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ABSTRACT 

 

Handedness, Limb Selection, and Reach Control: A Test of the Dynamic 

Dominance Hypothesis. (December 2008) 

Won Dae Kim, B.S., Seoul National University; 

M.S., Seoul National University 

Chair of Advisory Committee: Dr. Carl Gabbard 

 

This study examined the generalization of the Dynamic Dominance Hypothesis 

(DDH) in regard to limb dominance, limb selection, and limb action. This study was 

inspired by the finding that limb selection changes from dominant-arm to nondominant-

arm occur around an object position of 80° for right-handers and 100° for left-handers 

after passing the body midline (90°) into contralateral hemispace.  

For Study 1 and Study 2, 10 right-handed and 10 left-handed adults participated 

and reaching with the right and left arms of right- and left-handers was made to each of 

nine targets using free-choice and forced-choice paradigms. The purpose of Study 1 was 

to determine the relationship between limb selection and the DDH among both 

handedness groups. Thus, Study 1 addressed the following questions: Can the DDH 

explain why people select their nondominant hand for reaching into their contalateral 

hemispace? Do predictions of the DDH hold for right- and left-handers? Our results 

suggest that control efficiency with regard to a reduction in degrees of freedom in 

reaching movements seems to be a more fundamental cause for the limb selection 
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phenomenon rather than the DDH. Also, our data reveal that kinematic differences 

between right- and left-handers with regard to utilization of joints for reaching explain 

limb selection differences between both handedness groups. The aim of Study 2 was to 

extend generalization of the DDH using a wide range of movement speed. Thus, Study 2 

addressed the following question: Do propositions of the DDH hold for a wide range of 

speeds? Our data indicate the DDH does not hold for either slow or fast speed in reaching 

movements. Rather, a change in kinematics with regard to utilization of joints in reaching 

movements is associated with movement speed.  

Considered together, our data indicate that the DDH is an inadequate explanation 

of differences in limb selection, limb dominance (handedness), and limb action (speed). 

Rather, our findings with regard to control efficiency seem to be more fundamental and 

justified explanations for limb differences in the control of reaching based on the context 

of our task. 
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CHAPTER I 

INTRODUCTION 

 

Limb selection for reaching is a key factor in assuring goal attainment, with hand 

preference being acknowledged as a prominent underlying feature. The notion that hand 

preference in general is a biological-based 'invariant' trait has been questioned in light of 

evidence suggesting that this phenomenon can be modified by attentional information 

derived from particular task demands (Gabbard, Iteya, & Rabb, 1997; Gabbard, Rabb, & 

Gentry, 1998, 2001; Hellige & Kee 1990; Peters 1995; Stins, Kadar, & Costall, 2001; 

Verfaellie, Bowers, & Heilman, 1988). In the quest to better understand the determinants 

of limb selection for simple reaching and grasping, our lab has reported consistent 

observations of participants choosing the limb closest to the object, regardless of object 

position in hemispace (Gabbard et al. 2001; Gabbard & Helbig 2004; Helbig & Gabbard 

2004). In addition to concluding that this finding is in contradiction to more traditional 

views of motor dominance, we also found no reason to believe (via specific experiments) 

that perceived comfort or a hemispheric bias favoring use of the hand on the same side as 

the stimulus, was driving limb selection. However, none of these factors are enough to 

explain the finding that a limb transition from a dominant arm to a non-dominant arm 

among right-handers occurs around 70° after passing the body midline (90°) into 

contralateral hemispace.  

 

_____________________________ 
This dissertation follows the style of Journal of Motor Behavior. 
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While our previous work has addressed such things as object proximity, comfort 

and hemispheric bias as contributing factors to limb selection, a detailed examination of 

the kinematics of limb selection has received little attention. Although studies of the 

biomechanics of reaching rarely give attention to selection, there are hints in the literature 

that interlimb differences, in torque control and kinematic factors related to control 

efficiency, may contribute significantly to limb selection (Kim, Gabbard, Ryu, & 

Buchanan, 2007, Stins et al, 2001).  In addition to the kinematic and kinetic explanations, a 

more contemporary perspective focuses on interlimb differences with the general idea that 

the two arms are differentially specialized for actions (Sainburg & Kalakanis, 2000; 

Bagesteiro & Sainburg, 2002, 2003). In reference to interlimb differences, one of the most 

recognized contemporary treaties is the Dynamic Dominance Hypothesis (DDH) (Sainburg 

& Kalakanis, 2000). Although the DDH has been proven to be a reasonable explanation for 

differences in dominant and nondominant arm control, the hypothesis has not been 

generalized as a theory of limb selection.  

Therefore, the present study focused on the generalization of the DDH in regard to 

Limb Dominance, Limb Selection, and Limb Action. The following is a brief background of 

the relevant areas of research associated with this dissertation, namely: handedness and 

limb dominance, limb selection, and the dynamic dominance hypothesis and its limitations.  

Handedness and Limb Dominance 

Handedness is the most distinct feature of brain lateralization and specialization, 

and is defined by the unequal distribution of motor skill between the left and right arms. 

Although enormous efforts and studies to reveal the features of handedness have been 

  

http://en.wikipedia.org/wiki/Fine_motor_skill
http://en.wikipedia.org/wiki/Hands
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performed, understanding handedness still remains a fundamental question in motor 

behavior. However, there is no doubt that handedness is the outcome of biological and 

functional asymmetry in the human brain. With regard to specific characteristics of 

functional hemispheric differences in the control of upper limb movements, more than a 

century ago, Woodworth (1899) suggested a model which has come to be known as the 

two-component model because the control of speeded limb movements was hypothesized 

to entail both a central and a feedback-based component. The model has motivated new 

paths of understanding handedness in terms of open-loop or closed-loop processes. More 

specifically, this hypothesis describes the acceleration phase of goal-directed movements 

as indicating planning or programming of movements (open-loop control), and the 

deceleration phase as reflecting changing of direction for accuracy through sensory 

feedback processes (closed-loop control) (Woodworth, 1899). It is generally thought that 

each of these two control modes is associated with each hemispheric side. Thus, the left 

hemisphere is more specialized for open loop processing or movement preplanning, which 

is dependent on motor programs (Haaland, Prestopnik, Knight, & Lee, 2004). For goal-

directed reaching, the left hemisphere is more specialized for ballistic movements that are 

more dependent on planning and less dependent on direct sensory feedback (Haaland & 

Harrington, 1994). Thus, the left hemisphere plays an important role in controlling various 

motor skills when greater planning is required (Hermsdörfer, Ulrich, Marquardt, 

Goldenberg, & Mai, 1999; Schulter, Krams, Rushworth, & Passingham, 2001; Kim, Ashe, 

Hendrich, Ellermann, Merkle, & Ugurbil, 1993). In contrast, the right hemisphere is more 

associated with feedback processing that tends toward controlling based upon closed-loop 

  

http://www.ncbi.nlm.nih.gov/pubmed/10369090?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
http://www.ncbi.nlm.nih.gov/pubmed/10369090?ordinalpos=5&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
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processes. That is, the right hemisphere plays a primary role in controlling sensory 

feedback.  

As another of the views of handedness, Liepmann (1905) proposed that handedness 

emerges because the dominant hemisphere, reflecting the hemisphere that is contralateral 

to the dominant arm, is used to plan movements of both arms. According to this idea, 

performance disadvantages of the nondominant arm result from interhemispheric 

transmission delays associated with dominant hemisphere commands for nondominant arm 

movements (Derakhshan, 2006). This model of handedness predicts performance 

advantages of the dominant arm for all aspects of motor control and coordination. Thus, 

this view asserts that the trait of handedness is basically an invariant feature characterized 

by superiority of the dominant limb (Bradshaw et al., 1992; Grouios, 2006), which is the 

right for the vast majority of the population. Indeed, a general review of motor behavior 

indicates that right-handed individuals typically execute aiming movements with better 

speed, smoothness, consistency and accuracy when performing them with their right hand 

(Bradshaw et al., 1992; Grouios, 2006). In essence, left-handers are more variable and 

“less lateralized” in various aspects of functional asymmetric behavior compared to right-

handers. Underlying this general observation is evidence that the left and right cerebral 

hemispheres do not handle all aspects of visual information processing with equal ability 

(Hellige, 1995; Kosslyn, Andeson, Hillger, & Hamilton, 1994). This observation includes 

an array of motor tasks, including reaching, that compared right- and left-handers (e.g., 

Bestelmeyer & Carey, 2004; Brysbaert, 1994; Curt, Maccario, & Dellatolas, 1992; De 

Agostini, Paré, Goudot, & Dellatolas, 1992; Gabbard et al., 1997; Hellige, Bloch, Cowin, 
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Eng, Eviatar, & Sergent, 1994; Schmidt, Oliveira, Krahe, & Filgueiras, 2000). However, a 

more contemporary perspective focuses on interlimb differences with the general idea that 

the two arms are differentially specialized for actions (Sainburg & Kalakanis, 2000; 

Bagesteiro & Sainburg, 2003). More specific, this notion proposes that each hemisphere 

limb system is specialized for selecting and controlling different features of a reaching 

action. For example, even among strongly lateralized right-handers, the non-dominant left 

limb is advantageous in specific situations. 

Limb Selection 

One of the key elements of limb dominance is the selection of a specific limb to 

accomplish a goal. In regard to limb selection, data from our lab indicates that the vast 

majority of individuals will switch hands for simple reaching and grasping based on the 

proximity of the object. That is, limb selection changes from dominant right-arm to non-

dominant left-arm in strongly lateralized right-handers around an object position of 80° 

after passing the body midline (90°) into contralateral non-dominant hemispace (Gabbard 

& Helbig, 2004; Helbig & Gabbard, 2004). Other researchers have demonstrated similar 

findings across an array of selection tasks (Leconte & Fagard, 2006; Mamolo, Roy, 

Bryden, & Rohr, 2004, 2005; Stins et al., 2001; Teixeira, & Okazaki, 2007). Explanations 

of this phenomenon include comfort, hemispheric bias, and attentional factors associated 

with object proximity. Alternatively, it has been proposed that the degrees of freedom 

being controlled and the efficiency of that control can also play a role in limb selection 

(Kim et al., 2007; Stins et al., 2001). Basically, this idea suggests that the selected limb has 

advantages for more efficient and accurate coordination of limb actions. Stins et al. (2001) 
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found that the point where participants switched from the dominant to the nondominant 

arm was associated with the point where deceleration times of both hands were equal. This 

result implies that limb choice is task-dependent and related to kinematic variables such as 

deceleration times. It was also found that switching from the dominant right-arm to the 

non-dominant left-arm reaching in left hemispace reported in earlier work may have 

emerged from a shift in a shoulder driven reach to an elbow driven reach (Kim et al. 2007). 

These findings indicate that the selected limb may be systematically related to control 

efficiency. Based on the idea that a selected limb is the product of control-based movement 

efficiencies, it is believed that individuals are highly skilled perceivers of their own action 

capabilities and proficient determiners for a given choice (Stins et al. 2001).  

Dynamic Dominance Hypothesis 

After many studies have attempted to establish Woodworth’s hypothesis as an 

explanation in limb difference, the two component perspective has generally failed to 

generalize the characteristics of limb differences in various performances (Sainburg, 2005). 

As an alternative explanation, one of the most recognized contemporary treaties is the 

DDH (Sainburg & Kalakanis, 2000, Sainburg, 2005), a notion that has generated much 

discussion and several studies in recent years (e.g., Bagesteiro & Sainburg, 2003; Duff & 

Sainburg, 2007; Heuer, 2007; Wang & Sainburg, 2007). Basically, the findings associated 

with this perspective suggest that the dominant (right) arm has advantages in controlling 

limb segment inertial dynamics. For example, right-arm reaches produce more efficient use 

of shoulder interactive torque; whereas, left-arm reaches require more active control of 

elbow torques. In essence, the right-arm shows more efficient coordination by producing 
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the same movement with less torque. Later work found that during aimed movements, the 

right arm displayed advantages for coordinating intersegmental dynamics associated with 

specifying trajectory speed and direction, while the left arm revealed advantages in 

controlling limb impedance; i.e., final position control (Duff & Sainburg, 2007). In regard 

to the latter observation, interestingly, the left arm often achieves more accurate final 

positioning, regardless of errors in coordination during the movement. These findings have 

led to the notion that the left arm may be specialized for control of steady state limb 

position, which emerges only during the final phase of reaching movements (Bagesteiro & 

Sainburg, 2003).  

More specifically, these findings are categorized into three main features. The first 

main feature of the DDH is ‘lateralization of intersegmental coordination’. In order to 

control intersegmental coordination of the multiple segments of the limbs, muscle activity 

patterns must be modulated to counter intersegmental interaction torques. To examine this 

dynamic interaction mechanism, Sainburg and colleagues manipulated a reaching task that 

would produce three different shoulder motions and identical elbow motions (Bagesteiro & 

Sainburg, 2002; Sainburg & Kalakanis, 2000). They found that elbow interaction torque of 

the dominant arm contributed approximately 50% to elbow net torque, indicating well 

distributed and coordinated two-joint (elbow and shoulder) motions. On the other hand, 

elbow interaction torque of the nondominant arm contributed little to elbow net torque, 

reflecting little shoulder contribution to elbow motion. Thus, the nondominant arm reaches 

were made mostly by elbow muscle torque, whereas the dominant arm reaches were driven 

evenly by both elbow and shoulder motions, indicating less muscle torques and greater 
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interaction torques on the elbow (Bagesteiro & Sainburg, 2002; Sainburg & Kalakanis, 

2000). This finding implies that the nondominant limb has less efficient torque control 

compared to the dominant limb. In addition, electromyographic (EMG) recordings have 

supported this finding that the dominant arm has better anticipation of planned movements 

(Bagesteiro & Sainburg, 2002). As a consequence of the anticipation, the dominant arm 

takes advantage of intersegmental dynamics while executing movements.  

The second feature, ‘dominant limb advantages are specific to controlling 

dynamics’ is derived from the prediction, “features of control that do not stress 

intersegmental dynamics should not elicit dominant arm advantages” (p.208) (Sainburg, 

2005).  In order to examine this hypothesis, they compared two reaching tasks that would 

result in the same degree of error (large curvature) but different task dynamics in the 

movements (Sainburg, 2002). In other words, one task was designed to produce novel 

interaction torque through unexpected inertial load due to eccentric attachment of a 

forearm brace. The other task reflected a center-out reaching task through a 30 degree 

visuomotor rotation. Both manipulations showed large curvature at the initial stage. After 

many adaptative trials, the dominant arm showed more reduced error in the inertial load 

task than the nondominant arm, whereas both arms revealed similar visuomotor 

adaptations. Thus, this result supported the fact that the dominant arm is specialized in the 

control of limb dynamics. 

The last feature of the DDH is ‘nondominant specialization for control of limb 

position.’ Compared to the dominant arm, the nondominant arm has generally been known 

as a relatively unskillful and unpracticed system. However, several previous studies of 
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Sainburg and colleagues have repeatedly shown the finding that the final positions of the 

nondominant arm were often similar or even more accurate than those of the dominant arm 

(Bagesteiro & Sainburg, 2002; Bagesteiro & Sainburg, 2003; Sainburg, 2002; Sainburg & 

Kalakanis, 2000).  They interpreted this finding as suggesting that the dominant system 

may sacrifice final position accuracy for improving intersegmental coordination. In order 

to investigate the third hypothesis, they employed unexpected inertial load as a 

perturbation during reaching movements (Bagesteiro & Sainburg, 2003). Participants in 

this study had to execute 20 degree elbow flexion movements using a single-joint (elbow) 

reaching task. During reaching movements, a 2-kg object was added to the forearm on 

random trials without presenting information about the mass to participants. The result of 

EMG activity revealed that the nondominant arm showed effective load compensation for 

the perturbation, whereas the dominant arm showed overcompensation for the load. As a 

result, the dominant arm made a larger error of final position while the nondominant 

showed no significant differences in final position accuracy between loaded and unloaded 

trials. These finding support the hypothesis that the nondominant system is specialized in 

controlling limb position. 

