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ABSTRACT 

 

Essays on Time Series and Causality Analysis in Financial Markets. (December 2008) 

Tatevik Zohrabyan, B.S., Armenian Agricultural Academy; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. David A. Bessler 
               Dr. David J. Leatham 

 

Financial market and its various components are currently in turmoil. Many large 

corporations are devising new ways to overcome the current market instability. 

Consequently, any study fostering the understanding of financial markets and the 

dependencies of various market components would greatly benefit both the practitioners 

and academicians. To understand different parts of the financial market, this dissertation 

employs time series methods to model causality and structure and degree of dependence. 

The relationship of housing market prices for nine U.S. census divisions is studied in the 

first essay. The results show that housing market is very interrelated. The New England 

and West North Central census divisions strongly lead house prices of the rest of the 

country. Further evidence suggests that house prices of most census divisions are mainly 

influenced by house price changes of other regions. 

The interdependence of oil prices and stock market indices across countries is 

examined in the second essay. The general dependence structure and degree is estimated 

using copula functions. The findings show weak dependence between stock market 

indices and oil prices for most countries except for the large oil producing nations which 
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show high dependence. The dependence structure for most oil consuming (producing) 

countries is asymmetric implying that stock market index and oil price returns tend to 

move together more during the market downturn (upturn) than a market boom 

(downturn).  

In the third essay, the relationship among stock returns of ten U.S. sectors is 

studied. Copula models are used to explore the non-linear, general association among the 

series. The evidence shows that sectors are strongly related to each other. Energy sector 

is relatively weakly connected with the other sectors. The strongest dependence is 

between the Industrials and Consumer Discretionary sectors. The high dependence 

suggests small (if any) gains from industry diversification in U.S. 

In conclusion, the correct formulation of relationships among variables of interest 

is crucial. This is one of the fundamental issues in portfolio analysis. Hence, a thorough 

examination of time series models that are used to understand interactions of financial 

markets can be helpful for devising more accurate investment strategies. 
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CHAPTER I 

INTRODUCTION 

 

 

Financial markets have always been at the center of attention. Many people try to 

make sense of the markets and understand the dependencies of various markets and its 

components including the housing market, financial market (as a whole), various 

industries, etc. During a stable economy, linear models have been most commonly used 

either devising investment strategies, or modeling and forecasting the financial variables 

in general. Now, that many markets are in crisis, including the housing, credit, financial, 

and energy markets, the models that have been in use before are being revised to better 

capture the irregularities of financial markets. As such, more general models that are 

able to capture both symmetric and asymmetric relationships among various markets are 

of great importance.  

 The overall aim of this dissertation is to show the importance of dependence 

degree and structure in financial markets. Also, it shows the importance of time series 

and copula functions for modeling financial markets. How each one of the markets is 

linked with the other markets is examined which entails direct implications for the 

overall financial market. The objectives of each of the chapters are given next.  

The objective of Chapter II is to investigate the dynamic interrelationship among 

the house prices of nine U.S. census divisions. This issue with the census division data  

____________ 
This dissertation follows the format and style of the Journal of Econometrics. 
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has not been extensively studied especially regarding to the causal structure. The use of 

Directed Acyclic Graph (DAG) is intended to provide contemporaneous causal structure 

among the regional house prices. In addition, data-driven identification is proposed by 

utilizing the results of DAG and Vector Autoregression Model (VAR) or Vector Error 

Correction Model (VECM). Finally, the purpose of this chapter is also to understand the 

housing market and the interaction of the census division house prices which could be 

used to correctly forecast house price series.  

 In Chapter III, the objective is to explore the interdependence of oil prices and 

stock market indices. Both oil producing and oil consuming, developing and developed 

countries are included to obtain a more complete picture of dependence. The sample is 

partitioned into pre- and post-Euro periods to examine possible changes in dependencies. 

In addition to U.S. Dollar (USD) and Euro (EUR), Stable Aggregate Currency (SAC) is 

used as a base currency for both oil price and stock market index series. The reason is 

that a basket of currency (SAC) can minimize the exchange rate risk. Hence, it could 

provide more accurate results. In general, the aim is to compare the dependence 

structures across countries, currency-denomination cases, oil price series used, and the 

pre- and post-Euro periods.  

 The purpose of Chapter IV is to explain the interdependence of industry 

classification sector data in U.S. Specifically, the asymmetric dependence of stock 

returns across all industry aggregations in U.S. is intended to be uncovered which has 

not been addressed in literature before. The results of copula models that provide general 
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dependence structure will be compared with those of linear models already studied by 

others.  
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CHAPTER II 

COINTEGRATION ANALYSIS OF U.S. REGIONAL HOUSE PRICE S 

 

 

2.1 Introduction 

 

Real GDP is one of the many economic and financial indicators the Federal 

Reserve Bank (FED) considers in devising the nation’s monetary policy. Consequently, 

individual components of GDP also must be important indicators for assessing the well 

being of the economy. The largest component, comprising about 70% of the GDP, is 

personal consumption and real estate is an important part of the personal consumption. 

Real estate is probably the most interest-rate sensitive sector of the economy. Although 

residential investments may not represent a large share of GDP (about 5% of GDP), over 

the short period of time they often account for a large share of GDP changes which is 

mainly due to its high volatility (about 12% of GDP).1 

Noticeable changes in house prices will have an important impact on the U.S. 

economy because home ownership is the primary asset held by many households. 

Changes in house prices will result in changes in household wealth.  Changes in 

mortgage interest rates, also will affect the financial cost of home ownership.  Moreover, 

the high cost of home ownership might put the labor mobility at a disadvantage, thus 
                                                 
1 Various sources provide numbers especially for different time periods, but the average is about what is 
presented above. For more details, see McCarthy and Steindel (2007), McConnell et al. (1999), and the 
article in Business Week (2005). For educational purposes, Federal Reserve Bank of New York provided 
brief description of the economic indicators and how each of them affects the general economy and the 
Fed’s monetary policy. 
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negatively affecting the economy’s efficient functioning (Alexander and Barrow, 1994). 

Consequently, there is growing attention centered on real estate from policy-makers, 

investors, researchers, and individual households. Thorough investigation of real estate 

markets can provide clues about the short-term and long-term performances of the 

economy.   

This paper focuses on the regional house price data in U.S. to examine the 

linkages among the regional housing markets. The benefits of this study, as mentioned in 

the related literature, include the ripple effect, wealth distribution, labor mobility, house 

price prediction, and migration. The transmission of the shock in house prices of one 

region to another with possible time lags is referred to as ripple effect. It has been found 

to be significant for UK and U.S. regional housing market. Consequently, the ripple 

effect will have significant wealth distribution given the fact that housing comprises a 

large share of assets for many households (Alexander and Barrow, 1994; Holmes and 

Grimes, 2005). Furthermore, the regional house price analysis has an impact on the labor 

mobility as well as the migration, although it is weak because most households move 

from one region to another not only for house price differences but also for other factors 

(job opportunities, etc). Finally, the ability to correctly predict house prices in one region 

may be improved if the significant impact of other regional house prices is considered.  

 Although the importance of the regional house price relationship is evident, most 

studies in this area are mainly concerned with the UK regional housing market. Only the 

study by Pollakowski and Ray (1997) focuses on the interrelationship among the house 

price of the U.S. census divisions while the rest use metropolitan or other sub-market 
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data. Recent methodological advances, housing market crisis, extended data set, and the 

need for understanding of the regional housing market call for a complete study on the 

interdependence of the regional house prices in U.S. Consequently, this paper attempts 

to uncover the dynamic interaction among the U.S. regional house prices by using 

innovative causality structure and identification of long-run structure. The application of 

the directed acyclic graphs (DAG) for analyzing the causality pattern in the U.S. housing 

market is one of the major contributions of this paper to the existing literature. In 

addition, DAG is proposed to be used for identification of the long-run structure of the 

cointegrated Vector Error Correction Model (VECM). The data-implied causal ordering 

is used to obtain impulse responses and the forecast error variance decompositions. 

Furthermore, house price dynamics, not been thoroughly addressed before, are studied in 

this paper. The detailed examination of the extended data set, including such important 

events as the housing market boom and busts, stock market crash, major monetary policy 

changes, terrorist attack in 2001, U.S. recession, oil crisis, and so on is another important 

addition to the existing literature. Therefore, this paper analyzes the dynamic 

interrelationships among the house prices of nine U.S. census regions from a new 

prospective.2 

This chapter proceeds as follows: Section 2.2 provides a brief review of the 

previous research and the conceptual framework. Section 2.3 analyzes the time series 

data and its pattern. Major methodological considerations and misspecification tests are 

                                                 
2 Note that division and region in this study will be used interchangeably.  
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covered in Section 2.4. Section 2.5 presents the empirical results and summary and the 

conclusions are provided in Section 2.6.   

 

2.2 Review of Previous Research  

 

The relationship between the house prices and their determinants has been 

studied by many. Numerous research projects have been done focusing on the house 

price fundamentals, their roles and linkages with house prices in U.S. However, little 

attention has been paid on investigating the interrelationship between regional house 

prices in U.S. On the other hand, many studies have been completed for the UK on this 

area of research which can be separated into various strands. One of the strands contains 

groups of studies attempting to empirically test the “ripple effect” hypothesis in the UK 

housing market. It is commonly defined as the propensity of house prices to first rise in 

South East of England during the upswings then filter out to other regions of UK over 

time (Holmans, 1990; MacDonald and Taylor, 1993; Alexander and Barrow, 1994; 

Drake, 1995; Ashworth and Parker, 1997; Meen, 1999; Peterson et al., 2002, Cook, 

2003; Cook and Thomas, 2003; Cook, 2005; Holmes and Grimes, 2008). Results of 

studies on the presence of ripple effect in UK housing market have been mixed. Some 

studies strongly support its existence, some studies only provide very weak and limited 
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evidence, while other studies argue against the existence of the ripple effect (Meen, 

1996).3 

The second strand of literature tackles the issues of long-run relationship, 

equilibrium, and convergence of house prices. Although numerous methodologies have 

been utilized, the findings commonly suggest that short-run regional house prices might 

diverge from one another, but long-run regional house prices tend to some equilibrium 

and relative constancy (Holmans, 1990; MacDonald and Taylor, 1993; Alexander and 

Barrow, 1994; Drake, 1995; Ashworth and Parker, 1997; Meen, 1999; Peterson et al., 

2002, Cook, 2003; Cook and Thomas, 2003; Cook, 2005; Cook, 2006; Holmes and 

Grimes, 2008). Causality between the house prices of different UK regions has been 

another important avenue for investigation. Similar to ripple effect, the results vary 

across studies, but commonly suggested causal pattern runs from the South East to North 

via the Midlands.4 

Lastly, the reasons and sources for such causal pattern, possible ripple effect, and 

the existence of long-run equilibrium are studied by some researchers. The most 

commonly suggested reasons are the demand factors such as income, taxes advantages, 

equity transfer, migration for job and non-job reasons, etc (Alexander and Barrow, 1994, 

Giussani and Hadjimathrou, 1991, Gordon, 1990, Holmans, 1990, Meen, 1999, Thomas, 

                                                 
3 Meen (1999), Cook (2005), Cook and Thomas (2003), Drake (1995), and Holmans (1990) strongly 
support the existence of the ripple effect emanating from the South East of England. Conversely, 
Ashworth and Parker (1997) argue against the ripple effect hypothesis and were able to empirically 
support their argument. Finally, MacDonald and Taylor (1993), Alexander and Barrow (1994), etc found 
only limited and weak evidence of ripple effect. 
4 Except for Rosenthal (1986), all the studies found evidence of clear causal pattern running from the 
South East to the North through the Midlands (Hamnett, 1988; Bover et al., 1989; Holmans, 1990; 
Guissani and Hadjimatheou, 1991; MacDonald and Taylor, 1993; Alexander and Barrow, 1994). 
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1993, Bover et al., 1989, MacDonald and Taylor, 1993, Minford, et al. 1987). There are 

multiple reasons; however, there is no definite, universally accepted cause.  

 Interrelationships between the house prices of U.S. census divisions are 

uncovered in this paper. Therefore, studies that concentrate on similar issues are of great 

interest. The best known studies that attempt to address similar issues to this paper are 

by MacDonald and Taylor (1993) and Alexander and Barrow (1994) for the UK housing 

sector, and Pollakowski and Ray (1997) for the U.S. housing market. The former two 

investigate cointegrating relationships between the UK regional house prices. In other 

words, they examine whether or not the UK regional house prices are tied together in 

long-run. Both Engle-Granger and Johansen’s maximum likelihood methods for 

bivariate and multivariate analysis, respectively, are utilized to shed light on the 

cointegrating relations. Quarterly regional house price indices for UK regions are used to 

further test for the long-run and short-run house price properties, as well as the causal 

pattern. Significant number of cointegrating relations is detected that evidences the 

interrelated housing market in the UK. The South East region of England is found to be a 

price determining region. Moreover, East Midlands and/or East Anglia play vital roles in 

transmitting the information from south to the north. While Alexander and Barrow 

(1994) suggest that causality flows from the South to the North passing through the 

Midlands, MacDonald and Taylor (1993) claim the presence of weak segmentation in 

UK housing market, particularly, between the North and the South. The differences of 

regional house prices led to the notion of “two-nation” owner-occupied housing market 
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which in a way shares some similarities with the notion of “weak segmentation” 

(Hamnett, 1988).  

 With the emergence of new and more improved econometric and time series 

methods, more studies return to the question of whether or not cointegration in the UK 

housing market prevails. The existence of the long-run equilibrium among the UK 

regional house prices, even with new methods, is still strongly supported (Giussani and 

Hadjimatheou, 1991; Drake, 1995; Ashworth and Parker, 1997; Meen, 1999; Cook, 

2003; Cook and Thomas, 2003; Cook, 2005; Holmes and Grimes, 2008). Most of these 

studies claim unidirectional causal flows emanating from the South (particularly South 

East or Greater London) to the rest of the country (mainly into North through Midlands). 

The most recent development in the housing literature is the use of non-parametric, 

asymmetric adjustment, principal component, and business cycle dating procedures.5  In 

the economic literature, the cointegration analyses with the assumption of asymmetric 

adjustment mechanism are growing in their importance. Cook (2005) is the first to apply 

the methodology to analyze the housing market in the UK. Adopting the threshold 

autoregressive methods of Enders and Siklos (2001), Cook (2005) investigates the UK 

regional house price linkages from an aspect of asymmetric adjustment process. His 

findings show that allowing asymmetric reversion (adjustment) significantly increases 

the number of long-run relationships and dramatically changes the overall results of 

long-run relationship in UK regional house prices. On the other hand, Holmes and 

Grimes (2008) employed a new test that combines principal components analysis with 

                                                 
5 Cook (2003), Cook and Thomas (2003), Cook (2005), Cook (2006), and Holmes and Grimes (2008) all 
use one or more of the mentioned methods. 
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unit root testing to examine long-run relationship of the UK regional house prices. UK 

regional house prices are driven by a single common stochastic trend which is regarded 

as strong convergence in the long-run.  

 Little research has been conducted to address the issues of possible long-run 

relationship between the house prices in U.S. Housing price diffusion at the local level, 

concentrating on the submarkets in Hartford, CT, was studied by Tirtiroglu (1992) and 

Clapp and Tirtiroglu (1994). The spatial aspect of the efficiency tests was applied to 

examine whether the house prices in a particular town are affected by the lagged own 

and neighboring towns’ prices. They confirmed the existence of the spatial diffusion 

pattern where the coefficients of only the neighboring towns appear to be significant. 

Consequently, results consistently imply that individuals tend to overemphasize present 

evidence at the expense of historical evidence which is what is known as positive 

feedback hypothesis.6 Subnational analysis has received large attention, although very 

limited for the U.S. housing market. Only Pollakowski and Ray (1997) examine the 

spatial and temporal house price interrelationships between the nine U.S. census 

divisions as well as the metropolitan areas. Moreover, informational efficiency of the 

U.S. housing market is tested in addition to the analysis of whether the house prices in 

any one location are predicted by only their own history or by the house price changes in 

other locations as well. Using VAR, block exogenity, and Granger-causality type tests 

for the period of 1975-1994, Pollakowski and Ray (1997) discovered that house prices in 

                                                 
6 Positive-feedback hypothesis has been considered by Cutler, Poterba, Summers (1990), DeLong et al. 
(1990), Shiller (1990a, 1990b), Tirtiroglu (1992), Clapp and Tirtiroglu (1994), and Pollakowski and Ray 
(1997). 
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U.S. are interrelated. Furthermore, census division analysis provide evidence of 

inefficient U.S. housing market implying that shock in one location do cause any 

subsequent-period reactions in other locations. A survey of literature on housing market 

efficiency also showed considerable evidence of market inefficiency. Hence, information 

transfer is relevant, affecting house price movements of the other regions. On the 

contrary to the previous studies (Tirtiroglu, 1992; Clapp and Tirtiroglu, 1994), 

Pollakowski and Ray (1997) fail to show price diffusion between the contiguous regions 

or divisions, but rather find that price diffusion patterns for neighboring and non-

neighboring divisions are not significantly different. The presumed cause for such results 

is the interrelated regional economies ultimately reflected in the regional housing 

markets. Analysis of metropolitan areas, on the other hand, has a clear contiguous region 

effect. That is, house price changes in a particular region (area) have much bigger effect 

on the house price changes of the contiguous regions (areas) than those of the non-

neighboring areas.  

Geographical proximity was also considered by other studies and was suggested 

to be important factor for house price transmission from region to region (MacDonald 

and Taylor, 1993; Alexander and Barrow, 1994; Giussani and Hadjimateou, 1991; 

Drake, 1995). Testing this hypothesis for U.S. housing market with the extended dataset 

and improved methodologies will provide interesting insights about the nature of the 

possible long-run relationship.  
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2.3 Data  

 

This paper uses house price indices for the nine U.S. census divisions on a 

quarterly basis from 1975:1 to 2006:1. The house price indices for the nine U.S. census 

divisions are retrieved from Office of Federal Housing Enterprise Oversight (OFHEO). 

The House Price Index (HPI hereafter) for each U.S. census division is calculated using 

repeated observations of housing values for individual single-family residential 

properties on which at least two mortgages have been originated and afterwards 

purchased by either the Federal Home Loan Mortgage Corporation (Freddie Mac) or 

Federal National Mortgage Association (Fannie Mae). The HPI is commonly referred as 

“constant quality” house price index because the differences in quality of houses are 

controlled via the use of repeat transactions. Moreover, it is based on the modified 

version of the weighted-repeat sales methodology proposed by Case and Shiller (1987) 

and is available from January 1975.7 

In real estate literature, house price indices data are commonly used for analyzing 

the housing market. Some studies utilize the HPI by the OFHED while others tend to 

construct house price indices using hedonic pricing method or others methods. For 

example, Pollakowski and Ray (1997) construct weighted repeat-sales index using the 

method of Case and Shiller (1987). Although house price index as a source for empirical 

analysis has been criticized based on its construction method (McCarthy and Peach, 

2004; Himmelberg et al., 2005; Bourassa et al., 2006; Can and Megbolugbe, 1997), it 

                                                 
7 Detailed technical description of the HPI and its construction is provided by Calhoun (1996). 
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still remains one of the best and readily available datasets which controls the house 

quality (Harter-Dreiman, 2004; Wheelock, 2006). However, there are some limitations 

of using this index such as the fact that it accounts for only single-family detached 

properties and excludes condominiums, multi-family residential properties, etc. 

