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ABSTRACT

Support Graph Preconditioning

for Elliptic Finite Element Problems. (December 2008)

Meiqiu Wang, B.S. Peking University;

M.S., Peking University;

M.S., University of Houston

Chair of Advisory Committee: Dr. Vivek Sarin

A relatively new preconditioning technique called support graph preconditioning has

many merits over the traditional incomplete factorization based methods. A major

limitation of this technique is that it is applicable to symmetric diagonally domi-

nant matrices only. This work presents a technique that can be used to transform

the symmetric positive definite matrices arising from elliptic finite element problems

into symmetric diagonally dominant M-matrices. The basic idea is to approximate

the element gradient matrix by taking the gradients along chosen edges, whose unit

vectors form a new coordinate system. For Lagrangian elements, the rows of the

element gradient matrix in this new coordinate system are scaled edge vectors, thus

a diagonally dominant symmetric semidefinite M-matrix can be generated to approx-

imate the element stiffness matrix. Depending on the element type, one or more

such coordinate systems are required to obtain a global nonsingular M-matrix. Since

such approximation takes place at the element level, the degradation in the quality

of the preconditioner is only a small constant factor independent of the size of the

problem. This technique of element coordinate transformations applies to a variety of

first order Lagrangian elements. Combination of this technique and other techniques

enables us to construct an M-matrix preconditioner for a wide range of second order

elliptic problems even with higher order elements.



iv

Another contribution of this work is the proposal of a new variant of Vaidya’s

support graph preconditioning technique called modified domain partitioned support

graph preconditioners. Numerical experiments are conducted for various second order

elliptic finite element problems, along with performance comparison to the incomplete

factorization based preconditioners. Results show that these support graph precon-

ditioners are superior when solving ill-conditioned problems. In addition, the domain

partition feature provides inherent parallelism, and initial experiments show a good

potential of parallelization and scalability of these preconditioners.
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CHAPTER I

INTRODUCTION

Consider solving the linear system,

Ax = b. (1.1)

where matrix A ∈ RN×N , x, b ∈ RN , and N is an integer (only real matrices are

considered in this dissertation). In practice, A is often large and sparse, as those

appear in solving partial differential equations (PDEs) by finite difference or finite

element methods (FEM). In fact, solving (1.1) is the innermost computational kernel

of many large-scale scientific applications and industrial numerical simulations; it

typically consumes a significant portion of the overall computation. How to solve

(1.1) efficiently is one of the most important problems in scientific computing.

The term large varies with respect to current computer hardware technology.

As for now, a large linear system usually has the number of unknowns N above a

hundred thousands (in practice, it is usually up to millions). As computer technology

advances and the demand for a more accurate solution increases, the definition of a

large system is likely to raise the value of N . We say an N × N matrix A is sparse

if A has only O(N) non-zero entries. To take advantage of the sparsity, zero entries

of A are not explicitly stored. A dense matrix requires storage of O(N2), whereas

only O(N) is needed for a sparse matrix of the same order. Another aspect of dealing

with sparse matrix is to avoid operations on zero entries to minimize the number

of operations throughout the computations. Sparse linear systems are often solved

using different techniques from those employed to solve dense systems. A large sparse

The journal model is SIAM Journal on Scientific Computing.
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linear system that cannot be solved by a standard solver on modern computers may

be solved by a sparse solver.

I.1. Direct methods vs. iterative methods

There are two general approaches for solving linear systems: direct methods and it-

erative methods. A direct method produces the solution x after a finite number of

operations (see, e.g., [8]). A common direct method is a variant of Gaussian elimina-

tion that factors A into matrices L and U , where L is lower triangular and U is upper

triangular, the solution is obtained by solving the triangular systems by forward and

backward substitution. For a sparse system, a naive direct method often suffers pro-

hibitive complexity due to fill-in during factorization: storage complexity of O(N2)

and computation complexity of O(N3). Special techniques are often employed to

reduce fill-in such as the minimum degree ordering [22], the approximate minimum

degree ordering [1], the reverse Cuthill-McKee (RCM) ordering [23], and the nested

dissection (ND) ordering [21, 33] etc. In two dimensional problems, the nested dis-

section has been shown to be asymptotically optimal. A direct method using nested

dissection technique may require storage of O(N logN) and computation of O(N3/2).

Thus, successful direct methods are based on clever implementation of Gaussian

elimination that exploits the sparsity structure of A as much as possible to minimize

fill-in and avoid computations with zero entries. However, for large systems, these

methods are often too expensive, except where A has a special structure. For a general

PDE-related problem discretized over grids in three dimensional domain, optimal

direct techniques require O(N2.3) floating point operations [44]. Moreover, the storage

requirement for large three dimensional numerical simulations makes direct methods

prohibitively expensive. Another big disadvantage of direct methods is that they are
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difficult to parallelize, since solving a sparse triangular system had been shown to be

the bottleneck in parallelization [27].

An alternative to direct methods are iterative methods. Iterative methods are

often the choice of solving large sparse linear systems efficiently. Iterative methods

construct a sequence of approximations {xk}, k = 1, 2, · · · , of the solution x, for which

xk → x as k →∞. Some well known simple iterative methods include Jacobi method,

Gauss-Seidel method and Successive Overrelaxation (SSOR) method (see, e.g., [26,

37]). Iterative methods are both storage and work efficient – as for a simple iterative

method, it requires only O(N) storage, the work per iteration is proportional to N . If

an iterative method converges in considerably fewer than N iterations, then it would

be more efficient than a direct solver. Moreover, the primary operation in iterative

methods is the matrix-vector multiplication, which is fairly easy to parallelize.

However, for large linear systems, these basic iterative methods typically converge

very slowly and often not at all. Acceleration techniques are needed, such as Krylov

subspace methods. These methods are based on a projection process, with the search

subspace being the Krylov space p(A), where p is a polynomial. Different choice of

the projection process gives a different Krylov subspace method. (see, e.g., [45, 37]).

The convergence of Krylov subspace methods usually can be accelerated further by

applying preconditioning techniques. Using preconditioning increases the work per

iteration, and in general it decreases the parallel performance of iterative methods.

It is worth mentioning that preconditioning has a more important role than

just speeding up the iterative process. When solving the linear system (1.1), if the

condition number κ(A) is large, then a small change in b or A may cause a relatively

large change in the solution x, and we say (1.1) is ill-conditioned (see, e.g., [41]). In

practice, b and A often involve some form of approximation. For example, if they

are computed, the rounding errors were inevitably introduced. Thus, the solution of
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(1.1) is unreliable if κ(A) is very large. By applying preconditioning technique, the

condition number of the modified linear system is decreased, a reliable solution may

be obtained.

I.2. Support graph preconditioning

We restrict (1.1) to the problems of large sparse symmetric positive definite (SPD)

systems. This class of problems seems special. However, a substantial fraction of lin-

ear equation problems arising in science and engineering have this property (see, e.g.,

[23]). The linear system obtained from finite difference or finite element discretiza-

tion of second order elliptic boundary value problems belongs to this class. When the

matrix A is SPD, one of the most popular Krylov subspace methods called conjugate

gradient method (CG) is the algorithm of choice. The number of iterations of CG is

bounded above by the square root of the spectral condition number of A. To increase

the rate of convergence, one can use the preconditioned CG method (PCG) where a

preconditioner M is used to approximate A. PCG converges rapidly when the con-

dition number κ(M−1A) is small (see, e.g., [37]). The main challenge for iterative

methods in general and PCG in particular, is to construct a preconditioner such that

the linear system My = d can be solved efficiently in every iteration, in addition the

number of iterations is reduced considerably.

Support graph preconditioning in the context of PCG algorithm is a relatively

new technique that has gained attention in recent years. Support graph precondition-

ers were first proposed by Vaidya [42] for symmetric, positive semidefinite, diagonally

dominant M-matrices. The preconditioner M is constructed by dropping off-diagonal

entries from the original matrix A. Unlike the conventional incomplete factorization

based preconditioning, matrix M is factored exactly. Thus, it is important to drop



5

entries that lower the fill-in in the factors without compromising the preconditioner’s

quality. This approach has several attractive features: the scheme yields robust pre-

conditioners whose effectiveness can be controlled during the edge elimination process;

the quality of the preconditioner appears to be relatively insensitive to boundary con-

ditions and domain characteristics such as anisotropy and inhomogeneity; there are

theoretical results to quantify the behavior of the preconditioner. References on this

topic include [24, 18, 16, 46]. A recent study [40] shows that this approach is able

to solve (1.1) in almost linear time.

I.3. Proposed work

Emerged as a very promising preconditioner with many good features, however, the

most severe limitation of support graph preconditioning technique is that it is only

applicable to a small set of matrices – the symmetric diagonally dominant matrices.

In order to extend this technique to the second order elliptic finite element problems,

which give SPD matrices in general, we use a strategy of two-level preconditioning:

first, a symmetric diagonally dominant M-matrix A′ is constructed to approximate

the coefficient matrix A; then, a support graph preconditioner M constructed via the

matrix A′ is used for the original matrix A. This requires that the condition number

κ(A′−1A) should be as small as possible, and in the ideal case, it does not depend on

the number of unknowns.

This dissertation presents a novel technique that can be used to transform the

symmetric positive definite matrices arising from elliptic finite element problems into

symmetric diagonally dominant M-matrices. The basic idea is to approximate the

element gradient matrix by taking the gradients along chosen edges, whose unit vec-

tors form a new coordinate system. For Lagrangian elements, the rows of the element
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gradient matrix in this new coordinate system are scaled edge vectors, thus a diag-

onally dominant symmetric semidefinite M-matrix can be generated to approximate

the element stiffness matrix. Depending on the element type, one or more such co-

ordinate systems are required to obtain a global nonsingular M-matrix. Since such

approximation takes place at the element level, the degradation in the quality of the

preconditioner is only a small constant factor independent of the size of the prob-

lem. We show that this technique of element coordinate transformations applies to a

variety of first order Lagrangian elements. Combination of this technique and other

techniques enables us to construct an M-matrix preconditioner for a wide range of

second order elliptic problems even with higher order elements.

The advance of today’s technology has led to a dramatic growth in the size of

the linear systems to be handled, and it yet to be seen to grow over the years. The

use of parallel computers becomes necessary. However, it is a big challenge to design

a good algorithm which performs well both on serial and parallel computers. We

propose a new variant of support graph preconditioner called modified domain par-

titioned support graph (MDPSG) preconditioner. Compared to our earlier scheme –

domain partitioned support graph (DPSG) preconditioner [46], the construction of

MDPSG does not involve the finite element mesh and can therefore be served as a

general black box algorithm for all symmetric diagonally dominant M-matrices. Nu-

merical experiments and performance comparison with the incomplete factorization

based preconditioners are conducted for various second order elliptic finite element

problems. Results show that these support graph preconditioners are superior when

solving ill-conditioned problems. In addition, the domain partition feature provides

inherent parallelism, which is performance friendly on multi-core or multiple proces-

sors. Initial experiments show a good potential of parallelization and scalability of

these preconditioners.
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The rest of the dissertation is organized as follows. Chapter II provides mathe-

matical background for support graph theory and finite element methods. Chapter

III outlines the element level coordinate transformation technique that gives an M-

matrix approximation for the stiffness matrix arising from the second order elliptic

boundary value problems. Strategies on solving inhomogeneous problems, anisotropic

problems and high order element problems are also discussed. This is followed by a

description and analysis of MDPSG in Chapter IV. Experimental results of the

MDPSG preconditioners for various second order elliptic finite element problems and

the performance comparison to the incomplete factorization based preconditioners

are reported in Chapter V. The potential parallelization of MDPSG is also discussed.

Finally, Chapter VI gives the concluding remarks and future work.
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CHAPTER II

BACKGROUND

This chapter introduces the definitions and notations used throughout this disserta-

tion. Section II.1 introduces definitions and operators from basic calculus. Section II.2

introduces definitions, propositions and theorems from basic linear algebra. With

that, a simple introduction on the support graph theory is followed in Section II.3.

Finally, Section II.4 presents the second order elliptic boundary value problem and

the finite element formulation.

II.1. Basic calculus

The material of this section is based on [32, 8]. We use R to denote the set of real

numbers. A subset of Rd (d is an integer) is called a domain if it is open and connected.

A bounded domain in Rd often is denoted as Ω, its boundary is denoted as ∂Ω or Γ.

Let u be a scalar function, and v = (v1, · · · , vd) a vector valued function, of x ∈ Rd .

Then the gradient, the divergence, and the Laplace operator are defined as,

gradient 5u = grad u = (
∂u

∂x1

, · · · , ∂u
∂xd

)

divergence 5 · v = div v =
d∑
i=1

∂vi
∂xi

Laplace 4u = 5 · 5u =
d∑
i=1

∂2u

∂x2
i

A multi-index α is a d-vector α = (α1, · · · , αd), where αi’s are non-negative

integers. The length of a multi-index is defined as |α| =
∑d

i=1 αi. A partial derivative
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of u of order |α| can be denoted as,

Dα =
∂|α|u

∂xα1
1 · · · ∂xαd

d

.

C(Ω) denotes the linear space of continuous functions on Ω. Ck(Ω) denotes the

set of k (k ≥ 0) times continuously differentiable functions in Ω, i.e., let u ∈ Ck(Ω),

then ∀ |α| ≤ k,Dαu ∈ C(Ω). We use Ck
0 (Ω) to denote the set of functions u ∈ Ck(Ω)

that vanish outside some compact subset of Ω.

A linear space of square integrable functions in Ω is denoted as L2(Ω). Let

u, v ∈ L2(Ω), the space L2(Ω) is equipped with the inner product and norm as,

(u, v) = (u, v)L2(Ω) =
∫

Ω
uvdx

‖u‖ = ‖u‖L2(Ω) = (
∫

Ω
u2dx)1/2

We say a function u belongs to the Sobolev space Hk(Ω) (k ≥ 1) if Dαu ∈ L2(Ω)

for all |α| ≤ k. The Sobolev space is equipped with the following norm and seminorm,

‖u‖k = ‖u‖Hk(Ω) = (
∑
|α|≤k

‖Dαu‖2)1/2

|u|k = |u|Hk(Ω) = (
∑
|α|=k

‖Dαu‖2)1/2

Finally, we give two important formulas that are used in deriving the weak form

for the finite element problems,

divergence theorem
∫

Ω
5 · vdx =

∫
Γ
v · nds

Green’s formula
∫

Ω
v · 5udx =

∫
Γ
v · nuds−

∫
Ω
5 · vudx

II.2. Basic linear algebra

The material of this section is based on [41, 35, 37, 15]. Following is a collection of

concepts and propositions that are important for the iterative methods. Notice that
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we consider only real square matrices and some definitions are adapted to our usage.

sparse matrix An n-by-n matrix A is sparse if the number of its nonzero entries is

in the order of O(n).

positive matrix A matrix A is positive if all its entries are positive, i.e. Aij > 0.

M-matrix A matrix A is called an M-matrix if its diagonals are positive, its off-

diagonals are nonpositive and its inverse is a nonnegative matrix.

Stieltjes matrix A symmetric M-matrix is called a Stieltjes matrix.

symmetric positive definite (SPD) Matrix A real matrix A is symmetric posi-

tive definite, if it is symmetric, i.e. AT = A, and xTAx > 0 for any x ∈ Rn, x 6= 0. If

xTAx ≥ 0 instead, then A is a symmetric positive semidefinite.

diagonally dominant An n-by-n matrix A is (weakly) diagonally dominant if ∀i ∈

{1, · · · , n}, Aii ≥
∑

j 6=i |Aij|. If at least one of the diagonal entries is strictly larger

than the sum of the absolute value of the off-diagonal entries, then A is strictly

diagonally dominant. Notice that a diagonally dominant symmetric M-matrix is a

subset of Stieltjes matrices.

Laplacian matrix A diagonally dominant symmetric matrix with nonpositive off-

diagonals and zero row sums is called a Laplacian matrix.

edge and vertex vectors A vector with two nonzero entries with the same magni-

tude in location i and j represents an edge between vertices i and j. A vector with

one nonzero entry in location i represents a vertex i. The unit (positive) edge vector
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e〈ij〉, negative edge vector e−〈ij〉 and vertex vector e〈ii〉 are defined as,

e〈ij〉 =

i

j



...

1

...

−1

...


, e−〈ij〉 =

i

j



...

1

...

1

...


, e〈ii〉 = i


...

1

...

 .

