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ABSTRACT 

 

Spectral Slicing Filters in Titanium Diffused Lithium Niobate (Ti:LiNbO3). 

 (December 2008) 

Renato Cunha Rabelo, B.S., Instituto Tecnológico de Aeronáutica; 

M.S., Instituto Tecnológico de Aeronáutica

Chair of Advisory Committee: Dr. Ohannes Eknoyan 

 

A tunable guided-wave optical filter that performs spectral slicing at the 1530nm 

wavelength regime in Ti:LiNbO3 was proposed and fabricated.  It is aimed at 

minimizing crosstalk between channels in dense wavelength division multiplexing 

(DWDM) optical network applications.  The design utilizes a sparse grating allowing the 

selection of equally spaced channels in the frequency domain. Between selected 

channels, equally spaced nulls are also produced.  The sparse grating is formed by using 

N coupling regions with different lengths along the direction of propagation of light in 

the waveguide, generating N-1 equally spaced nulls between adjacent selected channels. 

The distance between the centers of adjacent coupling regions is kept constant. The 

filtering is based on codirectional polarization coupling between transverse electric (TE) 

and transverse magnetic (TM) orthogonal modes in a waveguide through an overlay of 

strain-induced index grating, via the strain-optic effect. 

Two types of devices were fabricated. In the first type, the sparse gratings were 

produced on straight channel waveguides. Selected channels emerge from the device in a 
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polarization state orthogonal to the input and a polarizer is needed to observe the filtered 

light.  For the second type, an asymmetric Mach-Zehnder interferometer configuration 

was used to eliminate the need of the polarizer at the output, and yields an output 

response that is polarization independent. 

Both types of devices were fabricated on x-cut y-propagating LiNbO3 substrates, 

with 6N =  strain-induced coupling regions.  The single mode channel waveguides were 

formed by Ti diffusion.  Electrode patterns centered about the optical waveguide were 

defined by liftoff.   

In the straight channel devices, insertion loss was less than 2.5 dB on a 43 mm 

sample.  The 3-dB channel bandwidth of the selected channels is approximately 1.0 nm.  

Devices were tuned thermally as well as by voltage application to surface electrodes 

resulting in tuning rates of 1.0 nm/oC and 0.04148 nm/V, respectively. 

In the polarization independent device the insertion loss for the phase-matched 

wavelength was 5.3 dB on a 53 mm long chip. The 3-dB bandwidth was also ~1.0 nm 

and the thermal tuning rate 1.0 nm/oC. The experimental results are in good agreement 

with design theory. 
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CHAPTER I  

INTRODUCTION 

 

The impact of broadband communications in today’s society is undeniable. It has 

changed the way people communicate with each other; acquire information, shop and do 

other activities.   

Most of the communication traffic for those activities is performed through the 

internet. Many believe that the internet would not be what it represents to us today had it 

not been for the fiber optic communications.  Today it is possible either to send data, 

from a bank transaction or an online purchase; sounds, from a voice over Internet 

Protocol (VoIP) phone call or images from a High Definition (HD) TV signal, to 

mention a few examples, all through the same media, most probably at the same time, 

with high reliability and quality. 

It should also be noted that there is also a constant increase in the final consumer 

demand for higher quality, higher fidelity and as a consequence higher bandwidth 

communications.  

Fiber optic communication was able to deliver the bandwidth needed in the early 

days of the broadband communication era and is likely to continue providing bandwidth 

for the increased consumer demand because of its high carrier frequencies (~100 THz) 

and achieved low signal attenuation (0.2 dB/km @ λ=1550 nm) [1-3].  

 
________________ 
This dissertation follows the style and format of IEEE Journal of Lightwave Technology. 
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Therefore the demand for systems which could harness the bandwidth available 

in fiber optic communication systems has always been the drive to the research and 

development of new devices that would enable a whole system to perform the task. 

In the early days of fiber optic communications, despite the huge channel 

bandwidth available, not much of that was used. Only one wavelength was sent down the 

fiber and the maximum attainable transmission rate was limited by how fast the light 

source output could be modulated, most often in a digital manner, by switching it on and 

off. This was limited to a few hundreds of megabits per second, and reached its peak 

around some tens of gigabits per second when employing a modulator external to the 

source in a scheme named indirect modulation. 

On the single wavelength regime of the early fiber optic systems, fiber optic 

dispersion and attenuation prevented the optical signal from being transmitted over long 

distances using one single length of fiber. After traveling some maximum length the 

optical signal needed detection (optical to electrical conversion), regeneration in the 

electrical domain (to restore original shape) and a conversion back to the optical domain, 

before it could be coupled to and continue its path on another length of fiber. The 

complexity of this process hindered efforts in sending more than one wavelength down 

the fiber, because it would mean a geometric increase in the optical and electronic 

components at all detection-regeneration sites. 

The advent of Erbium Doped Fiber Amplifiers, EDFA for short, enabled part of 

the regeneration to be done for multiple wavelengths at the same time. Although it only  
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Fig. 1. Schematic diagram of a WDM optical link. 

 

provides amplification as a form of restoring the amplitude of attenuated signals, not 

dealing with the distortion caused by dispersion, it enabled the first implementations of  

Wavelength  Division  Multiplexing, WDM  for  short.  In this approach, instead of 

sending light carrying digital information down the fiber by using just one wavelength 

switched at a fixed bit rate; information is sent over a number of wavelengths, each 

carrying an independent communication channel, multiplying the possible bit rate carried 

by the fiber, called the aggregate bit rate. Fig. 1 shows a schematic diagram of a WDM 

system. 

More recently with the advancement of the component technology by producing 

tunable lasers, narrowband optical filters, and other devices, it was possible to pack 

optical channels even closer together in a technique since then called Dense Wavelength 

Division Multiplexing, or DWDM for short. One of the early recommendations of ITU-T 

on DWDM, the G.692, defined 43 wavelength channels, from 1530 to 1565, with 100 
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GHz spacing between channels, each channel carrying 10 gigabit per second signal, 

resulting in an aggregate bandwidth of 430 Gbps [4]. 

Nowadays, commercial systems with more channels, up to 128, and transmission 

rates up to 40 Gbps, resulting in aggregate bandwidths on the order of some Tbps can be 

obtained on a single fiber. 

From these facts, one can conclude that the feasibility of a DWDM optical 

network is intimately related to the ability of multiplexing and launching many 

wavelengths in one fiber, then at the receiving end, be able to demultiplex and detect 

each and every one of the channels. In addition to that, the devices that are included in 

the light path do not perform the same way over that bandwidth, either in amplitude or 

dispersion wise. 

Therefore a DWDM optical network demands devices capable of filtering the 

individual channels respecting strictly defined pass bands and stop bands; in some cases 

wavelength sensitive routing devices; devices capable of compensating optical dispersion 

for different wavelengths at the same time, and also devices capable of compensating 

wavelength dependent losses in the system as well as wavelength dependent gains in 

EDFA’s. Those are still some of the ongoing research efforts to enable DWDM, with 

ever increasing channel density. Generically speaking, DWMD systems must rely on 

very strict response optical filters. 

Optical Filters have many possible realizations which must encompass network 

requirements such as merit figures, capacity of operating with already deployed systems,  
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Table 1. Characteristics of some tunable filters. 

Filter Category -3 dB 
Bandwidth Tuning Range Tuning Time Tuning 

mechanism 
Fiber Fabry-Perot 

(FFP) < 0.5 nm ~ 10 nm ms PZT 

Fiber Bragg 
Gratings (FBG) < 0.2 nm < 10 nm ms Thermal 

Arrayed 
Waveguide 

Grating (AWG) 
< 0.2 nm ~ 40 nm ms Thermo-optic 

Micromachined 
Fabry-Perot < 0.5 nm ~ 100 nm μs Mechanical 

Acusto-Optically 
Tunable Filter 

(AOTF) 
~ 1 nm 250 nm μs Acouto-optic 

Electro-optically 
Tunable Filter 

(EOTF) 
~ 1 nm ~ 20 nm ns Electro-optic 

 

wavelength region of operation, fabrication costs, low power consumption, ability of 

being reconfigured as well as easiness to perform it, and others. 

Among the optical tunable filters, those with smallest response time to a tuning 

excitation are the ones attracting more interest because they would enable a future 

dynamically varying DWDM network, in which packet switching and wavelength 

routing will be routine operations. Table 1 summarizes the important characteristics of 

the various reported technologies [5]. 

From that table, it can be seen that the electro-optically tunable filter places as 

one of the fastest response time devices. There is still ongoing research on devices of that 

category as well as on the competing technologies. 

Research activities at Texas A&M University have demonstrated electro-optic 

tunable filters employing Ti-diffused waveguides in lithium niobate substrate 
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(Ti:LiNbO3). These devices perform optical filtering by using co-directional TE-TM 

mode conversion. The coupling between these two modes is accomplished by using a 

phasematched strain-induced overlay grating of a silica (SiO2), deposited at high 

temperature and patterned at room temperature. The difference in SiO2 and LiNbO3 

thermal expansion coefficients will guarantee the existence of a strain field, which in turn 

generates a periodic refractive index grating in the waveguide through the strain-optic 

effect. By properly choosing the SiO2 film deposition parameters as well as waveguide 

fabrication parameters and grating period, the polarization conversion is made efficient. 

 Recent results showed devices with nanosecond tuning speed and bandwidth of 

2.3nm [6-7] for polarization conversion in the 1.55μm wavelength regime. Also, another 

electro-optic tunable filter, having a narrower bandwidth of 1.56nm was obtained by the 

use of a longer polarization coupling region [8]. 

When uniform gratings are used, the polarization conversion efficiency has a well 

known frequency spectral response which does not present equally spaced nulls and 

maxima through the optical bandwidth of interest. Making these features appear 

regularly in the spectrum makes it easier to define channel regions in the 

communications spectrum and avoid crosstalk between those. 

In order to circumvent the problem of unequally spaced nulls and maxima, a new 

topology of sparse strain gratings was proposed. It is capable of placing the nulls of the 

spectrum at well known, equally spaced positions, defining channel spectral regions in 

the stop band and pass band of the filter [9]. 
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The main purpose of this work is to show the viability of making strain-induced 

polarization conversion filters that employ the sparse grating idea in Titanium diffused 

Lithium Niobate waveguides (Ti:LiNbO3) to achieve equally spaced nulls for the filter 

response spectrum in the frequency domain. 

In order to provide the background needed to understand the device operation, 

Chapter II comprehends a theoretical review. Device structure and analysis are presented 

in Chapter III. Device fabrication details are treated in Chapter IV. Experimental results 

and discussions are presented in Chapter V and finally, the concluding remarks are made 

in Chapter VI. 
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CHAPTER II 

THEORETICAL REVIEW 

 

The experimental goal of this work is to develop a device that will perform 

filtering of guided optical waves. This function will be accomplished by use of a guided 

optical wave which propagates on an anisotropic substrate, and the most significant 

phenomena exploited on this structure will be the mode conversion (TE↔TM).  The 

mode conversion will be enabled by a structure positioned on top of the waveguide 

which in turn will promote a periodic refractive index modulation along the propagation 

direction. There are basically two ways for promoting this refractive index change on the 

substrate that is being used (LiNbO3), the first is by using the electro-optical effect and 

the second by way of the elasto-optical (strain-optic) effect. 

Another aspect to be considered is that the desired filtering function must present 

some special properties, and there is a mathematical tool, called Z-transform, that helps 

analyze and design this filtering function. 

From this brief description, it is devised the need to draw a theoretical review on 

some subjects that will help the comprehension of how the device works. 

The first subject to be treated is propagation of optical waves in anisotropic 

media, followed by the optical propagation in dielectric waveguides, both based on 

Maxwell’s equations. 

Next the Electro-optic Effect and Elasto-optic Effect will be briefly presented, 

followed by the Coupled Mode Theory and Polarization Mode Conversion. 
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Last on this chapter, the Z-transform tool applied to the design of optical filters 

will be outlined.  

 

A. Lightwave Propagation in Anisotropic Media 

A medium where the electrical and magnetic properties relevant to an 

electromagnetic wave do not vary with the direction of propagation of that wave is 

named isotropic. On the other hand, a medium where those properties change as a result 

of changing the wave direction of propagation is called anisotropic. 

Light as an electromagnetic wave, must have its electric and magnetic fields 

satisfy Maxwell’s equations and the Constitutive Relations. Depending on the medium 

homogeneity, loss characteristic, presence of sources and isotropy, those equations are 

modified to accommodate for these characteristics. 

Starting with a homogeneous, lossless source-free, linear medium, Maxwell’s 

Equations are expressed by [10]    

 
t

∂
∇× = −

∂
BE  (1) 

 
t

∂
∇× =

∂
DH  (2) 

 0∇⋅ =D  (3) 

 0∇⋅ =B  (4) 

where E (V/m) and H (A/m) are electric and magnetic field intensity vectors, 

respectively; D (C/m2) is the electric displacement (or electric flux density) vector, and B 

(Wb/m2) is the magnetic flux density (or magnetic displacement) vector.  
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The relationships between E and D and between H and B are called Constitutive 

Relations and depend on the electric properties and on the magnetic properties of the 

medium, respectively. In the electric case the relation is mediated by the medium 

dielectric permittivity ε (F/m) and in the magnetic case by medium magnetic 

permeability μ (H/m). These relations are expressed by (linear media):  

 ( ) EEEPED 000 εεεχεε ==+=+= re1  (5) 

 ( ) HHHMHB 00 μμμχμμμ ==+=+= rm 00 1  (6) 

where P (C/m2) is the electric polarization vector and M (A/m) the magnetization vector; 

eχ (dimensionless) the medium electric susceptibility and mχ (dimensionless) is the 

medium magnetic susceptibility; 0ε (F/m) is the free-space (or vacuum) dielectric 

permittivity and rε (dimensionless) is the medium relative permittivity (or dielectric 

constant); 0μ  is the free-space (or vacuum) magnetic permeability and rμ  

(dimensionless) is the medium relative permeability. 

The isotropic or anisotropic behavior of a medium is conveyed through the 

susceptibilities, either electric or magnetic. If the medium is isotropic (electrically or 

magnetically) the pertinent susceptibility is a scalar. On the other hand, if the medium is 

anisotropic, that susceptibility must show the dependence of the displacement vector ( D  

or B ) components on field ( E or H ) components along different directions. The 

mathematical entity that establishes that relation is a tensor. Therefore in an anisotropic 

medium the susceptibility will be a tensor, and for the linear case a second rank tensor, 
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represented by 3X3 matrices. As a consequence, the permittivity (electric case) or the 

permeability (magnetic case) will also be a second-rank tensor. 

This work deals with non-magnetic dielectric media, for which the magnetic 

susceptibility vanishes and the medium permeability equals that of the free space ( 0μ ). 

In optical media the anisotropic character of electric origin is often times not explicitly 

stated, but implied in the word anisotropic, since under the magnetic point of view it is 

isotropic. On the body of this dissertation, when it is said anisotropic it is intended to say 

electrically anisotropic medium. For this type of media, the constitutive relations (5) and 

(6) are rewritten as: 

 ( ) EEEIPIED 000 εεεχεε ~~~ ==+=+= re  (7) 

 HB 0μ=  (8) 

where I  is the identity matrix and the electrical susceptibility and the permittivity are 

typed with the superscript tilde to denote their tensor character: 

The medium relative permittivity may be explicitly rewritten in equation (7), 

giving: 

 EED 0
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==

333231

232221

131211
~

εεε
εεε
εεε

εε r . (9) 

In order to simplify the analysis, a convenient reference coordinate system can be 

chosen to match the orientation of the crystal principal axes, so that all off-diagonal 

elements of the electric susceptibility tensor vanish. 

In this new coordinate system, equation (9) is rewritten: 
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 EED 0
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⎠
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where 11ε , 22ε  and 33ε  are called principal permittivities of the medium. 

In order to draw some facts about light propagation in anisotropic media, it will 

be assumed the simplifications of infinite media and plane wave propagation. 

Initially assuming plane wave propagation for D  and H , they should be 

expressed as 

 )( ),( rkDD ⋅−= tjetr ω  (11) 

and 
 

 )( ),( rkHH ⋅−= tjetr ω  (12) 

where k is the wave propagation vector. 

Substituting equations (11) and (12) in equation (2) (Ampère-Maxwell equation) 

and taking into account vector identity ( ) )()( AAA ×∇+×∇=×∇ φφφ , it is obtained 

 DHk ω=×− . (13) 

Acting similarly with equation (1) (Faraday-Maxwell equation), it is obtained 

 HEk 0ωμ=× . (14) 

 

Recall that  

 kk ˆ
pv
ω

=  (15) 
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where pv is the optical wave phase velocity and k̂ is the unit vector along the propagation 

direction. 