Moreover, houses which are bought using government insured loans or more than two 

mortgages are not included in the construction of HPI. It is important to note that 

regardless of the construction method, the house price indices will always have some 

limitations, which implies limitations in the results. Pollakowski and Ray (1997) suggest 

that their results cannot be applied to predict the behavior of all single-family residences. 

Furthermore, additional limitations arise from the fact that data source is partially 

truncated. Moreover, limitations might arise from the fact that the results do not 

distinguish between the ripple down effect caused by an arbitrage or some regional 

element such as the business cycle. It has also been suggested that using sub-regional or 

even arbitrarily defined regional boundaries might be more appropriate than regional 

house price data for analyzing the interrelationship of house prices (Alexander and 

Barrow, 1994; Bourassa et al., 1999; Bourassa et al., 2003; Bourassa et al., 2007). 

Similarly, our conclusion can be made regarding to the house price indices only for 

single-family residential properties, even though the analyses of other type of residential 

properties will most likely closely resemble that of the single-family residential 

property.8  

                                                 
8 Note that this is just hypothesis.  
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The nine U.S. census divisions used in this paper are the Pacific (PC), the 

Mountain (MT), the West North Central (WNC), the West South Central (WSC), the 

East North Central (ENC), the East South Central (ESC), the South Atlantic (SA), the 

Middle Atlantic (MA), and the New England (NE). Further analysis of the nine census 

division house prices is provided in the following subsection. 

 
 
2.3.1 U.S. Economy and Housing Market 

Complete understanding of the economic, financial, as well as political situations 

and events is necessary for modeling the interactions of the U.S. regional housing market 

correctly. On top of this, the graphical analysis will enhance the knowledge of U.S. 

housing market trend as well as the problems that have to be addressed to obtain reliable 

implications. Historical HPIs of nine U.S. census divisions are presented in Figure 2.1. 

Natural logarithmic transformation of the HPIs is used due to the assumed multiplicative 

effect (Johansen, 1995). The house prices in all the nine divisions have been increasing 

at a relatively constant rate starting from early or mid 90’s, while more volatile growth 

rates are observed for time periods before 90s, which coincide with the booms and busts 

in the U.S. economy and housing sector.  

The graphical examination is extremely valuable in assessing the nature of house 

price change, i.e. whether it is permanent or temporary shift in house prices. The 

distinction between the permanent and the temporary shift might vary from author to 

author, but, in general, at least if the change to a certain direction remains for more than 

several quarters (or periods), it is usually considered permanent, otherwise, temporary. 
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In addition, permanent change is oftentimes regarded as one that shifts the mean of the 

series for several periods (Juselius, 2006). Similar definition is extended to the booms 

and busts. For example, Wheelock (2006) defines the housing boom as an increase in the 

ratio of HPI to state per capita income of at least 7 percent for three or more consecutive 

quarters. The resulting evidence suggests that between the 1980 and 1999 U.S. states 

experienced about twenty house price booms. Some of those booms were followed by 

housing busts, while others were not (Wheelock, 2006). However, most states 

experienced housing booms at different time periods or at different extent, hence it is 

hard to define any peaks or troughs for the regional house prices as booms or busts 

(Wheelock, 2006). Moreover, notice that all regions experience similar shocks at 

different time frames with different magnitudes which brings up the question this study 

focuses on - which region the shock in house prices originates in? Is that shock 

transmitted to other regions? Does the transmission process happen immediately or with 

some time lags? Does it move the house prices of other regions in the same direction or 

the opposite? These and many other questions are intended to be answered in this 

chapter. 

Juselius (2006) suggested using the plots on both level and differenced data to 

get an idea of the possible misspecification problems in the data and model. The 

assumption of the constant mean does not seem to hold based on the level plots (see 

Figure 2.1), while it appears to be more appropriate for the differenced series (see Figure  
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Figure 2.1 Plots of Historical Data on House Price Indices, 1975-2006. 
Note that the y-axis is house price index in natural logarithm and the x-axis is time in quarters and years, 
1975-2006. 

 

2.2. Inferences about the variance constancy is harder to make from the levels of 

variables, hence the differenced data is of great help. From Figure 2.2, it can be seen that 

high variability in series is especially pronounced in the beginning of the sample period. 

Moreover, most series, except for the HPI changes in SA which are fairly stable over the 

entire sample period, appear to have relatively constant variance after the mid 1980’s. 

However, a few exceptions are observed. Relatively high variability is noticed for the  
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Figure 2.2 Plots of the Differenced House Price Indices, 1975-2006. 
Note that the y-axis is differenced house price index in natural logarithm and the x-axis is time in quarters 
and years, 1975-2006. 
 

 

period of 1987-1989 in changes of PC and WSC. In addition, from 2003 and on there is 

slight variability observed in changes of almost all the series, except for WSC and ESC.  

The plot of the differenced series can also be an important tool for inspecting the 

normality of the marginal processes (Juselius, 2006). If the observations lie 

symmetrically on both sides of the mean, then marginal processes are normal. Most of 

the series do not seem to have symmetric observations, but rather appear to have some 

outlier observations emphasized mostly in the first part of the sample. Further, the 
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detailed examination of the possible causes for such outlier observations follows which 

is highly important for the house price modeling.  

The evolution of various events from 1970’s to 1980’s put the U.S. economy and 

its various sectors into unstable and severe situation. The first recession for the period of 

1970-2006 was due to the first oil crisis which occurred in 1973 (Mishkin, 1987). The 

first signs of recovery was noticed in the first quarter of 1976, which then was followed 

by the slow growth rates, unemployment and price rise. Moreover, the trade balance 

dramatically fell, which was followed by a slight recovery in the fourth quarter of the 

same year (Supel, 1979). Although the U.S. economy commenced expanding with lower 

unemployment rate and increasing GDP, the inflation rate continued to increase reaching 

to double digits. Moreover, the second oil crisis in 1979-1980 seemed to aggravate the 

economy leading it to the path of another economic recession. The recession affected the 

nominal and real interest rates, which in turn directly influenced the current as well as 

the future level of investment. Consequently, Fed announced tight or contractionary 

monetary policy to ease the economic situation by undertaking anti-inflationary and 

dollar strengthening programs. As a result, investment purchases decreased until the 

third quarter of 1980. The recession continued becoming severe when Reagan came to 

power in 1980. Also as a result of the Volker’s policies, recession lasted about two 

years, in 1980 and 1981, termed as “twin recessions”. Both the real interest rate and the 

U.S. dollar increased sharply (Mishkin, 1987; Kim et al., 2007a). Until about 1981, the 

inflation rate still remained at double-digits. The international oil price rises, monetary 
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policies and the governmental spending were commonly considered to be the main 

sources for high inflation in the country.  

The two-year severe recession was shortly followed by the two-year robust 

recovery in 1982. However, it should be mentioned that until 1983, the economy 

followed an erratic pattern. For example, the slowdown of the GDP growth in 1979 was 

followed by an actual fall in GDP after the second quarter of 1980. Starting from about 

1982, the economy continued growing, inflation and unemployment rates dropped, level 

of investment increased, pushing the nation into the economic boom. In addition, the law 

of the largest tax cut in U.S. was signed by Reagan in 1981. Consequently, tax cuts, the 

increased government purchases and the anti-inflation program put the U.S. economy on 

the prosperous path from about 1983, which were later termed as the “Reagan Boom”. 

The economic boom of the early and mid-eighties, however, coincided with a number of 

alarming developments. Among those, perhaps the most outstanding are the federal tax 

reform in 1986 and the stock market crash in 1987 (Kim et al., 2007a).  

Most of the above mentioned economic events and distresses were reflected in 

the housing market. Years later a couple of more recessions occurred, however, they did 

not seem to have any significant impact on the real estate market.9 Other factors that are 

worth mentioning due to their direct effect on the housing sector are the emergence of 

the new institutions, financial system, products, etc. In the evolution of the U.S. housing 

system, the era of securitization from 1970s to 1980s is very important and coincided 

with the above mentioned economic events. Due to the increase of interest rates, there 

                                                 
9 The recession in 1991 and the 2000 recession which was due to the burst of the dot-com-bubble did not 
have significant influence on the log HPIs.   
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was duration mismatch of assets and liabilities. This was more crucial for the Savings 

and Loans (S&L) institutions in 1980s. Consequently, many banking institutions 

(predominantly S&Ls) defaulted, which then initiated the need for new reforms and laws 

(Integrated Financial Engineering, Inc., 2006). 

All the above discussed events that took place in U.S. from 1970’s to 2000’s will 

be incorporated with the appropriate methodological procedures. In addition, the 

knowledge of the possible outlier observations will be used in the following section 

which deals with the modeling of the regional house prices.  

 

2.4 Methodology  

  

A list of methodologies is presented here, starting with the background 

information about the common methodologies that similar studies have used. Then, the 

cointegration test is described followed by the misspecification tests that are used to 

ensure the best model is of use. The following subsection details the identification issue 

and the proposed method of obtaining identification of long-run structure.  

The list of the methodologies used to study the housing market has been 

expanding over time. It already has been two decades since more powerful statistical 

and/or econometric tools have emerged and been in use by economists in various fields. 

Cointegration analysis, pioneered by Engle and Granger (1987) and Johansen (1988), 

has been extensively used for modeling house price determination. Observed spatial 

pattern in regional house prices directed researchers to consider time-series properties of 
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regional price data. Numerous studies that attempted to include explanatory variables for 

housing market investigation, had to tolerate the variable selection problem which has 

been an important empirical issue. The data limitation and the peculiar house price 

pattern certainly impose restrictions in terms of number of variables in the model. 

Researchers have sought various ways to approach these limitations. For instance, some 

used reduced-form approach to identify and estimate appropriate supply and demand 

variables. This approach however, presumes that housing market is in the steady-state 

equilibrium (Meese and Wallace, 1993). Another group of researchers specify that 

equilibrium house prices are implied by fundamental variables (Abraham and 

Hendershott, 1996). Furthermore, the cointegration approach used by Giussani and 

Hadjimatheou (1991), MacDonald and Taylor (1993), Alexander and Barrow (1994), 

Pollakowski and Ray (1997), Meen (1999) enables them to explain the spatial 

differences in regional house prices. The notion of cointegration is concerned with the 

long-run relationships among variables or sets of variables. This typically tests if the 

long-run movement in house price in one region is related to the long-run price changes 

in another region(s). This study, similar to the above mentioned ones, utilizes the 

cointegration approach in addition to more recently developed procedures (e.g. DAGs, 

data-driven identification, and innovation accounting) to examine the long-run 

relationships of U.S. regional house prices.  
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2.4.1 Cointegration Tests 

Similar to most studies conducting multivariate cointegration tests, this study 

uses Johansen (1988) procedure. The initial step of statistical analysis starts with the 

unrestricted vector autoregressive model (VAR). The p -dimensional VAR model of 

order k  with Gaussian errors is expressed by the following equation:  

Y A Yt i t

i

k

t= + +−
=
∑α ε1

1

     125,,1K=t                                                               (2.1) 

where tY  is a 1px  vector of p  series with 9=p  representing the HPIs for each nine 

divisions used in this paper. iA  is a (9 x 9) coefficient matrix, α  is a 9 x 1 drift vector, 

tε  is a (9 x 1) innovation vector which are normal independent identically distributed 

( ),0( ΩpN ), and the k  is the maximum lag length. Fitting the unrestricted VAR model 

with the k  lags does not involve complications; they arise when the necessary 

assumptions of the underlying model need to be checked. In particular, the lag lengths k  

needs to be determined, the serial correlation and the conditional heteroskedasticity, as 

well as the distribution of the errors should be checked (Johansen, 1988, 1991, 1995; 

Juselius, 2006). More detailed discussion of the misspecification tests is given in the 

following section. 

Since there is no prior information about the cointegration rank, it is determined 

using the likelihood ratio test or trace test proposed by Johansen (1988, 1991) 

(Bruggemann et al., 2006). The null hypothesis of the trace test statistics of Johansen 

(1991) is that there are at most r  cointegrating vectors, which in our case is 8, i.e. 

.8,,0K=r  Furthermore, three cases are possible. First, if the rank of Π  is full ( pr = ), 
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then the tY  is stationary and VAR at levels is appropriate. Second, if the rank is zero 

( 0=r ), all series are nonstationary and there is no combination of two or more 

nonstationary series that is stationary at levels. Hence, VAR at first differences should be 

used for analyzing dynamic relationships of the series. Finally, if the rank is between 

zero and full rank, i.e. pr <<0 , then the existence of r  cointegrating vectors indicates 

the presence of r  linear combinations of the series that make the process stationary. In 

this case, error-correction model is used (Johansen, 1995, Juselius, 2006). To determine 

the cointegrating vectorr , the trace test results are compared with only two models: the 

first model includes constant (intercept) in the cointegration relations, and the second 

model includes the first model in addition to the deterministic trend in levels (outside the 

cointegration relations). These two models are the best to use for such data. Because 

there are deterministic variables included in the model, the critical values of Johansen 

(1996) are no longer valid. For this purpose, the critical values are simulated specifically 

for our model.10 

Results of the trace test indicate that the VAR in error-correction form is 

appropriate to use, thus further analysis are conducted using the vector error correction 

model (VECM). Juselius (2006) provides several advantages of the ECM formulation. 

Among those, the multicollinearity effects are significantly reduced in ECM formulation 

and the distinction between the short-run and the long-run effects is very clear and their 

interpretations are more intuitive. Error correction model (ECM) can be presented based 

on VAR component in first differences with the order of k-1: 
                                                 
10 Note that all the time series analysis are conducted using CATS in RATS software grounded on Dennis, 
Hansen, Johansen, and Juselius (2006). 
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βα ′=Π has a reduced rank where α andβ  are rp×  matrices, pr ≤ . Here ∆ represents 

the first differences, iΓ  and Π  are short-run and long-run coefficient matrices, 

respectively; µ  is a vector of constant or drift, and k  is the appropriate number of lags. 

In addition, Π Yt−1 term is the error correction component at levels for 125,,1K=t  of 

total observations in this study. Furthermore, under the hypothesis of nonstationary )1(I  

processes, cointegrated VAR model is given by: 
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                                                                    (2.3) 

where 1−′ tYβ is an 1×r  vector of stationary cointegration relations, where α is the 

loadings. The importance of Π  comes from the fact that its rank determines the number 

of cointegrating vectors. Hence, alternative formulation of the trace test includes the 

rank of Π . The null hypothesis of the rank Π  is 0=r  at 5% significance level which 

implies that no cointegrating vector exits between the two series. The alternative 

hypothesis of the rank Π  is that 1≥r , indicating that at least one cointegrating vector 

exists. Depending on the decision, null goes up to 8=r .  

 

2.4.2 Misspecification Tests 

The model presented above is the basic one, assuming that the model is well 

specified. However, real world examples oftentimes have one or more specification 

problems. The importance of misspecification analysis of the model comes from the fact 
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that a study might fail to convey reliable implications, thus the results may not be fully 

trusted. Hence, a thorough examination of the data and the model is critical.  

The descriptive statistics on HPI for each division are presented in Table 2.1. 

New England appears to have the highest mean HPI, followed by the Middle Atlantic 

and Pacific. It is interesting to note also that these three divisions have the most volatile 

HPIs. On the contrary, West South Central has the lowest mean HPI as well as standard 

deviation. Furthermore, to avoid spurious results, all the nine series were tested for 

stationarity condition. Series are stationary if their mean and the variance are stable over 

time. According to Figures 2.1 and 2.2, all the nine series exhibit unit root or 

nonstationary pattern. Several techniques are known in the literature to overcome the 

nonstationarity problem in levels and one of the most commonly used and easy method 

is differencing the series until they are stationary (Engle and Granger, 1987; Johansen, 

1988; Juselius, 2006). In this paper, we conduct Dickey-Fuller test of stationarity, the 

results of which are reported in Table 2.2.11 Series are nonstationary at levels and 

stationary at the first difference, thus to sustain stationarity, all of the nine series are first 

differenced. In other words, all the series are integrated of order one, i.e. )1(I . Hence, 

cointegration analysis can be conducted.    

As suggested by Juselius (2006), every assumption is based on the presumption 

that others are satisfied. For example, to check for normality of the series, it is assumed  

                                                 
11 However, because Dickey-Fuller test of stationarity is proven to have low power, other tests such as 
Phillips and Perron, KPSS, and ADF have conducted for robustness purposes (DeJong et al., 1990; 
Diebold and Rudebusch, 1990; Kwiatkowski, Phillips, Schmidt, and Shin, 1992; MacDonald and Taylor, 
1993; Hansen, 1994; Johansen, 1988; so on). The results of these tests are not reported but are available 
upon the request from authors. Note that the conclusions of the stationarity tests are the same regardless of 
the test used.    
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Table 2.1 Descriptive Statistics on House Price Indices for Nine U.S. Census 
Regions, 1975-2006 

Census 
Regions                       
(House Price 
Index) 

Mean        
(Price 
Index) 

Mean            
Rank 

Min. 
(Price 
Index) 

Max.        
(Price 
Index) 

SD        
(Price 
Index) 

SD       
Rank 

CV CV       
Rank 

Skewness Kurtosis 

PC 5.1365 3 3.7675 6.3542 0.5897 2 0.1148 1 -0.2970 -0.2668 
MT 4.9615 6 3.9845 5.8923 0.4428 4 0.0892 4 -0.1368 -0.3109 
SA 5.0555 4 4.2138 6.0113 0.4384 5 0.0867 6 -0.1017 -0.5272 
MA 5.2429 2 4.2299 6.2524 0.5434 3 0.1036 3 -0.3768 -0.8368 
NE 5.3778 1 4.2103 6.4424 0.6062 1 0.1127 2 -0.3930 -0.8081 

ESC 4.9486 7 4.2101 5.6074 0.3717 8 0.0751 8 -0.1743 -0.8599 
WSC 4.8144 9 4.0635 5.3625 0.2966 9 0.0616 9 -0.6463 0.4705 
WNC 4.9344 8 4.1551 5.6951 0.3901 7 0.0790 7 0.0707 -0.6229 
ENC 4.9960 5 4.1537 5.7569 0.4379 6 0.0877 5 -0.0558 -1.0165 

Note: HPIs are in logarithms. The “Mean” labeled column is the simple mean price index for census 
divisions listed on the far left-hand-most column of each row over the observation period 1975:1 – 2006:1. 
The columns labeled “Min” and “Max” refer to the minimum and maximum numbers for the far left-hand-
most column over the period mentioned above. The column headed “SD” shows the standard deviation of 
each divisions’ house price index over the observed time period. Entries in the column labeled “CV” refer 
to the coefficient of variation, which is SD/Mean for each division. The table also provides the ranks on 
mean, standard deviation, and coefficient of variation respectively for the far left-hand-most column. In 
the rankings, the order is from 1 to 9, “1” being the highest value and “9” being the least one.  