Proposition II.1 ([15]) A symmetric matrix A is diagonally dominant if and only

if there is a decomposition of the form A = UUT , where each column of U is either a

scaled positive edge vector, a scaled negative edge vector or a scaled vertex vector.

Proposition II.2 ([15]) A symmetric matrix A is a diagonally dominant M-matrix

if and only if there is a decomposition of the form A = UUT , where each column of

U is either a scaled positive edge vector or a scaled vertex vector.

Proposition II.3 ([15]) A symmetric matrix A is a Laplacian if and only if there is

a decomposition of the form A = UUT , where each column of U is a scaled positive

edge vector.

eigenvalue λ is an eigenvalue of matrix A, if there exist a vector x 6= 0 such that

Ax = λx. And x is the corresponding eigenvector of eigenvalue λ.

spectrum The spectrum of A is defined as the set of all its eigenvalues, usually it is

denoted by σ(A).

Gershgorin’s theorem Any eigenvalue of matrix A is located in one of the closed

discs of the complex plane centered at Aii and having the radius of the sum of the

absolute value of the off-diagonal entries at row i, for i = 1, · · · , n. That is,

∀λ ∈ σ(A), ∃i ∈ {1, · · · , n}, such that |λ− Aii| ≤
∑
j 6=i

|Aij|.
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condition number The (spectral) condition number of matrix A is defined as the

product of the two-norm of A and A−1:

κ(A) = ‖A‖2‖A−1‖2 =
σmax(A)

σmin(A)
.

Here σ(A) refers to the singular values of A. For an SPD matrix A, the condition

number κ(A) is equal to the ratio of the extreme eigenvalues of A:

κ(A) =
λmax(A)

λmin(A)
.

II.3. M-matrix and support graph

By generalizing a maximum weight spanning tree to a maximum weight basis ([15]),

support graph preconditioning technique applies to symmetric diagonally dominant

matrices. In this dissertation, we focus on support graph preconditioners that apply

to symmetric diagonally dominant M-matrix. So all the support graph concepts are

presented in the classical sense.

The construction of a support graph preconditioner is based on the combinatorial

properties of the graph corresponding to the matrix of (1.1). One central point in

the support graph preconditioning theory is the connection between a matrix and

a graph. We associate a symmetric, diagonally dominant M-matrix A ∈ Rn×n with

a weighted undirected graph GA = (VA, EA). Each row of A defines a node in GA,

i.e., the i-th row defines the node i. The weight of vertex i is defined as the sum of

elements in row i of A. Nonzero weight of a vertex can be seen as a self loop edge

with the same weight. VA = {1, 2, . . . , n} is the vertex set of GA. Each off-diagonal

entry of A defines an edge in GA. EA = {(i, j) : i 6= j, Aij 6= 0}, with edge weight

wij = |Aij|, is the edge set of GA. Shown in Fig. II.1 is an example of an M-matrix

and its corresponding graph.
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A =



5 −3 −1 −1

−3 4 −1 0

−1 −1 5 −2

−1 0 −2 3

 1

1

1

3 2

1

1

32

4

Fig. II.1. An M-matrix and its corresponding graph.

The support graph preconditioner considered in this work is a subgraph of the

underlying graph of the coefficient matrix, so the following concepts are introduced

under this premise. Let EM ⊆ EA, GM = (VA, EM). Consider a graph embedding of

GA into GM , where each edge of GA is mapped to a path in GM . The support path

of an edge e ∈ GA is a path p ∈ GM whose end nodes are the end nodes of e. GM is

a support graph of GA if there exists a support path p ∈ GM for every edge e ∈ GA.

For a support path p, the support path weight wp is defined as the weight of the edge

e which is supported by p. For an edge e ∈ GA, edge dilation δe is the number of

edges in its support path. The dilation δ of GA is the maximum edge dilation over

all edges in GA. For an edge e ∈ GM , edge congestion ce is the number of support

paths passing through e. In weighted graphs, ce is the sum of weight of the support

paths through e divided by edge weight we. The congestion c of GM is the maximum

congestion over all edges in GM .

The support graph preconditioner M is usually constructed in such a way that

the row sums of M equal to those of A. As shown in Bern et al. [14], the analysis

of bounding the extreme eigenvalues of M−1A can assume A and M having zero

row sums, that is A and M are Laplacians. For a Laplacian, the edge weights of its

underlying graph determines the matrix exactly. In order not to clutter the notations,

from now on we may also refer to the underlying graph of matrix A as A itself if the

context is clear.
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The support graph preconditioning technique analyzes a matrix A and its pre-

conditioner M in terms of their underlying graphs. By embedding the graph of A

into the graph of M , the largest eigenvalue of M−1A can be bounded. Since a sim-

ple structure is easier to study, it often splits A and M into a sum of matrices, as

A = A1 + · · ·+Am and M = M1 + · · ·+Mm. Each Ai and Mi are Laplacians them-

selves. Usually each Ai represents an edge of graph A with the entire edge weight,

and Mi is a path of graph M where each edge may contain only a fraction of its

entire edge weight. We say the edge Ai is supported by the path Mi if there exists

a finite number τi, such that τiMi − Ai is positive semidefinite. If every edge of A

is supported by a path of M , then λmax(M
−1A) ≤ τ , where τ = maxi τi. In fact, τ

is a central concept in the support theory called support number or simply support.

It is specified by graph embedding properties such as congestion and dilation, which

is given by what is called congestion-dilation lemma [24, 16, 14] in support graph

preconditioning theory. The smallest generalized eigenvalue of M−1A is bounded in

the same way by exchanging the roles of A and M . Thus the condition number of

the preconditioned system is bounded. If a support graph M is a subgraph of A, we

have the following lemma.

Lemma II.4 (Condition number bound of support graph preconditioning)

Suppose A and M are symmetric diagonally dominant M-matrices. M is a support

graph of A, and the underlying graph of M is a subgraph of the underlying graph of

A. Let δ be the largest dilation over all edges of A, and c be the largest congestion

over all edges of M . Then,

κ(M−1A) ≤ δ · c.

Proof This lemma is easy to be proved by using Congestion-Dilation Lemma. Here

we prove it in a pure algebraic way. Without loss of generality, assume A and M are
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Laplacians. For Laplacian matrices we have,

xTAx =
∑
Aij 6=0

|Aij|(xi − xj)
2 =

∑
(i,j)∈EA

ωij(xi − xj)
2,

xTMx =
∑
Mij 6=0

|Mij|(xi − xj)
2 =

∑
(i,j)∈EM

ωij(xi − xj)
2.

Where ωij is the absolute value of the off-diagonal entry Aij, i, j = 1, · · · , n. Notice

that M is a subgraph of A, i.e., EM ⊆ EA. Thus,

xTAx

xTMx
=

∑
(i,j)∈EA

ωij(xi − xj)
2

∑
(m,n)∈EM

ωmn(xm − xn)
2

= 1 +

∑
(i,j)∈EA\EM

ωij(xi − xj)
2

∑
(m,n)∈EM

ωmn(xm − xn)
2
.

It is obvious that,

xTAx

xTMx
≥ 1. (2.1)

For every edge (i, j) ∈ EA, there exists a support path pij ∈ EM . Suppose the path

has ρ+1 edges and consists of the following nodes xi, xs1 , · · · , xsρ , xj, i.e., the dilation

of (i, j) is δij = ρ+ 1. We have,

(xi − xj)
2 =

[
(xi − xs1) + (xs1 − xs2) + · · ·+ (xsρ − xj)

]2 ≤ δij
∑

(k,l)∈pij

(xk − xl)
2.

Then, ∑
(i,j)∈EA

ωij(xi − xj)
2 ≤

∑
(i,j)∈EA

ωijδij
∑

(k,l)∈pij

(xk − xl)
2

=
∑

(i,j)∈EA

∑
(k,l)∈pij

ωijδij(xk − xl)
2

=
∑

(k,l)∈EM

∑
∀(i,j)∈EA

s.t. (k,l)∈pij

ωijδij(xk − xl)
2.
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The relationship above gives,

xTAx

xTMx
=

∑
(i,j)∈EA

ωij(xi − xj)
2

∑
(m,n)∈EM

ωmn(xm − xn)
2

≤

∑
(k,l)∈EM

∑
∀(i,j)∈EA

s.t. (k,l)∈pij

ωijδij(xk − xl)
2

∑
(m,n)∈EM

ωmn(xm − xn)
2

=

∑
(k,l)∈EM

ωkl(xk − xl)
2

∑
∀(i,j)∈EA

s.t. (k,l)∈pij

ωij
ωkl

δij

∑
(m,n)∈EM

ωmn(xm − xn)
2

≤ max
(k,l)∈EM

∑
∀(i,j)∈EA

s.t. (k,l)∈pij

ωij
ωkl

δij

≤ δ · max
(k,l)∈EM

∑
∀(i,j)∈EA

s.t. (k,l)∈pij

ωij
ωkl

≤ δ · max
(k,l)∈EM

ckl

≤ δ · c.

(2.2)

By the results of (2.1) and (2.2), and the definition of the condition number, we have,

κ(M−1A) =
λmax(M

−1A)

λmin(M−1A)
=

max
‖x‖=1

xTAx

xTMx

min
‖x‖=1

xTAx

xTMx

≤ δ · c
1

= δ · c.
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II.4. The second order elliptic finite element problem

The finite element method is one of the most popular and effective numerical tech-

niques for solving partial differential equations (PDEs), especially over complex do-

mains. The finite element discretization of PDEs often gives a large sparse linear

system. The associated coefficient matrix is symmetric positive definite for the sec-

ond order self-adjoint elliptic boundary value problems. This linear system can be

solved by iterative methods such as PCG.

The equation of the second order elliptic boundary value problem is,

−5 ·(K(x)5 u) + q(x)u = f(x) in Ω, u(x) = 0 on ∂Ω. (2.3)

where Ω is a bounded open set of Rd, d = 2, 3. K(x) is a d × d symmetric matrix

that is uniformly bounded positive definite in Ω, i.e. there are positive constants

γ,Γ, such that γ|u|2 ≤ uTK(x)u ≤ Γ|u|2 for all u ∈ Rd and for all x ∈ Ω. q(x) is

nonnegative and is bounded as 0 ≤ q(x) ≤ Q. For simplicity, we also assume f(x) is

square integrable in Ω, i.e., f(x) ∈ L2(Ω). Notice that the use of homogeneous Dirich-

let boundary condition only simplifies the following presentation, more complicated

boundary conditions can be imposed without any problem.

A weak formulation of this problem is, find u ∈ H1
0 (Ω), such that

a(u, v) = (f, v), ∀v ∈ H1
0 (Ω). (2.4)

where

a(u, v) =

∫
Ω

K(x)5 u · 5v + q(x)uvdx, (f, v) =

∫
Ω

fvdx.

According to Galerkin finite element procedure, we are looking for an approximate

solution uh ∈ Vh, where Vh is a finite dimensional subspace of H1
0 (Ω). Typically, Vh is

a space of piecewise polynomials associated with a mesh T of Ω. The finite element
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approximation of problem (2.4) is to find uh ∈ Vh, such that

a(uh, v) = (f, v), ∀v ∈ Vh. (2.5)

Choose a suitable basis {φi}, i = 1, · · · , N for Vh. Let uh =
∑N

i=1 Uiφi, then (2.5)

gives a large sparse linear system of equations for U = [U1, · · · , UN ]T ,

AU = b. (2.6)

where Aij = a(φi, φj) and bi = (f, φi). Since a(u, v) is symmetric and coersive, the

discretized matrix A is SPD. Thus, (2.6) can be solved by PCG. Note that, in general

A is not diagonally dominant (see, e.g., [8]). For example, in Appendix A, we show

that the matrix obtained from linear triangular element discretization of the Poisson

problem is SPD in general. The readers can become familiar with the above finite

element formulation and discretization procedure by reading any standard textbook

(e.g. [32]).
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CHAPTER III

CONSTRUCT M-MATRIX PRECONDITIONERS

The largest class of matrices that the support graph preconditioning technique can

apply to is the symmetric diagonally dominant matrices. This chapter extends the

support graph preconditioning to the SPD matrices arising from the second order

elliptic finite element problems. First we review other works in this area; then we

present our approaches to transform these SPD matrices into symmetric diagonally

dominant M-matrices, starting from the simple Poisson model problem, incrementally

to the full fledged second order elliptic boundary value problem.

III.1. Other works and proposal

One direction of extension of support graph preconditioning is the finite element

problems. The basic idea is to approximate the stiffness matrix A (which is symmetric

positive definite for the second order self-adjoint elliptic problems) by a symmetric

diagonally dominant M-matrix A′ first, then construct support graph preconditioner

M for A′ in the usual way. In the end, M is used as a preconditioner for A. Thus,

the important issue is to keep the condition number κ(A′−1A) as low as possible.

For Poisson problems, Boman et al. [17] gives a general algebraic approach. Their

approach is general, in the sense, that it applies to any order Lagrange elements, any

number of Gauss quadrature points; and it allows jump in the conductivity coefficient.

They write the stiffness matrix in the form of A = BTJTDJB, where B is a node-arc

incidence matrix (a block of B represents a star graph), J is a block diagonal matrix

related to the inverse Jacobians and the gradient matrix of the reference element, D

is a diagonal matrix related to the conductivity coefficient, quadrature weights and
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the determinant of Jacobians. For a well-shaped mesh, J is well-conditioned; if in

addition, the jump in coefficient occurs only along element boundaries, then D is

well-conditioned as well. By choosing a diagonal matrix D̃, let J̃ = D1/2JD̃−1/2, such

that κ(J̃) is minimized or close to minimized, they use the M-matrix A′ = BT D̃B to

precondition A. And κ(A′−1A) ≤ κ(J̃)2 is well bounded. The limitation, however, is

that their approach applies to isotropic problems only.

The idea of another approach by Avron et al. [7] is to split the elements into two

subsets E(t) and E(t). Let AE =
∑

e∈E(t)Ae and AE =
∑

e∈E(t)Ae, then the global

stiffness matrix is A = AE +AE. E(t) consists all elements whose element matrix Ae

is approximable by a diagonally dominant matrix Le, E(t) consists all the rest. t is a

threshold parameter: if κ(L−1
e Ae) ≤ t, then e ∈ E(t); otherwise e ∈ E(t). The global

approximate matrix L for AE is constructed as L =
∑

e∈E(t) αeLe, where {αe}’s are

scaling factors, they are chosen such that κ(L−1AE) ≤ maxe∈E(t) κ(L
−1
e Ae). Since L is

a symmetric, diagonally dominant matrix, it can be approximated by a support graph

preconditioner M . In the end, the original global matrix A will be preconditioned by

A′ = γM + AE, and γ is another scaling factor such that κ(A′−1A) ≤ κ(M−1AE).

The major operation of constructing Le for elements in E(t) is column scaling, that

basically is to construct a weighted clique graph. Using the result due to van der

Sluis [43], the constructed Le approximates Ae within a factor of
√
ne of the optimal

scaling (where ne is the dimension of Ae). The catch, however, is that even for the

optimal scaling the condition number of L−1
e Ae can be large.

The solver of Avron et al. [7] is general in that, it has no requirement of meshes,

and it can deal with anisotropic problems. It divides elements into two subsets E(t)

and E(t), the matrix of one subset is approximated by a symmetric diagonally dom-

inant matrix L, the matrix of the other subset is left as is (either due to distorted

element or due to anisotropy). So the preconditioner totally embraces everything of
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the ‘bad’ elements. However, the benefit of easy factorization of support graph M

which is constructed based on L diminishes due to the addition of AE. When the

problem becomes ill-conditioned, more and more elements would be thrown into E(t),

the cost of Cholesky factorization of the preconditioner becomes close to that of the

original matrix; eventually, a direct solver takes over. As a practical approach this

may regarded as having a grace transition from an iterative solver to a direct solver.

In contrast of these two approaches, which are more algebraic and abstract, our

approach is more geometric and intuitive. Our idea is to use element level transfor-

mations to construct symmetric diagonally dominant M-matrices that can be used to

approximate the coefficient matrix. The basic procedure is to approximate the ele-

ment gradient matrix by taking the gradients along chosen edges, whose unit vectors

form a new coordinate system. For Lagrangian elements, the rows of the element gra-

dient matrix in this new coordinate system are scaled edge vectors, thus a diagonally

dominant symmetric semidefinite M-matrix can be generated to approximate the el-

ement stiffness matrix. Depending on the element type, one or more such coordinate

systems are required to obtain a global nonsingular M-matrix. In terms of graph, this

can be seen that the element matrix, which is usually a clique, is approximated by

a union of star graphs. We show that this technique of element coordinate transfor-

mations applies to a variety of first order Lagrangian elements. Combination of this

technique and other techniques enables us to construct an M-matrix preconditioner

for a wide range of second order elliptic problems even with higher order elements.