Solving equation (14) for H  and substituting into equation (13) and taking 

equation (15) into account 

  ( )[ ]EkkD ××−= ˆˆ1
2

0 pvμ
. (16) 

By using the vector identity ( ) ( )BACCABCBA ⋅−⋅=×× , equation (16) may be 

rewritten as 

 ( )[ ]EkkED ⋅−= ˆˆ1
2

0 pvμ
. (17) 

Taking into account the constitutive relation expressed by equation (10), also 

considering the vector components along each crystalline axis, it is obtained from 

equation (17) 
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E
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E
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p
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4444444444 34444444444 21
K

εμ
εμ

εμ
. (18) 

In order for the homogeneous system expressed by equation (18) to exhibit non-

trivial solutions 0K =det . By imposing that condition and after some manipulation it is 

obtained 

 0
111 330

2

2
3

220
2

2
2

110
2

2
1 =

−
+

−
+

− εμεμεμ ppp v
k

v
k

v
k . (19) 
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Equation (19) is known as Fresnel equation of wave normals. Once a direction of 

propagation is chosen ( 321 ,, kkk ) it can be reduced to an equation in the format 

 024 =+− CBvv pp . (20) 

Equation (20) is a biquadratic equation in pv which will have two solutions. Each 

solution can then be substituted in equation (18) and the field components associated to 

each phase velocity be found. Therefore, for each chosen direction in an electrically 

anisotropic medium, there will be two allowed propagating solutions. 

It is also possible to draw some information about the solutions’ field orientation, 

or the polarization state. 

Considering equation (13) one concludes that 

 0Dk =⋅ . (21) 

Because the vector product between k and H  is orthogonal to the plane formed 

by those vectors. This relation holds for both solutions. 

Also equation (17) must hold for each individual solution. 

 ( )[ ])1()1(
2

10

)1( ˆˆ1 EkkED ⋅−=
pvμ

 (22) 

 ( )[ ])2()2(
2

20

)2( ˆˆ1 EkkED ⋅−=
pvμ

 (23) 

where the numerical superscripts and subscripts were used to explicitly denote one 

solution of the possible two. 

Taking the dot product of equation (22) by )2(D , the dot product of equation (23) 

by )1(D , subtracting one from the other, and also considering equation (21), follows 
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 ( ) )2()1()1()2(2
10

2
20

)1()2( DEDEDD ⋅−⋅=−⋅ pp vv μμ . (24) 

Now focusing on the right-hand side of equation (24) and recalling equation (9) 

 ∑∑∑∑
= == =

−=⋅−⋅
3

1

3

1

)2()1(
3

1

3

1

)1()2()2()1()1()2(

k l
lklk

i j
jiji EEEE εεDEDE . (25) 

From the symmetry properties of the dielectric tensor associated with a lossless 

medium jiij εε =  [11]. Therefore the right-hand side of equation (25) vanishes, as well as 

the right-hand side of equation (24). Since the solutions are not degenerate, i.e. 21 pp vv ≠  , 

)1(D and )2(D  must be orthogonal to each other. Explicitly 

 0)1()2( =⋅DD . (26) 

Summarizing, there are two possible solutions of an electromagnetic wave 

propagating along a certain direction in an electrically anisotropic medium. They 

propagate at different velocities, given by Fresnel equation of wave normals, and present 

electric displacement vectors orthogonal to the direction of propagation, and orthogonal 

to each other. 

Therefore the procedure for determining the solutions to equation (17), once the 

propagation direction is chosen, is to find solutions to the Fresnel equation of wave 

normals and then substitute each obtained value for phase velocity back in equation (17) 

in order to find field components. 

There is a quicker graphic way of visualizing the solutions field orientations that 

also enables determining refractive indices associated to each propagating solution. The 

geometrical construction needed for this method is called the index ellipsoid. 
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The starting point is analyzing the stored electric energy density of the 

propagating wave in the anisotropic medium, given by 

 DE ⋅=
2
1

eU . (27) 

Combining equations (10) and (27)  

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++=

33

2

22

2

11

2

2
1

εεε
zyx

e
DDDU .                                          (28) 

Defining ex UDx 02/ ε= , ey UDy 02/ ε= and ez UDz 02/ ε=  equation (28) 

becomes 

 1
33

2

22

2

11

2

=++
rrr

zyx
εεε

.                                          (29) 

In optics it is usual to implicitly refer to propagation velocities by means of the 

refractive index. Defined as 

 r
pv

cn ε
εμ
εμ

===
00

0  (30) 

where ε is the permittivity “seen” by one specific solution and rε  is the relative value 

associated with it. 
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Fig. 2. The index ellipsoid. 

 

Keeping this in mind, equation (10), may be modified to 

 EED 0
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⎟
⎟
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εεε    .                                    (31) 

Also equation (29) may be modified to 

 12

2

2

2

2

2

=++
zyx n

z
n
y

n
x   .                                        (32) 

Equation (32) is the equation of an ellipsoid and is known as the index ellipsoid 

or optical indicatrix [11].  
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Figure 2 shows a representation of the index ellipsoid along with electric 

displacement vectors orientation for both solutions ( 1D  and 2D ) and the direction of 

propagation k̂ . 

To determine the refractive indices associated with an arbitrary direction of 

propagation k̂ , the intersection of the plane orthogonal to k̂  with the index ellipsoid and 

containing the origin is taken. This intersection is an ellipse, shaded in Fig. 2. The two 

allowed orthogonal polarizations ( 1D  and 2D ) coincide with the major and minor axes of 

the ellipse.  The shaded ellipse semi-axes lengths are the refractive indices “seen” by the 

solution which has its electric displacement vector aligned with the respective semi-axis. 

According to how the principal refractive indices (dielectric permittivities) relate 

to each other, the medium to which they relate receives a different denomination. If 

zyx nnn ≠≠ ( 332211 εεε ≠≠ ), the medium is said to be biaxial. This nomenclature comes 

from the fact that there are two directions in the medium along which both solutions 

propagate with the same refractive index (degenerate propagation velocities). 

On the other hand, if zyx nnn ≠= ( 332211 εεε ≠= ), the medium is said to be 

uniaxial, and for this type of medium there is only one direction along which both 

solutions propagate with the same refractive index. This direction is called the crystal 

optic axis and by convention the crystalline z axis is always chosen to be aligned along 

this direction. This is the case of Lithium Niobate (LiNbO3), the material used as 

substrate in this work.  
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In Figure 2, for a uniaxial crystal, there is an axial symmetry along z, therefore, 

one propagation mode always “sees” the same refractive index ( 1n ), because the semi-

axis contained in the xy plane is bound by a circle. This one is called the ordinary 

refractive index, denoted on , and the solution associated to it ordinary wave. The other 

refractive index obtained from the semi-axis out of the xy plane ( 2n ) will have its value 

dependent on the propagation vector orientation with respect to the optic axis (θ ). This 

latter is called extraordinary refractive index, denoted en , and the solution associated to 

it extraordinary wave. Equation (32) may be rewritten as 

 12

2

2

2

2

2

=++
eoo n

z
n
y

n
x  .                                           (33) 

Also from Fig.2 the relationship between the refractive index dependent on 

θ (major semi-axis length) and lengths along coordinated axes are deduced as 

 
.   sin)(

cos)(
0
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e
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=

                                            (34) 

Substituting equation (34) into equation (33) and solving for )(θen yields 

 
θθ

θ
2222 sincos

)(
oe

eo
e

nn
nnn
+

=  .                                        (35) 

 
B. Optical Waveguides 

In order to explain guided light propagation in dielectric waveguides the so called 

Slab (planar) waveguide model will be considered. This model assumes the 

simplification of invariance of the field along one of the directions transversal to the 
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propagation. The invariance comes as a consequence of the infinite transverse dimension 

along said axis. Also the refractive index in each one of the structure layers is assumed 

invariant with position or direction (homogeneous and isotropic). 

In actual devices this behavior may be mimicked when one of the dimensions 

transverse to the propagation is much larger than the other. Although this is not the more 

frequent case, the model provides important insights about properties of guiding 

structures and about properties of guided solutions of the wave equation. 

The geometry considered in this analysis is outlined in figure 3. It is assumed 

three regions, each with a distinct refractive index. Region 1 has refractive index cn  and 

is often called cover layer. Region 2 has refractive index fn , has a thickness t  and is 

called film or guiding layer. Region 3 has refractive index sn and is called substrate. 

Also in figure 3, a reference coordinate system is adopted for the analysis. The y 

dimension is the one assumed infinite. Propagation happens along z direction. 

 

Region 1 - Cover

Region 2 – Film (guiding)

Region 3 - Substrate

cn
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x

zy
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t

x
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Fig. 3. Schematic diagram of a dielectric slab waveguide. 
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The procedure to derive wave equation using Maxwell equations is the standard. 

Take the curl of equation (1); use the vector identity AAA 2)( ∇−⋅∇∇=×∇×∇ ; assume 

electrically and magnetically isotropic and homogeneous medium (constant scalar 

permittivity and permeability) , so that equation (3) may be used in conjunction with the 

electric constitutive relation to yield 0E =⋅∇ and obtain 

 ( )HE 0 ×∇
∂
∂

−=∇−
t

μ2 .                                          (36) 

Use equation (2) to substitute the expression for H×∇  in equation (36) and get 

 02

2
2 =

∂
∂

−∇
t
EE 0εμ .                                          (37) 

Equation (37) is know as time domain wave equation for the electric field. 

In order to further the analysis, assume time harmonic variation for the electric 

field and propagation along z with propagation constant β , i.e. 

 )( ),(),( ztjeyxtr βω −= EE .                                       (38) 

In rectangular coordinates, 2
2

2
2

2
22

zyx ∂
∂+

∂
∂+

∂
∂=∇ . Taking into account the 

proposed structure, 0=∂
∂

y  , because it is infinite along y direction. Considering also 

the field variation in equation (38), 2
2

2
β−=

∂
∂

z , and equation (37) becomes[11-12]:  

 ( ) 0)()( 22
2

2

=−+ x
dx

xd EE
0 βεμω . (39) 

Consider the identity 

 000
0

nkn
c

nk === εμωω  (40) 
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where k is plane wave propagation constant the in a medium with refractive index n  and 

0k  is the free space (vacuum) plane wave propagation constant. 

Equation (39) with the use of equation (40), becomes 

 ( ) 0)()( 222
02

2

=−+ xnk
dx

xd EE β . (41) 

The fields in each particular region of the structure must satisfy equation (41), 

only the respective refractive index should be substituted in that equation. The solutions 

in each of the three regions must not depart from the solution on other regions as the 

wave propagates, because it would disrupt the total solution as a propagating mode, 

hence they must have the same propagation constant β . With that in mind, equation (41), 

becomes a system of simultaneous equations, written as 

 

( )

( )

( ) .  0)()( : 3Region for 

0)()( : 2Region for 

0)()( : 1Region for 

222
02

2

222
02

2

222
02

2

=−+

=−+

=−+

xnk
dx

xd

xnk
dx

xd

xnk
dx

xd

s

f

c

EE

EE

EE

β

β

β

 (42) 

Still aiming at matching solutions in the three regions in order to constitute a 

complete solution for the proposed structure, the fields must satisfy the boundary 

conditions at the interfaces between each pair of media. More specifically, at the 

boundary between the two dielectric media, the tangential components of electric and 

magnetic fields, E  and H  respectively; and the normal components of electric and 

magnetic flux densities, D  and B  respectively, must all be continuous. 
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Fig. 4. Electric field distributions of a three-layer dielectric slab waveguide as a function 

of varying propagation constantβ . 

 

Assuming the relationship between the refractive indices in the three regions is 

csf nnn >> , the solution to equation (42) in each region can be classified as either 

oscillatory or exponential in nature, depending on the value of the propagation constant 

β. 

If cnk0<β , the solutions to equations (42) are sinusoidally oscillating in every 

region. For this case there is no confined or guided energy in any of the three layers. This 

is called a radiation solution (case “a” in figure 4).  

If soc nknk << β0 , the solution will be exponentially decaying in the cover and 

sinusoidal in the film and substrate. This is called a substrate radiation solution (case “b” 

in figure 4). 
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If fs nknk 00 << β , the solution will be exponentially decaying in the cover and 

substrate, and sinusoidally oscillatory in the film layer. This is called a confined or 

guided mode (cases “c” and “d” in figure 4). By observing those cases in figure 4, it is 

possible to conclude that a great part of the electromagnetic field is confined to the film 

layer (Region 2), which presents the highest refractive index. Each value of 

β (eigenvalue) will be associated to a vector field distribution (eigenvector) and receives 

the denomination “mode”. There is a minimum value β  may have, called cutoff, 

because below it the light starts leaking into the substrate and there cannot be 

propagating modes anymore. As a rule of thumb, this value can be assumed equal to 

snk0 . This is the case only for symmetric slab waveguides, i.e. the film layer is 

sandwiched between identical layers ( sc nn = ). 

The last case left to analyze is when fnk0>β . For this one, the solution will 

behave exponentially increasing, constituting a physically unrealistic one (infinitely 

increasing energy).  

Once the thickness of the film layer is chosen, the slab dielectric waveguide can 

only support a finite number of guided modes. Those modes are classified according to 

the presence of field components along the propagation direction. They are divided into 

two groups of mutually orthogonal polarization states. In one class of modes the electric 

field is completely transverse to the propagation direction and is called transverse electric 

or simply TE mode.  Using the same coordinate system orientation adopted in figure 3, 

the field components present on this solution are yE , xH  and zH  (no zE ).  In the other 
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class the magnetic field is the one completely transverse to the propagation direction. 

This latter is called the transverse magnetic or simply TM mode and the field 

components present on this solution are yH , xE  and zE  (no zH ). 

Focusing on the TE mode 

 yexEtx ztj
y ˆ )(),( )( βω −=E  (43) 

 yx EH
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−=  (44) 
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Closed-form expressions for the y-component of the electric field ( yE ) are 

obtained by substituting equation (43) in equations (42), solving it recalling that a guided 

mode will have exponentially decaying behavior outside the guiding layer and sinusoidal 

behavior in the guiding layer. Next, the tangential components of the electric and 

magnetic field ( yE and zH ) at the interfaces ( 0=x  and tx −= ) should be forced to be 

continuous (Boundary conditions), yielding: 
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where A is an arbitrary constant, t is the film layer thickness, 
22

0
2

cnkq −= β , 

222
0 β−= fnkh , 22

0
2

snkq −= β .  

Equation (45) is determined using only three of the four boundary conditions. 

The last boundary condition, which establishes the continuity of the tangential magnetic 

field ( zH ) at the interface tx −=  yields: 

 

h
pqh

qpht
−

+
=)tan(   .                                                 (47) 

By solving equation (47) it is found the discrete values of h , and as a 

consequence of β , for which TE mode propagation is allowed in the structure. Equation 

(47) is called dispersion equation for the TE mode. Other denominations like 

characteristic equation or eigenvalue equation are also used. 

Now focusing on the TM mode, the field components are expressed as:  

 yexHtx ztj
y ˆ )(),( )( βω −=H  (48) 

 yx H
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E 2
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−=  (49) 
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ωε

 . (50) 

Adopting a procedure similar to the one used in deriving equation (46) by 

substituting equation (48) in equation (42) and applying boundary conditions at the 

interfaces, expressions for the transversal magnetic field ( yH ) identical to the ones 

obtained for yE  in the TE case (equation (46)) are obtained. Explicitly 



 

 

27

 

)(Substrate        for  

(Film) 0for  

(Cover)         0for  

     

)sin()cos(

)sin()cos(

 

)(

)( tx

xt

x

ehth
qhtB

hxh
qhxB

Be

xH

txp

qx

y

−≤

≤<−

>

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

⎥⎦
⎤

⎢⎣
⎡ +

⎥⎦
⎤

⎢⎣
⎡ −=

+

−

 (51) 

where B is the arbitrary amplitude constant and h , p  and q  are defined the same way. 

Similarly, by applying the last boundary condition, the dispersion equation that 

governs allowed values of h for the TM modes is obtained: 
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Although the dielectric slab waveguide is not suitable for applications where 

functions of light filtering, modulation and switching are desired, it provides a 

framework for the comprehension of the basic concept guidance and the requirement of 

an increased refractive index layer to accomplish it. Along with that it also provides the 

concept of a guided mode and that the dispersion equation can only be satisfied by a 

discrete set of values of the propagation constant. 

More realistic devices would have also to consider that light is also confined in 

the other transversal dimension, or the y  direction, in addition to the considered 

confinement in depth assumed in the slab model. These devices are called rectangular or 

3-D dielectric waveguides. 
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In contrast to what happens with microwave rectangular-wall waveguides, in 

which pure TE and TM modes can be supported because of the boundary conditions 

satisfied by the fields at perfect conductor walls; in rectangular dielectric-only 

waveguides there are no pure TE and TM modes. 

Instead, there are two families of hybrid modes, classified according to the field 

direction of polarization. The modes are referred as TE-like, because the electric field is 

aligned along the y  direction; or as TM-like, because the electric field is aligned along 

the x  direction, in direct correspondence to what happens with the slab modes. Closed-

form analytical expressions for the fields cannot be obtained unless approximations are 

assumed, although numerical solutions can be obtained by using dedicated software in a 

digital computer. 

Among the methods assuming approximations there are the Marcatili’s [13] and 

the effective index method [14]. 

In the Marcatili’s Method the modes are assumed well confined and far from 

cutoff. The nomenclature for the regions, refractive indices, coordinate system 

convention as well as important dimensions are shown in figure 5. Most of the power, 

hence the fields, is confined to region I , and small amount of power travel outside. The 

fields in regions II, III, IV and V decay exponentially, based on the knowledge gained in 

the slab waveguide. The amount of power traveling in the four shaded areas is neglected. 

This simplification is the source of errors in the method, which are acceptable in 

well confined and far from cutoff analysis. 
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Fig. 5. Cross-section of a generalized structure used in Marcatili’s Method. 