 

 

Table 2.2 Dickey-Fuller Test Results of House Price Indices of Each Nine U.S. 
Census Division, 1975-2006 

Series Number of Differences DF test 

PC 1 -4.163 
MT 1 -6.426 
SA 1 -5.307 
MA 1 -7.907 
NE 1 -5.343 
ESC 1 -14.443 
WSC 1 -5.329 
WNC 1 -7.371 
ENC 1 -6.120 

Note: This table shows the results of Dickey-Fuller test of non-stationarity. The first column labeled 
“Series” shows the logarithmic transformation of the HPI series, the second column labeled “Number of 
Differences” is the number of differences needed to make the data stationary. Finally, the last column 
labeled “DF-test” gives the Dickey-Fuller test value. All the values are significant at 5% and 10% 
significance levels.  
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that every other assumption of the underlying model is satisfied. Hence, specification 

tests have to be performed after each assumption is checked for to confirm that the rest is 

unchanged (Juselius, 2006). The maximum number of lags (k) is estimated using the  

Schwartz Loss (SIC) and Hannan and Quinn (HQ) loss matrices. Given the small sample 

size of 125 and VAR of 9 (p) dimension, the maximum lag length is restricted to be 5. 

The results, which are reported in Table 2.3, are somewhat odd. VAR with one 

lag is suggested by the SIC, while HQ metrics results in optimal lag length of 5.12 

Sometimes when the results of the information criteria do not match and large lag length 

is found to be optimal by one of the measures, there is a possibility that it is not correctly 

determined due to some specification problems such as outlier observations and mean 

shifts (Juselius, 2006). Hence, we initially start with a VAR of order two.  

 

Table 2.3 Lag Length Selection Tests 
Model K T Regr Log-Lik    SC H-Q    LM(1) LM(k) 
VAR(5) 5 120 46 5750.242 -79.321 -85.032 0.000 0.090 
VAR(4) 4 120 37 5565.389 -79.471 -84.065 0.000 0.060 
VAR(3) 3 120 28 5378.156 -79.582 -83.059 0.000 0.000 
VAR(2) 2 120 19 5263.055 -80.895 -83.254 0.000 0.000 
VAR(1) 1 120 10 5121.032 -81.760 -83.002 0.000 0.000 
Note: The table gives five different criteria for selecting a lag length of the VAR model. The far-left-most 
column, “Model”, is the VAR model at different lags. The following column gives the number of lags in 
the model (“K”). The third column (“T”) is the number of observations. The fourth column (“Regr”) is the 
number of parameters to be estimated. The lag length selection criteria starts with the fifth column (“Log-
Lik”) which is the log-likelihood ratio of the VAR with k lags (at each row k is a different lag), which is 
maximized. The next column is the Schwartz Information Criteria (“SC”) which is minimized. The 
following column is the Hannan and Quinns Information Criteria (“HQ”) which is also minimized. The 
last two far-most-right columns (“LM(1)” and “LM(k)”) are the Lagrange multiplier values for one and k 
lags. 

                                                 
12 Different lag lengths with a variety of deterministic components, such as seasonal dummy variables, 
constant, drift, and dummy variables for outliers, have been used. However, the results of the lag length 
have remained unchanged except for the case when we used maximum lag length of 6 and more. In those 
cases, the largest lag is found to be optimal by HQ loss metrics. These results are not reported, but 
available upon request from author. 
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Generally, for time series data a list of misspecification tests are of importance 

and need to be checked. Univariate misspecification tests include the normality test for 

each series using Jarque-Bera test and the ARCH effect of each series for autoregressive 

conditional heteroskedasticity. In addition, the first four moments are also highly 

important to find the source of the problem, if any. Multivariate tests, on the other hand, 

include the LM test for residual autocorrelation, Ljung-Box test for correlation, and 

Doornik and Hansen (1994) test for normality of all the series.  

Table 2.4 provides the results of the misspecification tests for an unrestricted  

VAR(2). The multivariate tests for normality and residual autocorrelation are rejected at 

even 10% significance level. On the other hand, univariate test for normality is not  

rejected for the MT, SA, and NE regions at 5% significance level. This might be due to 

the moderate skewness and kurtosis for these series. Most series, except for the MT and 

ESC, pass the ARCH test at least at 10% significance level. The 2R  for each equation 

(i.e. ENCMTPC ∆∆∆ ,,, K ) is not high. However, the 2R  values are misleading and 

should not be subject to much emphasize when it is calculated for the unrestricted VAR 

in levels. Similarly, the overall measure of goodness of fit in the VAR model is given by 

the trace correlation statistic which is not significantly high. It can be approximately 

considered as an average 2R  in the p  VAR equations (Juselius, 2006). Overall, the 

model is not well specified and from the skewness and kurtosis it can be concluded that 

there are large residuals. In addition, graphical inspection of both the level and the  
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Table 2.4 Misspecification Tests Based on the Unrestricted VAR (2)   
Trace 
Correlation 

0.53         

Log(|Ω|) -86.79         

          

Multivariate 
Tests 

         

          

Residual 
Autocorrelation 

         

LM(1): X2(81)  218.3  p-val.  0.00   

LM(4): X2(81)  169.7  p-val.  0.00  

Normality          

 LM: X2(81)  197.9  p-val.  0.00  

          

Univariate Tests          

          

 ∆PC ∆MT ∆SA ∆MA ∆NE ∆ESC ∆WSC ∆WNC ∆ENC 

ARCH(2) 0.89 17.86 8.25 1.67 5.72 14.67 4.04 2.72 1.67 

p-value 0.64 0.00 0.02 0.43 0.06 0.00 0.13 0.26 0.44 

Normality 15.91 4.02 1.28 31.29 4.98 15.43 15.90 31.22 14.29 

p-value 0.00 0.13 0.53 0.00 0.08 0.00 0.00 0.00 0.00 

Skewness 0.95 -0.21 -0.15 1.35 -0.43 -0.56 0.41 -0.52 0.74 

Kurtosis 5.33 3.65 3.21 8.87 3.70 5.07 4.94 6.25 5.15 

Std. Deviation 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 

R2 0.76 0.47 0.68 0.56 0.71 0.38 0.63 0.55 0.58 

Note: The table provides the results of Equation 2.1. Specifically, it gives the results of unrestricted VAR 
model with 2 lags.  
 

differenced data reveals that series have seasonal and trending patterns.13 This may also 

create some specification problems. Hence, detrending and seasonal adjustment 

procedures are performed on all the series (Harvey and Trimbur, 2003). It is known that 

each series are composed of seasonal factor, trend-cycle, and the irregular component. 

                                                 
13 Juslieus (2006) suggests that graphical analysis for the specification checking is highly recommended 
and even might reveal specification problems that tests fail to find. 
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 Multiplicative model with the seasonal span of four and linear trend is calculated and 

extracted leaving only the irregular component in the series.14 

The new series (detrended and seasonally adjusted) are well-behaved without 

rough spikes. Consequently, VAR is re-estimated using the new dataset. The 

misspecification tests using the new, corrected series show huge improvement in terms 

of the problems that were present before. However, the problem with the residual 

autocorrelation and normality still exist. Further analyses provide evidence of large 

residuals which need to be carefully considered given their importance to the 

econometric results.   

Usually, residuals larger than |5.3||3.3| εε σσ −  should be treated with care 

since they indicate possible outlier observations (Juselius and MacDonald, 2004; 

Juselius, 2006). The residuals of most series are relatively large at the beginning of the 

sample period. Given the U.S. economy at the time, the high residuals are quite intuitive 

indicating that some sort of intervention took place. For example, the rising inflation rate 

perhaps accounts for the pre-recession shock in the WNC at 1977:01 that caused the 

residuals to exceed |5.3| εσ . Other series, except for PC, MT, SA, and NE also appear to 

fluctuate greatly perhaps as a result of the inflation rate changes. The announcement of 

the tight monetary policy by the Fed appears to have had its effect on the housing 

market. Furthermore, the lagged effect of the monetary policy and the twin recessions 

influenced housing market as well, with more pronounced effect on MA in 1980:1 and 

                                                 
14 The classical decomposition of the series, say PC, into a trend-cycle (TC), seasonal (S) and irregular (I) 
components can be modeled either as additive (PC=TC+S+I) or multiplicative (PC=TC×S×I). The later 
model is used in this paper because the seasonality of the series seems to increase with the trend. 
@classicalDecomp procedure in RATS does this type of decompositions. 
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WNC in 1980:04. Furthermore, a large residual is observed in the ENC series for the 

date of 1985:03. Unlike most other shocks, this shock does not appear to be intuitive 

since it does not coincide with any major events either in U.S. economy as a whole or 

the housing sector. The large residual in the MT series in 1986:04 and 1987:01 is 

explained by the federal tax reforms and perhaps the conditions that later caused the 

stock market crash (Kim et al., 2007a). The final observation of abnormal residuals is for 

PC in 2004:1. Volatile residuals for most of the series were observed during the period 

of 2004-2006. In fact, late 2005 and the beginning of 2006 was actually the start of the 

housing market slowdown. Very large residuals are detected for most series at this time, 

therefore these two observations (i.e. 2006:01 and 2005:04) are not used. Certainly, 

these dates are highly informative of the housing sector, however, the loss (arising 

specification problems) from including the observations for those dates outweighs the 

gain. Hence, the further analysis proceed with 123 observation rather than 125.  

It is common to consider the observations with large residuals as outlying 

observations. Outliers can seriously distort the autocorrelation structure of the time 

series (Chernick et al., 1982). If the outliers are ignored and left in the time series they 

may seriously bias the autocorrelation function (ACF) and partial autocorrelation 

function (PACF) of series (Mills and Prasad, 1992). In practice, it is common to treat 

outlying observations to be the results of intervention, structural break, etc. Thus, to 

overcome the outlier problems, the addition of the dummy variables in the model is very 

common. However, one needs to be careful about the type of outliers since each type of 

outlier should be treated differently. For example the additive outliers should be 
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corrected for before proceeding with any analysis. On the other hand, the transitory and 

the permanent outliers need to be included in the model due to the important information 

they convey.15 

Outlier observations are corrected with the addition of the seven dummy 

variables in the VAR model. Permanent blip dummies, which take a value of 1 on the 

date of shock and 0 otherwise, are added for the following observations: 1980:04, 

1985:03, and 2004:01. In the case of +/- effect of the residuals which has a dynamic 

effect on the later observations, transitory dummy variable is used. Hence, transitory 

dummy variables, that take a value of 1 on the shock date, -1 for the next observation, 

and 0 otherwise, are set for 1977:01 and 1980:01 observations. Further, a dummy 

variable that takes a value of 1 on two consecutive dates is included for 1986:04. The 

difference of the last dummy variable is also included due to its importance for the shock 

and the model. All of them are included as restricted deterministic components in the 

VECM.  

Although the misspecification tests may improve with the inclusion of the 

dummy variables and suggest the goodness of the model, the parameters of the model 

can still suffer from non-constancy. Various methods (tests) are used in this paper to 

tackle the parameter constancy problem thoroughly. Both backward and forward 

recursive tests are conducted, each of which is useful for testing different time periods of 

the entire sample. The main purpose of these tests is to find out if the sample period of 

1975-2006 is appropriate for analysis or if there is any structural change that suggests 

                                                 
15 More detailed information about the outliers, their detection, type, and the ways of fixing them see 
Franses and Lucas (1997), Nielsen (2004), Juselius (2006). 
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the model needs to be re-specified for the sample period, perhaps partitioning it into 

several sub-periods. All the following tests performed here are recursive meaning that 

the models are first estimated for sub-sample of 1 to T1, then increasing the unit period 

until it covers the full sample, whereas in case of backward recursion, the models are 

estimated first for the subsample of T to T1, then increasing the unit period until it 

covers the beginning of the sample (full sample). These procedures are fully covered in 

Hansen and Johansen (1999) and Juselius (2006). 

There is some evidence of parameter instability, however, the time range the 

parameters are the most volatile is the beginning of the sample which coincides with the 

high inflation rates, tight monetary policy, twin recessions, oil shocks, etc. In other 

words, it is somewhat expected even looking at the plot of the differenced series. The 

significance and the importance of these shift dummies are further tested to get the best 

and the most parsimonious model. It is common practice to partition the sample into two 

(if there is one structural break) sub-samples and estimated each subsample separately 

(Hansen and Johansen, 1999). However, the small sample size puts restrictions on the 

estimation methods. Therefore, it is not optimal to partition the sample into various parts 

to account for the structural breaks. The next popular method of dealing with the 

parameter non-constancy is by the use of dummy variables, particularly shift dummies 

(Juselius, 2006). Consequently, shift dummies are included in the model. Interestingly, 

the goodness of the model and the parameters did not change much with the shift 
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dummies either each separately or combined.16 Hence, insignificance of the shift 

dummies leads to considering the model with no shift dummy variables.    

Reconciling all the above changes, the VAR(k) model in ECM form is now given 

by:  

ttt

k

i
itit DYYY εβαµ +Φ+′+∆Γ+=∆ −

−

=
−∑ 1

1

1

           123,,1K=t                            (2.4) 

The model has the same specification as Equation (2.3) with the only addition of the 

vector of dummy variables (tD ); Φ  is the vector of coefficients for the dummy 

variables. The estimated model is then checked for the validity of the underlying 

assumptions. A clear improvement in terms of univariate normality, the trace correlation 

(goodness of fit of the model), and standard deviations is revealed. Although the 

multivariate normality statistics, ARCH statistics, and LM(1) and LM(k) values are 

greatly reduced, the null hypothesis for these tests is still rejected. Hence, there are a few 

specification issues remaining in the model.   

It is well evidenced that small sample size will likely cause the series to deviate 

from normality assumption, which further will cause some additional problems with 

respect to residual autocorrelation, ARCH, etc. Hence, some misspecification in the 

model is not considered to be unusual given the limited sample size and large dimension 

(Franses and Haldrup, 1994; Bruggemann et al., 2006; Juselius, 2006). Consequently, 

model in Equation (2.4) does seem to be acceptable given the limited sample size and 

the number of parameters to be estimated.  

                                                 
16 The results with shift dummies are not reported in this paper. 
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Cointegration analysis is conducted to shed light on the long-run relations that 

may exist among the nine series. Some authors suggest that the unrestricted VAR has to 

be well specified before estimating the restricted VECM, while others claim that the 

model will be well specified after the estimation of the reduced form. The proponent of 

the first approach is Juselius (2006), who proposes to test for cointegration once the 

model is well specified.  On the other hand, it has been suggested that some of the 

misspecification problems that prevail should be checked again after the determination 

of the correct cointegration rank. In other words, reduced form model has to be checked 

again for specification issues (Juselius, 2006; Bruggemann et al., 2006). However, one 

needs to be cautious regarding the model check due to the small sample size distortions.  

Johansen’s trace test is used to determine the number of common cointegrating 

relations in the model. Although the trace test has been criticized for not accounting for 

the small sample size and deterministic components, the corrected version of trace test is 

“Bartlett corrected” for small samples and accounts for deterministic components added 

to the model.17 To calculate the corrected version of the trace test, we simulated the 

critical values for 2000 replications and length of the random walks of 123 (i.e. number 

of observations used). The importance of simulation comes from the fact that small 

samples usually tend to deviate from the normality assumption and asymptotic 

distribution does not seem to hold for small samples. Hence, the corrections are vital for  

 

 

                                                 
17 See Johansen (2000, 2002) and Juselius (2006) for more details about Bartlett correction and the trace 
test for more sophisticated models. 
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correct results. The results of trace test are reported in Table 2.5. It can be seen that the 

difference between the corrected and not corrected tests is enormous. Without Bartlett 

correction for small samples and the deterministic components, the rank of 8 would have 

been accepted at 4.5% significance level, while with Bartlett correction the rank of 4 is 

accepted at even 1% significance level. Thus, the small sample size distortion and the 

inclusion of the deterministic component could mask the true long-run relations among 

the series.  

 

After the determination of the cointegration rank, the tests of long-run exclusion 

of a variable (i.e. a zero row restriction onβ ), unit vector of alpha for a variable, and the 

weak exogenity of a variable (i.e. a zero row restriction onα ) are conducted which later 

will have bearings on the identification of the model. The results indicate that none of 

the variables are weakly exogenous which implies that in short-run all of them respond 

to the perturbations in long-run relations. Unit vector test is rejected for all the variables  

 

Table 2.5 Trace Test Results 
Decision p-r R Eig. 

Value 
Trace  Frac95 P-value Trace* P-value* 

F/F* 9 0 0.781 536.974 189.418 0.000 271.730 0.000 
F/F* 8 1 0.560 356.492 155.041 0.000 188.928 0.000 
F/F* 7 2 0.499 258.926 124.951 0.000 128.037 0.032 
F/F* 6 3 0.413 176.577 96.621 0.000 101.808 0.020 
F/R* 5 4 0.248 113.117 72.605 0.000 54.439 0.524 
F/R* 4 5 0.242 79.132 50.450 0.000 38.527 0.412 
F/R* 3 6 0.161 46.172 33.022 0.001 18.571 0.715 
F/R* 2 7 0.129 25.348 18.588 0.004 11.758 0.402 
R/R* 1 8 0.073 8.961 8.730 0.045 5.891 0.180 
Note: * represents the Barlett corrected trace test which accounts for the small sample size and the 
inclusion of the dummy (deterministic) component. The trace test is accepted at >5% significance level for 
the Barlett-corrected trace test, while it is only boarder line accepted (4.5%) for the traditional, not-
corrected trace test.  
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as well. On the other hand, the result of the long-run exclusion test suggests that MT is 

not included in the cointegration space. Therefore, it should be omitted from the 

cointegration space and from the long-run relations at 5% and higher significance levels. 

This information is further used to test various restrictions. The test of restriction given 

the hypothesis that MT should be omitted from the cointegration relations for  

 [ ]tttttttttt ENCWNCWSCESCNEMASAMTPCY ='   

is given by: 0:1 =′= βϕβ RorHH r . Although the hypothesis of four zero 

restrictions on the MT is accepted with the p-value of 0.24, the model is not identified. 

Thus, as mentioned in Juselius (2006), completely omitting the MT series will affect the 

long-run identification negatively. 

Various restrictions that are either suggested by the data (using the DAG), model 

(significance levels), or by the tests (such as long-run exclusion) are investigated. The 

following section will shed light on the identification problem and the proposed method 

using DAG which is discussed next.  

  

2.4.3    Identification 

The issue of identification is central for the complete understanding of economic 

models. Unique identification is necessary for estimation and interpretation of the 

parameters of the dynamics of the system of the vector autoregressive model. 

Alternatively stated, the reduced form model with correlated innovations has to be 

transformed into a structural form with uncorrelated, economically interpretable shocks. 