In summary, these studies provide evidence that the two arm controllers (right and 

left) employ different strategies while driving a reaching action. The right arm system 

stabilizes dynamic features of the desired movement, such as trajectory and segment 

torques, while the left-arm controller stabilizes end-point impedance for achieving steady 

state posture. Wang and Sainburg (2007) suggest that “… rather than viewing the right arm 

as generally ‘superior’ to the left arm, we suggest that control has become distributed 
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across the two systems, such that each controller has become adapted for different, but 

complimentary cost-functions” (p.568).  

Research Questions 

The research questions for this study were posed to examine the generalization of 

the DDH in regard to limb dominance, limb selection, and limb action. Arguably, the DDH 

presents a reasonable explanation of the differences between dominant and nondominant 

limbs for reaching movements. However, the current generalization of the DDH is 

somewhat insufficient. This lack of generalization of the DDH was also noted in one of the 

recent studies from Sainburg’s lab. In this study, they failed to support a nondominant 

specialization for stabilizing steady-state isometric force (Zhang, Sainburg, Zatsiorsky, & 

Latash, 2006). Besides the failure, the DDH has not been proven in various circumstances.  

First, methodologically, the DDH has not been tested with a task involving a free-

choice paradigm (limb selection). That is, the DDH appears to be only relevant in a forced-

choice condition. Research indicates that right-handers typically switch from the dominant 

arm to nondominant arm in limb selection when reaching toward left hemispace (Gabbard 

& Helbig, 2004; Helbig & Gabbard, 2004). Also, Stins et al. (2001) found that people 

know the most efficient or economical action for a specific environment and task, and they 

can select the best way to move. These suggestions induce research questions: Can the 

DDH explain why people select their nondominant hand? Can the nondominant limb 

advantage for controlling final limb position in the DDH be the determinant of 

nondominant hand use? If so, is the nondominant advantage in the DDH the only reason 

why people select their nondominant hand? 

  

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Zhang%20W%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Sainburg%20RL%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Zatsiorsky%20VM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Latash%20ML%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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Second, the DDH has not been tested in strongly lateralized left-handers (limb 

dominance). Thus, this hypothesis has been tested in only strongly lateralized right-

handers. There are few studies of the DDH with strong left-handers. To date, only one 

study was found that tested this idea (Wang & Sainburg, 2007). Personal communication 

with the lead author revealed that due to the difficulty with finding strong left-handers, the 

lateral index for the participants was moderate to weak. With the experiments described 

here, only strongly lateralized left-handers were used. Previous work leads us to assume 

that interlimb differences between handedness groups may not mirror each other. Although 

considerable individual variation exists, a common theme found in the literature is the 

observation that hemispheric asymmetry and cortical representation for a typical group of 

left-handers is not as large as for a group of right-handers (Sörös, Knecht, Imai, Gürtler, 

Lütkenhöner, Ringelstein, & Henningsen 1999; Hellige et al., 1994; Iaccno, 1993). 

However, in spite of the lack of a strong left-handed population, it is still important to 

attempt to understand differences between strong right- and strong left-handers. Therefore, 

the second questions are “Do predictions of the DDH hold for right- and left-handers?” 

“Can the DDH show the same results in strong left-handers as shown in strong right-

handers?” 

Finally, we aim to determine if general features of the DDH apply to reaches with a 

wide range of speed (limb action). People generally perform a similar speed for a given 

motor task, such as reaching for an object. In the previous studies, the similar range of limb 

speed was found for reaching movements. That is, reaching movements were performed at 

the participant’s elected natural speed with an average of 600 ms, with the right and left 
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hands showing a similar time course (Bagesteiro & Sainburg, 2002; Bagesteiro & 

Sainburg, 2003; Sainburg, 2002; Sainburg & Kalakanis, 2000). One well-known 

determinant of movement time is the speed-accuracy trade-off: movement time increases 

with the accuracy requirement (Woodworth, 1899; Fitts, 1954; Schmidt, Zelaznik, 

Hawkins, Frank, & Quinn, 1979). According to this view, movement slowing seems to be 

a compensatory response: people slow down because of a loss of accuracy (Sheridan & 

Flowers, 1990). However, factors other than the speed-accuracy trade-off may influence 

movement time. One possible determinant is the energetic cost of making a movement 

(Todorov & Jordan, 2002). Thus this implies that people would not move fast unless there 

are energetic advantages even though they can move faster than natural speed for a given 

task. It is our assumption that a change in speed may influence limb selection for reaching. 

If there is insufficient time to correct or change the direction of movement, does the 

dominant arm still have an advantage in control compared to the nondominant arm? In 

other words, if there is sufficient time to execute movements, can the nondominant limb 

improve joint coordination patterns? Another assumption is that a change of limb speed 

may alter limb kinetics and kinematics. This assumption implies that movement speed can 

influence the DDH in terms of the distinct characteristics of each limb. Therefore, the third 

question for generalization of the DDH was “Do propositions of DDH apply to reaches 

with a wide range of speeds (slow and fast)?” 

Purpose of the Study 

The primary intent of the present study was to investigate the generalization of the 

DDH in regard to limb selection phenomenon among strong right- and left-handed 
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participants. More specifically, the purpose of this study was to explore the following 

questions. 

1. Can the DDH explain why people select their nondominant hand for reaching 

into their contalateral hemispace? (Limb selection) 

2. Do predictions of the DDH hold for right- and left-handers? (Limb dominance) 

3. Do propositions of the DDH hold for a wide range of speeds? (Limb action) 

 To address these questions, the present study was divided into two studies. Study 1 

was designed to test generalization of the DDH using a free-choice paradigm (limb 

selection) and to examine the differences of movement efficiencies between the selected 

and the assigned actions with both handedness groups (Limb dominance). In Study 2, we 

further investigated the DDH using slow and fast reaches with both handedness groups in 

order to determine whether the DDH can be applied to reaching movements with 

substantially different speed (Limb action). Consequently, the aims of this research were to 

test the effect of hand (dominant- vs. nondominant-arm), handedness group (right- vs. left-

handers), limb selection (free- vs. forced-choice), task complexity (target size and speed), 

and object positions (50° to 130°) on the kinematics and kinetics of reaching. 
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CHAPTER II 

STUDY 1: LIMB SELECTION AND LIMB DOMINANCE 

 

Arguably, the Dynamic Dominance Hypothesis (DDH) is one of the most 

recognized contemporary perspectives in handedness studies. The more traditional view of 

handedness asserts that the trait is basically an invariant feature characterized by 

superiority of the dominant limb, which is the right for the vast majority of the population. 

Indeed, a general review of motor behavior literature indicates that right-handed 

individuals typically execute aiming movements with better speed, smoothness, 

consistency and accuracy when performing them with their right hand (Carey, Hargreaves, 

& Goodale, 1996; Carey, & Otto-de Haart, 2001; Carello, Grosofsky, Reichel, Soloan, & 

Turvey, 1989; Hellige, & Kee, 1990). However, the DDH focuses on interlimb differences 

with the general idea that the two arms are differentially specialized for actions (Bagesteiro 

& Sainburg, 2002; Sainburg, 2002). More specifically, this notion proposes that each 

hemisphere limb system is specialized for controlling different features of a reaching 

action more efficiently. In other words, even among strongly lateralized right-handers, the 

non-dominant left limb is advantageous in specific situations (Bagesteiro & Sainburg, 

2002; Sainburg, 2002). The DDH has been abundantly tested in strongly lateralized right-

handers (Bagesteiro & Sainburg, 2002, 2003; Duff & Sainburg, 2007; Heuer, 2007; 

Sainburg, 2002, 2005; Sainburg & Kalakanis, 2000; Wang & Sainburg, 2007). However, 

the hypothesis has not been tested in strongly lateralized left-handers. There are little 

studies of the DDH with strong left-handers. A common theme found in the literature is the 
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observation that hemispheric asymmetry and cortical representation for a typical group of 

left-handers is not as large as for a group of right-handers (Sörös et al., 1999; Hellige et al., 

1994; Iaccno, 1993). However, in spite of the lack of strong left-handed population, it is 

still worth attempting to understand differences between strong right- and left-handed 

populations.  

Research has shown that regardless of hand preference, the vast majority of 

individuals switch limbs for simple reaching and grasping based on the proximity of the 

object. With interest in how the underlying limb kinematics that might reveal control 

processes for limb choice, we compared strong right-handers on right- and left-arm reaches 

at nine positions in hemispace. The hypotheses, based on the previous work (Kim et al. 

2007) and the work of Stins et al. (2001), focused on limb comparisons regarding 

reduction in the control of joints and time spent in limb deceleration. Our results indicated 

that the profiles between the switch in limb selection around 80° (90° was midline) and 

switch in deceleration times were similar in left-hemispace, but not in right-hemispace. 

This outcome suggested that control efficiency with regard to amount of time devoted to 

feedback processing that might occur in the deceleration phase of the reach did not fully 

account for limb switching. As a result, we concluded that the limb switching phenomenon 

was linked to joint amplitudes associated with the freely selected limb, rather than time 

spent decelerating the limb (Kim et al., 2007). However, this conclusion was somewhat 

incomplete due to the absence of kinetic (i.e. joint torques) data in the previous study. 

Even though the kinematic variables were similar for both hands, kinetic analysis might 

reveal differences in the control strategies employed for the right and left arms. For 
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example, similar movement times or hand path trajectories did not always indicate similar 

joint coordination patterns during the movement. Therefore, the intent of the present study 

was to examine whether the relationship between the switch in limb selection and the DDH 

can explain limb selection phenomenon and to compare strong right- and left-handers 

using a free-choice paradigm.  

Based on the DDH, we predicted that the dominant arm would show advantages in 

the control of limb dynamics and the nondominant arm would reveal more accurate final 

position in both hand groups (strong right- and left-handers). In order to identify the 

advantages of each arm, nine target positions were divided into new five positions. Each 

new position consisted of two target positions, which produce anatomically and 

mechanically homologous movements for both limbs. In limb selection analysis using free-

choice and forced-choice paradigms, we predicted that the selected limb would produce 

shorter movement times and be better accuracy, with more efficient torque than the 

unselected limb in both handedness groups. Furthermore, we also predicted that the 

transition point in limb selection between the two hands would correlate with the point 

where the deceleration times were identical.   

Method 

Participants 

10 right-handed and 10 left-handed adults, ages 19 to 23 years old, participated in 

Study 1. The participation was limited to strong right- and strong left-handers; that is, only 

those individuals that used their right or left hand consistently with all four preference 

tasks as described in the Lateral Preference Inventory (Coren 1993). With regard to the 
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collection of strong left-handers, a general comment is warranted: one out of ten was a left-

hander and three out of those 10 were strong left-handers. The experimental protocol and 

consent form were approved by the Texas A&M Institutional Review Board (IRB) for the 

ethical treatment of human subjects. The participants were informed of the experimental 

procedures and risk level and voluntarily signed a consent form before participating in this 

study. 

Apparatus 

Eight infrared light-emitting diodes (IREDs) were attached to the index finger tip 

(IREDs 1 & 5), the wrist (IREDs 2 & 6), the elbow (IREDs 3 & 7), and the shoulder 

(IREDs 4 & 8) of each arm (Fig. 1). The 3D trajectories of the IREDs were recorded with a 

VICON 460 3D camera system. Equipped with four cameras, the system provided an 

overall accuracy of 63±5 μm and overall precision (noise level) of 15 μm for the most 

favorable parameter setting. Arbitrary changes in camera arrangement revealed variations 

in mean accuracy between 76 and 129 μm. The noise level normal to the cameras’ 

projection plane was found higher compared to the other coordinate directions (Windolf, 

Gotzen, & Morlock, 2008). The static and dynamic calibration of the system was 

performed before each experimental day. The x, y, z values of all IREDs were low-pass 

filtered at 10 Hz (2nd order, dual pass Butterworth). All kinematic and kinetic data analysis 

was performed using MATLAB 7.0 (Mathworks Inc.). 

Procedure 

The participants sat in a flat seat (parallel to the floor) with a backrest that was 

perpendicular to the seat. While seated in an upright position, chair height was adjusted 
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until the position of arms was parallel to the table. Each trial began with the participant’s 

arms positioned in hand rests on the middle area of the body. All targets were presented at 

75% of maximum arm length (semi-circular positioning) and presented randomly by a 

beam projector mounted on the ceiling at nine different positions; the body midline 

(labeled 90°), 80°, 70°, 60° and 50° to the left of midline, and 100°, 110°, 120°, 130° to the 

right of the body midline (Fig. 1). The size of targets consisted of big (3 cm in diameter) 

and small (1 cm in diameter) targets. Without any auditory or visual starting cue, 

participants were instructed to perform a reach and hit the target as quickly and accurately 

as possible after one of nine targets appeared. In each trial, participants had to select one 

hand (free-choice). After one free-choice reach, participants were instructed to execute 

another reach to the same target with the opposite hand (forced-choice) in order to compare 

the performance of both arms. Each participant produced three reaches with each hand for 

each object and each target size for a total of 108 trials. Testing for each participant was 

completed in an isolated room and each condition was counterbalanced.  
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Figure 1. View of the experimental set-up for Study 1. Acronyms indicate following: L-
straight distance from start to end point, D-maximum path deviation, ӨE-elbow angle, ӨS-
shoulder angle. 
 
 
 
Kinematic Data 

IREDs 1 and 5 were differentiated to yield tangential velocity and acceleration 

values. Peak tangential velocity was located in each trial and the first point to exceed 5% 

of peak velocity in the trial was labeled as movement onset, and the first point to drop 

below 5% of peak velocity before the grasp was labeled as movement termination 

(Bagesteiro & Sainburg, 2002; Sainburg, 2002). Movement time (MT) was defined as the 

time between movement onset and movement termination. Acceleration time (AT) was 

defined as the time from movement onset to peak velocity. Deceleration time (DT) was 

defined as the time from peak velocity to movement termination. A percentage of the time 

  



 20

spent decelerating the limb (%DT) was calculated as the proportion of DT to MT. The 

relationship between path linearity and contributing degrees of freedom was investigated 

by computing elbow and shoulder joint amplitudes. The elbow angle amplitudes (EA) were 

calculated with IRED 2, 3, and 4 (left-arm), and IRED 6, 7, and 8 (right-arm). The 

shoulder angle amplitudes (SA) were defined with IREDs 3 and 4 (left-arm), and 7 and 8 

(right-arm), and a fixed reference point on the opposite shoulder. For each trial, the 

maximum angular displacement for the elbow and shoulder angles was determined. 

Two measures of movement accuracy were calculated from hand-path curvatures: 

final position error and hand-path deviation from linearity. Final position error (PE) was 

calculated as the distance between index finger location at movement end and the target 

position. A measure of deviation from linearity (DL) was based on IREDs 1 & 5 on the 

index finger tips and was computed as the ratio of maximum path deviation to the length of 

a straight line connecting a hand’s initial position and the object’s position (Bagesteiro & 

Sainburg, 2002; Sainburg, 2002). A value of PL = 0 indicates a straight path while a value 

of PL > 0 indicates a deviation from a straight path.  