In order to prevent cluttering our coordinate transformation idea, in the follow-

ing, we start from a simple Poisson model problem and then progressively to more

difficult problems.
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III.2. Poisson model problem

By setting K(x) = 1, q(x) = 0 in (2.3), we obtain the Poisson model problem. Let’s

consider Lagrangian elements. Assume the mesh T is in d dimensional space x =

{x1, · · · , xd}. Let {φei}’s be the local nodal bases for an element e, and ne the number

of nodal bases. Then the solution on element e is given as,

ue = φe · ue =
ne∑
i=1

ueiφ
e
i .

where uei is the nodal solution at node i. The element stiffness matrix and element

load vector are,

Ae(i, j) =

∫
e

5φei · 5φejdx, be(i) =

∫
e

fφeidx.

The global stiffness matrix A and the load vector b are assembled, respectively, as,

A =
∑
e∈T

Ae, b =
∑
e∈T

be.

If we denote the element gradient matrix of e as,

Be =



φe1,x1
φe2,x1

· · · φene,x1

φe1,x2
φe2,x2

· · · φene,x2

...

φe1,xd
φe2,xd

· · · φene,xd


.

then,

A =
∑
e∈T

Ae =
∑
e∈T

∫
e

BT
e Bedx. (3.1)

In general, A is SPD but not diagonally dominant, which prevents construction of a

support graph preconditioner. In the following, we show that, by taking the gradients

of the shape functions along our chosen edges, the element matrix Ae can be approx-
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imated by a Laplacian matrix. Assembling these approximate matrices results in a

global diagonally dominant symmetric M-matrix that can be used to approximate A.

III.2.1. Triangular and tetrahedral elements

In two dimensional (2D) space, the simplicial element is the linear triangular element.

The element gradient matrix Be is,

Be =

 φe1,x φe2,x φe3,x

φe1,y φe2,y φe3,y

 .
where φej,x and φej,y denote the partial derivatives of shape function φej along x-axis

and y-axis, respectively.

θe

η

ξ

3

2

1

y

x

Fig. III.1. A triangular element with a new coordinate system.

Suppose we choose two adjacent edges with directions pointing away from their

common node as shown in Fig. III.1, where the angle between them is θe. We use lij

to denote the vector from node i to node j. Let lij be the lengths of lij. Apparently,

the unit vectors of l12 and l13 form a new coordinate system {ξ, η} which conforms to

the right hand rule. We define a new gradient matrix B′
e, whose rows are the partial
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derivatives of shape functions along these chosen edges,

B′
e =

 φe1,ξ φe2,ξ φe3,ξ

φe1,η φe2,η φe3,η

 =

 l−1
12 0

0 l−1
13


 −1 1 0

−1 0 1

 .
Notice that each row of B′

e is a scaled edge vector, which is the key to construct an

M-matrix. These two gradient matrices Be and B′
e have the following relationship:

B′
e =

 xξ yξ

xη yη

Be = GeBe.

where Ge is the element Jacobian,

Ge =
∂(x, y)

∂(ξ, η)
=

 (x2 − x1)/l12 (y2 − y1)/l12

(x3 − x1)/l13 (y3 − y1)/l13

 =

 lT12/l12

lT13/l13

 .
Recall (3.1), we have matrix A assembled as,

A =
∑
e∈T

Ae =
∑
e∈T

∫
e

BT
e Bedx.

An approximation of A can be constructed as,

A′ =
∑
e∈T

A′
e =

∑
e∈T

∫
e

ωeB
′T
e B

′
edx.

where ωe is a scaling factor that is chosen in such a way that the condition number

of A′−1A can be bounded elementwise. Since gradient matrix B′
e is constant, A′ can

be written as,

A′ =
∑
e∈T

ωeB
′T
e B

′
e∆e,

where ∆e denotes the area of element e. Note that A′ is a symmetric diagonally

dominant M-matrix, and it is more sparse than the original matrix A. Since A and
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A′ are SPD,

λmin(A
′−1A) ≤ xTAx

xTA′x
≤ λmax(A

′−1A),

for all nonzero x. To estimate the condition number of A′−1A, we need to compute

bounds on xTAx/xTA′x. Observe that,

xTAx =
∑
e∈T

xTAex =
∑
e∈T

µe(x)x
TA′

ex,

where,

µe(x) =


xTAex

xTA′
ex
, Aex 6= 0.

1, otherwise.

Notice that the above formula uses the fact that Ae and A′
e have the same null space.

Therefore,

min
e∈T

µe(x)
∑
e∈T

xTA′
ex ≤ xTAx ≤ max

e∈T
µe(x)

∑
e∈T

xTA′
ex,

which implies that,

κ(A′−1A) =
max
x

xTAx

xTA′x

min
x

xTAx

xTA′x

≤ max
x

max
e∈T

µe(x)

min
e∈T

µe(x)

 .

Considering that for Aex 6= 0,

xTAex

xTA′
ex

=
1

ωe

xTBT
e Bex

xTBT
e G

T
eGeBex

=
1

ωe

yTy

yTGT
eGey

,

where y = Bex. By choosing ωe = 1/λmin(G
T
eGe), we ensure that,

λmin(G
T
eGe)

λmax(GT
eGe)

≤ xTAex

xTA′
ex
≤ 1.

Thus,

1

κ(GT
eGe)

≤ µe(x) ≤ 1.
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which gives an estimate for the spectral condition number of A′−1A:

κ(A′−1A) ≤ max
e∈T

κ(GT
eGe) = max

e∈T
κ(GeG

T
e ).

Notice that GT
eGe has the same eigenvalues as GeG

T
e . The outer-product of the

element Jacobians is,

GeG
T
e =

 lT12/l12

lT13/l13

[
l12/l12 l13/l13

]
=

 1 cos θe

cos θe 1

 . (3.2)

It is obvious that a necessary condition for GeG
T
e to be singular is when 1−cos2 θe = 0,

i.e., sin θe = 0. This is impossible for a triangulation mesh, otherwise the area of a

triangle becomes zero. The condition number of A′−1A can be written explicitly as,

κ(A′−1A) ≤ max
e∈T

κ(GeG
T
e ) = max

e∈T

1 + | cos θe|
1− | cos θe|

. (3.3)

This indicates that the quality of the approximation can be improved by selecting a

pair of edges for which | cos θe| is as small as possible. For example, if θe = 90o, then

the element matrix does not need transformation. For two dimensional good quality

meshes, usually π/8 ≤ θe ≤ 7π/8 (see, e.g., [48]), which implies that κ(A−′A) ≤ 26.

In practice, it is observed that the best angle in an element usually satisfies π/4 ≤

θe ≤ 3π/4. For example, for meshes used in our experiments, maxe∈T κ(GeG
T
e ) is less

than 8.

This procedure can be generalized in three dimensional (3D) space for the tetra-

hedral elements (see Fig. III.2). Suppose three chosen adjacent edges are the vectors

l12, l13, l14, from which a new coordinate system {ξ, η, ζ} can be formed. Let ∆e de-

note the volume of a tetrahedron e. We can approximate the gradient matrix Be by
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Fig. III.2. A tetrahedral element with a new coordinate system.

the following matrix B′
e,

B′
e =


l−1
12 0 0

0 l−1
13 0

0 0 l−1
14



−1 1 0 0

−1 0 1 0

−1 0 0 1

 .
By coordinate transformation we have B′

e = GeBe, and

Ge =
∂(x, y, z)

∂(ξ, η, ζ)
=


lT12/l12

lT13/l13

lT14/l14

 .
As what is done in the two dimensional case, the stiffness matrix A is approximated

by the following M-matrix A′,

A′ =
∑
e∈T

ωeB
′T
e B

′
e∆e.

Again, take ωe = 1/λmin(GeG
T
e ), it can be shown that the condition number of A′−1A

is bounded as

κ(A′−1A) ≤ max
e∈T

κ(GeG
T
e ). (3.4)
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Expand the outer-product of the element Jacobians, we have,

GeG
T
e =


1 cos θ1,23

e cos θ1,24
e

cos θ1,23
e 1 cos θ1,34

e

cos θ1,24
e cos θ1,34

e 1

 . (3.5)

where θi,jke denotes the angle at node i that faces the edge jk in element e. Define

V (θ1, θ2, θ3) as,

V (θ1, θ2, θ3) ,
√

1 + 2 cos θ1 cos θ2 cos θ3 − cos2 θ1 − cos2 θ2 − cos2 θ3.

A necessary condition for GeG
T
e to be singular is when V (θ1,23

e , θ1,34
e , θ1,24

e ) = 0. This

is impossible for a tetrahedron, since the volume of a tetrahedron can be expressed

as ∆e = l12l13l14
6

V (θ1,23
e , θ1,34

e , θ1,24
e ), which would be zero under such condition. From

(3.5) it is not difficult to get the inverse of GeG
T
e . Using Gerschgorin theorem we can

estimate,

λmax(GeG
T
e ) ≤ 3, λmax((GeG

T
e )−1) ≤ 5

V 2(θ1,23
e , θ1,34

e , θ1,24
e )

.

The condition number of GeG
T
e is bounded as,

κ(GeG
T
e ) ≤ 15

V 2(θ1,23
e , θ1,34

e , θ1,24
e )

. (3.6)

Applying (3.4) we get,

κ(A′−1A) ≤ max
e∈T

15

V 2(θ1,23
e , θ1,34

e , θ1,24
e )

. (3.7)

Notice that the condition number bound of A′−1A is entirely determined by the mesh

topology parameters, i.e., the angles between edges. An ideal case is when these three

adjacent edges are perpendicular to each other, thus λmax(GeG
T
e ) = λmin(GeG

T
e ) = 1.

The quality of the approximation A′ ∼ A can be improved by selecting three adjacent
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edges for which κ(GeG
T
e ) is as small as possible.

The relationships of (3.3) and (3.7) show that, the spectral distance between

the constructed M-matrix A′ and the original matrix A is bounded by the mesh

characteristics. If the mesh is ‘good’ then the approximation is good. However, there

is no universal mesh quality metric, since it is application dependent. What kind of

mesh is a good mesh for our application? As many iterative methods have guaranteed

convergence for symmetric diagonally dominant matrices, which may suggest that

a mesh that produces a matrix that is spectrally close to a symmetric diagonally

dominant matrix is a good mesh. From this point of view, our results may provide

a quality metric for the simplicial elements — the condition number of the outer-

product of a chosen element Jacobian κ(GeG
T
e ). Usually the mesh quality metrics are

based on geometric criteria, such as element volumes, aspect ratio, skew, angles, etc.,

the work by Knupp [31] pointed out that many geometric characteristics are actually

embedded in the Jacobian matrix. Knupp used a weighted Jacobian matrix, which is

nodally invariant, to define many quality metrics for the simplicial elements. What

should be emphasized is that, the requirement on the mesh quality of (3.3) and (3.7)

is not severe. For a triangular element, there can be three different Jacobian matrices,

as the origin of the new coordinate system can anchor at three different vertex nodes;

for a tetrahedral element, there are four different Jacobian matrices. In order to get

a good approximation A′, only one Jacobian Ge is required such that κ(GeG
T
e ) is well

bounded.

The results of (3.2) and (3.5) clearly say that the mesh quality is specified by

some element angle(s). However, the angle relationship in 3D is pretty involved. In

fact, by estimating κ(GeG
T
e ), the 2D and 3D cases can be unified which gives a more

intuitive interpretation of these bounds. The bound for the 3D case is estimated
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already in (3.6). For the 2D case, (3.2) can be estimated as,

κ(GeG
T
e ) =

1 + | cos θe|
1− | cos θe|

=
(1 + | cos θe|)2

sin2 θe
≤ 4

V 2(θe)
. (3.8)

where V (θ) = sin θ. Recall that the triangular area can be expressed as ∆e =

l12l13
2
V (θe). Then from (3.8) and (3.6) we may say that, the quality of a simplicial

element is measured by a dimensionless volume V (·), which is also the determinant of

the Jacobian matrix Ge. Actually V (·) can be seen as the element volume normalized

by a scaled product of the chosen edges’ length. If the ‘ideal’ element is the one with

V (·) = 1, then the more close V (·) is to 1, the better is the quality of the element.

Finally, the mesh quality would be measured by the overall quality of its elements,

which give the spectral bounds for κ(A′−1A).

Table III.1

The number of iterations of PCG using preconditioner A′ for linear triangular elements.

# elements 822 3,387 13,282 52,968 212,461 848,231 3,392,190

# unknowns 444 1,755 6,766 26,732 106,720 425,102 1,698,059

# iterations 7 9 10 10 11 10 11

Table III.2

The number of iterations of PCG using preconditioner A′ for linear tetrahedral elements.

# elements 1,592 6,125 24,642 96,655 385,192 1,535,257 6,132,234

# unknowns 407 1,309 4,683 17,093 64,983 251,283 985,304

# iterations 9 10 10 10 10 9 9

To conclude this section, we apply this coordinate transformation approach to

the Poisson problem with Dirichlet boundary condition. In two dimensional space,

we consider the classical unit square domain, and the triangular mesh is generated by
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Triangle [38]. In three dimensional space, we consider a unit cube domain, and the

tetrahedral mesh is generated by Tetgen [39]. Shown in Table III.2.1 are the number

of iterations for the PCG method applied to the linear triangular elements, where the

stopping criteria is the two-norm of the relative residual less than 10−6. The results

indicate that, using matrix A′ =
∑
ωeB

′T
e B

′
e∆e as the preconditioner for the original

stiffness matrix A, the number of iterations is small and is independent of the problem

size. This confirms the theoretical analysis of the condition number κ(A′−1A). The

same conclusion holds for the tetrahedral elements as shown in Table III.2.1.

III.2.2. Quadrilateral and hexahedral finite elements
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Fig. III.3. Two cases of a quadrilateral with new coordinate systems.

Though less flexible as triangular elements in many cases, quadrilateral elements

often gives accurate results for problems that has certain directions such as problems

in fluid dynamics. The simplest bases of a quadrilateral element are bilinear func-

tions. In an element e, a bilinear function is generally quadratic along a line that

is not aligned with an edge. This complication does not pose a big problem for our

approach. As for the linear triangular element, we certainly can choose a pair of edges

that defines a new coordinate system, and due to the property of Lagrangian shape
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functions, the derivatives of shape functions along these edges will form a gradient

matrix whose rows are scaled edge vectors. An M-matrix A′ can be constructed to

approximate the stiffness matrix A. However, the problem is that the resulting A′

can be singular. By examining the construction at the element level, we can see that

one shape function has all zero derivatives in this new gradient matrix B′
e, which is

the source of the singularity of A′. Suppose edges sharing node 1 are chosen, then

the new gradient matrix B′
e is,

B′
e =

 l−1
12 0

0 l−1
14

 .
 −1 1 0 0

−1 0 0 1

 .
The gradient of shape function φe3 is zero along all the chosen edges, which may lead

to the singularity of A′. To prevent this singularity, two pairs of edges are chosen to

define two new coordinate systems (two choices are shown in Fig. III.3), and construct

A′ as,

A′ =
∑
e∈T

A′
e =

∑
e∈T

1

2

(∫
e

ωe,1B
′T
e,1B

′
e,1dx +

∫
e

ωe,2B
′T
e,2B

′
e,2dx

)
.

where,

B′
e,1 = Ge,1Be, B′

e,2 = Ge,2Be,

Ge,1 =
∂(x, y)

∂(ξ1, η1)
, Ge,2 =

∂(x, y)

∂(ξ2, η2)
,

ωe,1 = 1/λmin(Ge,1G
T
e,1), ωe,2 = 1/λmin(Ge,2G

T
e,2).

It is not difficult to get the condition number bound:

κ(A′−1A) ≤ max
e∈T

max
i∈{1,2}

κ(Ge,iG
T
e,i) = max

e∈T
max
i∈{1,2}

1 + | cos θie|
1− | cos θie|

.

where θie is the angle between the ith pair of the chosen edges in element e. The

strategy is to choose such θies that are as close to π/2 as possible. Experiments are

conducted of the Poisson problem with Dirichlet boundary condition on a unit circle
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domain, and the quadrilateral mesh is generated by Gambit1. Table III.2.2 shows the

number of iterations of the PCG using A′ as preconditioner for the bilinear quadrilat-

eral elements, and the stopping criteria is the two-norm of the relative residual less

than 10−6. This result shows that our M-matrix preconditioner is effective in keeping

the number of iterations low and independent of the size of the problem.