This problem is especially pronounced in the case of non-stationary data (variables) that 
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allows us to formulate two separate identification problems: identification of the long-

run (cointegration relations) and short-run (equations of systems) structures. The 

identification of the long-run structure imposes long-run economic structure on the 

unrestricted cointegration relations, whereas the identification of the short-run structure 

imposes short-run dynamic adjustment structure on the equations for the differenced 

process (Johansen, 1991, 1995; Juselius, 2006). 

Cointegrated VAR model both in reduced-form and the structural form can be 

used for analyzing the long-run structure. The reduced form cointegrated VAR is used in 

this paper, which eliminates the worries about the identification of the short-run structure 

as its parameters are uniquely defined in this case. Although the long-run parameters are 

also uniquely defined based on the normalization of the eigenvalue problem, just-

identifying restrictions on the long-run structure are necessary.  

Three different aspects of identification is acknowledged which are the generic 

identification (statistical model), empirical identification (parameter significance), and 

the economic identification (Johansen and Juselius, 1994). The first two conditions are 

satisfied if one follows the correct steps of model estimation, while the last condition is 

much more complicated. For example, if one examines a micro or macroeconomic 

problem, theory and the existing literature is almost always used for identification of the 

long-run and short-run structures. The problem arises when research involves either 

something absolutely new for which there is no set theory or dynamic relationships 

(linkages) among certain variables for which no formal theory exists.18 Hence, the 

                                                 
18 Brief history of the identification problem is well introduced by Lack and Lenz (1999). 
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achieved identification is not based on solid economic or econometric arguments (Lack 

and Lenz, 2005). In this paper we offer a new method for long-run identification by 

utilizing the causal structure which is a direct result of the DAG.   

The DAG, discussed in the next section, is used to obtain the causal structure 

among the variables. The graph along with the results of the test for exclusion is used to 

get just-identifying restrictions on the long-run structure. The DAG without MT 

(excluded) confirms the above findings of four cointegrating vectors. Moreover, it 

provides important information as to what are the cointegrating relations and which 

variables are included in it. The four major divisions (Figure 2.3) which have 

arrowheads directed to them are the four cointegrating relations where only the regions 

that cause these four regions are included in the model and the others are restricted in the 

long-run structure. As a result, the long-run system has the following form19 
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19 Note that in the third relation which corresponds to the ESC equation on the graph, the effect of MA is 
not accounted for because its innovation is transferred to ESC via NE. Hence, NE is included but not the 
MA. 
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Figure 2.3 Directed Acyclic Graph with the Knowledge Tier for the Causality 
Purposes. 
 

The restriction is just-identifying and model is accepted with 389.16)9(2 =Χ  

and 059.0=− valuep . The first three relations are invariant to MT inclusion, and only 

the fourth relation is altered due to MT. Therefore, the confidence of the first three 

relations to achieve long-run identification is very high due to its robustness. 

Conversely, the last relation is dependent upon the test of exclusion (i.e. MT exclusion) 

which is why confidence of the last relation as identifying is limited. However, even in 

this case the contribution of the DAG to the identification issue is enormous. Unlike the 

automated identification available from CATS in RATS which is not based on data 

inferences or economic theory, the identification procedure proposed in this paper bases 

completely on the observed innovations among the variables, data, and model inferences 

using the causal structure. This is especially useful when the supporting economic theory 
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is incomplete or non-existent. The description and application of DAG in impulse 

response functions is presented next.   

 

2.4.4 Directed Acyclic Graphs (DAG) 

In real estate literature that focuses primarily on the dynamic interrelations of 

regional house prices, no study has ever used the Directed Acyclic Graphs (DAG). This 

paper employs DAG to investigate the contemporaneous causal relationships among 

innovations of the nine series. In addition, its importance for price discovery 

implications which is later discussed and the above mentioned identification issues is 

inevitable. Besides its importance in model identification, DAG is also highly important 

in VAR-type innovation accounting as it enables us to assign the contemporaneous 

causal ordering of the variables based on the data. Hence, instead of randomly choosing 

the causal pattern, data-inferred pattern can be used and justified through DAG when 

studying the dynamics of the system. 

The orthogonality among the innovations is very important for VAR. 

Furthermore, modeling the contemporaneous causal relationship among innovations is 

vital for the accuracy and consistency of the innovation accounting. Early papers tend to 

use Choleski factorization of contemporaneous covariance to find the orthogonalized 

innovations. Another approach, which relaxes the Cholesky ordering, is used by 

Bernanke (1986). The Bernanke factorization puts “over-identified” restrictions based on 

the existing theoretical information related to the variables.  Recently, a more 

sophisticated DAG approach is being used which is based on the observed innovations 



 43 

among the variables. This approach has been used for innovation accounting from VAR 

which provides data-based ordering of the innovations (Bessler and Akleman, 1998; 

Hoover, 2005; Kim et al., 2007a).  

A directed graph is a graphical representation of causal relationship among a set 

of vertices (for this paper - among innovations from the VECM).20 There are three 

possibilities that the lines and the arrowheads between the variables can be arranged. 

First, it is the unidirectional causal flow such as A→B, which indicates that variable A 

causes variable B. Second, it is the undetermined causal direction, A − B, which means 

that there is some relationship between A and B, however, the direction of the causation 

is undetermined. Finally the third, in which case there is bidirectional causation 

presented as A ↔  B implying that A causes B and B causes A. If this happens, most 

likely there is an omitted variable between A and B.  

The direction of the causal flows among the variables is assigned using D-

separation which formally represents the screening-off phenomenon (Pearl, 2000). 

Among three variables A, B, and C the following causal patterns can be formed. “Causal 

fork” is formed as A←B →C, where B is the common cause of A and C, thus the 

measure of unconditional association between A and C is non-zero. However, the 

association between A and C will be zero if B is conditioned on. Another causal pattern, 

which is observationally equivalent to the causal fork, is the “causal chain”: A→B →C. 

Similar to the case of causal fork, the unconditional association between A and C is non-

                                                 
20 This paper will introduce the DAG in a simple and concise way, but for readers who are motivated to 
read about the DAG more detailed, we refer them to Spirtes et al. (1993), Pearl (2000), Bessler and Yang 
(2003) and Kim et al. (2007). The latter articles explore the DAG in economics field and motivate its 
applications in applied economics. 
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zero, while it becomes zero as one conditions on B. In both cases, variable B screens-off 

the association between the two end variables. Finally, the last causal pattern called 

“causal inverted fork” is given by A→B ←C and is observationally different from the 

above two cases. In this case, the unconditional association between the two end 

variables is zero, while if we condition on the common effect B, the association becomes 

non-zero. The common effect B does not screen-off the association between its common 

causes.  

The GES algorithm is used to assign causal flows among a set of variables using 

the covariance of innovations. Alternatively stated, the algorithm builds directed graph. 

Notice that directed graph, or more precisely the directed acyclic graph does not allow 

causal flows among the variables such that the variable that causes another one will 

eventually be caused indirectly by its own cause (i.e. acyclic graph can contain only one 

of each variables). It starts with the DAG with no edges. Furthermore, the addition of 

edges one-by-one with all possible directions is evaluated using the Bayesian scoring 

function. As a result, causal structure that obtains the maximum Bayesian score is 

chosen. It is important to note that only the acyclic causal structures are considered.21 

The advantage of this algorithm is the independence of the final causal structure from 

the significance level, while the drawback is exponentially increasing models to consider 

when there are many variables. However, the TETRAD IV software which is used to 

estimate the GES algorithm simplifies the matter.22  

                                                 
21 For more information about the GES algorithm, see Chickering (2002). 
22 The web site of Carnegie-Melon University, Philosophy department provides free TETRAD IV software 
(http://www.phil.cmu.edu/projects/tetrad/). 
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The complete correlation matrix resulting from the just-identifying model is fed 

into TETRAD to obtain the contemporaneous causal structure among the nine U.S. 

census divisions. Given the results of the exclusion test and the negligible role of MT in 

the U.S. housing market, a tier (knowledge) is added which restricts the MT to cause any 

other region contemporaneously.  The resulting graph in DAG pattern illustrates how the 

U.S. regions interact with each other instantaneously. Further, the results of it have 

bearing on the dynamic structure of the overall system. Afterwards, due to the relative 

limitation of coefficient interpretation from the reduced form (just-identified) model, the 

innovation accounting is utilized (Bessler and Yang, 2003). It facilitates the 

interpretation and summary of the dynamic relationship between regional house prices 

using the findings of the above mentioned procedures (i.e. just-identified model and 

DAG).  

 

2.5 Results 

  

The above estimated just-identified model and the DAG facilitate the calculation 

of the innovation accounting. Particularly, the impulse response function and the forecast 

error variance decomposition are used to shed light on the dynamics of the U.S. housing 

market. The role of the DAG in directing the causal flows among the series 

contemporaneously and the further use in the innovation accounting is fully elaborated.  

 The results from the DAG with MT and a tier which is provided in Figure 2.3 

and DAG without MT (Figure 2.4) differ slightly boosting the confidence in the  
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Figure 2.4 Directed Acyclic Graph with MT Excluded for Identification Purposes. 
 

resulting causal structure. The robust orderings of causal flows show how the house 

price innovations of certain census divisions cause house price changes in others. 

Among the robust causal structures is the contemporaneous causal effect of NE on PC, 

MA and WNC on NE, NE on SA, MA on ESC, PC and ENC on WSC. Hereafter, the 

DAG with MT and a tier will be used for interpreting the instantaneous causal ordering. 

The MA appears to be the only exogenous region at contemporaneous time. Hence, 

shocks arising in this region are transmitted into other regions affecting their housing 

markets by changing the house prices. The exogenity of the MA is expected due to its 

importance in both economic and financial sectors in the nation. All the states included 

in MA, New York, New Jersey, and Pennsylvania, have very important roles and do 

affect the dynamics of the national economy. Consequently, the finding of MA being the 

source of house prices changes in the U.S. is consistent with its role in the overall 

economy. While the exogenity of MA is expected due to the high house prices and the 
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leading role of the region in the overall economy, it is very surprising to find that NE 

and PC are not exogenous in the short run. This is perhaps due to the fact, that in the 

short run a region affecting house prices in other regions is not intuitive given that the 

housing market cycle is over 6-8 years (Rosenthal, 1986, Alexander and Barrow, 1994, 

Pollakowski and Ray, 1997).  

The housing prices in SA, WSC, and MT are completely influenced by other 

regions’ house price shocks. In other words, they are information “sinks” in the U.S. 

regional housing market. The insignificant role of MT can be explained by the fact that it 

has very negligible influence in the overall economy, although some of the states 

included in the region are somewhat important in agricultural sector. The explanation of 

the WSC which is somewhat logical as house prices in those states (thus in the region 

overall) are lower relative to the national average and the growth has not been 

outstanding. Conversely, it would be more logical to see SA, which includes states that 

have very high house prices (such as Washington D.C., Virginia, Florida, North 

Carolina, etc) and high growth, as an important player in the housing marker rather than 

as information “sink”. Other regions that extensively take part in transmitting the 

received shocks to the other regions include PC, NE, ESC, WNC, and ENC. While the 

results might be somewhat debatable regarding to the importance of PC and NE, they are 

more intuitive with respect to the WNC, ENC, and ESC as house price shock 

transmitters.  

Overall, the results based on the DAG are generally intuitive and are used in 

ordering of causal flows for the VAR-type innovation accounting. It provides the user 
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imputed causal ordering among the variables in Bernanke decomposition which further 

provides impulse response functions and the forecast error variance decompositions. The 

later two help to summarize the structural form of the model. The impulse response 

function describes the in-sample effect of a typical shock to the system and can be used 

to economically interpret the behavior of the system (Lack and Lenz, 1999). Figure 2.5 

presents the impulse response functions for one-time-only positive shocks in information 

from house prices in each U.S. region. In each graph, the vertical axis represents the 

standardized responses with the range of -5 to +12. The horizontal axis, on the other 

hand, represents time periods (in quarters) following the information shock. In each 

graph we use maximum of 35 quarters (eight years and 3 quarters). Note that Figure 2.5 

does not intend to explicitly show the numbers of each axis, instead, the purpose for 

reporting the figures is to show the pattern of the curves. 

Large negative responses are generated by most regions due to the innovations in 

the ENC house price. The responses become more negative with the time horizon and 

the adjustment process back to equilibrium appears to be very slow. On the contrary, 

innovations in house price of WNC and NE generate large positive responses which 

adjust very slowly as well. Similarly, innovations in ESC house prices generate large 

positive responses in house prices of all other regions except for the MT and SA which 

tend to respond by small positive changes with shorter adjustment periods. It is 

interesting to note that the responses to shocks in MA are mostly positive at the shorter 

horizons (in short-run), becoming negative at intermediate and longer time periods, with 

exception of MT that does not respond and the SA which responds positively for the  
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Figure 2.5 Impulse Response Functions for the U.S. Regional House Prices. 
 

whole period of analysis. With some exceptions, moderate positive responses are 

originated in house prices series of all the regions due to the shocks in PC, MT, and SA. 

However, in some cases insignificant responses outweigh the significant ones (i.e. 

innovations in SA). Lastly, the DAG-based insignificance of the WSC is also confirmed 

by observing the impulse response functions where shocks in WSC generate nearly no 

response in the U.S. housing market.   
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Overall, it can be seen that innovations in most house price series generate quite 

volatile responses from other regions. The adjustment back to equilibrium for most cases 

is slow. It can be concluded from the impulse response function that the house prices in 

WSC appear to be the least influential generating the least responses from other series 

followed by the SA and MT. On the other hand, the WNC and NE generate the largest 

positive responses in other regions with slow adjustment periods. The opposite applies to 

ENC and MA which have similar rate of adjustment but negative responses.  

Although the impulse response function gives good intuition about the pattern 

created by the shocks, the decomposition of forecast error variance is numerically more 

informative. The variance decomposition assesses the importance of different shocks by 

determining relative share of variance that each structural shock contributes to the total 

variance of each variable (Lack and Lenz, 2005). More detailed information about the 

uncertainty in each region's price series at different time horizons in future is reported in 

Table 2.6. Forecast error variance decomposition is given for every series at horizons of 

0, 1, 8, 16, and 28 quarters ahead. It shows how the innovations in each region affects 

the house prices of the same and other regions at the specified time horizons. The 

maximum time horizon of 28 quarters is chosen due to the suggested notion of 

Pollakowski and Ray (1997) about the real estate cycle being 6-8 years.  

In the short-run, uncertainty in PC is mainly explained by the innovations in its 

own series (84%). However, 8 periods ahead (2 years), the innovations in NE and SA 

comprise large portion of uncertainty in PC (14% and 12%). At the longer horizons the 

role of shocks in its own series fades away becoming less significant in explaining the  
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Table 2.6 Variance Decomposition of House Price Indices from Nine Census Regions 
Based on Bernanke Decomposition  
Horizon PC MT SA MA NE ESC WSC WNC ENC 

     PC     
0 84.199 0.000 0.000 5.556 6.613 0.418 0.000 3.213 0.000 
1 83.297 0.196 0.003 2.995 9.370 0.507 0.187 3.435 0.010 
8 59.132 6.214 12.281 5.161 14.622 0.487 0.244 0.807 1.053 

16 16.268 10.416 17.745 6.661 25.115 3.016 0.052 19.024 1.702 
28 5.190 7.463 15.428 3.529 30.136 1.987 0.007 32.398 3.864 

          
     MT     

0 11.564 80.138 0.000 0.064 0.164 7.992 0.000 0.079 0.000 
1 15.474 62.819 2.229 0.141 0.371 17.257 0.087 0.467 1.154 
8 11.372 36.556 2.800 1.213 12.008 12.217 2.856 14.485 6.492 

16 6.897 25.855 5.037 0.610 17.392 6.754 3.316 27.915 6.225 
28 2.795 14.529 9.835 0.176 23.472 3.171 1.915 39.027 5.080 

          
     SA     

0 1.298 0.000 75.762 3.939 8.734 1.938 4.974 2.523 0.830 
1 4.542 0.545 60.347 8.480 15.370 0.869 4.233 4.414 1.200 
8 5.721 13.987 40.734 2.544 18.153 2.113 0.355 14.734 1.659 

16 2.887 15.186 27.481 0.316 22.767 1.805 0.423 25.880 3.255 
28 2.320 11.487 22.598 0.471 28.256 0.619 0.168 30.581 3.501 

          
     MA     

0 0 0 0 100 0 0 0 0 0 
1 0.384 0.030 0.188 94.068 1.207 0.000 0.181 3.688 0.253 
8 5.354 0.924 6.291 17.299 10.473 5.296 3.212 48.869 2.282 

16 0.930 0.654 3.670 3.110 16.766 9.359 1.279 59.376 4.855 
28 1.372 0.202 1.599 6.123 17.979 11.591 0.305 55.653 5.176 

          
     NE     

0 0 0 0 35.162 41.855 2.646 0 20.337 0 
1 0.271 0.013 0.219 22.152 41.137 4.379 0.046 31.476 0.307 
8 0.252 0.007 0.822 1.776 19.677 13.878 0.762 58.782 4.045 

16 1.002 0.023 0.301 5.795 17.936 15.406 0.145 53.811 5.582 
28 2.209 0.764 0.720 11.408 12.913 18.681 0.033 48.022 5.250 

          
     ESC     

0 0 0 0 4.326 0 95.674 0 0 0 
1 0.394 0.177 1.095 4.771 1.193 88.145 0.629 3.414 0.181 
8 0.389 3.618 3.870 0.289 6.544 42.659 1.760 35.221 5.651 

16 0.249 3.715 3.066 0.055 11.538 25.981 1.601 45.842 7.952 
28 0.067 1.508 1.854 0.561 13.053 18.407 1.430 55.523 7.597 

          
     WSC     

0 15.451 0 0 0.005 6.997 8.435 59.183 0.047 9.882 
1 20.096 0.081 0.574 3.161 13.601 8.034 40.859 2.037 11.558 
8 33.011 3.662 0.409 13.587 21.655 11.315 5.301 5.323 5.739 

16 33.367 3.470 0.130 22.197 15.044 12.635 1.517 9.048 2.592 
28 18.009 1.419 0.442 23.145 16.289 13.602 0.450 24.069 2.577 

          
     WNC     

0 0 0 0 0.518 0 11.454 0 88.028 0 
1 0.623 0.019 0.000 0.720 0.020 13.921 1.026 83.651 0.017 
8 2.704 0.188 1.369 10.093 5.333 21.696 1.702 56.319 0.597 

16 2.291 0.380 2.144 9.456 11.794 16.326 0.501 54.433 2.673 
28 1.188 0.300 2.811 6.847 15.263 12.123 0.337 57.348 3.782 

          
     ENC     

0 0 0 0 0.121 0 2.672 0 20.534 76.674 
1 0.062 0.225 1.108 0.023 0.328 9.811 1.624 32.228 54.592 
8 0.050 0.855 1.884 2.139 3.795 29.480 5.291 55.062 1.443 

16 0.078 0.578 2.003 1.824 9.727 20.805 2.100 59.629 3.258 
28 0.244 0.153 1.100 1.252 10.782 16.172 1.441 63.885 4.971 
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uncertainty in PC house prices. Instead, SA which only influences PC, NE, and WNC 

becomes more significant (about 17%, 30%, and 32%). The percentage of uncertainty in 

PC explained by other series is smaller than 10%. Furthermore, PC itself along with the 

ESC explains about 15% uncertainty in MT in short-run becoming less important with 

time and reaches to about 3% 7 years ahead. On the other hand, NE and WNC become 

more significant in explaining the MT variance in long time horizons reaching to 23% 

and 39%, respectively. Similar to the PC case, the self-explanatory power of MT drops 

dramatically from about 80% to 14% as the time horizon increases. The MT, on the 

other hand, becomes significant after about 2 years accounting for up to 15% of the SA 

variance.  

