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ABSTRACT 

 

Seismic Fragility Estimates for Corroded Reinforced Concrete Bridge Structures with 

Two-column Bents. (December 2008) 

Jinquan Zhong, B.E.; M.S., Tongji University; 

M.C.E., University of Delaware 

Co-Chairs of Advisory Committee:  Dr. Paolo Gardoni 
  Dr. David Rosowsky 

 

To assess the losses associated with future earthquakes, seismic vulnerability 

functions are commonly used to correlate the damage or loss of a structure to the level of 

seismic intensity.  A common procedure in seismic vulnerability assessment is to 

estimate the seismic fragility, which is defined as the conditional probability that a 

structure fails to meet the specific performance level for given level of seismic intensity. 

This dissertation proposes a methodology to estimate the fragility of corroded 

reinforced concrete (RC) bridges with two-column bents subject to seismic excitation.  

Seismic fragility functions are first developed for the RC bridges with two-column bents.  

All available information from science/engineering laws, numerical analysis, laboratory 

experiments, and field measurements has been used to construct the proper form of the 

fragility functions.  The fragility functions are formulated, at the individual column, 

bent, and bridge levels, in terms of the spectral acceleration and the ratio between the 

peak ground velocity and the peak ground acceleration.  The developed fragility 

functions properly account for the prevailing uncertainties in fragility estimation.  The 
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probabilistic capacity and demand models are then combined with the probabilistic 

models for chloride-induced corrosion and the time-dependent corrosion rate.  The 

fragility estimates for corroded RC bridges incorporates the uncertainties in the 

parameters of capacity and demand models, and the inexactness (or model error) in 

modeling the material deterioration, structural capacity, and seismic demands.  The 

proposed methodology is illustrated by developing the fragility functions for an example 

RC bridge with 11 two-column bents representing current construction in California. 

The developed fragility functions provide valuable information to allocate and 

spend available funds for the design, maintenance, and retrofitting of structures and 

networks.  This study regarding the vulnerability of corroding RC bridges will be of 

direct value to those making decisions about the condition assessment, residual life, and 

the ability of lifeline structures to withstand future seismic demands. 
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CHAPTER I 

INTRODUCTION 

 

 

BACKGROUND 

Earthquakes experienced in California, Japan, Mexico, and Central and South America 

over the last 20 years have caused the failure of a substantial number of bridges, which 

either collapsed or suffered severe damage and had to be closed to traffic.  Many of these 

bridges had been designed before the seismic requirements of the codes were upgraded 

in the 1980’s.  The dramatic collapse of the Hanshin Expressway Route 43 in three 

locations between Kobe and Nishinomiya, Japan in January 1995 had been one of the 

most graphic images for seismic damage.  Ten spans of the Hanshin Expressway were 

knocked over, resulting in the interruption for 20 months of a link that carried forty 

percent of the Osaka-Kobe road traffic. 

Damage to bridges during earthquakes, or their complete collapse, not only can 

cause loss of lives, but also represents a serious disruption to emergency operations, and 

can entail substantial economic losses due to the interruption of transportation services.  

For these reasons, the assessment of the seismic vulnerability of existing bridges, and of 

the bridges under design, has become a subject of considerable interest and research. 

 
 
____________ 

This dissertation follows the style of Journal of Engineering Mechanics, ASCE. 
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To assess the losses associated with future earthquakes, seismic vulnerability 

functions are commonly used to correlate the damage or loss of a structure to the level of 

seismic intensity (Chen and Sawthorn 2003).  Several methodologies have been 

developed to assess the seismic vulnerability of structures.  The common procedure in 

seismic vulnerability assessment is to develop fragility functions.  Seismic fragility is 

defined as the conditional probability that a structure fails to meet a specific performance 

level for given level of seismic demands.  One of the challenges in developing seismic 

fragility functions is to express the specific performance level in terms of structural 

capacities and responses that engineers can evaluate with the available tools (Rosowsky 

2007).  Developing seismic fragility functions also provides valuable information for 

allocating and spending available funds for the design, maintenance and retrofitting of 

bridge structures and networks.  Three approaches have been broadly applied to develop 

the seismic fragility functions: the empirical, analytical, and Bayesian approaches, which 

will be described briefly later. 

In bridge structures, reinforced concrete (RC) columns are designed as load paths 

transferring the inertia force from the superstructure to the foundation.  They are usually 

designed to deform well beyond their elastic limits prior to the superstructure or the bent 

cap reaching its expected nominal strength (Caltrans 2006).  The RC bents in bridge 

structures can be categorized into two configurations: single-column and multi-column 

bents.  While the first configuration can shorten the construction time and reduce the 

land use for the bridge substructures, the second one is preferred over the former one.  

This is mainly because a multiple-column configuration has a redundant load path and 
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has often the advantage of reducing the cost of the substructure (Sritheran et al. 2001).  

For instance, the redundancy and clearance that a two-column configuration can provide, 

for instance, for urban interchanges are the main reasons to prefer two-column bents 

over single-column bents.  However, most of previous studies on seismic fragility for 

bridges have been focusing on single-column bents (e.g., Karim and Yamazaki 2001, 

2003, 2007; Gardoni et al. 2002, 2003; Monti and Nistico 2002; Kim and Feng 2003; 

Kim and Shinozuka 2003; Lu et al. 2005; Oller and Barbat 2006; Lupoi et al. 2006; Choi 

et al. 2006; Banerjee and Shinozuka 2007; Jeong and Elnashai 2007).  Limited effort ( 

e.g., Shinozuka et al. 2000; Kunnath 2007) has been made to develop the fragility 

functions for RC bridge structures with multicolumn bents. 

Furthermore, most bridges have been subjected to corrosion at the time of 

occurrence of a seismic event.  Due to the onset of corrosion, the capacity reduction in 

RC columns has raised a major concern in the vulnerability of corroded RC bridges.  

Therefore, there is also a need to account for the deterioration of the column capacities 

and the changes in the seismic demands when assessing the fragility of a bridge during 

its service life. 

RESEARCH OBJECTIVES 

The current study focuses on the RC bridges with two-column bents.  The dissertation 

includes the following three objectives: 

Objective 1:  Develop probabilistic models to predict the deformation and shear 

demands on RC bridges with two-column bents subject to seismic excitation.  All 

available information from science/engineering laws, numerical analysis, laboratory 
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experiments, and field measurements should be used to construct the proper forms of the 

probabilistic demand models and to assess them accounting for the prevailing 

uncertainties. 

Objective 2:  Propose a simplified formulation to estimate the seismic fragility of 

RC bridges with two-column bents.  A simplified fragility formulation is to develop 

not to rely on complex reliability analysis and reliability software and still capture the 

dominant uncertainty in seismic fragility estimation. 

Objective 3:  Obtain the seismic fragility estimates for corroded RC bridges with 

two-column bents.  The objective is to consider the effects of corrosion-induced 

deterioration on the bridge component stiffness and (deformation and shear) capacities 

and on the seismic demands during a bridge service life. 

STRUCTURE OF THE DISSERTATION 

This dissertation includes six chapters.  Chapter II introduces the development of the 

probabilistic seismic models to predict the deformation and shear demands in RC 

bridges with two-column bents.  Chapter III proposes a simplified formulation to 

estimate the fragility of RC bridge structures with two-column bents.  To model the 

physical process from corrosion initiation to the cracking of concrete cover, Chapter IV 

proposes a new model for the time to cracking of concrete cover and the corresponding 

stiffness degradation in cover concrete caused by corrosion-induced cracking using the 

energy principle.  Chapter V incorporates the effects of corrosion on the fragility 

estimation for RC bridges with two-column bents.  Finally, the conclusions, limitations, 

and the suggestions for future research are included in Chapter VI. 
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CHAPTER II 

PROBABILISTIC SEISMIC DEMAND MODELS FOR DEFORMATION 

AND SHEAR IN RC BRIDGES WITH TWO-COLUMN BENTS* 

 

 

The dominating uncertainties in estimating seismic fragility for bridges come from the 

structural capacity and demands due to the seismic excitation.  This chapter introduces 

the development of the probabilistic models for deformation and shear demands on RC 

bridges with two-column bents.  Experimental data from laboratory and numerical 

simulations are used in the model development.  Seismic fragility is then formulated in 

terms of the developed probabilistic demand models and the probabilistic capacity 

models previously developed.  As the application, seismic fragility are estimated on the 

column, bent and bridge levels for an example RC bridge with 11 two-column bents. 

INTRODUCTION 

Bridges with multiple two-column RC bents are commonly built in California and other 

seismic regions.  Consequently, ensuring the seismic performance of two-column RC 

bents is vital for bridge safety.  Although some small-scale tests of two-column RC bents 

have been conducted (Moore 2000; Nada 2003; Moustafa 2004), a complete study of the  

____________ 
*Part of this Chapter is reprinted with permission from “Probabilistic Seismic Demand 
Models and Fragility Estimates for Reinforced Concrete Bridges with Two-Column 
Bents.” by Jinquan Zhong, Paolo Gardoni, David Rosowsky, and Terje Haukaas, 2008, 
Journal of Engineering Mechanics, ASCE, 134(6), 495-504, Copyright [2008] by the 
American Society of Civil Engineers. 
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seismic demands on two-column RC bents is still missing.  Furthermore, since RC bents 

are integrated into bridge systems along with other bridge elements, there is a lack of 

knowledge on the reliability of entire bridge systems with two-column RC bents subject 

to seismic excitation.  This shortcoming is bolstered by the fact that entire bridge 

systems cannot be tested in the laboratory. 

Gardoni et al. (2003) developed a Bayesian methodology to construct 

probabilistic seismic demand models for the components of a structural system subject 

to seismic excitation.  The approach used a combination of deterministic demand models 

and observed data.  While the formulation was general, Gardoni et al. (2003) presented 

demand models and fragility estimates for RC bridges with single-column bents only.  

Fragility is herein defined as the conditional probability of attaining or exceeding a 

specified damage state for a given set of demand variables. 

This chapter presents the development of probabilistic models for RC bridges 

with two-column RC bents (Zhong et al. 2008a,b).  Probabilistic models for deformation 

and shear demands of two-column RC bents are developed using a Bayesian approach.  

The probabilistic models are constructed based on deterministic demand models and 

procedures commonly used in practice.  Correction terms are added to the deterministic 

models to explicitly describe the inherent systematic and random errors.  Terms that 

contribute to correct the bias in the existing demand models are identified by means of a 

set of “explanatory” functions.  A step-wise deletion process is used to construct 

parsimonoius models by identifying which explanatory functions, from a set of 

candidate functions, are more informative and which ones can be removed from the 
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model without significant loss of information and accuracy.  These explanatory 

functions provide insight into the underlying behavioral phenomena and can be used to 

identify ground motion parameters that are most relevant to the seismic demands.  The 

probabilistic models are constructed using data from laboratory experiments on two-

column RC bents under the ground motions with ramped peak ground acceleration 

(PGA), and simulated dynamic responses (virtual data).  The selection of initial 

(candidate) explanatory functions for the demand models is based on engineering 

understanding of the structural response of bridges subject to seismic excitation. 

In this chapter, fragility estimates are developed for an example RC bridge with 

11 two-column bents, designed according to the current specifications for California; 

Caltrans’ Bridge Design Specification and Seismic Design Criteria (Caltrans 1999).  

Fragility estimates are computed at the individual column, bent, and bridge system 

levels, as a function of the spectral acceleration ( aS ) and the ratio between the peak 

ground velocity (PGV) and PGA, PGV/PGA. 

This chapter has five sections.  Following this introduction, we describe the 

development of unbiased probabilistic demand models.  Next, the development of 

fragility estimates for bridge components (columns), sub-systems (bents), and the 

complete system (bridge) is outlined.  Finally, we provide a practical demonstration of 

the proposed methodology by estimating the component, sub-system, and system 

fragilities for an example bridge and the summary. 
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DEVELOPMENT OF PROBABILISTIC DEMAND MODELS 

Deformation capacity and shear strength are common concerns in seismic design of 

bridges.  The lateral deformed shape of a bridge is mainly determined by the plastic 

deformation in the columns.  This is because in seismic zones the cap beam and 

superstructure usually are designed to remain in the elastic range while the columns are 

allowed to exhibit inelastic response to dissipate the seismic energy (Caltrans 2006). 

In this section, we first review the deterministic models that are currently 

available to estimate deformation and shear demands.  Then, we discuss the data sets 

used to develop the probabilistic demand models.  Finally, we develop probabilistic 

models for deformation and shear demands. 

Deterministic demand models 

An ideal deterministic model for predicting the seismic demands on the components of a 

structural system should be simple, avoiding cumbersome nonlinear time history 

analyses, and accurate, accounting for the interaction between the components that 

constitute the structural system. 

In this chapter, we develop unbiased probabilistic models starting from 

deterministic demand models and procedures commonly used in practice.  In particular, 

we consider the method proposed by Chopra and Goel (1999).  The method is an 

improvement of the capacity-demand diagram method presented in ATC-40 (ATC 1996) 

and FEMA-274 (FEMA 1997), which uses the well-known constant-ductility spectrum 

for the demand diagram. 



9 
 

In the utilized method, a nonlinear pushover analysis for the structure is first 

conducted.  The distribution of the lateral forces for the pushover follows the assumed 

deformed shape, weighted by the tributary masses.  Then, an equivalent single-degree-

of-freedom (SDF) system is derived from the bilinear approximation of the pushover 

curve.  The seismic deformation demand imposed on the equivalent SDF system is 

estimated by response spectrum analysis using inelastic spectra.  Finally, the local 

seismic demands are determined by pushing the original structure to the maximum 

displacement determined for the equivalent SDF system.  Since the original work by 

Chopra and Goel (1999) focuses on buildings, the pushover curve simply represents the 

base shear force versus the roof displacement. 

Fajfar et al. (1997) developed a similar methodology (the N2 Method) for bridges 

(Fajfar and Fischinger 1987, 1988; Fajfar 2000).  In the case of bridges, the properties of 

the equivalent SDF system are determined based on a characteristic force-displacement 

relation of the bridge system in the transverse direction.  The force is the sum of all the 

lateral forces and the displacement is monitored at a “characteristic point” at the deck 

level, where the largest displacement is expected. 

In this chapter, we follow the modification of Fajfar’s approach proposed in 

Gardoni et al. (2003), where the force in the pushover is taken as the sum of all the 

transverse shear forces in the columns, excluding the forces taken by the abutments.  

Gardoni et al. (2003) showed that this approach provides more accurate estimates of the 

deformation and shear demands on the bridge columns. 
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Data used to construct the probabilistic demand models 

Three data sets are used to develop the probabilistic demand models: (1) shake table 

experiments on two-column RC bents, (2) simulated dynamic responses (virtual data) for 

a two-column 11-bent RC-bent bridge modeled in OpenSees 

(http://opensees.berkeley.edu), and (3) shake table tests on a three-bent system. 

The laboratory test results are for hinged RC bents with circular cross-section 

columns.  Moustafa (2004) tested three two-column RC bents with bent heights 0.89 m, 

1.6 m, and 2.36 m and column diameters 0.71 m.  Nada (2003) tested three architecture-

flared two-column RC bents, two with bent heights 1.63 m and one with bent height 

0.99 m.  The diameter of all columns was 0.61 m.  Moore (2000) tested one two-column 

RC bent with height 2.36 m and column diameter 0.61 m.  The ground motions used in 

the laboratory experiments were scaled versions of a record from the 1994 Northridge 

Earthquake.  The PGA the scaled ground motions varied from 0.1 g to 3.25 g. 

The laboratory data provide useful information to assess the unbiased 

probabilistic demand models.  However, there are two limitations inherent in these data.  

First, they do not account for the overall bridge system behavior.  Second, frequency 

similarity exists in scaled ground motions since they are all generated from the same 

earthquake.  To overcome these limitations in the development of probabilistic models, 

we also consider virtual data obtained from nonlinear dynamic analysis performed on a 

modified model of an interior segment of the I-880 viaduct located in Oakland, CA.  The 

structure, built in 1998, is the 5th and 6th St. Viaduct (CL Line and EU Ramp, Caltrans 

Bridge No. 33-0616L), and is a prestressed concrete, multi-span box-girder structure, 
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1138 m long, 21.8 m wide, and 2 m high.  The interior segment of the I-880 viaduct, 

considered here, includes 11 two-column RC bents with a confined circular core for each 

column.  Columns in Bents 1 to 8 have the same cross sections.  Smaller cross sections 

are used for columns in Bents 9 to 11.  The bent heights decrease from Bent 1 to Bent 

11. 

A finite element model of the I-880 viaduct segment was implemented in 

OpenSees by Kunnath (2007).  Each bent is linked to the foundation with springs to 

account for the soil-structure interaction effect (Kunnath 2007).  To account for the 

effect of abutments, the original model of the interior segment of the I-880 viaduct is 

modified by adding an extra span to each end that approaches the corresponding 

abutment added at the end of the viaduct.  The abutments are modeled following current 

California specifications (Caltrans 2006).  Fig. 1a shows the elevation view of the 

modified I-880 viaduct.  Fig. 1b shows the details of two typical cross sections, 

Sections1-1 and 2-2, for the RC columns.  The dimension of 2.59×2.43 m (8.5×8 ft) (for 

Section 1-1) was used for the columns in Bents 1 to 8, while the dimension of 

2.29×2.03 m (7.51×6.67 ft) (for Section 2-2) was used for Bents 9 to 11.  In the 

following chapters, we refer the example bridge structure as the modified I-880. 

Ten site-specific ground motions are generated for three different hazard levels 

(50%, 10% and 2% probability in 50 years), thus yielding a total of 30 ground motions.  

The original unscaled ground motions are available at http://www.peertestbeds.net/i-

880.htm.  The method of scaling the ground motions is provided in Kunnath et al. 



12 
 

(2006).  In these two data sets, aS  ranges between 0.090 g and 15.7 g, and PGV/PGA 

ranges between 0.036 sec. and 1.9 sec. 

This dataset overcame the two limitations of the first dataset.  However, it was 

obtained using numerical simulations and not actual experimental or field data.  Therefore, it 

was affected by potential errors and inaccuracies in the finite element model, here called 

model error. 

The third dataset compiles the results from shake table tests on a three-bent system 

conducted at the University of Nevada, Reno (Johnson, 2006).  The bridge system consists 

of three bents, with two columns per bent, and a prestressed concrete superstructure with 

each span length of 9.14 m.  The clear heights of the three bents are 1.83 m, 2.44 m, 

and1.52 m, with the tallest bent in the middle.  The diameter of each column is 0.305 m.  

The prestressed concrete superstructure is composed of a solid slab 0.36 m thick with two-

way prestressing.  Abutments are not included in the system during the laboratory tests. 