Kinetic Data 

Joint torques were calculated for shoulder and elbow using equations detailed in the 

next page. For the purpose of this study, it was assumed that the upper arm and forearm 

were two interconnected rigid links with frictionless joints at the shoulder and elbow.  In 

order to separately examine the effect of interactive forces and muscle forces on the limb 

motion, joint torques at each joint consisted of three main components: interaction torque 

(IT), muscle torque (MuT), and net torque (NT) (Bagesteiro & Sainburg, 2002; Sainburg, 
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2002). At each joint, IT represents the rotational effect of the forces due to the rotational 

and linear motion of the other segment. MuT represents the rotational effect of muscle 

forces acting on the segment. NT is directly proportional to joint acceleration, inversely 

proportional to limb inertia, and equal to the combined IT and MuT (Sainburg & 

Kalakanis, 2000; Zajac & Gordon, 1989). It is important to note that computed muscle 

joint torque cannot be considered a simple proxy for the neural activation of the muscles 

acting at the joint. Muscle joint torque does not distinguish muscle forces that counter one 

another during co-contraction and it also includes the passive effects of soft tissue 

deformation.  

Elbow Joint Torques  

ITe = - ӨS * [A * cos(ӨE) + B ] - ӨS
 2 * A * sin(ӨE) 

NTe = ӨE * B 

MuTe = NTe - ITe 

Shoulder Joint Torques   

ITs = ӨE * A * cos(ӨE) + ( ӨE + ӨS)2 * A * sin(ӨE) 

NTs = ӨS * [C + A * cos(ӨE)] 

MuTs = NTs – ITs + MuTe 

Symbols 

A=m2L1r2+mdLdrd 

B=I2+m2r2
2+Id+mdr2

d 

C=I1+m1r2
1+ (m2+md) L2

1 
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where ӨS is shoulder angle, ӨS is shoulder angle velocity, ӨS is shoulder angle 

acceleration, ӨE is elbow angle, ӨE is elbow angle velocity, ӨE is elbow angle acceleration, 

m is mass, r is distance to center of mass from proximal joint, L is length, and I is inertia. 

The subscripts are defined as follows: 1 is upper arm segment, and 2 is forearm/hand 

segment. Limb segment inertia, center of mass, and mass were computed from regression 

equations using the subject’s body weight and measured limb segment lengths (Winter, 

1990). 

Statistical Analysis 

In order to analyze limb selection patterns, we used three-way ANOVAs for the 

percentage of the freely selected right-arm use as a function of 9 Position (50° to 130°), 2 

Handedness (right- vs. left-handers), and 2 Target Size (small vs. big). We also performed 

four-way ANOVAs for each kinematic variable as a function of 2 Selection (free- vs. 

forced-arm), 9 Position (50° to 130°), 2 Handedness (right- vs. left-handers), and 2 Target 

Size (small vs. big). Furthermore, in order to identify the DDH and to examine limb 

difference in reaching movements, target positions were divided into five new positions: 

Farthest (50° and 130°), Far (60° and 120°), Near (70° and 110°), Nearest (80° and 100°), 

and Middle (90°). Reaching movements toward two target positions in each new position 

were anatomically and mechanically homologous movements for comparison of the 

dominant-arm with the nondominant-arm. Reaches toward the same side were considered 

ipsilateral movements and reaches toward the opposite side were considered contralateral 

movements. Based on these new positions, we performed separate four-way ANOVAs for 

final position accuracy and kinetic variables as a function of 2 Hand (dominant- vs. 
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nondominant-arm), 5 Position (farthest to middle), 2 Handedness (right- vs. left-handers), 

and 2 Target Size (small vs. big). Bonferroni/Dunn post hoc analyses were also used to test 

for any significant interaction effects. The significance level for all main effects and 

interaction effects was set at p < .05.  

Results 

Limb Selection 

The percentage of free-choice reaches executed with the right hand as a function of 

Position (50° to 130°), Size (small vs. big), and Handedness (right- vs. left-handers) is 

illustrated in Figure 2. The ANOVA for the percentage of reaches revealed main effects for 

Handedness, F(1, 32) = 12.3, p < .01, and Position, F(8, 32) = 9.3, p < .01. Also, we found 

a Handedness × Position interaction, F(8, 32) = 53.1, p < .01 and no other main effects or 

interaction effects were found. Simple main effect analyses for the interaction revealed that 

right-handers showed significantly greater right-arm use than left-handers for position 70° 

to 130°. For right-handers, a similar profile was found in the percentage of the free choice 

with the right hand between the small and big target conditions, right-handed participants 

showed the switchover point from free right-arm to free left-arm reaches between the 

object position 80° and 90°. Free left-arm reaches dominated at position 50° to 80° in left 

hemi-space, and free right-arm reaches dominated at position 90°, and from position 100° 

to 130° in right hemi-space. On the other hand, left-handed participants showed the 

switchover point from free right-arm to free left-arm reaches between the object positions 

100° and 110°. Free left-arm reaches dominated at position 90° and from 80° to 50° in left 

hemi-space and position 100° in right-hemispace. Free right-arm reaches dominated at 
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positions 120° and 130° in right hemi-space. Also, for left-handers, a similar profile was 

found in the percentage of the free choice with the right hand between the small and big 

target conditions. Thus, these results indicated that target size conditions did not influence 

limb selection, whereas handedness changed the switchover point from 80° (right-handers) 

to 100° (left-handers) in limb selection.  

 

 
 

 

Figure 2. Percentage of reaches executed with the right arm for Study 1. The point on the 
abscissa corresponding to where the 50% line crosses the curve for each condition marks 
the point at where both hands may have been used equally often (e.g. 85° and 105°). 
 
 
 
Limb Kinematics 

Movement time (MT). The ANOVA for MT revealed main effects for Handedness, F(1, 

2097) = 301, p < .01, Position, F(8, 2097) = 2.3, p < .05, Target Size, F(1, 2097) = 571.6, 

p < .01, and Selection, F(1, 2097) = 135.7, p < .01. Thus, left-handers (600 ms) had 

shorter MTs than right-handers (687 ms) with the big target condition (583 ms) having 

  



 25

shorter MTs than the small target condition (702 ms). Regardless of position, target size, 

and handedness, the freely selected arm (614 ms) had shorter MTs than the forced arm 

(672 ms). More specifically, simple main effect analyses for the Size × Selection 

interaction F(1, 2097) = 10.4, p < .01, revealed that the free-arm (682 ms) had shorter MT 

than the forced-arm (723 ms) when reaching for the small target and that the free-arm (546 

ms) had shorter MTs than the forced-arm (622 ms) for the big target. Also, simple main 

effect analyses for the Position × Handedness × Selection interaction, F(8, 2097) = 7.8, p < 

.01, revealed that for right-handers the free-arm was significantly faster than the forced-

arm for positions 110° to 130°, whereas for left-handers the free-arm was significantly 

faster than the forced-arm for positions 50° to 80° (Fig. 3). 

 

 

 

Figure 3. Movement times (MT) plotted as a function of Position, Handedness, and 
Selection for Study 1.  
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Deceleration time (%DT). The ANOVA for %DT revealed main effects for Handedness, 

F(1, 2097) = 537, p < .01, Size, F(1, 2097) = 292, p < .01, and Selection, F(1, 2097) = 

79.2, p < .01. Thus, these results indicated that right-handers (64%) spent more time 

decelerating the arm than left-handers (55%) with a larger proportion of MT devoted to 

deceleration in the small target condition (63%) compared to the big target condition 

(56%). Regardless of position, target size, and handedness, the freely selected arm (61%) 

spent more time decelerating than the forced arm (58%). Also, we found a Handedness × 

Size interaction, F(1, 2097) = 4.9, p < .05. Simple main effect analyses for the Handedness 

× Size interaction revealed that left-handers spent less time decelerating the arm than right-

handers when reaching for the small target (59 vs. 67 %, respectively) and for the big 

target (52 vs. 61 %, respectively).  Also, simple main effect analyses for the Handedness × 

Selection interaction, F(1, 2097) = 31.7, p < .01, revealed that for right-handers the forced-

arm spent less time decelerating than the free-arm (61 vs. 66 %, respectively) while for 

left-handers the forced-arm spent slightly less time decelerating than the free-arm (55 vs. 

56 %, respectively). Another simple main effect analyses for the Position × Selection 

interaction, F(8, 2097) = 7, p < .01, revealed that the free-arm spent more time 

decelerating than the forced-arm for positions 50° to 70°, and for positions 110° to 130° 

(Fig. 4) 
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Figure 4. Percentages of deceleration times (%DT) plotted as a function of Position and 
Selection for Study 1.  
 

 

Joint angles (EA and SA). We found significant main and interaction effects for EA and 

SA as a function of Position, Handedness, Size, and Selection. First, the ANOVA for EA 

revealed a main effect for Position, F(8, 2097) = 42, p < .01, and interactions for Position 

× Handedness, F(8, 2097) = 2.5, p < .05, Position × Selection, F(8, 2097) = 52.8, p < .01, 

and a three-way of Position × Handedness × Selection, F(8, 2097) = 10.5, p < .01 (Fig. 5). 

Simple main effect analyses for the interaction revealed that for right-handers the free-arm 

(mostly left) had smaller EA than the forced-arm (mostly right) for positions 50° to 70°, 

and the free-arm (mostly right) had smaller EA than the forced-arm (mostly left) for 

positions 100° to 130°. For left-handers, the free left-arm had significantly smaller EA than 

the forced right-arm for positions 50° to 80°, and the free-arm (mostly right) had smaller 

EA than the forced-arm (mostly left) for positions 120° and 130° (Fig. 5). Also, we found a 

main effect for Selection, F(1, 2097) = 787, p < .01, and a Handedness × Selection 
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interaction, F(1, 2097) = 80.8, p < .01. Simple main effect analyses for the Handedness × 

Selection interaction revealed that the free-arm showed significantly less EA than the 

forced-arm for both right-handers and left-handers. 

 
 

 

Figure 5. Elbow angle amplitudes (EA) plotted as a function of Position, Handedness, and 
Selection for Study 1.  
 
 
 
 
 

The ANOVA for SA revealed main effects for Position, F(8, 2097) = 3.5, p < .01, 

Handedness, F(1, 2097) = 44.9, p < .01, and Selection, F(1, 2097) = 2484, p < .01. Also, 

we found interactions for Position × Selection, F(8, 2097) = 147.4, p < .01, and 

Handedness × Selection, F(1, 2097) = 118.9, p < .01. Simple main effect analyses for the 

Handedness × Selection interaction revealed that the free-arm had smaller SA than the 

forced-arm for both right-handers (15° vs. 39°, respectively) and left-handers (16° vs. 32°, 

respectively). Simple main effect analyses for the Position × Handedness × Selection 
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interaction, F(8, 2097) = 28.3, p < .01, revealed that for right-handers the free-arm (mostly 

left) had smaller SA than the forced-arm (mostly right) for positions 50° to 70°, and the 

free-arm (mostly right) had smaller SA than the forced-arm (mostly left) for positions 100° 

to 130°. On the other hand, for left-handers the free-arm (mostly left) had significantly 

smaller SA than the forced-arm (mostly right) for positions 50° to 80°, and the free-arm 

(mostly right) had smaller SA than the forced-arm (mostly left) for positions 110° to 130° 

(Fig. 6). 

 

 

Figure 6. Shoulder angle amplitudes (SA) plotted as a function of Position, Handedness, 
and Selection for Study 1.  
 
 
 
Movement Accuracy 

Final position error (PE). In order to identify movement accuracy advantage for the 

nondominant arm as indicated in the DDH, we performed separate four-way ANOVAs 

(ipsilateral and contralateral) for PE and DL as a function of 5 Position (Farthest: 50 and 
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130°, Far: 60 and 120°, Near: 70 and 110°, Nearest: 80 and 100°, Middle: 90°), 2 

Handedness (right- vs. left-handers), 2 Size (small vs. big), and 2 Hand (dominant vs. 

nondominant). For ipsilateral movements, first of all, the ANOVA for PE revealed a main 

effect for Size, F(1, 1197) = 9, p < .01. Thus, regardless of position, hand, and handedness, 

the small target (0.97 cm) revealed less PE than the big target (1.09 cm). We also found 

main effects for Position, F(4, 1197) = 12.1, p < .01, Handedness, F(1, 1197) = 4, p < .05, 

and Hand, F(1, 1197) = 10.5, p < .01, and an interaction for Handedness × Hand, F(1, 

1197) = 4.6, p < .05. Simple main effect analyses for the interaction revealed for right-

handers that the dominant-arm (0.89 cm) was significantly more accurate than the 

nondominant-arm (1.1 cm), whereas for left-handers the dominant-arm (1.05 cm) and the 

nondominant-arm (1.09 cm) showed similar final-position accuracies and revealed no 

statistical difference (Fig. 7). 
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Figure 7. Final position error (PE) for ipsilateral movements plotted as a function of 
Handedness and Hand for Study 1.  
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For contralateral movements, the ANOVA for PE revealed a main effect for Size, 

F(1, 1139) = 26, p < .01.  Thus, regardless of position, hand, and handedness, PE 

associated with the small target (0.8 cm) was less than PE associated with the big target 

(0.97 cm). We also found a main effect for Handedness, F(1, 1139) = 21.7, p < .01, and an 

interaction for Handedness × Position, F(4, 1139) = 2.5, p < .05. Simple main effect 

analyses for the interaction revealed  right-handers had more accurate final position than 

left-handers for four of five positions (Fig. 8). 
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Figure 8. Final position error (PE) for contralateral movements plotted as a function of 
Handedness and Position for Study 1.  
 
 
 
Deviation from linearity (DL). For ipsilateral movements the ANOVA for DL revealed 

main effects for Handedness, F(1, 1197) = 41.2, p < .01, Hand, F(1, 1197) = 19.3, p < .01, 

and  Size, F(1, 1197) = 6.4, p < .05. We found an interaction for Position × Handedness, 

F(4, 1197) = 5.6, p < .01, and a three-way interaction for Position × Handedness × Hand, 
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F(4, 1197) = 5.6, p < .01. Simple main effect analyses for the three-way interaction 

revealed that for right-handers the dominant-arm had straighter hand-path than the 

nondominant-arm for the Nearest and Middle positions. On the other hand, for left-handers 

there were no differences in hand-path straightness between the dominant- and 

nondominant-arm for all positions (Fig. 9).  

 

 

 

Figure 9. Deviation from linearity (DL) for ipsilateral movements plotted as a function of 
Position, Handedness and Hand for Study 1.   
 
 
 
 

For contralateral movements, the ANOVA for DL revealed main effects for 

Handedness, F(1, 1139) = 27.1, p < .01, Hand, F(1, 1139) = 18.8, p < .01, and  Size, F(1, 

1139) = 5.3, p < .05. We found interactions for Position × Handedness, F(4, 1139) = 2.4, p 

< .05, and Handedness × Hand, F(1, 1139) = 53.8, p < .01, and a three-way interaction for 

Position × Handedness × Hand, F(4, 1139) = 2.6, p < .05. Simple main effect analyses for 

the interaction revealed that for right-handers the dominant-arm had a straighter hand-path 
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than the nondominant-arm for all positions (Fig. 10). On the other hand, for left-handers 

the nondominant-arm had straighter hand-path than the dominant-arm only for the Farthest 

position and the difference in hand-path straightness increased as target was moved away 

from the body midline (Fig. 10).  

 

 

 

Figure 10. Deviation from linearity (DL) for contralateral movements plotted as a function 
of Position, Handedness and Hand for Study 1.  
 
 
 
Limb Kinetics 

In order to obtain torque impulses, original shoulder and elbow torques derived 

from the equations (see METHODS) were integrated from movement onset to movement 

offset. Net joint torque was equal to the summed positive and negative bar plot height. We 

performed separate four-way ANOVAs (ipsilateral and contralateal) for IT, MuTe, and 

MuTs as a function of 5 Position (Farthest: 50 and 130°, Far: 60 and 120°, Near: 70 and 

110°, Nearest: 80 and 100°, Middle: 90°), 2 Handedness (right- vs. left-handers), 2 Size 

  



 34

(small vs. big), and 2 Hand (dominant vs. nondominant), in order to identify torque 

advantages for the dominant arm as indicated in the DDH.  