 Interestingly, MA which was found to be the only exogenous series by DAG 

explaining all the uncertainty in itself, is about 86% explained by other series in the 

long-term being mainly influenced by NE (17%) and WNC (59%). However, its role in 

leading the NE in short-run and WSC in long-run cannot be left unnoticed. Up to 35% of 

the uncertainty in NE is attributed to the innovations arising in MA in short-run, leaving 

about 58% and 18% of uncertainty to be explained by WNC and ESC in longer horizons. 

NE itself appears to be one of the main leaders in the housing market affecting all 

regions significantly. However, its effect on house prices in ESC and ENC is relatively 

small. The findings regarding to the NE are consistent with those of Pollakowski and 

Ray (1997) who showed the lagged NE price changes are quite significant in 6-9 census 

divisions. However, our findings do not support the notion that NE is a “leading 
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indicator” which was suggested in the previous studies, but it certainly confirms the 

finding of Pollakowski and Ray (1997) regarding to the NE’s explanatory power.  

WNC appears to have the major influence on the house prices in ESC reaching to 

about 55%. Surprisingly, ESC itself explains large portion of its uncertainty and dies off 

slowly relative to the others. The exact opposite is observed in WSC series which 

accounts for only 59% of its uncertainty in short-run exponentially dropping to 0.5%. In 

addition, this is perhaps the only region where the house price dynamics are greatly 

influenced by innovations of more than five regional house price series: PC (up to 33%), 

MA (23%), NE (21%), ESC (13%), WNC (24%), and ENC (11%). It is the only region 

that has nearly no influence on other regions’ house prices. The exact opposite is 

observed for the WNC house price series, which are the main leaders in the U.S. housing 

market and remain relatively exogenous over time accounting for 88%-54% of its 

uncertainty over time. However, three other regions explain relatively significant portion 

in the WNC house price uncertainty: NE (15%), MA (10%), and ESC (21%). It is the 

main contributor of the house price dynamics in ENC explaining up to 63% of the 

uncertainty. Similar to the WSC series, uncertainty in ENC house prices explained by 

innovations arising in the own series comprises only very small percentage (2%) in long-

run. The other regions that have significantly large affect on the ENC house prices 

include the NE (10%) and ESC (29%).  

The overall results suggest that house prices of most regions are being influenced 

by innovations in other regions more in longer time horizons than in short-run. The most 

influential region - WNC, followed by NE, MA, and ESC appear to always have vital 
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role for price discovery in the U.S. housing market. On the contrary, WSC, SA, and 

ENC do not seem to be part of the long-run house price determination, and are rather 

greatly influenced by the other regional house price dynamics. These results appear to be 

consistent with the restricted model and the DAG results. Overall, highly interrelated 

U.S. regional house prices are found regardless of the methods applied.  

 

2.6 Conclusions 

 

Real estate market has proven to be important in many aspects. This fact has 

attracted many researchers to do various analysis involving house prices and other 

variables. Mostly UK studies explored the long-run relationships between the UK 

regional house prices. Only Pollakowski and Ray (1997) use the U.S. census division 

house price data to explore the long-run relationship. However, the techniques and 

methodology used in their study are very simplistic and do not allow thorough analysis 

of housing market.  

The data used in this study is deseasoned and detrended to allow only the 

irregularities in the series. Model specification and identification is extensively analyzed 

leading to a highly significant and just-identifiable model. We use a method which 

facilitates identification of the long-run structure using the Directed Acyclic Graphs and 

the results of exclusion tests.  Four cointegrating relations among the nine variables are 

found. Furthermore, using the proposed identification procedure, we find that the four 

cointegrating relations are those of ESC, WSC, SA, and NE. All the house price series 
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are found to facilitate the adjustment back to equilibrium, but not all are part of the 

cointegration space (e.g. MT). Furthermore, DAG results suggest that MA appears to be 

the most exogenous, leading house prices in other regions. Somewhat different results 

are found based on the impulse response functions and the forecast error variance 

decomposition suggesting the central role of WNC followed by NE. The importance of 

NE in the overall U.S. housing market is also suggested by Pollakowski and Ray (1997), 

who claim that it is significant for 6-9 census divisions.  

In addition, our findings provide evidence that PC, MA, ESC, and ENC have 

moderate impact on house price determination. WSC, followed by the SA and MT, 

appears to be the least exogenous region not being part of any price discovery process. 

The house prices of these regions are considerably influenced by the rest of the market. 

Moreover, all the regions appear to explain less of their own price uncertainty as the 

time horizon increases. Put another way, at longer time horizons, such as 16 (4 years) 

and 28 (7 years), the uncertainty in house prices of most regions is mostly explained by 

other regions.  

The overall findings provide strong evidence of U.S. regional house prices being 

highly interrelated which is consistent with the findings of Pollakowski and Ray (1997). 

This implies that U.S. regional housing market is inefficient and that shocks arising in 

one census division do cause the same and subsequent-period reactions in other census 

divisions. In addition, the DAG results indicate the importance of the information 

transfer for house price determination. Furthermore, the causality results are not 

necessarily consistent with the geographical locations of the regions, i.e. regions do not 
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necessarily influence the adjacent region more than the non-adjacent regions. This 

pattern of price diffusion is consistent with that of Pollakowski and Ray (1997) who 

showed that the price diffusion pattern does not differ for neighboring and non-

neighboring census divisions in terms of their statistical significance.  

Several possible explanations for the observed dynamics in the U.S. housing 

market can be very exhaustive including migration, income, local economy, zoning 

restrictions, etc. Migration, which was offered mainly to explain the empirical findings 

in UK, is often associated with the availability of jobs, unemployment, labor market, 

demographics, as well as the lifestyle (Minford et al., 1987, Bover, 1989, Gordon, 1990, 

Holmans, 1990, Giussani and Hadjimatheou, 1991, McDonalds and Taylor, 1993, 

Alexander and Barrow, 1993, Meen, 1999). Our findings regarding the nonspatial 

diffusion of the regional house price changes are probably direct effect of the regional 

economic interactions (Pollakowski and Ray, 1997). In other words, innovations in 

particular regional economy will directly affect that region’s housing market in addition 

to transmitting the shock to other regions’ economies eventually having an impact on the 

housing market. Moreover, some authors suggest that zoning restriction and the 

difficulty of getting building permits might explain the observed dynamics and high 

prices in east and west of the U.S. (Glaeser and Gyourko, 2002). Although many 

possible causes for such findings can be offered as hypothesis, it will be interesting to 

study the actual cause if the data permits.  
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CHAPTER III 

INTERDEPENDENCE OF OIL PRICES AND STOCK MARKET INDI CES: A 

COPULA APPROACH 

 

 

3.1 Introduction 

 

Everyday major news channels discuss at least one story about oil, its demand 

and supply, present and future price movements, or the potential effect on financial 

markets. Record high (crude) oil prices have been reported every single day from the 

beginning to the middle of 2008. More and more policies are being devised to cope with 

the rising oil prices. All this attention on oil is a direct result of its importance for most 

of the economies in the world (Nandha and Faff, 2008). Moreover, the demand for oil is 

increasing as countries become more developed. For example, the demand for oil by 

China and India which are in the process of rapid development is growing over time. On 

the other hand, the demand by developed countries for oil is not decreasing in spite of 

the vigorous search for alternative fuel which translates into less oil consumption. That 

means that oil supply will remain an important factor for the global economic 

progression at least for some time. Hence, the large oil producing countries will continue 

having very decisive role in determining the oil production and the pricing strategies. It 

is therefore important to thoroughly comprehend the effect of oil prices and pricing 

strategies on the world economy.   
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Theoretically, the oil prices influence the state of economy, however, it is not 

clear how the relationship changes depending upon the availability and usage of the oil 

in a particular country/region. For instance, the oil prices are likely to positively 

influence the GDP of Saudi Arabia, whereas the opposite would perhaps be the case for 

France. Empirically, many papers showed a link between the oil price and the state of 

economy. Studies from 1983 up to 2007 have shown that the economies of most 

countries are inversely related with the oil price changes (Hamilton, 1983; Burbidge and 

Harrison, 1984; Gisser and Goodwin, 1986; Loungani, 1986; Mork, 1989; Lee, Ni, and 

Ratti, 1995; Mork, Olsen, Mysen, 1994; Mussa, 2000; IEA, 2004; Jones et al, 2004).  

The data and methodologies applied in these studies vary, but most of them come to a 

similar conclusion – oil is an important factor for the economy. However, the issue of 

whether this relationship changes for the oil rich and high-consumption countries still 

remains unanswered. Inclusion of various countries such as large oil producing, oil 

consuming, or the combination of both in this study will help to illustrate how much, if 

any, and to which direction the relation between the oil and the financial markets 

changes.  

The reported relationship of oil prices and the economy brought forth new ideas 

and avenues of research. The reasoning behind many of the recent studies arises from the 

empirical evidence that oil price has an impact on the overall economy; hence it may 

have an impact on the individual industries as well. Consequently, many studies 

examined the relationship between the various industry sectors and the oil prices. Faff 

and Brailsfort (1999) claimed that oil, gas and diversified resources industries are 



 59 

positively correlated with the oil prices, while negative correlation is observed for 

industries, such as paper and packaging, financials and transport. Furthermore, the 

individual stocks have become the focus of many studies. Combining the equity returns 

of different industries these studies also had some industry implication and confirmed 

the results of Faff and Brailsfort (1999).   

Equity markets have later been studied for possibility of being influenced by oil 

price shocks. The rationale for the possible oil price impact on stock returns comes from 

the fact that oil, being a major input, directly affects the cost structure of firms. The 

increased cost, ceteris paribus, will result in smaller profit which will negatively affect 

the expected earnings and will result in depressed aggregate stock prices (Ciner, 2001; 

Nandha and Faff, 2008). These hypotheses have been empirically accepted for Greece 

(Papapetrou, 2001) and for UK (El-Sharif et al., 2005). They show that oil price shocks 

have negative and weak influence on the non-oil or non-gas stock returns. On the other 

hand, if one looks from the perspective of oil producing company, the above mentioned 

notion will be reversed resulting in positive impact of oil price increases on stock returns 

of mainly oil and gas industries (companies from these industries). This notion seems to 

be supported by some studies that use stock returns of oil and gas industries, individual 

companies (or oil-intensive companies) and oil prices (Al-Mudhaf and Goodwin, 1993; 

Sadorsky, 1999; Faff and Brailsford, 1999; Sadorsky, 2001; Papapetrou, 2001; 

Hammoudeh and Li, 2004; El Sharif et al., 2005; Nandha and Faff, 2008; Boyer and 

Filion, 2007).  
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Although the individual stock returns are indeed influenced by the oil price 

movements, overall stock market indices have been shown to be unrelated to the oil 

price shocks, at least in statistical sense. The stock market indices are viewed as 

important indicators of the state of economies, thus the relationship should be well 

studied for the complete understanding of an economy. Despite the importance of such 

study, only limited number of studies examined it. Among those limited studies, most 

find that the two markets are independent (Huang et al., 1996). However, the analysis of 

nonlinear or asymmetric relationship between the oil prices and economy, as well as 

stock markets showed the existence of nonlinear relation such that an oil price increase 

is more detrimental to the U.S. economy and financial markets, than an oil price 

decrease is beneficial (Mork, 1989; Hamilton, 1996; Balke, Brown, and Yucel, 2002). In 

addition, nonlinear Granger causality from oil futures return to S&P 500 index return is 

found (Ciner, 2001). This study investigates the relationship between stock market 

indices and oil price series for many countries using copula functions and Stable 

Aggregate Currency (SAC) to explore the general dependence without the currency 

effect. 

Oil prices have been mainly denominated in U.S. dollars, however, the decline of 

the U.S. dollar value against other currencies have led OPEC to think of an alternative 

currency for crude oil pricing (Amuzegar, 1978; Haughton, 1991; Samii et al., 2004; 

Verleger, 2003). This issue has emerged late 1970’s and early 1980’s when the U.S. 

dollar was devalued. It again has become a current issue with the U.S. dollar quickly 

losing its value and dominance in the global economy. The importance of the 
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appropriate currency for crude oil pricing stems from the claims that oil price 

movements are partially due to the currency movements, meaning that exchange rate 

fluctuations cause oil price movements (Samii and Clemenz, 1988; Basher and 

Sadrosky, 2006). This is an important issue that needs to be accounted for in such studies 

since the possible significant relationship between stock markets and oil prices might be 

masked by the exchange rate movements. Moreover, numerous studies showed that 

stock markets of many countries are influenced by exchange rate movements as well. 

Hence, exchange rates are common causes for both variables of interest and thus the 

appropriate actions for consideration are imperative. However, very few studies 

controlled for exchange rates when studying the relationship between the oil prices and 

stock market indices. For example, Cologni and Manera (2008) included the exchange 

rate as an explanatory variable in the VAR to control for the exchange rate risk. 

Similarly, Basher and Sardosky (2006) included a weighted average of the foreign 

exchange value of the U.S. dollar against a subset of the broad index currencies in the 

OLS regression to account for the exchange rate effect. This paper uses a relatively 

stable currency basket which greatly eliminates the exchange rate risk and accounts for 

currency movements. Specifically, SAC is employed as the base currency (Hovanov et 

al., 2003). Moreover, for comparison purpose we included the U.S. dollar and Euro as 

alternative base currencies. However, unlike the Cologni and Manera (2007) and Basher 

and Sadordky (2006), all the series (oil prices and stock market indices) are transformed 

into SAC, Euro, and U.S. dollar. The results with these modifications will provide us 
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more accurate answers as to whether the oil prices really affect the stock markets when 

we eliminate the effects of the exchange rate changes.  

Another contribution of this paper is the examination of oil price and stock 

market relationship from an asymmetric perspective. Although there is some limited 

evidence of asymmetry in the relationship, no one has looked at the application of copula 

functions in this field. It facilitates flexible modeling of univariate marginal 

distributions. In addition, the dependence can be estimated based on the entire 

dependence structure rather than just univariate measures (Chollete et al., 2005).   

This paper is organized as follows. Section 3.2 presents the construction of the 

SAC, the data and its transformations into series with minimum exchange-rate exposure. 

The copula functions and the estimation procedure are briefed in Section 3.3. Main 

results of the paper are given in Section 3.4 followed by the implications and conclusion 

of the results which are reported in Section 3.5.  

 

3.2 Stable Aggregate Currency (SAC) and Data Transformation 

 

This section details the oil prices and stock market indices data for different 

countries including both developed and developing among which are some of the large 

oil producing countries. Two different oil price series are used for the purposes of 

comparison and robustness of the results. This is important as the existing studies have 

used different oil prices series which may be another reason for some of the results that 
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are not quite consistent with each other. In addition, a brief review of the SAC 

methodology and the techniques for data transformation is presented.  

 

3.2.1 Review of SAC 

In the literature on oil prices and stock markets, several studies have only 

included specific currencies as explanatory variables in OLS or VAR analysis. Most 

common ones are the U.S. dollar or Euro. However, even the most stable currencies such 

as U.S. dollar and Euro fluctuate, especially during extreme events. The series 

denominated in either currency will be affected by the exchange rate dynamics and the 

results of the studies that employ either currency as the base will be highly dependent 

upon the dynamics of the base currency chosen. Hence, the conclusion of a study may 

change depending on which currency is used due to their fluctuations over time. In 

essence, the exchange rate fluctuates as a direct result of both currencies. Therefore, to 

sustain the stability of the exchange rates, the choice of the base currency is important. 

For example, using U.S. dollar as a base currency as opposed to British pound, changes 

the relationship between the Euro and Yen (Hovanov et. al., 2003).  

On the other hand, the use of a basket of hard currencies, such as the U.S. dollar, 

German mark, British pounds, Japanese yen, and French franc would greatly minimize 

the aggregate volatility by combining the currencies at some fixed proportion (Seymour, 

1980; Hovanov et. al., 2003). This principle is used to construct both the Special 
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Drawing Rights (SDR) and the SAC23. In this paper we propose the use of SAC in order 

to achieve minimal exchange rate movement. Unlike many studies on oil prices and 

stock markets, this study proposes the denomination of all the series into one standard 

currency or basket of currencies.  

The complete details on SAC construction are given in Hovanov et al. (2003), 

while this paper presents a brief introduction of SAC. It starts with the Invariant 

Currency Value Index (ICVI) which is the same for a fixed set of currencies regardless 

of the base currency choice. The invariance property of the ICVI has important 

implications especially if it is used as a base currency. Moreover, the fluctuation of a 

particular currency and not the exchange rate (which changes due to the change in 

numerator and/or denominator currencies) can be demonstrated through the use of ICVI.   

Furthermore, Normalized Index of Value (NVal) in exchange is used to 

mathematically express the ICVI through the following equation: 
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where NValij is the normalized value in exchange, cij is the exchange coefficient (i.e. the 

exchange rate of the ith currency for the j th currency), where jth currency is the base 

currency. The geometric mean of values in exchange (i.e. cij) is expressed byn
n
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Given that the NValij is invariant upon the base currency choice, it can be 

substituted by NVali. Furthermore, the Reduced Normalized Value in Exchange 
                                                 
23 The SDR is proposed by International Monetary Fund which is a basket of currency comprised of hard 
currencies at fixed proportions.  
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(RNVali(t/t0)) is used instead of NVali because of its convenience of further 

demonstration.  