 

The wave equation for longitudinal components can then be solved by separation 

of variables and closed-form expressions for the field in all five regions can be 

determined. Solutions are named after the field polarization. TE polarization will present 

0=xE  , and transversal electric field aligned along y direction. TM polarization will 

present 0=xH  , and transversal magnetic field aligned along y direction. Dispersion 

equations and field amplitudes are obtained from application of boundary conditions at 

the interfaces (   ,0 , ,0 WyyTxx ==−== ). By direct inspection of the dispersion 

equations and field expressions it is noticed that the transversal component of electric 

field in the TE solution ( yE ) behaves along the x  direction like a slab TE mode in a 

structure of film thickness T  and along the y direction like a slab TM mode in a 

structure of thickness W . Likewise, the transversal component of electric field in the TM 
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solution ( xE ) behaves along the y direction like a slab TE mode in a structure of film 

thickness W ; and along the x  direction like a slab TM mode in a structure of thickness 

T .  

The perception of this fact allied with the knowledge of the solution for the fields 

and dispersion equations of the slab waveguide model enables to write solutions for the 

fields in a rectangular dielectric waveguide almost by inspection. That alone shows the 

importance of the studying slab waveguides, even though they do not represent 

frequently used devices.  

The Effective Index Method makes use of this perceived fact to improve 

Marcatili’s Method range of validity (including close to cutoff modes). The structure is 

divided into two other structures: one obtained by stretching the guiding layer along its 

longer dimension and the other obtained by stretching the guiding layer along its shorter 

dimension. For the first structure, calculate the mode effective index, given by 

01 kneff β= . For the second structure, instead of using the actual value of the guiding 

region refractive index as the guiding layer refractive index, use the obtained value of 

1effn  in its place, keeping actual values of surrounding refractive indices. The resulting 

value of β after this second step is closer to the actual value in almost cutoff modes. 

Up to now, only homogenous refractive indices in guiding and surrounding 

regions were assumed. This is another simplification in the dielectric waveguide 

analysis. More realistic approach would have to consider varying refractive index, even 

maybe an arbitrary refractive index profile. It can be found in the literature analyses that 
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treat the problem of diffused waveguides in planar geometry (slab) [15] and rectangular 

geometry [16].  

Today there are many software packages for waveguide analysis that allow the 

guiding region to show arbitrary refractive index profiles. They are also based on some 

approximations and sometimes even on the simplified analytic solution. Therefore the 

knowledge of those methods helps understanding the software limitations or even 

developing your own software. The basic concepts presented up to this point suffice to 

understand the behavior of a diffused channel waveguide mode and a more profound 

analysis would be out of the scope of this dissertation. 

Throughout this work, single mode propagation in waveguide is pursued. Only 

the lowest order (called fundamental) mode for each polarization is allowed to propagate. 

 

C. Linear Electro-Optic (Pockels) Effect 

In certain types of crystals the application of an electric field changes the 

orientation and semi-axes lengths of the index ellipsoid, therefore the name electro-optic 

effect. The linear electro-optic (or Pockels) effect is the one under which the relationship 

between applied electric field and the optical change is linear.  There is also the Kerr 

effect in which the relationship between the optical property and the applied electric field 

is quadratic. Other nonlinear (higher order) electro-optic effects do exist, but the change 

they promote on a medium is very small and because of that are almost always neglected. 

The Pockels effect is the strongest among the electro-optical and is the most commonly 

used for light control in integrated optical devices.  
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The approach followed to present the electro-optic effect will be a 

phenomenological one. The deformation suffered by the index ellipsoid as a result of an 

applied electric field will be quantified and related to the index ellipsoid with no field 

applied. 

Instead of approaching the problem through the permittivity tensor, it is common 

in the literature to do so by using the impermeability tensor, defined as 

 1−= εη . (53) 

The deformation in the index ellipsoid is then expressed as a variation in the 

impermeability sensor as 

 )()0()0( EEE ηηη Δ+==≠ . (54) 

Recall that equation (32) is the representation of the index ellipsoid when the 

crystallographic principal axes are aligned with the reference coordinate system. 

Rewriting equation (32) in terms of the impermeability tensor gives 

 12
33

2
22

2
11 =++ zyx ηηη  (55) 

where 2
11 1 xn=η , 2

22 1 yn=η  and 2
33 1 zn=η  

When the principal axes are no longer aligned with this system, off diagonal 

terms in the dielectric permittivity tensor will appear and the equation of the index 

ellipsoid, now arbitrarily oriented in space, will be given by [17]: 

 1222 121323
2

33
2

22
2

11 =′+′+′+′+′+′ xyxzyzzyx ηηηηηη  (56) 

where 21 ijij n=′η  with 3 2, ,1, =ji  
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The induced relative impermeability change due to an applied electric field is 

expressed as 

 ∑
=

=Δ
3

1k
kijkij Erη  (57) 

where ijkr  is the electro-optic coefficient tensor. 

Due to the impermeability tensor being symmetric, like the permittivity tensor, 

there are only six independent values of the impermeability tensor components. This fact 

enables a contracted index notation to be used in equation (57) and the electro-optic 

coefficient tensor be represented by a 3X6 matrix. The indices ij  are changed according 

to  

612          333
513          222
423          111

→→
→→
→→

 

Equation (57) is then explicitly rewritten 
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Lithium Niobate (LiNbO3) belongs to a crystal symmetry class called trigonal 3m 

for which the electro-optic coefficient tensor has the format 
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The values of the electro-optic coefficients for LiNbO3 at various wavelengths are 

tabulated in the literature. The largest is 33r  , closely followed by 51r ; 13r and 22r  are 

typically much smaller than them. They are on the order of 1210−  to 1110− m/V. For the 

sake of an example 12
33 108.30 −×=r m/V, 12

51 1026 −×=r m/V, 12
13 106.8 −×=r m/V and 

12
22 104.3 −×=r m/V at the He-Ne red laser emission wavelength ( 8.632=λ nm). 

 Analyzing the case in which an electric field applied to LiNbO3 is aligned along 

the z  is direction, by use of equations (56), (58) and (59), the new index ellipsoid 

equation becomes 
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There are no crossed-product terms, therefore, the index ellipsoid was not rotated, 

only the axes were elongated. The new refractive indices along the principal axes are 

related to the previous ones by: 
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Solving for the refractive indices and using the small argument binomial 

expansion, the new values for the refractive indices (index ellipsoid semi-axes length) are 

 

.   
2
1
2
1
2
1

33
3

13
3

13
3

zeez

zooy

zoox

Ernnn

Ernnn

Ernnn

+=

+=

+=

 (62) 

This is one of the most common orientation of the modulating electric field in 

LiNbO3 waveguides. 

 

D. Photoelastic (Strain-Optic) Effect  

The approach used to describe the photoelastic effect will be similar to the one 

used in describing the electro-optic effect, i.e. a phenomenological one, based on the 

deformation induced in the index ellipsoid caused by a mechanical deformation. 

The photoelastic effect couples the mechanical strain that results from a 

mechanical deformation to changes in the impermeability tensor, hence to changes in the 

refractive indices. This effect is described by 

 ∑∑
= =

=Δ
3

1

3

1k l
klijklij Spη  (63) 

where ijηΔ  is the variation in the impermeability tensor, ijklp  is the strain-optic tensor 

and klS  is the strain tensor. 

Every elastic continuous solid body that suffers the action of a stress undergoes a 

mechanical deformation which in turn induces a strain. The parameter that relates the 
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strain to the stress is the mechanical compliance through the well known Hooke’s Law. 

With a strain within the elastic limits of the material from which the body is composed, 

the strain tensor will present nine components defined as 
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j
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2
1  (64) 

where iu is the component of a deformation vector u  along the direction of the 

coordinate ix . 

The strain components along the diagonal of the strain tensor ( ji = ) are called 

principal strains and the off-diagonal components ( ji ≠ ) are called shear strains. The 

principal strains are related to deformations components oriented in the same direction as 

the stress that generated them, whereas shear strains are related to deformations 

components coupled to directions other than the direction where the stress that generated 

them is applied. 

By direct inspection of equation (64), the symmetry property of the strain tensor 

may be noticed. There are only 6 independent components, allowing this tensor to be 

represented by a 6 X 1 matrix, using the same contracted index notation adopted in the 

previous section for the impermeability tensor. 

The symmetry of the impermeability tensor and of the strain tensor forces the 

strain-optic ( ijklp ) tensor to also exhibit symmetry properties. Since the impermeability 

tensor and the strain tensor are represented by 6 X 1 matrices, the strain-optic tensor 

must be represented by a 6 X 6 matrix. In this contracted index notation, equation (63) 

becomes 
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 ∑
=

=Δ
6

1j
jiji Spη .                                                   (65) 

For crystals of the symmetry class 3 m , to which LiNbO3 belongs, equation (65) 

may written as 
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 (66) 

where the strain-optic (photoelastic) tensor was explicitly shown [11]. 

If an impermeability change 5ηΔ  is desired, then either 5S  or 6S  or both is 

needed. Assuming a strain component 6S  exists, according to equations (66), the 

impermeability change will be 

 6415 Sp=Δη .                                                  (67) 

A change in this is the impermeability component will promote a rotation of 

index ellipsoid abount the y  axis (in the zx −  plane), which in the end will promote 

coupling between TE and TM modes.  

The index change associated with that is 

 641
3

5 2
1 Spnn −=Δ  (68) 

where eonnn = . 
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E. Coupled Mode Theory and TE-TM Converters 

Coupled Mode Theory relates charge density distribution perturbations in the 

region a waveguide is immersed to the perturbations experienced in the waveguide 

parameters (propagation constants and field distributions) in terms of these parameters in 

the unperturbed waveguide.  

For this analysis, it will be assumed a structure and a coordinate system 

orientation like the one depicted in figure 6. It will also be assumed a uniaxial substrate. 

It is known that the mode field distributions must satisfy the time domain wave 

equation expressed in equation (37). Rewritten here for convenience 

 02

2
2 =

∂
∂
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t
EE 0εμ  .                                              (69) 
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Fig. 6. Schematic diagram of a channel waveguide and coordinate system orientation 

used. 
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Recall that the electric displacement (or electric flux density) vector D  accounts 

for charge displacements and changes through the polarization density P  vector and that 

they are related through the constitutive relation expressed in equation (7), repeated 

below for convenience 

 ( )EIPED 00 eχεε ~+=+=                                           (70) 

A perturbation in the charge density can then be added to equation (70), resulting 

in a new electric displacement vector such that 

 pertPDD +=′                                           (71) 

where D′  is the perturbed electric displacement vector that results as an effect of the 

perturbation in the polarization density vector, expressed by pertP . 

Substituting equation (71) into equation (69), yields 

 2

2
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2 ~
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∂
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=
∂
∂

−∇
PEE 0 μεεμ    .                                    (72) 

For the unperturbed waveguide ( 0=pertP ), equation (72) is reduced to equation 

(69) and the solution for a y-propagating TE mode is in the format 

zezxECezxECzyx
cc

ytjm
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ytjm
zm

m mm ˆ)),(),((2
1),,(

..

)()(

444 3444 21
βωβω −−∗∗− +=E              (73) 

where the asterisk ( ∗ ) stands for complex conjugation and mβ  is the propagation 

constant of the m -th TE mode. 

The second element on the right-hand side of equation (73) is the complex 

conjugate of the first term, denoted by “ ..cc ” from this point on. 

The solutions of the unperturbed waveguide form a complete orthogonal set, 
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therefore, under the assumption of small perturbation, the electric field distribution of the 

perturbed waveguide may be written as 

 ∑ +=′ −

mall

ytjm
Tm ccezxEyAzyxE m

 

)( .).),()((2
1),,( βω                               (74) 

where )(yAm is the amplitude of the m -th mode in the composition of the perturbed 

waveguide electric field distribution, assumed to be a function of y . 

Substituting (74) into (72) after some mathematical manipulations and under the 

assumption of slow-varying amplitude ⎟⎟
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where ),( zxm
TE  is the transversal component of the m -th unperturbed waveguide mode 

and the y  dependence of mA  is implicitly assumed. 

Equation (75) is known as Coupled Mode Equation and for each coupling case to 

be analyzed, the parameters for the modes that are involved should be conveniently 

plugged in to obtain the specific equations describing the coupling between the chosen 

modes. 

Considering the co-directional coupling between TE and TM modes of a channel 

waveguide, assuming the spatially varying amplitude of the TE mode AATE =  and the 

one associated with TM mode BATM =  to avoid dubious notation, equation (74) can be 

rewritten 

.).ˆ),( ˆ),( (2
1),,( )()( ccxezxEBzezxEAzyx ytjTM

x
ytjTE

z
TMTE ++=′ −− βωβωE                (76) 
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and equation (75) may be rewritten as 
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For the perturbed polarization density vector pertP  it can be written 

 ( )EP ′Δ= rpert εε ~
0                                           (78) 

where rε
~Δ  is the variation in the dielectric permittivity tensor due to the perturbation in 

the charge density. 

Substituting (78) into (77), taking (76) into account, yields 
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Calculating the dot product of equation (79) by ),( zxTE
∗E , integrating from ∞−  

to ∞  in the transverse plane 
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Mode orthonormality condition states that [11] 
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∗ EE                                            (81) 

where msδ  is the Kroenecker delta, defined as unity only for sm =  and zero for all other 

values of m  and s . 

Applying equation (81) to equation (80), yields 
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In a similar way it is obtained 
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Defining the quantities 
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Since the fields are all real 

 κκκ == −− TETMTMTE                         (85) 

This result allows to write equations (82) and (83) as simultaneous set of 

differential equations 
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It can be noticed in equation (86), known as co-propagating Coupled Mode 

Equations, that there is a phase factor in each of the two equations. These factors are 

called phase mismatch and they arise from propagation constant difference between the 

two modes. As a result, after some propagation distance, one of the modes will start 

lagging behind the other and the conversion between polarizations will be disrupted.  

This fact can be qualitatively explained stating that once a perturbation is present, 

there will be mode coupling in a region over which a waveguide traverses. After having 

propagated for some length, light will have transferred energy to the other polarization 

mode and since both modes travel at different speeds, they start accumulating phase 

differences between them. As the phase departs from a null, destructive interference 

between light converted at different positions will start happening, lowering the 

efficiency in the conversion. 

In order to circumvent the phase mismatch problem, a periodic variation along 

the propagation direction is introduced in the perturbation that couples both modes. This 

variation will be assumed to have a spatial period Λ  , allowing to expand the term rεΔ in 

a Fourier series such that 

 ( )∑
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=Δ
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2
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m

yjm

mr ezx
π

εε                                           (87) 

where mε  is the amplitude of the permittivity modulation m -th harmonic. 

Introducing this change in equations (84) and (86), under the assumption that 

only the first harmonic of the perturbation will efficiently promote coupling between the 

modes, being the other harmonic amplitudes small enough to be neglected, equation (86) 
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is now rewritten 
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where 
Λ

±−=Δ
πββ 2

TMTE  and is called the phase mismatch factor. 

Assuming that prior to entering in the coupling region all light is in one state of 

polarization, we may write: 

 0)0(    and   1)0( == BA  .                                         (89) 

For this initial condition, the solutions  to equations (88) are 
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where ( ) 22

2 κδ +Δ= . 

Assuming a reversed initial condition for the input amplitudes, say 

 1)0(    and   0)0( == BA     .                                      (91) 

Solutions to equations (88) will be 
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Any state of polarization arriving at the coupling region may be decomposed in 
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the two orthogonal polarization modes. After having propagated through the coupling 

region the amplitudes in each polarization are then added together (considering phases) 

to result the new amplitude in that polarization. This may be summarized using a matrix 

form to describe the amplitudes in each polarization after the coupling region: 
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The phase mismatch Δ  can be expressed in terms of the optical signal frequency 

by 

 ( )
Λ

±−=Δ
ππν 22

TMTE nn
c

                                          (94) 

where ν  is the optical frequency, c  is the vacuum speed of light, TEn  and TMn  are the 

effective refractive indices for each mode ( TE and TM , respectively) and Λ  is the 

spatial period of perturbation. 

For a specific optical frequency oν  at which phase-matched condition ( 0=Δ ) is 

achieved: 
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                                        (95) 

where oλ  is the wavelength associated with frequency oν . The absolute value was used 

to avoid results with no physical meaning. 

It can be noticed from equation (95) that the distance over which both 

polarizations accumulate a phase difference of 2π between them should be equal to the 
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perturbation spatial period. Now light with a specific wavelength which had its 

polarization converted in the preceding perturbation period will “interfere constructively” 

with light that will have its polarization converted in the next perturbation period. Since 

the phase difference is a function of the wavelength, this may be attained perfectly only 

for a single wavelength, leaving other wavelengths with imperfect match or phase-

mismatched. 

Coupling structures built with this goal are often defined by a photolithographic 

process with some phase matched wavelength in mind. Once the perturbation spatial 

period is defined in the photolithography, the device can be wavelength tuned only by 

changing the term )( TMTE nn −  in equation (95). This may be accomplished through the 

temperature dependence of the crystal birefringence or through eletrooptical 

birefringence tuning. 