For ipsilateral movements, first of all, the ANOVA for IT revealed that left-handers 

(0.13 Nms) had less IT than right-handers, F(1, 1197) = 39.5, p < .01, regardless of 

position, target size, and hand. Also we found main effects for Position, F(4, 1197) = 61.1, 

p < .01, and Size, F(1, 1197) = 7.2, p < .01, and an interaction for Position × Size, F(4, 

1197) = 4.9, p < .01. Simple main effect analyses for the interaction revealed that the small 

target (-0.01 Nms) had less IT than the big target (0.1 Nms) for the Farthest position (Fig. 

11). 

 

 
 
Figure 11. Interaction torque impulses (IT) for ipsilateral movements plotted as a function 
of Position and Size for Study 1.  

 

 

For MuTe, the ANOVA revealed a main effect for Position, F(4, 1197) = 6.9, p < 

.01, and an interaction for Position × Size, F(4, 1197) = 6.9, p < .01. Simple main effect 
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analyses for the interaction revealed that the small target (0.5 Nms) had greater MuTe than 

the big target (0.4 Nms) for the Farthest positions (Fig. 12).  

 

 

Figure 12. Muscle torque impulses of the elbow (MuTe) for ipsilateral movements plotted 
as a function of Position and Size for Study 1.  
 
 

 

For MuTs, we found a main effect for Handedness, F(1, 1197) = 20.1, p < .01, and 

an interaction for Position × Size, F(4, 1197) = 5.2, p < .01. Thus, right-handers (0.43 

Nms) had greater MuTs than left-handers (0.27 Nms) and simple main effect analyses for 

the interaction revealed that the small target (0.5 Nms) had greater MuTs than the big 

target (0.1 Nms) for the Farthest position (Fig. 13). Overall, for ipsilateral movements, we 

did not find a main effect of Hand for IT, MuTe and MuTs, p > .05, and these results 

indicated that there was no torque advantage of the dominant-arm for both handedness 

groups. Also, our torque profiles suggested that interaction torques and shoulder muscle 

torques decreased as target position moved away from the body midline, whereas elbow 
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muscle torques increased as target position moved away from the body midline. These 

results indicated that a reduction in the control of the reach from a two-joint (shoulder and 

elbow) to a single-joint (elbow) movement occurred as target position moved away from 

the body midline. Also, our torque profiles revealed that reaches toward the Far position 

were purely elbow driven action and reaches toward the Farthest position seemed to be the 

extension of shoulder joint in addition to the extension of elbow joint. 

 
 
 

 

Figure 13. Muscle torque impulses of the shoulder (MuTs) for ipsilateral movements 
plotted as a function of Position and Size for Study 1.  
 
 
 
 
 

For contralateral movements, the ANOVA for IT revealed that left-handers (0.38 

Nms) had less IT than right-handers (0.44 Nms), F(1, 1139) = 6.2, p < .05, regardless of 

position, hand, and target size. Also, we found a main effect for Position, F(4, 1139) = 
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19.7, p < .01. Post-hoc analysis for the Position effect revealed that all positions were 

significantly different from each other except the Far and Near positions (Fig. 14).  

 

 

 

Figure 14. Interaction torque impulses (IT) for contralateral movements plotted as a 
function of Position for Study 1.  
 
 
 
 

The ANOVA for MuTe revealed main effects for Handedness, F(1, 1139) = 11.1, p 

< .01, and Position, F(4, 1139) = 21, p < .01. Thus, right-handers (0.28 Nms) had greater 

MuTs than left-handers (0.21 Nms). Post-hoc analysis for the Position effect revealed that 

all positions were significantly different from each other except the Far and Near positions 

(Fig. 15).  
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Figure 15. Muscle torque impulses of the elbow (MuTe) for contralateral movements 
plotted as a function of Position for Study 1.  
 
 
 

For MuTs, we found main effects for Position, F(4, 1139) = 110, p < .01, and 

Handedness, F(1, 1139) = 15, p < .01. Thus, right-handers (-1.77 Nms) showed greater 

MuTs than left-handers (-1.59 Nms). Post-hoc analysis for the Position effect revealed that 

all positions were significantly different from each other (Fig. 16). Overall, for 

contralateral movements, we did not find a main effect of Hand for IT, MuTe and MuTs, p 

> .05, and these results indicated that there was no torque advantage of the dominant-arm 

for both handedness groups. As expected, contralateral reaching revealed that interaction 

torques and shoulder muscle torques increased as target position moved away from the 

body midline, whereas elbow muscle torques decreased as target position moved away 

from the body midline. These findings indicated an increment in a shoulder driven action 

as target position moved away from the body midline.  

 

  



 39

 

Figure 16. Muscle torque impulses of the shoulder (MuTs) for contralateral movements 
plotted as a function of Position for Study 1.  
 
 
 

Interlimb differences in torque contributions illustrated by the stacked bar plots for 

are shown in Fig. 17; measured as separate contributions to NTe and NTs.  The 

contribution to NTe consisted of MuTe and IT and the contribution to NTs consisted of 

MuTe in addition to MuTs and IT. In order to obtain torque impulses, original shoulder 

and elbow torques derived from the equations were integrated from movement onset to 

movement offset. Net joint torque was equal to the summed positive and negative bar plot 

height. 

In general, similar torque impulse profiles of big and small target sizes indicated 

that target sizes did not have influence on elbow and shoulder joint torques except IT. 

However, variations of NTe and NTs as a function of target position were systematically 

different. That is, NTe did not vary across target positions and did not show a difference 

between hands, whereas NTs impulse varied across target positions. Thus, NTs decreased 

substantially as target position moved away from the body midline (90°). On the other 
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hand, the contributions of MuTe to NTe increased substantially as target position moved 

away from the body midline. Along with it, the contribution of IT decreased as a result of 

an increment in MuTe. However, there was no substantial variation in MuTe among 

shoulder joint torques. Thus, an increase in MuTs was the primary cause for an increase in 

NTs.  

 Regardless of target positions, the contribution of MuTe to NTe was a little smaller 

for right arm movements as compared to left-arm movements, but not significant, p > .05. 

In other words, these data indicated that the contribution of MuTe and IT to net torque 

impulse revealed no significant difference between the dominant and nondominant arm. 

On the contrary to propositions of the DDH, our data showed that MuTe did not contribute 

essentially less toward right elbow movements.  

 

 

 A  

Figure 17. Muscle and interaction torque impulses, measured as a contribution to net 
torque plotted for the elbow joint (A: small target, B: big target) and for the shoulder joint 
(C: small target, D: big target) for Study 1.  
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B  

C  

D  

Figure 17. Continued 
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Discussion 

The primary intent of the present study was to investigate generalization of the 

DDH suggested by Sainburg and his colleagues in regard to kinematics and kinetics as a 

function of handedness, target position, hand, and task complexity (target size). 

Specifically, this study addressed the following questions: Can the DDH explain why 

people continue to select their dominant hand when reaching into their contralateral 

hemispace? Do predictions of the DDH hold for right- and left-handers? Therefore, the 

study examined limb difference employed for right and left arms during reaching 

movements made by right-handed and left-handed participants. Reaching movements were 

made to each of nine targets using free-choice and forced-choice paradigms.  

Limb Selection 

With limb selection analysis using free-choice and forced-choice paradigms, we 

predicted that the freely selected arm would show kinematic advantages over the forced 

arm for both handedness groups. Furthermore, we also predicted that the transition point in 

limb selection between limbs would correlate with the point where certain kinematic and 

kinetic variables were identical as suggested by Stins et al. (2001). For limb selection, we 

found that the target size condition did not influence limb selection preference for either 

the right-handed or left-handed participants. The right-handed participants produced 30% 

free right-arm and 70% free left-arm reaches to target position 80°. Thus, free left-arm 

reaches dominated at positions 50° to 80° in left hemi-space, and free right-arm reaches 

dominated from position 90° to 130° in right hemi-space. The left-handed participants 

performed a similar selection pattern as the right-handed participants, with 40% free right-
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arm and 60% free left-arm reaches occurring at position 100°. These findings indicated 

that a strong tendency to use the dominant arm when reaching to positions close to the 

midline (Gabbard et al., 2001; Gabbard & Helbig, 2004; Helbig & Gabbard, 2004). 

However, our results are somewhat different from previous studies. Many studies have 

attempted to address this issue by investigating tasks of different complexity and to 

conclude that task complexity is able to alter the transition point in limb selection (Bryden, 

Pryde, & Roy, 2000; Steenhuis & Bryden, 1989). Generally, as higher task complexity (i.e. 

our small target) is presented, it is expected to require a larger area of workspace covered 

by the dominant arm but some findings including our data are inconsistent (Guiard, 1987, 

1990). One possibility for the inconsistency between our data and previous data is that our 

small target size might be not difficult enough compared to our big target size.  

As one of our attempts to identify a determinant for the bias, we examined forced-

arm reaches (no free-choice) for the right- and left-arm among right-handed participants 

and found that the degrees of freedom being controlled and the efficiency of that control 

can also play a role in limb selection (Kim et al., 2007). In other words, switching from 

dominant right-arm to non-dominant left-arm reaching in left-hemispace reported in our 

earlier work may have emerged from a shift in a shoulder driven reach to an elbow driven 

action (Kim et al. 2007). Also, Stins et al. (2001) found that the point where participants 

switched from dominant to nondominant arm was associated significantly with the point 

where the deceleration times of both hands were equal. These findings imply that limb 

choice is associated with efficiency of limb kinematics. In a recent study (Kim et al, 

submitted), however, we found a similar switchover point where the deceleration times of 
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both hands were equal in both right- and left-hemispace. This outcome suggests that the 

time devoted to feedback processing that might occur in the deceleration phase of the reach 

cannot account totally for limb selection as Stins et al. have proposed (2001). Instead, the 

data lead to the conclusion that the limb switching phenomenon was influenced 

significantly by the joint amplitudes associated with the control of the freely selected limb. 

Thus, the switch in limb from the dominant right-arm to non-dominant left-arm around 80° 

is associated with advantages linked to a reduction in the control of the reach from a two-

joint to a single-joint movement.  

In the present study, the comparison of free- and forced-choice limbs in kinematics 

revealed a symmetric pattern in the %DT data (see Fig. 4). The %DTs of the free left-arm 

and forced-right arm reaches intersected at position 80° in left-hemispace, and at position 

100° in right-hemispace. Even though the free-arm had shorter MT in the lateral positions 

(50°, 60°, 70°, 110°, 120°, and 130°), the free-arm spent more time than the forced arm in 

the deceleration phase of the reach. Across medial positions of 80°, 90°, and 100°, there 

were no differences between limbs with regard to amount of time devoted to feedback 

processing that might occur in the deceleration phase of the reach. This symmetric pattern 

of our %DT data seems to be more associated with the amplitude advantages of elbow 

(EA) and shoulder angle (SA) rather than a limb switching pattern.  

More specifically, for right-handers, EAs of the free and forced limb were similar 

at positions of 80° and 90°. Also, SAs of the free and forced arm were similar at positions 

of 80° and 90°. These results were consistent with finding from our forced reaching study 

(Kim et al. 2007). As a target position moved away from the body midline, the freely 
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selected reaches were generated primarily by single-elbow motion, indicating a significant 

reduction from two-joint to single-joint in upper-arm motion to move the hand. In the left-

hemispace positions (50° to 80°), all positions showed a significant difference in EA 

between limbs except position of 80°. The right-arm may have an advantage up to our 80° 

position. With shoulder angle amplitude getting smaller in the left-arm, the advantage 

switches at position 70° when object proximity and a reduction in joint amplitudes 

combine to favor the nondominant left-arm. Furthermore, we also found similar aspect at 

position 110° for left-handers. Therefore, a key feature of the limb switching phenomenon 

in our study seems to be more linked to utilization of joints of the freely selected limb than 

times spent decelerating the limb.  

 Another key finding with regard to the limb switching phenomenon is the existence 

of a zone that gives an equal amount of kinematic advantages for both arms. We term this 

space Zero Zone, because of evidence that the positions in the middle area such as the 

position 80°, 90°, and 100° showed similar kinematic profiles, indicating no kinematic 

advantages for either hand. As the target was moved away from the body midline, 

however, the kinematics suggest an advantage in the freely selected arm. In other words, 

the free-arm had significant kinematic advantages for position 50°, 60°, and 70° in left-

hemispace and for position 110°, 120°, and 130° in right-hemispace among right-handed 

participants. We found this Zero Zone particulary in joint kinematics such as EA (80° to 

90°) and the SA (80° and 90°). A similar aspect was also found in our left-handed 

participants. However, the Zero Zone of left-handers was somewhat different. Thus, the 

Zero Zone was shifted 10 degree more away from the body midline into right-hemispace 
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compared to the Zero Zone of right-handers. Thus, we found the Zero Zone of left-handers 

with similar kinematics such as EA (90° to 110°) and SA (90° to 100°). For these positions, 

we found no difference in joint kinematics between the free- and forced-arm. Therefore, 

our data defined the Zero Zone as positions of 80° and 90° for right-handed participants 

and as positions of 90°, 100°, and 110° for left-handed participants. After applying the 

concept of the Zero Zone to our target positions, for right-handers our target positions can 

be divided into three different zones: 1) Nondominant Zone (50°, 60°, 70°), 2) Zero Zone 

(80° and 90°,), and Dominant Zone (100°, 110°, 120°, 130°), whereas for left-handers our 

target positions can be divided into three zones: 1) Dominant Zone (50°, 60°, 70°, 80° ), 2) 

Zero Zone (90°, 100°, 110°), and Nondominant Zone (120°, 130°). The boundaries 

between the Nondominant Zone and the Zero Zone were consistent with the switchover 

points in limb selection for both handedness groups. The boundary of the Zero Zone into 

contralateral hemispace for right-handers was 10 degree away from the body midline, 

whereas the boundary of the Zero Zone into contralateral hemispace for left-handers was 

20 degree away from the body midline. 

We thus suggest that kinematic advantages with regard to joint utilization drive 

limb selection in the Nondominant Zone and the Dominant Zone. On the other hand, when 

the advantages are equivalent for either hand (in the Zero Zone), it is plausible that there is 

no reason to select the nondominant-arm anymore and instead the dominant-arm could be 

easily selected. We therefore conclude that kinematic advantages with regard to a 

reduction in degrees of freedom for limbs are the primary factor for the limb switching bias 

around 80° for right-handers and 110° for left-handers. With similar kinematic advantages 
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(in the Zero Zone), motor dominance is the next influential factor for selecting limb. In 

sum, kinematic advantages with regard to a reduction in the control of the reach from a 

two-joint to a single-joint movement seem to be more adequate explanations for the limb 

selection phenomenon rather than time spent decelerating the action (Stins et al., 2001). 

 Dynamic Dominance Hypothesis 

As proposed by the DDH (Sainburg, 2002), we predicted that the left arm/right 

hemisphere system would reveal more accurate final position in both handedness groups, 

regardless of object positions and sizes. If the right hemisphere/left arm system’s greater 

role in position control exists, not only right-handers but also left-handers must show the 

left hand advantage in final position accuracy. However, we did not find evidence to 

support for the left-arm advantage of controlling final position. That is, for right-handers, 

the nondominant left-arm did not show any advantage for final position accuracy. Rather, 

the dominant right-arm had even more accurate final position for ipsilateral movements. 

For left-handers, on the other hand, there were no differences in final position error 

between the right- and left-arm for both ipsilateral and contralateral movements. As a 

result of the nonoccurrence of the right-arm advantage among left-handers, right-handers 

showed better accuracy than left-handers for most target positions. With regard to the 

dominant right-arm advantage in dynamic control of the hand-path trajectory, we predicted 

that the right arm/left hemisphere system would reveal greater performance in dynamic 

control of the hand-path trajectory for both handedness groups. For ipsilateral movements, 

however, we found no difference in hand path curvatures for left-handers, whereas for 

right-handers the dominant right-arm showed straighter hand-path than the nondominant 
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left-arm as target was moved into the body midline, indicating the left-arm disadvantage 

for performance of tasks that stress multi-joint movements rather than single-joint 

movements. Thus, we did not find differences in hand-path curvatures when participants 

employed single-joint reaching movements (i.e. ipsilateral reaching toward positions of 

Farthest and Far). For contralateral movements, which require more coordination of multi-

segment dynamics, this left-arm disadvantage showed more clearly among right-handers 

rather than left-handers.  