Eleven input motions in the transverse direction are generated based on the 1994 

Northridge Earthquake recorded at the ground station Century City County Club North 

(Johnson, 2006).  The PGA of the input motions varies from 0.075 to 1.66 g.  The ratio 

PGV/PGA ranges from 0.445 to 0.764 sec.  The effects on the seismic demands of the 

incoherency among the achieved motions at each bent location are accounted for by locating 

each bent on a separate shake table.  In the laboratory tests, deformation responses on the top 

of each bent are measured using displacement transducers.  This dataset, however, did not 

include the shear demands on each bent. 
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Fig. 1.  Modified I-880 and typical column sections (a) Elevation view of modified I-880; (b). Details for typical column cross-sections

Bent 1 Bent 2 Bent 3 Bent 4 Bent 5 Bent 6 Bent 8 Bent 9 Bent 10 Bent 11 Bent 7 

Abutment 
Abutment 

1−1

(a).  Elevation view of the example bridge structure

(b).  Details for typical column cross-sections: Section 11 for 
columns in Bents 1 to 8; Section 22 for columns in Bents 9 to 11. 

2−2 
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It is noted that the Bayesian methodology that is utilized requires no distinction 

between the experimental and virtual data.  All the data are integrated in the Bayesian 

analysis described here to obtain the posterior statistics of unknown parameters in the 

models. 

Probabilistic demand models 

A generic form for the probabilistic demand models are developed according to the 

formulation proposed by Gardoni et al. (2002, 2003).  Accordingly, the demand models 

for a structural system consisting of s components each with q  demands are written as 

follows: 

( ) ˆ, , ( ) ( , ) , 1,.., 1,..,ki Dk Dki ki Dk Dk Dk DkiD d i s k qε γ σ ε= + + = =x θ x x θ  (1)

where kiD  denotes the demand quantity of interest, 1 2( , , , )s=x x x x  is a set of basic 

deterministic or random variables associated with the structure (e.g., material properties and 

geometry), Dkθ  denotes the vector of unknown parameters associated with demand k , Dkiε  

is a standard normal random variable, ˆ ( )kid x  denotes the deterministic prediction, 

( , )Dk i Dkγ x θ  denotes the correction term for the bias in ˆ ( )kid x , Dkσ  represents the standard 

deviation of the model error, and.  The covariance matrix of the random variables Dk Dkiσ ε  is 

indicated as DkΣ . 

In formulating the model, Gardoni et al. (2003) employed a suitable 

transformation of the demand quantities to justify the following assumptions: (1) the 
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model variances Dkσ  are independent of 1 2( , , )=x x x  (homoskedasticity assumption), 

and (2) Dkiε  is normally distributed (normality assumption). 

In order to explore the sources of bias, the term ( , )Dk Dkγ x θ  is expressed as a 

complete second order polynomial of kp  selected explanatory functions ( )kjh x  as 

1 , 1

( , ) ( ) ( ) ( ), 1,..., 1,...,
k kp p

Dk Dk Dkj Dkj Dkjr Dkj Dkr
j j r

h h h i s k qγ θ θ
= =

= + = =∑ ∑x θ x x x  (2)

By examining the posterior statistics of the unknown parameters Dkjθ  and Dkjrθ , 

we are able to identify those explanatory functions that are significant in describing the 

bias in the deterministic model. 

Practically, the explanatory functions are selected based on the underlying 

physics of the engineering problem, e.g., the factors affecting the dynamic behavior of 

the structure.  The following explanatory functions are selected for the development of 

the demand models:  To capture a possible constant bias that is independent of the 

variables ix  in the model, we select 1( ) 1Dkh =x .  To capture a possible systematic under- 

or over-estimation by the deterministic model, we select 2
ˆ( ) ( )Dk Dkih d=x x .  To explore 

the influence of the amplitude and frequency content of the ground motion and of the 

geometry difference between the two columns in the same bent, we select 

3 ( ) ( )Dk a I ih S H H= ⋅x , where IH  is the average height of the two columns in Bent I , 

and iH  is the height of Column i  in Bent I .  In the case of a bent with columns of equal 

height, 3 ( )Dk ah S=x .  To examine the effect of the frequency content in the ground 



16 
 

 
 

motion, we select 4 ( ) 2 (PGV PGA ) ( )Dk I I ih T H Hπ= ⋅ ⋅x , where IT  is the fundamental 

vibration period of Bent I  obtained using the force and displacement at Bent I  from the 

pushover analysis of the bridge.  To investigate effects of the distribution of stiffness and 

tributary masses of all bents in the bridge, we select 5 ( )Dk I nh T T=x , where nT  is the 

fundamental vibration period of the equivalent SDF system in the deterministic demand 

model.  Finally, to gauge the effect of the number of load reversals, which is related to 

the duration of an earthquake and nT , we select 6 ( )Dk D nh t T=x , where Dt  is the ground 

motion duration computed according to Trifunac and Brady (1975) as the interval 

between the times with 5% and 95% of the total energy released.  Note that the selected 

explanatory functions are all dimensionless.  As a result, the parameters Dkjθ  and Dkjrθ  

also are dimensionless. 

The term DkΣ  accounts for the possible correlation among the errors of the 

demand models of various components and modes of failure.  Gardoni et al. (2003) 

showed that under mild assumptions, DkΣ  includes q  unknown variances, 2
Dkσ , and 

( 3) / 4s q s s q q× × + × + −  correlation coefficients, ( , )kl i jρ x x , which describes the 

linear dependency between the errors for response k  in component i  and response l  in 

component j .  The set of all unknown parameters in Eq. (1) is then given by 

( , , )D D D D=Θ θ σ Σ , where 1( , , )D D Dq=θ θ θ , 1( , , )D D Dqσ σ=σ  and 

1( , , )D D Dq=Σ Σ Σ . 
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To explore the sources of correlation among the error terms, following Gardoni 

et al. (2003), we select a suitable set of Rp  explanatory functions ( , )Rw i jh x x , 

1, , Rw p=  and , 1, ,i j s=  and express the correlation coefficient between Dkiε  and 

Dljε  as  

( ) 1

1

( , )
, , , 1, , , 1,...,

1 ( , )

R

R

p

klw Rw i j
w

kl i j p

klw Rw i j
w

h
i j s k l q

h

θ
ρ

θ

=

=

= = =
+

∑

∑

x x
x x

x x

 (3)

In the above formulation, different klwθ  are defined for the following three cases 

based on the selection of Column i  in Bent I  and Column j  in Bent J : (1) i j=  (the 

same column); (2) i j≠  and I J=  (two columns in the same bent); and (3) i j≠  and 

I J≠  (two columns in two different bents).  In order to capture a potential correlation 

that is independent of the variables ix , we select 1( ) 1R ih =x .  To detect the dependence 

of the correlation on aS  and on the difference of column height, we select 

2 ( ) ( ) ( )R i a I i J jh S H H H H= ⋅ ⋅x .  To explore the dependence of the correlation on the 

different in heights among all columns in the bridge, we select 

3 ( ) ( , )R i avgh H H i j= Δ Δx , where avgHΔ  is the average height difference among all 

columns in the bridge, ( , )H i jΔ  is the height difference between columns i  and j .  To 

capture a potential dependence on the distance between two bents, we select 

4 ( ) ( , )R i avgh S S I J= Δ Δx , where avgSΔ  is the average distance between any two bents, 

and ( , )S I JΔ  is the distance between Bents I  and J .  The first two explanatory 
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functions are considered for the case i j= .  The first three explanatory functions are 

considered for i j≠  and I J= .  All four explanatory functions are used for the case of 

i j≠  and I J≠ .  As for the explanatory functions ( )Dkj ih x  in Dkγ , the ( , )Rw i jh x x  are 

dimensionless and, hence, klwθ  also are dimensionless. 

Model assessment 

Through the step-wise deletion process, Zhong et al. (2008a) developed the following 

probabilistic model for the seismic deformation demands ( k δ= ) for the RC columns in a 

general bridge structure with two-column RC bents as 

( ) 1 2 3
ˆ, , ln I

i D D i D D D i D a
i

HD d S
Hδ δ δ δ δ δ δε θ θ θ

⎛ ⎞
= + + ⋅⎜ ⎟

⎝ ⎠
r Θ s  

4 5
PGVln 2 ln 1,..,

PGA
I I

D D D D i
I i n

H T i s
T H Tδ δ δ δθ π θ σ ε

⎛ ⎞ ⎛ ⎞
+ ⋅ ⋅ + + =⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠

(4)

In Eq. (4), iDδ  is the natural logarithm of the deformation demand, iδ , 

{ , , }D D D Dδ δ δ δσ=Θ θ Σ , 1 5{ , , }D D Dδ δ δθ θ=θ …  refers to the unknown parameters in the 

correction term.  The vector of random variables, x , has been partitioned into a vector of 

material and geometry variables, r , and a vector of demand variables, ( ,PGV/PGA)aS=s .  

The term ˆ
idδ  is the natural logarithm of the deterministic prediction based on Gardoni et al. 

(2003). 

The seismic shear demands ( k v= ) is  



19 
 

 
 

( ) 1 2 3 4
ˆ ˆ, , ln I

vi Dv Dvi Dv Dv Dvi Dv D i Dv a
i

HD d d S
Hδε θ θ θ θ

⎛ ⎞
= + + + ⋅⎜ ⎟

⎝ ⎠
r Θ s  

5 6
PGVln 2 ln

PGA
I I

Dv Dv Dv Dvi
I i n

H T
T H T

θ π θ σ ε
⎛ ⎞ ⎛ ⎞

+ ⋅ ⋅ + +⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠

(5)

Similarly, we { , , }Dv Dv Dv Dvσ=Θ θ Σ , 1 6{ , , }Dv Dv Dvθ θ=θ … , The additional explanatory 

function ˆ
D id δ  is included in the probabilistic model.  We note that all the second order 

terms and the explanatory function D nt T  are removed through the model selection 

process.  Further, we define the row vector { , }Dki D i Dviδε ε=ε  

The marginal posterior distribution of the model parameters Dkθ  ( , )k vδ=  is the 

multivariate t  distribution (Box and Tiao 1992).  Table 1 and Table 2 list the posterior 

statistics of Dkθ  for k δ=  and k v= , respectively.  The marginal posterior distribution 

of 2
Dkσ  ( , )k vδ=  is the inverse chi-square distribution, 2 2( )stdev ηη χ −⋅ ⋅ , where 

kn pη = −  n  is the number of data points and stdev  is the sample standard deviation of  

 

Table 1.  Posterior statistics in the updated deformation demand model 
Correlation Coefficient 

Dδθ  Mean Standard 
Deviation 1Dδθ  2Dδθ  3Dδθ  4Dδθ  5Dδθ  

1Dδθ  –4.20 0.209 1.0     

2Dδθ  0.145 0.049 0.99 1.0    

3Dδθ  0.774 0.045 −0.93 −0.93 1.0   

4Dδθ  0.264 0.009 0.36 0.38 −0.26 1.0  

5Dδθ  0.348 0.037 0.48 0.45 −0.38 0.03 1.0 
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Table 2.  Posterior statistics for the shear demand model 
Correlation Coefficient 

Parameter Mean Standard 
Deviation 

1Dvθ  2Dvθ  3Dvθ  4Dvθ  5Dvθ  6Dvθ  

1Dvθ  8.36 0.461 1.0      

2Dvθ  0.229 0.035 −0.96 1.0     

3Dvθ  −0.213 0.031 0.54 −0.29 1.0    

4Dvθ  0.467 0.027 −0.13 −0.13 −0.84 1.0   

5Dvθ  0.112 0.009 0.76 −0.72 0.47 −0.08 1.0  

6Dvθ  −0.793 0.035 0.30 −0.17 0.48 −0.39 0.11 1.0 

 

the residuals, i.e., the difference between the measured data and the predictions from the 

probabilistic demand models.  The mean and standard deviation of Dδσ  are 0.369 and 

0.0823, respectively.  The mean and standard deviation of Dvσ  are 0.206 and 0.047, 

respectively. 

The correlation coefficients ( , )kl i jρ x x  are estimated using Eq. (3).  After 

removing the terms that are not statistically significant, the correlation matrix, [ ]klρ=R  

takes the structure shown in Table 3.   

Table 4 shows the values of the estimated correlation coefficients.  The following 

observations are made in regard to the correlation coefficients listed in Table 4: 

• As expected, the deformation demands of two columns in the same bent are 

highly correlated, ( ) 0.99i j= =δδρ .  The same observation is made for the shear 

demands, ( ) 0.99vv i j= =ρ ; 
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Table 3.  Structure of the correlation matrix [ ]klρ=R  ( , , )k l vδ=  

 Bent 1 Bent I  Bent N 

( )kl i j=ρ  ( ; )kl i j I J≠ =ρ     
Bent 1 

 ( )kl i j=ρ    ( ; )kl i j I J≠ ≠ρ  

      
Bent I  

      

  ( )kl i j=ρ ( ; )kl i j I J≠ =ρ
Bent N Symmetric 

   ( )kl i j=ρ  

Note: ( )kl i j=ρ  is the correlation coefficient for the same column; 

( ; )kl i j I J≠ =ρ  is the correlation coefficient for two different columns in the same bent; 

( ; )kl i j I J≠ ≠ρ  is the correlation coefficient for any two columns in different bents. 

 

 

Table 4.  Correlation coefficients for the demand models 
 ( )kl i j=ρ  ( ; )kl i j I J≠ =ρ ( ; )kl i j I J≠ ≠ρ

k = δ , l = δ  1.0 0.99 0.35 
k = δ , l v=  −0.84 −0.85 −0.37 
k v= , l v=   1.0 0.99 0.56 

 

• The deformation demands on any two columns in different bents are moderately 

correlated, ( ; ) 0.35i j I Jδδρ ≠ ≠ = .  The same observation is made for the shear 

demands, ( ; ) 0.56vv i j I J≠ ≠ =ρ ; 

• The random errors in deformation and shear demands of the same column are 

negatively correlated.  This indicates that when the random errors in deformation 

demands increase, the random errors in shear demand tend to decrease and vice 

versa. 
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Fig. 2 shows a comparison between the measured and predicted values of the 

deformation demands based on the deterministic (left chart) and the updated probabilistic 

(right chart) models.  For the probabilistic model the median predictions are shown.  For a 

perfect model, the data should line up along the 1:1 lines.  The deterministic model is biased 

on the conservative side for the data from the modified I-880 (denoted by ) and on the 

unconservative side for most of the data from the single bents (denoted by •).  The data from 

three-bent system (denoted by ) scatter around the 1:1 line Furthermore, the model 

presents an overall large scatter.  The probabilistic model corrects the bias in the 

deterministic model and reduces the overall scatter.  The dashed lines in the bottom chart 

delimit the region within one standard deviation of the 1:1 line.  We note that, as per 

construction, the majority of data points from the three datasets fall within the one standard 

region. 

 

 

Fig. 2.  Comparison between measured and predicted deformation demands based on 
deterministic (left) and probabilistic (right) models 
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Fig. 3 shows a comparison between the measured and predicted values of the 

shear demands correspondingly.  The left plots show the predicted demands based on the 

deterministic model only.  The right plots show the mean demands predicted based on 

the probabilistic models that account for the model correction terms Dvγ .  The solid dots 

(•)  represent the  laboratory data and the right triangles ( ) represent the simulated data.   

 

 
Fig. 3.  Comparison between measured and predicted shear demands based on determin- 
istic (left) and probabilistic (right) models 

 

It is also observed that the probabilistic models are unbiased and reduce the scatter 

present in the corresponding deterministic models. 

As an aside note, it is mentioned that the quality of the presented results depends 
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models are also biased.  Before the fragility estimation, the probabilistic capacity models 

used in the fragility formulation are first introduced in the next. 

Probabilistic capacity models 

For the column capacities, we use the probabilistic models for Column i  developed by 

Gardoni et al. (2002) and later updated in Choe et al. (2007).  The deformation capacity 

model, iCδ , is written as 

1 7 11 112

4ˆ ( 6.035 1.034 ) s yh cI
i i C C C C cu C C i

g t c g

f DVC c
D f f Dδ δ δ δ δ δ δ δ

ρ
θ θ θ θ ε σ ε

π
= + + ⋅ + − − ⋅ + +

′ ′⋅
 (6)

and the shear capacity, viC , as 

2 4ˆ v yh g
vi vi Cv l Cv Cv Cvi

g t

A f D
C c

A f S
= + + +

′
θ ρ θ σ ε  (7)

In Eq. (6), iCδ  is the natural logarithm of the drift ratio capacity, ln[ / ]HΔ , 

where Δ  is the deformation capacity, and icδˆ  is the natural logarithm of the drift ratio 

capacity of Column i  (or a suitable transformation thereof) predicted by a selected 

deterministic capacity model.  The term 24 /( )I g tV D fπ ′  captures the effects of the 

idealized elastic-perfectly plastic shear force in the column, IV , where gD  is the gross 

diameter of the column, and 0.5t cf f′ ′=  is the tensile strength of concrete.  The term 

( / )( / )s yh c c gf f D D′ρ  captures the influences of the confining transverse reinforcement 

and core size, where sρ  is the ratio of the volumetric confining reinforcements, yhf  is 

the yielding stress of confining reinforcement, cD  is the column-core diameter, cf ′  is the 
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compressive strength of the concrete.  Finally, cuε  captures the effect of the ultimate 

strain of the confined concrete.  In Eq. (6) 1Cδθ , 7Cδθ , and 11Cδθ  are the model 

parameters that are assessed using experimental data.  We define the row vector 

1 7 11{ , , }C C C Cδ δ δ δθ θ θ=θ .  The letter “C” in the subscripts denotes that they are for the 

capacity model.  Finally, C C iδ δσ ε  represents the model error, where C iδε  is a standard 

random variable, and Cδσ  represents the standard deviation of the model error. 

Similarly, in Eq. (7), iCδ  is the natural logarithm of the normalized shear 

capacity, ln[ / ( )]g tV A f ′ , where / ( )g tV A f ′  is the normalized shear capacity, V  is the 

shear capacity, and gA  is the gross area of column cross-section.  The term ˆvic  is the 

natural logarithm of the normalized shear capacity predicted by the selected 

deterministic capacity model for Column i .  Two explanatory functions are used to 

correct for the bias inherent in ˆvic .  The first function, lρ , corrects for the contribution of 

the longitudinal steel, where lρ  is the ratio of longitudinal reinforcements in the column.  

The second function, / ( )v yh g g tA f D A f S′ , corrects for the contribution of the transverse 

steel, where vA  is the total area in a layer of the confining reinforcement in the direction 

of shear force in the column, and S  is the spacing of confining reinforcement.  As for 

the deformation model, 2 4{ , }Cv Cv Cvθ θ=θ  is the row vector of the model parameters 

assessed using experimental data.  Finally, Cv Cviσ ε  represents the model error, where 

each term is defined as for the deformation model.  We define the row vector 

{ , }Cki C i Cviδε ε=ε .  Similarly to the demand models, we can define ( , , )C C C C=Θ θ σ Σ , 
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where ( , )C C Cvδ=θ θ θ , ( , )C C Cvδσ σ=σ  and ( , )C C Cvδ=Σ Σ Σ  for deformation and shear 

capacity models.  Table 5 and Table 6 list the posterior statistics of { , , }C C C Cδ δ δ δ= σΘ θ Σ  

and { , , }Cv Cv Cv Cv= σΘ θ Σ , respectively. 

For capacity ( , , )ki Ck CkiC εr Θ  in Eq. (9)  We use the probabilistic deformation and 

shear capacity models developed by Gardoni et al. (2002) and Choe et al. (2007).  

However, Choe et al. (2007) developed probabilistic capacity models for single-column 

bents.  In this section, we explore the relation between the deformation and shear 

capacities of a single-column bent and the same quantities for a column in a two-column 

Bent. 

