed 

variables.  Although discrete models are very useful in study the static elastic behavior 
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of cells, they have limitation in describing and understanding cell dynamic viscoelastic 

behavior. Continuum based models assumes the cell satisfies the continuum hypotheses. 

A continuum cell model provides the displacement, strain, and stress fields induced in 

the cell, given its initial geometry and material properties, and the boundary conditions it 

is subjected to(such as displacements and forces applied on the cell surface). Laws of 

continuum mechanics are used to solve for the distribution of mechanical stress and 

deformation in the cell. Many continuum mechanical models in the literature [13-17] 

obtained their numerically solution via discretization of the cell volume into smaller 

computational cells using (for example) finite element techniques. Significant reasons 

for the popularity of finite element method are its efficiency, ease of computation, and 

speed of implementation. In addition, material as well as geometric nonlinearities can be 

easily incorporated. However, it should be mentioned that most of these works, based on 

continuum hypothesis, simply model the entire cell as mechanical elastic, viscoelastic, or 

poro-viscoelastic continuum, and do not explicitly consider the vastly different 

mechanical properties of the various parts of the cell, with some exceptions being the 

works of [3, 4, and 7].  

Characteristic mechanical and material properties of cells have been 

experimentally obtained by considering response over a limited range of frequencies. 

Recent studies have indicated that the cytoskeleton response is governed by power law 

rheology over a broad frequency spectrum [18- 20]. The emergence of this relatively 

simple power law behavior for complex structure such as cytoskeleton and actin gels has 

motivated both theoretical and computational efforts to interpret these experimental 

observations. However, it should be noted that this computational model is 

phenomenological, and fails to provide any physical insight into the mechanism 

responsible for the emergence of this peculiar behavior of the cytoskeleton. To overcome 
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the limitations of these mathematical models, a continuum-based model capable of 

considering the different mechanical properties of various cellular components is 

proposed in this study. 

 

C. Objective 

 The main objective of this dissertation is to develop a continuum-based 

computational framework for the mechanical behavior of cells. The different stages in 

the application of computational model to a complex system like biological cells are: a) 

Development of a mathematical model for the cellular behavior, b) Numerical solution 

of the mathematical model using finite element methods, c) Verification and 

implementation of the model to study cell behavior with results from literature.  

The primary steps undertaken in the modeling of cells are as follows: 

a. Identify primary cellular components responsible for the biomechanical 

behavior of cells. 

b. Develop constitutive models of biological cells based on the mechanical 

properties of cellular components. 

c. Implement the proposed constitutive models in the finite element analysis 

by atomic force microscopy (AFM), magnetic twisting cytometry (MTC) 

and Micropipette Aspiration. 

This thesis is organized as follows. The development of mechanical formulations 

of main cellular components is given in Chapter II. The validation of the models using 

finite element analysis by atomic force microscopy (AFM), magnetic twisting cytometry 

(MTC) and Micropipette Aspiration are presented separately in Chapter III, IV and V. 

And at the end, the thesis concludes with a summary and future works in Chapter VI. 
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CHAPTER II 

COMPUTIONAL MODELING OF BIOLOGICAL CELL 

 

A. Introduction 

Cell is the structural and functional unit of all known living organisms and has 

long been observed to sense and respond to external mechanical stimuli. Mathematical 

modeling of the mechanical stimulus correlating to different experimental stimulation 

procedures forms the first step leads to understanding the physiological behavior of 

cellular system.  

Numerous experimental techniques and computational models have been 

developed to quantify cytoskeletal mechanics [1-3, 8]. The computational models can be 

divided into two classes- discrete models and continuum model. Both of them have their 

own limitations: discrete cell models are very useful in the study of the static elastic 

behavior of cells, but have limitation in describing and understanding cell dynamic 

viscoelastic behavior; while most of the works based on continuum hypothesis do not 

explicitly consider the vastly different mechanical properties of the various cellular 

components, but simply model the entire cell as mechanical elastic, viscoelastic, or poro-

viscoelastic continuum. To overcome the limitations of these mathematical models, a 

continuum- based model capable of considering the different mechanical properties of 

various cellular components is proposed in this study. 

 

B. Cell Physiology 

The principal structural components of the cell are cytoplasm, cell membrane, 

and nucleus. The cell membrane is a selectively permeable lipid layer found in all cells. 
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Cytoplasm consists of fluid like cytosol containing organelles (mitochondria, nucleus, 

etc), the cytoskeleton, and a variety of other molecules. Cytoskeleton, which forms the 

biomechanical framework, is responsible for maintaining the structural integrity and also 

the distribution of forces in a cell. The organelles present in cytosol, except for the 

nucleus, do not contribute significantly to the structural integrity of a cell and are 

generally neglected in mechanical modeling of cell. The major components of cells are 

explained below. 

1. Cytoskeleton 

Cytoskeleton is a dynamic structure that maintains cell shape, protects the cell, 

enables cellular motion and plays important roles in both intracellular transport and 

cellular division. Cytoskeleton consists of three filaments: actin, intermediate filaments 

and microtubule distributed throughout the cytoplasm. Figure 2.1 [22] shows eukaryotic 

cell with the cytoskeleton, actin filaments which are shown in red, microtubules in 

green. It has been found experimentally that actin filament has higher stiffness than the 

microtubule, but fails at lower extensions The intermediate filaments have characteristics 

between the two (Figure 2.2) [22]. The interactions of the cytoskeleton with one another 

and with accessory proteins are responsible for the biological response of the cell. 
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Figure 2.1 Stained image of bovine cell, green and red indicates cytoskeletal filaments 
and blue is the nucleus. 

 

Figure 2.2 Mechanical behaviors of cytoskeletal filaments. 

1.1. Actin Filament  

The elementary actin filament building block is the protein G- actin (“G” for 

globular), a single chain of approximately 375 amino acids having a molecular mass of 

42000Da. G-actin units can assembling into a long string called F-actin (“F” for 

filamentous). The filament has a width of about 8nm and a mass per unit length of 

16000Da/nm. Typical actin monomer concentrations in the cell are 1-5 mg/ml. Two 
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important cellular structures are formed by actin filaments- actin cortex and stress fibers. 

Actin cortex is a three dimensional networks formed as a thick band below the plasma 

membrane providing additional strength to the membrane and responsible for cell 

surface movement. Actin stress fibers are sarcomeric-like structures based on both their 

protein composition and ability to contract. They are formed by the bundling of actin 

filaments through rigid connections in an adherent cell. The stress fibers originate from 

the cortical layer where it connects to the plasma membrane through focal points and 

either connects with another focal point or would end in a network of other cytoskeletal 

filaments. They act as structural regulators within the cells influencing cell behavior like 

adhesion and cell contraction [23]. 

1.2. Intermediate Filaments (IF) 

Intermediate filaments are slightly wider than F-actin and have a more complex 

hierarchical structure. The basic building blocks of the filements are two protein chains 

intertwined as a helix. Pairs of helices lay side- by- side to form a linear protofilament 

some 2-3 nm in width. The intermediate itself is a bundle of eight protofilaments in a 

roughly cylindrical shape about 10 nm in diameter. The intermediate filament network 

envelopes the nucleus and is closely interconnected with the microtubule filaments 

extending throughout the cytoplasm. The primary function of intermediate filament is to 

provide mechanical stability to the cytoplasm and the nucleus. 

1.3. Microtubules (MT)  

The thickest individual filaments are microtubules of the protein tubulin, present 

as a heterodimer of α- tubulin and β- tubulin. Pairs of α- tubulin and β- tubulin form a 

unit 8 nm in length, and these units can assemble α to β successively into a hollow 

microtubule of 13 linear protofilaments. Unlike the intermediate filaments and the actin 

filaments, microtubule is distributed across the cytoplasm as individual filaments. 
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Microtubule acts as contractile members in the cytoskeleton, and besides providing 

structural stability, microtubules also act as pathways for the transfer of organelles inside 

the cytoplasm. They also help in the cellular division by forming a polarized region due 

to difference in the arrangement of α and β tubulin units. The Microtubule Binding 

Proteins, (MBPs) stabilize the organization of the microtubule and also acts as mediators 

in their interactions with other cell components. 

Experimental and theoretical works have shown that the mechanical properties of 

the cells, like adhesion and viscoelastic nature, are depended on these cytoskeletal 

frameworks [24, 25]. The changes caused by pathological conditions like malaria; aging 

and cancer on the cellular behavior have also been correlated to the structural and 

morphological changes in the cytoskeleton [10]. Apart from the deformations, cell 

filaments are also constantly in the process of polymerization and depolymerization 

inducing additional changes in these load bearing components. 

2. Cytosol and Organelles 

The cytosol is a fluid medium in the cytoplasm (most of it is water, which makes 

up about 70% of a typical cell by volume). Cytosol consisting of the organelles and the 

cytoskeleton, aids in the biological response of the cell and preserves the incompressible 

nature of cell. The organelles present in cytosol, except for the nucleus, do not contribute 

significantly to the structural integrity of a cell. So these effects are not considered for 

computational analysis in most of the cases. Nucleus occupies a volume of nearly 20% 

of cytosol has a significant bearing on the behavior of the cell (see Figure 2.1). 

Structurally it can be considered as a single entity and experimentally it is 3-4 times 

stiffer and twice viscous than the cytoplasm [26, 27]. 
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3. Cell Membrane 

The cell membrane is a selectively permeable lipid layer found in all cells. It 

contains a wide variety of biological molecules, primarily proteins and lipids, which are 

involved in a vast array of cellular process such as cell adhesion and motion, ion channel 

conductance and cell signaling. The cell membrane also serves as the attachment point 

for both the intracellular cytoskeleton and, if present, the cell wall. Adhesion is achieved 

through a series of transmembrane proteins which connects the extra cellular matrix with 

the cytoskeleton. Movement of cell is achieved through the lamellipods and through a 

series of polymerization and depolymerization of cell skeleton. 