Table III.3

The number of iterations of PCG using preconditioner A′ for quadrilateral elements.

# elements 89 380 1,418 5,427 20,363 82,009 312,318

# unknowns 106 413 1,482 5,554 20,616 82,513 313,325

# iterations 10 10 10 10 10 10 10
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Fig. III.4. A hexahedral element with new coordinate systems.

This approach can easily be generalized to three dimensional hexahedral ele-

ments. To prevent the singularity of the constructed M-matrix, At least two pairs of

new coordinate systems are needed, an example is shown in Fig. III.4. The choice

1Gambit 2.3.16, Fluent Inc.
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on these new coordinate systems may depend on the application, and it may affect

the work required for stiffness matrix assembly, the sparsity of the transformed M-

matrix, the work required for Cholesky factorization and the convergence rate of the

PCG algorithm. Numerical experimental results show that two coordinate systems

are adequate enough to construct an effective M-matrix preconditioner, which is also

the most sparse. Table III.2.2 shows the result of applying this strategy to the three

dimensional Poisson problem with Dirichlet boundary condition, where two coordi-

nate systems are selected in each element. The problem domain is a cylinder, with

unit length for both radius and height. The mesh is generated by Gambit2. The PCG

stopping criteria is the same like before.

Table III.4

The number of iterations of PCG using preconditioner A′ for hexahedral elements.

# elements 445 3,800 28,360 217,080

# unknowns 636 4,543 31,122 227,714

# iterations 14 13 13 13

The generalization to other types of Lagrangian elements does not pose any dif-

ficulty. The required number of coordinate systems for an element depends on the

element type and applications. And at least, two or more such coordinate systems

are needed for the non-simplicial elements. While using more than one coordinate

system, the condition number κ(A′−1
e Ae) is bounded by the combination of the topol-

ogy parameters of several simplicial elements that are embedded in a non-simplicial

element. This may suggest that a quality metric for a non-simplicial element can be

defined by the element quality metrics for the simplicial elements embedded in the

2Gambit 2.3.16, Fluent Inc.
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non-simplicial element, such as maxi=1,2 κ(Ge,iG
T
e,i) for the quadrilateral elements.

This is actually resonant to the suggestion by Knupp [31], who suggested that the

non-simplicial elements may need multiple Jacobian matrices in definitions of quality

metrics.

III.2.3. Graph interpretation of matrix transformations

Inspect the element gradient matrix B′
e in the new coordinate system. It is apparent

that its rows are actually scaled edge vectors u〈ij〉’s, which has the following form,

u〈ij〉 = aije〈ij〉 = aij



...

1

...

−1

...


.

where e〈ij〉 is the unit edge vector and aij is the edge weight. Notice that all entries

of u〈ij〉 are zeros except the ith and jth. It is easy to see that u〈ij〉u
T
〈ij〉 is a Laplacian

matrix. So, basically we use A′
e = ωeB

′
eB

′T
e , a Laplacian matrix, to approximate

the element stiffness matrix Ae. If an element matrix Ae is viewed as a graph, whose

vertices are labeled from 1 to ne, and whose edges are the nonzero off-diagonal entries,

then Ae is a clique in general. Then the constructed matrix A′
e can be seen as a star

graph embedded in this clique. The spectral distance between A′
e and Ae is bounded

by κ(GeG
T
e ), where Ge is the element Jacobian of the new coordinate system, whose

axes are along the star graph edges. As shown in previous sections, at the element

level, one star graph is used to approximate the graph of simplicial elements, whereas

two or more star graphs are needed for other types of Lagrangian elements. Also

notice that, this kind of approximation not only transforms the original stiffness
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matrix A into a diagonally dominant M-matrix, it also sparsifies A.

III.3. Elliptic problems with variable coefficients

The preconditioning approach described earlier can be applied to a wider class of

elliptic problems. Now let’s consider problem (2.3) with K(x) being SPD and q(x) =

0. Assume K(x) is uniformly bounded positive definite in Ω, i.e. there are positive

constants γ,Γ, such that γ|u|2 ≤ uTK(x)u ≤ Γ|u|2 for all u ∈ Rd and for all x ∈ Ω.

Appropriate choices of K(x) can be used to model a wide variety of domain properties

including inhomogeneity and anisotropy. In the following, our approach is illustrated

by using linear triangular elements. A piecewise linear finite element method gives,

A =
∑
e∈T

BT
e DeBe∆e,

where Be is the element gradient matrix as given before, De is obtained by evaluating

K(x) at some quadrature point of element e or the average of the integration of

K(x). Using the transformation described in Section III.2.1, we obtain an alternative

expression for matrix A,

A =
∑
e∈T

B′T
e G

−T
e DeG

−1
e B′

e∆e,

which is used to derive the following approximation of A,

A′ =
∑
e∈T

ωeB
′T
e D

′
eB

′
e∆e,

where D′
e is a positive diagonal matrix that is chosen to minimize the approximation

error and ωe is the scaling factor. It is easy to see that A′ is a symmetric M-matrix.

Take ωe = 1/λmin(D
′1/2
e GeD

−1
e GT

eD
′1/2
e ), the quality of the approximation is deter-
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mined by the following bound

κ(A′−1A) ≤ max
e∈T

κ(D′1/2
e GeD

−1
e GT

eD
′1/2
e ).

which should be minimized by appropriate choice of D′
e in each element.

III.3.1. Inhomogeneous domains

Discontinuity in the domain properties is common in a wide variety of applications

such as heat transfer through composite materials, multiphase flows of viscous liquids,

and groundwater modeling. Other applications where the coefficients have large dis-

continuities are electrical networks, semiconductors, and electromagnetics modeling.

For problems involving different isotropic materials, the discontinuity is restricted to

the interface between the materials. One can use a mesh that conforms to these inter-

faces such that elements do not straddle different materials. In this case, De = deI,

where de is a scalar and I is the identity matrix. By choosing D′
e = De, as shown in

the following, we guarantee that the quality of the preconditioner is no different from

that of an isotropic problem. This holds even for arbitrarily ill-conditioned scenarios.

κ(A′−1A) ≤ max
e∈T

κ(D′1/2
e GeD

−1
e GT

eD
′1/2
e )

= max
e∈T

κ(D1/2
e GeD

−1
e GT

eD
1/2
e )

= max
e∈T

κ(GeG
T
e ).

III.3.2. Anisotropic domains

In an anisotropic domain, K(x) varies continuously over the domain. The eigenvec-

tors and eigenvalues of K(x) give the orthogonal directions and their corresponding

magnitudes of anisotropy, respectively, at the point x. For the coordinate transfor-

mation, one should choose the edges closely aligned with these eigenvectors.
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At the element level, each block matrix De is SPD, therefore, ∃Pe, s.t. De =

PeΛeP
T
e , where Λe is a positive diagonal matrix with the eigenvalues of De (the

eigenvalues are bounded below by γ and above by Γ) as the diagonal entries, and Pe is

an orthonormal matrix, whose columns are the corresponding eigenvectors. Consider

the case when every element e has two adjacent edges aligned with the eigenvectors of

De, whose unit vectors form the new coordinate system. The transformation matrix

GT
e is identical to the eigenvector matrix of Pe, leading to the following simplification,

A =
∑
e∈T

B′T
e G

−T
e (GT

e ΛeGe)G
−1
e B′

e∆e =
∑
e∈T

B′T
e ΛeB

′
e∆e,

which indicates that A is a symmetric diagonally dominant M-matrix. From this

result, intuitively, we may speculate that if a mesh is generated according to the

anisotropic characteristics of the domain, then our approach would work perfectly

well. A justification of this speculation is given in the following.

βe

αe
θe

a line parallel to x-axis

p2
e

p1
e

η

ξ
y

x

Fig. III.5. Mesh edges not well aligned with the anisotropic principal axes.

Analyzing a full fledged 3D case is an extremely involved task and it is easy to

get lost due to the number of parameters involved. For simplicity, let’s analyze a two

dimensional case. Suppose (ξ, η) is our chosen coordinate system in element e. Let
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Pe = [p1
e, p

2
e], where pie, i = 1, 2 are the column vectors. Pe can be written as,

Pe =

 cos θe − sin θe

sin θe cos θe

 , (3.9)

where θe is the angle between p1
e and x-axis. Without loss of generality, let Λe =

diag(1, δe), where γ/Γ ≤ δe ≤ 1. Suppose the mesh edges don’t align with the

anisotropic axes perfectly, and αe, βe are the angles between ξ and p1
e, and η and p2

e

respectively (positive in anti-clockwise direction), as shown in Fig. III.5. Notice that

Pe is an orthonormal matrix, some simple calculations show that,

D−1
e = Pe

 1 0

0 1/δe

P T
e ,

Ge =

 cos(θe + αe) sin θe + αe)

− sin(θe + βe) cos(θe + βe)

 ,

GeD
−1
e GT

e =


cos2 αe + sin2 αe/δe sinαe cos βe/δe − cosαe sin βe

sinαe cos βe/δe − cosαe sin βe sin2 βe + cos2 βe/δe

 .
Let D′−1

e = diag(GeD
−1
e GT

e ). After diagonal scaling,

D′1/2
e GeD

−1
e GT

eD
′1/2
e =

 1 Fe

Fe 1

 .
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where Fe = Fn,e/Fd,e, and

Fn,e = sinαe cos βe − δe sin βe cosαe,

Fd,e =
√

(δe cos2 αe + sin2 αe)(δe sin2 βe + cos2 βe).

The eigenvalues of D
′1/2
e GeD

−1
e GT

eD
′1/2
e are λe = 1 ± Fe. The condition number of

A′−1A can be written as,

κ(A′−1A) = max
e∈T

κ(D′1/2
e GeD

−1
e GT

eD
′1/2
e )

= max
e∈T

1 + |Fe|
1− |Fe|

= max
e∈T

Fd,e + |Fn,e|
Fd,e − |Fn,e|

.

(3.10)

Notice that |Fn,e| ≤ Fd,e, κ(A
′−1A) also can be estimated as,

κ(A′−1A) = max
e∈T

(Fd,e + |Fn,e|)2

F 2
d,e − F 2

n,e

≤ max
e∈T

4F 2
d,e

F 2
d,e − F 2

n,e

.

(3.11)

From the analysis of (3.10) and (3.11) we obtain the following conclusions:

• If the domain is isotropic, i.e., δe = 1,

Fn,e = sinαe cos βe − sin βe cosαe = sin(αe − βe),

Fd,e =
√

(cos2 αe + sin2 αe)(sin
2 βe + cos2 βe) = 1.
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thus, (3.10) gives,

κ(A′−1A) = max
e∈T

1 + | sin(αe − βe)|
1− | sin(αe − βe)|

.

In fact , this recovers the result of (3.3) in Section III.2.1.

• If mesh edges align perfectly with the dominant anisotropic axis, i.e. αe = 0,

Fn,e = −δe sin βe,

Fd,e =
√
δe(δe sin2 βe + cos2 βe).

thus, (3.11) gives,

κ(A′−1A) = max
e∈T

4δe(δe sin2 βe + cos2 βe)

δe cos2 βe

≤ max
e∈T

4(δe sin2 βe + cos2 βe)

cos2 βe
.

recall γ/Γ ≤ δe ≤ 1, thus,

κ(A′−1A) ≤ 4

cos2 βe
.

In this case, the condition number of A′−1A is well bounded independent of γ

and Γ.

• In general, (3.11) gives,

κ(A′−1A) ≤ max
e∈T

4(δe cos2 αe + sin2 αe)(δe sin2 βe + cos2 βe)

δe(cosαe cos βe + sinαe sin βe)2
. (3.12)
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since γ/Γ ≤ δe ≤ 1,

κ(A′−1A) ≤ max
e∈T

4(cos2 αe + sin2 αe)(sin
2 βe + cos2 βe)

δe(cosαe cos βe + sinαe sin βe)2

≤ 4Γ

γ
max
e∈T

1

cos2(αe − βe)
.

thus, the condition number of our preconditioning system is small if the ratio

of Γ and γ is small.

Actually, if the mesh is adapted to the coefficients, i.e. α = max
e∈T

max{αe, βe} is

adjusted to the anisotropic ratio γ/Γ, our approach is anticipated to work well even

when γ/Γ approaches zero. Let γ/Γ → 0, and α→ 0, from (3.12) we can get,

κ(A′−1A) ≤ max
e∈T

4(δe cos2 αe + sin2 αe)(δe sin2 βe + cos2 βe)

δe(cosαe cos βe + sinαe sin βe)2

≤ max
e∈T

4(δe cos2 αe + sin2 αe)

δe(cosαe cos βe + sinαe sin βe)2

= max
e∈T

O

(
4(1 + (αe)

2/δe)

(1 + αeβe)2

)
(αe, βe → 0)

= O

(
α2

γ/Γ

)
.

This shows that if γ/Γ → 0 and
α2

γ/Γ
→ O(1), then κ(A′−1A) is well bounded.

This means that a small γ/Γ can be compensated by well aligned meshes. In practice,

when γ/Γ → 0, the mesh is usually refined accordingly, such that α approaches

zero. Experimental results of the support graph preconditioners for the anisotropic

problems in Chapter IV show the effectiveness of our approach.
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III.3.3. Notes on quadrilateral and hexahedral elements

There is no difficulty to apply the above approach to the quadrilateral and hexahedral

elements when solving problems with variable coefficients. Due to the fact that these

elements usually need more quadrature points to obtain the stiffness matrix, it seems

that when constructing M-matrix by evaluating K(x) at the centroid of an element e

may not be so “accurate”. However, as a preconditioner, this is not a problem at all.

Another point is, in three dimensional space, it is difficult or impossible to construct

a pure tetrahedral mesh such that in each tetrahedron we can find three adjacent

edges that are well aligned with the anisotropic axes; this certainly is not a problem

for a hexahedral mesh. In this sense, quadrilateral and hexahedral elements are good

candidates for solving problems with inherent directions. In real problems, depending

on the application a hybrid mesh may serve well.

III.4. Diffusion-reaction problems

Consider the general diffusion-reaction problem of (2.3), with uniformly bounded SPD

matrix K(x) and 0 ≤ q(x) ≤ Q. The linear system of (2.6) is resulted after standard

Galerkin discretization. Here A consists of two parts: A = A1 + A0, where A1 is the

stiffness matrix, and A0 is the mass matrix. According to what has been discussed

so far, we already have a good M-matrix preconditioner A′
1 for A1,

c̃0 ≤
uTA1u

uTA′
1u
≤ 1,

where c̃0 depend only on mesh properties (such as element angles, edge alignment)

and domain properties (such as anisotropy). A well known fact about mass matrix

is that, in a certain sense it is a scaled identity matrix (see, e.g. [20]), therefore, its
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diagonal matrix approximates it very well. Let A′
0 = diag(A0), then,

ĉ0 ≤
uTA0u

uTA′
0u
≤ ĉ1, ∀u ∈ Vh,

where the constant ĉ0, ĉ1 depends only on the element type, dimension d and the order

of elements. For example, ĉ0 = 1/2, ĉ1 = 1 + d/2 for linear simplicial elements (see

[47, 34]). Since A′
0 is positive, combining these two matrices together gives an M-

matrix A′ = A′
1+A′

0, which is used to approximate A. Since uTAu = uTA1u+uTA0u,

we have,

c̃0u
TA′

1u+ ĉ0u
TA′

0u ≤ uTAu ≤ uTA′
1u+ ĉ1u

TA′
0u, ∀u ∈ Vh.

so,

min{c̃0, ĉ0}uT (A′
1 + A′

0)u ≤ uTAu ≤ max{1, ĉ1}uT (A′
1 + A′

0)u, ∀u ∈ Vh.

i.e.,

min{c̃0, ĉ0} ≤
uTAu

uTA′u
≤ max{1, ĉ1}, ∀u ∈ Vh.

Thus,

κ(A′−1A) ≤ max{1, ĉ1}
min{c̃0, ĉ0}

. (3.13)

that is again independent of the size of the problem. Notice that other strategies,

such as using a lumped mass matrix to approximate the mass matrix, would achieve

a similar result.

III.5. Extension to higher order finite elements

From finite element theory, it is known that if the solution u of (2.4) is smooth, then

the errors in the L2-norm of the solution is of order O(hp+1) as h→ 0, where h is the

maximum diameter of elements and p is the highest order of the finite element basis.