 

Table 5.  Posterior statistics of the parameters in the deformation capacity model (Choe 
et al. 2007) 

Correlation coefficient 
CδΘ  Mean Standard 

Deviation 1Cδθ  7Cδθ  11Cδθ  Cδσ  

1Cδθ  0.675 0.105 1    

7Cδθ  0.631 0.133 −0.27 1   

11Cδθ  −57.5 10.1 −0.65 −0.39 1  

Cδσ  0.400 0.045 0.39 −0.06 −0.13 1 

 

Table 6.  Posterior statistics of the parameters in the shear capacity model (Choe et al. 
2007) 

Correlation coefficient 
CvΘ  Mean Standard 

Deviation 2Cvθ  4Cvθ  Cvσ  

2Cvθ  18.3 1.45 1   

4Cvθ  −0.470 0.078 −0.87 1  

Cvσ  0.185 0.018 −0.04 −0.02 1 
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The deformation capacity for a single-column bent with height L  is defined as 

C Z Lδ = , where Z  is the relative displacement capacity between the top and bottom of 

the column (Fig. 4).  The deformation capacity of a column in a two-column bent is 

computed herein as ( / 2) 2C z L z Lδ = = , where z  is the relative displacement capacity 

of a single column bent of height / 2L .  As shown in Fig. 4, the deformation capacity of 

a column in a two-column bent generally is smaller than the capacity of in a single-

column bent of the same height.  The shear capacity for a column in a two-column bent 

is the same as that in a single-column bent. 
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Fig. 4.  Deformation capacities for the columns in two-column bent 
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FRAGILITY ESTIMATES FOR RC BRIDGES WITH TWO-COLUMN BENTS 

The fragility of a bridge consisting of s structural components for given seismic intensity 

s  is written as 

( ) ( ){ }
1,.., ,

, , , 0ki k ki
i s k v

F P g
δ= =

⎡ ⎤
= ≤⎢ ⎥

⎣ ⎦
s Θ r Θ ε s∪ ∪  (8)

where ( , )C D=Θ Θ Θ , ( , )k Ck Dk=Θ Θ Θ , ( , )ki Cki Dkiε ε=ε  and ( , , , | )ki kig t r Θ ε s  is the limit 

state function for Column i , expressed as 

( ) ( ) ( ), , , , , , 0, 1,.., ; ,ki k ki ki Ck Cki ki Dk Dkig C D i s k v= ε − ε ≤ = = δr Θ ε s r Θ r Θ s  (9)

A predictive estimate of Eq. (8) is obtained as the mean of ( , )F s Θ  by integrating 

over the distribution of Θ  as 

( ) ( ) ( ), ,F F t f d= ∫ ΘΘ
s s Θ θ θ  (10)

A point estimate of Eq. (8) at time t  is obtained by ignoring the epistemic uncertainties 

in the model parameters, Θ , and using a point estimate, Θ̂  (e.g., the mean of Θ ), 

instead of Θ .  Then the point estimate of seismic fragility for the bridge can be written 

as 

( ) ( )ˆˆ ,F F=s s Θ  (11)

In the special cases where vector r  are known for a given bridge, ˆ ( )F s can be computed 

in terms of multinormal probability distribution function of kiε  depending on the number 

of limit state functions under consideration.  In the following, the point estimates of 
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fragility are presented considering one-, two-, and multiple- limit states functions for 

column, bent, and bridge levels, respectively. 

When only one limit state is considered, we have the following approximated 

closed-form solution for the fragility of Column i  in mode k  of failure 

( ) ( )
( ) ( )

( )

ˆˆ ˆ, , 0

, , , , 0

1

ki k ki

ki Ck Cki ki Dk Dki

ki

F P g

P C D

u

⎡ ⎤= ≤⎢ ⎥⎣ ⎦
⎡ ⎤= ε − ε ≤⎣ ⎦

= − Φ

s r Θ ε s

r Θ r Θ s  (12)

where ( )Φ ⋅ is the cumulative density function (CDF) of the univariate standard normal 

random variable, and ˆ ˆ/
ki kiki g gu = −μ σ , where ˆ

kigμ  and ˆ
kigσ  are the point estimates of 

the mean and the standard deviation of ( )kig ⋅  defined in Eq. (9). 

When two limit state functions are considered for the following three cases: (1) 

the fragility of a single RC column in either deformation or shear mode of failure (2) the 

fragility of a bent in deformation mode of failure, and (3) the fragility of a bent in shear 

mode of failure, we have the fragility function, e.g., for the first case, expressed as 
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where 2 ( )Φ ⋅ is the CDF of bivariate standard normal random variables, ,ˆ
i ivδρ  is the point 

estimate of the correlation coefficient between iuδ  and viu .  To evaluate 

2 ,ˆ( , ; )
i ii vi vu uδ δΦ − − ρ , we can use the following single integral expression: 

( ) ( ) ( ) ( )
,ˆ

2 , 2
0

ˆ ˆ ˆ, ; , ; ,
vi i

i ii vi v i vi i viu u u u u u d
δρ

δ δ δ δΦ − − ρ = Φ − Φ − + ϕ − − ρ ρ∫  (14)

where 2 ( )ϕ ⋅ is the bivariate probability density function (PDF).  For the second and third 

cases, similar formulations are applicable. 

Further, when more than two limit states are considered in fragility estimation, 

the point estimate for Eq. (8) can be formulated as 
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where 2 ( )sΦ ⋅ is the CDF of multivariate standard normal random variables of dimension 

2s , 1 2( , ,..., )k k ksu u u=u , ,ˆ ˆ( )
i jk lρ=ρ  is the matrix of correlation coefficients estimated for 

random vector u . 

NUMERICAL EXAMPLES 

As an application of the proposed approach, this section develops fragility estimates for 

the modified I-880 viaduct described previously.  In particular, we consider (1) the 

fragility of a single column considering both deformation and shear modes of failure, (2) 
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the fragility of a two-column bent in deformation, (3) the fragility of a two-column bent 

in shear, and (4) the fragility of the entire bridge considering both deformation and shear 

modes of failure. 

Fig. 5 shows the contour lines of the deformation and the shear fragility estimates 

of the northern column in Bent 8.  The dashed lines represent the point estimates and the 

solid lines represent the predictive estimates.  Each contour line connects pairs of values 

of the demands aS  and PGV/PGA that are associated with a given level of fragility in 

the range of 0.1−0.9 and two additional values 10-4 and 10-2.  It is observed that there is 

only a small difference between the point and predictive estimates for both deformation 

and shear fragilities.  In the two extreme cases, i.e., small values of aS  and PGV/PGA 

and large values aS  and PGV/PGA, the difference between these two fragility estimates 

is, as expected, marginally more pronounced.  The difference arises because the 

predictive estimates incorporate more uncertainties making the fragility surface flatter.  

However, for practical purposes, point estimates are sufficiently accurate to predict the 

fragility.  In the following analysis, we use point estimates to compute individual 

column, bent, and bridge system fragilities. 
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Fig. 5.  Point and predictive estimates of the fragility of the northern column in Bent 8 
based on deformation (left) and shear (right) modes 

 

 

Fig. 6 shows the contour lines for the fragility estimates for the northern column 

in Bent 8 as per the orientation shown in Kunnath (2007).  The average bent height of 

Bent 8 is 14.7 m with column cross sections of 2.59×2.43 m.  The dashed lines show the 

deformation fragility, the dashed-dotted lines show the shear fragility, and the solid lines 

show the conditional probability that the column fails in either deformation or shear 

mode.  It can be seen that the deformation failure mode dominates the column fragility.  

This is consistent with the displacement-based capacity design approach used by 

Caltrans (Caltrans 2006).  Similar fragility surfaces can be obtained for all columns in 

Bents 1-8. 
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Fig. 6.  Point estimates of the fragility of the northern column in Bent 8 

 

 

Fig. 7 shows the contour lines for the fragility estimates for the northern column 

in Bent 11.  The average bent height of Bent 11 is 10.7 m with column cross sections of 

2.29×2.03 m.  We observe that the shear fragility is now more prominent.  This is 

because of the reduced shear capacity of the northern column in Bent 11 due to its 

smaller cross-section.  Similar fragility surfaces can be obtained for all columns in Bents 

9-11. 
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Fig. 7.  Point estimates of the fragility of the northern column in Bent 11 
 

 

Fig. 8 shows the contour lines for fragility estimates for Bents 8 (left chart) and 

11 (right chart).  It is seen that the deformation fragility and the shear fragility of Bent 8 

are similar to the deformation fragility and the shear fragility for the individual column 

shown in Fig. 6.  Similar observations can be made for Bent 11.  This is to be expected 

given the high correlation between the deformation (and shear) demands of the northern 

and southern columns.  Similarly we can obtain the fragility surface for each bent in the 

bridge system. 
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Fig. 8.  Point estimates of fragility of Bents 8 (left) and 11 (right) 
 

 

The fragility of the entire bridge is estimated using the Monte Carlo sampling 

capabilities in OpenSees.  One percent coefficient of variation of the probability result is 

used as analysis termination criterion.  The estimates of the bridge fragility are shown in 

Fig. 9.  The left chart shows the fragility estimates for deformation (dashed lines) and 

shear (bold dashed-dotted lines) modes of failure.  The right chart shows the conditional 

probability of failure in either deformation or shear mode (bold solid lines).  It is seen 

that, because of the limited shear capacity in the columns in Bents 9 to 11 already 

observed in Fig. 7.  The shear failure mode controls the failure of this bridge system in 

low failure probabilities, while it is comparable to deformation mode of failure in high 

failure probabilities.  As a general comment, it is observed that the fragility contours are 

more sensitive to a change in aS  than in PGV/PGA. 
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Fig. 9.  Point estimates of the fragility of the modified I-880 viaduct based on 
deformation and shear modes (left) and based on deformation or shear mode (right) 
 

 

SUMMARY 

The development of probabilistic models for the deformation and shear demands of RC 

columns in two-column bents subject to seismic excitation are presented in this Chapter.  

The models are developed based on an accepted deterministic procedure.  A correction 

term is developed to capture the inherent systematic and random errors.  A set of 

explanatory functions is used to correct for the bias and to gain insight into the 

underlying behavioral phenomena.  The developed probabilistic models account for the 

information gained from both laboratory experimental data and nonlinear time-history 

analyses.  Correlation coefficients among deformation and shear demands are estimated 

to capture the dependency among the demand quantities. 

The following comments are made with regard to the probabilistic demand 

models: 
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• The spectral acceleration at the natural period of the structure and ratio between 

the peak ground velocity and the peak ground acceleration are selected as the 

most relevant ground motion parameters for seismic demands; 

• The deformation (and shear) demands of two columns in the same bent are 

highly correlated; 

• The random errors in deformation and shear demands of any two columns are 

shown to be negatively correlated.  This means that when the random errors in 

deformation demand are increasing, the random errors in shear demands are 

likely to decrease, and vice versa. 

Fragility estimates are next computed at the individual column, bent, and bridge 

system levels for an example bridge designed according to current specifications for 

California (Caltrans 1999).  The following conclusions are made with regard to the 

fragility estimates: 

• For practical purposes, point estimates provide accurate estimates of the fragility 

surfaces.  Neglecting the epistemic uncertainty in the model parameters leads 

only to a marginal difference in the tails of the fragility surfaces. 

• The fragility estimates of a bent are similar to the fragility estimates of an 

individual column in that bent since the deformation and shear demands in both 

columns of the same bent are highly correlated. 

• The deformation failure mode dominates the failure of most columns in the 

example bridge considered.  This is consistent with the displacement-based 

capacity design approach used by Caltrans.  However, a change in the stiffness 



38 
 

 
 

and cross-sectional properties of a column can make the shear failure mode more 

prominent. 

• The fragility contours are more sensitive to changes in aS  than in /PGV PGA . 
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CHAPTER III 

SIMPLIFIED FORMULATION TO ESTIMATE THE FRAGILITY OF 

RC BRIDGE STRUCTURES WITH TWO-COLUMN BENTS 

 

 

To facilitate the application of the developed probabilistic capacity and demand models, 

this chapter proposes a simplified formulation to estimate the seismic fragility based on 

the importance measures of all parameters included in the probabilistic models for 

capacity and seismic demands.  Seismic fragility estimated using the proposed 

formulation is only marginally different from the fragility estimated using accurate 

methods. 

INTRODUCTION 

Ensuring acceptable seismic performance of RC columns is crucial in maintaining the 

functionality of bridges built in seismic regions.  The vulnerability of a RC column can 

be expressed as the conditional probability (or fragility) that the RC column does not 

perform adequately (considering relevant demands, e.g., in deformation or shear) during 

a seismic excitation.  However, an analytical solution is not available for the fragility 

estimation of a RC column, since the analytical form of limit state function and the 

failure domain are not always explicitly available.  In this chapter, important 

uncertainties are selected by considering the importance measures of the random 

variables in the fragility estimation.  A simplified solution for fragility estimates is then 

developed incorporating only the important uncertainties in the fragility estimation. 
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Based on functional or geographical reasons, a multiple-column, including two-

column, bent structure is preferred over single-column configuration (Sritharan et al. 

2001).  This is mainly because a multiple-column configuration has the advantage of 

reducing the cost of the substructure by having a pin connection between the column and 

the footing instead of a fixed connection as per single-column bents (Sritharan et al. 

2001). 

For the seismic behavior of RC columns, much work has been done in the 

laboratory (Kunnath et al. 1997; Hachem 1999; Laplace et al. 1999, 2001; Saiidi et al. 

2000; Nelson 2000; Stapleton et al. 2005).  Further, fragility curves have been developed 

for bridges with single-column bents(e.g., Karim and Yamazaki 2001, 2003, 2007; 

Gardoni et al. 2002, 2003; Monti and Nistico 2002; Kim and Feng 2003; Kim and 

Shinozuka 2003; Lu et al. 2005; Oller and Barbat 2006; Lupoi et al. 2006; Choi et al. 

2006; Banerjee and Shinozuka 2007; and Jeong and Elnashai 2007).  Among these 

studies, Gardoni et al. (2002, 2003) developed fragility curves for single-column bents 

and bridge systems with single-column bents using probabilistic capacity and demand 

models developed using a Bayesian methodology.  The capacity and demand models are 

unbiased and properly account for all the predominant uncertainties, including model 

errors (arising from an inaccurate model form or missing variables), measurement errors, 

and statistical uncertainty.  The models takes into account information gained from 

scientific/engineering laws, observational data from laboratory experiments, and data 

from simulated dynamic responses. 
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In contrast, very little work has been done to assess the seismic vulnerability of 

bridge structures with two-column bents, although some experimental work has been 

reported both in the field (Pantelides et al. 1999) and in the laboratory (Gulkan et al 

1971; MacRae et al. 1994; Terayama et al. 1996; Sexsmith et al. 1997; Moore 2000; 

Sritharan et al. 2001; Nada 2003; Sureshkumar 2004; Moustafa 2004; and Pulido et al. 

2004, Johnson 2006).  Among these studies, Johnson (2006) conducted a quarter-scale 

full bridge test on a shake table with ramped 1994 Northridge Earthquakes excited along 

the transverse direction of the bridge.  Limited work has been done, however, to develop 

the fragility estimates for bridge structure with two-column bents.  For example, 

Shinozuka et al. (2000) used the capacity spectrum method to construct the fragility 

curves for bridge structures with two-column bents.  Kunnath et al. (2006) evaluated the 

probability of closure of the I-880 viaduct with 11 two-column RC bents by applying a 

performance-based methodology.  Zhong et al. (2008a) estimated the fragility surfaces at 

the component (column of two-column bent), subsystem (bent), and system (bridge 

structure) levels using newly developed probabilistic demand models for RC columns in 

two-column bents. 

In this chapter, we develop (1) an approximate closed-form solution for the 

fragility estimation of RC columns in two-column bents, and (a) a simplified point 

estimate of the fragility for bridge systems (Zhong et al. 2008c).  As an illustration, the 

closed-form fragility estimates of two typical RC columns subject to deformation and 

shear failures are compared with the predictive fragility estimates developed in Zhong et 

al. (2008a).  The fragility formulation of the RC column is developed based on the 
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probabilistic capacity models proposed by Gardoni et al. (2002) and Choe et al. (2007) 

and the corresponding seismic demand models developed by Zhong et al. (2008a).  The 

seismic intensity is expressed in terms of aS  of the equivalent SDF system of the bridge 

structure and PGV/PGA.  Sensitivity and importance measures are computed for the 

variables defined in the capacity and demand models of the RC columns.  The sensitivity 

measures suggest that the vulnerability of RC columns in two-column bents can 

effectively be improved by using high strength reinforcement for column confinement, 

reducing the spacing between confining reinforcement, and limiting the use of high 

strength concrete.  The importance measures suggest that the random errors in the 

probabilistic capacity and demand models are the primary uncertainties.  Thus, a closed-

form fragility estimate can be obtained by considering only the uncertainties captured by 

the random errors.  For the two example columns, only marginal difference exists 

between the closed-form fragility estimates and the corresponding predictive fragility 

estimates that include all uncertainties. 

Next we introduce the fragility formulation and define the predictive fragility 

estimates for a column, considering both deformation and shear failure modes.  This is 

followed by a description of the sensitivity analysis and importance measures.  Closed-

form fragility estimates are then proposed and compared with the corresponding 

predictive fragility estimates.  The modified I-880 is selected as the example bridge for 

illustration purpose. 
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SENSITIVITY ANALYSIS AND IMPORTANCE MEASURES 

In this section, we first conduct the sensitivity analysis for the parameters in two 

example RC columns.  We then present the importance measures of all random variables 

defined in the capacity and demand models of the two example columns.  In the next 

section, an approximate closed-form is proposed for the estimation of the fragility of RC 

columns.  The proposed closed-form fragility simplifies the reliability analysis in 

engineering practice. 

Sensitivity analysis 

Sensitivity analysis is used to determine to which parameter(s) the reliability of a 

structural component is most susceptible.  Let ( , )ff r Θ  be the joint PDF of the basic 

random variables in r , where fΘ  is a set of distribution parameters (e.g. means, 

standard deviations, correlation coefficients, or other parameters defining the 

distributions of basic random variables in r ).  The solution of the reliability problem in 

Eq. (9) also depends on the value of fΘ .  In this application, the mean values of the 

basic random variables are considered as the parameters for the sensitivity analysis.  The 

sensitivity measure for each parameter is given by computing the gradient of the 

reliability index, β  of a RC column with respect to each parameter. 

Following Hohenbichler and Rackwitz (1986), the sensitivity of β  to each 

parameter of interest in fΘ  is given as 

*,f f

T∇ β = ⋅Θ u Θα J  (16)

where the vector α  is defined as (Madsen et al. 1986) 
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where ( )∇ ⋅  is the gradient function, || ||⋅  is the Euclidian norm of the given function, m  

is the total number of random variables in z , here ( , , )i=z r Θ ε , kiG  is the limit state 

function for mode k  of failure in the u -space defined as ( | )ki kiG G= zu s  

( , | )kiG= =r Θu u s ( , , | )ki ig r Θ ε s  ( | )kig= z s .  Here ru  is the standard normal random 

vector that corresponds to r , Θu  is the standard normal random vector that corresponds 

to Θ , and ( , )=z r Θu u u .  The last term in Eq. (16), *, fu ΘJ , is the Jacobian of the 

probability transformation from the original space x  to the standard normal space u  

with respect to the parameters fΘ  and computed at the most likely failure point (design 

point), *u . 