 

C. Formulation of Constitutive Model 

1. Mechanical Models of Cell 

It is well established that cells respond physiologically to mechanical stimuli. To 

explain how cells generate mechanical stresses in response to external mechanical 

stimuli (for example, deformations or forces), and how those stresses affect cellular 

functions, various models applicable to distinct type and functions of cell are available in 

the literature [7, 21]. These cell models can be divided into two distinct classes: discrete 

models and continuum models. 

Discrete cell models like the cellular tensegrity models [12], which represent the 

cell using a finite number of discrete elements, subjected to conditions of mechanical 

equilibrium and geometrical compatibility at every node. At this point, a coarse-graining 

average can be applied and local stresses and strain can be obtained as continuous filed 

variables.  Although discrete models are very useful in study the static elastic behavior 

of cells, they have limitation in describing and understanding cell dynamic viscoelastic 
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behavior. Continuum based models assumes the cell satisfies the continuum hypotheses. 

A continuum cell model provides the displacement, strain, and stress fields induced in 

the cell, given its initial geometry and material properties, and the boundary conditions it 

is subjected to(such as displacements and forces applied on the cell surface). Laws of 

continuum mechanics are used to solve for the distribution of mechanical stress and 

deformation in the cell. Many continuum mechanical models in the literature [13-17] 

obtained their numerically solution via discretization of the cell volume into smaller 

computational cells using (for example) finite element techniques. Significant reasons 

for the popularity of finite element method are its efficiency, ease of computation, and 

speed of implementation. In addition, material as well as geometric nonlinearities can be 

easily incorporated. However, it should be mentioned that most of these works, based on 

continuum hypothesis, simply model the entire cell as mechanical elastic, viscoelastic, or 

poro-viscoelastic continuum, and do not explicitly consider the vastly different 

mechanical properties of the various parts of the cell, with some exceptions being the 

works of [3, 4, and 7].  

Characteristic mechanical and material properties of cells have been 

experimentally obtained by considering response over a limited range of frequencies. 

Recent studies have indicated that the cytoskeleton response is governed by power law 

rheology over a broad frequency spectrum [18- 20]. The emergence of this relatively 

simple power law behavior for complex structure such as cytoskeleton and actin gels has 

motivated both theoretical and computational efforts to interpret these experimental 

observations. However, it should be noted that this computational model is 

phenomenological, and fails to provide any physical insight into the mechanism 

responsible for the emergence of this peculiar behavior of the cytoskeleton. To overcome 

the limitations of these mathematical models, a continuum-based model capable of 
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considering the different mechanical properties of various cellular components is 

proposed in this study. 

2. Theoretical Formulation 

As we discussed in the section of Cell Physiology, a generalized cell can be 

divided into three distinct layers: an outer cortical layer- cortex, formed by the actin 

filament networks; inner cytoplasmic region, and the nucleus. Most of the previous 

works on continuum based constitutive modeling simply model the entire cell as 

mechanical elastic, viscoelastic, or poro-viscoelastic continuum. However, such 

simplifications limit the applicability of the model in connecting the physiological 

phenomenon with the mechanical properties of the cell. For example, when a cell is 

attached to a substrate, the mechanical properties are changed due to the formation of 

stress fibers, a fact that cannot be explained with the simple continuum cell models. To 

overcome such a limitation, a constitutive model capable of consider the vastly different 

mechanical properties of the various cellular components is developed in this work. 

Using the continuum based viscoelastic theory and trying to introduce polymer 

mechanics into the model to describe actin dynamic mechanical behavior, modeling of 

the actin cortex and the cytoplasm with the nucleus as an inclusion is outlined next. 

 

D. Modeling of Cortical Cytoplasm 

The actin cortex region is modeled as a viscoelastic material by assuming the 

cortical region to be of an isotropic distribution of the actin network filaments.  

1. Standard Linear Solid Viscoelasticity 

In the integral form of linear viscoelasticity, the stress is expressed in terms of 

the strain history as 
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ds                                    (2.1)  ( ) ( ) ( )
t

t G t s s
−∞

= −∫S ε�

     T T p= ∇ +∇ =∇ +∇ = +ε u u ε v v S σ I�                    (2.2) 

where S is the deviatoric stress tensor, t is the current time, is the time-dependent 

shear relaxation modulus, is the engineering strain tensor, which is the same as the 

deviatoric component under the condition of incompressibility, is the engineering 

strain rate tensor, is the displacement field, is the velocity field, is the total stress 

tensor, is the hydrostatic pressure and is the unit tensor. 

( )G t

ε

ε�

u v σ

p I

For the standard linear solid model, the shear relaxation modulus can be 

expressed as a Prony series expansion with the first term  

( )G t

1/
0 1( ) [1 (1 )]tG t G g e λ−= − −                                 (2.3) 

The relationship between the two sets of viscoelastic parameters in the 

differential form Eq. (2.3) and integral form Eq. (2.1) can be derived as 
2

0 1 2 1 1
1 2 2

, ,kG k k g
k k k

μλ= + = =
+

                         (2.4) 

The mechanical analog of the SLS model is shown in Figure 2.3.  

µ k2 

k1 

 

Figure 2.3 Mechanical analog of the standard linear solid model. 
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2. Standard Neo- Hookean Solid Viscoelasticity 

Generally, the SLS model is applied to small strain analysis because of the use of 

small strain tensor and many cytomechanical experiments involve large strain without 

breaking the cell. Thus it is necessary to apply large strain constitutive law for describing 

cellular material. The neo-Hookean hyperelastic model is a natural extension of the 

linear elastic model. The neo-Hookean hyperelastic model reduces to the linear model 

for small deformation and does not deviate far from the linear elastic model at large 

deformation. 

The hyperelastic material model utilizes a general strain energy potential to 

describe the material behavior at finite strain for incompressible rubber-like materials. 

The incompressible neo-Hookean constitutive law is the simplest hyperelastic model and 

is characterized by only one parameter, the shear modulus G0. The strain energy density 

function of an incompressible Neo-Hookean material is 
0

1( 3
2

GU I )= −                                   (2.5) 

where 1I  is the deviatoric strain invariant, defined as 
2 2

1 1 2 3I 2λ λ λ= + +                                  (2.6) 

with 1 2 3, ,λ λ λ  being the principal stretches. From the virtual work principle, it can be 

deduced that 

0 1
1
3

,T

G I⎛ ⎞= − ⋅⎜ ⎟
⎝ ⎠

∂
= ⋅ =

∂

S B

xB F F F
X

I
                              (2.7) 

where S is the deviatoric part of the Cauchy stress tensor,  is the shear modulus, F is 

the deformation gradient of the current configuration x relative to the initial 

configuration X, and B is the left Cauchy-Green strain tensor.  

0G
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The SnHS viscoelasticity is a natural extension of the SLS viscoelasticity. The 

relaxation modulus of the SnHS model is essentially the same as Eq. (2.3) in form, 

whereas the deviatoric part of the Cauchy stress tensor is 

1
0 0

0

( )( ) ( ) SYM ( ) ( ) ( )

( )( )
( )

t

t t
G st t t s t s t s ds
G

t st s
t

−⎡ ⎤
= + − ⋅ − ⋅ −⎢ ⎥

⎣ ⎦
∂ −

− =
∂

∫ 0

t

S S F S F

xF
x

�

      (2.8) 

where is the deformation gradient of the configuration( )t s−tF ( )t s−x  at t , relative 

to the configuration  at time , and  represents the instantaneous stress caused 

by the deformation, which can be computed using Eq. (2.7), SYM[.] denotes the 

symmetric part of a matrix. This constitutive equation is applicable to large deformation 

analysis because the instantaneous elastic behavior is governed by the neo-Hookean 

hyperelasticity instead of the linear elasticity. 

s−

( )tx t 0 ( )tS

Some of the assumptions made for the SLS and SnHS model are as follows: 

a. The material properties are assumed to be constant and adequately described 

by the homogeneous incompressible standard neo-Hookean solid model. 

b. The viscosity and osmolarity of the surrounding fluid as well as temperature 

effects have been neglected. 

c. Neglect the local inhomogeneity in the probing area. 
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3. Dynamic Shear Modulus Viscoelastic Model 

From another point of view, the actin filaments network of cortical 

cytoplasm/cortex can also be considered as a semi-flexible polymer network.  F. Gittes 

and F. C. MacKintosh in [28] construct a model for the dynamic shear modulus ( )G ω of 

entangled or crosslinked networks of semi-flexible polymer that can account for the 

high-frequency scaling behavior, 3/4( )G ω ω∼  has been observed in solutions of the 

biopolymer F-actin. They also report molecular dynamics simulations that support the 

single filament response that is the basis of their model for the network shear modulus. 