Aiming at evaluating the spectral behavior of the amplitudes for a phase 

mismatched condition, one should expand the expression for the phase mismatch factor 

(Δ ) around the phase-matched frequency ( oν ):  
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Expanding and regrouping terms in (96) 
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Finally resulting in 
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))((2
ogTMgTE nn

c
ννπ

−−=Δ                                        (98) 

where gTEn  and gTMn  are the group refractive indices of the TE and TM modes, 

respectively and the term ( )oνν −  expresses the frequency difference from phase 

matched frequency and is usually called frequency detuning. 

Assuming that the substrate is a x-cut LiNbO3 sample, that the modes are well 

confined and recalling the schematic diagram in figure 6, the TM mode will propagate 

with an effective refractive index very close in value to the substrate ordinary refractive 

index on , whereas the TE mode effective refractive index will be close in value to the 

substrate extraordinary index en . 

  

F. Z-Transform and Optical Filters  

The Z-transform is a tool used in analyzing discrete signals. One of the most 

common ways of obtaining a discrete signal is by sampling a time continuous signal at a 

regular sampling interval T . The obtained signal is then represented by discrete 

sequence. 

Similar to the analysis done on a continuous time signal by a Fourier transform, 

the discrete signal can be analyzed by a version of the Fourier transform tailored to time 

discrete signals, called discrete-time Fourier transform (DTFT). Summarizing the facts, 

the sequence that describes a discrete signal in the time domain is transformed by the 

DTFT in another sequence which expresses the frequency content of the time domain 

version of the signal. Since the time version was sampled at regular intervals, it is also 



 

 

48

expected that the frequency spectrum will show a periodic behavior, that will depend on 

the bandwidth of the signal being analyzed as well as on the sampling interval T . 

The expression for a DTFT of a sequence ( )nx  is given by 

∑
∞

−∞=

−=
n

njenxX πνν 2)()(                                              (99) 

where ν  is a normalized frequency defined as FSRffT =≡ν , f is the absolute 

(unscaled) frequency, T  is the sampling interval and FSR is the free-spectral range, i.e. 

the frequency interval after which the frequency response starts repeating itself 

(frequency spectrum period) [18]. 

Another format commonly used is obtained by using the normalized angular 

frequency given by πνω 2= . 

For discrete signals, the Z-transform is to the DTFT in much the same way the 

Laplace transform is to the Fourier transform for continuous signals. As the Laplace 

transform is a very powerful tool to describe analog filters, so is the Z-transform in 

describing digital filters. It is obtained by substituting z for ωje in equation (99), resulting 

[18] 

∑
∞

−∞=

−=
n

nznhzH )()(                                       (100) 

where )(nh  is the impulse response of a filter. 

The inverse transform is defined by applying complex-plane integration theorem 

(Cauchy integral theorem) as 



 

 

49

dzzzHjnh n∫ −−
= 1)(

2
)(

π
  .                                  (101) 

The Z-transform may also be seen as a mapping operation on the complex s-plane 

(from Laplace Transform). The mapping is done through the relationship sTez = . This 

way, the imaginary (frequency) axis is mapped on the unit circle in the z-plane; the 

stability region on the s-plane (left-hand semi-plane) is mapped inside the unit circle in 

the z-plane. The unstable region on the s-plane (right-hand semi-plane) is mapped 

outside the unit circle. The frequency response of a filter is calculated by evaluating 

)(zH over the unit circle ( ωjez = ). Figure 7 illustrates this mapping operation. 

In a digital filter, the input and the output are related by a sum that involves 

inputs and previous outputs 

)()1()()1()()( 110 NnyanyaMnxbnxbnxbny NM −−−−−−++−+= LL              (102) 

where the coefficients na and mb  are the weights for each component on the filter output. 
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Fig. 7. Mapping of s-plane into z-plane. 
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The Z-transform description of the sequence in equation (102) is expressed as 
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where Γ is a gain factor, mz are called the zeroes and np are called the poles of the filter 

response. 

There are two basic configurations of digital filters distinguished by the type of 

polynomials that appear in their Z-transform description. 

A filter having only zeroes (no poles) is called a Finite Impulse Response (FIR) 

filter, its description would be limited to the numerator of equation (103) and it would 

present only feedforward paths. The schematic diagram of a single stage FIR filter is 

presented in figure 8 (a). 

On the other hand, a filter having only poles is called a Infinite Impulse Response 

(IIR) filter and its description would be limited to the )(zAΓ  term of equation (103), 

presenting only feedback paths. The schematic diagram of a single stage IIR filter is 

presented in figure 8 (b). 

All other possible configurations of a digital filter can be expressed as a 

combination of these two basic building blocks.  

Much like the same way a desired filtering function in the analog domain is 

synthesized by conveniently locating poles and zeroes of the transfer function on the s-

plane, digital filters are synthesized by applying this procedure on the z-plane. 
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In order to trace the relationship between digital and optical filters, assume an 

optical wave entering a section of a waveguide. After having propagated a certain 

distance L  along the waveguide, the electric field intensity of the wave may then be 

described in terms of the input electric field intensity as 

L
c

jn

ineELE
ω

−
=)(                                       (104) 

where n  is the group refractive index of the mode at which the optical wave propagates 

along the waveguide. 
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Fig. 8. Schematic diagram of single-stage filters: (a) FIR filter; (b) IIR filter. 
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If equation (104) is further simplified by including the propagation delay between 

the two positions, given by c
nLT = , it is reduced to 

Tj
ineELE ω−=)(   .                                    (105) 

If now the term Tje ω−  is substituted for a new variable 1−z  ; the analogy between 

sampling a signal at a regular time interval, in digital filter theory, and observing an 

optical signal at regular positions apart a propagation length L  (or a delay T ), as it 

propagates down a waveguide, is made clear. 

With this tool at hand, transfer functions in the optical domain can now be 

synthesized by using it, at least in theory. It is only left to the realizability of the building 

blocks in the optical domain. 

For example a single-stage FIR filter in the optical domain may be synthesized by 

use of a Mach-Zenhder interferometer with asymmetric arms [18] by assuming that the 

unit delay T  is related to the path difference between both arms. The analogy can be 

seen by comparing figure 9(a) with figure 8(a). 

The same way a single-stage IIR filter in the optical domain may be synthesized 

by use of a ring resonator, a Fabry-Perot interferometer or a Gires-Tournois 

interferometer. The dependence of the output on previous history of inputs and/or 

outputs can be seen by comparing figure 9(b) with figure 8(b). 

Very important parameters in analyzing the filter response are the magnitude 

response, group delay and dispersion. 
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(b) 

Fig. 9. Examples of single-stage optical filter realizations: (a) FIR filter by use of a 

Mach-Zehnder Interferometer; (b) IIR filter by use of a Ring Resonator. 

 

A filter magnitude response is defined as the modulus of the transfer function 

evaluated on the unit circle ( ωjez = ), i.e. [18] 

[ ] )()( ωω HzH jez ==  .                                     (106) 

In optical systems, the physical quantity more easily measured is power, not field 

intensity; therefore, it makes more sense to calculate the square magnitude when 

analyzing filters in the optical domain. 

The filter group delay is defined as the negative derivative of the transfer function 

phase, also evaluated on the unit circle, i.e. [18] 



 

 

54

{ }
{ } ωω

τ
jez

n zH
zH

d
d

=

−
⎥
⎦

⎤
⎢
⎣

⎡
−=

)(Re
)(Imtan 1                                      (107) 

where nτ is the group delay normalized with respect to the unit delay T , therefore the 

absolute group delay is given by Tng ττ = . 

The dispersion is defined as the derivative of the group delay with respect to the 

frequency, i.e. [18] 

ω
τπ

ν
τ

d
d

d
dD nn

n 2==                                       (108) 

where nD  is the dispersion in filter normalized parameters. 

In optical systems, the absolute dispersion is usually defined by the derivative of 

the absolute group delay with respect to the wavelength, therefore the scaling between 

the absolute and normalized dispersions is 

nDTcD
2

⎟
⎠
⎞

⎜
⎝
⎛−=
λ

  .                                  (109) 
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CHAPTER III 

DEVICE STRUCTURE AND ANALYSIS 

 

In this chapter the proposed structure for a sparse grating filter is presented and 

analyzed. The starting point for the comprehension of the operation is the continuous-

grating TE-TM polarization converter. Once the principle of operation is understood, the 

concept, analysis and design of a sparse grating filter are presented. Tuning processes for 

the center wavelength are then presented. Last on the chapter, as an extension of the 

concept, a polarization independent filter based on TE-TM polarization converting sparse 

gratings is proposed and explained.  

 

A. Continuous-Grating TE-TM Polarization Converter 

The first building block in constructing the sparse grating filter is the grating 

itself. Understanding the way a continuous grating works will also help understand the 

TE-TM polarization conversion in a sparse grating structure. 

The TE-TM modes of an unperturbed channel waveguide propagate without 

power exchange between each other because of the mode orthogonality property. In 

order to achieve the mode conversion, under the light of the Coupled Mode Theory 

presented in the previous chapter, some sort of periodic perturbation along the 

propagation direction should be introduced in the waveguide. 

Among the ways of building this periodic perturbation, often called grating, is by 

way of the static strain-optic effect. This is the way used throughout this work. 
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The strain-inducing grating is accomplished by growing a strain-inducing SiO2 

film and defining an overlay periodic structure on the LiNbO3 substrate. 

The induced strain arises from the fact that the SiO2 film is deposited on a 

LiNbO3 substrate, previously heated and kept at an elevated constant temperature during 

deposition. As the sample is cooled down and brought to room temperature, due to the 

fact that lithium niobate has a much higher thermal expansion coefficient than the silicon 

dioxide film ( -1o5 C 1054.1
3

−×=LiNbOα [19] and -1o7 C 105.5
2

−×=SiOα [20]), it will tend to 

contract much more than SiO2. But now adhering to each other an equilibrium position 

will be found at which LiNbO3 will not contract as much as it would alone and SiO2 will 

contract a little more than it would alone. As a result some of the energy used in the 

LiNbO3 expansion and the energy used to contract SiO2 will be stored in a strain field. 

Summarizing, the expansion coefficient mismatch between the two materials builds up 

strain at their interface. 

That strain propagates into the substrate and waveguide; via the strain-optic effect 

produces a change in one of the components of the dielectric permittivity tensor that will 

enable coupling between the two modes with orthogonal polarizations. 

After cooling down, the silicon dioxide film is patterned by a photolithographic 

process and then etched at room temperature to define the overlaid structure with spatial 

period Λ  on the waveguide. This results in the periodic variation on the appropriate 

shear strain, therefore on the appropriate impermeability tensor component needed to 

phase-match the two modes.  
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(b) 

Fig. 10. Schematic diagram of a TE-TM polarization converter using a continuous SiO2 

strain-inducing grating on a x-cut, y-propagating Ti-diffused LiNbO3 waveguide: (a) 

Sideview; (b) Perspective. 

 

The channel waveguides used in this work are fabricated by diffusing Ti strips 

into an x-cut LiNbO3 substrate, light propagation is in the y-axis direction. A schematic 

diagram of the final structure is shown in figure 10.  



 

 

58

Previous results in our group [20] and published in the literature [21] show the 

periodic behavior of the shear strain component 6S  needed. 

According to equation (95), there will be a wavelength, called phase-matched 

wavelength, which will have no phase mismatch ( 0=Δ ). Assume an optical wave with 

the phase-matched wavelength have propagated a length L in the polarization conversion 

region, from equation (93), the field relations after this length may be written as 
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where A  is the electric field amplitude of one of the modes (TE mode for example) and 

B  is the amplitude of the mode orthogonal to the first (TM mode). 

One parameter used to evaluate the performance of polarization converters of this 

type is the polarization conversion efficiency, defined as the ratio, at the output of the 

coupling region, between power in the converted polarization and the sum of powers in 

both polarizations, when only one polarization is input.  

Assuming an optical wave with TE polarization only is coupled to the waveguide 

with normalized amplitude ( 0  ,1 == BA ), the polarization conversion efficiency at the 

phase-matched wavelength is expressed according to equation (110) as 
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The power fraction remaining in the unconverted polarization is given by 
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This procedure can be repeated for every wavelength in the bandwidth of interest, 

except that now, the frequency detuning from the phase-matched condition should be 

taken into account. the associated “transmission matrices” for the coupling regions 

(equation (93)) will not be simple trigonometric functions of Lκ , they will show 

complex exponentials multiplied by trigonometric functions that are both functions of the 

frequency detuning. Figure 11 shows the power fraction in each of the two polarizations 

for the two situations described above. For the phase-mismatched wavelength it was 

assumed a frequency detuning such that κδ 2= . 
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Fig. 11. Power fraction in each mode as a function of normalized propagation length in 

conversion region. For both, unconverted power fraction in dotted line: (a) 0=δ ; (b) 

κδ 2= .  
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From figure 11, it can be concluded that full conversion is achievable only for the 

phase-matched wavelength ( 0=δ ) and under the condition  κ
π

2)12( += nL . All other 

wavelengths will experience different conversion efficiencies over the same propagation 

length as a consequence of being detuned from the phase-matched wavelength.  

Figure 12 shows an example of the polarization conversion efficiency over a 

broad spectrum of frequencies. It was assumed a phase-matched wavelength of 1545 nm 

( THz 03883.1940 =ν ). Coupling region length was taken such that κ
π

2=L . The modes 

were assumed well confined, therefore, their effective indices being close to the 

respective value of the bulk substrate ( eTE nn ≈  and oTM nn ≈ ), at the phase-matched 

wavelength. 
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Fig. 12. Polarization conversion efficiency for a countinuous strain-inducing grating 

13828.2=TEn ; 21150.2=TMn ; 18267.2=gTEn ; 26442.2=gTMn . 
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Refractive indices were obtained from the literature [22], from which the 

dispersion curves were also obtained. From the dispersion curves, group refractive 

indices ( 18267.2=gTEn  and 26442.2=gTMn ) could be calculated and substituted into 

equation (98). After that, equations (111) and (93) were used to plot the well-known 

polarization conversion efficiency shown. 

At the grating output, some of the light will remain on the same polarization as it 

entered the device (non-phase-matched wavelengths) and some of the light will be 

converted to the orthogonal polarization state, following the conversion function plotted 

in figure 12. Therefore it is possible to realize a filtering function with this structure, by 

means of a polarization filtering, for example, with a polarizer placed after the device. 

It is observed in the filtering function (figure 12) that the nulls are not equally 

spaced in frequency, therefore making it difficult to define channel regions and avoid 

cross-talk between them upon detecting the optical signal after filtering in this type of 

device. 

For example, assume a “comb” of closely-packed channels, with 100 GHz 

spacing between their centers and with 100 GHz bandwidth (FWHM), like it is depicted 

in figure 13 (a). This is a fair representation of a channel assignment for a DWDM 

communication system. 

Now assume the filtering function in figure 13 (b). This is the same filtering 

function of figure 12, shown only on a narrower bandwidth. 
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(b) 

Fig. 13. Example of filtering performed by a continuous strain-inducing grating: (a) 

channel “comb”; (b) filtering function; (c) resulting spectrum. 
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(c) 

Fig. 13. Continued 

 

The obtained frequency spectrum after the channel “comb” being filtered by 

going through the continuous grating is obtained by multiplying the two spectra in figure 

13(a) and (b). It is shown in figure 13(c). 

Also form figure 13(c), it can be noticed that upon being detected the channels 

will cross-talk. First because of the low selectivity of the main detection region to 

operate with the proposed channel spacing: channels -2,-1, 0,1 and 2 show significant 

power detected within the passband. This can be fixed by using a longer grating 

(longer L ) or by making the strain-optic interaction stronger, resulting in a bigger 

coupling coefficient ( κ ), thus making the product Lκ  bigger ( 2
3π  or even 2

5π ). 



 

 

64

Second because even channels located on sidelobes put some power in the detection 

bandwidth. 

In figure 13(c) there are two channels (-3 and +3) that almost have no power in 

the detected bandwidth. That would be the ideal behavior for every channel in the 

stopband. 

Therefore in an ideal filtering function, the passband should contain only one 

channel within its limits and channels on the stopband would have to fall on nulls of the 

filtering function to minimize power on the detected bandwidth. 

Controlling the filtering function to place nulls in the center of channels in the 

stopband is the goal of the sparse-grating TE-TM polarization converter idea.  

 

B. Sparse-Grating TE-TM Polarization Converter 

By sparse grating it is meant a structure with smaller sections of polarization 

conversion separated by clear sections (no grating) along the desired waveguide like it is 

pictured in figure 14 for a 8-coupling region sparse grating. 

The desired periodicity in the rejection band of the filtering function would also 

require that the overall filtering function be periodic itself, presenting transmission peaks 

after every certain number of channels. This way, instead of filtering only one 

wavelength it would slice the communications spectrum. 

The determination of the coupling strengths for each region, i.e. what fraction of 

the incident light power is converted to the orthogonal polarization, and as a consequence 

their length; their spacing, that will define the repetition period of the filtering function 
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(Free-spectral range); as well as the number of coupling regions, which dictates the 

number of nulls in the stop band, will be defined by the requirements of the desired 

filtering function. 

This integrated-optic topology is very similar in functioning to the bulk 

polarization interference filter, also know as Šolc filter. In that device, rotated 

birefringent plates control the amount of light coupled to the orthogonal polarization 

mode and its length controls the phase retardation accumulated between the two modes 

upon propagating through the plate. Spacing between birefringent plates controls the free 

spectral range (FSR) of the overall filter response [11]. 