In order to compare the sensitivity measures of all parameters, we define the 

vector, δ , as follows 

f
= ⋅∇ βΘδ σ  (18)

where σ  is the diagonal matrix with diagonal elements given by the standard deviation 

of each random variable in r .  Multiplying the sensitivity vector 
f

∇ βΘ  by σ  makes 

each term in δ  dimensionless and makes the parameter variations proportional to the 

corresponding standard deviations, which are measures of the underlying uncertainties. 

Column 3 in Table 7 lists the sensitivity measures for the deformation fragility to 

the design parameters of the northern column in Bent 8.  Column 4 in Table 7 lists the 
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sensitivity measures for the shear fragility.  The maximum positive values and the 

minimum negative values are in bold fonts in these two columns.  In Column 3 of Table 

7, it is seen that the deformation fragility is most sensitive to the means E( )yhf  and 

E( )cf ′ , where E( )⋅  indicates the mean of the random variable.  The positive sign of the 

sensitivity measure for E( )yhf  indicates that the random variable yhf  serves as a 

“resistance” (capacity) variable.  The negative sign of the sensitivity measure of E( )cf ′  

means that the random variable cf ′  acts as a “load” (demand) variable.  Thus, with 

respect to the deformation failure mode, it is desirable to design a column with confining 

reinforcement with high strength and limit the use of high strength concrete.  From 

Column 4 of Table 7, random variable yhf  still serves as the “resistance” (capacity) 

variable.  However, the random variable S  now becomes the most important “load” 

(demand) variable.  Thus, when designing a column for shear, it is suggested to use high 

strength confining reinforcement and reduce the spacing of the confining reinforcement.  

Similar conclusions can be made from the sensitivity measures listed in Table 8 for the 

northern column of Bent 11. 

Fig. 10 shows the contour plots for the sensitive measure of E( )yhf  for the 

northern columns in Bents 8 and 11.  Charts (a) and (b) show the sensitivity measures for 

the column in Bent 8 for the deformation and shear fragility, respectively.  Charts (c) and 

(d) show similar sensitivity measures for the column in Bent 11.   From  this  figure,  we 
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Table 7.  Sensitivity measures for the mean of each random variable for the deformation 
and shear fragility estimates of the northern column in Bent 8 

f
⋅∇ βΘσ † 

Parameter fΘ  Symbol 
Deformation  Shear 

Yield stress of confining reinforcement ( )yhE f    0.044   0.090 

Yield stress of longitudinal reinforcement ( )yE f    0.004 −0.033 
Spacing of transverse reinforcement ( )E S  −0.019 −0.055 
Compressive strength of concrete ( )cE f ′  −0.042 −0.020 

Diameter of longitudinal reinforcement ( )bE d    0.003   0.020 

Gross height of column cross section†† ( )gE H  −0.006      −0.020 

Gross width of column cross section†† ( )gE B  −0.013   0.003 

Cover thickness of concrete ( )E Cover   0.000   0.000 

Strength of stirrup reinforcement ( )suE f    0.000   0.000 
† Sensitivity for deformation and shear fragility estimates are computed for 1.39aS =  g and /PGV PGA  

0.50=  sec. 
†† The height of the column cross section is along the longitudinal direction of the bridge, the width of the 

columns cross section is along the transverse direction of the bridge. 
 

 
Table 8.  Sensitivity measures for the mean of each random variable for the deformation 
and shear fragility estimates of the northern column in Bent 11 

f
⋅∇ βΘσ † 

Parameter fΘ  Symbol 
Deformation  Shear 

Yield stress of confining reinforcement ( )yhE f     0.051    0.107 

Yield stress of longitudinal reinforcement ( )yE f     0.006 −0.043 
Spacing of transverse reinforcement ( )E S  −0.023 −0.063 
Compressive strength of concrete ( )cE f ′  −0.052 −0.023 

Diameter of longitudinal reinforcement ( )bE d     0.004   0.026 

Gross height of column cross section†† ( )gE H  −0.007 −0.024 

Gross width of column cross section†† ( )gE B  −0.016   0.002 

Cover thickness of concrete ( )E cover   0.000   0.000 

Strength of stirrup reinforcement ( )suE f    0.000   0.000 
†  Sensitivity for deformation and shear fragility estimates are computed for 1.39aS =  g and /PGV PGA  

0.50=  sec. 
†† The height of the column cross section is along the longitudinal direction of the bridge, the width of the 

columns cross section is along the transverse direction of the bridge. 
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Fig. 10.  Sensitivity contours for E( )yhf  for deformation fragility and shear fragility for 
the northern columns in Bent 8 and in Bent 11 

 

can see the sensitivity measure of E( )yhf  varies with aS  and PGV/PGA.  This function 

is more susceptible to the changes in aS  than to the changes in PGV/PGA. 

Fig. 11 shows sensitivity measures as a function of aS  or PGV/PGA.  Chart (a) 

shows the sensitivity curves of parameters in the deformation limit state for the column 
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in Bent 8.  Each curve is a function of aS  given PGV/PGA =0.50 sec.  Chart (b) shows 

the corresponding sensitivity curves for parameters in the shear limit state.  Chart (c) 

shows the sensitivity curves of parameters for the deformation limit state for the same 

column  

 

Fig. 11.  Sensitivity curves for deformation fragility estimates in charts (a) and (c) and 
shear fragility estimates in charts (b) and (d) for northern column in Bent 8.  Charts (a) 
and (b) are plotted at PGV/PGA =0.50 sec.; charts (b) and (d) are plotted at Sa=1.39 g 
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as a function of PGV/PGA given aS =1.39 g.  Chart (d) shows the corresponding 

sensitivity curves for parameters in the shear limit state. 

Importance measures 

According to Eq. (9), the limit state function is defined by the probabilistic capacity and 

demand models of the column.  Each random variable has a different contribution to the 

variability of the limit state function.  Important random variables have a larger effect on 

the variability of the limit state function than less important random variables.  By 

considering only the uncertainties from the important random variables, the reliability 

problem can be simplified for engineering practice. 

Following FORM, the first order approximation of the limit state function 

( | )kig z s  at the design point *z  is 

( ) ( ) ( )( )| * | * | *ki ki kig g g≈ + ∇ −z s z s z s z z  (19)

where ( * | )kig z s  is the value of the limit state function evaluated at *z , *z  is the design 

point in the original space, ( * | )kig∇ z s  is the gradient of ( | )kig z s  evaluated at *z .  By 

denoting 1 2{ , ,..., }T
mz z z=z , the variance of ( )kig z  at *z  is given as 

( ) ( ) ( )
*

Var | * | * |
T

ki ki kig g g
=

≈ ∇ ⋅Σ ⋅ ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦zzz z
z s z s z s  

2

1 1 1 ** *

m m m
ki ki ki

j j l jl
j j lj j l

l j

g g g
z z z

σ σ σ ρ
= = = == =≠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
⎜ ⎟ ⎜ ⎟= ⋅ + ⋅ ⋅ ⋅ ⋅
⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∑ ∑∑
z zz z z z

 

(20)
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where Σzz  is the covariance matrix of all random variables in z , jσ  and lσ  

( , 1, 2, ,j l m= ) are the standard deviations of the thj  and thl  random variable in z  

with correlation coefficient jlρ .  From the first summation term in Eq. (20), we can see 

that different random variables have different contributions on the variance of the limit 

state function, Var[ ( | )]kig z s .  Thus, they are not of equal importance.  Following Der 

Kiureghian and Ke (1995), a measure of importance γ  can be defined as 

*, *

*, *

T
T

T

′⋅ ⋅
=

′⋅ ⋅
u z

u z

α J SD
γ

α J SD
 (21)

where ′SD  is the standard deviation diagonal matrix of equivalent normal variables ′z , 

defined by the linearized inverse transformation *, ** ( *)′ = + ⋅ −z uz z J u u  at the design 

point.  Each element in ′SD  is the square root of the corresponding diagonal element of 

the covariance matrix , *′ = ⋅ T
z* u z*,u*Σ J J  of the variables in ′z . 

In Table 9, Column 3 lists the importance measures of the random variables for 

the deformation fragility of the northern column in Bent 8.  We can see that the random 

errors Cδε  and Dδε  are the most important variables.  Column 5 lists the importance 

measures of the random variables for shear fragility.  In this case, random variables 1Dvθ  

and 2Dvθ  have the highest importance measures.  Similar conclusions are valid for the 

importance measures for the northern column of Bent 11 (Table 10). 

For both the deformation and shear mode of failure, the random variables in the 

u -space that correspond to Ckε  and Dkε  ( ,k vδ= ) are the most important.  The correla- 
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Table 9.  The importance measures for each random variable for the deformation and shear 
fragility estimates of the northern column in Bent 8 

γ † 
Random variables 

Symbol Deformation Symbol Shear 

Random error for capacity model Cδε  −0.622 Cvε  −0.274 

Random error for demand model Dδε  0.596 Dvε  0.368 

Parameters in the capacity model  1Cδθ  −0.160 2Cvθ  −0.020 

 7Cδθ  −0.053 4Cvθ    −0.053 

 11Cδθ  0.042   

Parameters in the demand model 1Dδθ  0.318 1Dvθ  0.642 

 2Dδθ  −0.274 2Dvθ  0.560 

 3Dδθ  0.022 3Dvθ  −0.155 

 4Dδθ  −0.015 4Dvθ  0.012 

 5Dδθ  0.021 5Dvθ  −0.009 

   6Dvθ  0.015 

Mean capacity model error Cδσ  0.111 Cvσ  0.053 

Mean demand model error Dδσ  0.190 Dvσ  0.171 

Yield stress of confining reinforcement yhf  −0.039 yhf  −0.044 

Yield stress of longitudinal reinforcement yf  −0.003 yf  0.017

Spacing of transverse reinforcement S  0.017 s  0.027

Compressive strength of concrete cf ′  0.038 cf ′  0.010 

Diameter of longitudinal reinforcement bd  −0.003 bd  −0.010

Gross height of column cross section†† gH  0.005 gH  0.010 

Gross width of column cross section†† gB  0.012 gB  −0.002 

Cover thickness of concrete Cover 0.000 Cover 0.000
Strength of stirrup reinforcement suf  0.000 suf  0.000 

† Importance for deformation and shear fragility estimates are computed for 1.39aS =  g and PGV/PGA 
0.50=  sec. 

†† The height of the column cross section is along the longitudinal direction of the bridge, the width of the 
columns cross section is along the transverse direction of the bridge. 
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Table 10.  The importance measures for each random variable for the deformation and shear 
fragility estimates of the northern column in Bent 11 

γ † 
Random variables 

Symbol Deformation Symbol Shear 

Random error for capacity model Cδε  −0.615 Cvε  −0.272 

Random error for demand model Dδε  0.602 Dvε  0.321 

Parameters in the capacity model  1Cδθ  −0.157 2Cvθ  −0.023 

 7Cδθ  −0.066 4Cvθ    −0.061 

 11Cδθ  0.021   

Parameters in the demand model 1Dδθ  0.312 1Dvθ  0.655 

 2Dδθ  −0.248 2Dvθ  0.594 

 3Dδθ  0.022 3Dvθ  −0.145 

 4Dδθ  −0.063 4Dvθ  0.012 

 5Dδθ  0.031 5Dvθ  −0.037 

   6Dvθ  0.024 

Mean capacity model error Cδσ  0.123 Cvσ  0.033 

Mean demand model error Dδσ  0.215 Dvσ  0.094 

Yielding stress of confining reinforcement yhf  −0.045 yhf  −0.047 

Yielding stress of longitudinal reinforcement yf  −0.005 yf  0.019

Spacing of transverse reinforcement S  0.021 s  0.028

Compressive strength of concrete cf ′  0.047 cf ′  0.010

Diameter of longitudinal reinforcement bd  −0.004 bd  −0.011 

Gross height of column cross section†† gH  0.006 gH  0.011 

Gross width of column cross section†† gB  0.015 gB  −0.001 
Cover thickness of concrete Cover 0.000 Cover −0.000
Strength of stirrup reinforcement suf  0.000 suf  0.000 

† Importance for deformation and shear fragility estimates are computed for 1.39aS =  g and PGV/PGA 
0.50=  sec. 

†† The height of the column cross section is along the longitudinal direction of the bridge, the width of the 
columns cross section is along the transverse direction of the bridge. 

 

 

tion structure between the random variables in the deformation limit state does not 

change the importance of Cδε  and Dδε  in the original space.  However, the correlation 
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structure between the random variables in the shear limit state changes the importance of 

Cvε  and Dvε .  As a result, 1Dvθ  and 2Dvθ  turn out to be the two most important random 

variables in the original space.  The next two most important random variables for the 

shear mode of failure are again Cvε  and Dvε . 

Fig. 12 shows the contour plots of the importance of Cδε , Dδε , Cvε , Dvε , 1Dvθ , 

and 2Dvθ .  From this figure, one can see that the importance measures are also a function 

of aS  and PGV/PGA.  As for the sensitivity measures, the importance measures of 

random variables are more susceptible to the changes in aS  than in PGV/PGA. 

Fig. 13 shows the curves of the importance measures of all random variables for 

the northern column in Bent 8.  Each curve in this figure is a function of aS  given 

PGV/PGA =0.50 sec.  Chart (a) shows the importance measures for the deformation 

fragility.  Chart (b) shows them for the shear fragility.  The plots on the right show 

zoomed-in plots for smaller values of γ .  One interesting observation in chart (a) is that 

the importance measures of Cδσ  vary from positive values to negative values as the 

values of aS  increases.  Therefore, there is a value of aS  for which the contribution of 

Cδσ  to Var[ ( | )]kig z s  is zero.  The same considerations can be made for Dδσ . 
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Fig. 12.  Contour plots of the importance of selected random variables for the 
deformation (a and b) and shear fragility (c-f) for the northern column in Bent 8 



55 
 

 
 

 

Fig. 13.  Importance measure curves for (a) deformation and (b) shear fragility estimates 
for the northern column in Bent 8 for PGV/PGA =0.50 sec. 
 

 

Fig. 14 shows the importance measures as a function of PGV/PGA for the 

northern column in Bent 8 given aS =1.39 g.  The changes in the importance measures 

indicate that the contribution from each random variable varies also with PGV/PGA.  

However, similar to what was observed based on the contour plots, the dependency on 

PGV/PGA is less pronounced than for aS . 
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Fig. 14.  Importance measure curves for (a) deformation and (b) shear fragility estimates 
for the northern column in Bent 8 for Sa=1.39 g 
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the less important ones. 

For the deformation models, only Cδε  and Dδε  are considered as random.  For 

the shear models, while 1Dvθ  and 2Dvθ  are the most important random variables, they 

only represent statistical uncertainties in the seismic demand.  So, in this case we select 

the next two most important random variables for the shear mode of failure that are Cvε  

and Dvε , which capture the overall model uncertainties.  An approximate closed-form 

estimate of Eq. (11) is obtained by ignoring the uncertainties in Θ  and r , and using a 

point estimate Θ̂  and r̂  (e.g., the posterior means).  The corresponding point estimate of 

the fragility in Eq. (11) is written as 

( )ˆˆ ˆ( ) P , , 0ki iF g⎡ ⎤= ≤⎢ ⎥⎣ ⎦
s r Θ ε s  

    ( ) ( )ˆ ˆˆ ˆP , , , , 0ki C Ci ki D DiC D⎡ ⎤= − ≤⎢ ⎥⎣ ⎦
r Θ ε r Θ ε s  

1 1,.., ; ,
ˆ ˆ ˆ ˆ

ki ki ki kiC D C D

Cki Dki Cki Dki

i s k v
⎛ ⎞ ⎛ ⎞μ − μ μ − μ

= Φ − = − Φ = = δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ + σ σ + σ⎝ ⎠ ⎝ ⎠
 

 

(22)

The approximate-closed form solution in Eq. (22) can also be used to compute 

the fragility for the series system problem defined in Eq. (15).  In this case, ˆ ( )F s  can be 

computed in terms of the joint normal probability distribution of iε  ( 1,.., 2i s= ). 

Fig. 15 (a) shows the contours of the deformation fragility estimates for the 

northern column in Bent 8; chart (b) shows the contours of the shear fragility estimates 

for the same column.  The solid lines denote the closed-form fragility estimates from Eq. 

(22) and the dotted-lines denote the predictive fragility estimates from Eq. (10).  Here 
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FORM is used for the predictive fragility estimation.  From this figure, we can see that 

only a marginal difference exists between the closed-form and the corresponding 

predictive fragility.  This is true for both deformation and shear fragility estimates.  

Similar conclusions can be made for the northern column in Bent 11 (Fig. 16), which is 

more susceptible to shear failure than the column in Bent 8 due to the different 

slenderness ratio of the column.  We can also see from the shear fragility plots in Fig. 15 

or Fig. 16 that, although we considered Cvε  and Dvε  instead of 1Dvθ  and 2Dvθ  as random, 

the closed-form shear fragility estimates are still only marginally different from the 

predictive estimates of the fragility. 

 

 

 

Fig. 15.  Contour plots of predictive and closed-form deformation fragility estimates (a) 
and shear fragility estimates (b) for the northern column in Bent 8 
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Fig. 16.  Contour plots of predictive and closed-form deformation fragility estimates (a) 
and shear fragility estimates (b) for the northern column in Bent 11 

 

 

SUMMARY 

A closed-form solution is developed for the shear and deformation fragility of RC 

columns in bridges with two-column bents.  The closed-form solution is constructed 

using probabilistic capacity and demand models and incorporates the dominant 

uncertainties. 

A sensitivity analysis is conducted for the parameters in the limit state function 

of the RC columns.  The sensitivity measures suggest that the vulnerability of RC 

columns in two-column bents can effectively be improved by using high strength 

reinforcement for the column confinement.  It is also suggested to avoid using high 

strength concrete and large spacing between confining reinforcement. 
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Importance measures are also computed for the random variables in the fragility 

estimation.  Importance measures serve as a guide to identify the most relevant sources 

of uncertainties.  By incorporating only the uncertainties from the important random 

variables, the computation of the fragility of a RC column is simplified, leading to a 

closed-form solution that does not require any reliability software, and hence, is more 

easily implementable in engineering practice and design.  The proposed closed-form 

fragility estimates closely approximate the corresponding predictive estimates of the 

fragility.  Hence, they can be used with no significant loss of accuracy. 
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CHAPTER IV 

STIFFNESS DEGRADATION AND TIME TO CRACKING OF COVER 

CONCRETE IN RC STRUCTURES SUBJECT TO CORROSION 

 

 

Due to the ingression of corrosive agents, the corrosion process will be initiated when 

sufficient amount of corrosive agents accumulate on the surface of reinforcing steel.  

The concrete cover for corroded reinforcing steel is subject to corrosion pressure 

resulted from the rust product and will crack shortly after the corrosion initiation.  This 

Chapter proposes a stiffness degradation factor to model the stiffness degradation and 

the time to cracking of concrete cover since corrosion initiation.  The corrosion effects 

from the degraded concrete covers and the loss of reinforcing steel on the fragility 

estimation will be considered in the next Chapter. 