)(
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0 tNVal
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i =                                                                                (3.2) 

Equation (3.2) expresses the RNVali(t/t0) starting from t0  (t0 =1), where i is the number of 

currencies included in the SAC, i.e. i=1,…,5 and i=1,…,4 for pre- and post-Euro 

periods, respectively.. The time series of the RNVali at moment t0 =1 (January 8, 1982) 

for each of the five and four currencies included in pre- and post-Euro periods, 

respectively is computed as ),1/()1/( tRNValUSDtUSD =  

),1/()1/( tRNValJPYtJPY = ),1/()1/( tRNValGBPtGBP =  

),1/()1/( tRNValDEMtDEM =  ),1/()1/( tRNValFRFtFRF =  where t is the number of 

observations (e.g. t=1,…, 4290 and t=1,…,2256 for the pre- and post-Euro periods, 

respectively).24  In addition, the sum product of RNVali(t/t0) and the weight vector w is 

calculated to determine the Index Value ( );( twInd ), which is mathematically presented 

as: 
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Optimal weights of the key international currencies included in the currency basket are 

obtained by minimizing the variance subject to these constraints: 0≥iw  

and 121 =+++= iwwww K . Formally, the variance S2(w) can be presented as: 

                                                 
24 In the post-Euro period, )1/()1/( tRNValDEMtDEM =  and )1/()1/( tRNValFRFtFRF =  are 

replaced by )1/()1/( tRNValEURtEUR = . 
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where ),cov( ki is the covariance of time series RNVali(t/t0) and RNValk(t/t0), 2
is is the 

variance of the time series RNVali(t/t0), and w1,…,wi  are the weight-coefficients 

calculated as given: 
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The calculated optimal weights are further used  to calculated the optimal quantities of 

currencies ( *
5

*
1 ,, qq K ) through the following equation: 
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Finally, the SAC is constructed by incorporating the key currencies at calculated 

optimal proportions (amounts).25 It will later be used to transform both the oil price and 

stock market index data into SAC-denominated series.     

 

3.2.2 Data 

The data used in this study includes daily oil price series and stock market 

indices from both developed and developing countries over the period of January 7, 

1982 to December 31, 2007. The reason for the chosen starting period is due to the fact 

that both oil price series are available from that date. The stock market indices include 

the Nikkei 225 Average Composite Index (Japan), FTSE 100 Index (UK), DAX 30 
                                                 
25 The currencies included in the SAC are exactly the same currencies that comprise the SDR. 
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Performance Index (Germany), DS Total Market Index (France), AEX 30 Ordinary 

Index (Netherlands), DS Total Market Index (Italy), S&P 500 Composite Index (U.S.), 

IBEX 35 Index (Spain), OMX Helsinki Index (Finland), S&P/TSX Composite Index 

(Canada), Swiss Market Index (Switzerland), WSE WIG Index (Poland), Prague Stock 

Exchange Index (Czech Republic), Budapest Stock Exchange Index (Hungary), 

Shanghai SE Composite Index (China), RTS (Russia), Hang Seng Index (Hong Kong), 

Venezuela Stock Index (Venezuela), and S&P/IFCG Index (Saudi Arabia). The two oil 

price series used include Brent crude oil spot FOB price and the OPEC oil basket price. 

The former is used as it is the main benchmark for Asia, Middle East, and Europe. The 

latter is used for the sensitivity purposes to test if results change substantially when the 

benchmark is not used. All the data is retrieved from DataStream database. 

The creation of Euro as a common currency for most of the EU countries has 

been shown to have an influence on the dynamics of financial series (Patton, 2006a). 

The hypothesis of results being different pre- and post-Euro periods is empirically tested 

in this paper. The overall time period is partitioned into pre- and post-Euro periods and 

the series that are available at a later date are only included in the post-Euro period. Pre-

Euro period starts at the starting date mentioned above and ends on December 31, 1998. 

It includes eight stock market indices (Nikkei 225 Average Composite Index (Japan), 

FTSE 100 Index (UK), DAX 30 Performance Index (Germany), DS Total Market Index 

(France), DS Total Market Index (Italy), S&P 500 Composite Index (U.S.), S&P/TSX 

Composite Index (Canada), Hang Seng Index (Hong Kong)) and both oil price series. In 

addition to these series, the rest of stock market indices are also included in the Post-
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Euro period which ranges from January 1, 1999 to December 31, 2007. The results of 

the two periods (for the series that are available for both periods) are compared for the 

possibility of changed interactions. 

 

3.2.3 Data Transformation 

Each series is denominated into the same base currency or currency basket. This 

way, the exchange rate effect is minimized resulting in more accurate results. When 

stock market indices are denominated in local currencies, they incorporate both local 

currency and stock market movements. Similarly, the oil price series in local currencies 

fluctuate due to price changes and currency movements. This way results would not 

represent the pure stock market and the oil price dependence since the currency 

movement will have an influence on both series. Moreover, if both oil prices and stock 

market indices are denominated in U.S. dollars (Euro), the series will in addition depend 

on the exchange rate changes, i.e. the relation between the local currency and the U.S. 

dollar (Euro). Consequently, studies examining the stock markets of various countries, 

oil prices and other macroeconomic variables incorporate exchange rate risk, thus it is 

possible that the results are inaccurate. To overcome this problem, this paper proposes to 

denominate all the stock market indices and oil prices series in a basket of currency 

(SAC), which essentially minimizes the volatilities of comprised currencies (Hovanov et 

al., 2003; Maung, 2004; Zohrabyan, 2005). The data transformation follows according to 

the following equation:  
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where  itC
itP is the ith stock market index or the ith oil price series at time t in the i th 

country’s currency. Similarly, tSAC
itP  is the ith stock market index (or the i th oil price 

series) at time t in SAC, where SAC is the base currency, and 
it

t

C
SAC is the exchange rate of 

SAC for the ith country’s currency at time t. All the series are then denominated into 

SAC to minimize the currency movements for further analysis. As mentioned earlier, the 

U.S. dollar and the Euro (only for the post-Euro period) are applied as numeraire for 

comparison purposes. The data transformation under these two alternative base 

currencies is the same as the Equation (3.7) with SAC being changed into U.S. dollar 

and Euro. Hereinafter, the data used will be transformed unless otherwise mentioned.26  

 

3.3 Copula Functions  

 

Copula function which joins the marginal distribution functions to restore their 

joint multivariate distribution function was first introduced over 50 years ago (Sklar, 

1959). However, it only became popular several years ago. In his paper Mikosch (2005) 

stated that within 2003 and 2005 the Google search of “copula” has increased by about 

65 times.27 This shows that the application of copula functions in various studies has 

skyrocketed in a short time-span. Copula functions have been widely used in finance, 

economics and other social science fields. In fact, in risk management studies, copulas 

                                                 
26 Exchange rate data for all the countries used in this study are obtained from Oanda Pacific Exchange 
database. The time period for these dataset is the same as for the stock market indices.  
27 Notice that not all of the items from “copula” search were pertaining to the copula functions used in 
statistics, mathematics, finance, economics, etc.  
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are now one of the most common methodologies used. Researches in finance, statistics, 

and economics also have increasingly used these exotic and flexible functions. It is 

apparent that copulas are useful in nonlinear analysis, specifically modeling the structure 

of dependence. It has been used in spillover analysis where its importance stems from 

the fact that various copula families tackle different aspects of dependence structure.  

There is an extensive theoretical research done on copulas and, as a result, wide 

variety of functional forms, copula families, and methods of estimation are available. For 

example, both parametric and non-parametric copulas can be used and over ten 

parametric copula families or classes can be chosen. The basic definition of the copula 

functions, their functional forms, properties, and estimation methods are detailed below. 

The most important and fundamental theorem on copulas is the Sklar’s theorem given by 

Theorem 1 below.  

Theorem: Given a 2-dimensional cumulative distribution function ),( yxH  of any pair 

),( YX of continuous random variables whose marginal cumulative distributions are 

)(xF and )(yF , there exists a unique 2-dimensional copula ]1,0[]1,0[: 2 →C such that   

))(),((),( yFxFCyxH =                                                                                   (3.8) 

Conversely, if C  is a 2-copula and )(xF and )(yF  are the marginal distribution 

functions, then ),( yxH is a 2-dimensional joint distribution function with margins 

)(xF and )(yF  (Rodriguez, 2007). Copula functions have several important properties 
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such as copulas are grounded, 2-increasing, and if at least one of the coordinates is zero, 

then the copula will also be zero (Marshal and Zeevi, 2002).28  

The increasing importance of copulas stems from the fact that it facilitates an 

easy and flexible multivariate distribution calculation using the marginal distributions 

and the copula function, which is invariant under increasing and continuous 

transformations of data (Chollete et al., 2005). That is the margins can be estimated with 

the best fitting distribution, filtered, and modified as necessary. Following the model 

selection for the margins, copula functions are used to restore the joint distribution with 

the correctly specified marginal distributions and the proper dependence structure. 

Moreover, copula is a measure of dependence which is more informative and appropriate 

than the linear dependence measures.  

Cherunini et al. (2004) provide different approaches to estimate the copula 

functions. The most popular one is the Inference Function Marginal (IFM) approach 

which consists of two stages. In the first stage the margins are being modeled with the 

best fitting distribution. The parameters of the univariate marginal distribution are 

estimated by:  
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 The estimated parameters of margins 1̂θ  are then used in the second stage of copula 

parameter 2θ  estimation. 

                                                 
28 Detailed information on copula functions, properties, their applications in finance area, and more can be 
found in Joe (1997), Nelson (2006), Cherubini et al. (2004), Bouye et al. (2000), Embrechts et al. (2002), 
Embrechts et al. (2003), Marshal and Zeevi (2002), and Patton (2004). 
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According to IFM approach, the parameters of the margins and copulas are separately 

estimated. Specifically, the two-stage semi-parametric procedure is used in this paper 

where the first-stage is estimated non-parametrically. IFM estimator is defined as the 

vector: 

)ˆ,ˆ(ˆ
21 ′= θθθ IFM                                                                                       (3.11) 

Essentially, this way the specification errors of margins are minimized to nearly zero 

implying more accurate results. The IFM approach is computationally more attractive 

and is less complex in general than the alternative approach in which case the parameters 

of both marginal distribution and copulas are estimated simultaneously. Moreover, 

Patton (2006b) shows that IFM estimator is consistent and asymptotically normal. 

Comparing the exact maximum likelihood and the IFM estimators, Xu (1996) reported 

nearly the same mean square errors.  

 

3.3.1     Stage One – Univariate Marginal Distributions 

It is a common practice to transform the price series into logarithmic differences 

(i.e. returns) which generally results in stationary series. Many of the return series of this 

study are fairly volatile. This is the case especially for the stock market indices of 

developing countries. Moreover, most of the financial series tend to deviate from the 

i.i.d. assumption and are usually conditional heteroskedastic resulting in inaccurate 

estimation of the degree of dependence (Hu, 2006). This is certainly the case with the 
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return data of this study. In addition, many of the series also suffer from serial 

correlation29. To solve both the autocorrelation and the conditional heteroskedasticity 

problems, autoregressive (AR) and generalized autoregressive conditional 

heteroskedastic (GARCH) models are used. Following Patton (2006a), we assumed that 

the conditional means evolve according to an autoregressive (AR) process. On the other 

hand, the conditional variance evolves according to an asymmetric GARCH model.  

Each of the individual return series is modeled by fitting k order autoregressive 

model.30 It is given by the following equation:   
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In addition, the conditional variance of each series is modeled by fitting an 

asymmetric GARCH model as given: 
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The asymmetric GARCH model includes the leverage or asymmetry term by a Boolean 

indicator taking the value of 1 if the prior model residual is negative and 0 otherwise. 

This model was introduced by Glosten et al. (1992). Franses and Dijk (1996) showed 

that GJR model can improve on the standard symmetric GARCH model mainly due to 

the fact that it accounts for the negative (positive) skewness of financial returns. In fact, 

when 0>ψ , impact is much greater in case of negative shocks than positive shocks. 

Therefore, because many of the series in this study have observed negative skewness, it 

                                                 
29 LM test is performed for up to 10 lags. It was rejected for most of the series and lag inclusion was 
necessary in most cases to cure the autocorrelation problem.  
30 Order k of the autoregressive model differs for each return series as some required more lags than 
others. 
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is more appropriate to use GJR-GARCH than the standard symmetric GARCH. The 

GJR-GARCH (p, q) model is used with innovations modeled by a Student-t asymmetric 

generalized distribution of Hansen (1994).31 

The resulting standardized residuals from the GJR-GARCH model are then used 

to calculate the unit cumulative distributions (CDF’s). Moreover, the non-parametric 

kernel CDF’s of each filtered series is estimated which are shown to be the best for 

interior of the distribution where most of the data is found. The advantage of the non-

parametric estimation of margins is that it does not entail any specification errors. 

However, evidence shows that it is not the best for the tails of the distribution. The 

extreme value theory (EVT) is therefore applied to the standardized residuals that fall in 

each tail in order to estimate the tails of the distribution. As a result, 10% of the 

standardized residuals for the upper and lower threshold is used in order to estimate the 

parametric Generalized Pareto Distribution (GPD) (Embrechts et al., 1997; Mikosch, 

2003; McNeil et al., 2005). Furthermore, the maximum likelihood estimation is utilized 

to fit the amount by which the extreme residuals in each tail fall beyond the associated 

threshold to a GPD. The negative log-likelihood function is then optimized to estimate 

the tail index and scale parameters of the GPD. The resulting distribution of margins 

captures the heavy-tails of the series better and provides more accurate CDF estimation.  

 

 

 

                                                 
31 Models for each series and each case are available upon request from authors. 
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3.3.2     Stage Two - Copula Functions 

Given the parameter estimates of the margins, copula parameters can be 

estimated in the second stage using the maximum likelihood estimator. However, to 

estimate the copula parameters copula function, family, and class have to be specified. 

This study uses the following nine different constant parametric copula functions from 

various copula families and classes: Normal copula, Clayton copula, Rotated Clayton 

copula, Frank copula, Plackett copula, Gumbel copula, Rotated Gumbel copula, Student 

copula, and Symmetricized Joe-Clayton (SJC) copula.32 

The most appropriate copula function for each bivariate model is selected based 

on the log-likelihood functions and three information metrics (selection criteria). The 

latter includes the Akaike Information Criterion (AIC) and Bayesian Information 

Criteria (BIC). All three measures use somewhat different approach as given below: 

ParametersLLFAIC ×+×−= 22                                                        (3.14) 

ParametersTLLFBIC ×+×−= )log(2                                                 (3.15) 

where LLF is the log-likelihood function, Parameters is the number of parameters, and 

the T is the number of observations (4290 and 2256 for pre- and post-Euro, 

respectively). The number of parameters for each copula function is one except for the 

Student t and SJC copula functions. 

Large number of observations result in different criteria values among the three 

Goodness-of-Fit measures. Hence, the copula model chosen by the information criteria 

                                                 
32 Patton (2004) provides the functional forms for all the copula functions used in this study.  
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to be the best fitting copula may slightly differ depending on the measure used. All the 9 

copula functions used in this study will be ranked based on all three criteria.  

 

3.3.3 Dependence Measures 

As mentioned earlier, copula functions describe the structure of dependence and 

are adequate indicators of the possible co-movement between the series (Patton, 2006b). 

Moreover, copulas are related to all the association concepts such as concordance, linear 

correlation, tail dependence, positive quadrant dependency, and some of the related 

measures such as Kendall’s tau, Spearman’s rho, Pearson’s rho, index of tail dependency 

(Cherubini et al., 2004). This study uses four dependence measures: Pearson’s rho, 

Kendall’s tau, Spearman’s rho, and index of tail dependency.  

Pearson’s correlation (aka linear correlation), which has been in common use for 

many years, measures the linear dependence between the variables of interest. According 

to Emnrechts et al. (2003), it is invariant under strictly increasing linear transformation 

and is easy to manipulate under linear operations which is one of the main reasons for 

such popularity. Moreover, it is also a natural scalar measure of dependence in elliptical 

distributions; however, in cases of non-elliptical distributions it provides a false measure 

of dependence. For instance, if the best fit of the model are the heavy-tailed 

distributions, which have infinite second moments, the Pearson’s correlation can not 

even be defined. The existence of outliers, unequal variances, non-normality, and non-

linearity all influence the linear correlation coefficient (Carmona, 2004). Hence, only 
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under special circumstances linear correlation is appropriate and accurate measure of 

dependence. 

The other commonly used dependence measures, Spearman’s rho and Kendall’s 

tau, are non-parametric dependence (concordance) measures and are often considered to 

be the best dependence measures for nonelliptical distributions (Embrechts et al., 2003). 

These concordance measures are based on the order statistics of the sample. Moreover, 

the distortions that affect the linear correlation coefficient are greatly minimized 

resulting in rank correlations that are robust measures of correlation. In fact, Spearman’s 

rho computes the correlation between pairs of ranks by mimicking the approach of linear 

correlation (Genest and Favre, 2007). Specifically, it measures the probability of 

concordance and discordance. Spearman’s rho, given the ordered statistics or ranks of X 

and Y, is defined as: 

[ ])0))(Pr(()0))(Pr((3 21212121 <−−−>−−= YYXXYYXXsρ               (3.16) 

Spearman’s rho is very closely related to the Kendall’s tau which measures the 

difference between the probability of concordance and probability of discordance. Given 

that it is also a rank correlation, Kendall’s tau for the ordered statistics of X and Y is 

given by: 

)0))(Pr(()0))(Pr(( 21212121 <−−−>−−= YYXXYYXXτ                (3.17) 

Similar to linear correlation coefficient, both ]1,1[−∈τ  and ]1,1[−∈sρ . Both Kendall’s 

tau and the Spearman’s rho can be represented in terms of copula functions as below: 

∫ ∫ −=
1

0

1

0
1),(),(4 vudCvuCτ                                                                (3.18) 
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∫ ∫ −=
1

0

1

0
3),(12 vuuvdCsρ                                                                (3.19) 

Copula parameters can be estimated either through maximum likelihood or through 

Kendall’s tau estimator (Equation 3.18). The Kendall’s tau estimator is efficient and can 

be used as a Goodness-of-Fit measure of copula models (Embrechts et al., 2002; 

Chollete et al., 2005; Hu, 2006). Specifically, if the dependence parameter is relatively 

the same regardless of the estimation method, then there is no difference whether it is 

obtained from the rank of data or via the copula functions. Essentially, this would imply 

that the copula functions are well specified.33 

Lastly, tail dependence is also used in this paper as a measure of dependence. In 

fact, tail dependence is a property of an underlying copula function and is used to 

summarize the potential for extreme co-movements among a set of variables (Marshal 

and Zeevi, 2002). It is important to note that the tail dependence differs widely for 

different class or family of copulas (Rodriguez, 2007). For example, Normal, Frank, and 

Plackett copulas have zero tail dependences and would not be able to capture any of the 

information about the extreme co-movements or the dependence structure in the tails. 

The tail dependence for Student t-copula is given as (Marshal and Zeevi (2002)): 
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33 The relationship between the Kendall’s tau and parameters of different copulas is given in Embrechts et 
al. (2003), Cholete et al. (2005), Hu (2006), and Genest and Favre (2007). For example, the Clayton and 

Gumbel copula parameters and Kendall’s tau are related through these equations: 2+= θ
θ

θτ and 

θθτ 11−= . In this study we computed the copula parameters both ways. We find that they are fairly 

close to each other. Hence, it can be concluded that the copula models are well specified. 
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Student t copula captures only the symmetric tail dependence (e.g. UL λλ = ) which is 

more informative than the case of independence but still lacks to explain possible 

asymmetries in the tails. On the other hand, Clayton, Rotated Clayton, Gumbel, Rotated 

Gumbel, and SJC all are very informative and provide information on asymmetric depe-

ndence.34 The tail dependence of Clayton copula is given as (Embrechts et al., 2003):  

θλ /12−=L                                                                                                   (3.21) 

where θ  is the Clayton copula parameter. Note that Clayton copula has Lλ  and zero 

lower and upper tail dependences, respectively. Conversely, Rotated Clayton copula has 

zero and Uλ  lower and upper tail dependences, respectively. The equation for Uλ  is 

exactly the same as Lλ  (lower tail dependence of Clayton copula) only replacing the θ  

Clayton copula parameter with that of Rotated Clayton. Similar relation is observed for 

the Gumbel and Rotated Gumbel copulas. The upper tail dependence of the Gumbel 

copula is the following: 

θλ /122 −=U                                                                                        (3.22) 

where θ  is the Gumbel copula parameter. The lower tail dependence of the Gumbel 

copula is zero. Changing only the copula parameters and the tail dependencies, the 

Rotated Gumbel copula has the same tail dependence equation for the lower tail as the 

Gumbel copula has for its upper tail dependence.  