45

Our idea on solving higher order finite element problem is to use the lower order

problem to approximate it. Here we especially borrow some results from two-level

methods (see [13, 9]).

The two-level methods are considered in the context of hierarchical bases. With

every node, we associate a basis function with a polynomial of degree at most p

such that the set of the basis functions is linearly independent. Let these basis func-

tions span the finite dimensional space Vh. Vh can be decomposed as the direct

sum Vh = V
(1)
h

⊕
V

(2)
h , where V

(1)
h

⋂
V

(2)
h = 0. V

(1)
h is spanned by the set of basis

functions {φ1, · · ·φNv} associated with the vertex nodes, which is a complete set of

linear (or multi-linear) functions in Vh. V
(2)
h is spanned by the rest of basis func-

tions {φNv+1, · · · , φN}. The final assembled matrix obtained by the finite element

discretization thus has a 2× 2 block form,

A =

 A1 C

CT A2

 , (3.14)

where

A1 = {a(φi, φj)}, i, j = 1, · · · , Nv,

A2 = {a(φi, φj)}, i, j = Nv + 1, · · · , N,

C = {a(φi, φj)}, i = 1, · · · , Nv, j = Nv + 1, · · · , N.

Note that A1, A2 are SPD and have spectral numbers κ(A1) = O(h−2) and κ(A2) =

O(1) as h → 0 (see [13, 9]). Also notice that the order of matrix A1 is very small

compared to A. For example, for simplicial elements, the vertex nodes are v =

O(N/pd), where N is the total number of nodes, d is the dimension. For a regular

triangulation, we have the following lemma:
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Lemma III.1 (see [13, 9]) The spectral condition number of A1 0

0 A2


−1  A1 C

CT A2

 . (3.15)

is bounded from above by
1 + ς

1− ς
, where 0 < ς < 1. The parameter ς depends on the

geometry properties of the mesh and the boundedness of K(x) and q(x), and it is

independent of the problem size.

One strategy is to use the diagonal block matrix [A1, 0; 0, A2] to approximate

the original matrix (3.14). To construct an M-matrix preconditioner for A, an M-

matrix preconditioner for A1 and A2 is needed. Employing the approach described

in previous sections, an M-matrix A′
1 can be constructed to approximate A1. For the

higher order part A2, a trivial diagonal preconditioning is used (other strategies to

construct M-matrix approximation for A2 can be explored). Let A′
2 = diag(A2), then

κ(A′−1
2 A2) = O(1). Thus, we have,

κ


 A′

1 0

0 A′
2


−1  A1 C

CT A2




≤ κ


 A′

1 0

0 A′
2


−1  A1 0

0 A2


 · κ


 A1 0

0 A2


−1  A1 C

CT A2




= (max{κ(A′−1
1 A1), κ(A

′−1
2 A2}) ·

1 + ς

1− ς

= O(1).

In fact, the idea above can be applied to standard Lagrangian elements without
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any difficulty. The two spaces V
(1)
h and V

(2)
h can be constructed by linear transfor-

mation on the original basis. Let’s consider a typical element e that has q nodes,

where the first v (v ≤ q) are vertex nodes. Since each polynomial of degree at most

p is a unique linear combination of these higher order Lagrangian basis functions, in

particular, we can represent v independent linear basis functions at the vertex nodes.

Thus, we have,  ψe
1

ψe
2

 = W e

 φe1

φe2

 =

 W e
11 W e

12

0 I


 φe1

φe2

 ,
where φe = [φe1,φ

e
2]
T = [φe1, · · ·φev, φev+1, · · · , φeq]T are the Lagrangian basis, and ψe =

[ψe
1,ψ

e
2]
T = [ψe1, · · ·ψev, ψev+1, · · · , ψeq ]T are the new basis with the first v functions

being linear. Then, let ψe
1 span V

(1)
h,e and ψe

2 span V
(2)
h,e . After ordering the vertex

nodes first globally, we have,

ψ = Wφ,

where, ψ = [ψ1, · · · , ψNv , ψNv+1, · · · , ψN ]T , φ = [φ1, · · · , φNv , φNv+1, · · · , φN ]T , and

W denotes the set of all element transformation matrices {W e} in the global node

ordering (the vertex nodes are ordered first). V
(1)
h is spanned by basis functions

{ψ1, · · · , ψNv}, and V
(2)
h is spanned by the rest of the basis functions {ψNv+1, · · · , ψN}.

The final assembled matrices obtained by these two sets of basis functions have the

following relationship:

Aψ = a(ψ,ψ) = a(Wφ,Wφ) = Wa(φ,φ)W T = WAφW
T .

Thus solving the original linear system Aφx = b is equivalent to solving the new linear

system Aψx
ψ = bψ, where xψ = W−Tx, bψ = Wb (Note that the inverse matrix W is

not needed in the actual implementation, since x is obtained from xψ). The matrix

Aψ has the 2× 2 block structure of (3.14).
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Fig. III.6. P2 master element.

Now we give an example of solving standard triangular quadratic elements by this

approach. The standard basis functions of the master quadratic triangular element

(see Fig. III.6) are:

φe1 = ζ1(2ζ1 − 1), φe2 = ζ2(2ζ2 − 1), φe3 = ζ3(2ζ3 − 1),

φe4 = 4ζ2ζ3, φe5 = 4ζ1ζ3, φe6 = 4ζ1ζ2.

where {ζi}, i = 1, 2, 3 are the natural coordinates. The linear transformation used is,

W e =



1 0 0 0 1
2

1
2

0 1 0 1
2

0 1
2

0 0 1 1
2

1
2

0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

By ψe = W e φe, a new set of basis functions {ψei }, i = 1, · · · , 6 is obtained, where

the first three are actually the shape functions of the corresponding linear element,

and the last three are unchanged. This new set functions is, in fact, the standard
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hierarchical basis for the quadratic element:

ψe1 = ζ1, ψe2 = ζ2, ψe3 = ζ3,

ψe4 = 4ζ2ζ3, ψe5 = 4ζ1ζ3, ψe6 = 4ζ1ζ2.

In this new basis {ψi}s (where the vertex nodes are ordered first), we take the

preconditioner A′ as,

A′ =

 A′
1 0

0 diag(A2)

 .
Notice that A′

1 is the transformed matrix for the stiffness matrix A1 of the corre-

sponding linear elements in the new basis.

Table III.5

The number of iterations of PCG using preconditioner A′ for quadratic elements.

# elements 215 822 3,344 13,256 53,036 212,093

# unknowns 400 1,583 6,565 26,269 105,579 423,204

size of A1 93 381 1,611 6,507 26,272 105,556

# iterations 20 22 21 23 22 21

We applied the approach described above to the unit square Poisson model prob-

lem with Dirichlet boundary condition. The quadratic triangular mesh is generated

by Triangle. The PCG stopping criteria is the same as before. Experimental re-

sults are reported in Table III.5, which shows that the number of iterations is almost

unchanged with varying problem sizes. Notice that the size of A1 is only about a

quarter of the number of unknowns, which means the M-matrix preconditioner A′

is extremely sparse. In Chapter IV, we show that our support graph preconditioner

built on top of this M-matrix approximation outperforms the incomplete Cholesky

factorization even with less number of nonzeros in the factor.
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CHAPTER IV

MODIFIED DOMAIN PARTITIONED SUPPORT GRAPH

PRECONDITIONERS

This chapter presents applications of the support graph preconditioning technique

to the second order elliptic finite element problems. First, the strategy of applying

support graph preconditioners to the finite element problems is given. Then, the

current status of support graph preconditioning is reviewed. This is followed by the

presentation of a new variant of the support graph preconditioning technique called

modified domain partitioned support graph preconditioners.

IV.1. Support graph preconditioning for FEM problems

Our strategy of applying support graph preconditioning technique to a linear sys-

tem (2.6) derived from finite element problems is a two-step preconditioning: first,

generate a symmetric diagonally dominant M-matrix A′ for A using the techniques

outlined in Chapter III; then, a support graph preconditioner M constructed via A′

is used to the original matrix A. According to the methodology of Chapter III, the

condition number κ(A′−1A) does not depend on the size of the problem and it can

be denoted as a constant CM . Now let c be the congestion and δ the dilation of the

support graph M after embedding the graph of A′. By Lemma II.4, the condition

number of the preconditioned linear system M−1Ax = M−1b can be estimated as,

κ(M−1A) = κ(M−1A′A′−1A) ≤ κ(M−1A′) · κ(A′−1A) ≤ CM · δ · c. (4.1)

The condition number is controlled by the product of the support graph’s con-

gestion and dilation, which in turn affects the number of iterations of the PCG al-
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gorithm. The smaller the condition number, the larger the number of edges in the

support graph is required. A dense support graph not only increases the complexity

of factorization, it also increases the work per iteration of the PCG algorithm. De-

pending on the application, support graph preconditioner should be constructed by

balancing the overhead of setting up the preconditioner and the work required by the

iterations, and the later also can be improved by balancing the number of iterations

and the work required per iteration.

IV.2. The state-of-the-art in support graph preconditioning

The first support graph preconditioners were proposed by Vaidya [42]. Vaidya de-

signed a family of preconditioners based on spanning trees in graphs. His first class of

preconditioners are maximum-weight spanning tree preconditioners. They are easy to

factor without generating any fill-in . However, they don’t perform well, as for some

large sized problems the preconditioned conjugate gradient method even converges

slower than the one without preconditioning. His second class of preconditioners are

the maximum-weight spanning tree augmented by adding extra edges. Specifically,

the algorithm splits the maximum-weight spanning tree into t connected components

of almost the same size, then adds the heaviest edge between every pair of subtrees if

there is an edge connecting them in the original graph. The condition number of the

preconditioned system is improved, resulting in a better convergence rate. However,

this is accompanied with an increase in the cost of factorization and the work required

in each iteration step. To reduce fill-in in factors, a high quality of sparse direct solver

is required. The theoretically optimal value of t is around N0.25 which gives a total

solution time of O(N1.75), and O(N1.2) for a planar graph. Recently Spielman and

Teng [40] gives a near linear time algorithm for solving linear systems by support
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graph preconditioners, however, their algorithm is quite complex and has not been

implemented yet. Implementation and performance analysis of Vaidya’s precondi-

tioners was reported by Chen and Toledo [18]. The matrices of their experiments are

obtained from finite difference discretization of the second order elliptic PDEs. They

showed that the cost and convergence of these preconditioners depends almost only

on the nonzero structure of the matrix, but not on its numerical values. Also, these

preconditioners are almost oblivious to the boundary conditions and robust for diffi-

cult problems. In particular, these preconditioners outperform incomplete Cholesky

factorization based preconditioners for anisotropic problems in two dimensional space.

For three dimensional problems, in general, Vaidya’s preconditioners are much slower

than the incomplete Cholesky preconditioners.

Extension to symmetric diagonally dominant positive definite matrices was also

mentioned by Vaidya and implemented and analyzed later on by Boman et al.[15].

Now the concept of a maximum-weight spanning tree is extended to a construction

called a maximum-weight basis. Every symmetric diagonally dominant matrix A can

be written in the form of A = UUT , where each column of U is either a positive edge

vector, a negative edge vector or a vertex vector. The edges of U can be used to

define a structure called a matroid – an independent subset of these edges. The goal

is to seek a preconditioner M = V V T for A, where the columns of V are a subset of

the columns of U , such that κ(M−1A) is small and at the same time M is easy to

factor. Constructing a maximum-weight basis is a process of constructing a matroid

with maximum weight, in a very similar way (though a little bit complicated) of

constructing maximum-weight spanning tree which, in fact, is its special case.

Another important support graph preconditioners, called support trees, were

proposed by Gremban et al. [25, 24] They view the matrix-vector multiplication as

a process of information ‘mixing’. Thus, a matrix is a communication network. The
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support tree M is required to approximate the topological properties of A, and it is

not necessarily a subgraph of the original graph A. A support tree is constructed by

partitioning the nodes of A hierarchically. At the top level, a root node ofM is formed,

which represents the original graph. Subsequently, at each level of the hierarchy, a

child node is added (to M) for each subgraph of the parent node. The edge between a

child and its parent is assigned by a proper weight, such that the communication of the

subgraph to the outside world is preserved in average. The final level of subgraphs are

the original nodes of A. Thus, each node of M defines a subgraph of A, and each edge

of M connects subgraphs at two consecutive hierarchical levels; the root corresponds

to the entire graph A, while leaves are the nodes of A. A balanced tree resulted if the

subgraphs are roughly the same size at each level of partitioning. For regular grids, a

node of M usually has a branching factor of 2d in d dimensional space. Thus, M is a

binary tree for a one dimensional mesh, a quadtree for a two dimensional mesh and

a octree for a three dimensional mesh. By assigning appropriate weights for edges

of M , M approximates the communication properties of A. Since M is a balanced

tree, these preconditioners parallelize well. One of the drawbacks of this approach,

however, is the increased system size. They basically solve an expanded system. For

example, the number of nodes of M can be twice the number of nodes of A for a

two dimensional problem. Another major drawback is, the condition number bounds

are available only for matrices whose edge weights are more or less uniform, which is

almost equivalent to say, that the support tree approach applies only to the Poisson

problems with constant conductivity. In their experiments, they used the matrices

derived from regular grid discretization with constant coefficients. One thing worth

to mention is that Gremban et al. also presented a technique to transform a problem

of solving a linear system with symmetric diagonally dominant matrix to a linear

system with symmetric diagonally dominant M-matrix. Though the new M-matrix
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doubles the size both of vertices and edges of the original matrix.

In the context of solving finite element problems, Wang and Sarin [46] pro-

posed domain partitioned support graph preconditioners (DPSG). DPSG is a variant

of Vaidya’s preconditioners, since it uses subgraph to construct the support graph.

Compared to the convectional Vaidya’s preconditioners [18], DPSG preconditioners

eliminate the recursive procedure of splitting a tree; instead they use a graph parti-

tioning algorithm to partition the domain first, then generate the maximum weighted

spanning tree in each domain. Thus the size of the subgraph components is well

balanced. In addition, the domain partition approach has inherent parallelism, which

can be explored to construct a parallel support graph preconditioner. DPSG sees the

graph of the matrix A the same as the finite element mesh, and the graph of trans-

formed M-matrix A′ is a subset of the mesh. DPSG forms the subgraph components

by partitioning the finite element mesh. To construct the support graph M , first the

mesh is divided into t subdomains of nearly equal size, such that each element belongs

to one subdomain; then, all the interface edges, i.e., the edges neighboring different

subdomains, are included in the support graph M , and are virtually identified as

the super root of the support graph M ; finally, a maximum weight spanning tree is

generated in each subdomain starting from the super root, and the edges of the trees

are included in the support graph M . The performance study of DPSG for two di-

mensional finite element problems showed a good potential. A drawback of DPSG is

that the support graph construction is involved with the finite element mesh. In this

work, we propose a modified partitioned support graph preconditioners (MDPSG)

that does not involve the finite element mesh and can be served as a general black

box algorithm. In chapter V, we apply MDPSG to various finite element problems

and compare its performance with incomplete factorization based preconditioners.
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IV.3. MDPSG

MDPSG preconditioners apply to matrices from both finite difference and finite ele-

ment methods. Since the focus of this work is the finite element problems, MDPSG

preconditioners are introduced and tested in the context of the finite element prob-

lems.

IV.3.1. MDPSG algorithm

Experimental results showed the effectiveness of our earlier scheme DPSG [46] for

solving two dimensional elliptic problems discretized by triangular elements. The

domain partition approach of DPSG has inherent parallelism, which is performance

friendly on the multi-core or multiple processors. However, the requirement of DPSG

to include all interface edges between subdomains in the support graph may have a

backward side-effect: it may force selection of these interface edges during element

coordinate transformation when constructing a symmetric diagonally dominant M-

matrix A′ (see Chapter III for detail), such that the final support graph is a well-

compartmented connected graph. A care is also needed when dealing with anisotropic

problems. Since all the interface edges are included in the support graph, the domain

should be partitioned in a way that minimizes the number of edges with small weights.

In this dissertation, we propose a new scheme called MDPSG. The main depar-

ture of MDPSG from DPSG is that it partitions the graph of the already transformed

M-matrix A′ directly. Thus, MDPSG applies to any symmetric diagonally dominant

M-matrix, either from finite difference methods or finite element methods. The pro-

cedure of constructing the MDPSG support graph M follows the same steps of DPSG

but with some subtle differences:

1. Divide the graph A′ into t subdomains of nearly equal size. Each node belongs
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to one subdomain.