INTRODUCTION 

Corrosion in reinforcing steel is as an important deterioration mechanism that reduces 

the service life of RC structures exposed to corrosive environments.  This deterioration 

in RC structures is due to the loss of reinforcing steel and the corrosion-induced cracks 

in concrete cover.  The deterioration process of reinforcing steel in RC structures can be 

divided into three phases (Cady and Weyers 1983): 1) the diffusion of corrosive agents 

onto the surface of reinforcing steel before corrosion initiates; 2) the corrosion-induced 

cracking process in the concrete cover before the crack front reaches the surface of the 

RC structure; and 3) the continued deterioration of the cross-section of the RC structure 
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before repair or rehabilitation procedures are carried out.  During the last two phases, the 

corroded structures are usually subject to stiffness degradation because of the cracking 

process. 

The degradation of the stiffness of corroded RC structures is closely related to 

the loss of reinforcing steel associated to corrosion (Torres-Acosta et al. 2004; Tastani 

and Pantazopoulou 2005; Vidal et al. 2007; Choe et al. 2008a, b; Cairns et al. 2008; 

Capozucca 2008).  A number of methodologies have been proposed to model the 

stiffness degradation based on the bond stress-slip mechanism (e.g., Floegl and Mang 

1982; Wu et al. 1992; Tastani and Pantazopoulou 2005).  Some effort has been made to 

model the tension-stiffening of the flexural concrete between cracks (e.g., Scanlon 1975; 

Bažant and Oh 1984; Torres et al. 2004).  However, limited attention has been paid to 

the cracking progress itself and the corresponding stiffness degradation.  In particular, 

the effects of the corrosion-induced cracks in concrete cover on the stiffness of corroded 

RC structures have not been properly considered. 

Another physical quantity of interest is the time to cracking of the concrete 

cover, which is defined as the time elapsed from the corrosion initiation to the instant the 

crack front reaches the surface of the concrete cover.  The time to cracking is valuable to 

estimate the service life of a RC structure.  Among the existing studies (e.g. Liu and 

Weyers 1998; Pantazopoulou and Popaouli 2001; Bhargava et al. 2006; Li et al. 2006), 

the smeared crack model has been commonly applied to the concrete cover to predict the 

time to cracking by assuming the cracks grow axis-symmetrically.  However, 

applications of the smeared crack model in RC structures require relatively strict 
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assumptions that might not be actually satisfied in a typical cross section of RC 

structures.  In fact, it is more likely that in the actual RC structures subject to corrosion 

individual cracks in the concrete cover propagate in different ways. 

This chapter presents the models for the cracking process and the corresponding 

stiffness degradation in the cracked concrete due to the corrosion in the reinforcement 

steel using the energy principle (Zhong et al. 2008d).  In particular, a cohesive crack 

model is applied to simulate the cracking process in the concrete cover.  The total 

complimentary energy of a cracked structure consists of the complimentary strain energy 

of the cracked structure and the complimentary surface energy of the cohesive cracks 

modeled in the cracked structure (Bažant and Li 1995).  By applying the variation 

principle to the total complimentary energy, the crack depth, the cohesive stress, and the 

corrosion pressure are found simultaneously, provided a displacement of the rust front 

resulted from the density difference between the rust product and the depleted steel.  The 

degraded stiffness of the cover concrete can be represented as the secant stiffness 

(Bažant and Planas 1998) of the cracked concrete.  A stiffness degradation factor, 

defined as the ratio between the secant and the initial stiffness, is then proposed to 

represent the stiffness degradation caused by the cracking process in the concrete cover.  

The time to cracking of the concrete cover is found by determining the time needed by 

the crack front to reach the surface of concrete cover starting from the time to corrosion 

initiation. 

This chapter includes four sections.  First, we introduce the process of corrosion-

induced cracking in RC structure.  Second, we briefly review the available models for 
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the corrosion-induced cracking and the time to cracking and the pertinent limitations.  

Then, based on the energy principle, we propose a new method to assess the stiffness 

degradation of a cracked concrete cover and to determine the time to cracking.  Finally, 

two examples are used to illustrate the computation of the stiffness degradation of a 

cracked concrete cover and the time to cracking for two specimens for which test results 

are available. 

CRACK PROPAGATION IN RC STRUCTURES DUE TO CORROSION  

The concrete cover is used in RC structures to protect reinforcing steel against corrosive 

agents, such as chlorides, moisture, seawater, deicing salts, oxygen, carbon dioxide, 

sulfates, acids, etc.  High quality concrete with appropriate mixture proportion, 

compacting, and curing condition provides good protection for the reinforcing steel.  

Such protection results from the physical barrier of the concrete cover and the chemical 

barrier of the alkaline pore solution existing in the cover concrete.  Due to the presence 

of a highly alkaline pore solution, the initial corrosion product creates a layer of passive 

film on the surface of the reinforcing steel (Liu 1996). 

However, due to the capillary of the concrete, in an aggressive environment, the 

water-soluble corrosive agents can breach onto the surface of the reinforcing steel 

through the concrete cover.  The diffusion process also plays an important role for the 

ingression of corrosive agents (Liu 1996).  The chloride ions, if available in sufficient 

quantity, can break the passive film and initiate corrosion (mainly pitting corrosion).  

Once initiated, the chloride ions act as a catalyst for the corrosion propagation.  In 

addition, carbonate from the atmosphere diffuses towards the steel surface and reduces 
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the pH value of the concrete pore solution around the surface of the reinforcing steel.  

This results in the breaking of the passive film and the initiation and propagation of 

corrosion (mainly general corrosion). 

The corrosion in reinforcing steel results in cracking of the concrete cover.  This 

is due to the increased volume of the rust product compared to that of the depleted steel.  

The cracking mouth opening displacement (CMOD) of the propagating crack increases 

as the tensile stress in the cracked concrete decreases along the softening branch of the 

stress-strain curve of the concrete (Bažant and Planas 1998), as shown in Fig. 17.  The 

left chart shows the stress-strain curve for concrete subject to tensile stress.  Here, ( )φ ⋅  is  

 

 

Fig. 17.  Typical stress-strain softening curve for concrete subject to tensile stress 

 

the function for the softening stress-strain curve, rE  is the initial stiffness of the intact 
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process, elε  is the elastic strain, and max
fε  is the maximum cracking strain before 

unloading.  The right chart shows the softening curve extracted from the right branch of 

the stress-strain curve shown in the left chart.  Note the abscissa is now the strain from 

the cracking opening, fε , which is the actual cracking stain during unloading.  The 

ordinate is the corresponding stress σ ′  on the softening curve.  As a result, the 

corrosion-induced cracking process weakens the stiffness of the cover concrete.  To 

represent the deterioration in stiffness, a stiffness degradation factor, η , is defined as the 

ratio between the secant stiffness and the initial stiffness, i.e., / rE Eθη = .  Ultimately, 

the cracks reach the surface of corroded RC structure and excessively wide cracks 

indicate that the serviceability limit state of the RC structure has been reached. 

CURRENT MODELS FOR CORROSION-INDUCED CRACKING 

Many approaches have been proposed to model the corrosion-induced cracking in 

concrete cover.  These include analytical models (e.g., Bažant 1979a,b; Melchers 2003), 

empirical approaches (e.g., Morinaga 1988; Liu and Weyers 1998; Torres-Acosta 1999; 

Vu et al. 2005), and numerical solutions (e.g., Pantazopoulou and Papoulia 2001; Leung 

2001; Tastani and Pantazopoulou 2005; Li et al. 2006; Bhargava et al. 2006; Maaddawy 

and Soudki 2007).  In particular, for the numerical solutions, a smeared crack model has 

been combined with the finite element method (FEM) to model the cracking process 

(e.g., Molina et al. 1993; Padovan and Jae 1997; Ahmed et al. 2007) and linear elastic 

fracture mechanics have also been combined with various numerical methods to predict 

the crack propagation (e.g., Padovan and Jae 1997; Noghabai 1999; Ohtsu and Yosimura 

1997; Uddin et al. 2004). 
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In the current literature, the method used to model the corrosion-induced 

cracking is closely related to the geometry of the concrete cover subject to the 

volumetric expansion of the rust product.  The geometry of the concrete considered in 

the literature can be classified into three categories: 1) an infinite medium with a circular 

hole, 2) the actual geometry used in the cross section of a RC structure, and 3) a concrete 

cylinder concentric with the corroding reinforcing steel. 

In case of the infinite medium, the corrosion pressure generates cracks that 

emanate radially from the hole occupied by the reinforcing steel.  Therefore, models can 

be derived based on fracture mechanics.  For example, considering the constraining 

effect of the surface of the reinforcing steel on the crack opening, Leung (1997, 2001) 

correlated the crack depth with the corrosion pressure through a compliance function and 

developed a stress intensity factor (SIF) for the bonded interface between the reinforcing 

steel and the concrete.  However, although this method is theoretically appealing, 

modeling the concrete cover as an infinite medium is not physically appropriate at least 

for most civil engineering applications. 

For the case in which the actual complex geometry of the RC structure is 

modeled, the boundary element method (BEM) has been combined with fracture 

mechanics to find the displacement and stress fields of the cracked concrete (e.g., Ohtsu 

and Yosimura 1997; Aliabadi 1997; Aliabadi and Saleh 2002; Uddin et al. 2004.).  The 

main advantage of BEM is its ability to reduce the dimension of the problem in 

modeling the cracking process (Aliabadi 1997).  FEM has also been applied to the 

complex geometry and the changing boundary conditions due to crack propagation (e.g., 
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Ingraffea et al. 1984; Rots 1988; Molina et al. 1993; Klisinski et al. 1991; Padovan and 

Guo 1994; Guo and Padovan 1994; Ahmed et al. 2007).  While BEM or FEM have the 

flexibility required to model complex shapes, a significant effort is required for their 

numerical implementation. 

Finally, a concrete cylinder has been commonly used because a cylindrical 

geometry has well-defined strain and stress analytical solutions for given boundary 

conditions (Noghabai 1999).  Therefore, many studies of the corrosion effect prefer 

using the cylindrical geometry to model the concrete cover (e.g., Liu and Weyers 1998; 

Noghabai 1999; Pantazopoulou and Papoulia 2001; Tastani and Pantazopoulou 2005; Li 

et al. 2006; Zhao and Jin 2006; Bhargava et al. 2006).  However, a concrete cylinder 

concentric with the reinforcing steel does not fully represent the actual boundary 

conditions in the structures subject to corrosion (Vu et al. 2005). 

A simplified solution that can capture the major effects of corrosion on the 

concrete and can provide insights into the underlying physics of the complex phenomena 

is needed.  In the next section we propose a new method to assess the stiffness 

degradation of a cracked concrete cover and to determine the time to cracking.  In the 

following of this section, we review some details of the current models that are needed 

for the proposed model. 

Based on the experiments in a five-year test study, Liu and Weyers (1998) 

presented an empirical formula for the time to cracking defined as a function of the 

critical amount of corrosion products and the rate of rust production, which is closely 

related to the corrosion rate.  The critical amount of corrosion products depends on the 
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diameter of the corroding rebar, the density of the rust product, and the content of the 

rust product.  While this empirical formula is developed based only on data from a 

limited number of specimens and therefore cannot claim a general validity, the 

experimental values from Liu and Weyers (1998) are used here to validate the proposed 

formulation. 

Pantazopoulou and Papoulia (2001) and Li et al. (2006) suggested using partial 

differential equations (PDE) to model the displacement and stress fields in the concrete 

cover.  In their model, the concrete cover is partitioned into two concentric cylinders: an 

inner cracked cylinder and an outer intact cylinder, where the smeared crack model is 

used for the cracked concrete.  The displacement boundary condition adopted by 

Pantazopoulou and Papoulia (2001) for the inner wall of the cracked cylinder is 

( ) ( ) ( ),inner inner rbu r t d t r R t= − −⎡ ⎤⎣ ⎦  (23)

while Li et al. (2006) used  

( ) ( ),inneru r t d t=  (24) 

where ( , )u r t  is the radial displacement of the cylinder at a radius r  measured from the 

center of the cylinders at time t , innerr  is the original radius of the reinforcing steel, ( )d t  

is the thickness of the rust product as a function of the density of the corrosion current, 

( )rbR t  is the reduced radius of the reinforcing steel at time t , and ( )inner rbr R t−  is the 

corrosion penetration into the reinforcing steel. 

For an explicit solution of ( , )u r t , Li et al. (2006) proposed a formulation to 

compute the stiffness degradation factor, ( )tη  
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( ) ( )
( )r

t
t

E t
θ

θ

φ ε
η

ε
⎡ ⎤⎣ ⎦=  (25) 

for the governing equation for the cracked cylinder, where ( )tθε  is the averaged 

tangential strain over the cracked surface at time t . 

Although the mathematical formulations in Pantazopoulou and Papoulia (2001) 

and Li et al. (2006) are simple, the underlining assumptions of smeared-crack 

propagation in the concrete cylinder is not appropriate since in most engineering 

structures the corrosion-induced cracks seldom propagate in an axis-symmetric way.  

Secondly, the governing PDE does not necessarily capture the fundamental behavior of a 

fractured structure, e.g., the change of energy in a fracturing structure.  Finally, Eq. (25) 

does not provide accurate estimates.  In fact, in the model proposed by Li et al. (2006), 

the average strain across the cracked and intact cylinders were used to define the 

stiffness degradation factor, ( )tη .  However, the stiffness degradation of cracked 

concrete is more closely correlated to the maximum strain. 

PROPOSED MODEL BASED ON THE ENERGY PRINCIPLE 

In this section, we propose a new approach to estimate the secant stiffness of a cracked 

concrete cover subject to corrosion pressure and the time to cracking.  The cracks in the 

concrete cover are assumed to be cohesive cracks.  The cohesive crack model (e.g., 

Barenblatt 1962; Hillerborg et al. 1976) lumps the fracture process zone around the 

crack front onto the crack line and uses the softening law of cracked concrete to 

characterize the stress-strain relationship on the crack surface (Bažant and Planas 1998).  
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In the following, we compute the stiffness degradation factor based on the variation 

principle applied to the complementary energy of the cracked RC structure. 

The total complementary energy of the cracked structure consists of the 

complementary strain energy, *U , of the cracked RC structure and the complementary 

surface energy, *
cΠ , of the crack surfaces in the RC structure.  Thus, the total 

complementary energy, *Π , for a cracked structure is  

* * *
cUΠ = + Π  (26)

To apply the energy principle to the fracturing RC structure, we consider a 

portion of the concrete cover with unit thickness and initial notch with normalized depth 

0α , subject to a given load-point deformation, ( , )inneru r t , caused by the corrosion 

pressure, ( )P t  applied on the inner surface specified by innerr , as shown in Fig. 18.  In 

this figure, the solid lines represent the concrete cover at the beginning of the corrosion 

initiation with initial notch of normalized depth 0α , while the dash lines denote the 

cracked concrete cover at time t  since corrosion initiation with normalized crack depth, 

( )tα .  Parameter D  is the characteristic size of the cracked concrete cover, e.g., the 

cover thickness.  The parameters, 0α , ( )tα , and ξ , have been normalized with respect 

to D .  Here ξ  0( ( ))tα ξ α≤ ≤   is the normalized distance  of any  location on the  crack 

surface formed at time t  to the inner surface of the cracked concrete cover.  In addition, 

( , )w tξ  is the crack opening displacement of the crack surfaces at ξ .  According to the 

cohesive crack model, the cohesive stress, ( )σ ξ , has the  potential  to  close  the  crack  
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Fig. 18.  Typical ligament for cracked concrete cover with cohesive crack 
 

 

This effect counterbalances the crack opening effect resulted from ( )P t .  In the 

equilibrium condition of the cracked concrete cover at time t , the unknowns are ( )tα , 

( )σ ξ , and ( )P t . 

Following Bažant and Li (1995), the variations of *Π  with respect to ( )P t , 

( )σ ξ , and ( )tα  are  

( ) ( )( ) ( ) ( ) ( )
0

*

, 0
t P PP

innerD C d P t C u r t
P t

α σ

α
ξ σ ξ ξ∂Π

= − ⋅ + ⋅ − =
∂ ∫  (27)

( ) ( )( ) ( ) ( ) ( ) ( )
0

*

, , 0
t PD C d P t C w t

α σσ σ
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ξ ξ σ ξ ξ ξ ξ

σ ξ
∂Π ′ ′ ′= ⋅ − ⋅ + =

∂ ∫  (28)
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( ) ( ) ( ) ( )( ) ( ){ }
0

* 2

, 0
t

r P GE P t k t D k t d
t

α

α
α α ξ σ ξ ξ

α
∂Π

⋅ = ⋅ + ⋅ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∫  (29)

where, in Eq. (27), ( ) ( )P PC Cσ σξ ξ=  is the compliance function representing the crack 

opening displacement at location ξ  cause by a unit corrosion pressure, ( ) 1P t = , applied 

on the inner surface of the concrete cover, PPC  is the compliance function representing 

the displacement in the same direction of ( )P t  at innerr  due to ( ) 1P t = , ( , )inneru r t  is the 

given load-point deformation at innerr  and can be obtained by using Eq. (23) or (24).  In 

Eq. (28), ( , )Cσσ ξ ξ ′  is the compliance function representing the crack opening 

displacement at location ξ  due to two unit forces applied at ξ ′  0( ( ))tα ξ α′≤ ≤  on both 

crack surfaces.  In Eq. (29), [ ( )]Pk tα  is the dimensionless SIF at the crack front caused 

by the unit corrosion pressure, i.e., ( ) 1P t = , on the cracked cover with normalized crack 

depth ( )tα , [ ( ), ]Gk tα ξ  is the dimensionless SIF at the crack front due to two unit forces 

applied at ξ  on both crack surfaces with normalized depth ( )tα , and the subscript G 

denotes the Green function defined as in Bažant and Planas (1998).  Eqs. (27) and (28) 

are the compatibility equations and Eq. (29) is the equilibrium equation. 

According to the above definitions, the compliance functions, ( )PC σ ξ , PPC , and 

( , )Cσσ ξ ξ ′  can be computed as 

( ) ( )( ) ( )2 ,
tP

P G
r

C k k d
E

ασ

ξ
ξ α α ξ α′ ′ ′= ⋅∫  (30)

( )( ) ( )
0

2 tPP
P P

r

C k k d
E

α

α
α α α′ ′ ′= ⋅∫  (31)
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( ) ( ) ( )
( )

( )

max ,

2, , ,
t

G G
r

C k k d
E

ασσ

ξ ξ
ξ ξ α ξ α ξ α

′
′ ′ ′ ′ ′= ⋅∫  (32)

By substituting Eqs. (30) to (32) into Eqs. (27) and (28), we can solve for the unknowns 

( )tα , ( )σ ξ , and ( )P t  at time t  for a given value of ( , )inneru r t  and the provided [ ( )]Pk tα  

and [ ( ), ]Gk tα ξ . 

In general, [ ( )]Pk tα  and [ ( ), ]Gk tα ξ , can be obtained via series elastic analyses 

using BEM or FEM for a cracked RC structure for a given geometry of the crack.  The 

efficiency of the proposed method depends on the availability of the dimensionless SIFs.  