For a strain (1
2ij i j j iu u= ∇ +∇ )u  , a segment of orientation  and length   

undergoes a relative change in end-to-end length of

n̂ l

/ i j ijl l n n uδ = , and there will be an 

induced tension ωτ , given by lω ω ωδ α τ= , where iω ω ωα α α′ ′′= +  is the longitudinal 

response function of the segment of filament. For a spatial density ρ  of filaments, the 

stress due to filament tension is 
( ) e
ij i j i j k l kl

ln n n n n n uτ

ω

ρ
σ ρ τ

α
= =                         (2.9) 

There is an additional stress 2 iji uωη− due to the solvent (withη the viscosity). For 

an isotropic distribution of filaments, { }1
15i j k l ij kl ik jl il jkn n n n δ δ δ δ δ δ= + + . Assuming 

incompressibility ( ) and identifying0iju = 2 ( )ij ijG uσ ω≡ , one finds 

( )
15

elG
ω

iρ
ω ωη

α
= −                                   (2.10) 

We defined ωα  as the response of a fluctuating segment of inextensible filament 

to tension ( )tτ  , from [29] and [30] we obtain the end-to-end response function of a 

segment of inextensible filament, 

4 2 4
11 1

1 1
/ 2npTq l n iωα ω ω

∞

=

=
−∑                            (2.11) 
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where ( )( )4
1 elω κ ς π= is the relaxation rate of the slowest mode, 1 /q q lπ= = . The 

imaginary part ωα ′′  is given by the fluctuation-dissipation theorem ( )( )22T lω ω
α ω δ′′ = . 

Replacing the sum in Eq. (2.11) by an integral to find 
3/4

12

1 2    ( )
2 2 p

l
Tl iω

κα ω ω
ςω

⎛ ⎞
≈ ⎜ ⎟−⎝ ⎠

�                     (2.12) 

Again using Eq. (2.10), we find the shear modulus at high frequencies ( 1ω ω� ), 
3/4 3/41( ) ( 2 / )

15 pG l i iω ρκ ς κ ω ωη≈ − −                    (2.13) 

The scaling response depends solely on the density of filaments, their bending 

stiffness and their lateral drag coefficient. In the case of F-actin, each actin filament 

contains fourteen 43-kD monomers per 38-nm half-pitch; it follows that the density of 

filament length in 1mg/ml polymerized F-actin is 13 23.8 10 mρ −= ×  .  

From [28, 31], assuming persistence length of 17 mμ  , with a mesh sizeξ  0.19

mμ  , the diameter of the filament 5nmd ≈ , the linear elastic modulus is calculated as 

275 Pa for small strain, then 

( ) ( )2/5 22/5

275 0.0594, 
17 0.19

=4 / ln(0.6 / ) 0.0023.d

κ

ζ πη λ

−= =

≈
                      (2.14)                 

Substitute Eq. (2.16) into Eq. (2.13), we have 

( )
3/4

3/4( ) 1.6Pa
1mg / ml 1 Hz

Ac fG f i−
⎛ ⎞⎛ ⎞≈ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                (2.15) 

The equivalent form for storage and loss modulus of Eq. (2.14) is, 

( )
3/4

3/4 3/4

( ) (1.6Pa) 0.3827 - 0.9239i ( ) ( )i
1mg/ml 1Hz

( ) 0.6123 Pa,   ( ) 1.4782 Pa
1mg/ml 1Hz 1mg/ml 1Hz

A

A A

c fG f G f G f

c cf fG f G f

⎛ ⎞⎛ ⎞ ′ ′′≈ ⋅ = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞′ ′′= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (2.16) 

Table 2.1 and Table 2.2 show the storage shear modulus and loss shear modulus 

for various concentration factors and frequencies respectively. Identical conclusions 
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have been obtained independently by Morse [32]. This scaling of ( )G ω  is in good 

agreement with prior results of F-actin by microrhelogy [33] experiments. 

 

Table 2.1 Storage shear modulus for the cases of concentration factor c=0.2, 0.3, 0.5, 1, 
2mg/ml and frequency f=10, 100, 1000, 10000Hz 

G'(Pa) 

  f=10Hz f=100Hz f=1000Hz f=10000Hz 

c=0.2mg/ml 0.6886 3.8725 21.7768 122.5

c=0.3mg/ml 1.033 5.8088 32.6652 183.7

c=0.5mg/ml 1.7216 9.6813 54.442 306.1

c=1mg/ml 3.4432 19.3626 108.884 612.3

c=2mg/ml 6.8864 38.7253 217.7681 1224.6

 

Table 2.2 Loss shear modulus for the cases of concentration factor c=0.2, 0.3, 0.5, 1, 
2mg/ml and frequency f=10, 100, 1000, 10000Hz 

G''(Pa) 

  f=10Hz f=100Hz f=1000Hz f=10000Hz 

c=0.2mg/ml 1.6625 9.349 52.5731 295.6

c=0.3mg/ml 2.4938 14.0234 78.8596 443.5

c=0.5mg/ml 4.1563 23.3724 131.4326 739.1

c=1mg/ml 8.3125 46.7448 262.8653 1478.2

c=2mg/ml 16.6251 93.4896 525.7305 2956.4
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E.  Modeling of Inner Cytoplasm 

Cytoplasm is composed of an organized network of cytoskeletal filaments of 

actin, intermediate filaments and microtubules. Therefore, here we also model the 

cytoplasm as viscoelastic material using Standard Linear Solid Model (SLS) and Standar 

neo-Hookean Solid Model (SnHS) which we mentioned in the previous section. Since 

the distribution of the cytoskeletal filaments alters according to the type and 

environment of the cell, the material properties of cell vary respectively. For example, 

the form of stress fibers due to cell adhesion will lead to the change of material 

properties of cell. To take this characteristic into consideration, a study on the effect of 

various subcellular material properties to the overall mechanical behavior of cell is also 

conducted in this study. 

 

F.  Modeling of Nucleus 

The nucleus has generally been found to be stiffer and more viscous than the 

cytoplasm. Probing isolate chondrocyte nuclei with micropipette aspiration [34] found 

nuclei to be 3-4 times stiffer and nearly twice as viscous as the cytoplasm. Its higher 

viscosity results in a slower time scale of responses, so that the nucleus can often be 

considered as elastic, even when the rest of the cell requires viscoelastic modeling. 
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CHAPTER III 

FINITE ELEMENT ANALYSIS OF ATOMIC FORCE 

MICROSCOPY (AFM) FOR SINGLE LIVING CELL 

A. Introduction 

The atomic force microscope (AFM) is a very high-resolution type of scanning 

probe microscope with demonstrated resolution of fractions of a nanometer. The 

precursor to the AFM, the scanning tunneling microscope, was developed by Gerd 

Binnig and Heinrich Rohrer in the early 1980s, a development that earned them the 

Nobel Prize for Physics in 1986 [35]. The AFM is one of the foremost tools for imaging, 

measuring, manipulating matter at the nanoscale, and is widely accept in the area of cell 

mechanics due to its high quality of derivable structural and functional information.  

The AFM consists of a microscale cantilever with a sharp tip (probe) at its end 

which is used to scan the specimen surface. The cantilever is typically silicon or silicon 

nitride with a tip radius of curvature in the order of nanometers. When the tip is brought 

into proximity of a sample surface, forces between the tip and the sample lead to a 

deflection of the cantilever which can be described using Hooke's law. Typically, the 

deflection is measured using a laser spot reflected from the top of the cantilever into an 

array of photodiodes.  

In this chapter, an axisymmetric viscoelastic finite element model is developed 

for cell micromanipulation by atomic force microscopy (AFM). For the material 

modeling, standard linear solid (SLS) model and its natural extension standard neo-

Hookean solid (SnHS) model, as well as a polymer mechanics based dynamic shear 

modulus model are introduced in this study. 
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B. Material Constitutive Relation 

A generalized cell can be divided into three distinct layers: an outer cortical layer 

formed by the actin filament networks (cortex), an inner cytoplasmic region, and the 

nucleus.  

1. Modeling of Actin Cortex 

1.1 Standard Linear Solid Model (SLS) and Neo-Hookean Solid Model (SnHS) 

In the integral form of linear viscoelasticity, the stress is expressed in terms of 

the strain history as 

 

ds                                     (3.1)  ( ) ( ) ( )
t

t G t s s
−∞

= −∫S ε�

     T T p= ∇ +∇ =∇ +∇ = +ε u u ε v v S σ I�                    (3.2) 

The SnHS viscoelasticity is a natural extension of the SLS viscoelasticity. The 

relaxation modulus of the SnHS model is essentially the same as Eq. (3.1) in form, 

whereas the deviatoric part of the Cauchy stress tensor is 
1

0 0
0

( )( ) ( ) SYM ( ) ( ) ( )

( )( )
( )

t

t t
G st t t s t s t s ds
G

t st s
t

−⎡ ⎤
= + − ⋅ − ⋅ −⎢ ⎥

⎣ ⎦
∂ −

− =
∂

∫ 0

t

S S F S F

xF
x

�

      (3.3) 

For the SLS and SnHS, the shear relaxation modulus can be expressed as a 

Prony series expansion with the first term  

( )G t

1/
0 1( ) [1 (1 )]tG t G g e λ−= − −                            (3.4) 

The relationship between the two sets of viscoelastic parameters in the 

differential form can be derived as, 
2

0 1 2 1 1
1 2 2

, ,kG k k g
k k k

μλ= + = =
+

0 1 1200Pa,275Pa, 0.9, 0.1sG g

                     (3.5)
 

The mechanical parameters for SLS and SnHS model are derived as [3, 13], 

λ= = =
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1.2.Dynamic Shear Modulus Model 

For the high frequency behavior of cortex, using the method discussed in Chapter 

II [28]: 

( )
3/4

3/4( ) 1.6Pa .
1mg / ml 1 Hz

Ac fG f i−
⎛ ⎞⎛ ⎞≈ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                   (3.6)                  