2. Each subdomain is augmented by neighboring nodes that are connected to the

nodes of the subdomain, i.e. the interface nodes participate in more than one

augmented subdomains.

3. A maximum weight spanning tree is generated within each augmented subdo-

main. The edges of the tree are included in the support graph M .

For finite element problems, constructing MDPSG is entirely decoupled from the

process of constructing M-matrix preconditioner A′, thus the quality of the precondi-

tioner A′ is not compromised in any way. This decoupling makes it a perfect general

black box algorithm for all diagonally dominant M-matrices. Another advantage of

MDPSG over DPSG is that, it is a true maximum weight spanning graph. Since for

any edge e ∈ A′, there is a support path p ∈M , such that all edges in p have weight

at least as heavy as that of e. Thus, no special care is needed when dealing with

anisotropic problems.

These two variations of domain partitioned support graph preconditioners are

illustrated in Fig. IV.1. The domain is a Poisson problem defined on a two dimensional

unit square with Dirichlet boundary condition and discretized by a triangular mesh

(generated by Triangle). The triangular mesh is geometrically partitioned into 2-

by-2 subdomains along x and y directions. The interfaces of these subdomains are

distinguished by the barbed edges. The blue edges are the edges of the support

graphs: Fig. IV.1(a) is the graph of a DPSG preconditioner and Fig. IV.1(b) is the

graph of a MDPSG preconditioner (the nodes at interfaces are noted by thick dot

markers).
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Fig. IV.1. Graphs of domain partitioned support graph preconditioners.
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IV.3.2. Analysis of MDPSG

We use Mt to denote a MDPSG preconditioner that forms t subgraph components of

an n-by-n symmetric diagonally dominant M-matrix A. Mt partition the graph of A

into t components G1, · · · , Gt, each has O(n/t) nodes and O(n/t) edges (A is sparse,

the number of edges is in the order of O(n)). For any edge e ∈ A, we can find an

augmented component G̃i, i ∈ [1, · · · , t] that contains both of the end nodes of e. The

induced subgraph of Mt by the nodes of G̃i includes a maximum weight spanning tree

of G̃i, and a support path can be found to support e such that all edges along this

path are at least as heavy as e. The support paths in G̃i have length at most O(n/t),

and each edge in G̃i supports at most O(n/t) paths, i.e. both of the congestion and

dilation of Mt are in the order of O(n/t). By Lemma II.4, the condition number

κ(M−1
t A) is bounded by O(n2/t2).

As a concrete example, let’s consider the two dimensional unit square Poisson

problem aforementioned (with constant coefficients K(x) ≡ 1). The mesh is geo-

metrically partitioned along x and y directions to form subdomains. As the mesh

refined, for instance, the number of unknowns is quadrupled, the number of subdo-

mains is doubled along each direction to maintain the quality of the preconditioners.

The left column of Table IV.1 shows that the number of PCG iterations (asymptot-

ically) remains unchanged when the number of unknowns n quadrupled, as long as

the number of subdomains t is quadrupled as well. This follows the condition number

bound O(n2/t2) obtained above. For such a regular partition, each subdomain is

well-shaped, and the diameter of the subdomains is pretty uniform. Notice however,

a high quality geometric partition is possible only for a simple domain, such as, a unit

square. As a general support graph preconditioner, MDPSG partitions the graph A

directly and does not rely on the mesh information. Shown in the right column of
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Table IV.1 is the result of MDPSG using Metis [29] to partition the graph A. We

can see, that the quality of MDPSG is not affected by using a general graph partition

algorithm at all, it may be even better due to the high quality of the latter.

Table IV.1

Number of iterations of PCG by preconditioner MDPSG with almost fixed n/t. This is
a 2D unit square Poisson problem with Dirichlet boundary condition. PCG stops when the
relative residual norm below 10−6.

n
Regular geometric partitions Metis partitions

t = k × k # iter t # iter

3,228 8× 8 53 64 45

13,099 16× 16 57 256 49

52,625 32× 32 66 1,024 55

211,362 64× 64 76 4,096 63

846,728 128× 128 76 16,384 67

In general, the cost of Metis partition is O(n log n) (for a moderate number of

partitions, the cost is O(n)). The cost of finding maximum weight spanning trees is

O(n log n). Thus, the construction of Mt is not significant. For the factorization, the

node elimination can proceed as follows. The root of the maximum weight spanning

tree in each subdomain will be eliminated last. The order of elimination for other

nodes is according to the node degree. The leaf nodes are eliminated first, then the

nodes with degree of 2, and so forth. For the bounded graph, as what is obtained from

the finite element problems, the number of fill-in is proportional to the number of

nodes when the graph is shrinked as a connected graph with t nodes. The elimination

of this shrinked graph can take advantage of the graph property, such as planarity. In

summary, the factorization cost of Mt follows the Vaidya’s augmented spanning tree

preconditioners, O(n+ t6) work and O(n+ t4) space required for a general graph A,
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and O(n + t1.5) work and O(n + t log t) space required when A is a planar (see [14]

for detail). The parameter t should be chosen to balance the factorization cost and

the PCG iteration cost. A large number t results in a smaller condition number and

hence the high convergence rate, at the expense of large fill-in in Mt’s factors. For

the extreme cases, M1 gives a maximum spanning tree preconditioner, the Cholesky

factorization can proceed without any fill-in, while PCG converges the most slowly;

Mn is the original matrix itself, the Cholesky factorization is the most expensive one,

while PCG converges in only one step (a direct solver in fact).

For convenience, an alternative notation MDPSG-s (where s is an integer) is used

in Chapter V. MDPSG-s refers to MDPSG that has subdomains of size s, that is,

(approximately) s number of nodes are allocated for each subdomain. For instance,

MDPSG-1 corresponds to Mn, while MDPSG-n corresponds to M1.
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CHAPTER V

EXPERIMENTAL RESULTS

This chapter presents the experimental results of applying the MDPSG precondi-

tioners to various second order elliptic finite element problems. The methodology of

performance comparison and experimental setup are introduced first. The effective-

ness of the MDPSG preconditioners compared to the incomplete factorization based

preconditioners is presented next. Finally, the parallel potential of these precondi-

tioners is discussed.

V.1. Methodology

The performance of MDPSG preconditioners is compared to that of incomplete factor-

ization based preconditioners. Both incomplete factorization based preconditioning

and support graph preconditioning share the same idea of reducing the fill-in in the

factors. Incomplete factorization based preconditioners sparsify the factors during

the factorization, that is – the factorization is incomplete; whereas, support graph

preconditioners sparsify the original matrix first and then factorize completely. Since

the incomplete factorization based preconditioning is widely recognized as an effective

method for iterative sparse linear solvers, and it has a striking parity with support

graph preconditioning, our MDPSG experiments are conducted in parallel with in-

complete factorization based preconditioners.

The incomplete factorization based preconditioners are also called ILU (Incom-

plete LU factorization), which are constructed in the factored form M = L̃Ũ , with L̃

and Ũ being lower and upper triangular matrices. For symmetric case, these precon-

ditioners are called ICC (Incomplete Cholesky), with the factored form M = L̃L̃T .
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ILU falls into two categories: threshold based ILUT and structure based ILU(k). In

ILUT (see [36]), a fill-in is permitted only if it is larger than a specified value, and an

upper limit may be placed on the number of entries permitted in a row. Thus, the

locations of fill-in of ILUT are determined during numeric factorization dynamically.

In contrast, ILU(k) has two phases. In the symbolic factorization phase, the locations

of fill-in are determined. Each fill-in is assigned a level, a fill-in is permitted only if

its level is not greater than k. Usually the level of fill-in is defined recursively from

the level of its parents in the Gaussian elimination process. A common scheme is

that all nonzero entries of the original matrix are assigned 0 level, and zero entries

are assigned ∞ level. The level of a fill-in is the minimum value of the current level

and the sum of the levels of its two parent entries incremented by one (see, e.g., [37]

for detail). In the numerical factorization phase the factors are constructed according

to the symbolic factorization. Since the parameter for ILUT should be tuned to a

particular application, we only consider ILU(k) here, in particular the ICC(k).

One of the difficulties of comparing different algorithms is the implementation

problem. Different implementations can give totally different results. Both for effi-

ciency and objective comparison, whenever possible we use third party software that

have good reputation and popularity. Our driver program is coded using library of

Portable Extensible Toolkit for Scientific Computation (PETSc) [10, 11, 12], which

nowadays is a very popular computation suit for the scalable (parallel) solution of

scientific applications modeled by partial differential equations. PETSc has imple-

mented data structures and routines that provide the building blocks for solving large

scale applications both on parallel and serial computers. Many Krylov subspace meth-

ods and preconditioners are available in PETSc with superior performance compared

to most implementations. In addition, PETSc provides a uniform access to exter-

nal packages composed of popular direct solvers and preconditioners. In particular,
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we use PETSc’ external package MUMPS [4, 5, 6] for factorization of MDPSG and

BlockSolve95 [28] as the parallel implementation of ICC(0). MUMPS is the public

domain package called MUltifrontal Massively Parallel sparse direct Solver. It is a

multifrontal code primarily intended for unsymmetric and symmetric positive definite

systems, it can also be used to solve many indefinite problems. MUMPS has interface

to several pivot orderings, such as the approximate minimum degree (AMD) order-

ing [2], an approximate minimum degree fill-in (AMF) ordering [3], and the nested

dissection (ND) ordering provided by Metis [30] etc. BlockSolve95 was developed in

the 90’s, and it is a general purpose, scalable parallel software library for the solution

of sparse linear system. BlockSolve95 implements ILU(0) and requires the matrix

being symmetric in structure. It uses a parallel coloring algorithm that allows for the

efficient computation of matrix ordering and scalable performance.

Table V.1

Code components of PCG solvers with different preconditioners.

components

PCG solver

MDPSG ICC(k) Parallel ICC(0)

(serial, parallel) (serial) (parallel)

assemble our C++ code

M-matrix
our C++ code - -

transformation

partition Metis 4.0 - -

support graph our C++ code - -

factorization
MUMPS 4.7.3

PETSc ICC
BlockSolve95

(invoked through PETSc) (invoked through PETSc)

iterative solver PETSc CG

- means not applicable.
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Our experiments involve three preconditioners in the context of iterative solve

PCG: the support graph preconditioner MDPSG, the incomplete Cholesky factor-

ization ICC(k) and the parallel ICC(0). The finite element assembling, M-matrix

transformation, and support graph formation are done by our own C++ code; all

other parts use third party software. The code components of these solvers are sum-

marized in Table V.1. Notice that we use ICC(k) that comes with PETSc.

V.2. Setup

We conduct experiments on two different platforms. One is an Intel(R) Pentium

4 2.4GHz single processor machine with 2GB RAM, that runs Ubuntu 6.06 Linux

operating system, and the compiler is GCC 4.03. All our two dimensional experi-

ments are conducted on the Pentium 4 machine, while three dimensional experiments

and parallel experiments are conducted on Hydra – a 640-processor IBM 1.9GHz

Power5+’s Cluster system, that runs AIX 5.3 operating system, the compiler is IBM

XL C/C++ 8.0. Each node is a symmetric multi-processor (SMP) system, that is,

with 16 Power5+ processors and a 32GB of shared memory (only about 25GB are

available to user processing). All parallel programs employ the message-passing in-

terface (MPI) library.

Table V.2 lists descriptions of some notations that will be used in the report

tables and/or figures. Also notice that the preconditioner name is often used to refer

the PCG solver with that preconditioner if the context is clear. In all experiments, the

PCG iterations start with initial zero solution. Considering the large size of the linear

system and the ill-conditioned problems to be solved, all PCG solvers use the following

stopping criteria: the relative residual norm is below 10−10, i.e. ‖r‖/‖r0‖ < 10−10,

where r = b − Ax is the residual and ‖ · ‖ is the two-norm. In order to evaluate the
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Table V.2

Notations used in the tables.

notation description

n number of unknowns

p number of processors

#iter number of PCG iterations

nnzFac number of nonzeros of Cholesky or Incomplete Cholesky factor

‖e‖/‖e0‖ the relative solution error in two-norm

M-trx time (in second) of construct M-matrix during assembling

part time (in second) of subdomain partition of MDPSG

sg time (in second) of forming support graphs of MDPSG

fac time (in second) of Cholesky or Incomplete Cholesky factorization

iter time (in second) of PCG iterations

time total time (in second) of a PCG solver

δ the smallest anisotropy value (the largest anisotropy value is fixed at 1)

rcm the reverse Cuthill-McKee (RCM) ordering of the nodes of a graph

nd the nested dissection (ND) ordering of the nodes of a graph

accuracy of a PCG solver, for linear system (2.6), a random solution x is generated

and the right hand side is obtained by b = Ax; and the solution accuracy is evaluated

against this random solution.

Notice that the production term q(x) in (2.3) does not pose any difficulty for the

element level M-matrix construction, and it only increases the diagonal dominance

of the matrices, which is usually a good feature for any iterative solve. Therefore,

q(x) = 0 is assumed in all the experiments.

V.3. Two dimensional problems

All two dimensional (2D) serial experiments are conducted on the Pentiums 4 Linux

machine. The representative problems considered are: a simple Poisson problem, an
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inhomogeneous problem and an anisotropic problem.

V.3.1. Poisson problem

The first problem considered is a simple smooth Poisson problem discretized by linear

triangular elements (generated by Triangle) on a 2D unit square domain [0, 1]× [0, 1].

The coefficientsK(x, y) of (2.3) is a scalar function k(x, y) = 10−6+x2+y2. Two types

of boundary condition are considered: one is with the Dirichlet boundary condition

at four walls; the other is a mixed boundary condition, where the Neumann boundary

condition is at the upper wall and the Dirichlet boundary condition is at all other

three walls. The performance of different PCG solvers for these two cases are shown

in Table V.3 and Table V.4. Note that the factorization of MDPSG by MUMPS

uses AMF ordering by default for all our experiments (several orderings of MUMPS

had been tried, it seems that AMF consistently gives small number of of fill-in in the

factors for the 2D problems; for 3D problems, auto selection of the ordering sometimes

gives less fill-in but not consistent). These results show that the performance of

ICC is more hindered by Neumann boundary condition, whereas MDPSG is less

sensitive. ICC(1) is faster than ICC(0), but ICC(0) is more robust with respect to

the node ordering (for the case when ICC(1) with ND ordering fails, PETSc outputs

convergence reason -8 indicating the indefiniteness of the preconditioner). The ICC

with RCM ordering has better performance over the one with ND ordering. MDPSG

is robust and it outperforms ICC as the problem size becomes large. When the

problem size become too large, where is also the range that a direct solver cannot

solve, MDPSG can gracefully increase the parameter s and solve it. Also notice that

the performance of MDPSG is not sensitive to the value of s.

Table V.5 shows the performance characteristics of ICC(0) and MDPSG: ICC(0)

is more efficient per iteration due to the smaller number of nonzeros of its factor,
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Table V.3

Total time (in second) for a 2D unit square Poisson problem with Dirichlet boundary
condition.

n
ICC(0) ICC(1) MDPSG

nd rcm nd rcm 20 15 10 5

26272 1.14 0.71 1.10 0.52 4.00 3.75 3.06 2.59

52625 3.21 1.99 3.61 1.37 8.45 7.96 6.34 5.58

105556 9.75 5.85 13.34 4.06 18.02 16.53 14.18 11.90

211362 29.98 17.59 35.46 12.34 38.77 35.48 30.55 25.84

423329 93.10 48.60 X 36.04 85.41 77.06 64.85 56.91

846728 289.76 161.79 X 109.43 179.65 162.53 145.33 128.25

1693377 916.35 516.23 X 352.51 386.15 352.46 309.70 266.27

3387812 2612.28 1458.74 X 1003.52 819.82 767.35 708.39 -

X means divergence due to the indefiniteness of the preconditioner, - means too large to be solved.

however, the number of iterations of ICC(0) does not scale well with the problem

size; MDPSG has more cost per iteration due to the large number of nonzeros of

its factor, but the number of iterations almost unchanged when the problem size

increases. Under the same PCG stopping criteria, in general, the solution accuracy

(‖e‖/‖e0‖, where e = x̃− x, x̃ is the solution of a PCG solver, x is the true solution)

of MDPSG is higher than that of ICC(0), especially for the large size problems. A

typical performance breakdown of ICC(0) and MDPSG is shown in Table V.6. With

much smaller preconditioner overhead, ICC(0) has to take a longer iteration time

compared to MDPSG. The only overhead of ICC(0) is the incomplete factorization,

which takes a very small portion of the overall time. The overhead of MDPSG has

four parts: M-matrix transformation, subdomain partitioning, support graph forma-

tion and factorization. The overhead of MDPSG takes a quite portion of the overall

time, especially the factorization as the problem size grows. The balance between



68

Table V.4

Total time (in second) for a 2D unit square Poisson problem with mixed boundary con-
dition.

n
ICC(0) ICC(1) MDPSG

nd rcm nd rcm 20 15 10 5

26391 1.30 0.81 1.28 0.59 4.14 3.77 3.11 2.64

52799 3.74 2.36 3.85 1.67 8.59 7.67 6.80 5.61

105797 11.73 7.17 X 5.09 18.65 16.75 14.20 12.33

211714 35.58 21.13 43.73 14.48 38.69 36.30 30.18 24.81

423819 112.45 63.90 X 43.46 82.52 77.78 67.00 56.07

847432 347.85 195.15 X 132.20 178.64 161.48 143.37 123.69

1694345 1128.25 627.12 X 426.69 379.41 358.68 301.62 270.64

3389156 3409.64 1942.62 X 1303.16 852.07 785.82 713.15 -

X means divergence due to the indefiniteness of the preconditioner, - means too large to be solved.

factorization and iteration is the vantage point of support graph preconditioning tech-

nique that chooses the best of the iterative and direct solve. In practice, the balance

of the overhead and the iteration time of MDPSG is application dependent, and is

affected by factors such as hardware constrains, implementations of factorization and

iterative solve. As a rule of thumb, 10 ∼ 50 is a good range of s for two dimensional

problems.