Finding the dimensionless SIFs has been the focus of several studies (e.g., Fett and 

Munz 1997; Tada et al. 2000).  In particular, Wu and Carlsson (1991) provide the 

dimensionless SIFs for some structures of various shapes with different crack 

configurations based on experiments and numerical computations. 

Knowing ( )σ ξ  and ( )P t  at time t , we can solve for ( , )w tξ  using Eq. (28) as 

follows 

( ) ( ) ( ) ( )( ) ( )
0

, ,
tPw t P t C D C d

ασ σσ

α
ξ ξ ξ ξ σ ξ ξ′ ′ ′= ⋅ − ⋅∫  (33)

where the first term on the right-hand side of the equation is the displacement of the 

crack opening at ξ  caused by ( )P t , and the second term is the displacement of the crack 

opening at the same location caused by the cohesive stress ( )σ ξ′ .  Since ( )P t  and 

( )σ ξ′  have opposite effects on the crack opening, the difference represents the actual 

crack opening displacement at ξ  on the crack surfaces, as also shown in Fig. 18.  In 
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general, since the maximum value of ( , )w tξ  occurs at the crack mouth, the CMOD can 

be computed as 0( , )w tα . 

Next we compute the maximum crack opening strain, max ( )f tε , as the value of 

max
fε  at 0ξ α=  and time t , as max max 0 0( ) ( , ) ( , ) /f f

ct t w t hε ε ξ α α= = =  (Bažant and Planas 

1998).  Here, ch  is the width of the crack band (usually 3c ah d= , where ad  is the 

maximum aggregate size).  After solving for max ( )f tε , we compute the stiffness 

degradation factor ( )tη  as 

( )
( )

( ) ( )
max

max max

f

f f
r

t
t

E t t

φ ε
η

ε φ ε

⎡ ⎤⎣ ⎦=
⎡ ⎤+ ⎣ ⎦

 (34)

Appendix A shows the derivation of Eq. (34) based on the definition of the stiffness 

degradation factor. 

Finally, the time to cracking of the concrete cover is found by determining the 

time needed by the crack front to reach the surface of the concrete cover starting from 

the time of corrosion initiation.  This can be computed as the time at which ( ) 1tα = . 

NUMERICAL EXAMPLES 

In this section, we select two numerical examples to illustrate and validate the proposed 

method.  The stiffness degradation factor is computed for each example as a function of 

time elapsed from corrosion initiation.  In the computations, ( , )inneru r t  in Eq. (27) is 

computed using Eq. (23) or (24), where the rust thickness, ( )d t , is computed as 

(Pantazopoulou and Papoulia 2001)  
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( ) ( ) ( ) ( )2 r
rb rb

V t
d t R t R t

π
Δ

= + −⎡ ⎤⎣ ⎦  (35)

where ( )rV tΔ  is the volume of the rust product generated at time t  and computed as 

( )( ) r
r

r

m t
V t

ρ
Δ =  (36)

where rρ  is the density of the rust product assumed to be 3600 kg/m3 (224.7 lbs/ft3) and 

( )rm t  is the mass of the rust product at time t  computed as (Liu and Weyers 1998) 

( ) ( ) ( )
1 2

0

0.0982 2
t

r inner corrm t r i t dtπ
μ

⎡ ⎤′ ′= ⋅ ⋅ ⋅⎢ ⎥
⎣ ⎦

∫  (37)

where 0.523μ =  is the molecular weight ratio between the steel and the rust (Liu and 

Weyers 1998), and the corrosion current density function, ( )corri t  is defined as (Vu and 

Steward 2000) 

( ) 0.29
,00.85corr corri t i t−= ⋅ ⋅  (38)

where ,0corri  is the corrosion current density at the corrosion initiation and is defined as 

( ) 1.64

,0

37.5 1 /
corr

w c
i

D

−⋅ −
=  (39)

here w/c is the water-to-cement ratio, and D  is the cover thickness.   

The reduced radius, ( )rbR t , for the corroded rebar is computed as  

( ) ( )2
rb inner sR t r V t π= − Δ  (40)

where ( )sV tΔ  is the volume depleted from the reinforcing steel computed as 
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( )( ) r r
s

s

V t
V t

ρ
μ

ρ
Δ

Δ =  (41)

where sρ  is the density of steel assumed to be 7800 kg/m3 (487.0 lbs/ft3). 

The typical layout of the tested specimens in Liu and Weyers (1998) is shown in  

Fig. 19.  The basic dimensions of the specimen tested in the laboratory (outdoor 

exposure) are 1180×1067×216 mm.  Four layers of reinforcement are placed in the slabs.  

The top layer of reinforcement consists of reinforcing steel, each bar with 16-mm 

(0.63 in.) diameter.  The remaining three layers beneath the corroding reinforcing steel 

consist of composite reinforcing bars, which are not subject to corrosion.  Two 

specimens with clear covers of 48 mm (1.89 in.) (Series OA2859.6) and 27 mm 

(1.06 in.) (Series OE18512.0) are selected for the numerical examples here.  Since the 

admixed chloride concrete in these two specimens are 5.69 kg/m3  and 7.2 kg/m3 

respectively, which are higher than the normal values 0.60-0.83 kg/m3  suggested by Liu 

(1996), the time to corrosion is negligibly small in the experiments conducted in Liu and 

Weyers (1998).  Table 11 lists the parameters used in the numerical computations. 

Instead of using BEM or FEM to find the SIF for a general cracked cross-section 

with corroded reinforcing steel, we use a simplified solution for the cracked concrete 

cover in these two examples.  The simplification is made by modeling the concrete cover 

as a concrete cylinder concentric to the corroding reinforcing steel in each specimen. 
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Fig. 19.  Configuration of the specimens tested in Liu and Weyers (1998) 

 

 

 

Table 11.  Parameters used in the numerical examples 
  Symbol Specimen 1 Specimen 2 

Cover, (mm) D 48 27 
Reinforcing steel diameter, (mm) rinner 16 16 
Water to cement ratio w/c 0.50 0.50 
Max aggregate size, (mm) da 16 16 
Concrete strength (Mpa) fc' 31.5 31.5 
Elastic modulus, (Gpa) Er 27 27 
Creep coefficient φr 2.0 2.0 
Poisson ratio v 0.18 0.18 
Molecular weight ratio between steel and rust  µ 0.523 0.523 
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Fig. 19 also shows the concrete cylinders of one- and two-crack configurations 

with radii innerr  and innerr D+  for the inner and outer walls, respectively.  Here, the 

characteristic size for the cylinder cover is D .  Two load-point deformations are chosen 

for ( , )inneru r t  in Eq. (27): 1) the effective rust expansion, i.e., boundary condition defined 

in Eq. (23); and 2) the rust thickness, i.e., boundary condition defined in Eq. (24).  Note 

that ( )P t  is applied on the inner surface of the cylinder.  In the computations, the linear 

softening law is applied for the cracked cover concrete subject to tensile stress. 

Fig. 20 shows the results for Specimen 1 with cover thickness of 48 mm.  The 

top chart shows the location of crack front, ( ) ( )r innerR t t D rα= ⋅ + , measured from the 

center of the cylinder to the crack front as a function of time.  The solid-line denotes the 

results for the crack front computed by Li et al. (2006) using a smeared crack model with 

the load-point deformation of rust thickness.  The dash-dotted line denotes the results 

computed by Li et al. (2006) for the load-point deformation of effective rust expansion.  

The bold solid-line shows the results computed using the proposed model with one-crack 

configuration in the concrete cylinder subject to rust thickness.  The bold dash-line 

shows the results computed using the proposed model with one-crack configuration in 

the concrete cylinder subject to effective rust expansion.  The dash- and dotted- lines 

show the corresponding results for the same concrete cylinder with two-crack 

configuration applied with different load-point deformations.  The crack front reaches 

the cover surface when ( )rR t  reaches the value of 56 mm (2.20 in.), i.e., ( ) 1tα = .  The 

time to cracking predicted using the proposed method on the concrete cylinder with one- 
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Fig. 20.  Crack front and stiffness degradation factor as functions of time after corrosion 
initiation for specimen with 48-mm cover 

 

crack configuration in the concrete cylinder subject to effective rust expansion.  The 

dash- and dotted- lines show the corresponding results for the same concrete cylinder 
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with two-crack configuration applied with different load-point deformations.  The crack 

front reaches the cover surface when ( )rR t  reaches the value of 56 mm (2.20 in.), i.e., 

( ) 1tα = .  The time to cracking predicted using the proposed method on the concrete 

cylinder with one-crack configuration subject to the rust thickness (bold-solid line) is 

1.50 years, which is in agreement with the 1.84 years measured in Liu and Weyers 

(1998) for this specimen.  It is noted that, when two-crack configuration subject to 

effective rust expansion is used, the predicted time to cracking (1.04 years) is smaller 

than the time computed using the rust thickness.  This is because rust thickness is 

generally greater than effective rust expansion (see Eqs. (23) and (24)).  The 

computations show steady growth of the crack front during the cracking.  In contrast, the 

crack front computed from smeared crack model bounces up and down before increasing 

to the value of 56 mm.  It is also notice that the smeared crack models underestimate the 

time to cracking (predicted at 0.32 years for the applied rust thickness and 1.32 years for 

the applied effective rust expansion respectively).  Furthermore, the prediction from the 

applied rust thickness is smaller than the one from the applied effective rust expansion. 

The bottom chart shows the stiffness degradation factors as a function of time.  

Using the proposed method, the stiffness degradation factors decrease from the value of 

1.0 at the beginning of the cracking propagation.  The results from the smeared crack 

model in Li et al. (2006) start from values lower than 1.0 and decay faster than the 

results from other models.  After the crack front reaches the cover surface, the stiffness 

degradation factor is estimated using the model in Li et al. (2006) since the proposed 

method is no longer applicable. 



82 
 

 
 

The bottom chart shows the stiffness degradation factors as a function of time.  

Using the proposed method, the stiffness degradation factors decrease from the value of 

1.0 at the beginning of the cracking propagation.  The results from the smeared crack 

model in Li et al. (2006) start from values lower than 1.0 and decay faster than the 

results from other models.  After the crack front reaches the cover surface, the stiffness 

degradation factor is estimated using the model in Li et al. (2006) since the proposed 

method is no longer applicable. 

Fig. 21 shows similar results for Specimen 2 which has cover thickness of 27 mm 

(1.06 in.).  The times to cracking computed using the smeared crack model are 

significantly smaller (0.16 and 0.36 years respectively) than the times to cracking 

measured (0.72 years) in Liu and Weyers (1998).  In contrast, the time to cracking 

predicted using the proposed model using the one-crack configuration is 0.69 years, 

which is in agreement the experimental value.  The results from the two-crack 

configuration are not shown due to convergence problems.  For the bottom chart in Fig. 

21, similar observations can be made to those already made for the bottom chart in Fig. 

20. 

Table 12 lists the predicted values for the time to cracking for both examples 

investigated using different crack models with different load-point deformations.  As 

already observed in Fig. 20, there is agreement between the measured values and the 

values predicted using the proposed model with one-crack configuration applied with the 

rust thickness.  Results computed for a concrete cylinder with two-crack configuration 

for  one-crack configuration represents more  realistically the actual cracking  in  the slab 
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Fig. 21.  Crack front and stiffness degradation factor as functions of time after corrosion 
initiation for specimen with 27-mm cover 
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specimen shown in Fig. 19 than the two-crack configuration because of the confining 

effects of the concrete and bars underneath the corroding reinforcing steel in the slab. 

 

 

Table 12.  Predicted and measured time to crack for the two numerical examples 
Specimen 1 Specimen 2 Time to cracking (year) 

Simulated  Measured Simulated   Measured 
Smeared crack model-rust thickness 0.32 0.16 
Smeared crack model-effective rust expansion 1.32 0.36 
One-crack configuration-rust thickness 1.50 0.69 
One-crack configuration-effective rust expansion 1.04 0.60 
Two-crack configuration-rust thickness 0.90 N/A 
Two-crack configuration-effective rust expansion 1.00 

1.84 

N/A 

0.72 

 

 

To investigate the relationship between the stiffness degradation and the location 

of the crack front, Fig. 22 shows ( )tη  as a function of ( )rR t  for each case in the 

numerical computations.  The bold-solid line illustrates the relationship between ( )tη  

and ( )rR t  for the first specimen using load-point displacement of rust thickness.  The 

bold-dashed line illustrates the same relationship from effective rust expansion applied 

for this specimen.  Overall, ( )tη  decreases with an increase in ( )rR t .  This means the 

secant stiffness of cracked concrete decreases as the crack front propagates.  This is 

because the maximum strain, max ( )f tε , increases due to the increasing CMOD during the 

cracking.  The corresponding results for the second specimen are denoted by the dashed-

dotted and the dotted lines, respectively.  We can see that the proposed models work 
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well for the second specimen in correlating ( )tη  with ( )rR t  using either kind of load-

point displacements.  For these two examples, the stiffness degradation factor decreases 

with the increase of the location of crack front.  The difference in the applied load-point 

deformations has marginal effect in correlating ( )tη  with ( )rR t . 
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Fig. 22.  Stiffness degradation factor as a function of the crack front for both specimens  

 

SUMMARY 

Due to corrosion in reinforcing steel, corrosion pressure builds up between the concrete 

cover and the reinforcing steel and results in the cracking of the concrete cover.  The 

stiffness of cracked cover is subject to degradation process.  Based on the energy 

principle of the fractured structures with cohesive cracks, a stiffness degradation factor is 
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proposed to represent the stiffness degradation in corroded RC structure.  By solving the 

compatibility and equilibrium equations from the energy principle applied to the cracked 

RC structure, the crack depth, cohesive stress, and corrosive pressure can be determined 

at each moment of the cracking process.  The stiffness degradation factor is then 

computed in terms of the maximum crack opening strain during the cracking progress.  

The cracking progress weakens the stiffness of cracked concrete as the crack front 

approaches the surface of the RC structure.  The time to cracking of a concrete cover is 

determined as the time from the corrosion initiation needed by the crack front to reach 

the surface of the concrete cover.  The proposed stiffness degradation factor provides an 

effective means to model the stiffness degradation and to estimate the time to cracking 

of cracked concrete based on the change of energy in a fracturing RC structure. 

Two numerical examples illustrate the application of the proposed models.  The 

effects of using one- and two-crack configurations are also investigated.  The predicted 

times to cracking of concrete cover are in good agreement with the measured values 

from experimental results. 
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CHAPTER V 

SEISMIC FRAGILITY ESTIMATES FOR CORRODED RC 

BRIDGES WITH TWO-COLUMN BENTS 

 

 

The effects of corrosion in reinforcing steel have two folds: the loss of reinforcing steel 

and the cracking of concrete cover.  While the loss of the reinforcing steel weakens the 

capacity of the RC bridges, the cracking of concrete cover reduces the stiffness of the 

RC bridges.  This Chapter proposed a methodology to incorporate these corrosion effects 

into the fragility estimates of the corroded RC bridges with two-column bents. 

INTRODUCTION 

Due to the onset of corrosion, the capacity reduction in RC columns has become a major 

concern in estimating the seismic fragility of corroded RC bridges.  Although significant 

efforts have been made to model the corrosion effects on the design, assessment, and 

maintenance of RC bridges (e.g., Steward and Rosowsky 1998; Liu and Weyers 1998; 

Enright and Frangopol 1998a,b; Vu and Stewart 2000; Melchers 2003; Stewart 2004), 

limited work has been done for the estimation of seismic fragility of corroded RC 

bridges.  In the recent studies, Choe et al. (2008a, b) presented a merged formulation to 

estimate the seismic fragility of corroded RC bridges with single-column bents.  To 

quantify the corrosion effects on the seismic fragility, the probabilistic models for the 

chloride-induced corrosion and the time-dependent corrosion rate are combined with the 
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probabilistic capacity and demand models developed in Gardoni et al. (2002), Gardoni et 

al. (2003), and Choe et al. (2008a). 

This chapter extends the study on seismic fragility for the corroded RC bridges 

with two-column bents (Zhong et al. 2008e).  Structural capacities are defined based on 

the probabilistic models for the deformation and shear capacities of RC bridges with 

two-column bents.  Probabilistic demand models are also used to estimate the 

corresponding demands on the RC columns for given seismic intensities.  The 

probabilistic capacity and demand models are then combined with the probabilistic 

models for chloride-induced corrosion and the time-dependent corrosion rate to account 

for the variation of capacity and demand over time.  In particular, the loss of reinforcing 

steel is estimated for individual reinforcing bars.  The probability distributions of the 

loss of reinforcing steel are incorporated into the probabilistic capacity and demand 

models.  The stiffness degradation of cracked cover is also considered in terms of the 

secant stiffness of the cover.  Seismic fragility functions are then formulated on the 

column, bent, and bridge levels.  The fragility formulations incorporate the uncertainties 

in the parameters of capacity and demand models, and the inexactness (or model error) 

in modeling the material deterioration, structural capacity, and seismic demands.  As an 

application, seismic fragility is estimated on the column, bent, and bridge levels for a 

corroded RC bridge with 11 two-column bents in a 100-year period. 

This chapter includes four sections.  In the next, we include a brief description on 

the corrosion process in RC structures and introduce the procedures to incorporate the 

corrosion effects into the probabilistic capacity and demand models for RC bridges with 
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two-column bents.  This is followed by the formulations for the seismic fragility 

functions on the column, bent, and bridge levels for corroded RC bridges.  Finally, we 

provide a numerical illustration for the proposed methodology by estimating the seismic 

fragilities for the corroded modified I-880. 

PROBABILISTIC CAPACITY AND DEMAND MODELS FOR CORRODED RC 

BRIDGES WITH TWO-COLUMN BENTS 

In this section, we first briefly describe the corrosion process in the reinforcing steel and 

the effects on the concrete cover.  Then, we present the probabilistic models to include 

corrosion effects from the loss of reinforcing steel and to consider the stiffness 

degradation in the concrete cover subject to corrosion-induced cracking.  Finally, we 

propose a method to incorporate these corrosion effects into the probabilistic capacity 

and demand models for RC bridges with two-column bents. 

Corrosion effects on the reinforcement and on the cover concrete of RC structures 

The concrete cover provides the protection for reinforcing steel against the corrosive 

agents, such as chlorides, moisture, seawater, deicing salts, oxygen, carbon dioxide, 

sulfates, and acids.  With the highly alkaline pore solution existing in the cover concrete, 

a layer of passive film is formed on the surface of the reinforcing steel as the initial 

corrosion product (Liu 1996).  However, due to the capillary of concrete and the 

diffusion process, the corrosive agents can breach onto the surface of reinforcing steel 

through the concrete cover in the aggressive environments.  With sufficient amount of 

corrosive agent, the passive film can be broken and the corrosion process will be 

initiated. 
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Because of the density difference between the depleted steel and the rust product, 

the concrete cover is subject to cumulative corrosion pressure exerted on the inner 

surface of the cover.  The corrosion pressure will crack the concrete cover shortly after 

the corrosion initiation.  The cracking process causes the stiffness degradation in the 

concrete cover. 