These results of final position accuracy and hand-path curvature are contradictory 

to the DDH and more consistent with the view that the dominant right-arm/left-hemisphere 

system shows superior performance in terms of speed, accuracy, consistency, and control 

over the nondominant arm (Annett, Annett, Hudson, & Turner, 1979; Flowers, 1975; Roy, 

1983; Roy & Elliott, 1989; Todor & Doane, 1978; Woodworth, 1899). We did find that 

this right-arm/left-hemisphere advantage revealed more clearly among right-handers rather 

than left-handers and that right-handers showed better performance in final position 

accuracy than left-handers. This finding suggests that our left-handed data were consistent 

with one important implication from the right arm/left hemisphere advantage hypothesis in 

visually guided reaching and aiming movements.  That is, failure to develop right-hand 

preference might reflect a failure to optimize visuomotor control. In other words, people 

who show left- or mixed-hand preference might be at a disadvantage for performance of 

tasks that stress visuomotor coordination of multi-segment dynamics with the dominant 

arm (Grouios, 2006) 

  



 49

Regardless of handedness and hand, final position errors varied systematically 

across target positions and increased as target position moved away from the body midline. 

This result suggests that final position errors were more dependent on target position. 

Target position was associated with greater changes in final position error than any other 

factors. The difference in PE between positions of Middle and Farthest was 0.38 cm for 

ipsilateral movements, and this difference by Position (0.38 cm) was almost 5 times greater 

than the difference by Handedness (0.08 cm) and almost 3 times greater than the difference  

by Size or Hand (0.12 cm). However, for contralateral movements, the difference  in PE by 

position (0.07 cm) was almost 2 times less than the difference by Handedness (0.15 cm). 

Thus, the difference in PE between positions was significant only for ipsilateral 

movements. Because ipsilateral movements consisted of single-joint movements (mostly 

for positions of Farthest and Far) and two-joint movements (mostly for positions of Near to 

Middle), final position errors increased substantially when participant reached to the 

positions of Farthest and Far with a single-joint movement. On the other hand, 

contralateral movements consisted of only two-joint movements for all positions. These 

results indicated that an increment in final position errors seemed to be linked to a 

reduction in the control of the reach from a two-joint to a single-joint movement. Also, 

these findings indicate that Position and Hand are not the key determinant for final position 

accuracy. Therefore, we conclude that final position accuracy is more associated with a 

reduction in the control of the reach from a two-joint to a single-joint movement rather 

than a task-related condition such as a target position.  
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With inverse dynamic analysis, the contributions of elbow and shoulder joint 

torque to net torque for both handedness groups appeared to produce similar patterns. The 

contributions of elbow muscle torque to elbow net torque decreased substantially as the 

target was moved to the midline position. Along with it, the contribution of elbow 

interaction torques increased as a result of a reduction in elbow muscle torques. On the 

other hand, there was no substantial variation in elbow muscle torques in shoulder net 

torques. Thus, an increase in shoulder muscle torques was the primary cause for an 

increase in shoulder net torques. For right-handers, regardless of target positions, the 

contribution of elbow interaction torque impulse to elbow net torque impulse was almost 

4% greater for dominant-arm movements as compared with nondominant-arm movements. 

Also, the contribution of elbow muscle torque impulse to net torque impulse was almost 

2% less for right-arm movements. However, these data were not statistically significant.  

Therefore, we did not find differences between the dominant- and nondominant-

arm for IT, MuTe, and MuTs and these results indicated that there was no torque 

advantage of the dominant-arm for both right- and left-handed participants. Rather, our 

data suggested that joint torques were highly related to a target position. That is, 

interaction torques and shoulder muscle torques decreased as target position moved away 

from the body midline, whereas elbow muscle torques increased as target position moved 

away from the body midline. These results indicated that a reduction in the control of the 

reach from a two-joint (shoulder and elbow) to a single-joint (elbow) movement occurred 

as target position moved away from the body midline. Overall, the torque impulse of the 

dominant-arm movement, as compared to the nondominant-arm movements, did not reveal 
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less elbow muscle torque at the elbow and greater elbow muscle torque at the shoulder. We 

also found no significant torque differences between elbows among left-handers. As a 

result, we failed to prove the DDH that elbow muscle torque contributed essentially less 

toward the dominant left elbow movements.  

In sum, our findings do not support the DDH, which suggest that the dominant arm 

is specialized for controlling limb dynamics to specify movement speed and hand-path 

curvatures. Also, our findings failed to prove the hypothesis that the nondominant arm is 

specialized for controlling final limb position during reaching movements. However, it 

should be noted that Sainburg’s model was predicted on studies that have measured 

intersegmental dynamics with similar speeds for both limbs and used more rapid 

movements, which are more likely to be dependent on the control of intersegmental 

dynamics (Bagesteiro & Sainburg, 2002; Haaland et al., 2004; Sainburg, 2002; Sainburg & 

Kalakanis, 2000). Our data indicated that right- and left-arm reaching movements occurred 

with different speeds for each arm. Therefore, it is still unclear whether the difference 

between Sainburg’s hypothesis and our data emerged from distinct hemispheric 

specialization or from a secondary effect of different kinematics. This notion was 

considered and applied in Study 2 by controlling for the speed of the reach. 
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CHAPTER III 

STUDY 2: LIMB ACTION 

 

Arguably, the Dynamic Dominance Hypothesis (DDH) is one of the most 

acknowledged perspectives in handedness studies. The DDH focuses on interlimb 

differences with the general idea that the two arms are differentially specialized for actions 

(Bagesteiro & Sainburg, 2002; Sainburg, 2002). More specifically, this notion proposes 

that each hemisphere limb system is specialized for selecting and controlling different 

features of a reaching action. In other words, even among strongly lateralized right-

handers, the non-dominant left limb is advantageous in specific situations. That is, the 

dominant arm is specialized for controlling limb dynamics as required to specify 

movement speed and hand-path curvatures, whereas the nondominant arm is specialized 

for controlling static limb position as required to specify the final position during reaching 

movements (Bagesteiro & Sainburg, 2002, 2003; Duff & Sainburg, 2007; Heuer, 2007; 

Sainburg, 2002, 2005; Sainburg & Kalakanis, 2000; Wang & Sainburg, 2007).   

The previous study (Study 1) did not support a generalization of the DDH to left-

handers. Thus, controlling limb dynamics and utilizing torques between the dominant- and 

nondominant-arm were not significantly different. In addition, the nondominant arm did 

not reveal advantages for controlling static limb position (final position) during reaches. 

Rather, the dominant arm showed better performance in final position accuracy. Therefore, 

we concluded that the view of the right-arm/left-hemisphere advantage was a more 

adequate explanation for limb difference rather than the DDH. Also, we found that the 
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DDH was an inadequate explanation for the limb selection phenomenon. As an alternative 

explanation, we suggested a reduction in degrees of freedom for reaching with regard to 

the Zero Zone hypothesis, indicating that participants primarily select the dominant arm 

unless kinematic and kinetic advantages for the nondominant arm exist. However, the 

difference between the DDH and our data was still unclear because we do not know 

whether this difference emerged from distinct hemispheric specialization or from a 

secondary effect of different kinematics. In the previous studies by Sainburg et al. 

(Bagesteiro & Sainburg, 2002, 2003; Duff & Sainburg, 2007; Sainburg, 2002, 2005; 

Sainburg & Kalakanis, 2000; Wang & Sainburg, 2007), most reaching movements were 

performed at the participant’s elected natural speed within an interval of 400-600 ms and 

the right and left hands showed a similar time course for all participants (Bagesteiro & 

Sainburg, 2002; Bagesteiro & Sainburg, 2003; Sainburg, 2002; Sainburg & Kalakanis, 

2000). Thus, Sainburg’s model suggests that more rapid movements may require a change 

in the control of intersegmental dynamics. In order to identify the difference between 

Sainburg’s hypothesis and our data, we designed Study 2 to examine the speed of the 

reaching action. That is, we manipulated limb speed using slow (1500 ms) and fast (550 

ms) moving targets. 

The primary intent of Study 2 was to examine the effect of a change in speed (from 

participant’s elected natural speed) on limb selection and in the underlying limb kinematics 

and kinetics. Furthermore, it is also important to understand how a change in speed affects 

the DDH as well as limb selection. Therefore, the purpose of this study was to explore the 

following questions: “Does a wide range of speed (slow and fast) affect limb selection?” If 
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so, “does a change in speed fit the DDH?”  Reaching movements were made to each of 

nine targets using free-choice and forced-choice paradigms in order to compare both arms. 

In order to identify the advantages of each arm, nine target positions were divided into five 

new positions for testing the DDH. Each new position consisted of two target positions, 

which produce anatomically and mechanically homologous movements for both arms. 

We predicted that the percentage of the dominant-arm use would increase when the 

fast target was presented. As a result, we assumed that a change in the limb switchover 

point between the dominant- and nondominant-arm would occur when the fast target was 

presented compared to when the slow target was presented. That is, the switchover point 

would shift further into the contralateral hemispace from the body midline when the fast 

target was presented. Also, we predicted that the free arm would show differences in 

amplitudes of joint angles compared to the forced arm. Thus, we predicted that a change of 

the switchover point in limb selection as a result of a change in speed would affect 

kinematic and kinetic variables. 

Method 

Participants 

10 right-handed and 10 left-handed adults, ages 19 to 23 years old, participated in 

the present study. The participation was limited to strong right- and left-handers; that is, 

only those individuals that used their right or left hand consistently with all four preference 

tasks as described in the Lateral Preference Inventory (Coren 1993). The experimental 

protocol and consent form were approved by the Texas A&M Institutional Review Board 

(IRB) for the ethical treatment of human subjects. The participants were informed of the 
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experimental procedures and risk level and voluntarily signed a consent form before 

participating in this study. 

Procedures 

 Procedures and apparatus were the same as shown in Study 1 except for the task. 

Contrary to participant’s elected natural speed in Study 1, the speed of reaching was 

controlled for this task. Participants were instructed to execute reaching movements in 

order to point to a circle target shown on a tabletop at 9 different positions: the body 

midline (labeled 90°), 80°, 70°, 60° and 50° to the left, and 100°, 110°, 120°, 130° to the 

right of the body midline. Participants were instructed to perform a reach and point action 

coincidently with a horizontally moving target that moved from the side of the display 

toward the stationary target (50 cm identical moving distance for all positions and 

participants). The slow (1500 ms) and fast (550 ms) moving targets were randomly 

presented regardless target circle position. The stationary target and the moving target were 

1 cm in diameter white circles displayed by a projector mounted in the ceiling (Fig. 18). 

Apparatus 

The same testing apparatus was used as described for Study 1. 

 

  



 56

 

Figure 18. View of the experimental set-up for Study 2. Acronyms indicate following: ӨE-
elbow angle, ӨS-shoulder angle. 
 
 
 
 
Data Analysis 

The same measures were used as described for Study 1.  

Results 

Limb Selection 

The percentage of free-choice reaches executed with the right hand as a function of 

Position (50° to 130°), Target Speed (slow vs. fast), and Handedness (right- vs. left-

handers) is illustrated in Figure 19. A three-way ANOVA revealed main effects for 

Handedness, F(1, 32) = 24.7, p < .01, and Position, F(8, 32) = 8.2, p < .01. Also, we found 

interactions of Handedness × Speed, F(1, 32) = 22.6, p < .01, Speed × Position, F(8, 32) = 

6.6, p < .01, and Handedness × Position,  F(8, 32) = 21.4, p < .01, with no other main 
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effects or interaction effects found. Simple main effect analysis for the Speed × 

Handedness interaction revealed that right-handers (67%) showed significantly greater 

right-arm use than left-handers (25%) for the fast target. Also, simple main effect analysis 

for the Speed × Position interaction revealed no differences of right hand use between the 

slow and fast targets for each position. Another simple main effect analysis for the 

Handedness × Position interaction revealed that right-handers had greater right-hand use 

than left-handers when reaching for positions 70° to 120°.  

Overall, with the fast target condition, our right-handed participants performed an 

equal number of free right-arm and free left-arm reaches to the position of 80°. Free left-

arm reaches dominated across positions 50° to 70° in left hemi-space, and free right-arm 

reaches dominated at position 90°, and from position 100° to 130° in right-hemispace. On 

the other hand, with the slow target condition, a similar profile was found in right-

hemispace but substantially different in left-hemispace. Thus, the crossover point of an 

equal number of free right-arm and free left-arm reaches occurred at position 80°. We also 

found that right-hand use increased in left-hand dominant hemispace compared to the slow 

target condition. This result indicated that target speed influenced limb selection preference 

and the fast target condition changed the crossover point 10° away from the body midline 

compared to the slow target condition (Fig. 19).  
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Figure 19. Percentage of reaches executed with the right arm for Study 2. The point on the 
abscissa corresponding to where the 50% line crosses the curve for each condition marks 
the point at where both hands were used equally often. 
 
 
 
 
Limb Kinematics 

Movement time (MT). In order to identify a relationship between limb selection and 

kinematics of limbs, we performed four-way ANOVAs for MT, %DT, EA, and SA as a 

function of Position (50° to 130°), Handedness (right- vs. left-handers), Speed (slow vs. 

fast), and Selection (Free vs. Forced). First of all, the ANOVA for MT revealed main 

effects for Handedness, F(1, 1926) = 142, p < .01, Speed, F(1, 1926) = 17546, p < .01, and 

Selection, F(1, 1926) = 223, p < .01. Thus, left-handers (863 ms), the fast target condition 

(456 ms), and the free-arm (867 ms) had shorter MTs than right-handers (944 ms), the 

slow target condition (1378 ms), and the forced-arm (938 ms). Simple main effect analyses 

for the Speed × Selection interaction F(1, 1926) = 28.2, p < .01, revealed that the free-arm 
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(423 ms) had shorter MTs than the forced-arm (490 ms) when reaching for the fast target. 

Also, the free-arm (1315 ms) had shorter MTs than the forced-arm (1452 ms) for the slow 

target. However, the differences between the free- and forced-arm were greater when 

reaching for the slow target (136 ms) than for the faster target (67 ms). Simple main effect 

analyses for the Handedness × Speed interaction, F(1, 1926) = 110, p < .01, revealed that 

left-handers (1305 ms) had shorter MTs than right-handers (1462 ms) only when reaching 

for the slow target, whereas there was no difference in MT between handedness groups 

when reaching for the faster target, p > .05. We also found a Position × Speed interaction 

F(8, 1926) = 2.4, p < .05, and a Position × Selection interaction F(8, 1926) = 2.5, p < .01. 

Simple main effect analyses for these interactions revealed that the free-arm was not 

significantly faster than the forced-arm for all positions, whereas the fast target showed 

shorter MTs than the slow target for all positions (Fig. 20). 

 

 

 

Figure 20. Movement times (MT) plotted as a function of Position, Speed and Selection 
for Study 2.  
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Deceleration time (%DT). The ANOVA for %DT revealed main effects for Position, F(8, 

1926) = 4.4, p < .01, Speed, F(1, 1926) = 699, p < .01, and Selection, F(1, 1926) = 5.9, p 

< .01. Thus, these results indicated that the free-arm (61%) and the slow target condition 

(67%) had greater time associated with deceleration than the forced-arm (59%) and the fast 

target condition (53%) regardless of Position and Handedness. Simple main effect analyses 

for the Speed × Selection interaction F(1, 1926) = 18.8, p < .01, revealed that the free-arm 

(55%) had greater %DT than the forced-arm (51%) when reaching for the fast target. 