Lastly, the tail dependencies for the SJC copula are the SJC copula parameter 

estimated in the reverse order. Tail dependencies that tackle only the specific tails or 
                                                 
34 Tail dependences for each of the copula functions used in the study are provided in Nelsen (2006), 
Embrechts et al. (2002), Marshal and Zeevi (2002), Patton (2004), Chollete et al. (2005), and in most 
copula papers.  
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both tails unequally would provide sufficient information on whether or not the 

dependence of oil price series and stock market indices is higher during the crash than 

booms.  

 

3.4 Results 

 

The results of this paper are summarized in this section. The results of 

conventional dependence measures for oil price series and the stock market indices such 

as Kendall’s tau, Spearman’s rho, and the linear correlation are illustrated first. The 

copula parameter estimates, tail dependences, and log-likelihood functions are all 

represented next followed by the information criteria results. In other words, the nature 

of the relationship, the direction of the dependence, and the best fitting dependence 

structure of oil price series and the stock market indices are illustrated in this section.  

 

3.4.1 Results of Degree and Structure of Dependence  

The results of the dependence measures are summarized in Tables 3.1 and 3.2 for 

Brent oil and Opec oil price series, respectively. First, we compare whether or not the 

Brent oil and Opec price series result in different measures of dependence. Depending 

on the oil price series used, the association degree measures result in different values 

especially in the post-Euro period (with the exception of pre-Euro Japan). For instance, 

all the measures of dependence between the Swiss stock market index and Opec oil price 

series are statistically significant even at 10% significance level, whereas in case of  
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Table 3.1. Correlation between Each Stock Market In dex and Brent Oil Price Returns

K. Tau S. Rho P. Rho K. Tau S. Rho P. Rho K. Tau S. Rho P. Rho K. Tau S. Rho P. Rho K. Tau S. Rho P. Rho
UK 0.010 0.014 -0.006 -0.054 -0.080 -0.057 0.041 0.060 0.033 0.023 0.034 0.013 0.046 0.068 0.056

0.334 0.351 0.686 0.000 0.000 0.000 0.004 0.004 0.117 0.104 0.103 0.539 0.001 0.001 0.007

Japan 0.027 0.039 -0.031 -0.024 -0.034 -0.064 0.041 0.061 0.071 0.008 0.012 0.029 0.048 0.069 0.092
0.008 0.010 0.043 0.024 0.025 0.000 0.004 0.004 0.001 0.566 0.573 0.167 0.001 0.001 0.000

US -0.029 -0.043 -0.082 0.081 0.119 0.036 -0.012 -0.016 -0.016 0.012 0.019 0.018 0.061 0.090 0.101
0.006 0.005 0.000 0.000 0.000 0.018 0.413 0.447 0.440 0.393 0.366 0.397 0.000 0.000 0.000

Germany 0.006 0.009 -0.058 -0.107 -0.156 -0.151 0.017 0.026 0.007 -0.002 -0.003 -0.021 -0.014 -0.021 -0.026
0.536 0.556 0.000 0.000 0.000 0.000 0.222 0.222 0.756 0.886 0.881 0.323 0.308 0.311 0.226

France 0.006 0.009 -0.031 -0.098 -0.144 -0.135 0.038 0.057 0.031 0.008 0.013 -0.006 -0.006 -0.009 -0.018
0.556 0.550 0.040 0.000 0.000 0.000 0.006 0.007 0.136 0.549 0.541 0.768 0.654 0.657 0.389

Italy 0.010 0.014 -0.046 -0.048 -0.063 -0.079 0.044 0.065 0.035 0.014 0.019 -0.009 -0.010 -0.014 -0.026
0.355 0.374 0.003 0.000 0.000 0.000 0.002 0.002 0.101 0.359 0.357 0.668 0.515 0.518 0.218

Canada -0.004 -0.006 0.006 0.084 0.124 0.099 0.099 0.147 0.136 0.106 0.157 0.149 0.130 0.191 0.194
0.687 0.679 0.715 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HK 0.019 0.029 0.004 0.067 0.100 0.049 0.010 0.015 0.028 0.030 0.044 0.044 0.071 0.107 0.108
0.064 0.061 0.781 0.000 0.000 0.001 0.468 0.477 0.190 0.033 0.036 0.036 0.000 0.000 0.000

China 0.005 0.008 0.000 0.018 0.026 0.009 0.065 0.096 0.071
0.698 0.709 0.999 0.211 0.219 0.662 0.000 0.000 0.001

Czech Rep. 0.036 0.054 0.045 -0.014 -0.019 -0.029 -0.004 -0.005 -0.004
0.010 0.011 0.034 0.355 0.357 0.166 0.798 0.796 0.854

Netherlands 0.025 0.038 0.006 -0.002 -0.003 -0.022 -0.015 -0.022 -0.028
0.072 0.072 0.790 0.890 0.897 0.303 0.289 0.302 0.188

Finland 0.037 0.055 0.029 0.020 0.030 0.012 0.011 0.017 0.012
0.009 0.009 0.163 0.159 0.161 0.578 0.423 0.416 0.569

Hungary 0.044 0.066 0.057 0.036 0.048 0.024 0.026 0.035 0.052
0.002 0.002 0.007 0.024 0.022 0.248 0.098 0.097 0.014

Poland 0.050 0.075 0.080 0.034 0.051 0.052 0.041 0.061 0.071
0.000 0.000 0.000 0.015 0.015 0.014 0.004 0.004 0.001

Russia 0.066 0.096 0.069 0.075 0.109 0.068 0.097 0.141 0.110
0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000

Saudi Arabia 0.015 0.021 0.022 0.045 0.067 0.048 0.097 0.144 0.107
0.304 0.308 0.301 0.001 0.001 0.023 0.000 0.000 0.000

Venezuela 0.027 0.042 0.033 0.032 0.048 0.033 0.059 0.089 0.066
0.052 0.048 0.114 0.023 0.022 0.122 0.000 0.000 0.002

Spain 0.026 0.039 0.007 -0.005 -0.007 -0.031 -0.022 -0.032 -0.049
0.060 0.066 0.733 0.724 0.730 0.140 0.125 0.126 0.021

Switzerland 0.023 0.034 0.014 -0.013 -0.019 -0.029 -0.032 -0.047 -0.044
0.105 0.106 0.512 0.372 0.361 0.171 0.024 0.024 0.036

Post-Euro-EURPost-Euro-USDPre-Euro-USD Pre-Euro-SAC Post-Euro-SAC

 Note: The table reports the dependence measures including the Kendall’s Tau (K. Tau), Spearman’s Rho (S. 
Rho), and Pearson’s Rho (P. Rho) for pre- and post-Euro periods and three denominations: Stable Aggregate 
Currency (SAC), U.S. Dollar (USD), and Euro (EUR). The p-values are in italics.   

 

Brent oil price, all of the coefficients are insignificant. However, these results are only 

observed for SAC- and EUR-denominated data in post-Euro period. Overall, it can be 

concluded that the dependence measures change somewhat depending on the type of oil 

price series used. This result is somewhat different from that of Ciner (2001), who used 

WTI and Brent oil price series and concluded that there is no significant difference 

between the two series and one can choose either one for such analysis.  
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Table 3.2 Correlation between Each Stock Market Ind ex and Opec Oil Price Returns

K. Tau S. Rho P. Rho K. Tau S. Rho P. Rho K. Tau S. Rho P. Rho K. Tau S. Rho P. Rho K. Tau S. Rho P. Rho
UK 0.008 0.011 -0.014 -0.072 -0.105 -0.067 0.029 0.044 0.013 0.008 0.012 -0.013 0.039 0.058 0.047

0.443 0.462 0.360 0.000 0.000 0.000 0.038 0.037 0.542 0.554 0.559 0.538 0.005 0.006 0.027

Japan 0.006 0.008 -0.065 -0.050 -0.071 -0.103 0.032 0.048 0.059 -0.010 -0.014 0.003 0.049 0.071 0.099
0.584 0.595 0.000 0.000 0.000 0.000 0.022 0.023 0.005 0.491 0.493 0.871 0.001 0.001 0.000

US -0.024 -0.037 -0.084 0.109 0.159 0.059 -0.012 -0.017 -0.031 0.023 0.035 0.021 0.085 0.125 0.128
0.018 0.017 0.000 0.000 0.000 0.000 0.399 0.426 0.135 0.096 0.093 0.315 0.000 0.000 0.000

Germany -0.008 -0.012 -0.081 -0.138 -0.202 -0.186 0.008 0.012 -0.015 -0.021 -0.032 -0.052 -0.033 -0.049 -0.053
0.429 0.420 0.000 0.000 0.000 0.000 0.573 0.574 0.479 0.127 0.125 0.013 0.020 0.021 0.012

France 0.003 0.005 -0.060 -0.121 -0.177 -0.174 0.026 0.038 0.006 -0.014 -0.020 -0.044 -0.028 -0.041 -0.054
0.735 0.752 0.000 0.000 0.000 0.000 0.068 0.071 0.791 0.330 0.337 0.038 0.049 0.049 0.010

Italy 0.007 0.010 -0.051 -0.049 -0.064 -0.071 0.033 0.050 0.003 -0.007 -0.009 -0.047 -0.037 -0.049 -0.068
0.479 0.495 0.001 0.000 0.000 0.000 0.017 0.018 0.879 0.668 0.676 0.026 0.019 0.020 0.001

Canada 0.000 0.000 0.006 0.108 0.159 0.121 0.075 0.112 0.094 0.083 0.124 0.111 0.114 0.169 0.173
0.974 0.986 0.677 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

HK 0.009 0.014 -0.014 0.069 0.103 0.041 0.016 0.024 0.019 0.045 0.067 0.047 0.095 0.140 0.130
0.358 0.350 0.374 0.000 0.000 0.007 0.254 0.260 0.371 0.001 0.001 0.024 0.000 0.000 0.000

China 0.006 0.051 0.000 0.027 0.041 0.019 0.084 0.125 0.097
0.695 0.699 0.982 0.055 0.052 0.379 0.000 0.000 0.000

Czech Rep. 0.035 0.054 0.038 -0.026 -0.037 -0.053 -0.016 -0.023 -0.031
0.013 0.015 0.070 0.078 0.081 0.012 0.285 0.280 0.142

Netherlands 0.013 0.020 -0.011 -0.021 -0.032 -0.048 -0.033 -0.049 -0.051
0.354 0.347 0.611 0.130 0.130 0.021 0.019 0.020 0.016

Finland 0.026 0.039 0.018 0.004 0.006 -0.007 -0.005 -0.007 -0.003
0.062 0.066 0.385 0.788 0.768 0.747 0.717 0.751 0.890

Hungary 0.044 0.065 0.055 0.033 0.044 0.025 0.019 0.025 0.043
0.002 0.002 0.009 0.037 0.036 0.243 0.230 0.228 0.039

Poland 0.046 0.069 0.057 0.028 0.042 0.037 0.038 0.056 0.064
0.001 0.001 0.007 0.043 0.045 0.077 0.007 0.008 0.002

Russia 0.082 0.120 0.098 0.095 0.138 0.101 0.123 0.178 0.152
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Saudi Arabia 0.024 0.036 0.027 0.066 0.098 0.069 0.130 0.192 0.144
0.087 0.087 0.199 0.000 0.000 0.001 0.000 0.000 0.000

Venezuela 0.025 0.037 0.030 0.041 0.061 0.042 0.078 0.116 0.084
0.074 0.076 0.159 0.004 0.004 0.047 0.000 0.000 0.000

Spain 0.014 0.021 -0.006 -0.026 -0.038 -0.057 -0.044 -0.066 -0.073
0.305 0.312 0.785 0.066 0.068 0.007 0.002 0.002 0.001

Switzerland 0.009 0.013 -0.022 -0.038 -0.057 -0.076 -0.058 -0.086 -0.090
0.534 0.523 0.299 0.007 0.007 0.000 0.000 0.000 0.000

Post-Euro-EURPre-Euro-USD Post-Euro_USD Post-Euro-SACPre-Euro-SAC

 
Note: The table reports the dependence measures including the Kendall’s Tau (K. Tau), Spearman’s Rho (S. 
Rho), and Pearson’s Rho (P. Rho) for pre- and post-Euro periods and three denominations: Stable Aggregate 
Currency (SAC), U.S. Dollar (USD), and Euro (EUR). The p-values are in italics. 

 

Dependence measures are also compared based on the chosen base currency. In 

pre-Euro period there is a large economic and statistically significant difference across 

all the correlation measures for USD- and SAC-denominated data. The latter case yields 

significant, large, and often negative dependence measures (e.g. -0.107 Kendall’s tau 

parameter for Germany under SAC-denomination case), while the former results in 

mostly insignificant and somewhat weak coefficients (e.g. 0.006 Kendall’s tau parameter 
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for Germany under USD-denomination case). The picture changes greatly after the 

creation of Euro. The dependence measures for most series become the exact opposites. 

In other words, the coefficients that were not significant in pre-Euro period become 

statistically significant in post-Euro period and vice versa. This pattern is observed for 

both SAC and USD denomination cases. The only exception is Canadian stock market 

index which in almost all cases appears (except for USD-denominated data in pre-Euro 

period) to be strongly and significantly associated with Brent oil price series. Similar 

results are found for Russian, Saudi Arabian, and Venezuelan stock market index returns 

and oil price returns. To a smaller degree, these findings can be applied to Polish, Swiss, 

and Hungarian stock index returns and oil price series as well.  

The choice of currency appears to be important as the dependence results greatly 

change for most of the stock market indices. For majority of cases, EUR- and SAC-

denominated series yield similar and more consistent dependence results than USD-

denominated series (e.g. Finland, Saudi Arabia, Czech Republic, etc). Moreover, there 

appears to be a significant difference between the dependence structure of developed and 

developing countries (e.g. Germany and US versus Russia and Poland). Stock markets of 

most developed countries exhibit no correlation with oil price series, whereas weak but 

significant measures of dependence are observed for most of the developing countries. 

The possible explanation for such results is the fact that most developed countries have 

better functioning financial markets and are less susceptible to small changes, while the 

developing countries are largely affected by small changes.  
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Finally, the three dependence measures are compared. Spearman’s rho and 

Kendall’s tau result in nearly the same association measures, and only in few cases the 

Pearson’s rho differs in both significance and the degree of dependence (e.g. UK for 

post-Euro period under the USD denomination case, Venezuela for post-Euro period 

under the SAC denomination case, Italy for pre-Euro period under USD-denomination 

case). Hence, results are not greatly affected by the dependence measure and the oil 

price series used. However, there is a marked difference in pre-and post-Euro periods 

implying that the creation of Euro changed the dynamics of the financial markets of the 

developed countries (e.g. UK, US, France, Italy, Germany, etc). In addition, the 

development status of countries is important and plays critical role in understanding the 

relationship between the oil price series and the stock market indices. Finally, the choice 

of the base currency greatly changes the dependence measures implying its crucial role 

in obtaining accurate results. Most of the stock market indices have very small and 

mostly insignificant dependence measures which are highly sensitive upon different 

scenarios. This is consistent with the results reported by Huang et al. (1996) who found 

that oil futures returns have no impact on stock market indices such as S&P 500. We 

find that the only relatively strong and significant association is observed for Canadian 

stock market index returns and Brent oil price returns regardless of the different 

scenarios. Strong association is also found for Russian, Saudi Arabian, Venezuelan, 

Polish, and Hungarian stock market index returns and oil price returns.  
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3.4.2 Copula Results 

 The estimated copula parameters for each scenario are reported in Tables 3.3 to 

3.7. There are some differences noticed for different denomination scenarios. For 

example, in pre-Euro period SAC-denominated series have slightly larger copula 

parameters than the USD-denominated cases. For example, Gumbel copula parameter 

estimates for USD-denominated data is 1.001 and 1.012 for Canada and HK (with Brent 

oil price series), respectively, whereas, the estimates change under the SAC-

denomination case becoming 1.083 and 1.058, respectively.  On the other hand, in post-

Euro period USD-denominated series have larger parameter estimates than EUR-

denominated series, and those have larger parameters than the SAC-denominated series. 

Hence, in copula estimation the choice of a base currency is crucial and depending on 

that, copula results can change.  

 The use of Brent oil price series versus Opec oil price series changes the results 

somewhat, but there is no consistency to be able to make solid conclusions as to how 

results change. In some cases and for some copula functions, the parameters are larger 

when Opec oil series is used, whereas, in some cases the opposite is true. Hence, the 

only possible conclusion made is that the copula parameters are not the same under 

different oil price series. 
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Table 3.3 Estimated Copula Parameters for USD-denom inated Data in Pre-Euro Period 
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel

UK-Brent 0.028 0.037 0.024 1.087 0.162 1.015 1.017 0.028 27.606 0.000 0.000

Jap-Brent 0.024 0.014 0.036 1.118 0.219 1.017 1.008 0.029 27.411 0.000 0.000

US-Brent -0.036 -0.025 -0.009 0.893 -0.222 1.001 1.000 -0.037 19.777 0.000 0.000

Germ-Brent 0.009 0.019 0.012 1.063 0.121 1.009 1.011 0.014 16.809 0.000 0.000

Fran-Brent 0.011 0.018 0.017 1.042 0.081 1.009 1.012 0.014 19.359 0.000 0.000

Ital-Brent -0.002 0.003 0.004 1.034 0.065 1.002 1.002 0.003 18.178 0.000 0.000

Cana-Brent 0.012 0.023 0.001 1.022 0.043 1.001 1.010 0.012 52.505 0.000 0.000

HK-Brent 0.025 0.034 0.015 1.096 0.182 1.012 1.016 0.027 41.976 0.000 0.000

UK-Opec 0.029 0.040 0.032 1.088 0.161 1.018 1.022 0.028 14.970 0.000 0.000

Jap-Opec 0.000 -0.007 0.012 1.045 0.086 1.007 1.000 0.004 27.350 0.000 0.000

US-Opec -0.035 -0.032 -0.021 0.926 -0.153 1.000 1.000 -0.033 27.509 0.000 0.000

Germ-Opec -0.002 -0.001 0.008 1.020 0.040 1.004 1.000 0.002 21.046 0.000 0.000

Fran-Opec 0.001 0.000 0.004 1.037 0.072 1.006 1.000 0.005 27.515 0.000 0.000

Ital-Opec 0.005 0.018 -0.009 1.063 0.120 1.000 1.003 0.009 27.451 0.000 0.000

Cana-Opec 0.019 0.020 0.013 1.063 0.123 1.006 1.008 0.020 52.395 0.000 0.000

HK-Opec 0.017 0.024 0.006 1.077 0.148 1.007 1.008 0.019 50.691 0.000 0.000

Student t SJC

 
Note: The table contains the estimated parameters for the following copula functions: Normal, Clayton, 
Rotated Clayton (R. Clayton), Plackett, Frank, Gumbel, Rotated Gumbel (R. Gumbel), Student t, and 
Symmetricized Joe-Clayton (SJC). 
 