We have the equivalent form for storage and loss modulus of Eq. (3.6) is, 

( )
3/4

3/4

3/4

( ) (1.6Pa) 0.3827 - 0.9239i ( ) ( )i
1mg/ml 1Hz

( ) 0.6123 Pa,   
1mg/ml 1Hz

( ) 1.4782 Pa
1mg/ml 1Hz

A

A

A

c fG f G f G f

c fG f

c fG f

⎛ ⎞⎛ ⎞ ′ ′′≈ ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞′ = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞′′ = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

−

 (3.7) 

And then the material properties can be calculated as Table 2.1 and Table 2.2: 

 

 

G'(Pa) 

  f=10Hz f=100Hz f=1000Hz f=10000Hz 

c=0.2mg/ml 0.6886 3.8725 21.7768 122.5

c=0.3mg/ml 1.033 5.8088 32.6652 183.7

c=0.5mg/ml 1.7216 9.6813 54.442 306.1

c=1mg/ml 3.4432 19.3626 108.884 612.3

c=2mg/ml 6.8864 38.7253 217.7681 1224.6
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G''(Pa) 

  f=10Hz f=100Hz f=1000Hz f=10000Hz 

c=0.2mg/ml 1.6625 9.349 52.5731 295.6

c=0.3mg/ml 2.4938 14.0234 78.8596 443.5

c=0.5mg/ml 4.1563 23.3724 131.4326 739.1

c=1mg/ml 8.3125 46.7448 262.8653 1478.2

c=2mg/ml 16.6251 93.4896 525.7305 2956.4

2. Modeling of Inner Cytoplasm 

  For the cytoplasm, the material model was also assumed as Standard Linear 

Solid model (SLS) and Standard neo-Hookean Solid model (SnHS). 

The mechanical parameters for the SLS and SnHS model are derived as 

 

2
0 1 2 1 1200Pa, 400Pa,600 Pa,    0.9,     1skG k k g

k k k
μ

1 2 2

λ= + = = = = =
+  

 

C. FEM Analysis 

1. Model Geometry 

The cell geometry considered is 3.5 µm in half width, 3.0 µm in height, with a 

nucleus 0.9 µm diameter at a height of 0.75 µm from the base. The cortical region is 

assumed to be 0.2 µm thick and the cross section of the cell is shown in Figure 3.1 The 

cell is the considered as axisymmetric with a rigid spherical indenter (acting on the top 

of the cell surface.  
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Figure 3.1 Axisymmetric finite element model for an adherent cell. 

All simulations were performed using a commercially available finite element 

modeling software ABAQUS. To accurately capture details of deformation and the 

associated stress and strain patterns, a finer mesh is employed towards the bead region. 

The finite element model consists of 3453 nodes with 3536 CAX3 elements. 
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2. Boundary Conditions 

Displacement boundary conditions are applied on the indenter and also at the 

base of the cell, while symmetric boundary conditions are taken along the axis of 

symmetry. The cell base is constrained in all directions to assume a perfect contact with 

the substrate. 

 

3. Applied Load 

Constant and sinusoidal velocities (or force) have been applied to the bead center 

while the typical strain-relaxation test has also been conducted to study the viscoelastic 

material properties of the cell. 

a. For the constant velocity, the velocity was applied 0.1µm/s for 3.5s to give the 

relationship between force and indentation. 

b. For the sinusoidal velocities, initial velocity of 0.1µm/s was applied for 2s to 

give an offset in order to give the adhesion depth and then velocity with the 

amplitude 0.1µm and frequencies 0.1 Hz, 0.5 Hz and 1 Hz have been applied to 

the bead center to obtain the frequency domain dynamic mechanical properties 

of the cell. 

c. For the strain-relaxation test, also initial velocity of 0.1µm/s was applied to give 

an offset, and then removed from the bead to conduct the relaxation process. 
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D. Results 

1. Results for SLS Model and SnHS Model 

1.1. Stress, Strain and Displacement Distribution 

The stress, strain and displacement in distribution of the cell subjected to an 

indentation of 0.5 µm is shown in Figure 3.2-Figure 3.4. The actin cortical layer, which 

is in direct contact with the indenter, sustains the maximum deformation. The inner 

cytoplasm near the region of indentation also experiences very high strains and the 

intensity decreases away from the center. The total reaction force acting on the indenter 

is calculated by considering the horizontal and vertical reaction forces at the reference 

point of the rigid indenter.   

 

 

 

Figure 3.2 Stress distribution obtained from finite element analysis for SLS model with 
shear modulus of cortex 275 Pa, cytoplasm 200Pa. 
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Figure 3.3 Strain distribution obtained from finite element analysis for SLS model with 
shear modulus of cortex 275 Pa, cytoplasm 200Pa. 

. 

 

Figure 3.4 Vertical displacement distribution obtained from finite element analysis for 
SLS model with shear modulus of cortex 275 Pa, cytoplasm 200Pa. 
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1.2. Fore-Displacement Relationship 

As was discussed in Chapter II, the material property of the cytoplasm varies as 

the formation of stress fiber during cell adhesion. In AFM simulation, cell is assumed to 

adherent to a surface and has the fixed displacement boundary condition, in which case 

the stress fiber will form during the process. Therefore, by changing the shear modulus 

of cytoplasm, influence of it to the overall mechanical properties of the cell was studied. 

The results for SLS model and SnHS model are nearly the same, as seen in Figure 3.5 (a) 

and (b), and it is found that for the fixed indentation, the reaction force increases as the 

shear modulus of cytoplasm increase. Also the force-indentation curve of higher shear 

modulus shows higher nonlinearity.  

1.3. Application of Sinusoidal Force 

To study the frequency dependence of the dynamic viscoelastic behavior of the 

cell, sinusoidal loads with different frequencies have been applied to the bead center. 

The results show that bead displacement under sinusoidal loading also exhibits an 

oscillatory behavior. Again, the results for SLS model and SnHS model are very similar, 

and in both cases the reaction force scales approximately with the shear modulus of 

cytoplasm while inverse of the frequencies, see Figure 3.6-Figure 3.8. Also for the same 

offset 0.2 µm, reaction force increase as the shear modulus of cytoplasm increases, this 

explains the ellipses do not have the same center, as seen in Figure 3.9 and 3.10. And the 

phase lag between the force and indentation also increases as the rise of shear modulus 

of cytoplasm while decreases as frequency increases. 
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Figure 3.5 Force- deformation curves for the various cytoplasm shear modulus 
G=100Pa, 200Pa, 400Pa, 600Pa. (a) SLS model, (b) SnHS model. 
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Figure 3.6 Time vs. force curve for the case of: offset 0.2 µm, frequency 0.1 Hz and 
indenter velocity0.1 µm/s. (a) SLS model, (b) SnHS model. 
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(b) 

Figure 3.7 Time vs. force curve for the case of: offset 0.2 µm, frequency 0.5 Hz and 
indenter velocity0.1 µm/s. (a) SLS model ,(b) SnHS model. 
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Figure 3.8 Time vs. force curve for the case of: offset 0.2 µm, frequency 1 Hz and 
indenter velocity0.1 µm/s. (a) SLS model, (b) SnHS model. 

 



 
 
 

  35 
 

‐140

‐120

‐100

‐80

‐60

‐40

‐20

0

0.15 0.17 0.19 0.21 0.23 0.25
Fo
rc
e 
(p
N
)

indentation(micron)

G200_200

G200_400

G200_600

 

(a) 

 
‐140

‐120

‐100

‐80

‐60

‐40

‐20

0

0.15 0.17 0.19 0.21 0.23 0.25

Fo
rc
e 
(p
N
)

Indentation (micron)

G200_200

G200_400

G200_600

(b) 

Figure 3.9 Force-indentation curves for the case of: offset 0.2 µm, frequency 0.5 Hz and 
indenter velocity0.1 µm/s. (a) SLS model, (b) SnHS model. 
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Figure 3.10 Force-indentation curves (SLS model) for the case of: offset 0.2 µm, 
frequency 1 Hz and indenter velocity0.1 µm/s. (a) SLS model, (b) SnHS model. 
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1.4. Strain-Relaxation Test 

Monitoring the strain- relaxation response to a prescribed displacement is a 

common method of determining the viscoelastic characteristics of a material. From the 

analysis, for the indentation part the corresponding force deflection curve obtained is 

shown in Figure 3.11.  For the entire time history, the force versus time curve obtained 

is shown in Figure 3.12. It is found that the results obtained from SLS and SnHS are 

very close to each other and for both cases the reaction force decrease sharply after 

removal of the load and then gradually switch to a steady state. The results are 

comparable to those obtained from experiment [13]. 
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Figure 3.11 Indentation force deflection curves, cortex G=275Pa, cytoplasm G=100Pa. 
(a) SLS model, (b) SnHS model. 
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Figure 3.12 Force time curves for entire time history, cortex G=275Pa, cytoplasm 
G=100Pa. (a) SLS model, (b) SnHS model. 
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2. Results for Dynamic Shear Modulus Model 

2.1. Force and Displacement Relationship 

2.1.1. Effect of Concentration Factors 

 For fixed frequency, the equivalent Young’s modulus will increase as the 

concentration factor increase (see Figure 3.13- Figure 3.16). And the material properties 

show nonlinearity for low frequency and trend to be linear as frequency increase. 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.02 0.04 0.06 0.08

Fo
rc
e(
PN

)

Indentation(µm)

c=0.2
c=0.5
c=1
c=2

Figure 3.13 Indentation & force curves for various concentration factors under f=10Hz. 
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Figure 3.14 Indentation & force curves for various concentration factors under f=100Hz. 
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Figure 3.15 Indentation & force curves for various concentration factors under 
f=1000Hz. 
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Figure 3.16 Indentation & force curves for various concentration factors under 
f=10000Hz.  
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2.1.2. Effect of Frequencies  

For fixed concentration factor, the equivalent Young’s modulus increase 

significantly as the frequency increase (see Figure 3.17- Figure 3.20) 
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Figure 3.17 Indentation & force curves for various frequencies with the concentration 
factor c=0.2mg/ml. 
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Figure 3.18 Indentation & force curves for various frequencies with the concentration 
factor c=0.5mg/ml. 
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Figure 3.19 Indentation & force curves for various frequencies with the concentration 
factor c=1mg/ml. 