However, the free-arm (67%) showed no difference in %DT from the forced-arm (68%) 

when reaching for the slow target. Another simple main effect analyses for the Handedness 

× Speed interaction, F(1, 1926) = 17, p < .01, revealed that left-handers (54%) had greater 

%DT than right-handers (52%)  when reaching for the fast target, whereas right-handers 

(69%) had greater %DT than left-handers (66%) when reaching for the slow target. Also, 

we found a three-way interaction for Position × Handedness × Selection, F(8, 1926) = 2, p 

< .05, Simple main effect analyses for the interaction revealed that for right-handers the 

free-arm had greater %DT than the forced-arm when reaching for position 50°, 60°, and 

130°. On the other hand, for left-handers the free-arm had greater %DT than the forced-

arm for position 50° and 120° (Fig. 21).  
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Figure 21. Percentages of deceleration times (%DT) plotted as a function of Position, 
Handedness, and Selection for Study 2.  
 
 

 

Joint angles (EA and SA). We found significant main and interaction effects for EA and 

SA as a function of Position, Handedness, Speed, and Selection. First, the ANOVA for EA 

revealed main effects for Position, F(8, 1926) = 32.6, p < .01, Handedness, F(1, 1926) = 

50.9, p < .01 and Selection, F(1, 1926) = 371.8, p < .01. We also found interactions for 

Position × Selection, F(8, 1926) = 18, p < .05, Handedness × Selection, F(1, 1926) = 17.1, 

p < .01, and a three-way interaction for Position × Handedness × Selection, F(8, 1926) = 

8.2, p < .01. Simple main effect analyses for the three-way interaction revealed that for 

right-handers the free-arm had significantly less EA than the forced-arm for positions 50° 

to 70°, and for positions 100° to 130°, whereas for left-handers the free-arm had 

significantly less EA than the forced-arm for positions 50° to 80°, and for positions 120° 

and 130° (Fig. 22). Another simple main effect analyses for the Handedness × Selection 

interaction, F(1, 1926) = 5.7, p < .05, revealed that the free-arm showed significantly less 
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EA than the forced-arm for both right-handers (56 vs. 65°, respectively) and left-handers 

(55 vs. 61°, respectively). However, the differences of EA between the free- and forced-

arm were greater for right-handers (9°) than for left-handers (5°) (Fig. 22). 

 

 

 

Figure 22. Elbow angle amplitudes (EA) plotted as a function of Position, Handedness, 
and Selection for Study 2.  
 
 

 

The ANOVA for SA revealed main effects for Position, F(8, 1926) = 2.9, p < .01, 

Handedness, F(1, 1926) = 20.7, p < .01, and Selection, F(1, 1926) = 1246, p < .01. Also, 

we found interactions for Position × Selection, F(8, 1926) = 69.3, p < .01, Handedness × 

Selection, F(1, 1926) = 28.6, p < .01, and a three-way interaction for Position × 

Handedness × Selection, F(8, 1926) = 21.6, p < .01. Simple main effect analyses for the 

three-way interaction revealed that for right-handers the free-arm showed significantly less 

SA than the forced-arm when reaching for positions 50° to 70°, and for positions 100° to 
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130°. On the other hand, for left-handers the free-arm had significantly less SA than the 

forced-arm for positions 50° to 80°, and for positions 110° to 130° (Fig. 23). 

 

 

 

Figure 23. Shoulder angle amplitudes (SA) plotted as a function of Position, Handedness, 
and Selection for Study 2. 
 
  

 

Movement Accuracy 

Final position error (PE). In order to identify movement accuracy advantage for the 

nondominant arm as indicated in the DDH, we performed separate four-way ANOVAs 

(ipsilateral and contralateal) for PE and DL as a function of 5 Position (Farthest: 50 and 

130°, Far: 60 and 120°, Near: 70 and 110°, Nearest: 80 and 100°, Middle: 90°), 2 

Handedness (right- vs. left-handers), 2 Speed (slow vs. fast), and 2 Hand (dominant vs. 

nondominant). First of all, for ipsilateral movements, the ANOVA for PE revealed main 

effects for Position, F(4, 1139) = 4.3, p < .01, and Speed, F(1, 1139) = 343.6, p < .01. We 
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also found an interaction for Position × Speed, F(4, 1197) = 3.3, p < .01. Simple main 

effect analyses for the interaction revealed greater accuracy in final position for the slow 

target compared to the fast target for all positions (Fig 24).  
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Figure 24. Final position error (PE) for ipsilateral movements plotted as a function of 
Position and Speed for Study 2.  
 
 

 

For contralateral movements, the ANOVA for PE revealed a main effect for Speed, 

F(1, 1015) = 188, p < .01. We also found an interaction for Handedness × Speed, F(1, 

1015) = 6, p < .05, and Handedness × Hand, F(1, 1015) = 5.5, p < .05. Simple main effect 

analyses for the Handedness × Speed interaction revealed that left-handers (1.2 cm) 

showed more accurate final position than right-handers (1.3 cm) for the fast target 

condition, whereas there was no significant difference of PE between handedness groups 

for the slow target condition. The simple main effect analyses for the Handedness × Hand 

interaction revealed that for left-handers the nondominant right-arm was more accurate 
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than the dominant left-arm, whereas for right-handers the dominant right-arm was more 

accurate than the nondominant left-arm (Fig 25).  
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Figure 25. Final position error (PE) for contralateral movements plotted as a function of 
Hand and Handedness for Study 2.  
 
 
 

 

Deviation from linearity (DL). For ipsilateral movements, the ANOVA for DL revealed 

main effects for Position, F(4, 1139) = 3.4, p < .01, Handedness, F(1, 1139) = 16.8, p < 

.01, Hand, F(1, 1139) = 5.3, p < .01, and  Speed, F(1, 1139) = 16, p < .01., and no 

interaction effects were found. These results indicated that the dominant-arm (0.17) 

produced a straighter hand-path than the nondominant-arm (0.18), that left-handers (0.17) 

had straighter hand-paths than right-handers (0.19), and that the slow target condition 

(0.17) had straighter hand-path than the fast target condition (0.18). Post-hoc analysis from 

the Position effect revealed that the position Middle was significantly different from the 

position Near, p < 0.5 (Fig. 26).   
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Figure 26. Deviation from linearity (DL) for ipsilateral movements plotted as a function of 
Position for Study 2.  
 
 
 

 

For contralateral movements, the ANOVA for DL revealed main effects for 

Handedness, F(1, 1015) = 29.8, p < .01, Hand, F(1, 1015) = 8.7, p < .01, and  Speed, F(1, 

1015) = 17.5, p < .01. We found an interaction for Handedness × Hand, F(1, 1015) = 53.4, 

p < .01, as well as a three-way interaction for Position × Handedness × Hand, F(4, 1015) = 

6.8, p < .01. Simple main effect analyses for the interaction revealed that for right-handers 

the dominant-arm had straighter hand-path than the nondominant-arm for position Farthest, 

Far, and Near. On the other hand, for left-handers the nondominant-arm had straighter 

hand-path than the dominant-arm for position Farthest and Far (Fig. 27).  
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Figure 27. Deviation from linearity (DL) for contralateral movements plotted as a function 
of Position, Handedness and Hand for Study 2.  
 
 
 
 
Limb Kinetics 

In order to identify efficient torque advantage for the dominant arm as indicated in 

the DDH, we performed separate four-way ANOVAs (ipsilateral and contralateal) for IT, 

MuTe and MuTs as a function of 5 Position (Farthest: 50 and 130°, Far: 60 and 120°, Near: 

70 and 110°, Nearest: 80 and 100°, Middle: 90°), 2 Handedness (right- vs. left-handers), 2 

Speed (slow vs. fast), and 2 Hand (dominant vs. nondominant).  

For ipsilateral movements, first of all, the ANOVA for IT revealed main effects for 

Position, F(4, 1139) = 46.8, p < .01, and Speed, F(1, 1139) = 9.4, p < .01, and an 

interaction for Position × Speed, F(4, 1139) = 7, p < .01. Simple main effect analyses for 

the interaction revealed that the fast target showed greater IT than the slow target for 

position Near, Nearest, and Middle (Fig. 28). 
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Figure 28. Interaction torque impulses (IT) for ipsilateral movements plotted as a function 
of Position and Speed for Study 2. 
 
 
 

 

The ANOVA for MuTe revealed a main effect for Position, F(4, 1139) = 5, p < .01, 

Speed, F(1, 1139) = 82.3, p < .01, and an interaction for Hand × Speed, F(1, 1139) = 3.8, p 

< .05. Simple main effect analyses for the interaction revealed that the dominant-arm (0.43 

Nms) had less MuTe than the nondominant-arm (0.48 Nms) for the fast target, whereas 

there was no difference between the dominant-arm (0.34 Nms) and the nondominant-arm 

(0.33 Nms) for the slow target (Fig. 29).  
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Figure 29. Muscle torque impulses of the elbow (MuTe) for ipsilateral movements plotted 
as a function of Hand and Speed for Study 2.  
 
 
 
 
 

For MuTs, we found a main effect for Position, F(1, 1139) = 139, p < .01, and 

interactions for Position × Speed, F(4, 1139) = 10.7, p < .01, and Hand × Speed, F(4, 

1139) = 5.8, p < .05. Simple main effect analyses for the Hand × Speed interaction 

revealed that the dominant-arm (-0.34 Nms) had greater MuTs than the nondominant-arm 

(-0.18 Nms) for the fast target, whereas there was no difference between the dominant-arm 

(-0.17 Nms) and the nondominant-arm (-0.23 Nms) for the slow target (Fig. 30). Also, 

simple main effect analyses for the Position × Speed interaction revealed that the fast 

target condition showed greater MuTs than the slow target condition for position Farthest, 

Near, Nearest, and Middle (Fig. 31). Overall, there were no main effects for Hand on 

MuTe and MuTs, p > .05, and these results indicated that there were no muscle torque 

advantages of the dominant-arm for both handedness groups. 
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Figure 30. Muscle torque impulses of the shoulder (MuTs) for ipsilateral movements 
plotted as a function of Hand and Speed for Study 2.  
 
 
 
 

 
Figure 31. Muscle torque impulses of the shoulder (MuTs) for ipsilateral movements 
plotted as a function of Position and Speed for Study 2.  
 
 

 

For contralateral movements, the ANOVA for IT revealed main effects for Position, 

F(4, 1015) = 8.9, p < .01, and Speed, F(1, 1015) = 27.7, p < .01, and an interaction for 
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Position × Speed, F(4, 1015) = 3, p < .05. Simple main effect analyses for the interaction 

revealed that the fast target showed greater IT than the slow target for position Far and 

Nearest (Fig. 32). 

 

 

 

Figure 32. Interaction torque impulses (IT) for contralateral movements plotted as a 
function of Position and Speed for Study 2.  
 
 

 

The ANOVA for MuTe revealed main effects for Position, F(4, 1015) = 7.1, p < 

.01, Hand, F(1, 1015) = 4.1, p < .05, Handedness, F(1, 1015) = 5.4, p < .05, p < .01, 

Speed, F(1, 1015) = 9.4, p < .01, and an interaction for Position × Speed, F(4, 1015) = 2.8, 

p < .05. Thus, the dominant-arm (0.25 Nms) had slightly less MuTe than nondominant-

arm (0.29 Nms) and simple main effect analyses for the interaction revealed that the slow 

target condition showed less MuTe than the fast target condition for position Farthest, 

Near, and Middle (Fig. 33).  
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Figure 33. Muscle torque impulses of the elbow (MuTe) for contralateral movements 
plotted as a function of Position and Speed for Study 2.  
 
 
 

 

For MuTs, we found main effects for Position, F(4, 1015) = 53, p < .01, and Speed, 

F(1, 1015) = 123, p < .01. Thus, the fast target (-1.78 Nms) showed greater MuTs than the 

slow target (-1.13 Nms) We found an interaction for Position × Handedness, F(4, 1015) = 

3.3, p < .01, and a three-way interaction for Position × Handedness × Hand, F(4, 1015) = 

2.4, p < .05. Simple main effect analyses for the interaction revealed that for right-handers 

the dominant-arm (-2.1 Nms) had greater MuTs than the nondominant-arm (-1.6 Nms) for 

position Far, whereas for left-handers there were no differences of MuTs between the 

dominant- and nondominant-arm for all positions (Fig. 34). We also found an interaction 

for Position × Speed, F(4, 1015) = 8.6, p < .01, and a three-way interaction for Position × 

Speed × Hand, F(4, 1015) = 2.6, p < .05. Simple main effect analyses for the interaction 

revealed that for the slow condition the dominant-arm (-2.1 Nms) had greater MuTs than 

the nondominant-arm (-1.5 Nms) only for position Farthest. For the fast condition, 
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however, we found no differences of MuTs between the dominant- and nondominant-arm 

for all positions (Fig. 35).   

 

 

Figure 34. Muscle torque impulses of the shoulder (MuTs) for contralateral movements 
plotted as a function of Position, Handedness and Hand for Study 2.  
 
 
 
 
 
 

 
 

Figure 35. Muscle torque impulses of the shoulder (MuTs) for contralateral movements 
plotted as a function of Position, Speed, and Hand for Study 2.  
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Interlimb differences in torque contributions illustrated by the stacked bar plots are 

shown in Fig. 36; measured as separate contributions to shoulder and elbow net torque.  

The contribution to NTe consisted of MuTe and IT, and the contribution to NTs consisted 

of MuTe in addition to MuTs and IT. In order to obtain torque impulses, original shoulder 

and elbow torques derived from the equations were integrated from movement onset to 

movement offset. Net joint torque was equal to the summed positive and negative bar plot 

height. With regard to speed, we found that reaches to the fast target made greater MuTe, 

MuTs, and IT regardless of positions and hands. We did not find a significant difference 

between the right and left hands for each joint torques, p > .05, but we found a substantial 

difference between NTe and NTs profiles. That is, NTe did not vary across target positions 

and did not show a difference between hands, whereas NTs varied across target positions. 

Thus, NTs decreased substantially as target position moved away from the body midline 

(90°). This result indicates that NTs are associated mostly with amplitudes of shoulder 

joint angle. The contributions of MuTe to NTe increased substantially as target position 

moved away from the body midline. Along with it, the contribution of IT decreased as a 

result of an increment in MuTe. On the other hand, there was no substantial variation in the 

contribution of MuTe to NTs. Thus, an increase in MuTs was the primary cause for an 

increase in NTs. Regardless of the target positions and speeds, the contribution of MuTe to 

NTe was a little smaller for right-arm movements as compared to left-arm movements, but 

not significant (p > .05). In other words, this data indicated that the contribution of MuTe 

and IT to NTe showed no significant difference between the right and left arm. On the 

contrary to the results of Sainburg et al., our data suggested that MuTe did not contribute 
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essentially less toward right elbow movements. As a result, we failed to support the DDH 

for the dominant right-arm advantages, as compared with the nondominant left-arm 

movements.  

 

 

A  

B  

Figure 36. Muscle and interaction torque impulse plotted as a contribution to net torque 
for the elbow joint (A: fast target, B: slow target) and for the shoulder joints (C: fast target, 
D: slow target) for Study 2.  
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Figure 36. Continued 
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Discussion 

The primary intent of Study 2 was to further investigate generalization of the DDH 

under conditions of controlled reaching speed, slow and fast. Also, this study further 

examined the difference between the DDH and our data with regard to the view that each 

hemisphere/limb system is specialized for unique processes. That is, the dominant arm 

system is specialized for controlling limb dynamics, and the nondominant arm system is 

specialized for controlling final limb position. More specifically, this study addressed the 

following questions: “will the speeds of the reach change limb selection?” If so, “does this 

change affect the control efficiency of the limb?”  