Another observation from Table V.5 and Table V.6 is that the iteration imple-

mentation of ICC(0) is much efficient than that of MDPSG, considering the number

of nonzeros of the factor and the number of iterations (a more clear example on this

issue is given in Section V.3.2). Under the same CG implementation of PETSc, the

poor iteration performance of MDPSG is due to the inefficiency of MUMPS’s solution

solve phase, which somehow is not very good to be used within an iterative process.
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Table V.5

Performance characteristics of ICC(0) and MDPSG for a 2D unit square Poisson prob-
lem with mixed boundary condition.

n
ICC(0) rcm MDPSG 10

nnzFac #iter time ‖e‖
‖e0‖ nnzFac #iter time ‖e‖

‖e0‖

26391 1.05×105 174 0.81 7.26×10-9 3.88×105 37 3.11 6.26×10-11

52799 2.10×105 245 2.36 1.25×10-8 8.58×105 41 6.80 7.46×10-11

105797 4.22×105 340 7.17 2.18×10-8 1.94×106 41 14.20 1.35×10-10

211714 8.45×105 469 21.13 4.71×10-8 4.16×106 43 30.18 9.79×10-11

423819 1.69×106 648 63.90 7.66×10-8 9.09×106 46 67.00 7.79×10-11

847432 3.39×106 901 195.15 9.87×10-8 1.99×107 48 143.37 8.76×10-11

1694345 6.77×106 1263 627.12 1.35×10-7 4.37×107 47 301.62 1.19×10-10

3389156 1.35×107 1763 1942.62 2.00×10-7 9.43×107 49 713.15 9.33×10-11

Table V.6

Typical Performance breakdown of ICC(0) and MDPSG for a 2D unit square Poisson
problem with mixed boundary condition.

n
ICC(0) rcm MDPSG 10

fac iter M-trx part sg fac iter

26391 0.05 0.76 0.08 0.42 0.08 0.41 2.12

52799 0.11 2.25 0.17 0.86 0.16 0.86 4.75

105797 0.24 6.93 0.32 1.79 0.32 1.92 9.85

211714 0.53 20.60 0.53 3.68 0.64 4.16 21.17

423819 1.19 62.71 1.03 7.46 1.35 9.43 47.73

847432 2.64 192.52 2.25 16.80 2.73 21.68 99.91

1694345 5.97 621.15 4.50 38.50 5.57 53.48 199.57

3389156 13.01 1929.61 11.82 70.70 11.38 137.63 481.62
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Our own PCG implementation with MUMPS shows a similar performance.

V.3.2. Inhomogeneous problem

For inhomogeneous problems, i.e. the coefficient K(x) has a jump across different

materials, our strategy is to make sure that the edges of finite element mesh do not

straddle different materials, then in principle there is no performance degradation of

support graph preconditioners after M-matrix transformation (see Section III.3 for

detail). Under this strategy, experiments show that the performance of both ICC

and MDPSG of an inhomogeneous problem is comparable to that of its homogeneous

counterpart.

In the following, we demonstrate that MDPSG with a factor of almost the same

or even less number of nonzeros compared to that of ICC(0) still can outperforms the

latter. The problem considered is a unit square Poisson problem, K(x, y) is a scalar

function k(x, y) that has a jump across the domain:

k(x, y) =

 µ, for 0 < x ≤ 0.5;

1.0, for x > 0.5.

without loss of generality, assume 0 < µ ≤ 1.0. The upper wall is specified a Neumann

boundary condition, all other three walls are Dirichlet boundary condition. The do-

main is discretized by quadratic triangular elements using Triangle. For higher order

elements, our support graph preconditioning strategy is to use lower order elements

to approximate the higher order elements. In this example, a support graph precon-

ditioner for the linear triangular elements is constructed, and is used to precondition

the quadratic elements (see Section III.5 for detail).

Table V.7 shows the comparison between ICC(0) RCM and MDPSG-10 for the

problem with µ = 10−3. We add an additional column for MDPSG, that uses our own
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Table V.7

Comparison of ICC(0) and MDPSG-10 for a 2D inhomogeneous unit square Poisson
problem (discretized by quadratic triangular elements, with µ = 10−3).

n
ICC(0) rcm MDPSG-10

MDPSG-10

(AMD-LDL)

#iter time ‖e‖
‖e0‖ #iter time ‖e‖

‖e0‖ #iter time ‖e‖
‖e0‖

26402 166 1.03 3.83×10-8 78 4.83 2.02×10-9 78 0.76 2.02×10-9

52782 219 2.78 1.60×10-7 81 10.22 2.23×10-10 81 1.65 2.23×10-10

105847 298 8.16 9.87×10-8 82 21.02 1.81×10-9 82 3.72 1.81×10-9

211647 418 24.45 2.93×10-7 91 46.70 2.15×10-10 91 8.37 2.15×10-10

423587 586 73.82 3.20×10-7 94 98.04 1.99×10-10 94 18.39 3.64×10-10

847811 805 230.02 7.11×10-7 99 219.07 6.01×10-10 99 42.62 6.01×10-10

1694028 1136 662.96 8.11×10-7 105 446.89 2.15×10-9 105 88.82 2.15×10-9
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Fig. V.1. Total time vs. number of unknowns of ICC(0) and MDPSG (a 2D inho-
mogeneous unit square Poisson problem discretized by quadratic triangular elements, with
µ = 10−3).
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Table V.8

Iteration performance of ICC(0) and MDPSG-10 for a 2D inhomogeneous unit square
Poisson problem (discretized by quadratic triangular elements, with µ = 10−3).

n
ICC(0) rcm MDPSG-10

MDPSG-10

(AMD-LDL)

nnzFac #iter iter nnzFac #iter iter nnzFac #iter iter

26402 1.63×105 166 0.95 9.13×104 78 4.20 7.93×104 78 0.31

52782 3.26×105 219 2.62 2.04×105 81 8.91 1.80×105 81 0.71

105847 6.57×105 298 7.81 4.44×105 82 18.21 3.93×105 82 1.57

211647 1.32×106 418 23.71 9.99×105 91 40.83 8.76×105 91 3.78

423587 2.64×106 586 72.27 2.17×106 94 85.78 1.93×106 94 8.60

847811 5.28×106 805 226.60 4.68×106 99 192.80 4.31×106 99 20.45

1694028 1.06×107 1136 655.71 1.02×107 105 396.27 9.42×106 105 44.63

PCG solve and Tim Davis’s a simple Cholesky solver called LDL with an ordering

routine called AMD ([19]). MDPSG-10 outperforms ICC(0) RCM for a large size

problem (notice that MDPSG-10 with AMD-LDL always outperforms ICC(0) RCM

for all problems in the table), which is also drawn in Figure V.1. As mentioned before,

the intention of this work is to demonstrate the performance of algorithms of MDPSG

and ICC, not much on the implementation. The result here shows that MDPSG-10

scales well with the problem size and for large size problems MDPSG-10 outperforms

ICC(0). For the implementation issue, let’s see the iteration performance data shown

in Table V.8. It is obvious that, the performance of PETSc’s PCG solve with MUMPS

(for factorization) is very poor compared to that with ICC(0). For example, in the

row of the problem size of 847811, the number of nonzeros of the factors of MDPSG-

10 and ICC(0) are comparable, the number of iterations of ICC(0) is almost 8 times

the number of iterations of MDPSG-10, but the iteration time of them are quite

similar. However, notice that the iteration time of MDPSG-10 with AMD-LDL is



73

reasonable. Due to the fact that our emphasis is on the algorithms, and MUMPS is

basically a parallel direct solver which is convenient for our parallel experiments, so we

stick to our implementation choice for MDPSG in this work. The reader, however,

should be aware of the fact, that MDPSG can perform much better with a better

implementation.

V.3.3. Anisotropic problem

In order to apply the support graph preconditioning technique to the anisotropic

problems, the usage of an adaptive mesh is proposed. The idea is that, the mesh

edges should be well aligned with the anisotropic axes (see Section III.3 for detail).

Consider an anisotropic problem defined in a ring-shape domain that has the inner

and outer radius of 2 and 3 unit respectively, the strong anisotropic axis is along the

circle direction with anisotropy value 1, while the weak anisotropic axis is along the

radius direction with anisotropy value δ, the boundary condition is Dirichlet. The

domain is discretized by
√
N ×

√
N nodes along both circle and radius directions,

where N is the total number of mesh nodes. Though the grid is regularly formed, the

indices of nodes are randomly permuted. We tested MDPSG with both triangular

and quadrilateral discretizations varying the problem size and anisotropy ratio, the

results obtained are similar for both elements.

Shown in Table V.9 is the total time of different PCG solvers with quadrilateral

discretization and a fixed smallest anisotropy value δ = 10−3. Also listed in this

table is the unpreconditioned CG solver. Compared to CG, ICC(0) does not provide

much speed up as the problem size grows, while ICC(1) totally fails (PETSc outputs

convergence reason -8 for ICC(1) indicating the indefiniteness of the preconditioner).

On the other hand, MDPSG may be not impressive for small size problem, but scales

well as the problem size increases. Table V.10 shows the typical performance char-
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Table V.9

Total time (in second) of different solvers for a 2D ring-shape domain anisotropic prob-
lem (discretized by bi-linear quadrilateral elements, the smallest anisotropy value δ = 10−3).

n CG
ICC(0) ICC(1) MDPSG

nd rcm nd rcm 10 20 30

39600 6.25 4.49 2.26 X X 6.20 7.77 9.68

159200 132.30 62.23 34.62 X X 30.43 39.62 46.37

358800 503.17 224.05 131.95 X X 75.70 97.31 116.31

638400 1281.72 561.11 328.85 X X 144.88 177.67 215.60

998000 2462.07 1108.63 654.14 X X 232.98 284.49 342.66

1437600 4219.64 1880.73 1135.07 X X 357.79 436.36 527.83

X means divergence due to the indefiniteness of the preconditioner.

Table V.10

Comparison of ICC(0) and MDPSG-30 for a 2D ring-shape domain anisotropic problem
(discretized by bi-linear quadrilateral elements, the smallest anisotropy value δ = 10−3).

n
ICC(0) rcm MDPSG-30

nnzFac #iter time ‖e‖
‖e0‖ nnzFac #iter time ‖e‖

‖e0‖

39600 1.97×105 204 2.26 9.93×10-9 3.85×105 65 9.68 1.10×10-10

159200 7.95×105 390 34.62 1.85×10-8 1.90×106 67 46.37 1.51×10-10

358800 1.79×106 574 131.95 2.10×10-8 4.60×106 70 116.31 1.28×10-10

638400 3.19×106 761 328.85 2.63×10-8 8.71×106 71 215.60 1.06×10-10

998000 4.99×106 945 654.14 3.51×10-8 1.49×107 71 342.66 1.14×10-10

1437600 7.18×106 1125 1135.07 5.55×10-8 2.15×107 76 527.83 1.04×10-10
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Fig. V.2. Number of iterations vs. number of unknowns of ICC(0) and MDPSG-30
(a 2D ring-shape domain anisotropic problem discretized by quadrilateral mesh, δ = 10−3).

acteristics of ICC(0) and MDPSG-30. Again, MDPSG gives more accurate solution

under the same stopping criteria, and the number of iterations stays more or less

the same for a fixed s. The number of iterations of ICC(0) grows proportionally to

the square root of the problem size as shown in Figure V.2, this actually follows the

asymptotic analysis of ICC(0).

Another observation as shown in Table V.11 is that for a fixed size problem, as

the anisotropic ratio increases, i.e. the illness of the problem increases, the number

of iteration of ICC(0) also grows. Whereas for MDPSG, the anisotropy may pose dif-

ficulty at first, but as the anisotropic problem becomes more like a one dimensional

problem, the maximum weight spanning graph of MDPSG turns out to be very effec-

tive approximation, which results in a smaller number of iterations. A similar result

is also observed in three dimensional space as shown later.
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Table V.11

Comparison of ICC(0) and MDPSG for a 2D ring-shape domain anisotropic problem
(discretized by quadrilateral elements, the size of the linear system is n = 1437600).

δ
ICC(0) rcm MDPSG-30

nnzFac #iter time ‖e‖
‖e0‖ nnzFac #iter time ‖e‖

‖e0‖

10-1 7.18×106 454 464.64 4.56×10-7 1.96×107 47 350.62 2.40×10-10

10-2 7.18×106 689 699.47 2.53×10-7 1.95×107 80 554.40 9.01×10-11

10-3 7.18×106 1125 1135.07 5.55×10-8 2.15×107 76 527.83 1.04×10-10

10-4 7.18×106 1394 1404.38 1.17×10-7 2.15×107 45 343.35 5.58×10-10

10-5 7.18×106 1659 1669.66 1.46×10-7 2.11×107 35 279.27 3.73×10-9

10-6 7.18×106 2097 2207.67 2.19×10-7 2.11×107 25 222.73 1.66×10-8

10-7 7.18×106 2268 2387.78 2.58×10-7 2.08×107 23 210.51 1.08×10-8

V.4. Three dimensional problems

All three dimensional (3D) serial experiments are conducted on a single node of Hydra

(only one processor with maximum available memory 25 GB is used). The condition

number of a linear system in 3D is much smaller compared to its 2D counterpart of

the same size. ICC(0) performs extremely well as shown in Figure V.3, which shows

the total time of different PCG solves for a model Poisson problem (K(x, y, z) ≡ 1)

with various number of unknowns. The domain is discretized by tetrahedral elements

using Tetgen [39], with Neumann condition specified at the upper wall and Dirichlet

boundary condition at the other walls. Table V.12 is a comparison between ICC(0)

RCM and MDPSG-40. These results show that, the difficulty of MDPSG is similar to

that of a direct solver in 3D. The large number of fill-in during factorization usually

kills the performance, which also increases the cost per iteration of the PCG solve.

Recall the performance analysis of MDPSG in Section IV.3.2, by balancing the work

of factorization and iteration, the theoretical optimal value of t is around N1/4 which
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gives the work complexity of O(N1.2) for a 2D problem and O(N1.75) for a 3D problem.

Since the work complexity of ICC(0) is O(N1.5), there is no advantage for MDPSG in

solving a 3D Poisson problem. Similar performance of support graph preconditioners

for three dimensional problems is also observed by other authors, such as [18, 7].
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Fig. V.3. Total time vs. number of unknowns of different PCG solves for a 3D
Poisson problem on a unit cube with mixed boundary condition (discretized by tetrahedral
elements).