0

2

4

6

8

10

12

14

16

18

0 0.02 0.04 0.06 0.08

Fo
rc
e 
(P
N
)

Indentation(µm)

f=10 Hz
f=100 Hz
f=1000 Hz
f=10000 Hz

 

Figure 3.20 Indentation & force curves for various frequencies with the concentration 
factor c=2mg/ml. 
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2.2. Strain-Relaxation Test 

For the dynamic shear modulus model, the strain- relaxation test which is used to 

study the time-dependent viscoelastic material properties was also simulated. From the 

figure, the results show the typical strain-relaxation curves (see Figure 3.21) which are 

comparable to the result from [13]. The equivalent Young’s modulus obtained from the 

analysis (Figure 3.22) is also comparable to the result from [13]. 

 

 

Figure 3.21 V=0.1µm/s, displacement (input) and reaction force of indenter (output) for 
the entire time history. 
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Figure 3.22 Force & indentation curve for various frequencies with the concentration 
factor c=2mg/ml. 
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E. Conclusion 

In this chapter, a nonlinear finite element model of the atomic force microscopy 

(AFM) on the cell has been developed.  The cortex was modeled as continuum based 

standard linear solid (SLS) viscoelastic model and its natural extension neo-Hookean 

solid (SnHS) viscoelastic model, as well as polymer mechanics based dynamic shear 

modulus model. Both of the time domain and frequency domain viscoelastic material 

properties of the cell were studied by applying constant force and sinusoidal force. The 

typical strain-relaxation experimental technique was also simulated to investigate the 

time-dependent material behavior of the cell. From results of finite element analysis, 

several relationships have been derived for interpretation of the mechanical properties of 

the cell. 

 For continuum based standard linear solid (SLS) viscoelastic model and 

standard neo-Hookean solid (SnHS) viscoelastic model, it is found that both the reaction 

force and phase lag between force and deformation will increase as cytoplasm shear 

modulus increases while frequency decreases. The results of strain- relaxation simulation 

again show the time-dependent viscoelastic material behavior of the cell which is 

verified against the experiment data. Also, the results of standard linear solid (SLS) 

viscoelastic model and standard neo-Hookean solid (SnHS) viscoelastic model are 

nearly the same. SnHS viscoelastic model is more general and can be used for large 

deformation analysis because hyperelasticity is used instead of linear elasticity used in 

SLS viscoelastic model. However, SnHS model is more time consuming than SLS 

model.  

For the polymer mechanics based dynamic shear modulus model for cortex, the 

results show that the equivalent Young’s modulus will increase as the rise of actin 
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concentration factor and frequency. Good results were also obtained for strain-relaxation 

test which can be verified by experimental results.  
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CHAPTER IV 

FINITE ELEMENT ANALYSIS OF MAGNETIC TWISTING 

CYTOMETRY (MTC) FOR SINGLE LIVING CELL 

A. Introduction 

Magnetic twisting cytometry (MTC) is another experiment widely used to 

determine the mechanical properties of the cell. Though a correlation between the 

magnetic force acting on the bead and the lateral bead displacement or through magnetic 

moment and angular rotation, the material properties of the cell are obtained. Applying a 

pure torque to magnetic particles avoids the difficulties of constructing a well- controlled 

field gradient. The method consists of using a strong magnetic field pulse to magnetize a 

large number of ferromagnetic particles that were previously attached to an ensemble of 

cells. A weaker probe field oriented at 90º to the induced dipoles then causes rotation, 

which is measured in a lock- in mode with a magnetometer. Frequency dependence of 

the viscoelastic response was measured with smooth muscle cells between 0.05 and 0.4 

Hz [36] and with bronchial epithelia cells up to 16 Hz [37].  

In this chapter, a three-dimensional viscoelastic finite element model is 

developed for cell micromanipulation by bead magnetic twisting cytometry (MTC). This 

continuum-based viscoelastic model is employed to explore the role of material 

properties, constant/sinusoidal forcing rates and various frequencies on the overall 

mechanical response of a cell in MTC. Numerical results are validated against 

experiments performed on NIH 3T3 fibroblasts in [3]. 
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B. Material Constitutive Relation  

A generalized cell can be divided into three distinct layers: an outer cortical layer 

which is formed by the actin filament networks (cortex), an inner cytoplasmic region, 

and the nucleus. In magnetic twisting cytometry (MTC), a separated region of cell 

including cortex and cytoplasm without nucleus is modeled as a cell block will be 

studied. 

1. Modeling of Actin Cortex 

The actin filaments are known to behave as biopolymers and form a complex 

filament network whose properties are dependent on the individual filament 

characteristics. The actin cortex region is modeled as Standard Linear Solid (SLS) and 

its natural extension Standard neo-Hookean Solid (SnHS) material.  

The normalized shear stress relaxation modulus is often represented by a series 

expansion in Prony Series: 

  
1

( ) 1 [1 exp( )]
N

R i
i

g t g t iτ
=

= − − −∑                     (4.1) 

For the standard linear solid model, the shear relaxation modulus  can be 

expressed as a Prony series expansion with the first term: 

( )G t

1/
0 1( ) [1 (1 )]tG t G g e λ−= − −                           (4.2) 

The relationship between the two sets of viscoelastic parameters can be derived 

as 
2

0 1 2 1 1
1 2 2

, ,kG k k g
k k k

μλ= + = =
+

                    (4.3) 

According to [3], the material properties for SLS and SnHS in this study are 

given by the follows: 

0 1 1100 , 0.9, 0.1sG Pa g λ= = =  
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2. Modeling of Inner Cytoplasm 

Cytoplasm is composed of an organized network of cytoskeleton filaments of 

actin, inter mediate filaments, and microtubules.  Also according to [3], here it is 

assumed that the material model of cytoplasm region is SLS and SnHS Model with: 

 

10 1100 ,200 ,400 ,   0.9,    1sG Pa Pa Pa g λ= = =  

 

C. FEM Analysis 

1. Model Geometry 

The cell geometry is modeled as a 3D cylindrical block [3] with 10-µm-high and 

40- µm-wide diameter, see Figure 4.1.  The bead is rigid ferrous sphere of diameter 4.5 

µm, which makes an indentation angel of 90 deg at the center of the cell block. The 

cortical thickness is assumed to be 0.2 µm with the inner region being the cytoplasm. 

 

z y 

x  

Figure 4.1 3-D finite element mesh of the cylindrical cell block selected for MTC 
simulation. The top of the actin cortical region having a thickness of 0.2 µm, and the part 
below forms the inner cytoplasm without nucleus. 
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All simulations were performed using a commercially available finite element 

modeling software ABAQUS. To accurately capture details of deformation and the 

associated stress and strain patterns, a finer mesh is employed towards the bead region 

and the finite element model consists of 7125 nodes with 6210 C3D8R elements. 

2. Boundary Conditions 

Since a symmetric boundary condition is assumed, only half of the material body 

is modeled.  The base of the block was constrained in all directions to create a cell fully 

adhered to the substrate, and symmetric boundary conditions along y axis were applied 

(U2=UR1=UR3=0) to the half of the section. 

3. Applied Load 

Two kinds of loads, constant as well as sinusoidal force have been applied to the 

bead:   

a. For the constant force, three constant rates of force 100pN/s, 250pN/s and 

500pN/s have been applied.  

b. For the sinusoidal force, three different amplitudes 125pN, 250pN and375pN 

have been used. During forcing, the bead is tethered to the cell over a part of its 

circumference. 
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D. Results and Discussion 

1. Stress Distribution 

The stress field induced in the cell block with SLS model with both of the cortex 

and cytoplasm same shear modulus G=100 Pa under the load rate 250pN/s for 1s is 

shown in Figure 4.2. The von- Mises stress field in the cell block is concentrated in the 

immediate vicinity of the bead, which is because the squeezing exerted by the bead 

spreads stress whereas the pulling only affects a very small region. The stress field is 

more diffuse in front of the bead compared to the rear. Both extremes are located on 

actin cortex. The high-stress field does not penetrate significantly into the cell 

cytoplasm. 

 

 

Figure 4.2 Distribution (3-D contours) of the amplitude of effective (von-Mises) stress 
for SLS model G=100 for both cortex and cytoplasm due to a lateral force 250pN. 
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2. Strain Distribution 

The shear strain distribution is also concentrated near the surface and decreases 

away from bead surface (Figure 4.3 and Figure 4.4). 

 

Figure 4.3 Strain distribution (3-D contours) induced by bead displacement along 1-2 
direction for SLS model G=100 Pa for both cortex and cytoplasm due to a lateral force 
250pN. 

 

Figure 4.4 Strain distribution (3-D contours) induced by bead displacement along 2-2 
direction for SLS model G=100 Pa for both cortex and cytoplasm due to a lateral force 
250pN.  
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3. Displacement Distribution 

Magnetic forcing produces both translation in the x-direction, z-direction and 

rolling about the y-axis (Figure 4.5, Figure 4.6). For U1 (displacement along x-

direction), the maximum deformation locates along the upper edge while that of U3 

(vertical displacement) locates on the two sides of the indent vicinity.  U1 displacement 

field has spread a relative larger area than U3 (vertical displacement), and both of them 

fade away from the center of indent. 