L1 L2 L3 L4 L5 L6 L7 L8

Lp Lp Lp Lp Lp LpLp

L1 L2 L3 L4 L5 L6 L7 L8

Lp Lp Lp Lp Lp LpLp

 

Fig. 14. Schematic diagram of an eight-coupling region sparse-grating TE-TM 

polarization converter filter. 
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In order to analyze this type of device a propagation matrix approach will be 

adopted. 

The propagation of light through a polarization coupling region of length iL , is 

obtained by direct substitution of the length in equation (93), yelding 
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where iC  will be called the coupling matrix for the thi −  coupling region, i  varies in the 

range Ni   ,1 K=  and N  is the number of polarization coupling regions in the whole 

structure. 

Besides the coupling regions, one must consider the differential group delay that 

arises from the different optical paths for each polarization when propagating from one 

coupling region to the next. The propagation matrix relation for both polarizations in the 

clear region is given by 
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The term ( ) cLnn gTEgTM −  in the expression above is the differential time delay 

experienced between both polarizations when propagating between sections. It represents 

the unit delay T  used in the Z-transform description shown in the previous chapter (see 

equation (104)). Using the variable z, the propagation matrix for the light propagating 
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between coupling regions (clear region), is obtained by rewriting equation (114), 

yielding 
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Realizing that the output of a coupling region is coincident with the input of the 

clear region and vice versa, the compound result of propagation through a coupling 

region followed by a clear waveguide length is obtained by multiplying the coupling 

matrix iC  in equation (113) and the propagation matrix P in equation (115).  

Therefore, the resulting matrix for the whole structure is obtained by cascading 

the matrices like the sections (coupling or just propagation) appear in the light path. It 

will present polynomials in 1−z  as its elements. The off-diagonal elements will be the 

polarization converted filtering function (amplitude-like).  
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where the superscript R denotes the nomenclature “reverse polynomial”. 

The reverse polynomial of an order N polynomial, )(zH N , is defined as [18] 

])[()( 1−∗∗−= zHzzH N
NR

N    .                                     (117) 

Equation (117) can be more simply stated in the sentence: The reversed 

polynomial is obtained by complex conjugating the original polynomial coefficients and 

reversing their order in the polynomial, explicitly 
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Recalling that the z-transform is a mapping operation on the complex s-plane, 

and that the imaginary (frequency) axis is mapped on the unit circle in the z-plane, it is 

possible to conveniently place the desired filtering function zeros on the unit circle, 

obtain the resulting polynomial and identify term by term with the off-diagonal 

polynomial obtained by cascading the matrices. This approach will result in N equations 

in N unknown coupling strengths. 

Figure 15 shows an example of zeroes placement in the z-plane. Aligned with the 

goal of the present work, it shows five zeroes equally spaced around the circle (equally 

spaced in frequency and over a free-spectral range). 
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Fig. 15. Five equally spaced zeroes (red circles) placed on the z-plane unit circle. 
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In order to calculate the coupling strengths, the approximation that the coupling 

region lengths are much smaller than the separation between them ( 1/ <<pi LL ) was 

initially made. This simplification will make the transmission matrix elements of the 

coupling regions to be only trigonometric functions of the coupling strengths ii Lκζ =  

because 

( ) .     
2

and
1  

1 2
2

1 
)(

2

i
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i
i

i

LLL
LTjLj

LLLL

ee

pi

pip

ii

κκδ

ννπ

⎯⎯⎯ →⎯+⎟
⎠
⎞

⎜
⎝
⎛Δ=

⎯⎯⎯ →⎯=

<<

<<
−±Δ±

                            (119) 

 

The proposed filtering structure present a design constraint that will be assumed 

in the device analysis: Equal spacing between coupling regions, already implied in figure 

14. This constraint keeps the same spectral repetition period (FSR) generated in all 

sections (coupling region followed by a clear propagation region). Also implied in figure 

14 is the symmetrical behavior of the coupling lengths with respect to the device center. 

This is not in fact an a priori constraint, but a consequence of the device reciprocity, as it 

was later noticed.  

From the standpoint of easiness of implementation in a computer algorithm and 

time spent in the coefficient determination, it is better to apply a set of recursive 

polynomial-order step-down relations to the off-diagonal elements of the overall matrix 

in equation (116) than to apply polynomial identity process described earlier. 
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Table 2 – Coupling strengths ii Lκζ =  for various numbers of coupling regions (N). 

   i 
N   1 2 3 4 5 6 7 8 

2 0.78540 0.78540 − − − − − − 

3 0.47766 0.61548 0.47766 − − − − − 

4 0.33312 0.45228 0.45228 0.33312 − − − − 

5 0.25336 0.34236 0.37936 0.34236 0.25336 − − − 

6 0.20365 0.26987 0.31188 0.31188 0.26987 0.20365 − − 

7 0.16995 0.22032 0.25859 0.27308 0.25859 0.22032 0.16995 − 

8 0.14568 0.18499 0.21784 0.23688 0.23688 0.21784 0.18499 0.14568

 

In the polynomial-order step-down algorithm, after each step, it is obtained a 

coupling strength for the respective section and another polynomial, with its order 

reduced by one. This new polynomial encompasses the characteristics of the remainder 

of the structure. The process is repeated until the last coupling strength is obtained and 

happens as if the device is being traveled backwards.  

These step-down relations are perfectly analogous to the ones obtained in the 

analysis of the Mach-Zehnder lattice filters [18-23] and the polynomial-order step-down 

algorithm is identical. A routine in MATLABTM was developed to find coupling 

strengths for various numbers of coupling regions. The routine script is in Appendix A. 

The required coupling strengths to achieve the filtering function with equally spaced 
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nulls were calculated for various numbers of coupling regions by using this routine and 

are summarized on Table 2. 

Note in table 2 the symmetry of coupling strengths with respect to the center of 

the structure, as stated before. 

Another fact, that will have a direct consequence in the sparse grating design, is 

that the sum of the coupling strengths in one row is equal to 2/π . This is similar to the 

requirement for full polarization conversion obtained in the continuous grating case 

( 2πκ =L ), except that for the sparse grating it has to be computed as the sum of the 

same product for each of the coupling regions. 

The values obtained in table 2 are in a good agreement with the ones in [8], 

although they were determined by different techniques.  

Figure 16 (b) shows the theoretical filtering function obtained for a 6-coupling 

region sparse-grating polarization converter device. Figure 16(a) shows the same channel 

“comb” as in figure 13 (a). Figure 16(c) shows the result of the channels being filtered by 

the function in figure 16(b). Comparison of figure 16(c) with figure 13(c) shows the 

higher selectivity in the passband and lower cross-talk in the whole detection band. 

 In figure 13(c), the periodic behavior of the filtering function spectrum may be 

observed, as channels +6 and -6 are filtered along with channel 0. That is the reason the 

filter is named spectral slicing filter. 
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Fig. 16. Example of filtering performed by a sparse grating on the channel comb: (a) 

channel comb; (b) filtering function; (c) resulting spectrum. 
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Fig. 16. Continued 

 

C. Sparse Grating Filter Design 

In order to design the sparse grating, the first parameter to be determined is the 

spatial period of the grating employed in the coupling regions. By using equation (95), 

and the values for the effective refractive indices for the modes at 1545 nm used before 

( 13828.2=≈ eTE nn ; 21150.2=≈ oTM nn ), it is obtained 

m 1.21
21150.213828.2

 545.10 μμλ
=

−
=

−
=Λ

m
nn oe

 .                       (120) 

To avoid increased complexity and cost in making a photolithography mask 

capable of showing a feature size with the accuracy required in equation (120), the 
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grating spatial period will be adopted as mμ 21=Λ , this should not deviate much the 

phase-matched wavelength from the design value. 

The second parameter is the distance between the coupling regions. This distance 

is related to the free-spectral range ( FSRνΔ ) or the filtering function spectral period (in 

frequency). By this definition, FSRνΔ  is the reciprocal of differential time delay 

experienced between both polarizations when propagating between coupling sections 

(unit delay), i.e. 

Lnn
c

T gTEgTM
FSR )(

1
−

==Δν   .                                   (121) 

The free-spectral range is also related to the frequency separation between 

channels and number of channels intended to fit in the stopband. 

Following the previous 6-coupling region example with 100 GHz separation 

between channels, FSRνΔ  to fit 4 channels in the stopband, the physical separation 

between coupling regions is determined from equation (121) to be 

m
nn
cL

FSRgTEgTM

μ
ν

 9.6111
100.6)18267.226442.2(

109979.2
)( 11

8

=
×⋅−

×
=

Δ−
=  .     (122) 

The third design parameter is the length of every coupling region. Once the 

number of channels in one free-spectral range has been chosen, the number of coupling 

regions is automatically determined. By looking up on table 2, the coupling strengths for 

each coupling are listed in the respective row. 

Recall that the relationship between continuous and sparse grating lengths for full 

conversion is  
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∑
=

==
N

i
icont LL

12
κπκ                                              (123) 

where contL  is the length of the continuous grating, iL  is the length of each of the 

coupling regions in the sparse grating and N is the number of coupling regions. 

Therefore, if the same parameters used in the continuous grating fabrication 

process to obtain full polarization conversion are also used in the sparse grating 

fabrication, the same coupling coefficient should be obtained in both situations. 

Therefore, the sum of the coupling region lengths in the sparse case will be equal to the 

length of the continuous grating. That along with the coupling strengths that should be 

attained (from table 2) allows determining the length (or the number of grating periods) 

of each coupling region. 

Previous results in our group obtained full polarization conversion for continuous 

gratings with 500 grating periods (1.05 cm) [24].  This will be the length used to finalize 

the design. For the 6-coupling region, used throughout this design example, it is 

determined 

                                         periods) grating (65  3.136161 mLL μ==  

periods) grating (86  9.180352 mLL μ==                             (124) 

                                      .  periods) grating (99  8.208443 mLL μ==  

Recall that the elements in table 2 were determined with the approximation 

infinitesimal length for the coupling regions. Unfortunately the coupling regions almost 

never can be considered infinitesimal due to the finite value of the coupling coefficient 

(κ ). 
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When the lengths of the coupling regions are taken into account, the 

approximations in equation (119) do not hold anymore. The associated transmission 

matrices for the coupling regions will show complex exponentials multiplied by 

trigonometric functions that are both functions of the frequency detuning.  

Another consequence is that the distance between coupling regions cannot be 

accounted from end of the preceding to begin of the next. Due to the fact that the 

coupling regions are now distributed over some length, the distance between them should 

be accounted from center-to-center instead of edge to edge. 

Using the calculated lengths in equations (122) and (124), substituting them in 

equation (116), the full transmission matrix for the structure is calculated. Figure 17 

shows the spectral response obtained with this procedure. 
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Fig. 17. Filtering response obtained with six finite-length coupling regions. 
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A sinc-like envelope in the frequency response can be noticed when contrasted 

with the infinitesimal coupling regions result. It constitutes a more realistic spectral 

response and will be used as the theoretical reference. 

 

D. Tuning of the Phase-Matched Wavelength  

As seen through the design procedure, the spatial period of the strain-inducing 

gratings is defined with some phase matched wavelength in mind. Once it has been 

defined by a photolithographic process during the fabrication, the spacing between two 

SiO2 strain pads becomes fixed and the phase-matched wavelength cannot be changed by 

a mechanical mean anymore. The only degree of freedom left for changing the phase-

matched wavelength (tuning) is through the variation of the term )( TMTE nn − , called 

mode birefringence, as can be seen from equation (95). 

There are fundamentally two ways of performing the phase-matched wavelength 

tuning: through the temperature dependence of the crystal birefringence or through 

eletrooptical tuning of the birefringence. 

Heating or cooling the sample in a controlled way will provide a tuning 

mechanism for the phase-matched wavelength. 

The temperature dependence of the birefringence for bulk LiNbO3 in 1.5 μm 

wavelength region is 15 1045.3 −−× Co [25]. But it is not only the bulk substrate 

birefringence temperature dependence the responsible for change, there is also the mode 

effective birefringence effect. Although the thermal tuning principle does not provide a 

fast mean, it enables some sort of fine tuning on the filter response. 
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In order to use the highest possible electro-optic coefficient in LiNbO3 ( 33r ) for 

changing the refractive indices, an electric field aligned along the crystalline z  axis 

should be applied. Considering the sample orientation and waveguide placement with 

respect to the crystalline axes (x-cut, y-propagation), electrodes must be placed alongside 

the waveguide. They will have a gap g  between them and the waveguide should be 

centered entirely in this gap. 

When a voltage ( mV ) is applied across the electrodes, it will produce an electric 

field mostly aligned along the z axis in the region the of waveguide. Since the applied 

electric field is not uniform nor aligned in the same direction (z) when crossing the 

region in space where the light electric field is distributed, an overlapping factor between 

both should be introduced to account for the effective change in the guided mode 

refractive indices [12]. After this, the electric field intensity along z may be written as 

g
VE m

z Γ=                                                           (125) 

Applying the electric field in equation (125) to equation (61), considering the 

proposed field and waveguide relative orientation, the refractive index for each of the 

polarization modes propagating in the waveguide may be written as 

g
Vrnnn

g
Vrnnn

m
eTEeTE

m
oTMoTM

33
3

13
3

2
1

and

2
1

Γ−=

Γ−=

                                          (126) 
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where different overlap factors for the TE and TM modes were assumed, since the 

electric field distribution for these modes are different. 

From equations (126) and (95) the rate of change with voltage for the phase-

matched wavelength may be written as 

g
rnrn

dV
d

eTEoTM
m

Λ
Γ−Γ= )(2

1
33

3
13

3λ                                   (127) 

where Λ is the spatial period of the grating.  

 

E. Polarization Independent Topology  

In the straight channel waveguide with a polarization conversion grating on top, 

part of the light will exit the device on one polarization and the other part of the light on 

the orthogonal polarization. Therefore, in order to observe either one of them 

individually, a polarization filter (polarizer) must be included after the device, 

eliminating the undesired polarization. The addition of one component increases the cost, 

complexity and the insertion loss of the filter as a whole. 

A topology in which the polarizer would be dispensable without distorting the 

filter response with respect to the polarized straight channel response is highly desirable. 

Avoiding the use of a polarizer requires the response to be the same no matter which 

polarization is input to the device, hence the name polarization independent. 

One way to accomplish it, is by using the asymmetric Mach-Zehnder 

interferometer [26]. The device is called asymmetric because there is an imbalance in the 
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optical path for both arms of the interferometer. The interferometer is fabricated so that 

the imbalance is equal to a phase difference of π  (or 2λ ) between the two arms. 

Another particularity of this structure is that the strain-inducing grating in one of 

the arms is shifted half of the grating spatial period ( 2Λ ) with respect to the one on the 

other arm. Figure 18 shows a schematic diagram of the described configuration.  

The best way to analyze this device is by using Jones calculus, where both 

polarizations may be treated at the same step of the calculation by using matrix 

multiplications as the light wave propagates through the device. 

In order to ease the analysis, some reference planes must be defined along the 

sample. They are also pictured in figure 18 and marked by the numbers 1,2,3 and 4. 

At the Y-branch, power is split into half and directed to each arm. Hence the 

electric field amplitude after the branch is written 

iTM

TE
l

BiTM

TE

iTM

TE
u

BiTM

TE

E
E

E
E

E
E

E
E

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

−

2
1

2
1

                                             (128) 

where the superscript u denotes fields in the upper arm and l in the lower arm. Subscript i 

denotes at “input” and i-B denotes at input branch. 

Assuming the grating is centered with respect to the interferometer arms, at 

reference plane 1, light that has propagated in the upper arm accumulates a phase 

difference of 2
π  with respect to light that propagated in the lower arm due to the 

described interferometer asymmetry. 
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Fig. 18. Schematic diagram of an asymmetric Mach-Zehnder interferometer with strain-

inducing gratings on each arm. 

 

Therefore using the phase in the lower arm as reference 
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At reference plane 2, light in the upper arm is already in the sparse grating region 

while light in the lower arm propagated a distance 2Λ  before reaching reference plane 2. 

The effect for the sparse grating region will be accounted at the respective reference 

plane light exits it. Hence 
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At reference plane 3, light traveling in the upper arm leaves the sparse grating 

section, while light in the lower arm is still traveling through it. The same way, the effect 

of the grating on the lower arm will be accounted at the reference plane it leaves it, then 

according to equation (116) 
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At reference plane 4, light in the upper arm had traveled an additional distance of 

2Λ  and light in the lower arm is exiting the sparse grating region, which makes 
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Right before recombination, light in the upper arm have again accumulated a 

phase difference of 2
π  with respect to light that propagated in the lower arm due to the 

interferometer asymmetry, yielding 
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The components of the output field, after light travels through the interferometer 

and recombines at the second Y-branch is given by 
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Thus carrying out the matrix multiplications in equation (133) and adding the 

results according to equation (134), it is obtained 
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Which may be further reduced to 
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It should be observed that no unconverted light appears at the output. The power 

associated with them is radiated into the substrate instead of remaining guided. Since 

after recombining the waveguide modes travel without exchanging power between them, 

the total power at the output will be the sum of the power on each mode, i.e. 
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since ( ) 2)()()()()( zBzBzBzBzB RR ==
∗∗ , finally yielding 
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Equation (138) is independent from the polarization state of the input, moreover, 

for the phase-matched wavelength ( )iTMiTEout PPzBP −− += 2)( , giving the exact same 

response for the converted power in the straight channel waveguide sparse grating. 