Despite of the disadvantage as observed above, for difficult problems, MDPSG

preconditioners are much more effective than ICC(k). Consider an anisotropic prob-

lem on a 3D-ring-shape domain defined as a 2D ring extruded in the vertical direction,

see Figure V.4. The inner radius of the domain is 1 unit, the outer radius is 2 unit,

and the height is 1 unit. The strong anisotropy are 1 along both the circle direction

and the vertical direction, the weak anisotropy is δ (0 < δ ≤ 1) along the radius

direction. The domain is discretized with nodes ratio 10 : 50 : 1 along the circle di-

rection, the radius direction and the vertical direction respectively. Assume that, the

number of nodes along the radius direction is larger in order to have enough resolution



78

Table V.12

Comparison between ICC(0) and MDPSG for a 3D Poisson problem on a unit cube with
mixed boundary condition (discretized by tetrahedral elements).

n
ICC(0) rcm MDPSG 40

nnzFac #iter fac iter nnzFac #iter fac iter

781 5.49×103 17 0.01 0.00 1.04×104 48 0.01 0.07

3269 2.48×104 25 0.01 0.01 9.12×104 55 0.04 0.30

13815 1.09×105 36 0.03 0.11 8.94×105 56 0.23 1.38

56865 4.62×105 54 0.18 0.71 7.79×106 63 2.09 9.58

232369 1.92×106 83 1.02 7.13 6.91×107 72 33.16 58.00

940390 7.83×106 129 5.97 56.60 6.02×108 80 731.36 453.93

1

2

3

Fig. V.4. A 3D-ring-shape domain.
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Table V.13

Anisotropic problem of a 3D-ring-shape domain discretized by hexahedral elements
(Dirichlet boundary condition, δ = 10−5).

n
ICC(0) rcm ICC(0) nd MDPSG 50

#iter time #iter time #iter time

152460 804 61.38 8411 653.12 36 46.05

392000 994 268.54 12234 3140.30 47 149.56

773670 1334 693.00 17529 9700.59 53 343.27

1608204 2011 3198.46 - - 59 931.66

- means wall time limit of 6:30:00 hr is exceeded.

Table V.14

Anisotropic problem of a 3D-ring-shape domain discretized by hexahedral elements
(Dirichlet boundary condition, number of unknowns n = 773670).

δ
ICC(0) rcm MDPSG 50

nnzFac #iter time ‖e‖
‖e0‖ nnzFac #iter time ‖e‖

‖e0‖

10-1 1.01×107 157 87.90 6.31×10-9 1.02×108 93 491.95 1.04×10-10

10-2 1.01×107 215 128.52 1.63×10-8 1.01×108 69 412.91 5.28×10-10

10-3 1.01×107 267 142.59 8.14×10-8 1.04×108 65 378.49 1.62×10-9

10-4 1.01×107 572 340.94 9.55×10-7 1.04×108 61 371.48 6.43×10-9

10-5 1.01×107 1334 693.00 3.88×10-6 1.01×108 53 343.27 2.94×10-8

10-6 1.01×107 2310 1196.36 1.01×10-5 1.02×108 39 314.46 1.54×10-8

10-7 1.01×107 2889 1483.82 2.22×10-5 9.94×107 33 280.99 1.40×10-8
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to capture the small scale phenomena. Hexahedral elements are constructed using

this regular grid (the indices of nodes are randomly permuted). Table V.13 shows

the result for various number of unknowns with fixed δ = 10−5. ICC(0) with RCM

ordering always outperforms the one with ND ordering. The number of iterations of

ICC(0) increases as the problem size increases, while MDPSG-50 keeps its number

of iterations almost unchanged. Table V.14 shows the performance comparison of

ICC(0) and MDPSG for a fixed number of unknowns with δ varying. When δ is near

1, ICC(0) outperforms MDPSG-50; however, when the anisotropy ratio grows, i.e.,

the problem becomes more ill-conditioned, the number of iterations of ICC(0) RCM

increases, so is its solver time; whereas MDPSG-50 quickly gives a solution with high

accuracy. These results resemble that of the 2D anisotropic problems. The result of

ICC(1) is not shown in the tables, since it totally fails for this problem.

V.5. Parallelization

The parallel performance of MDPSG is compared to that of parallel ICC(0) provided

by BlockSolve95. BlockSolve95 is a scalable parallel software for solving large sparse

linear system. It uses a parallel coloring algorithm that allows for the efficient com-

putation of matrix ordering and scalable performance. The problem to be solved is

the same anisotropic problem defined on a 2D ring-shape domain considered early.

Parallel performance of the problem with fixed number of unknowns n = 1437600 is

shown in Table V.15. The result shows that for a fixed-sized problem, BlockSolve95

has a very good parallel performance when the number of processors is smaller than

32 (larger size problem may be needed for a larger number of processors), while the

parallelization of MDPSG is not so good. From the performance breakdown as shown

in Table V.16, we can see that, the initial three phases of MDPSG, i.e., the M-matrix
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transformation, the subdomain partition and the support graph formation, parallelize

well, thanks to the domain partition feature; while the parallelization of the factor-

ization and the PCG iteration is not very good. The implementation is, no doubt,

a factor for this poor performance. However, the direct solve in general does not

parallelize well, and the triangular solve is usually the bottleneck of parallelization,

is a fact.

Table V.15

Parallel performance of the 2D anisotropic problem of a ring-shape domain with fixed-
size n = 1437600 (Dirichlet boundary condition, with δ = 10−5).

p
BlockSolve95 MDPSG 10

nnzFac #iter time ‖e‖
‖e0‖ nnzFac #iter time ‖e‖

‖e0‖

1 2.16×107 12565 6324.14 1.44×10-7 4.02×107 23 115.09 5.73×10-9

2 2.16×107 8969 2550.83 1.27×10-7 4.34×107 22 87.42 2.02×10-9

4 2.16×107 9097 1248.62 1.20×10-7 4.26×107 22 59.06 1.54×10-9

8 2.16×107 9160 671.68 1.15×10-7 4.36×107 22 48.20 1.95×10-9

16 2.16×107 9068 372.47 1.53×10-7 4.29×107 22 46.39 4.89×10-9

32 2.16×107 8938 369.25 3.94×10-7 4.29×107 22 46.32 4.89×10-9

Despite all these disadvantages, for a difficult anisotropic problem like this, es-

pecially for a large problem size, MDPSG can still perform well. A better criteria

about the parallel performance of an algorithm is its scalability. For a fixed size prob-

lem MDPSG does not scale well with respect to the number of processors; however,

since the algorithm itself scales well with the problem size, the scalability of MDPSG

can still be very competitive to other algorithms, such as BlockSolve95. Table V.17

shows the performance comparison, the problem size is doubled when the number of

processors is doubled. We can see MDPSG-10 is much faster, and scales at least as

well as the BlockSolve95. (the result holds at least up to 32 processors). This result is
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Table V.16

Parallel performance breakdown of the 2D anisotropic problem of a ring-shape domain
with fixed-size n = 1437600 (Dirichlet boundary condition, with δ = 10−5).

p
BlockSolve95 MDPSG 10
fac iter M-trx part sg fac iter

1 41.15 6282.99 3.08 19.22 5.87 20.97 65.95
2 30.92 2519.91 1.26 9.89 3.04 16.85 56.38
4 15.34 1233.28 0.64 4.47 1.50 12.73 39.72
8 7.57 664.12 0.33 2.22 0.77 11.10 33.78

16 3.71 368.76 0.21 1.11 0.41 11.34 33.32
32 3.68 365.57 0.18 1.11 0.40 11.28 33.35

Table V.17

Parallel performance of the 2D anisotropic problem of a ring-shape domain discretized
by quadrilateral elements (Dirichlet boundary condition, with δ = 10−5).

p n
BlockSolve95 MDPSG 10

nnzFac #iter time ‖e‖
‖e0‖ nnzFac #iter time ‖e‖

‖e0‖

1 89400 1.34×106 1655 38.99 1.28×10-8 1.72×106 19 5.71 1.93×10-10

2 178928 2.68×106 3231 79.13 2.09×10-8 4.08×106 19 10.38 3.14×10-10

4 358800 5.38×106 7295 193.22 3.49×10-8 8.89×106 19 12.43 4.83×10-10

8 717408 1.08×107 5924 204.25 7.24×10-8 1.94×107 21 23.10 9.16×10-10

16 1437600 2.16×107 9068 372.47 1.53×10-7 4.29×107 22 46.39 4.89×10-9

32 2876415 4.31×107 13453 1224.41 2.03×10-7 9.46×107 23 98.30 4.75×10-9
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Fig. V.5. Total time of solving 2D ring-shape domain anisotropic problem with
δ = 10−5(the number of unknowns is proportional to the number of processors).

also drawn in Figure V.5. The parallelization of MDPSG can be improved if the sub-

domain structure taken into consideration during factorization and triangular solve,

as demonstrated in our earlier work [46]. Future investigation of MDPSG with other

packages that explore this respect should expect a good coarse grain parallelism.



84

CHAPTER VI

CONCLUSION

This work presents element level transformation techniques to transform SPD matri-

ces arising from the finite element discretization of the second order elliptic boundary

problems into symmetric diagonally dominant M-matrices that are suitable for con-

struction of the support graph preconditioners. The central idea of these techniques

lies in the coordinate transformation. In terms of graph, basically it can be seen as

using a star graph or a union of star graphs to approximate the original graph at the

element level. Thus, the spectral bound for the M-matrix approximation κ(A′−1A)

for arbitrary Lagrangian elements relates to the spectral bound for the simplicial

elements. The resulted condition number κ(A′−1A) is bounded by the geometric

characteristics of the mesh elements, which is actually specified by the spectral num-

ber of the outer-product of the Jacobians — maxe κ(GeG
T
e ), where Ge is the Jacobian

of the new coordinate system of element e. This actually may provide a mesh quality

metric, that can be used to measure how good the matrix A can be approximated by

a symmetric diagonally dominant M-matrix A′.

Based on that, a variant of Vaidya’s support graph preconditioner called MDPSG

is proposed. Experiments are performed along with incomplete Cholesky precondi-

tioners ICC(k) in solving various second order elliptic finite element problems. Like

incomplete factorization based preconditioning, support graph preconditioning tech-

nique lies between direct and iterative methods. Both methods share the same idea of

reducing the fill-in of the factors. Unlike incomplete factorization based precondition-

ers, which reduce the fill-in by sparsifying the factors, support graph preconditioners

sparsify the matrix first and then factorize completely. The different order of factor-
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ization and sparsification results in very different solvers. Experimental results show

that, denser factors do not guarantee more effectiveness for ICC(k), while denser

support graph increases the effectiveness monotonically for MDPSG. With good or-

dering, ICC(k) can be very effective and memory efficient; whereas, the relative higher

overhead of constructing MDPSG makes it not suitable for easy problems. ICC(k) is

sensitive to node ordering and boundary conditions, while MDPSG is almost oblivious

to both (notice that the ordering in the factorization phase can affect the factorization

cost and iterative cost of MDPSG, but not its convergence rate). MDPSG precondi-

tioners are robust and superior for solving ill-conditioned problems, including large

size problems, inhomogeneous problems and anisotropic problems. When the product

of congestion and dilation is held constant is held constant, the number of iterations

of MDPSG does not change, thus, it scales well with the problem size. In addition,

the domain partition feature provides inherent parallelism. Initial results show a good

potential of parallelization and scalability of the MDPSG preconditioners.

Our main contribution can be summarized as, we extend the support graph

preconditioning technique to the the second order elliptic finite element problems,

and propose a new variant of support graph preconditioners called MDPSG which

can be used as a general black box algorithm for all symmetric diagonally dominant

M-matrices.

Further work is needed in the following aspects. First, the element level trans-

formation technique for the higher order elements has a catch. The condition number

of κ(A′−1A) depends on the boundness of the coefficient K(x), this may pose dif-

ficulty for solving anisotropic problems with high anisotropy ratio. Second, though

MDPSG is effective for solving certain difficult problems in three dimensional space,

it faces the similar challenge that a direct solver faces. That is, the large number of

fill-in during factorization usually kills the performance, which also increases the cost
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per iteration of the PCG solve. Can we design a new scheme of support graph pre-

conditioner that is immune from this challenge? Third, though in practice MDPSG

may be effective and scalable compared to other algorithms, the parallelization of the

support graph preconditioners in general also faces the same challenge that a direct

solver faces. Can we design a new scheme that applies to a wide range of problems,

and in the mean time can be as parallelizable as the support tree scheme? Finally, the

SPD matrices from the second order elliptic finite element problems, as considered

in this work, are known to be the largest class of matrices which the support graph

technology can apply to. The next natural step would be to extend the support graph

preconditioning technique to a more general class of matrices.
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APPENDIX A

TRIANGULAR ELEMENT AND M-MATRIX

At element level, let matrix De denotes the variable coefficient, the element

stiffness matrix for the general Poisson problem can be written as,

Ae =
∫

Ωe
BT
e DBedΩe

= 1
J2

d

∫
Ωe


y2 − y3 x3 − x2

y3 − y1 x1 − x3

y1 − y2 x2 − x1

De

 y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1

 dxdy
(A.1)

where Jd = 2∆e, with ∆e being the area of element e. For the classic Poisson problem,

i.e., De is an identity matrix, we have,

Ae = 1
2Jd



d2
1 −d1d2 cos θ3 −d1d3 cos θ2

−d1d2 cos θ3 d2
2 −d2d3 cos θ1

−d1d3 cos θ2 −d2d3 cos θ1 d2
3


(A.2)

where di is the length of the edge facing vertex i, and θi is the angle facing the vertex

i, for i = 1, 2, 3. Apparently, if any θi is greater than π/2, then it is possible that the

global stiffness matrix may not be an M-matrix. There is a condition concerning the

mesh characteristics for the P1’s stiffness matrix to be an M-matrix, for example, is

given in Xu’s paper [49]. If De presents, then things become more complicated. In

general, the global stiffness matrix A is SPD.
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APPENDIX B

NOTES ON METIS

The graph partitioning problem is to partition the vertices of a graph in k roughly

equal parts, such that the edge cut among different parts is minimized. The graph

partitioning problem is NP-complete. However, many algorithms have been developed

that find reasonably good partition. One of them is the multilevel k-way partitioning

scheme [30], which is implemented in the software package – Metis. Metis is a highly

regarded library for partitioning unstructured graphs. Compared to other graph par-

titioning algorithms, it not only runs faster but gives a high quality partition. Many

public domain softwares use it either to partition domain, or to compute fill-reducing

ordering of sparse matrices. The Metis algorithms compute a k-way partitioning of a

graph G = (V,E) in O(|E|) time, under the assumption that k log k is less than |E|,

which is usually the case. Our MDPSG algorithm also employs Metis to partition

the graph into subdomains. However, for a large number of partitions k, Metis is

likely run in O(n log n) time, where |V | = n and k ∼ O(n). For a large k, Metis also

encounters difficulty: it requires a huge memory and runs slow.

The algorithms in Metis are based on multilevel graph partitioning. Multilevel

partitioning algorithms first reduce the size of graph by collapsing vertices and edges,

partition the smaller graph, and then uncoarsen it to construct a partition for the

original graph. Notice that if the partition number is large, then the advantage of

coarsening and uncoarsening procedure will not be fully taken. In our applications,

the exact partition of k is not required, instead it requires that the number of nodes

in each partition should below a specified threshold s. This flexibility enables us to

solve the Metis’ huge memory consumption problem and improve its efficiency. The
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basic idea is to use a hierarchical scheme: partition the graph into an Ki number of

partitions at level i, such that the number of nodes in each partition is less than Ni;

then split the graph into Ki separate graphs and for each separate graph go to the

next level of partition. At each level, Ki is less than or equal to Kδ, where Kδ is the

assumed upper limit of partition number that Metis is deemed to run efficiently. And

Ni decreases monotonically at each level; at the last level it should be less or equal

to s. For reference, this hierarchical calling of Metis is noted as Hierarchy-Metis.

Table B.1

Performance of Hierarchy Metis and Metis.

|V | |E|
Hierarchy-Metis Metis

# partition time (sec) # partition time (sec)

1611 4677 162 0.02 162 0.02
3228 9445 324 0.05 323 0.06
6507 19204 652 0.11 651 0.14
13099 38821 1312 0.23 1310 0.37
26272 78160 2635 0.42 2628 0.96
52625 156906 5280 0.87 5263 2.61
105556 315371 10585 1.73 10556 7.62
211362 632138 21189 3.60 21137 35.95
423329 1267391 42436 7.23 - -
846728 2536287 84897 17.09 - -

- means not solvable.

Table B.1 shows the performance comparison between Hierarchy-Metis and Metis

on the Pentium 4 machine Wilkinson with 2GB RAM. Here, we use Kδ = 256, and

s = 10. The result shows that Hierarchy-Metis not only runs faster than Metis, it also

can solve problems with much large size. Experiments show that Hierarchy-Metis is

not sensitive to the value of Kδ. For our applications the range of 200 ∼ 1000 is

recommended.
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