 

 

Figure 4.5 The lateral displacement distribution (3-D contours) for SLS model G=100 Pa 
due to a lateral force 250pN. 
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Figure 4.6 The vertical displacement distribution (3-D contours) for SLS model G=100 
Pa due to a lateral force 250pN.  

 



 
 
 

  54 
 

4. Bead Behavior 

4.1. Constant Forcing Rates 

4.1.1. Contribution of Cytoskeletal Shear Modulus 

The forcing timescale is comparable to the cytoskeleton relaxation time scale and 

more importantly than the cortex since it exceeds relaxation time scale of cortex. 

Therefore, the force-displacement curve is dominated by the characteristics of the 

cytoskeleton [3]. Here, the cases for different cytoplasm shear modulus, G=100Pa, 

200Pa, 400Pa, 600Pa were carried out. It is found that the bead displacements decrease 

while the shear moduli increase (Figure 4.7-Figure 4.9). Again, the response curve was 

observed to be more nonlinear for higher forcing rate. 
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Figure 4.7 Bead center lateral displacement versus time, resulting from the SLS model 
with fixed forcing rate 100pN/s. 
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Figure 4.8 Bead center lateral displacement versus time, resulting from (a) SLS model 
and (b) SnHS model, for fixed forcing rate 250pN/s. 
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Figure 4.9 Bead center lateral displacement versus time, resulting from the SLS model 
fixed forcing rate 500pN/s.  
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4.1.2. Influence of the Forcing Rates 

To further assess the implications of the viscoelastic behavior, simulations with 

different rates of force application on the bead center were performed. From the results it 

can be seen that faster forcing rates led to smaller bead displacements, consistent with 

the increasing resistance of the cell block with the rate of forcing (Figure 4.10-Figure 

4.13). On the other hand, the response curve was observed to be more nonlinear for 

higher forcing rate. 
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Figure 4.10 Bead center lateral displacement versus time, resulting from the SLS model 
with cortex shear modulus 100 Pa and cytoplasm shear modulus 100 Pa due to different 
force rates. 
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Figure 4.11 Bead center lateral displacement versus time, resulting from the SLS model 
with cortex shear modulus 100 Pa and cytoplasm shear modulus 200 Pa due to different 
force rates. 
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Figure 4.12 Bead center lateral displacement versus time, resulting from the SLS model 
with cortex shear modulus 100 Pa and cytoplasm shear modulus 400 Pa due to different 
force rates. 
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Figure 4.13 Bead center lateral displacement versus time, resulting from the SLS model 
with cortex shear modulus 100 Pa and cytoplasm shear modulus 600 Pa due to different 
force rates.  
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4.2. Application of Sinusoidal Force 

4.2.1. Influence of Frequencies 

To study the frequency dependence of the dynamic viscoelastic behavior of the 

cell, sinusoidal forces with different frequencies have been applied to the bead center. 

The results show that bead displacement under sinusoidal forcing exhibits an oscillatory 

behavior and the displacement scales approximately with the inverse of the frequencies, 

see Figure 4.14-Figure 4.16. For example, for f=0.1Hz, the displacement of the bead 

center is about 0.2 µm which for f=10 Hz it is only about 0.05 µm. 
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Figure 4.14 Bead center lateral displacement versus time, resulting from the SLS model 
with both cortex cytoplasm shear modulus 100 Pa under sinusoidal forcing amplitude 
125pN with different frequencies. 
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Figure 4.15 Bead center lateral displacement versus time, resulting from the SLS model 
with cortex G=100 Pa and cytoplasm G= 200 Pa under sinusoidal forcing amplitude 
125pN with different frequencies. 
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Figure 4.16 Bead center lateral displacement versus time, resulting from the SLS model 
with cortex G=100 Pa and cytoplasm G= 400 Pa under sinusoidal forcing amplitude 
125pN with different frequencies. 
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Figure 4.17 - Figure 4.19 shows the calculated Force-displacement response at 

various frequencies of applied excitation for material having shear modulus 100Pa, 

200pa and 400Pa respectively. The amplitude of the response decreases with increasing 

frequency of applied excitation leading to a more localized deformation. And the results 

are good fit with those in [16] and [3]. 
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Figure 4.17 Force versus bead center lateral displacement, resulting from the SLS model 
with cortex G=100 Pa and cytoplasm G= 100 Pa under sinusoidal forcing amplitude 
125pN with different frequencies. 
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Figure 4.18 Force versus bead center lateral displacement, resulting from the SLS model 
with cortex G=100 Pa and cytoplasm G= 200 Pa under sinusoidal forcing amplitude 
125pN with different frequencies. 
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Figure 4.19 Force versus bead center lateral displacement, resulting from the SLS model 
with cortex G=100 Pa and cytoplasm G= 400 Pa under sinusoidal forcing amplitude 
125pN with different frequencies.  
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4.2.2. Influence of Shear Modulus 

For the sinusoidal forces, the contribution the cytoskeleton shear modulus to the 

mechanical property of cell was also investigated. Simulations with cell block having 

different cytoskeleton shear modulus G=100Pa, 200Pa and 400Pa. And from the results, 

it is found that the bead center displacement dropped correspondingly as the shear 

modulus increases, see time versus bead center displacement curves for fixed 

frequencies and force amplitude in Figure 4.20, Figure 4.21 and Figure 4.22. From 

sinusoidal force versus bead center displacement curves, see Figure 4.23-Figure 4.25, it 

can be observed that as the shear modulus increase the bead center displacement 

decreases and the phase lag between force and displacement becomes smaller. To 

compare the SnHS model with SLS model, a group of test for the case f=0.1 Hz, force 

rate=125pN/s was carried out. It is found that for the same load, the bead center 

displacement for and SLS model are same and they also share the same paten in both 

displacement-time curve and force-displacement curves(Figure 4.20(a), (b) and Figure 

4.23 (a), (b)). 
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(b) 

Figure 4.20 Bead center lateral displacement versus time, resulting from the (a) SLS 
model and (b) SnHS model for fixed sinusoidal force amplitude 125pN with f=0.1Hz for 
various shear modulus. 
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Figure 4.21 Bead center lateral displacement versus time, resulting from the SLS model 
for fixed sinusoidal force amplitude 125pN with f=0.5Hz for various SLS model shear 
modulus. 
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Figure 4.22 Bead center lateral displacement versus time, resulting from the SLS model 
for fixed sinusoidal force amplitude 125pN with f=1Hz for various SLS model shear 
modulus. 
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(b) 

Figure 4.23 Force versus bead center lateral displacement, resulting from (a) SLS model 
and (b) SnHS model for fixed sinusoidal force amplitude 125pN with f=0.1Hz for 
various shear modulus. 
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Figure 4.24 Force versus bead center lateral displacement, resulting from the SLS model 
for fixed sinusoidal force amplitude 125pN with f=0.5Hz for various SLS model shear 
modulus. 
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Figure 4.25 Force versus bead center lateral displacement, resulting from the SLS model 
for fixed sinusoidal force amplitude 125pN with f=1Hz for various SLS model shear 
modulus.  
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4.2.3. Influence of Forcing Rate 

To further study the cell block viscoelastic behavior, simulations with various 

rates of force application on the bead were performed. And it is shown from the results 

that faster forcing rates led to bigger bead displacements (Figure 4.26, 4.27) From the 

force-bead center displacement curves (Figure 4.28, 4.29), we can see that the curves 

with different forcing rates comprise a set of concentric ellipses which means that they 

have the same phase lag but larger radius for larger forcing rate.  
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Figure 4.26 Bead center lateral displacement versus time, resulting for SLS model with 
both cortex and cytoplasm shear modulus 100Pa under fixed frequency f=0.5Hz with 
various sinusoidal force amplitude. 
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Figure 4.27 Bead center lateral displacement versus time, resulting for SLS model with 
both cortex and cytoplasm shear modulus 100Pa under fixed frequency f=1Hz with 
various sinusoidal force amplitude. 
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Figure 4.28 Force versus bead center lateral displacement, resulting for SLS model with 
both cortex and cytoplasm shear modulus 100Pa under fixed frequency f=0.5Hz with 
various sinusoidal force amplitude. 
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Figure 4.29 Force versus bead center lateral displacement, resulting for SLS model with 
both cortex and cytoplasm shear modulus 100Pa under fixed frequency f=1Hz with 
various sinusoidal force amplitude. 
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E. Conclusion 

In this chapter, a nonlinear finite element model of the magnetic twisting 

cytometry (MTC) on the cell has been developed.  The widely used viscoelastic 

material model- standard linear solid (SLS) viscoelastic model and its natural extension 

neo-Hookean solid (SnHS) viscoelastic model were introduced into this study for 

deformation analysis. The constant force and sinusoidal force was applied to study the 

time-dependent and frequency-dependent viscoelastic material properties of the cell. 

Based on the results obtained from finite element analysis, influences of the 

forcing rates, cytoplasm shear modulus and load frequencies have been systematically 

studied for the interpretation of the mechanical properties of the cell. 

a. Influence of forcing rate: For both constant and sinusoidal force, as the forcing 

rate increases, the bead center displacement also increases.  

b.  Influence of cytoplasm shear modulus: By increasing the shear modulus of 

cytoplasm, the bead center displacement will be increased for the constant 

force case while for the sinusoidal force case the bead center displacement and 

phase lag between the force and deformation will be also decreased.  

c. Influence of frequency: The results show that bead displacement under 

sinusoidal forcing exhibits an oscillatory behavior and the displacement 

decreases as the frequency increases. 