Probabilistic models for corrosion on RC columns 

During the corrosion process, two main stages can be mathematically described: the time 

to corrosion initiation and the time to cracking of concrete cover.  The first stage defines 

the moment for the corrosion onset in the reinforcing steel.  The second stage defines the 

time elapsed from the corrosion initiation to the complete cracking of concrete cover. 

The time to corrosion initiation, ,
j

corr iT , for rebar j  in Column i  subject to 

chloride-induced corrosion is a random variable and can be modeled using the 

probabilistic model proposed in DuraCrete (2000) as  

( )
( )

1/(1 )2

1
,

0 0

1
4

n
j

ij cr
corr i I n

se t c

d CT X erf
Ck k k D t

−

−
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= −⎨ ⎬⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
 (42)

where IX  is defined as the model uncertainty coefficient to account for the idealization 

by applying the Fick’s second law in the diffusion process, j
id  is the cover thickness for 

rebar j  in Column i , ek  is an environment factor, tk  includes the influence of the test 

methods to determine the empirical diffusion coefficient 0D , ck  is a parameter that 

accounts for the influence of curing, 0t  is the reference period for 0D , n  is the age 
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factor, ( )erf ⋅  is the error function, crC  is the critical chloride concentration on the 

reinforcing steel, and sC  is the chloride concentration on the concrete surface.  In 

general, the probability density function (PDF) for ,
j

corr iT , 
,

,

( )
T j corr i

corr i

jf t , can be estimated 

by using the corresponding probabilistic models (DuraCrete 2000) for all the parameters 

on the right side of Eq. (42).  The function 
,

,

( )
T j corr i

corr i

jf t  is particularly useful when 

individual reinforcing bars have different thickness for the concrete cover since the mean 

and standard deviation of ,
j

corr iT  for rebar j  are different from the others.  Further, we 

define a random vector 1 2
, , , ,( , ,..., )in

corr i corr i corr i corr iT T T=T  consisting of ,
j

corr iT  ( 1, 2,..., ij n= ) 

and the corresponding joint PDF 
, ,( )

corr i corr ifT t  for ,corr iT .  Here, in  is the total number of 

reinforcing bars in Column i . 

After the corrosion initiates in rebar j  at time ,
j

corr iT  predicted by Eq. (42), the 

built-up corrosion pressure on the inner surface of the cover will crack the concrete 

cover.  The corrosion-induced cracks grow radially toward the outer surface of the cover.  

As the cracks propagate, the stiffness of the cracked cover concrete will decrease 

correspondingly.  This stiffness degradation can be estimated in terms of the strain 

corresponding to the maximum opening of the concrete cracks based on energy 

principles applied to a fractured RC structure (Zhong et al. 2008c).  The time to cracking 

of concrete cover can be estimated by computing the time needed for the crack front to 

reach the cover surface (Zhong et al. 2008c).  In general, the degrees of stiffness 

degradation in concrete cover for individual reinforcing bars are different because of the 
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differences among the corroding process in the reinforcing steel.  The secant stiffness of 

cracked cover for rebar j  in Column i  at time t , , ( )j
iE tθ , can be estimated as 

, ( ) ( )j j
i i rE t t Eθ η= ⋅ .  Here, ( )j

i tη  is a stiffness degradation factor, defined as the ratio 

between the secant stiffness and initial stiffness in Zhong et al. (2008c) as 

( )
( )

( ) ( )
( ),

, ,

0 1
f
j ij j

i if f
r j i j i

t
t t

E t t

φ ε
η η

ε φ ε

⎡ ⎤⎣ ⎦= < ≤
⎡ ⎤+ ⎣ ⎦

 (43)

and rE  is the initial stiffness of pristine concrete, , ( )f
j i tε  is the maximum crack opening 

strain in the cover concrete for rebar j  in Column i  before the unloading (Bažant and 

Planas 1998) at time t , ( )φ ⋅  is the softening stress-strain curve of concrete subject to 

tensile stress.  Here, ( )j
i tη  is also random in nature and the corresponding probabilistic 

distribution of ( )j
i tη  can be estimated by considering the probabilistic models for ( )φ ⋅ , 

, ( )f
j i tε , and rE .  Similarly, we define a random vector 1 2( ) { ( ), ( ),..., ( )}in

i i i it t t tη η η=η , to 

estimate the stiffness degradation of the concrete covers for all in  bars in Column i , and 

the corresponding joint PDF, ( )[ ( )]
i t if tηη , for ( )i tη  at time t . 

Incorporating the probabilistic corrosion models into the capacity and demand 

models 

By partitioning the vector of random variables in x  for a bridge into a vector of material 

and geometric variables, r , and a vector of seismic intensities, s , we can define the 

probabilistic capacity models, ( , , , )ki Ck CkiC t εr Θ , for deformation ( )k = δ  and shear 

( )k v= , for corroded Column i at time t as (Choe et al. 2008a) 



93 
 

 
 

( ) ( ) ( )
,, , ,0

, , , , , ,
corr iki Ck Cki ki Ck Cki corr i corr i corr iC t C t f dε ε

∞
= ⋅∫r Θ r Θ Tt t t  (44)

here { , }Ck C Cvδ=Θ Θ Θ  denotes the parameters in the probabilistic capacity models in 

Gardoni et al. (2002) and Choe et al. (2008a).  Appendix A includes further details for 

CkΘ  for completeness.  Here, Ckiε  is the standard normal random variable.  Considering 

the joint PDF, 
, , ( ) ,[ , ( )]

corr i i t corr i if tT η t η , for random vectors ,corr iT  and ( )i tη , the capacity k  

for Column i  in Eq. (44) can be further written as 

( ) ( )

( ) ( )
,

1

,0 0

, ,,

, , , , , , ,

,
corr i i

ki Ck Cki ki Ck Cki corr i i

corr i i i corr it

C t C t t

f t d d

ε ε
∞

⎡ ⎤= ⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦

∫ ∫r Θ r Θ

T η

t η

t η η t
 (45)

In general, ,corr iT  and ( )i tη  are not independent since the secant stiffness of the cracked 

concrete at time t  is closely related to the times to corrosion initiation for all reinforcing 

bars.  And ( ),, , , ,ki Ck Cki corr i iC t tε⎡ ⎤⎣ ⎦r Θ t η  is defined as 

( ) ( )
( )

, ,

,

ˆ, , , , , , ,

, , ,
ki Ck Cki corr i i ki Ck corr i i

Ck Ck corr i i Ck Cki

C t t c t t

t t

ε

γ σ ε

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦
⎡ ⎤+ +⎣ ⎦

r Θ r Θ

r Θ

t η t η

t η
 (46)

where ,ˆ [ , , , ( )]ki Ck corr i ic t tr Θ t η  is the deterministic prediction for capacity k  considering 

the corrosion effects from the loss of reinforcing steel and the cracked concrete cover, 

,[ , , , ( )]Ck Ck corr i it tγ r Θ t η  is the correction term for ,ˆ [ , , , ( )]ki Ck corr i ic t tr Θ t η , Ck Ckiσ ε is the 

model error for the capacity model, and Ckσ  is the mean of the model error for the 

probabilistic model.  Appendix A includes further details for ,[ , , , ( )]Ck Ck corr i it tγ r Θ t η . 
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To compute ,ˆ [ , , , ( )]i C corr i ic t tδ δr Θ t η , three different components are considered 

(Gardoni et al. 2002): (1) the flexural component due to the linear curvature of the 

column; (2) the shear component due to the shear deformation; and (3) the slipping 

component from the slippage of reinforcing steel.  These three components are closely 

related to the section properties of the RC column.  Thus, the loss of reinforcing steel 

affects the deterministic predictions of deformation capacity.  For 

,ˆ [ , , , ( )]vi Cv corr i ic t tr Θ t η , however, only the loss of reinforcing steel affects the capacity 

prediction for shear. 

Similarly, given the seismic intensities, s , we can define the probabilistic 

demand models, ( , , , )ki Dk DkiD t εr Θ  ( , )k v= δ , for Column i  at time t as  

( ) ( )

( ) ( )
,

1

,0 0

, ,,

, , , , , , , ,

,
corr i i

ki Dk Dki ki Dk Dki corr i i

corr i i i corr it

D t D t t

f t d d

ε ε
∞

⎡ ⎤= ⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦

∫ ∫r Θ r Θ s

T η

t η

t η η t
 (47)

and 

( ) ( )
( )

, ,

,

ˆ, , , , , , , , ,

, , , ,
ki Dk Dki corr i i ki Dk corr i i

Dk Dk corr i i Dk Dki

D t t d t t

t t

ε

γ σ ε

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦
⎡ ⎤+ +⎣ ⎦

r Θ s r Θ s

r Θ s

t η t η

t η
 (48)

The definitions of the symbols are analogous to the ones in Eq. (46).  In addition, 

( ,PGV/PGA)aS=s , where aS  is the spectral acceleration, PGV/PGA is the ratio 

between the peak ground velocity (PGV) and the peak ground acceleration (PGA).  At 

the right side of the equation, ,
ˆ [ , , , ( ), ]ki Dk corr i id t tr Θ st η  is the deterministic prediction for 

demand k , and ,[ , , , ( ), ]Dk Dk corr i it tγ r Θ st η  is the corresponding correction term.  These 
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two terms are closely related to the pushover analysis of the RC columns and the entire 

bridge.  Appendix A includes further details for the probabilistic demand models. 

FRAGILITY ESTIMATES FOR CORRODED RC BRIDGES WITH TWO-

COLUMN BENTS 

The fragility of a bridge consisting of s structural components at time t for given seismic 

intensity s  is written as 

( ) ( ){ }
1,.., ,

, , , , , 0ki k ki
i s k v

F t P g t
δ= =

⎡ ⎤
= ≤⎢ ⎥

⎣ ⎦
s Θ r Θ ε s∪ ∪  (49)

where ( , )ki Cki Dkiε ε=ε  and ( , , , | )ki kig t r Θ ε s  is the limit state function, for corroded 

Column i  at time t , expressed as 

( ) ( ) ( ), , , , , , , , , 0, 1,.., ; ,ki k ki ki Ck Cki ki Dk Dkig t C t D t i s k v= ε − ε ≤ = = δr Θ ε s r Θ r Θ s  (50)

A predictive estimate of Eq. (8) at time t  is obtained as the mean of ( , , )F t s Θ  by 

integrating over the distribution of Θ  as 

( ) ( ) ( ), , ,F t F t f d= ∫ ΘΘ
s s Θ θ θ  (51)

A point estimate of Eq. (8) at time t  is obtained by ignoring the epistemic uncertainties 

in the model parameters, Θ , and using a point estimate, Θ̂  (e.g., the mean of Θ ), 

instead of Θ .  Then the point estimate of seismic fragility for the bridge at time t  can be 

written as 

( ) ( )ˆˆ , , ,F t F t=s s Θ  (52)
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Similar to the formulations in Chapter I, in the special cases where vector r  are known 

for a given bridge, ˆ ( , )F t s  can be also computed in terms of multinormal probability 

distribution function of ( , )ki Cki Dkiε ε=ε  depending on the number of limit state functions 

under consideration. 

When only one limit state is considered, we have the following approximated 

closed-form solution for the fragility of Column i  in mode k  of failure 

( ) ( )
( ) ( )

( )

ˆˆ ˆ, , , , 0

, , , , , , 0

1

ki k ki

ki Ck Cki ki Dk Dki

ki

F t P g t

P C t D t

u

⎡ ⎤= ≤⎢ ⎥⎣ ⎦
⎡ ⎤= ε − ε ≤⎣ ⎦

= − Φ

s r Θ ε s

r Θ r Θ s  (53)

When two limit state functions are considered for the fragility of a single RC 

column in either deformation or shear mode of failure, we have the fragility function, 

expressed as 

( ) ( )

( ) ( ){ }
( )

, ,

,

2 ,

, , , 0 1 , , , 0

ˆ ˆ1 , , , , , , 0

ˆ1 , ;
i i

ki k ki ki k ki
k v k v

ki Dk Dki ki Ck Cki
k v

i vi v

P g t P g t

P D t C t

u u

=δ =δ

=δ

δ δ

⎡ ⎤ ⎡ ⎤
≤ = − >⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤

= − ε − ε <⎢ ⎥
⎣ ⎦

= − Φ − − ρ

r Θ ε s r Θ ε s

r Θ s r Θ

∪ ∩

∩  
(54)

For the second and third cases, similar formulations are applicable. 

Further, when more than two limit states are considered in fragility estimation, 

the point estimate for Eq. (8) can be formulated as 
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s r Θ ε s

r Θ ε s

u ρ

∪ ∪

∩ ∩  
(55)

NUMERICAL EXAMPLES 

As the application, the modified I-880 is used to illustrate the proposed methodology.  

The water-to-cement ratio for the concrete in the RC columns is assumed to be 0.5.  

Tidal situation with constantly humid or many humid-dry cycles is assumed for the 

residing environment of the modified I-880.  The curing time for the column concrete is 

assumed at 1 day.  The distribution parameters for the random variables defined in Eq. 

(42) are listed in Table 13. 

In the next, we will introduce the simplified model of ( )i tη  for this application 

first, followed by the model for ,corr iT .  Finally, the numerical results and the discussions 

are presented. 

Consideration of ( )i tη  for the concrete cover in corroded RC columns 

For simplicity, in this application, point estimates of ( )i tη  for Column i  ( 1, 2,..., 22i = ) 

are used in the fragility estimation.  We assume the confined core is not susceptible to 

corrosion effect.  To determine the stiffness degradation factor ( )j
i tη , one of the 

challenges is to identify the cover area influenced by corrosion-induced cracking.  To 

simplify the analysis, we approximate the secant stiffness of the cracked cover outside 

bar j  as that of the cracked concrete  cylinder  concentric  to  bar j′   with  the  smallest 
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Table 13.  Distribution and Statistics of parameters in considering the corrosion effect 
Variables Distribution Mean  Standard deviation  A  B  

IX  Lognormal 1.0 0.05   

cd  Lognormal 0.022, 0.051  
and 0.13 (m) 

0.0004, 0.0010,  
and 0.003 (m)   

ek  Gamma 0.265 0.045   

tk  Normal 0.832 0.024   

ck  Beta 1.5 0.3 1.0 4.0 

0D  Normal 473(mm2/year) 43.2 (10-12m2/s)   
n  Beta 0.362 0.245 0 0.98 

crC  Normal 0.90 (mass-% by 
binder) 0.15(mass-% by binder)   

sC  Normal 
7.758 (for csA ) 

0 (for csε )  
(weight-% by binder) 

1.36 (for csA ) 

0.405 (for csε )  
(weight-% by binder) 

  

 

 

value of j
id ′ .  Fig. 23 shows the close views for Sections 1-1 (left) and 2-2 (middle), as 

well as the quarter column section (right) for these two sections.  We assume the cracks 

will propagate radially toward the cover surface from reinforcing bars considering 

confinement effect of the column section.  Three types of concrete cover are subject to 

corrosion-induced cracking, e.g., Cover 1 (hatched with inclined lines), Cover 2 (hatched 

with inclined lines and triangles), Cover 3 (hatched densely with inclined lines).  The 

remaining concrete not hatched is not susceptible to corrosion effect.  Fig. 23 also shows 

three types of reinforcing steel: the stirrups, the corner bars located at the four corners of 

the column section, and the longitudinal bars located within the stirrups, as shown in 

Section 2-2 in the middle in this figure.  In both section types, the minimum values for 

clear cover thickness are: 25.4 mm (1 in.) for the stirrups, 58.2 mm (2.3 in.) for the 

corner bars, 50.8 cm (2 in.) for the longitudinal bars located under Cover 2, and 
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127.0 mm (5.0 in.) for the longitudinal bars located under Cover 3, as shown in the 

quarter column section at the right in this figure.  Thus, Cover 1 will have the same se 

cant stiffness since all corner bars have the same clear cover thickness of 58.2 mm.  The 

secant stiffness of Cover 2 is determined by cracking induced by the corrosion in the bar 

with clear cover of 50.8 mm at the bottom. The secant stiffness of Cover 3 is determined 

by cracking induced by the corrosion in the bar with clear cover thickness of 127 mm on 

the top.  After the cover completely cracks, the secant stiffness of the cracked concrete is 

assumed to be constant. 

Consideration of ,corr iT  for the reinforcing steel in corroded RC columns 

For the reinforcing bars in different sections of the same column, we assume that general 

corrosion is initiated at the same time in every section of the column.  To reduce the 

number of random variables, we further assume that, for any rebar j  with the same j
id  

in Column i , the probability distributions for ,1
j

corrT , ,2
j

corrT , …, ,22
j

corrT  are identical.  To 

estimate the PDF of ,
j

corr iT , Monte Carlo simulations are used to generate random 

variables to simulate ,
j

corr iT  using Eq. (42) for rebar j  in Column i . 

The left chart in Fig. 24 shows an example histogram for ,1
j

corrT  less than 100 

years of interest for longitudinal bar j .  The fitting of CDF are shown in the right chart, 

where the empirical probabilities (denoted along the abscissa) are compared with the 

fitted CDF’s (denoted along the ordinate).  The solid line denotes the 1:1 line for a 

perfect fitting of CDF.  Four probability distribution models are selected as candidates: 



100 
 

 
 

Hatched areas considered as three different
types of concrete covers susptible to cracking

Section 1-1 Section 2-2

Cover 1: for corner bars
Cover 2: for bars close to the
height of the cross section

Cover 3: for bars close to the
width of the cross section

Susceptible to
corrosion

Intact cover: not susceptible  to
corrosion effect

Longitudinal bars

Corner bars

Stirrup

58.2 mm

50.8 mm

12
7.

0 
 m

m

58.2 mm

76.2 mm

Stirrup
25.4 mm

Quarter of the typical column section

Fig. 23.  Reinforcing bars and the corresponding concrete cover for the typical column 
cross-sections used in the modified I-880 

 

 

Weibull (dash line), Gamma (dash-dotted line), Lognormal (LN) with 2 parameters 

(mean 
,1

j
corrT

μ  and standard deviation 
,1

j
corrT

σ  for ,1
j

corrT ) (LN2) (dotted line), and LN with 3 

parameters (
,1

j
corrT

μ ,
,1

j
corrT

σ , and threshold value, ,0
,1

j
corrT , for ,1

j
corrT ) (LN3) (bold-solid line), 

i.e., ,0
,1 ,1( )j j

corr corrT T−  is a Lognormal random variable with mean 
,1

j
corrT

μ  and standard 



101 
 

 
 

deviation 
,1

j
corrT

σ .  From the right chart, we can see LN3 has the best potential to represent 

the probability distribution of ,1
j

corrT . 
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Fig. 24.  Histogram (left chart) and fitted CDF (right chart) of ,1
j

corrT  
 

 

Table 14 lists the values of ,1
ˆ j
corrT , 

,1
j

corrT
μ , 

,1
j

corrT
σ , and ,0

,1
j

corrT  for Lognormal random 

variable ,0
,1 ,1( )j j

corr corrT T−  on the left columns for the corner bars, longitudinal bars, and 

stirrup, shown in Fig. 25.  Note two bars are bundled together in the actual column 

section.  Here, ,1
ˆ j
corrT  is the point estimate computed using the mean values of all related 

random variables.  Ten thousand random samples are generated to estimate parameters 

,1
j

corrT
μ , 

,1
j

corrT
σ , and ,0

,1
j

corrT , respectively, in Monte Carlo simulations.  We can see that the 

mean of ,1
j

corrT  increases with the increasing minimum value of 1
jd .  The point estimates, 
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however, are different from 
,1

j
corrT

μ .  The values of 
,1

j
corrT

μ , 
,1

j
corrT

σ , and ,0
,1

j
corrT  are not shown 

for the cases where ,1
ˆ 100j
corrT >  since we only consider a 100-year period. 