For wavelengths other than the phase-matched, the cosine term in equation (138) 

will have a value greater than -1 and the efficiency at the output will not be maximum. 

Thus the asymmetric Mach-Zehnder Interferometer, in the way it was depicted, 

enables to realize the same filtering function obtained in the straight channel waveguide 

and eliminates the need for a polarizer at the output of the device.  
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CHAPTER IV 

DEVICE FABRICATION 

 

The fabrication processes for channel waveguides, continuous-grating 

polarization mode converters on straight channel waveguides, sparse-gratings on channel 

waveguides and the sparse-gratings on the asymmetric Mach-Zehnder Interferometer are 

described in this chapter. 

 

A. Ti Diffused Channel Waveguides in LiNbO3 (Ti:LiNbO3) 

It is usual to develop a waveguiding channel in lithium niobate by metal diffusion 

[27]. The most common and successful metal, being used a long time for that purpose, is 

Titanium (Ti). In contrast to other ways of developing the waveguiding region, for 

example proton exchange, Ti diffusion is of particular interest to this work because of its 

ability to support fundamental mode propagation for both polarizations, TE and TM, 

which is not the case for proton exchange. 

The fabrication of straight channel waveguides starts with dicing the substrate 

wafer (LiNbO3) into samples of proper size and crystal orientation. 

Three-inch diameter, one-millimeter thick, x-cut LiNbO3 crystal wafer supplied 

by Crystal Technology Inc. (Palo Alto, CA) is used. Since light propagation will be 

along the crystalline y-axis, orientation flats located at the wafer rim showing the 

crystalline axes orientation must be identified prior to dicing. The wafer is then diced 

into 12 mm wide (in the z-direction) by 43 mm long (in the y-direction) for straight 
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channel waveguides to be used with sparse gratings. Samples with the same width but 

smaller in length (22 mm) are also diced to be used with a 10.5 mm long continuous 

grating. These smaller samples are intended to optimize the conditions of producing the 

strain-inducing structure in the continuous grating case and use the same parameters 

latter on for the sparse grating. 

After dicing, samples were cleaned using soapy water, organic solvents and DI 

water.  

A Titanium film of about 1250Å thick was deposited onto the clean substrate 

surface by a DC sputtering process.  

After Ti-film deposition, the patterns of channel waveguides are delineated by a 

positive photolithographic process on the Ti film. This process uses the AZ-5214-E-IR 

photoresist produced by Clariant. 

Developed photoresist patterns are then checked to confirm that the desired 

pattern was obtained. Samples that pass the check are then cleaned with the help of a 

light plasma (low power O2 plasma-descum) to remove any possible photoresist residue 

left on exposed areas. A small amount of the photoresist on the patterns is also removed 

during this process. 

The plasma ashing process is followed by hardbaking at 135°C for 15 minutes to 

harden the photoresist and prepare it to withstand the Reactive Ion Etching (RIE) process. 

It is done inside the same chamber, right after ashing and without breaking the vacuum.  

Reactive ion etching (RIE) is then used to remove almost all of the titanium film, 

leaving only portions where the hardened photoresist pattern is present. Since it is an 
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anisotropic etching process, most of the features are defined by this process with very 

little distortion from the desired pattern. 

On the portions not covered with photoresist, the etching is not complete as a 

precaution in avoiding damage to the substrate, which may also be etched by the gas 

mixture used. Therefore, the remaining titanium on the uncovered areas is removed by 

wet etching with hydrofluoric acid (HF) diluted in De-Ionized (DI) water in the 

proportion 1:30 by volume. This process is isotropic and should be very well controlled 

to avoid overetching, which would result in increased waveguide scattering losses and 

also to avoid underetching, which would not provide much index increment, leaving the 

mode loosely guided. Typical etching times are on the order of less than 5 seconds, 

depending on the remaining titanium thickness. 

Upon finishing the etching, the photoresist is removed by immersing in a 

photoresist stripper bath (Clariant AZ 300T or AZ 400T) heated to the temperature range 

between 95°C and 100°C for 15 minutes. The samples are then cleaned with liquid 

solvents.  

The Ti patterns for both straight channel waveguides and asymmetric Mach-

Zehnder interferometers were designed to be 7μm, which upon diffusion should allow 

single mode operation in each polarization. In order to check the Ti strips width, a 1000X 

magnification optical microscope is used along with a calibrated scale on the eyepiece 

(0.625 μm/division). Widths are measured at different locations on the sample and their 

average is taken as the reference value for the width.  
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The Ti film thickness is determined from the average of measurements taken at 

different places on the sample by using a Dektak3 Surface Profile Measuring System. 

When Ti strips desired thickness and width values are obtained sample may be 

diffused.  

Sample is loaded in the furnace quartz tube using an alumina boat. Sample is kept 

at 1035 °C in wet atmosphere by bubbling compressed breathing air in DI water before 

flowing it into the furnace. The purpose of the wet atmosphere is to provide an increased 

oxygen partial pressure that suppresses the observed lithium oxide (Li2O) out-diffusion 

[28]. Diffusion time was optimized to 13h for the Ti film thickness (1250 Å). 

Finally, both end facets of the sample were polished perpendicular to the 

waveguides in order to minimize scattering losses on those edges when coupling light to 

them. 

 

B. Uniform-Grating TE-TM Polarization Converters 

Uniform-grating TE-TM polarization converters were fabricated on x-cut, y-

propagating, twelve millimeter wide by twenty two millimeter long samples. A 

continuous strain-induced grating was added on top of a single-mode, Ti-diffused 

straight channel waveguide. The sample end facets were already polished to enable light 

coupling.  

All the procedures already described in the previous section were used to obtain 

the sample with low-loss single-mode straight channel waveguides.  
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After the waveguides had been produced, a spatially periodic strain-induced 

refractive index grating 10.5 mm long (500 grating spatial periods) was fabricated on top 

of it by following the procedure described next. 

The LiNbO3 sample containing the waveguides was heated up to 389°C in the e-

beam chamber, while under vacuum, by using a pair of halogen lamps as the heat source. 

The voltage applied to the lamp was adjusted to keep an approximately constant heating 

rate. The sample was then kept at the final temperature by an on/off controller and a 

1.7μm thick SiO2 film was deposited by e-beam evaporation.  A small constant flow of 

oxygen (about 1 sccm) was kept during deposition to avoid oxygen out-diffusion from 

the lithium niobate. 

After completing the SiO2 deposition, the sample was kept inside the chamber 

with the O2 flowing in, until it reached room temperature. 

Using positive photolithographic process, a uniform periodic pattern was 

delineated over the SiO2 strain film. The parameters for this patterning are different from 

the parameters used in the Ti patterning, since both films had very dissimilar thicknesses 

(much thicker SiO2) and reflectivities in the UV region.  

Following the patterning, sample was treated O2 plasma-descum and then 

hardbaked at 135°C in vacuum for 20 minutes. The SiO2 layer was dry etched in the 

Oxford Plasmalab system for about one hour. The remaining non-etched SiO2 film was 

removed by means of a wet-etching in a buffered oxide etch (BOE) for about 40 seconds. 
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The photoresist left on the sample after RIE was then removed by immersing the 

sample in photoresist stripper bath (Clariant AZ 300T or AZ 400T) heated to the 

temperature range between 95°C and 100°C for 20 minutes.  

Sample was then inspected under the optical microscope to check grating period 

and pattern integrity. 

After completion, sample was ready for optical testing. 

 

C. Tunable Sparse-Grating TE-TM Polarization Converters 

The tunable sparse-grating TE-TM polarization converters were produced on an 

x-cut, y-propagating, twelve-millimeter-wide by forty three-millimeter-long sample.  

To enable electro-optic tuning of the phase-matched wavelength, before the strain 

grating was produced, a couple of electrodes patterns placed alongside the waveguide 

were deposited by multiple metal layer e-beam evaporation. Electrode patterns were 

generated using an image reversal photolithographic process. Figure 19 shows a 

schematic diagram of the device. 

Aiming at avoiding additional loss caused by field attenuation on the electrodes, 

the gap between them has to be carefully aligned in a way the center of the gap coincides 

with the center of the waveguide. The gap between electrodes was designed to be 17μm. 

After pattern developing, the samples were cleaned with O2 plasma descum for 3 

minutes, in order to remove residual photoresist that would prevent the metallic film to 

stick well to the substrate. No hardbaking is used in this process.  
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Fig. 19. Schematic diagram of a tunable sparse-grating TE-TM converter on a channel 

waveguide. 

 

After the descum process, samples were loaded in the e-beam chamber and three-

metal layers were deposited. First a 400Å Chromium layer was deposited to improve 

electrode adherence to the substrate. Without breaking the vacuum an 800Å gold layer 

was deposited to improve electrode conductivity. Finally a 600Å Ti layer was deposited 

to avoid gold diffusion into the SiO2 layer when sample is heated up to deposition 

temperature. 

After deposition, metal electrode patterns were obtained by lifting-off the 

photoresist layer. This was done by immersing the sample in acetone and sonicating. 

The remainder of the process is concerned with producing the sparse grating on 

top of the waveguides. The procedure parameters for that are identical to the one 
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described in producing the continuous grating described in the previous section: 1.7 μm 

thick SiO2 film deposited at 389 oC and patterned at room temperature. The only 

difference is the pattern, now a 6-coupling region sparse grating. Details for the pattern 

dimensions are provided in appendix B. 

The distance between adjacent coupling region centers in the design of this 

pattern had to be readjusted with respect to design parameters presented in the previous 

chapter. This happened because the same pattern was also meant to be used in the 

asymmetric Mach-Zehnder interferometer (polarization independent topology) and space 

on the smallest arm was limited to 24 millimeters. 

Distance between centers was then reduced from the value of mμ 9.6111 , given 

in equation (122) to mμ 3684 , causing the value of FSRνΔ  to increase from 600 GHz to 

839.55 GHz and spacing between nulls in the stopband to increase from 100 GHz to 

139.93 GHz. With these new values the proof of concept can still be made, and future 

developments can design new asymmetric interferometer capable of accommodating the 

sparse-grating design presented in the previous chapter. 

 

D. Polarization Independent Sparse-Grating Filter 

The polarization independent sparse-grating filter was also produced on an x-cut 

y-propagating LiNbO3 substrate. Samples were cut 14mm wide by 53mm long. The 

asymmetric Mach-Zehnder interferometer (MZI) pattern was obtained from Mask EMF-

16 that was designed previously. 
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Fig. 20. Schematic diagram of a polarization independent sparse-grating filter. 

 

Figure 20 shows a schematic diagram of the polarization independent sparse 

grating filter. 

The fabrication procedure for the polarization independent sparse-grating filter 

was exactly the same described previously for the straight channel waveguide 

polarization converters. The exception is that the pattern for the waveguides is now the 

asymmetric MZI instead. 

Ti-diffused waveguides in an asymmetric Mach-Zehnder interferometer were 

produced on a LiNbO3 substrate by diffusing a 1240Å thick, DC-sputtered Ti film at 

1035°C for 13 hours. 

The six-coupling-region sparse strain-inducing SiO2 grating was produced with a 

procedure identical to the one described in the previous section. Now there are two sets 
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of gratings, one for each arm of the interferometer, that are shifted half of the grating 

spatial period ( 2/Λ ) from each other. Appendix C shows the dimension details in the 

mask pattern. 

Once the waveguides were produced, the end facets were polished and optical 

characterization of the sample was carried out. Next, the sparse strain-induced gratings 

were fabricated on a SiO2 film that was 1.7 μm thick, and was deposited using by e-beam 

while the sample being kept at 389°C.  

Upon finishing the procedure, sample was ready for optical testing. 
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CHAPTER V 

OPTICAL TESTING AND RESULT ANALYSIS 

 

Once the samples were fabricated, they followed to optical testing and various 

characteristics were measured. This chapter is intended mainly for presenting the 

measurement setups, results and analyses of the results obtained by optically testing the 

fabricated devices.  Also, suggestions for future extension on the work developed here 

are made. 

 

A. Ti Diffused Straight Channel Waveguides in LiNbO3 (Ti:LiNbO3) 

The first building block for the realization of the sparse grating filter is the 

waveguide where the light will propagate. It must present single mode propagation for 

the filter desired wavelength band of operation, low loss and highest possible overlap 

between TE and TM polarization modes. All the fabrication processes employed in 

obtaining the device have an influence on the waveguide being able to simultaneously 

satisfy those criteria. There is a set of parameters that should be closely monitored and 

controlled during the waveguide fabrication process to help achieve those goals. The Ti 

film thickness, patterned waveguide width, the Ti diffusion temperature and duration as 

well as the atmosphere developed in the diffusion furnace have profound effects in the 

quality of the obtained waveguide. 

Therefore, before fabricating the filter waveguides themselves, fabrication and 

test experiments were conducted to help characterize and optimize the influence of those 
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parameters in straight channel waveguides. Once optimized, they were transferred to the 

fabrication process of the filter waveguides. 

The optical loss increment in a system due to the inclusion of a component is 

called insertion loss of the device. Therefore, a comparison of measured values of optical 

power at same reference plane before and after the inclusion of the device will enable to 

determine this performance parameter. It is usually expressed in the form of a 

logarithmic ratio in decibels (dB) as  

without

with

P
PIL log 10−=      (dB)                                     (139) 

where withP  and withoutP  are the power levels measured at the sample output reference 

plane after and before including the waveguide in the light path, respectively. 

Figure 21 shows a schematic diagram of the test setup used for the optical 

insertion loss measurement.  
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Fig. 21. Schematic diagram of the insertion loss test set up. 
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The light source was an Amplified Spontaneous Emission (ASE) Erbium-Doped 

Fiber (EDF) pumped in the backward configuration. It was composed of a 5m long 

Erbium-Doped Fiber (EDF) pumped by a 980nm Laser Diode (LD) (SDL Optics Inc. 

Model: SDLO-2400-090) through a 980/1550nm WDM coupler. An optical isolator 

(Kaifa Technology, Model: IS-A-55-B-A-11) with isolation in excess of 38dB of was 

connected at the output of the coupler to prevent self-oscillation (lasing). The broadband 

ASE light was butt-coupled to one of the sample’s end facet through a PZTM fiber that 

could be axially rotated to select either a TE or TM polarization being input to the 

sample. 

An x-y-z translation stage equipped with differential micrometric screws from 

Line Tool Co., Allentown, PA was used to hold and precisely manipulate the position of 

the sample with respect to the input fiber, enabling to optimize optical power coupling to 

the waveguides being tested. 

After propagating through the sample, light was again butt-coupled, this time to a 

single mode optical fiber (Corning SMF-28TM) at the sample opposite end facet. Light 

emerging from the output fiber is directed to a Ge detector from Newport (Model 818-

IR), having its power level measured by an optical power meter, also from Newport 

(Model 1825-C).  

Insertion losses for 7 mμ  wide straight channel waveguides fabricated on two 12 

mm wide by 22 mm long samples (RD01 and RD02) for different the diffusion durations 

are summarized in table 3. 
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Table 3. Channel waveguides insertion losses for TE and TM polarizations under 

different diffusion durations. 

Sample RD 01 RD 02 

Ti thickness (Å) 1257 1264 

Diffusion Temperature (oC) 1035 1035 

Polarization Mode TE TM TE TM 

Diffusion 
Duration 

11 h 2.53 dB 2.17 dB 2.58 dB 2.05 

12 h = (11+1) h  2.07 dB 1.79 dB 1.98 dB 1.82 dB 

13 h = (11+1+1) h 1.84 dB 1.64 dB 1.8 dB 1.59 dB 
 

Diffusion duration started being timed when furnace temperature reached the 

desired set value, i.e. after the warm up time, although the sample was already in the 

furnace, was neglected, because little diffusion, compared to the full time, occurs. 

After the initial diffusion of 11 hours duration, insertion losses for both the TE 

and TM polarizations were measured. Additional diffusions in increments of one hour 

were carried out and insertion loss measurements repeated right after. It can be observed 

that the insertion loss difference between both polarization modes is much larger for 

shorter diffusion times. In the devices of interest for this work, insertion losses for both 

polarizations should be as close as possible to each other; otherwise the polarization 

conversion efficiencies would be different for each input polarization after propagating 

over the same waveguide.  

One parameter used to evaluate mode confinement and similarity between 

polarization modes (TE and TM) is the near field intensity mode profiles. Figure 22 
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shows the test setup used to measure them. The light source used is a distributed 

feedback (DFB) laser diode( =λ 1558.2nm) from Alcatel (Module: 1915-LMI) 

controlled by a stabilized current source from ILX Lightwave (Model LDC-3712). The 

current driven through the diode and the junction temperature were set at 36.76mA and 

20oC, respectively, in order to achieve 1.0mW of optical power at the laser pigtail output 

reference plane. 

The laser diode pigtail was spliced to a single mode fiber (Corning SMF-28TM) 

and later wound into a fiber polarization controller (Thorlabs Inc., Model FDC010) to 

enable switching the polarization state of the light input to the device being tested. Light 

from the polarization controller was butt-coupled to channel waveguides through one of 

the device polished end facet. 