Also, it is found that the results of standard linear solid (SLS) viscoelastic model 

and standard neo-Hookean solid (SnHS) viscoelastic model are almost the same. But 

SnHS model is more time consuming. 
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CHAPTER V 

FINITE ELEMENT ANALYSIS OF MICROPIPETTE ASPIRATION 

FOR SINGLE LIVING CELL 

A. Introduction 

The micropipette aspiration has been used extensively for measuring the 

mechanical properties of living cells. In the micropipette aspiration experiment, a lower- 

than ambient hydrostatic pressure is usually exerted on a circular surface of a cell 

through a glass micropipette. A portion of the cell is sucked into the pipette. In the 

experiment, the length of the cell projected in the pipette, the pressure applied and the 

time taken are recorded. The time-dependent pressure-deformation relationship is then 

obtained and the mechanical properties of the cell are evaluated. One important 

advantage of this method is that the cell can either be suspended in solution while bound 

to the micropipette or attached to a surface as the micropipette applies negative pressure 

from the top. The ability to probe nonadherent cells has made micropipette aspiration a 

powerful method to probe the viscoelasticity of various types of cells, including 

erythrocytes [38], leucocytes [39], endothelial cells [40] and chondrocytes [41]. 

In this chapter, an axisymmetric viscoelastic finite element model is developed 

for cell micromanipulation by micropipette aspiration. The effects of pipette radius, 

material properties, pressure rate on rheological behavior of a cell in the process of 

micropipette aspiration are systematically studied. Numerical results are validated by 

comparison with the results in [17]. 
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B. Material Constitutive Relation  

1. Modeling of Actin Cortex 

The actin filaments are known to behave as biopolymers and form a complex 

filament network whose properties are dependent on the individual filament 

characteristics. The actin cortex region is modeled as Standard Linear Solid (SLS) and 

its natural extension Standard neo-Hookean Solid (SnHS) material.  

The normalized shear stress relaxation modulus is often represented by a series 

expansion in Prony Series : 

  
1

( ) 1 [1 exp( )]
N

R i
i

g t g t iτ
=

= − − −∑                     (4.1) 

For the standard linear solid model see Figure 2, the shear relaxation modulus 

 can be expressed as a Prony series expansion with the first term: ( )G t

1/
0 1( ) [1 (1 )]tG t G g e λ−= − −                           (4.2) 

The relationship between the two sets of viscoelastic parameters can be derived 

as 
2

0 1 2 1 1
1 2 2

, ,kG k k g
k k k

μλ= + = =
+

                    (4.3) 

The material properties for SLS and SnHS in this study are given by the follows: 

0 1200,400,600Pa, 0.9, 0.1sG g 1λ= = =  

2. Modeling of Inner Cytoplasm 

Cytoplasm is composed of an organized network of cytoskeleton filaments of 

actin, inter mediate filaments, and microtubules. Here the material model of cytoplasm 

region was also assumed as SLS model and SnHS model. 

 

0 1200Pa,   0.9,    1sG g 1λ= = =  
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C. FEM Analysis 

1. Model Geometry 

The cell geometry is model as a sphere with 6 µm diameter, and has been divided 

into three parts -cortical cytoplasm (cortex), inner cytoplasm and nucleus. The cortical 

region is assumed to be 0.2 µm thick, and the nucleus is 1 µm in diameter at the center 

of the sphere. Figure 5.1 presents a schematic representation of the cellular deformation 

in micropipette aspiration. The finite element mesh of cross section of the cell is shown 

in Figure 5.2. The cell is assumed to be axisymmetric with a micropipette on the top cell 
surface. The pipette radius pR and fillet radius , are normalized by the initial cell radiuse

6cR mμ= . And the dimensionless pipette radius and fillet radius used in this study are: 

e*=0.1 and Rp*=0.25, 0.4, 0.5, and 0.6. 

e
Rc 

Lp 
2Rp ΔP 

Lc 

 

Figure 5.1 The micropipette aspiration of a cell. cR is the radius of the undeformed cell, 
pR is the pipette radius, is the fillet radius, is the projection length, and is the 

axial cell length, 
e L Lp c

pΔ is the sucking pressure. 
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Figure 5.2 An axisymmetric finite element model for the cell. 

All simulations were performed using a commercially available finite element 

modeling software ABAQUS. A dense mesh was adopted near the pipette fillet region 

because of the large deformation expected in this region. The finite element model 

consists of 9070 nodes with 12272 CAX4R elements. 

 

2. Boundary Conditions 

Fixed displacement boundary conditions are applied on the pipette, while 

symmetric boundary conditions are applied along the axis of symmetry to the half of the 

cell section. 
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3. Applied Load 

In this study, the force boundary is modeled as a negative pressure exerted on the 

non- contact circular opening of the pipette. For the pipette aspiration deformation 

process which studies the elastic force-deformation relationship, a pressure rate of 

100Pa/s is adopted and the maximum load is set to 500Pa. For the creep deformation 

process which studied the viscoelastic behavior of the cell, constant pressure (instead of 

rigorous definition of constant stress) 100Pa, 200Pa, 300Pa, 400Pa are applied for 50s. 

It is difficult to accurately impose the pressure boundary condition inside the 

pipette because the boundary surface changes as the cell is sucked into and contact with 

the pipette wall. Therefore, the criterion is fixed during the entire aspiration process. 

 

D. Results and Discussion 

The simulated aspiration processes using the SLS viscoelastic finite element 

models comprise two cases: pipette aspiration deformation and creep deformation. The 

effects of the pipette geometry and cortex shear modulus on the cellular viscoelastic 

behavior in micropipette aspiration have been systematically investigated in this study.  

1. Stress Distribution 

In general, the stress (von- Mises) field in the cell is concentrated in the area 

where cell comes in contact with the pipette, see in Figure 5.3. The stresses that 

observed in the cell exceed pressure up to 3 times for the larger pipette radius. Figure 5.3 

(a)-(d) show that as the pipette radius increases, for the same pressure, more portion of 

the cell is sucked into the pipette and the stress field spread more widely and become 

larger in the cell. It can be seen that for (a) Rp*=0.25, there is only a small part on top of 

the cell which experiences large stress, but for case (d), the stress field have enlarged to 
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nearly half space of the cell, and even the nucleus in the middle of the cell experiences 

large stress. 

 

 

 

 (a) (b) 

 

   

 (c) (d) 

Figure 5.3 Stress distribution obtained from the finite element analysis of axisymmetric 
cell model due to pressure amplitude of 500Pa. (a) Rp*=0.25, (b) Rp*=0.4, (c) Rp*=0.5, 
(d) Rp*=0.6. 
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2. Strain Distribution 

The strain distribution in cell is also concentrated in the area of cell adjacent to 

the pipette. Large strain also happened along the area of cell symmetry. The larger the 

pipette radius, the larger strain near the contact area appeared and the wider the large 

strain field spread (see Figure 5.4). 

 

 

 

 (a) (b) 

 

 (c) (d) 

Figure 5.4 Strain distribution obtained from the finite element analysis of axisymmetric 
cell model due to pressure amplitude of 500Pa. (a) Rp*=0.25, (b) Rp*=0.4, (c) Rp*=0.5, 
(d) Rp*=0.6. 
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3. Displacement Distribution 

The vertical displacement field shown in Figure 5.5 is generally concentrate on 

the tongue part at the top of the cell which had been sucked into the pipette, while the 

part in contact with but outside of the pipette have the smallest vertical displacement. As 

the pipette radius increases, the displacement becomes larger. In (d) Rp*=0.6, nearly 

entire cell move upward. 

 

 

 

    (a) (b) 

     

 (c) (d) 

Figure 5.5 Vertical displacement distribution obtained from the finite element analysis of 
axisymmetric cell model due to pressure amplitude of 500Pa. (a) Rp*=0.25, (b) 
Rp*=0.4, (c) Rp*=0.5, (d) Rp*=0.6.  
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4. Pipette Aspiration Deformation Process 

4.1.Effect of Pipette Radius 

Figure.5.6. – Figure 5.8 show the FEM-computed force-deformation relation for 

the cases where cortex shear modulus G=200Pa, 400Pa, 600Pa and Rp*=0.25, 0.4, and 

0.6. It is found that for the same shear modulus and pressure, the projection length Lp of 

the cell will increase significantly as increasing the pipette radius. This is reasonable 

because when the pipette radius becomes larger, more slippage will take place between 

the pipette wall and cell surface. The results are comparable with the ones in [17]. 

4.2.Effect of Cortex Shear Modulus 

Here the influence of the cortex shear modulus on the overall mechanical 

behavior of cell has been investigated. In aspiration process there will be no stress fiber 

formed since they can only formed by the bundling of actin filaments through rigid 

connections in an adherent cell which occurs for AFM and MTC experiement.  

Therefore, only the contribution of the cortex material property to the cellular structure 

has been considered. And reasonably, from Figure 5.9-Figure 5.11 it can be seen that, as 

the shear modulus of the cortex increases, the cell becomes stiffer for all of the pipette 

radius cases.  
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(b) 

Figure 5.6  Force-deformation curve of (a) SLS model and (b) SnHS model, with cortex 
G=200Pa, cytoplasm G=200Pa for various pipette radius. 
 