Limb Selection 

We predicted that the percentage of dominant-arm use would increase when the fast 

target was presented. As a result, we assumed that a change in the limb switchover point 

between the dominant- and nondominant-arm would occur when the fast target was 

presented compared to when the slow target was presented. That is, the switchover point 

would shift further into the contralateral hemispace from the body midline when the fast 

target was presented. Also, we predicted that the free arm would show differences in 

amplitudes of joint angles compared to the forced arm. Thus, we predicted that a change of 

the switchover point in limb selection as a result of a change in speed would affect 

kinematic and kinetic variables.  

As expected, we found that the target speed influenced limb selection preference. 

That is, our right-handed participants showed that their switchover point in limb selection 

was shifted 10° further into left-hemispace and our left-handed participants reveled that 
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their switchover point was shifted 10° further into right-hemispace when the fast target was 

presented. These similar hand preference profiles for both handedness groups indicated 

that target speed is a more influential factor in limb selection than target size and that this 

bias is substantially identical between handedness groups.  

The comparison of free- and forced-choice limbs in kinematics revealed a 

symmetric pattern in the %DT data as found in our previous study (Study 1). The %DTs of 

the free left-arm and the forced-right arm reaches started merging into position 80° in left-

hemispace and continuing up to 110°. Even with similar movement times for all positions, 

the free arm for the most lateral positions in hemispaces spent more time in the 

deceleration phase of the reach than the forced arm. For the medial positions of 80°, 90°, 

100°, and 110°, there were no differences between limbs with regard to the amount of time 

devoted to feedback processing that might occur in the deceleration phase of the reach. 

This symmetric pattern in our %DT data seems to be more associated with the amplitude 

advantages of elbow angle (EA) and shoulder angle (SA) rather than a limb switching 

pattern.  

More specifically, for right-handers, EAs of the free and forced limb were similar 

at positions of 80° and 90°. Also, SAs of the free and forced arm were similar at positions 

of 80° and 90°. These results were consistent with the findings from Study 1. As a target 

position moved away from the body midline, the freely selected reaches were generated 

primarily by single-elbow motion, indicating a significant reduction from two-joint to 

single-joint in upper-arm motion to move the hand. In the left-hemispace positions (50° to 

80°), all positions showed a significant difference in EA between limbs except position of 
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80°. The right-arm may have an advantage up to our 80° position. With shoulder angle 

amplitude getting smaller in the left-arm, the advantage switches at position 70° when 

object proximity and a reduction in joint amplitudes combine to favor the nondominant 

left-arm. Furthermore, we also found similar aspect at position 110° for left-handers. 

Therefore, a key feature of the limb switching phenomenon in our study seems to be more 

linked to a number of utilization of joints of the freely selected limb than to the times spent 

decelerating the limb.  

Another key finding with regard to the limb switching phenomenon is the existence 

of a zone that gives an equal amount of kinematic advantages for both arms. As shown in 

Study 1, we found the same Zero Zone in the present study. As the target was moved away 

from the body midline, the free-arm started showing greater control efficiency than the 

forced-arm. In other words, the free-arm had significantly efficient kinematics for positions 

50°, 60°, and 70° in left-hemispace and for positions 110°, 120°, and 130° in right-

hemispace among right-handed participants. We found this Zero Zone in joint kinematics 

such as EA (80° to 90°) and the SA (80° and 90°). A similar aspect was also found in our 

left-handed participants. However, the Zero Zone of left-handers was somewhat different. 

Thus, the Zero Zone was shifted 10 degree more away from the body midline into right-

hemispace compared to the Zero Zone of right-handers. Thus, we found the Zero Zone of 

left-handers with similar kinematics such as EA (90° to 110°) and SA (90° to 100°). For 

these positions, we found no differences in joint kinematics between the free- and forced-

arm. Therefore, our data defined the Zero Zone as positions of 80° and 90° for right-

handed participants and as positions of 90°, 100°, and 110° for left-handed participants. 
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After applying the concept of the Zero Zone to our target positions, for right-handers, our 

nine target positions can be divided into three different zones: 1) a Nondominant Zone (50°, 

60°, 70°), 2) a Zero Zone (80° and 90°,), and a Dominant Zone (100°, 110°, 120°, 130°), 

whereas for left-handers our nine target positions can be divided into three zones: 1) a 

Dominant Zone (50°, 60°, 70°, 80° ), 2) a Zero Zone (90°, 100°, 110°), and a Nondominant 

Zone (120°, 130°). The boundaries between the Nondominant Zone and the Zero Zone 

were consistent with the switchover points in limb selection for both handedness groups. 

The switchover point of left-handers was shifted 10 degrees more away from the body 

midline as compared to the one of right-handers. Also, the boundary between the Zero 

Zone and the Nondominant Zone of left-handers was shifted 10 degrees more away from 

the body midline as compared to the Zero Zone of right-handers. That is, the boundary of 

the Zero Zone into contralateral hemispace for right-handers was 10 degrees away from the 

body midline, whereas the boundary of the Zero Zone into contralateral hemispace for left-

handers was 20 degrees away from the body midline. This 10 degree difference between 

right- and left-handers was exactly consistent with the switchover points of both 

handedness groups in the limb selection. 

These findings are exactly consistent with the results of Study 1. Interestingly, 

however, when we analyzed joint kinematics separately as a function of speed, we found 

kinematic changes between the slow and the fast speed. That is, for the slow speed, the 

Zero Zones of our right-handed participants were positions of 80° and 90° for EA and 

positions of 80° and 90° for SA, which were identical with the overall results. Also, the 

Zero Zones of our left-handed participants for the slow speed were not different from the 
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overall Zero Zones. However, for the fast speed, the Zero Zones of both right- and left-

handers were shifted 10 degrees more into nondominant contalateral hemispace as 

compared to the Zero Zones for the slow speed. That is, the Zero Zones of right-handers 

were position 70° to 100° for EA and position 70° to 90° for SA while the Zero Zones of 

left-handers were position 90° to 120° for EA and position 90° to 110° for SA. Thus, the 

Zero Zones for EA and SA extended 10 degrees into nondominant contralateral hemispace 

for both handedness groups when the fast target was presented. The boundaries of these 

extended Zero Zones are substantially consistent with the switchover points of both 

handedness groups when the fast target was presented. 

We thus suggest that kinematic advantages with regard to joint utilization drive 

limb selection in the Nondominant Zone and the Dominant Zone. In other words, 

participants select their nondominant arm when kinematic advantages exist. On the other 

hand, when the kinematic advantages are equivalent for either hand (in the Zero Zone), it is 

plausible that there is no reason to select the nondominant-arm anymore, and instead the 

dominant-arm can be easily selected. We therefore conclude that kinematic advantages 

with regard to a reduction in degrees of freedom for limbs are the primary factor for the 

limb switching bias around 80° for right-handers and 110° for left-handers. With similar 

kinematic advantages (in the Zero Zone), motor dominance is the most influential factor 

for limb selection. In summation, kinematic advantages with regard to a reduction in the 

control of the reach from a two-joint to a single-joint movement seem to provide more 

adequate explanations for the limb selection phenomenon rather than the DDH. 
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Dynamic Dominance Hypothesis 

In Study 2, we did not find evidence to support the left-arm advantage of 

controlling final position based on the accuracy (PE and DL) data. Rather, the dominant 

right-arm (right-handers) and nondominant right-arm (left-handers) had more accurate 

final position for contralateral movements. These results of the occurrence of the right-arm 

advantage among right- and left-handers are more consistent with the view that reflects 

specialization of the dominant arm/hemisphere for the visual-mediated correction process 

(Carson, 1989; Flowers, 1975; Roy & Elliott, 1989; Todor & Cisneros, 1985). With regard 

to the dominant right-arm advantage in the dynamic control of the hand-path trajectory, we 

predicted that the right arm/left hemisphere system would reveal greater performance in 

dynamic control of the hand-path trajectory for both of the handedness groups. For 

ipsilateral movements, however, we found no difference between limbs in hand path 

curvatures for both handedness groups. Instead, we found that the hand-path trajectory 

increased as the target was moved away from the body midline. For contralateral 

movements, the left-arm disadvantage was revealed among right- and left-handers when 

the target was moved away from the body midline, indicating that the right-arm advantage 

was revealed more clearly when requiring more coordination of multi-segment dynamics. 

These results of final position accuracy and hand-path curvature contradicted the DDH and 

are more consistent with the view that the dominant right-arm/left-hemisphere system 

shows superior performance in terms of speed, accuracy, consistency, and control over the 

nondominant arm (Annett, Annett, Hudson, & Turner, 1979; Flowers, 1975; Roy, 1983; 

Roy & Elliott, 1989; Todor & Doane, 1978; Woodworth, 1899).  
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With inverse dynamic analysis, we found different muscle torque utilization 

between the dominant and nondominant arms at each joint. That is, the dominant arm 

showed less elbow muscle and greater shoulder muscle torques for ipsilateral movements 

when the fast target was presented, indicating that the dominant arm had better utilization 

of joints for the fast speed in which inter-segmental dynamic effects were small. In other 

words, for positions of Farthest and Far which produce mainly single-joint (elbow) 

movements for both limbs, the dominant arm employed not only the elbow but also the 

shoulder for reaching. These different muscle torque strategies did indicate the dominant-

arm advantage but did not indicate the right hand advantage difference because the 

dominant-arm data included both right-arm (for right-handers) and left-arm (for left-

handers). After separate observation of the data as a function of handedness, we found that 

the dominant arm showed less elbow muscle (or greater interaction) and greater shoulder 

muscle torque than the nondominant arm for both right- and left-handers. Therefore, these 

findings are more consistent with the DDH rather than the right hand/left hemisphere 

advantage. However, we did not find these results for contralateral movements as well as 

for the slow target condition. Because of these inconsistencies in the dominant arm 

hypothesis (i.e. fast versus slow, ipsilateral versus contralateral), we are not able to support 

the DDH. 

Rather, our data suggested that joint torques were highly related to a target position. 

That is, interaction torques and shoulder muscle torques decreased as target position 

moved away from the body midline, whereas elbow muscle torques increased as target 

position moved away from the body midline. These results indicated that a reduction in the 
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control of the reach from a two-joint (shoulder and elbow) to a single-joint (elbow) 

movement occurred as target position moved away from the body midline. Overall, the 

torque impulse for the dominant-arm movement, as compared to the nondominant-arm 

movements, did not reveal less elbow muscle torque at the elbow and greater elbow muscle 

torque at the shoulder. We also found no significant torque differences between elbows for 

each limb among left-handers. As a result, we hesitate to support the DDH that elbow 

muscle torque contributed essentially less toward the dominant right elbow movements.  

In sum, our data are more consistent with the view that the dominant right-arm/left-

hemisphere system shows superior performance in speed, accuracy, consistency, and 

control over the nondominant arm (Annett, Annett, Hudson, & Turner, 1979; Flowers, 

1975; Roy, 1983; Roy & Elliott, 1989; Todor & Doane, 1978; Woodworth, 1899). 

Although we found similarity in the dominant arm advantage between the DDH and our 

data for ipsilateral movements, we do not know whether this similarity was from the DDH 

or from the more traditional view. Rather, the data of final position accuracy and hand-path 

trajectory revealed the right hand superiority even among left-handers. Therefore, our data 

are more consistent with the view that the right-arm/left-hemisphere system shows superior 

performance in speed, accuracy, consistency, and control over the left-arm/right-

hemisphere (Annett, Annett, Hudson, & Turner, 1979; Flowers, 1975; Roy, 1983; Roy & 

Elliott, 1989; Todor & Doane, 1978; Woodworth, 1899). 

 

 

 

  



 85

CHAPTER IV 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 
 
 

General Discussion 

This study was inspired by the work of Gabbard and colleagues (2001, 2003, 2004) 

that revealed limb selection changes from dominant-arm to nondominant-arm around an 

object position of 70° for right-handers and 110° for left-handers after passing the body 

midline (90°) into contralateral hemispace. The research questions for this study were 

posed to examine the generalization of the Dynamic Dominance Hypothesis (DDH) in 

regard to limb dominance, limb selection, and limb action. The presented studies asked the 

following questions: can the DDH explain why people select their nondominant hand for 

reaching into their contralateral hemispace? (Limb selection) Do predictions of the DDH 

hold for right- and left-handers? (Limb dominance) Do propositions of the DDH apply to 

different reaching speeds? (Limb action)  

More specifically, the purpose of Study 1 was to investigate the relationship 

between limb selection and the DDH among both handedness groups. Thus, Study 1 

addressed the following questions: Can the DDH explain why people select their 

nondominant hand for reaching into their contalateral hemispace? Do predictions of the 

DDH hold for right- and left-handers? Based on the DDH, we predicted that the dominant 

arm would show advantages of controlling limb dynamics, and the nondominant arm 

would reveal more accurate final positioning for both of the handedness groups. In limb 

selection analyses, we predicted that the selected limb would show faster movement times 
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and be more accurate with more contribution of interaction torque to limb motion than the 

unselected limb in both handedness groups. Furthermore, we also predicted that the 

transition point in limb selection between the two hands would correlate with the point 

where certain kinematic and kinetic variables were identical. The primary intent of Study 2 

was to further investigate a generalization of the DDH for reaches of different speeds (slow 

and fast). Furthermore, this study examined whether a change in speed for reaching 

movements can influence limb selection. Therefore, we designed slow and fast reaching 

movements in order to increase task difficulty, as opposed to participant’s elected natural 

speed in the previous studies. Based on the design of Study 2, we predicted that the right 

arm/left hemisphere system would reveal greater performance in dynamic control of the 

hand-path trajectory for both handedness groups. For both Study 1 and Study 2, reaching 

movements were made to each of nine targets using free-choice and forced-choice 

paradigms.  

In regard to our initial question 1: Can the DDH explain why people select their 

nondominant hand for reaching into their contralateral hemispace? (Limb selection) As 

one of the attempts to address the question, Stins et al., (2001) suggested that the point 

where participants switched from a dominant to a nondominant arm was associated with 

the point where the deceleration times of both hands were equal. This hypothesis implies 

that limb choice is related to limb kinematics. In our previous study, however, we found 

the similar switchover point where the deceleration times of both hands were equal in both 

right- and left-hemispace, indicating a symmetric effect by joint utilization as contrasted 

with efficient feedback processing. Therefore, we concluded that limb selection was 
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related to advantages linked to a reduction in the control of reaching from a two-joint to a 

single-joint movement, rather than control efficiency with regard to the amount of time 

devoted to feedback processing that might occur in the deceleration phase of the reach. 

Moreover, the positions of 80° did not seem to be linked to any biomechanical limits (Kim 

et al. 2007). Furthermore, a recent selection study from our lab revealed that random and 

systematic target placement conditions did not influence limb selection preference among 

strong right-handed participants. In other words, the frequency of dominant right use in 

limb selection intersected consistently around the positions of 80° regardless of the three 

object positioning conditions, indicating the bias was not a function of previous limb 

selection. If the DDH can explain why people select their non-preferred (nondominant) 

hand instead of the preferred (dominant) hand, an increase of the non-preferred hand use 

must appear when accuracy demands are high because of the nondominant arm advantages 

of controlling end-point accuracy based on the DDH. However, in the present study, we 

did not find this change when our small or fast targets were presented. Also, the 

nondominant arm advantages of accurate limb position did not appear even when the non-

preferred hand was dominantly used at positions far from the body midline. Rather, the 

preferred hand had more accurate final position. Therefore, the DDH is an inadequate 

explanation for the limb selection phenomenon. Instead, kinematic advantages with regard 

to a reduction in the degrees of freedom for limbs are the primary factor for the limb 

selection phenomenon. With similar kinematic advantages (in the Zero Zone), motor 

dominance is the next influential factor for limb selection. In summary, kinematic 

advantages with regard to a reduction in the control of reaching from a two-joint to a 
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single-joint movement seem to be a more fundamental cause for the limb selection 

phenomenon rather than the DDH. Also, our data reveal that kinematic differences 

between right- and left-handers with regard to the utilization of joints for reaching are 

related to limb selection characteristics between right- and left-handers.  