After propagation through the sample, the beam emerging from the 20Х objective 

lens was focused on a vibrating mirror and directed through a 100μm slit. The slit could 

be oriented either vertically or horizontally depending on which profile is being 

measured: vertically for transverse profile (along substrate crystalline z axis), 

horizontally for depth (along substrate crystalline x axis). After going through the slit, 

light impinged on a Ge photodetector and its power level measured by an optical power 

meter (same used in insertion loss measurements). 

The vibrating mirror was driven with a voltage waveform, resulting in a scan of 

the waveguide output near field being imaged on the slit. Horizontal and vertical scans 

were obtained by rotating mirror assembly 90º relative to the vibration axis.  
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Fig. 22. Schematic diagram for field intensity mode profile measurement setup. 

 

The slit allowed to improve the profile spatial resolution, letting only part of the 

light strike the detector head. 

The output from the optical power meter was connected to a computer via a 16-

bit digitizing board (NI-DAQ) from National Instruments for display and storage of the 

data. The LabVIEW programming environment was used to read the power level 

reaching the detector at a certain instant and construct the mode profile for one vibrating 

mirror sweep. All data was stored in text files. 

A splitter was positioned at the sample under test site and since the spatial 

separation from the output waveguides was known to be 67 mμ  center-to-center, the 

time scale of the readings could be calibrated to distances. 

Figure 23 shows the obtained mode profiles for transversal and depth 

distributions for both the TE and TM polarizations on a 7 mμ  wide waveguide on sample 

RD01 after 13 h diffusion duration. Single mode propagation for both the TE and TM 
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polarizations in this waveguide can be confirmed from the obtained images. The images 

show a symmetric Gaussian-like distribution for the transversal profile scan, and an 

asymmetric profile for the depth profile.  
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Fig. 23. Intensity profiles for a 7 mμ  wide channel waveguide on sample RD01. The x 

axis scale is already calibrated in distance: (a) TE transversal profile; (b) TM transversal 

profile; (c) TE depth profile; (d) TM depth profile. 
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This fact is due to the symmetry characteristics of the refractive index profile in 

the guiding region. In the depth direction the structure is highly asymmetric having 3 

layers (air, guide and substrate) owing to different exponential decay coefficients in air 

and in the substrate, therefore resulting in the profile asymmetry along the same direction. 

From figure 23, it is possible to notice that for both polarizations single mode 

propagation is attained and also that the TE mode is much more confined than the TM 

mode. 

 

B. Uniform-Grating TE-TM Polarization Converters 

The uniform-grating TE-TM polarization converter is another building block in 

the realization of the sparse grating filter. It is fabricated by adding a continuous strain-

induced grating on top of a single-mode, Ti-diffused straight channel waveguide.  

 

OSA

Objective Objective

Polarizer

Er+ doped fiberLaser Diode
Pump @ 980 nm

WDM 980/1550
coupler

Er ASE light source

PZ fiber

Sample
Under 
Test

Current
Source

Isolator

OSA

Objective Objective

Polarizer

OSA

Objective Objective

Polarizer

Er+ doped fiberLaser Diode
Pump @ 980 nm

WDM 980/1550
coupler

Er ASE light source

PZ fiber

Sample
Under 
Test

Current
Source

Isolator

 

Fig. 24. Schematic diagram of the experimental set up used to test the TE-TM 

polarization converters. 



 

 

103

The test setup used to characterize the polarization converter is presented in 

figure 24.  

A broadband source is convenient to characterize wavelength selectivity. The 

amplified spontaneous emission (ASE) Erbium doped fiber (EDF) that was used as the 

broad band light source is the same used in the insertion loss measurement. 

The test setup is changed at the output: a 20X objective is included to expand the 

beam to conform it to go through a bulk polarizer; the bulk polarizer is included to allow 

selecting the polarization state that will be analyzed in the Optical Spectrum Analyzer 

(OSA), since the converted and unconverted portions of light are orthogonal to each 

other; another 20X objective was included to refocus the light and couple to a single 

mode fiber, which is connected to the OSA input; last the Optical Spectrum Analyzer 

(Anritsu, Model MS9710C) is included to allow characterize the wavelength selectivity 

of the device. A typical emission spectrum of the amplified spontaneous emission 

Erbium doped fiber light source obtained directly from the OSA is presented in figure 25. 

The substrate temperature was controlled by placing the sample on a Cu plate that 

was located on top of a Thermo-Electric Cooler (TEC). A thermistor (Omega Model: 

44030) was placed in contact with the Cu plate and close to the sample to measure the 

temperature at which the substrate was. Everything is set on a metallic arm, which in turn 

was fixed to x-y-z translation stage (LineTool Co., Model: A-RHFF) equipped with 

differential micrometric screws in order to allow a precise positioning of the sample with 

respect to the input and output optics.  
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Fig. 25. Amplified spontaneous emission from an Erbium doped fiber source. 

 

The strained SiO2 film thickness and substrate temperature during the film 

deposition process are key parameters to be adjusted in optimizing the device 

polarization conversion efficiency.  

Various converters of different SiO2 film thicknesses were deposited and 

characterized. It was found that for a substrate temperature of 389 oC during deposition 

and a SiO2 film thickness of 1.7 mμ  99.8% conversion efficiency was achieved. 

The output spectra of a uniform-grating TE-TM polarization converter fabricated 

on sample RD01 are shown in figure 26 for both TE and TM polarized inputs. 
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(a) 

 

 

(b) 

 

(c) 

 

 

(d) 

Fig. 26. Output spectra from a uniform-grating TE-TM polarization converter fabricated 

on sample RD01: (a)TM input/TM output (unconverted); (b) TM input/TE output 

(converted); (c) TE input/TE output (unconverted) and (d) TE input/TM output 

(converted). 

 

The grating pattern had a spatial period of 21μm and a total of 500 strain-induced grating 

periods. Figure 26 (a) and (c) show the unconverted output spectrum in logarithmic (dB) 

scale for TM and TE inputs, respectively. Figure 26 (b) and (c) show the converted 
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output spectrum, also in dB scale, for TM and TE inputs, respectively. It can be noticed 

that they present very similar output behaviors (converted and unconverted) for both 

input polarizations. The measured phase-matched wavelength is 1532.82 nm for TM 

mode input and 1532.96 nm for TE mode input. The polarization conversion efficiency 

(PCE) may be calculated the same that was described on equation (111), rewritten below 

in a generalized format for both polarizations 

 
)()(

)(
λλ

λ

convunconv

conv

PP
PPCE

+
=                                                (140) 

where )(λconvP  is the converted light spectrum (orthogonal to the input polarization) and 

)(λunconvP  is the unconverted light spectrum (same polarization as input). 

The raw spectra shown on figure 26 were also retrieved in a text file format from 

the OSA, allowing the application of equation (140) to calculate the polarization 

conversion efficiencies (PCEs). The theoretical polarization conversion efficiency may 

also be calculated. It is employed a method identical to the one used to generate the 

spectrum in figure 12.  Figure 27 shows a plot comparing the PCEs for each polarization 

input with the theoretical expected spectrum. It can be noticed that they are in very good 

agreement. 

The waveguide mode birefringence may also be determined by use of equation 

(95), yielding 

 072994.0=Δ −TMTEn                                                (141) 

As stated before on this dissertation, the temperature dependence of the bulk 

substrate birefringence provides a mean of tuning the phase-matched wavelength.  
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Fig. 27. Polarization conversion efficiencies (PCEs) for uniform-grating TE-TM 

polarization converter: TE polarization input (red up-triangle) and TM input polarization 

(blue circle), compared with the theoretical response (solid black). 

 

The substrate temperature may be changed (heating or cooling) by applying 

different values of electric current to the thermo-electric cooler on which the sample is 

placed. The temperature was obtained through the reading of the thermistor resistance. 

This way, different values of electrical current were applied to the TEC. It was 

allowed enough time for the heat exchange reach a steady state and then the spectra  for 

the polarization modes (converted and unconverted) were measured and the temperature 

obtained by reading the thermistor resistance. The shift of the phase-matched wavelength 

was observed as can be seen with the calculated PCEs in figure 28 (a). A tuning curve for 
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the phase-matched wavelengths can be plotted and it is shown in figure 28 (b). The 

obtained temperature tuning rate for the phase-matched wavelength on sample RD01 was 

CdT
d onm/ 3419.1−=λ . 
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Fig. 28. Results from the phase-matched wavelength temperature tuning: (a) polarization 

conversion efficiencies for different temperatures; (b) phase-matched wavelength 

temperature dependence. 
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C. Tunable Sparse-Grating TE-TM Polarization Converters 

The tunable sparse-grating TE-TM polarization converter consists of a straight 

channel Ti-diffused waveguide overlaid with a 6-coupling region strain induced sparse 

grating. The same fabrication parameters used with sample RD01 in the preceding 

section were used in the fabrication of sample RY07, which was cut 12mm wide by 43 

mm long in order to accommodate the longer sparse grating. The device was fabricated 

in a three-layer configuration. First layer consisted of the waveguide layer, second layer 

consisted of  the electrodes and last layer consisted of the sparse grating. 

The deposited Ti-film thickness ended up to be 1275 Å and was diffused for 13.5 

h, at 1035 oC, in wet ambient with compressed breathing air being flown in the furnace at 

about 190 sccm (~4 bubbles/s in the front bubbler). End facets were polished to provide 

low coupling loss. Overall insertion loss for the 43 mm long sample without the grating 

was measured 2.5 dB for the TM polarization mode and 2.17 dB for the TE polarization 

mode. Single mode propagation was confirmed through quick check of intensity profiles. 

Then electrodes were patterned by image reversal lithography and deposited by e-

beam (400 Å Cr/ 800 Å Au/ 600 Å Ti) alongside the waveguides and later defined by 

lift-off. Electrode gap equals 17 mμ . 

As the last step, the sparse grating was delineated on a SiO2 film deposited at 390 

oC by e-beam evaporation and patterned after cooling down to room temperature. SiO2 

film thickness was measured 1.75 mμ . 

Once the device had been produced and had its critical dimensions and integrity 

checked under an optical microscope, optical testing was carried out. The spectral 
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characteristics were investigated by using the optical setup used for the same purpose 

with the uniform grating TE-TM converter described in the previous section (figure 24). 

The polarization conversion efficiency was determined the same way that was 

done in the previous section, by applying equation (140). 

 

C-1. Spectral characteristics without applying voltage 

Figure 29 shows the raw spectra obtained from the OSA for the sparse-grating 

TE-TM polarization converter fabricated on sample RY07 (fabrication parameters no 

page 109), for both TE and TM polarized inputs, when no voltage was applied to the 

electrodes and at room temperature (25.0 oC). 

Figure 29 (a) and (c) show the unconverted output spectrum in logarithmic (dB) 

scale for TM and TE inputs, respectively. Figure 29 (b) and (c) show the converted 

output spectrum, also in dB scale, for TM and TE inputs, respectively. It can be noticed 

that they present very similar output behaviors (converted and unconverted) for both 

input polarizations. The measured phase-matched wavelength (center peak) is 1529.16 

nm for TM mode input and 1529.1 nm for TE mode input. Achieved polarization 

conversion efficiencies were 96.1% for TE polarization input and 95.7% for TM 

polarization input. 

Like it was done in the uniform-grating case, spectra were also retrieved in a text 

file format from the OSA, allowing the application of equation (140) to calculate the 

polarization conversion efficiencies (PCEs). The theoretical polarization conversion 

efficiency was also calculated through the knowledge of the grating dimensions and by  
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(a) 

 

(b) 

 

 

(c) 

 

(d) 

Fig. 29. Output spectra from a 6-coupling region sparse-grating TE-TM polarization 

converter fabricated on sample RY07: (a)TM input/TM output (unconverted); (b) TM 

input/TE output (converted); (c) TE input/TE output (unconverted) and (d) TE input/TM 

output (converted).
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Fig. 30. Polarization conversion efficiencies (PCEs) for the 6-coupling region sparse-

grating TE-TM polarization converter: TE polarization input (red up-triangle) and TM 

input polarization (blue circle) compared with the theoretical response (solid black). 

 

applying the transmission matrix approach (equation (116)) used in Chapter III (recall 

figure 17). 

Figure 30 shows a plot comparing the PCEs for each polarization input with the 

theoretical expected spectrum. It can be noticed that they are in very good agreement. 

Applying equation (95) to the filter center peak, the waveguide modal 

birefringence may be determined the same way it was for the uniform grating TE-TM 

mode converter of the previous section. 

 0728157.0=Δ −TMTEn                                                (142) 
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By appropriately applying different values of electric current to the 

thermoelectric cooler (TEC), sample temperature was varied the same as it was described 

in the previous section. Temperature was obtained through the reading of the thermistor 

resistance. Spectral behaviors were measured for various temperatures and the respective 

polarization conversion efficiencies determined. 

It was observed the shift not only in the center peak wavelength but in the whole 

filtering function as a result of the temperature change, characterizing temperature tuning 

of the device. In figure 31(a) the conversion efficiencies for the lowest and highest 

temperatures are shown. The conversion efficiencies for other temperatures were not 

plotted to avoid excessive cluttering. With the different values of the resultant center 

peak wavelength and respective temperature, a tuning curve was plotted.  

The obtained temperature tuning rate for the center peak wavelength on sample 

RY07 (fabrication parameters on page 109) was determined CdTd onm/ 99929.0−=λ for 

TE polarization input and CdTd onm/ 00138.1−=λ  for TM polarization input. The 

tuning curves for both input polarizations is shown in figure 31 (b). 

The obtained bandwidth (FWHM) for the center peak was measured 1.044 nm 

around 1540.19 nm (or 131.9 GHz around 194.645 THz). Because of the proximity 

between theoretical response and measured responses, it may be said that they are in 

good agreement (within an experimental error). 

In figure 30, a little asymmetry in the height of secondary peaks (those in the 

rejection band) in the lower wavelength side when compared with the ones in the high 

wavelength side can be noticed. This may be explained by a gradient in the birefringence  
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Fig. 31. Results from the 6- coupling region sparse-grating center peak wavelength 

temperature tuning: (a) polarization conversion efficiencies for two values of temperature 

(14 oC and 25 oC) - TE input polarization is shown in red and magenta, while TM input 

polarization is shown in black and blue; (b) center peak wavelength temperature 

dependence. 
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along the length of the sample (direction of light propagation in the waveguide), that 

would in turn cause a variation in the phase-matched wavelength of one section of the 

sparse grating to be slightly different than in the others. The net result is a “sliding” 

effect in the contribution of that section with respect to the contribution of the other 

sections in the composition of the whole filtering function, causing the asymmetry. The 

effect was even more severe when dealing with longer sparse gratings (8-coupling 

regions), in which even nulls of the filtering function were missing (reduction in the 

number nulls). Secondary peaks (rejection band), for these cases, rose as high as main 

peaks (pass band). 

It was found in the literature [29] reports on similar effects in long uniform 

grating TE-TM polarization coupling filters, also attributing to birefringence gradients in 

the device. 

The causes of this gradient may be many, for example non-uniformity in the Ti 

film thickness obtained in the deposition, causing, after diffusion, variations in the 

refractive indices increments along the sample, thus birefringence variations. Another 

hypothesis is that the Ti film thickness is uniform but the temperature along the sample 

during the diffusion presents a gradient, resulting in different diffusion depths along the 

sample, thus effective index for the modes on that section of the waveguide. It may even 

be that those variations do not arise from the fabrication parameters, but imperfections in 

the substrate (LiNbO3) growth process [29]. 
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There seems to be no dispute that those problems arise from birefringence 

gradients along the sample, although the debate is in fact on what causes the gradient. 

These effects also seem to pose a limitation on the maximum length a device 

based on TE-TM mode coupling may have. That limitation, if confirmed, will result in 

limitations for sparse gratings on the narrowest achievable free spectral range, which in 

turn would result in limitations for the narrowest achievable bandwidth in the passband. 

 

C-2. Electro-optic Tuning 

 The application of a voltage to the electrodes deposited alongside the waveguide 

generates an electric field in the waveguide mainly oriented along the crystalline z 

direction, changing the waveguide birefringence (recall equation (62)). By changing 

birefringence, the phase-matched wavelength is also changed (equation (95)). Therefore, 

the electro-optic effect provides another tuning mechanism for a TE-TM polarization 

converter. 

This is also done with the highest voltage-refractive index transduction because 

the field orientation takes advantage of the highest electro-optic coefficient in LiNbO3. 

The limit in the tuning range is determined by the maximum achievable voltage, which 

in turn is limited by dielectric strength of the LiNbO3 (10 V/ mμ  [11]) integrated across 

the electrodes gap. For the device being measured, the electrode gap is 17 mμ , thus 

voltages below 170 V applied to the electrodes should be safe, if there are no free 

charges in the SiO2 strain film. The spectral characteristics were measured at constant 
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temperature for various applied voltages to the electrodes deposited on sample RY07 

(fabrication parameters on page 109). 
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Fig. 32. Results from the 6- coupling region sparse-grating center peak wavelength 

voltage tuning: (a) polarization conversion efficiencies for two values applied voltage (-

70 and +70 V) - TM input polarization; (b) center peak wavelength voltage dependence. 
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The spectra obtained when applying the two voltage extrema are shown in figure 

32(a) for the TM polarization. TE polarization tuning spectra were very similar and are 

not presented to avoid cluttering of the plot. The center-peak wavelength of the response 

shifted by 5.76 nm with a variation in the applied DC voltage tuning from -70 V to +70 

V, corresponding to a tuning rate of 0.045nm/V for TM input, and 0.039nm for TE input. 