 
 
 

  83 
 

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1 1.2 1.4

pr
es
su
re
 (P

a)

Lp(micron)

Rp*=0.25

Rp*=0.4

Rp*=0.6

 

(a) 

 

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1 1.2

pr
es
su
re
 (P

a)

Lp (micron)

Rp*=0.25

Rp*=0.4

Rp*=0.6

 

(b) 

Figure 5.7 Force-deformation curve of (a) SLS model and (b) SnHS model, with cortex 
G=400Pa, cytoplasm G=200Pa for various pipette radius. 
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(b) 

Figure 5.8 Force-deformation curve (a) SLS model and (b) SnHS model, with cortex 
G=600Pa, cytoplasm G=200Pa for various pipette radius. 
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Figure 5.9 Force-deformation curve of (a) SLS model and (b) SnHS model, with various 
cortex shear modulus under pipette radius Rp*=0.25. 
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Figure 5.10 Force-deformation curve of (a) SLS model and (b) SnHS model, with 
various cortex shear modulus under pipette radius Rp*=0.4. 
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Figure 5.11 Force-deformation curve of (a) SLS model and (b) SnHS model, with 
various cortex shear modulus under pipette radius Rp*=0.6.  
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5. Creep Deformation Process 

 

0.1

Creep test is a typical experimental technique to investigate the time-dependent 

material behavior. Although temperature is an important factor in creep test, only the 

pipette radius, cortex shear modulus and pressure amplitude were consider in the creep 

process of cell micropipette aspiration. Figure 5.12- Figure 5.15 show the FEM-

simulated creep deformation processes for the cases of e = , Rp*=0.25, 0.4 and0.5, as 

well as cortex shear modulus G=200Pa, 400Pa, 600Pa. It is found that the results of SLS 

model and SnHS model are nearly the same, except the later is a little bit stiffer, see 

Figure 5.12.  The results can be verified by comparison with the results in [17].  
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Figure 5.12 Creep deformation process for SLS model (solid line) and SnHS model 
(dash line) for the case of pressure 100Pa and the shear modulus of both of the cortex 
and cytoplasm is 200Pa. 
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5.1.Effect of Pipette Radius 

The results shown in Figure 5.13, demonstrate that larger pipette radius will 

require more time for the creep deformation to reach the plateau. For example, for 

Rp*=0.25, the creep deformation has already reached its plateau at 50s while for 

Rp*=0.5, at 50s the creep deformation is still in the slowly increasing stage. 
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Figure 5.13 Effect of pipette radius on creep deformation process, cortex shear modulus 
G=200P and p=300Pa. 
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5.2.Effect of Pressure Amplitude 

Here for cases of cortex shear modulus G=200Pa and Rp*=0.25 with various 

pressure amplitude 100Pa, 200Pa, 300Pa, 400Pa. From the results shown in Figure 5.14 

it is found that the deformation is not proportional to the pressure amplitude. And the 

time needed for the creep deformation to reach the plateau will be longer with larger 

pressure amplitude.  
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Figure 5.14 Effect of pressure amplitude on creep deformation process, cortex shear 
modulus G=200Pa and Rp*=0.25. 
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5.3.Effect of Cortex Shear Modulus 

Figure 5.15 shows the creep deformation process for the cases with cortex 

G=200Pa, 400Pa, 600Pa and Rp*=0.25, and constant pressure 100Pa. It apparent that 

larger shear modulus will increase the stiffness of the cellular structure. Also, it shows 

that smaller cortex shear modulus will prolong the time of stabilization. 
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Figure 5.15 Effect of cortex shear modulus on creep deformation process, for fixed 
Rp*=0.25 and p=100Pa. 
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E. Conclusion 

In this chapter, the micropipette aspiration of spherical cells has been simulated 

by conductinging nonlinear finite element analysis. The widely used viscoelastic 

material model- standard linear solid (SLS) viscoelastic model and its natural extension 

neo-Hookean solid (SnHS) viscoelastic model were introduced into this study for 

deformation analysis. The effect of pipette geometry is also investigated by changing the 

ratio of pipette radius to cell radius. 

Based on the results obtained from finite element analysis, three relationships 

have been derived for the description of the mechanical parameters from the 

micropipette aspiration of cell.  a) Effect of pipette geometry: It is found that as the ratio 

of pipette radius to cell radius Rp* increases, the deformation Lp and duration of creep 

deformation process also increase. b) Effect of cortex shear modulus: As the shear 

modulus of the cortex increases, the cell becomes stiffer for all of the pipette radius 

cases. For creep deformation process, the results show that smaller cortex shear modulus 

will prolong the time of stabilization. c) Effect of pressure amplitude: In creep 

deformation process, it is found that the deformation is not proportional to the pressure 

amplitude and the time needed for the creep deformation to reach the plateau will be 

longer with larger pressure amplitude. 

Also, by comparing the results of standard linear solid (SLS) viscoelastic model 

and standard neo-Hookean solid (SnHS) viscoelastic model, it is found SnHS model is a 

little bit stiffer than SLS model cost more computing time in the same kind of analysis 

than SLS model. On the other hand, since in SnHS model hyperelasticity is used instead 

of linear elasticity used in SLS, SnHS model is more general in large deformation 

analysis which is always the case in cell deformation.  
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CHAPTER VI 

CONCLUSIONS  

A. Summary 

In this thesis, a continuum -based computational model of living cells that 

explicitly incorporate the material properties of various cellular components are 

developed. In the constitutive modeling of cell, the continuum Standard Linear Solid 

viscoelastic model (SLS), its natural extension for large scale deformation Standard Neo-

Hookean Solid viscoelastic model (SnHS) as well as polymer mechanics- based Dynamic 

Shear Modulus model was introduced. Finite element simulations of three widely used 

experiments- atomic force microscopy (AFM), magnetic twisting cytometry (MTC) and 

micropipette aspiration in the quantification of cell properties were carried out to verify 

the developed constitutive model.  

In Chapter III, and Chapter IV, nonlinear finite elements models for atomic force 

microscopy (AFM) and magnetic twisting cytometry (MTC) were implemented to 

investigate both time domain and frequency domain viscoelastic behavior of living 

single cell.  From the results of AFM finite element simulation, it was observed that the 

force-deformation and strain-relaxation curves obtained fit the experimental results very 

well. The influences of cytoplasm shear modulus which varies due to the formation of 

stress fiber were systematically studied. The cortical cytoplasm/cortex is consists of 

actin filaments network which also can be modeled as semi-flexible biopolymer 

network. Here, the polymer mechanics based dynamic shear modulus model for cortex 

was introduced into this work to study the influence of the features of actin filaments 

network to the overall mechanical properties of the cell. Although this model is an 

attempt to combine the polymer mechanics based cortex model with the continuum 
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based cytoplasm model and did not work very well in frequency domain, some 

relationships have been derived for small deformation case. The results show that the 

equivalent Young’s modulus will increase as the rise of actin concentration factor and 

frequency.  

In magnetic twisting cytometry (MTC) simulation, the role of cytoplasm material 

properties, constant/sinusoidal forcing rates and various frequencies on the overall 

mechanical response of a cell was obtained. Numerical results are validated against 

experiments results. 

Micropipette aspiration simulation carried out in Chapter V, in which the typical 

creep deformation test was carried out to study the viscoelastic behavior of the cell. 

Based on the results form finite element simulation, the effect of pipette radius, effect of 

cortex shear modulus and effect of pressure rate have been derived for the interpretation 

of the mechanical parameters from the micropipette aspiration.  

 

B. Future Works 

As an extension to the computational framework presented in this thesis, the 

following works could be carried out for the future works. 

a. Explore the material models to have insight into the structure of cytoplasm, 

such as how the variation of actin filaments (stress fiber) influences the 

overall mechanical property of cell. 

b. Develop more general polymer mechanics- based cortex model which can be 

used in large deformation analysis and the study for frequency- dependent 

viscoelastic material behavior of the cell. 
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c.  Incorporate viscoelastic material properties of nucleus in modeling the cell 

and represent other experiments, such as optical tweezers/laser traps, to 

determine the material properties of cells. 

d. Study the cellular phenomenon like cell migration and motility which is 

essential in a variety of biological processes in health (such as embryonic 

development, angiogenesis and wound healing) or disease (as in cancer 

metastasis). 

e. Study the mechanism of mechanotransduction which is an important function 

controlling the growth, proliferation, protein synthesis and gene expression of 

the cell. 
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	Figure 4.18 Force versus bead center lateral displacement, resulting from the SLS model with cortex G=100 Pa and cytoplasm G= 200 Pa under sinusoidal forcing amplitude 125pN with different frequencies.
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	Figure 4.19 Force versus bead center lateral displacement, resulting from the SLS model with cortex G=100 Pa and cytoplasm G= 400 Pa under sinusoidal forcing amplitude 125pN with different frequencies.
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	Figure 4.20 Bead center lateral displacement versus time, resulting from the (a) SLS model and (b) SnHS model for fixed sinusoidal force amplitude 125pN with f=0.1Hz for various shear modulus.
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	Figure 4.23 Force versus bead center lateral displacement, resulting from (a) SLS model and (b) SnHS model for fixed sinusoidal force amplitude 125pN with f=0.1Hz for various shear modulus.
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	Figure 4.24 Force versus bead center lateral displacement, resulting from the SLS model for fixed sinusoidal force amplitude 125pN with f=0.5Hz for various SLS model shear modulus.
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	Figure 4.28 Force versus bead center lateral displacement, resulting for SLS model with both cortex and cytoplasm shear modulus 100Pa under fixed frequency f=0.5Hz with various sinusoidal force amplitude.
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	Figure 4.29 Force versus bead center lateral displacement, resulting for SLS model with both cortex and cytoplasm shear modulus 100Pa under fixed frequency f=1Hz with various sinusoidal force amplitude.
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