With regard to question 2: Do predictions of the DDH hold for right- and left-

handers? (Limb dominance) Basically, we did not find the distinct features of the DDH for 

either our right- or left-handers. In Study 1, we found that the dominant arm had even more 

accurate final position than the nondominant arm for right-handers, whereas there was no 

difference between limbs for left-handers. Also, we found that our right-handers had more 

accurate final position than our left-handers. In Study 2, the dominant right-arm (for right-

handers) and the nondominant right-arm (for left-handers) had more accurate final position 

than the opposite hands. These results contradicted what would be expected based upon the 

DDH (which would predict differing results based on the postulate that arm advantages 

were the dominant factor.) With regard to the dominant right-arm advantage in dynamic 

control of the hand-path trajectory, as shown in the final position accuracy data, the 

dominant right-arm (right-handers) and the nondominant right-arm (left-handers) had even 

straighter hand-paths than the opposite hands. For ipsilateral movements, however, we 

found no difference between limbs in the hand path curvatures for both handedness groups. 

Instead, we found that the hand-path trajectory increased as the target was moved away 

from the body midline. For contralateral movements, the left-arm disadvantage was 

revealed among right- and left-handers when the target was moved away from the body 

midline, indicating that the right-arm advantage was revealed more clearly when requiring 
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more coordination of multi-segment dynamics. This result of the occurrence of the right-

arm advantage among right- and left-handers suggests that handedness is substantially 

related to the view that reflects specialization of the right-arm/hemisphere for visually-

mediated correction process (Carson, 1989; Flowers, 1975; Roy & Elliott, 1989; Todor & 

Cisneros, 1985). We did find that this right-arm/left-hemisphere advantage was revealed 

more clearly among right-handers rather than left-handers and that right-handers showed 

better performance in final position accuracy than left-handers. This finding suggests that 

our left-handed data were consistent with one important implication from the right arm/left 

hemisphere advantage hypothesis in visually guided reaching and aiming movements.  

That is, failure to develop right-hand preference might reflect a failure to optimize the 

visuomotor control. In other words, people who show left- or mixed-hand preference might 

be at a disadvantage for the performance of tasks that stress visuomotor coordination of 

multi-segment dynamics with the dominant arm (Grouios, 2006) 

In regard to the question 3: Does the DDH hold for a wide range of speeds? (Limb 

action) Because left-handers had shorter total movement times than right-handers in Study 

1, indicating that left-handers had disadvantage in visual-mediated correction process, we 

suspected that this contradiction to the DDH might result from different movement times 

between dominant- and nondominant-arm reaching. Therefore, in Study 2, we designed 

similar movement time for both limbs using a timing task. As generally expected by the 

design of the task, movement times of each limb corresponded exactly with speeds of the 

moving targets (fast: 550 ms vs. slow: 1500 ms). Even with the similar movement times, 

we still did not find the nondominant arm advantage of the DDH for both of the 
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handedness groups. With regard to the dominant arm advantage in controlling limb 

dynamics, we generally found no evidence to support the dominant arm advantage 

predicted by the DDH. The data of Study 1 were substantially different from the data of 

Study 2. In Study 2, we found the dominant arm advantage as compared to the 

nondominant arm only when the fast target was presented. However, there was no 

difference between limbs in Study 1 and Study 2 with the slow target. This inconsistency 

may be caused by different movement times of reaches between Study 1 and Study 2 as 

well as between the fast and slow targets. Study 1 and our slow target condition in Study 2 

had enough time for both limbs to execute reaches with error correction through visual 

feedback processing. That is why no differences in the dominant arm advantages between 

limbs occur in Study 1 and the slow target condition in Study 2. Therefore, the 

nondominant arm advantages of controlling limb position as well as the dominant arm 

advantages of controlling trajectory were not revealed in our studies. Also, the dominant 

arm advantage shown in the fast condition in Study 2 could be significant evidence for the 

right-hand/left-hemisphere superiority rather than the DDH. In summary, our data indicate 

the DDH does not hold for either slow or fast speed in reaching movements. Rather, a 

change in kinematics with regard to utilization of joints in reaching movements is 

associated with movement speed.  

The results from Study 1 and Study 2 combine to produce one of the most 

significant findings in these present studies. Specifically, there is close correlation between 

limb selection phenomenon and control efficiency. Both studies revealed that limb 

selection is highly associated with control efficiency (i.e. efficient joint utilization). 
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Interestingly, as we discussed earlier, kinematic changes due to a change in speed 

corresponded to limb selection changes due to a change in speed. That is, in Study 1, our 

target size (small vs. big) did not influence limb selection, and control efficiency did not 

show differences between the small and big targets. In contrast with respect to Study 2, our 

target speed (slow and fast) influenced limb selection and control efficiency between limbs 

due to the differences between the slow and fast targets. While our previous work 

addressed hand dominance, hemispheric bias, and object proximity as possible factors in 

limb selection, none of these views explained why the switchover points occurred around 

the position of 80° for right-handers and the position of 100° for left-handers. Therefore, 

our findings contradict the traditional view (limb dominance) as well as more 

contemporary views (hemispheric bias or object proximity) as possible explanations for the 

limb selection phenomenon. In contrast to the previous explanations for limb selection, the 

present set of studies demonstrates that control efficiency is the primary cause for limb 

selection. The broader question we address here is how people select, from all potential 

movements and control options, those that are most adaptive or suitable in terms of 

meeting the task’s requirements, as mentioned in the study of Stins et al. Our interpretation 

for an answer is motivated by two perspectives. The first of those reflects the energetics of 

movements. That is, changes to the biomechanics of novel gross-motor tasks over trials 

have been observed in correlation with changes in metabolic energy cost (Sparrow, Hughes, 

Russell, & Le Rossignol, 2000; Sparrow & Newell, 1998; Todorov & Jordan, 2002). For 

example, in the studies of walking on hands and feet on a motor-driven treadmill, 

metabolic energy expenditure was shown to decline over trials when walking speed and 
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trial duration remained unchanged (Sparrow & Irizarry-Lopez, 1987; Sparrow & Newell, 

1994). More recently, in a study using an ergometer rowing task, the metabolic energy cost 

decreased over trials when investigators fixed the task demands by maintaining a constant 

external power output (Lay, Sparrow, Hughes, & O’Dwyer, 2002; Sparrow, Hughes, 

Russell, & Le Rossignol, 1999). Although, in our studies, we did not directly measure 

metabolic energy cost, there is no doubt that less shoulder and elbow angle amplitudes 

indicate low energy cost compared to greater angle amplitudes. Also, a recent study 

supported this idea that the kinematics and metabolic costs are strongly correlated (Lay, 

Sparrow, & O’Dwyer, 2005). The second of those perspectives concerns the coordination 

dynamics or dynamic pattern approach (Kelso, Buchanan, & Murata, 1994). In particular, 

this idea has been found in that tradition of the cognitive or attentional energy of 

maintaining interlimb coordination patterns (Temprado, Zanone, Monno, & Laurent, 1999). 

There, two perspectives are related to each other but, until recently, they have been 

independent areas of research. In a recent study, Lay, Sparrow, and O’Dwyer (2005) 

measured not only attentional variables but also the metabolic energy cost of performing a 

high-energy, intrinsically unstable, 90° relative phase coordination pattern. That is, as the 

kinematic error of the target relative phase pattern decreased with practice, the metabolic 

energy cost and the attentional demand also reduced. This finding suggested a link 

between control efficiency and the metabolic and attentional costs of coordination. 

Another key finding in the present studies is evidence for the right hand/left 

hemisphere advantage. With regard to limb differences in the control of reaching, the DDH 

is one of the most recognized contemporary theories and a widely accepted explanation for 
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limb difference. However, our data did not reveal evidence to support the DDH. Rather, 

our data are consistent with the right-hand superiority effect. To account for the superiority 

of the right arm, many attempts have focused on the processing characteristics of the 

contralateral or left cerebral hemisphere (Elliott & Chua, 1996). Three main hypothesis of 

the right hand advantage for reaching movements have emerged in the literature. The first 

proposes that the right-arm superiority is because of a more effective and consistent motor-

programming capacity of the left hemisphere (Roy & Elliott, 1989; Carson, Chua, Elliott, 

& Goodman, 1990). Due to this advantage, the right arm shows less variability in the 

selection and specification of appropriate muscular forces (Annett et al., 1979) or greater 

precision of force modulation (Peters, 1981). The second hypothesis suggests that the 

right-arm advantage is based on a specific capacity of the left cerebral hemisphere to 

process visual feedback from the ongoing movement (Flower, 1975; Todor & Cisneros, 

1985). In particular, the right hand is thought to be associated with a neural substrate, 

which may more effectively use sensory information (Flower, 1975; Todor & Doane, 

1978). The last hypothesis indicates that the right hand has an advantage because right-

handers distribute their attentional resources more directly toward the right hand when they 

perform goal-directed movements (Roy & Elliott, 1989; Helsen, Starkers, Elliott, & 

Buekers, 1998). Thus, this assumption suggests that attentional biases are directed towards 

the right hand during tasks that require both hands to move simultaneously (Peters, 1981). 

Our data are more consistent with those hypotheses of the right hand advantage. First of all, 

our right- and left-handed participants showed more accurate final position and straighter 

hand-path for the right arm compared to the left arm, regardless of limb dominance. This 
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finding has led to the assumption that the right-hand/left-hemisphere advantages for the 

efficacy of visual-feedback corrections give accuracy advantages to the right hand. Also, 

our data reveal no difference in final position accuracy between limbs for left-handers, and 

this finding is consistent with one important prediction from the right hand advantage. That 

is, interlimb differences in movement accuracy tend to be reduced when movements are 

performed with shorter executing time, indicating a reduction in the role of visual-feedback 

corrections (Flowers, 1975). In other words, no difference in accuracy between limbs for 

left-hander implies that this prediction is true. Finally, we found that left-handers showed 

shorter movement times than right-handers, regardless of hand, target condition, and 

position. This finding is more consistent with a hypothesis, which reflects an attentional 

advantage of left hemisphere. Furthermore, results to support for the attentional 

explanation of limb differences were revealed in recent studies, which indicated that goal-

directed movements are actually initiated more quickly with the left hand for right-handers 

because of distributing attentional resources more directly toward the right hand. As a 

result, our left-handers were able to produce relatively faster movements compared to 

right-handers. 

 Finally, in the quest to better understand the determinants of limb selection for 

reaching, our data support the Energy-Minimization Hypothesis as Sparrow and Newell 

(1998) proposed that in response to task-environment constraints, the emergent pattern of 

limb selection or limb coordination may be the one that minimizes demands on the 

organism’s limited energy resources. With respect to limb difference and handedness in the 
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control of reaching, we agree to a view, the Dominant Hemisphere Hypothesis rather than a 

more contemporary view, the Dynamic Dominance Hypothesis. 

Conclusions 
 

Based on the obtained results and limitations of this investigation, the following 

conclusions seem warranted: 

1. Can the DDH explain why people select their nondominant hand for reaching 

into their contralateral hemispace? Similar hand preference profiles indicate that limb 

selection is a substantially identical phenomenon for right- and left-handers. That is, limb 

selection change from dominant-arm to nondominant-arm occurs around an object position 

of 80° for right-handers and 100° for left-handers after passing the body midline (90°). Our 

data suggest that limb selection corresponds to control efficiency associated with a 

reduction in the control of the reach from a two-joint to a single-joint movement. Therefore, 

control efficiency with regard to a reduction in degrees of freedom in reaching movements 

seems to be a more adequate explanation for limb selection phenomenon rather than the 

DDH. However, this finding does not discount earlier suggestions of an attentional 

(perceptual) effect related to object proximity from the performer. 

2. Do predictions of the DDH hold for right- and left-handers? In the context of 

our task, we found no evidence to support the DDH either for right- or left-handers. That 

is, our data do not support the propositions that the dominant arm is specialized for 

controlling limb dynamics and that the nondominant arm is specialized for controlling final 

limb position. Rather, we found differences between right- and left-handers with regard to 

utilization of shoulder and elbow joints. That is, the free-arm of right-handers had no 
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advantage of utilization of the same joints compared to the forced-arm until position 80° 

into left-hemispace from the body midline. On the other hand, the free-arm of left-handers 

had no advantage of utilization of shoulder and elbow joints compared to the forced-arm 

until position 100° into right-hemispace from the body midline. Therefore, our findings 

suggest that kinematic differences between right- and left-handers with regard to utilization 

of joints in reaching movements seems to be a more reasonable explanation for limb 

dominance (handedness) rather than the DDH.  

3. Does the DDH hold for a wide range of movement speed? Our data suggest that 

target speed is a more influential factor than target size in limb selection. A change in 

speed shifts the limb switchover point 10 degree further from the body midline. This shift 

in the switchover point alters limb kinematics (i.e. elbow and shoulder angle amplitude) 

and the kinematic changes are consistent with the limb selection profiles for both 

handedness groups. Even with different movement speeds, no differences in final position 

accuracy and limb dynamics occurred between the dominant- and nondominant-arm. 

Therefore, our data suggest that the DDH does not hold for either slow or fast speed in 

reaching movements. Rather, a change in kinematics with regard to utilization of joints in 

reaching movements seems to be more associated with limb action (speed) rather than the 

DDH. 

4. Overall, our attempts to explore fundamental questions about the relationship 

between limb selection, limb dominance (handedness), limb action (speed) and the DDH 

reveal that control efficiency with regard to a reduction in degrees of freedom in reaching 

movements seems to be a more fundamental cause for the limb selection phenomenon 
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rather than the DDH. Also, our data reveal that kinematic differences between right- and 

left-handers with regard to utilization of joints for reaching explain limb dominance. 

Finally, our data suggest that a change in kinematics with regard to utilization of joints is 

highly associated with movement speed. In conclusion, our data indicate that the DDH is 

an inadequate explanation of differences in limb selection, limb dominance (handedness), 

and limb action (speed). Rather, our findings with regard to control efficiency seem to be 

more fundamental and justified explanations for limb differences in the control of the reach 

based on the context of our task.  

Recommendations 

Although the present studies addressed several prominent questions, our 

conclusions were limited to some features. First, despite the fact that we found differences 

between our data and the DDH, there remains a possibility that participants in every trial 

did not thoroughly perform constant reaching movements from the start to the end. This 

study was also limited in the context of a reaching task used by our participants. Our 

reaching task was not identical to the movements Sainburg employed in his studies. 

Another limitation is that our experiments for investigating the DDH only examined an 

aspect of the DDH. That is, our studies pursued only the dominant and nondominant limb 

advantages, instead of interlimb differences in control of movement extent and interlimb 

transfer of motor learning. We did not examine those features of the DDH in the present 

studies, and thus we cannot comment generally with respect to those aspects of the DDH. 

Finally, our paradigm, due to its behavioral nature, could not depict the areas of the brain 

involved in the dominant and nondominant limb/hemispheric systems. 
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In regard to the extension of this work, future studies should investigate the extent 

to which original tasks, as shown in Sainburg’s studies, might be employed and to which 

more various tasks such as bimanual tasks can be utilized in future studies. Another 

extension of this work is to test the rest of the DDH features. That is, we did not 

investigate interlimb differences in control of movement extent and interlimb transfer of 

motor learning. Therefore, it is worthwhile to examine various distant reaching movements 

through learning procedures. If we find additional evidence to support the DDH through 

various tasks, it could be a hint toward understanding the differences we found in the 

present studies and would also allow a reexamination of the present conclusions. 
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