Polarization conversion efficiency varied somewhat between both situations (from 99.4% 

at +70V to 91.7% at -70 V). The tuning curve for the center peak wavelength as a 

function of applied voltage, shown in figure 32(b), presents a linear behavior for both 

polarization modes, although the values for the tuning rates are low when compared to 

previous results in our group. An effect that might account for this difference is the 

presence of free-charges in the SiO2 strain film, which under the application of external 

voltage would move and develop an electric field counter acting the applied field, thus 

reducing the voltage- refractive index transduction. The appearance of free charges in a 

film expected to be an insulator probably has its roots in the deposition system being 

used (e-beam evaporation), which is used either for metal or dielectric films. Therefore 

cross contamination between highly conductive and insulating materials deposited in the 

same chamber becomes very likely. 

 

D. Polarization Independent Sparse-Grating Filter 

The polarization independent sparse-grating filter consists of an asymmetric 

Mach-Zehnder interferometer overlaid with two identical 6-coupling region strain 

inducing sparse gratings, each one covering one arm of the interferometer. In addition to 
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that, there is a spatial shift between the sparse gratings in both arms equal to half a spatial 

period of the strain-inducing grating ( 2
Λ ). Also, light in one arm of the interferometer 

travels an effective optical path equal to half of the wavelength ( 2
λ ) longer than in the 

other arm. As it was shown in Chapter III, those characteristics are central to the proper 

functioning of the device. The waveguide width used in the interferometer is 7 mμ . The 

pattern used in defining the Ti strips has two slightly different interferometer 

configurations, with respect to the optical path difference between arms. They were made 

this way to enable the selection of the best interferometer for the device. It was tried to 

use the experience acquired previously by using the same fabrication parameters 

optimized in the previous devices. Samples were cut 14mm wide by 53 mm long in order 

to accommodate the whole interferometer pattern. The device was fabricated in a two-

layer configuration. First layer consisted of the waveguide layer (interferometer), second 

layer consisted of the the sparse grating. 

The deposited Ti-film thickness on sample RY19 ended up being 1243 Å and was 

diffused for 13.5 h, at 1035 oC, in wet ambient with compressed breathing air being 

flown in the furnace at about 180 sccm (~4 bubbles/s in the front bubbler). End facets 

were polished to provide low coupling loss. 

Before proceeding, the best interferometer to put the gratings on had to be 

identified. 

Recall that the interferometer has a half wavelength unbalance between optical 

paths in both arms, i.e. a π  radians phase difference. Therefore, after light have being 
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coupled to the sample, with no coupling structures on the waveguides, it should have no 

light coming out of the interferometer output. In fact light that was confined in the 

waveguide in both arms, upon recombining at the output branch, have phases such that 

the resulting field profile does not match any of the allowed mode profiles for the 

structure. Thus, it does not remain confined in the waveguide and leaks to the substrate. 

Therefore, the best waveguide will be the one that exhibits the optical path unbalance as 

close as possible to π , i.e. that gives the lowest output power when light is input to it. 

Sample RY19 was then tested in a setup identical to the one that measured 

insertion loss (figure 21). The sample was laterally moved with the help of x-y-z 

translation stage and light was coupled to one interferometer at a time and the output 

power observed.  

Mach-Zehnder interferometer AMZ #1b and #2b were the best ones. When 0dBm 

(1mW) was coupled to their input, power levels of -36.8 dBm and -38.0 dBm at the 

output, for the TM and TE input polarization, respectively, were obtained. While the 

other asymmetric MZ interferometers showed -15 dBm at the output. For comparison 

purposes, straight channel waveguides on the same sample showed -3.1 dBm at the 

output. The symmetric MZI showed -6.8 dBm at the output. 

With the optimum waveguide identified, the sparse grating was then delineated 

on a SiO2 film deposited at 389 oC by e-beam evaporation and patterned after cooling 

down to room temperature. SiO2 film thickness was measured 1.78 mμ . 

Once the device had been produced and had its critical dimensions and integrity 

checked under an optical microscope, optical testing was carried out. 



 

 

121

The spectral characteristics were investigated by using the same optical setup 

used for insertion loss measurement (figure 21), and thus the polarizer needed previously 

at the output was indeed eliminated from the test setup. 

This time it is not possible to determine the polarization conversion efficiency 

because the unconverted light is not accessible at the waveguide output, once it is 

scattered to the substrate at the recombination branch. 

Since the Er ASE spectrum is not uniform along the bandwidth of interest, the 

filter measured spectrum should be normalized with respect to that ASE spectrum. The 

ASE spectrum is obtained from a straight channel waveguide placed on the pattern for 

other reasons including the measurement of this normalization spectrum. 

With both spectra (filter and ASE) retrieved from the optical spectrum analyzer in 

a text file format as before, the filter normalized spectrum can be calculated a posteriori 

by the relationship 
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where )(λNP  is the filter normalized spectrum; )(λfP is the filter spectrum measured at 

the filter output; )(λstP  is the spectrum measured at the straight channel output; for the 

straight channel waveguide; )(λMAX
fP  is the filter power density at the center peak 



 

 

122

wavelength (λ ) and )(λstP  is the power density level for the measured straight channel 

spectrum at the center peak wavelength. 

Figure 33 presents the “raw” (not normalized) spectra measured at the filter 

output for each polarization input to the filter and at a constant temperature.  

The center peak wavelength is 1531.88 nm for the TM polarized input and 1532.0 

for the TE polarized input. 

As can already be seen, the form of the measured spectra for both cases is very 

similar, hinting at the polarization independence of the device. 

To confirm, the normalized spectra for each polarization should be superimposed 

on the same plot. This is done in figure 34. 

 

 

(a) 

 

 

 

(b) 

 

Fig. 33. Output spectra for the polarization independent sparse grating filter for different 

polarizations input to the device: (a) TM polarized input; (b) TE polarized input. 
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Since electrodes were not deposited on this sample the only mean that the filter 

response can be tuned is by changing the substrate temperature. Like done with the

devices in the previous sections, the substrate temperature was modified by changing the 

current applied to the TEC which is in thermal contact with the sample and monitored 

through the measuring the resistance of a thermistor that is also in thermal contact with 

the platform where the tested sample is placed. 

For each temperature, the filter output spectrum was measured, normalized and 

the center peak wavelength identified. The plot of the center peak temperature 

dependence is plotted in figure 35(b), while the spectra obtained at the two measured 

temperature range extrema are plotted in figure 35(a) for the TE polarization. 
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Fig. 34. Normalized output spectra for the polarization independent sparse grating filter 

for different polarizations input to the device:  TM polarized input (blue circle); TE 

polarized input (red diamond); theoretical (black solid). 
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Fig. 35. Temperature tuning experiment results: (a) normalized output spectra of the 

polarization independent sparse grating filter at different temperatures:  black circles 

14oC; red diamonds 27 oC – TE polarization input only; (b) tuning curves for both 

polarizations. 
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TM polarization responses are not showed to avoid excessive cluttering on the 

plot but were indeed very close to the ones being showed. 

The temperature tuning rate obtained for the center peak wavelength on sample 

RY19 was determined CdTd onm/ 99997.0−=λ for TE polarization input and 

CdTd onm/ 99985.0−=λ  for TM polarization input. 

The striking match of the normalized spectra for both input polarizations, seen on 

figure 34 definitely shows the device polarization independent behavior. Also the match 

with the theoretical response confirms the realizability of the designed filtering function 

by employing the sparse grating concept. 

Higher number of nulls in between main peaks may be obtained by designing a 

device with more coupling regions and conveniently adjusting the coupling strengths for 

each region, according to design procedure shown. Narrower or wider free spectral 

ranges may also be obtained by spacing more or less the coupling regions. Those facts 

show the design flexibility in adapting to various needs. 

The same asymmetry between low and high wavelength-side for secondary peaks 

(around the main peaks) observed in the straight channel sparse grating converter is also 

observed here. This is may constitute a limitation in the design. A better control of the 

fabrication parameters may be able to reduce birefringence gradients responsible for this 

effect, leading to an improvement in the filter characteristic. 

Electro-optic tuning could have also been used to tune the filter characteristics, 

although it was not done on this work. It is a natural development in the research of this 

device. 
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E. Future Work 

The first suggestion for future work is to use a 4-port asymmetric interferometer 

in making the sparse grating filter instead of the 2-port used in this work. With this 

improvement, add-drop filters with the sparse grating filtering characteristic may be 

realized. It will be possible because the unconverted light is not lost to the substrate in a 

radiation mode, being just redirected to the device through port. Also, the inclusion of a 

port on the device input side allows a channel to be added. Still on this line of work, 

electro-optic and temperature tuning should be employed. 

The second suggestion is concerned in realizing arbitrary “zero-only” filtering 

functions, like gain equalizers or even some dispersion compensators. First a z-transform 

domain polynomial must have its coefficients adjusted to approximate the desired 

filtering function, for example by a least-squares algorithm. Then by using those 

coefficients in the synthesis algorithm, described in this and other works, the coupling 

coefficients for each of the regions and phases that should be accumulated between them 

are determined, yielding to coupling region and clear region lengths. 

Filtering functions with poles cannot be realized by this topology alone. If poles 

are needed to approximate a desired filtering funtion, the inclusion of IIR devices, like 

ring resonators, Gires-Tournois interferometers or Fabry-Perot interferometers must be 

included in the light path and in combination with sparse gratings (FIR type). 
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CHAPTER VI 

CONCLUSION 

 

A new type of devices employing the sparse-grating concept was developed. This 

type of devices may find application as filters in DWDM communication systems due to 

the fact that they are able to generate very narrow bandwidth filters in the passband with 

adjacent channels in the stopband placed by design on nulls of the filtering function. To 

realize these filtering functions, the codirectional coupling between orthogonal modes in 

a waveguide (TE-TM conversion) was employed. Devices proving the concept and 

realizing filtering functions were produced on an x-cut LiNbO3 substrate, with y-

propagation waveguides. It presented a narrower 3dB bandwidth (FWHM) when 

compared to previous research that employed uniform codirectional TE-TM polarization 

mode coupling. The obtained bandwidth was 1.0 nm operating around 1530 nm. Two 

types of devices were fabricated. The first one employed straight channel waveguides 

and had an intrinsic polarization dependent behavior, highly undesirable in optical 

communication systems. The second one employed interference between light traveling 

in a 2-port asymmetric Mach-Zehnder interferometer to generate a polarization 

independent behavior and circumvent that problem. For the straight channel device, 

temperature and voltage (electro-optic) tuning of the selected wavelengths were 

employed. For the polarization independent device only temperature tuning was 

employed. 
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Six-coupling region strain-induced sparse gratings were overlaid on 7 mμ  wide Ti-

diffused channel waveguides in both devices. One optimum set of fabrication parameters 

for waveguides and SiO2 strain film was identified. The Ti film was deposited on the 

sample to around 1250 Å thickness, patterned and diffused at 1035 oC for 13 h. Fiber-to-

fiber insertion loss for the waveguide was 2.5 dB for the TM polarization and 2.1 dB for 

the TE polarization on a 43 mm long sample. Under these fabrication conditions, the 

channel waveguides were confirmed to be single mode for both polarizations through 

intensity profile measurements. The measured mode diameters (FWHM) of the mode 

near field profiles were 6.22μm in the transversal (horizontal) scan and 5.39μm in the 

depth (vertical) scan for TE polarization, while those for the TM polarization were 

7.32μm and 6.81 μm, respectively. 

The spatially periodic static-strain inducing SiO2 surface film was obtained by 

depositing a 1.7μm thick SiO2 with the substrate (LiNbO3) preheated and kept at 389ºC 

during the whole deposition. It was let cool down to room temperature and patterned 

with a spatial period of 21μm.  By using these parameters a uniform grating with 500 

periods of the grating (10.5 mm) was delineated on a straight channel waveguide and 

yielded a polarization conversion efficiency of 99.9% a 3dB bandwidth (FWHM) of 

2.3nm, in close agreement with the theoretical value of 2.4 nm. 

Temperature tuning was used to shift the peak wavelength and a rate of negative 

1.3419nm/oC was obtained for the uniform grating. 

Parameters determined in this experiment were employed in producing high 

polarization conversion efficiency sparse gratings. Center peak wavelength polarization 
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conversion efficiencies (PCEs) as high as 99% were obtained in straight channel 

waveguides with overlaid six-coupling region strain-induced sparse gratings. Thermal 

tuning was also used to shift the peak wavelength, and a thermal tuning rate of -1.0 

nm/°C was measured for both polarizations. Electro-optic tuning was also demonstrated 

in the straight channel sparse-grating device. A shift for the peak conversion wavelength 

of 5.76 nm was realized over a tuning voltage ranging from -70V to +70V. The electrode 

gap is 17μm, and tuning rates of 0.045nm/V for the TM and 0.039nm/V for the TE 

polarization were obtained. 

A polarization independent sparse grating filter was also demonstrated. It presented 

the same spectral behavior obtained in the straight channel waveguide. The major 

difference is that no polarization filter is needed at the device output to observe the 

filtering function. The obtained filtered spectrum was demonstrated to be the same for 

both input polarizations. Selected channels showed a 3 dB bandwidth (FWHM) of 1.0 

nm. Temperature tuning was employed, and rates of negative 1.0 nm/oC for both 

polarizations were achieved. 

Obtained results were compared to theoretical responses and they were found to be 

in very good agreement.    
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APPENDIX A 

MATLABTM SPARSE GRATING SYNTHESIS ROUTINE  

Sparse grating design.m 
 
clear all 
syms z unreal 
syms z 
reg=6;% reg is the desired number of coupling regions 
b=(ones(reg,1))'; 
N=length(b); 
p=-(0:N-1); 
ZZ=(z.^(p)).'; 
B=b*ZZ; 
omega=-10*pi:0.01:10*pi; 
zz=exp(i*omega); 
f=1/(2*pi)*omega; 
BB=subs(B,zz); 
mag2=BB.*conj(BB); 
c=max(mag2); 
mag2=mag2/c; 
mag22=10*log10(mag2); 
plot(f,mag2) 
title('Square Magnitude Frequency Response for B_{n}(z)') 
xlabel('Normalized Frequency (\nu - \nu_{0}/ \Delta\nu_{FSR})') 
ylabel('Square Magnitude') 
%xlim([-1 1]); 
%ylim([-30 0]); 
%% 
ff=f'; 
mag2t=mag2'; 
BB=[ff mag2t]; 
save('designtheo6.txt','BB','-ascii','-double','-tabs') 
%% 
bb=b./sqrt(c); 
tt=-angle(bb(N)); 
bbr=exp(-i*tt)*fliplr(bb);%calculates the reverse polynomial of B 
aux1=conv(bb,bbr); 
aux2=zeros([1,length(aux1)]); 
aux2(N)=exp(-i*tt); 
aux2(N)=1; 
aaaar=aux2-aux1; 
r=roots(aaaar);%+i*1e-5 
figure 
plot(r,'o r') 
tetha=0:0.001:2*pi; 
r1=exp(i*tetha); 
hold on 
plot(r1,'-b') 
axis equal 
title('Roots of A_{n}A_{n}^{R}(z)') 
xlabel('Re') 
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ylabel('Im') 
 
%% Chosing roots 
ra=r(1:5);%max-phase roots (outside unit circle) should be chosen for 
AnAnr 
an=poly(ra); 
alpha=sqrt(-bb(1)*bb(N)/(an(1)*an(N))); 
if an(1)<0 
   aa=real(alpha*an); 
else 
    aa=-real(alpha*an); 
end 
%% Calculating csi and phi 
uu=N; 
for jj=1:N-1; 
    csi(uu)=atan(bb(uu)/aa(uu)); 
    s(uu)=sin(csi(uu)); 
    c(uu)=cos(csi(uu)); 
    auxbb=-s(uu)*aa+c(uu)*bb; 
    auxaa=c(uu)*aa+s(uu)*bb; 
    auxbb(uu)=[]; 
    auxaa(1)=[]; 
    nn=length(auxaa); 
    phi(uu)=-unwrap(angle(auxaa(nn)))-unwrap(angle(auxbb(nn))); 
    bb=auxbb; 
    aa=exp(-i*phi(uu))*auxaa; 
    uu=N-jj; 
end 
c(1)=aa(1); 
s(1)=sqrt(1-c(1)^2); 
csi(1)=acos(c(1)); 
csi 
phi 
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APPENDIX B 

DIMENSION DETAILS FOR THE 6-COUPLING REGION SPARSE GRATING 
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Figure 36 – Sparse grating dimension details 

 

Table 4 – 6-coupling region sparse grating lengths and distances 

Coupling 
Region 

Starts 
at 

Ends  
at 

# of SiO2 
grating 

periods in 
each region 

(Ni) 

1 0 1365 65 

2 4137 5943 86 

3 8379 10458 99 

4 12726 14805 99 

5 17241 19047 86 

6 21819 23184 65 
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 APPENDIX C 

6-COUPLING REGION SPARSE GRATING PATTERN LAYOUT ON MASK 
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Fig. 37. 6-coupling region sprase grating mask layout details. 
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