 

Table 14.  Statistics for ,1
j

corrT  of reinforcing bars in quarter section of Column 1 

,1
j

corrT  (years) 
Cover types Rebar j  Min. 1

jd (mm)
,1

ˆ j
corrT  

,1
j

corrT
μ

,1
j

corrT
σ ,0

,1
j

corrT  

-- Stirrup 25.4 0.8 2.3 8.1 0.2 

1 Corner bar 58.2 16.7 17.4 42.9 1.3 

1 50.8 6.6 11.9 42.4 0.9 
2 

2 106.9 68.3 25.1 39.6 2.4 
3 6 127.0 117.0 -- -- -- 

3 269.8 1242.6 -- -- -- 
4 346.0 2709.8 -- -- -- Intact cover 
5 183.1 368.7 -- -- -- 

 

 

 

 

 

 

 

 

 

 

Fig. 25.  Quarter section of Section 1-1 for Column 1 
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Fragility estimates for the modified I-880 

Fragility estimates for column and bent 

Fig. 26 shows the median predictions for the normalized capacities for Columns 1 and 

21 (in the top charts) and the normalized demands for Column 1 (in the bottom charts) 

within 100 years.  In the top charts, the solid lines indicate the column capacities with 

pristine (undamaged) cover, while the dash lines denote the column capacities with 

cracked concrete cover.  The first change in the deformation capacities for both columns 

is due to the cracking of Cover 2, while the second change is initiated by the cracking of 

Cover 1.  The bars under Cover 3 are not subject to corrosion within 100 years under 

consideration since ,1
ˆ 100j
corrT >  years for bars 3 and 6 as listed in Table 14.  The top 

charts show the decreasing deformation and shear capacities with the corrosion process.  

Particularly, in the top-left chart, one can see that the median predictions for deformation 

capacity change only marginally for pristine and cracked covers.  For the median 

predictions of deformation capacity, up to 0.6% of deformation capacity for Column 1 

and 0.5% for Column 21, respectively, are overestimated when pristine concrete cover is 

used.  In the top-right chart, the shear capacity is not affected by the type of cover 

considered.  The bottom charts show the demand values predicted with 

PGV/PGA=0.19 sec. and Sa =2.04 g and 3.99 g (with bridge fundamental period of 

1.21 sec.), respectively, for Column 1.  In particular, the close views in the bottom-left 

chart shows the increased demand indicating the cracking in Cover 2 at year 7.0.  The 

second increase shows the cracking in Cover 1 at year 18.2.  It is noted that there is a 

marginal increase (up to 0.01% for both  Sa =2.04 g  and Sa =3.99 g)  in the  deformation 
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Fig. 26.  Median predictions for capacities (top charts) and demands (with 
PGV/PGA=0.19 sec. and Sa =2.04 g and 3.99 g (bottom charts) for column with pristine 
and cracked concrete covers 
 

 

demands when Covers 1 and 2 completely cracked in Column 1.  In the bottom-right 

chart, the decreases in shear demand are more appreciable (up to 0.13% for Sa =2.04 g 

and 0.14% for Sa =3.99 g) when Covers 1 and 2 cracked.  From the left charts, we can 

see the deformation capacity is overestimated while the deformation demand is 
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underestimated for the pristine cover used.  From the right charts, we can see that only 

the shear demand is overestimated when the pristine cover is used.  Similar observations 

can be made for other columns. 

Fig. 27 shows the contour plots for the fragility surface estimates in column and 

bent levels at year 25 using pristine and cracked covers.  The top-left chart shows the 

contour plots for the fragility surface estimates for deformation mode of failure in 

Column 1.  The solid lines show the fragility estimates for Column 1 with pristine cover, 

while the dash lines show the fragility estimates with cracked cover.  The seismic 

fragility is slightly underestimated for deformation when the pristine cover is used for 

Column 1.  The top-right chart shows the corresponding contour plots for the shear 

fragility surface.  Consistent with what we have observed in Fig. 26, the deformation 

fragility is now underestimated, while the shear fragility is overestimated using the 

pristine cover.  From the top charts, it is seen that the deformation mode dominates the 

failure of this column.  The bottom-left chart shows the fragility for the deformation or 

shear mode of failure of Column 1.  The column fragility is slightly overestimated when 

the pristine cover is used.  The bottom-right chart shows the fragility estimates for the 

deformation mode of Bent 1.  Comparing these two bottom charts, it is interesting to 

observe that the fragility of this column in either deformation or shear mode is more 

predominant in high failure probabilities than that of the bent in the failure mode of 

deformation.  This  is  because  of  the  similarity between the deformation modes of two  
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Fig. 27.  Seismic fragility estimates for the deformation (top-left chart), shear (top -right 
chart), and deformation and shear (bottom-left chart) for Column 1 in Bent 1 and 
deformation fragility estimates for Bent 1 (bottom-right chart) considering pristine and 
cracked cover concrete at year 25 
 

 

columns in the same bent (Zhong et al. 2008a).  The shear fragility for Bent 1 in is 

similar to the column shear fragility and thus not presented here.  Similar observations 
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can be also made for other columns.  In the next, we consider the cracked cover for all 

corroded RC columns in the application. 

Fig. 28 shows the contour plots for predictive and point estimates of fragility 

surface for the corroded Column 1 at 25 years.  In particular, the mean estimates of 

,1corrT  are used in the point estimates.  The left chart shows the contour plots for the 

fragility surface estimates for deformation mode of failure.  The bold dash-dotted lines 

denote the point estimates of fragility.  The dotted lines denote the predictive estimates 

of fragility.  The right chart shows the corresponding fragility estimates for the shear 

mode of failure for the same column.  In both charts, the surfaces from predictive 

estimates are flatter than the ones from point estimates because of more uncertainty 

incorporated in the predictive estimates.  However, these differences are only marginal.  

Similar observations are valid for other columns.  In the next, we use point estimates for 

the seismic fragility of the bridge. 

Fragility estimates for modified I-880 

Fig. 29 shows the fragility curves for the failure mode of deformation (dotted 

lines), shear (dash lines), and deformation or shear (solid lines) when 

PGV/PGA=0.19 sec. at years 0 and 100.  The thin lines are used to denote the fragility at 

year 0, while the bold lines are used for the fragility at year 100.  As seen from this 

figure, the fragility estimates are higher in year 100 than the ones in year 0 in all modes 

of failure.  In particular, as we can see from the close view, the deformation and shear 

fragility curves intersect with each other at failure probability of 0.54 for year 0 and 0.59 

for year 100, respectively.  The shear mode of failure dominates the bridge failure below  
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Fig. 28.  Predictive and point fragility estimates for deformation (left chart) and shear 
(right chart) for Column 1 with cracked concrete cover at year 25 
 
 
 

 

Fig. 29.  Seismic fragility estimates for the entire corroded RC bridge at 0 and 100 years 
with PGV/PGA=0.19 sec. for failure mode of in deformation, shear, and deformation or 
shear 
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the intersecting points, while the fragilities of deformation mode of failure become 

comparable to the shear mode of failure above the intersecting points. 

The contours for the fragility surface estimates for the entire RC bridge with 

corroded RC columns at years 0 and 100 are shown in Fig. 30.  Monte Carlo simulations 

are used to evaluate Eq. (15).  The stopping criterion is set at 0.2% of coefficient of 

variation of the failure probability.  The top charts show the contours of the fragility 

surfaces for the deformation (thin-dotted lines) and shear (bold-dash lines) mode of 

failure for the bridge at years 0 and 100, respectively.  From both charts, one can see that 

the shear mode of failure dominates the failure of the corroded bridge in low failure 

probability.  However, in high failure probability, the deformation mode of failure and 

the shear mode of failure are comparable.  In the bottom charts, we can see that the 

fragility estimates of bridge in failure mode of deformation or shear only change 

marginally comparing to the shear fragility estimates of the bridge in low failure 

probability at both 0 and 100 years.  Fig. 31 shows the seismic fragility curves estimated 

for deformation (top-left), shear (top-right), deformation or shear (bottom-left), and three 

modes of failure (bottom-right) at 0, 25, 50, 75, and 100 years with PGV/PGA=0.19 sec.  

The top-left chart shows the deformation fragility using dotted lines at year 0, dash lines 

at year 25, dash-dotted lines at year 50, thin-solid lines at year 75, and bold-solid lines at 

year 100.  The deformation fragility increases with time, shown in the close-view in the 

top-left chart.  This is mainly because the loss of reinforcing steel continuously reduces 

the capacity and the minor increase in the deformation demands.  The top-right chart 

shows the corresponding plots for shear  
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Fig. 30.  Seismic fragility estimates for the entire corroded RC bridge: deformation and 
shear respectively (top chart); deformation or shear (bottom chart) with cracked cover 
concrete at years 0 and 100 
 

 

fragility.  Shear mode becomes less vulnerable at years 25 and 50 than at year 0.  This is 

because the shear demands decrease faster caused by the cracking in covers than the 

decrease of the shear capacity caused by the loss of reinforcing steel in years 25 and 50.  

Then shear fragility increases from years 50 to 100.  The same line types are also applied 

to the fragility estimates for deformation or shear mode of failure shown in the bottom-



111 
 

 
 

left chart, where the legends are not shown.  Two close views for low (<0.18, close view 

at the bottom-right) and high (>0.49, close view on the top-left) failure probabilities are 

also shown for this chart.  The fragility estimates at year 25 are still the smallest.  This 

means the cracking in concrete cover has reduced  

 

 

Fig. 31.  Seismic fragility estimates for the entire corroded RC bridge over 100 years 
with PGV/PGA=0.19 sec. for the failure modes in deformation, shear, and deformation 
or shear 
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the seismic demands at the early age of this corroded bridge.  As the loss of reinforcing 

steel increases, the fragility of the bridge increases with time.  In the bottom-right chart, 

the bold dotted-, dashed-, and solid- lines are used to represent the fragility estimates for 

deformation, shear and either of them, respectively.  The shear mode of failure 

dominates the failure of the bridge in low failure probabilities (below about 0.43), while 

the deformation mode of failure are comparable to the shear mode of failure of the 

bridge in high (above about 0.53) failure probabilities. 

Fig. 32 shows the change of fragility estimates for the corroding RC bridge for 

every 5-year interval within 100 years with seismic intensities of PGV/PGA=0.19 sec. 

and Sa =2.04 g in the left chart, and Sa =3.99 g and in the right chart.  In the left chart, the 

dotted line denotes the deformation fragility, which increases monotonically as a 

function of time because of capacity reduction and marginal increase in demands.  The 

dash line denotes the shear fragility with a different pattern.  The shear fragility increases 

at the beginning since the corrosion has been initiated in the stirrup at the very beginning 

(0.8  years  as  listed  in  Table 14).   Then  this  fragility  curve  is  reshaped by two time 

periods at which the Covers 1 and 2 completely crack at years 7.0 and 18.2, respectively.  

At each of these time periods, there is a decrease of the shear fragility caused by the 

stiffness reduction in corroded RC columns.  After these two time periods, the shear 

fragility increases with time because of the loss of shear capacity.  The fragility estimate 

for deformation or shear mode of failure is similar to the shear fragility estimates since 

the shear mode dominates the failure of bridge in low failure probabilities.  The right 

chart  shows  similar  results  with  higher  seismic  intensities.  Similar observations still 
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Fig. 32.  Seismic fragility estimates for the corroded RC bridge over 100 years with 
PGV/PGA =0.19 sec. (Sa =2.04 g in the top chart and Sa =3.99 g in the bottom chart) for 
the failure modes in deformation, shear, and deformation or shear 
 

 

apply to the fragility estimates for deformation and shear modes of failure.  In this chart, 

however, the decrease of fragility estimates for failure mode of deformation or shear is 

less sensitive to the cracking of concrete covers since the deformation mode now has 

higher influence on the failure of the bridge. 

SUMMARY 
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to estimate the seismic demands on the RC columns in terms of seismic intensities 
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peak ground acceleration (PGA), PGV/PGA.  The unbiased capacity and demand models 

are then combined with the probabilistic models for chloride-induced corrosion and a 

time-dependent corrosion rate to account for the variation of capacity and demand over 

time.  Comparing to the existing studies, the loss of reinforcing steel is particularly 

estimated for individual reinforcing bars.  The degraded stiffness of concrete cover is 

properly considered in the capacity and demand models.  Fragility functions are 

formulated in the column, bent, and bridge levels.  The fragility formulation incorporates 

the uncertainties in the parameters of capacity and demand models, and the inexactness 

(or model error) in modeling the material deterioration, structural capacity, and seismic 

demands. 

This proposed method is illustrated by the numerical computations on an 

example corroded RC bridge with 11 two-column bents.  The time to corrosion initiation 

for reinforcing bars can be modeled as the lognormal random variables within 100 years 

of interest.  On the column level, the uncertainty of time to corrosion initiation for 

reinforcing steel only has marginal effects on the seismic fragility of corroded RC 

columns.  The differences between predictive and point fragility estimates are also 

marginal.  The effect of cover cracking has minor effect on the median predictions of 

column capacity and demand.  On the bent level, the deformation or shear seismic 

fragility is similar to the deformation or shear fragility of the column in the same bent.  

On the bridge level, the shear mode dominates the failure of the bridge in low failure 

probabilities, while the deformation mode of failure becomes comparable to shear mode 

of failure in high failure probabilities. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH 

 

 

CONCLUSIONS 

This research proposed a methodology to estimate the seismic fragility of corroded RC 

bridges with two-column bents.  Probabilistic seismic models are first developed for RC 

bridges with two-column bents.  All available information from science/engineering 

laws, numerical analysis, laboratory experiments, and field measurements has been used 

to construct the proper forms of the probabilistic demand models and the fragility 

functions.  The probabilistic capacity and demand models are then combined with the 

probabilistic models for chloride-induced corrosion and the time-dependent corrosion 

rate.  Seismic fragility functions are expressed in terms of variation models over time for 

capacity and demand that engineers can evaluate using available tools.  The fragility 

estimation incorporates the uncertainties in the parameters of capacity and demand 

models, and the inexactness (or model error) in modeling the material deterioration, 

structural capacity, and seismic demands.  Although the seismic demand models are 

developed only for RC bridges with two-column bents, however, for other multicolumn 

bent configurations, such as three-column bents, the develop demand models can be 

used for the preliminary estimation.  This is because of the similarity of the capacity and 

demand in the RC columns in multicolumn bent configurations. 
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The following conclusions are made with regard to the probabilistic demand 

models for RC bridges with two-column bents: 

• The spectral acceleration at the natural period of the structure and ratio between 

the peak ground velocity and the peak ground acceleration are selected as the 

most relevant ground motion parameters for seismic demands; 

• The fragility estimates of a bent are similar to the fragility estimates of an 

individual column in that bent since the deformation and shear demands in both 

columns of the same bent are highly correlated. 

The following conclusions are made with regard to the fragility estimates for RC 

bridges with two-column bents: 

• For practical purposes, point estimates provide accurate estimates of the fragility 

surfaces.  Neglecting the epistemic uncertainty in the model parameters leads 

only to a marginal difference in the tails of the fragility surfaces. 

• The fragility estimates are more sensitive to changes in aS  than in /PGV PGA . 

The following conclusions are made with regard to the time to cracking of 

concrete cover and stiffness degradation of cracked concrete: 

• The cracking progress weakens the stiffness of cracked concrete as the crack 

front approaches the surface of the RC structure; 

• The proposed stiffness degradation factor provides an effective means to model 

the stiffness degradation and to estimate the time to cracking of cracked concrete 

based on the change of energy in a fracturing RC structure. 
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The following conclusions are made with regard to seismic fragility estimates of 

corroded RC bridges with two-column bents: 

• On the column level, the uncertainty of time to corrosion initiation for 

reinforcing steel only has marginal effects on the seismic fragility of corroded 

RC columns; 

• The cracking of concrete cover has marginal effect on the fragility estimation of 

corroded RC bridges; 

• The corrosion in reinforcing steel continues weakening the capacity of RC 

bridges with two-column bents.  The seismic fragility of corroded RC bridges 

increases with corrosion in reinforcing steel. 

LIMITATIONS OF CURRENT WORK 

The probabilistic demand models of deformation and shear developed in this study are 

only applicable for the seismic fragility estimation for RC bridges with two-columns 

subject to seismic excitation.  The near-field effects of ground motions are not 

considered in the model development.  Thus the above conclusions are only applicable 

for the RC bridges with two-column bents subject to far-field ground shaking. 

To estimate the RC bridges with other multicolumn bent configurations, the 

developed demand models should be applied with caution.  Due to the lack of 

experiment data on the seismic demands for RC bridges with multicolumn bents, the 

preliminary estimation of seismic demands should be verified with the experimental 

data, either from the laboratory or from numerical simulations. 
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FUTURE RESEARCH 

When structures are built in certain region subject to seismic hazards from multiple 

seismic sources, it is important to incorporate all potential hazards into the fragility 

estimation based on appropriate seismic intensities.  Two of the most effective 

candidates for the seismic intensities are the moment magnitudes, M, and the epicenter-

to-site distances, R, of the earthquakes.  In the future, the followings two topics shall 

have broader potentials: 

• Promote more effective seismic descriptors, M and R, to characterize the seismic 

hazard in the seismic region subject to multiple seismic sources; 

• Develop a new methodology to incorporate the effects from near-field ground 

motions for the seismic fragility estimation. 
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APPENDIX A 

 

 

Following Bažant and Planas (1998), the total strain, ( , ),tε ξ  at time t  and location ξ  on 

a surface of the cohesive crack consists of an elastic component, ( , ),el tε ξ  and an actual 

cracking component, ( , ),f tε ξ  i.e.  

( ) ( ) ( ) ( ) ( ), , , ,el f f

r

t t t t
E

σ ξ
ε ξ ε ξ ε ξ ε ξ= + = +  (56) 

Here the cohesive stress ( )σ ξ  at location ξ  is the stress on the unloading curve of the 

cracked concrete corresponding to ( , ),tε ξ  as shown in the left chart in Fig. 17.  

Assuming there is no residual strain after complete unloading, we have  
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then 
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 (58) 

On the other hand, the secant stiffness of the cracked concrete at location ξ  and time t  

is defined using the stress and strain as 

( ) ( )
( )

,
,

E t
tθ

σ ξ
ξ

ε ξ
=  (59) 

and using the stiffness degradation factor as 
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( ) ( ), , rE t t Eθ ξ η ξ= ⋅  (60) 

Therefore, we have 

( ) ( )
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Comparing Eqs. (58) and (61), and recalling max max 0( ) ( , )f ft tε ε ξ α= = , we can write 
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Defining 0( ) ( , )t tη η α= , we have 
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That is 
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This is also equivalent to the damage viable defined in Bažant and Planas (1998). 
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