 
 
 
 

Table 3.4 Estimated Copula Parameters for SAC-denom inated Data in Pre-Euro Period 
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel

UK-Brent -0.078 -0.031 -0.046 0.754 0.000 1.000 1.000 -0.088 11.796 0.000 0.000

Jap-Brent -0.051 -0.041 -0.027 0.863 0.000 1.001 1.000 -0.052 27.616 0.000 0.000

US-Brent 0.142 0.142 0.169 1.628 0.947 1.099 1.089 0.154 12.044 0.041 0.015

Germ-Brent -0.177 -0.073 -0.098 0.558 0.000 1.000 1.000 -0.188 10.591 0.001 0.001

Fran-Brent -0.163 -0.076 -0.090 0.579 0.000 1.000 1.000 -0.172 10.372 0.000 0.000

Ital-Brent -0.057 -0.023 -0.050 0.734 0.000 1.000 1.000 -0.076 21.045 0.000 0.000

Cana-Brent 0.147 0.163 0.136 1.576 0.909 1.083 1.091 0.152 27.798 0.008 0.035

HK-Brent 0.102 0.115 0.094 1.415 0.679 1.058 1.066 0.109 19.095 0.000 0.021

UK-Opec -0.114 0.000 -0.059 0.660 0.000 1.000 1.000 -0.129 8.437 0.000 0.000

Jap-Opec -0.088 -0.063 -0.066 0.787 0.000 1.000 1.000 -0.087 27.859 0.000 0.000

US-Opec 0.184 0.189 0.228 1.913 1.263 1.136 1.122 0.202 10.777 0.081 0.023

Germ-Opec -0.233 -0.084 -0.112 0.465 0.000 1.000 1.000 -0.247 9.302 0.000 0.000

Fran-Opec -0.218 -0.100 -0.100 0.501 0.000 1.000 1.000 -0.225 10.126 0.000 0.000

Ital-Opec -0.056 -0.033 -0.053 0.762 0.000 1.000 1.000 -0.074 44.182 0.000 0.000

Cana-Opec 0.181 0.195 0.191 1.796 1.165 1.116 1.117 0.189 20.691 0.091 0.108

HK-Opec 0.108 0.127 0.097 1.445 0.716 1.064 1.072 0.117 15.849 0.000 0.103

Student t SJC

 Note Note: The table contains the estimated parameters for the following copula functions: Normal, 
Clayton, Rotated Clayton (R. Clayton), Plackett, Frank, Gumbel, Rotated Gumbel (R. Gumbel), Student t, 
and Symmetricized Joe-Clayton (SJC). 

 

 
 
 



 87 

Table 3.5 Estimated Copula Parameters for USD-denom inated Data in Post-Euro Period 
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel

UK-Brent 0.061 0.058 0.067 1.230 0.404 1.037 1.033 0.064 19.323 0.001 0.001
Jap-Brent 0.065 0.056 0.065 1.196 0.358 1.034 1.028 0.068 100.000 0.001 0.001
US-Brent -0.016 0.006 0.000 0.951 0.001 1.005 1.005 -0.018 15.014 0.001 0.001
Germ-Brent 0.020 0.019 0.036 1.075 0.140 1.018 1.011 0.021 15.506 0.001 0.001
Fran-Brent 0.053 0.067 0.047 1.191 0.342 1.027 1.035 0.055 15.948 0.000 0.002
Ital-Brent 0.059 0.076 0.048 1.234 0.413 1.031 1.044 0.065 18.311 0.000 0.006
Cana-Brent 0.157 0.177 0.164 1.618 0.954 1.095 1.105 0.163 14.030 0.023 0.043
HK-Brent 0.030 0.029 0.042 1.049 0.095 1.020 1.017 0.027 27.529 0.000 0.000
Ch-Brent 0.005 0.000 0.018 1.016 0.031 1.006 1.002 0.005 57.351 0.000 0.000
Cze-Brent 0.053 0.068 0.041 1.191 0.344 1.027 1.035 0.057 27.611 0.000 0.003
Neth-Brent 0.035 0.040 0.035 1.140 0.259 1.019 1.020 0.038 27.553 0.001 0.001
Finl-Brent 0.060 0.057 0.057 1.241 0.425 1.030 1.034 0.065 46.946 0.001 0.001
Hung-Brent 0.067 0.073 0.053 1.224 0.407 1.030 1.041 0.070 79.989 0.001 0.001
Pola-Brent 0.084 0.087 0.086 1.273 0.474 1.047 1.047 0.085 27.711 0.003 0.002
Russ-Brent 0.099 0.114 0.086 1.410 0.671 1.052 1.066 0.105 27.681 0.001 0.017
Saud-Brent 0.036 0.074 0.008 1.089 0.164 1.011 1.034 0.034 18.747 0.001 0.001
Vene-Brent 0.037 0.036 0.033 1.129 0.240 1.018 1.022 0.040 100.000 0.001 0.001
Spai-Brent 0.026 0.042 0.017 1.127 0.233 1.016 1.022 0.032 18.888 0.001 0.001
Swit-Brent 0.028 0.016 0.050 1.109 0.204 1.023 1.013 0.030 17.376 0.001 0.001

UK-Opec 0.042 0.044 0.039 1.155 0.284 1.021 1.026 0.045 27.513 0.001 0.001
Jap-Opec 0.050 0.039 0.060 1.131 0.245 1.029 1.020 0.051 65.174 0.001 0.001
US-Opec -0.027 0.000 0.000 0.946 0.001 1.002 1.002 -0.025 27.583 0.001 0.001
Germ-Opec 0.002 0.001 0.010 1.024 0.047 1.003 1.005 0.003 27.425 0.001 0.001
Fran-Opec 0.027 0.043 0.013 1.098 0.185 1.005 1.023 0.030 27.456 0.000 0.000
Ital-Opec 0.034 0.056 0.007 1.141 0.264 1.006 1.030 0.039 27.445 0.000 0.000
Cana-Opec 0.111 0.141 0.096 1.414 0.689 1.059 1.079 0.119 16.453 0.000 0.043
HK-Opec 0.031 0.045 0.019 1.072 0.139 1.009 1.024 0.032 62.090 0.000 0.000
Ch-Opec 0.009 0.003 0.025 1.042 0.080 1.011 1.005 0.010 27.482 0.000 0.000
Cz-Opec 0.056 0.067 0.053 1.199 0.357 1.032 1.037 0.060 17.235 0.000 0.001
Neth-Opec 0.016 0.010 0.033 1.068 0.129 1.017 1.009 0.019 18.883 0.001 0.001
Finl-Opec 0.036 0.035 0.033 1.127 0.236 1.016 1.020 0.038 70.185 0.001 0.001
Hung-Opec 0.069 0.080 0.060 1.237 0.419 1.036 1.044 0.072 27.684 0.001 0.002
Pola-Opec 0.066 0.077 0.053 1.235 0.420 1.029 1.040 0.070 27.583 0.001 0.001
Russ-Opec 0.111 0.132 0.097 1.455 0.735 1.060 1.075 0.118 19.331 0.001 0.028
Saud-Opec 0.028 0.064 0.009 1.069 0.127 1.009 1.032 0.026 14.031 0.000 0.002
Vene-Opec 0.029 0.030 0.027 1.103 0.194 1.013 1.015 0.031 56.447 0.001 0.001
Spai-Opec 0.012 0.015 0.017 1.053 0.101 1.012 1.010 0.014 27.468 0.001 0.001
Swit-Opec 0.012 0.000 0.035 1.071 0.134 1.015 1.004 0.016 19.136 0.001 0.001

Student t SJC

 
 Note: The table contains the estimated parameters for the following copula functions: Normal, Clayton, 
Rotated Clayton (R. Clayton), Plackett, Frank, Gumbel, Rotated Gumbel (R. Gumbel), Student t, 
Symmetricized Joe-Clayton (SJC). 
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Table 3.6 Estimated Copula Parameters for SAC-denom inated Data in Post-Euro Period 
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel

UK-Brent 0.027 0.027 0.031 1.107 0.203 1.018 1.011 0.029 27.434 0.001 0.001
Jap-Brent 0.017 0.023 0.013 1.029 0.058 1.005 1.010 0.018 100.000 0.001 0.001
US-Brent 0.026 0.040 0.036 1.075 0.142 1.021 1.024 0.026 12.013 0.001 0.001
Germ-Brent -0.016 0.000 0.007 0.964 0.001 1.006 1.002 -0.016 18.180 0.001 0.001
Fran-Brent 0.006 0.024 0.004 1.033 0.064 1.006 1.010 0.008 19.298 0.000 0.000
Ital-Brent 0.010 0.032 0.000 1.077 0.145 1.002 1.014 0.014 27.362 0.000 0.000
Cana-Brent 0.167 0.188 0.184 1.699 1.039 1.110 1.113 0.177 12.582 0.039 0.042
HK-Brent 0.050 0.044 0.056 1.144 0.271 1.029 1.024 0.050 27.532 0.001 0.000
Ch-Brent 0.021 0.006 0.025 1.099 0.187 1.009 1.002 0.023 100.000 0.000 0.000
Cze-Brent -0.012 0.013 0.000 0.967 0.001 1.002 1.006 -0.012 27.474 0.000 0.000
Neth-Brent -0.008 0.000 0.000 0.993 0.001 1.002 1.002 -0.007 27.508 0.001 0.001
Finl-Brent 0.033 0.030 0.026 1.125 0.234 1.013 1.018 0.035 85.920 0.001 0.001
Hung-Brent 0.024 0.011 0.010 1.048 0.095 1.003 1.002 0.018 100.000 0.001 0.001
Pola-Brent 0.056 0.063 0.051 1.185 0.333 1.029 1.033 0.057 27.620 0.001 0.001
Russ-Brent 0.106 0.128 0.094 1.474 0.749 1.063 1.075 0.117 15.864 0.001 0.026
Saud-Brent 0.074 0.108 0.038 1.257 0.451 1.027 1.054 0.077 27.640 0.001 0.013
Vene-Brent 0.044 0.048 0.039 1.165 0.300 1.023 1.029 0.047 27.450 0.001 0.001
Spai-Brent -0.022 0.000 0.000 0.968 0.001 1.002 1.002 -0.019 27.581 0.001 0.001
Swit-Brent -0.027 0.000 0.002 0.932 0.001 1.008 1.002 -0.028 27.546 0.001 0.001

UK-Opec 0.001 0.002 0.004 1.027 0.053 1.008 1.002 0.002 62.478 0.001 0.001
Jap-Opec -0.013 0.000 0.000 0.933 0.001 1.002 1.002 -0.015 100.000 0.001 0.001
US-Opec 0.036 0.047 0.036 1.133 0.245 1.024 1.025 0.040 15.436 0.001 0.001
Germ-Opec -0.046 0.000 0.000 0.880 0.001 1.002 1.002 -0.049 100.000 0.001 0.001
Fran-Opec -0.034 0.000 0.000 0.912 0.001 1.002 1.002 -0.036 100.000 0.000 0.000
Ital-Opec -0.018 0.008 0.000 0.988 0.001 1.002 1.002 -0.017 100.000 0.000 0.000
Cana-Opec 0.121 0.149 0.113 1.456 0.744 1.068 1.084 0.129 14.991 0.003 0.036
HK-Opec 0.068 0.070 0.052 1.222 0.408 1.027 1.037 0.071 100.000 0.000 0.002
Ch-Opec 0.040 0.029 0.042 1.187 0.339 1.018 1.017 0.044 45.051 0.000 0.000
Cz-Opec -0.023 0.006 0.000 0.933 0.001 1.002 1.003 -0.024 27.338 0.000 0.000
Neth-Opec -0.041 0.000 0.000 0.894 0.001 1.002 1.002 -0.042 27.293 0.001 0.001
Finl-Opec -0.004 0.003 0.000 0.988 0.001 1.002 1.002 -0.004 100.000 0.001 0.001
Hung-Opec 0.021 0.017 0.007 1.041 0.081 1.006 1.004 0.016 100.000 0.001 0.001
Pola-Opec 0.038 0.059 0.011 1.140 0.262 1.007 1.027 0.040 80.029 0.001 0.001
Russ-Opec 0.133 0.160 0.122 1.599 0.918 1.079 1.092 0.145 18.041 0.002 0.044
Saud-Opec 0.087 0.112 0.067 1.316 0.538 1.039 1.062 0.091 18.157 0.001 0.012
Vene-Opec 0.053 0.053 0.050 1.206 0.366 1.025 1.030 0.057 51.186 0.001 0.001
Spai-Opec -0.050 0.000 0.000 0.867 0.001 1.002 1.002 -0.051 44.303 0.001 0.001
Swit-Opec -0.065 0.000 0.000 0.838 0.001 1.002 1.002 -0.066 46.493 0.001 0.001

Student t SJC

 
Note: The table contains the estimated parameters for the following copula functions: Normal, Clayton, 
Rotated Clayton (R. Clayton), Plackett, Frank, Gumbel, Rotated Gumbel (R. Gumbel), Student t, 
Symmetricized Joe-Clayton (SJC). 
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Table 3.7 Estimated Copula Parameters for EUR-denom inated Data in Post-Euro Period 
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel

UK-Brent 0.069 0.062 0.076 1.244 0.432 1.039 1.033 0.072 27.588 0.003 0.001

Jap-Brent 0.075 0.078 0.072 1.223 0.402 1.040 1.040 0.078 52.406 0.001 0.002

US-Brent 0.104 0.130 0.104 1.360 0.601 1.063 1.072 0.107 10.443 0.003 0.028

Germ-Brent -0.033 0.000 0.000 0.905 0.001 1.003 1.002 -0.035 15.641 0.001 0.001

Fran-Brent -0.018 0.002 0.000 0.948 0.001 1.002 1.002 -0.019 100.000 0.000 0.000

Ital-Brent -0.033 0.000 0.000 0.931 0.001 1.002 1.002 -0.036 100.000 0.000 0.000

Cana-Brent 0.208 0.244 0.227 1.912 1.278 1.138 1.146 0.217 12.777 0.054 0.080

HK-Brent 0.110 0.107 0.114 1.376 0.645 1.061 1.060 0.113 27.640 0.010 0.007

Ch-Brent 0.089 0.079 0.086 1.373 0.633 1.046 1.044 0.095 100.000 0.003 0.001

Cze-Brent 0.003 0.022 0.004 1.000 0.001 1.004 1.012 0.003 18.245 0.000 0.000

Neth-Brent -0.029 0.000 0.000 0.924 0.001 1.002 1.002 -0.029 27.532 0.001 0.001

Finl-Brent 0.020 0.016 0.017 1.076 0.144 1.008 1.010 0.021 93.195 0.001 0.001

Hung-Brent 0.031 0.021 0.035 1.138 0.259 1.016 1.008 0.044 100.000 0.001 0.001

Pola-Brent 0.070 0.082 0.062 1.226 0.397 1.036 1.043 0.071 27.670 0.001 0.003

Russ-Brent 0.143 0.168 0.147 1.645 0.960 1.093 1.100 0.156 11.964 0.013 0.043

Saud-Brent 0.150 0.191 0.125 1.602 0.937 1.079 1.106 0.157 19.273 0.001 0.072

Vene-Brent 0.093 0.107 0.089 1.351 0.585 1.053 1.062 0.098 17.821 0.001 0.014

Spai-Brent -0.051 0.000 0.000 0.879 0.001 1.002 1.002 -0.050 27.603 0.001 0.001

Swit-Brent -0.053 0.000 0.000 0.851 0.001 1.006 1.002 -0.056 19.521 0.001 0.001

UK-Opec 0.054 0.042 0.066 1.182 0.327 1.034 1.021 0.055 27.529 0.001 0.001

Jap-Opec 0.075 0.067 0.078 1.209 0.381 1.037 1.035 0.078 94.832 0.001 0.001

US-Opec 0.133 0.154 0.142 1.511 0.806 1.084 1.089 0.140 10.961 0.017 0.031

Germ-Opec -0.061 0.000 0.000 0.831 0.001 1.002 1.002 -0.063 27.286 0.001 0.001

Fran-Opec -0.058 0.000 0.000 0.838 0.001 1.002 1.002 -0.061 100.000 0.000 0.000

Ital-Opec -0.071 0.000 0.000 0.814 0.001 1.002 1.002 -0.076 100.000 0.000 0.000

Cana-Opec 0.175 0.211 0.176 1.690 1.039 1.107 1.122 0.182 13.588 0.021 0.073

HK-Opec 0.144 0.149 0.142 1.527 0.863 1.080 1.084 0.148 56.699 0.013 0.027

Ch-Opec 0.123 0.120 0.125 1.534 0.858 1.071 1.072 0.131 27.163 0.011 0.007

Cz-Opec -0.014 0.000 0.000 0.957 0.001 1.002 1.003 -0.015 27.317 0.000 0.000

Neth-Opec -0.063 0.000 0.000 0.829 0.001 1.002 1.002 -0.065 27.261 0.001 0.001

Finl-Opec -0.020 0.000 0.000 0.935 0.001 1.002 1.002 -0.021 100.000 0.001 0.001

Hung-Opec 0.037 0.005 0.063 1.168 0.304 1.028 1.006 0.052 100.000 0.001 0.001

Pola-Opec 0.061 0.082 0.033 1.204 0.368 1.020 1.040 0.063 72.303 0.001 0.003

Russ-Opec 0.185 0.214 0.198 1.859 1.218 1.124 1.127 0.198 14.423 0.033 0.063

Saud-Opec 0.184 0.218 0.185 1.792 1.155 1.111 1.129 0.193 14.543 0.016 0.080

Vene-Opec 0.115 0.124 0.116 1.469 0.746 1.067 1.073 0.122 27.222 0.006 0.015

Spai-Opec -0.081 0.000 0.000 0.781 0.001 1.002 1.002 -0.084 48.975 0.001 0.001

Swit-Opec -0.098 0.000 0.000 0.747 0.001 1.002 1.002 -0.102 27.159 0.001 0.001

Student t SJC

Note: The table contains the estimated parameters for the following copula functions: Normal, Clayton, 
Rotated Clayton (R. Clayton), Plackett, Frank, Gumbel, Rotated Gumbel (R. Gumbel), Student t, 
Symmetricized Joe-Clayton (SJC). 
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 Finally, observing the results across pre- and post-Euro periods, one can see that 

the creation of Euro certainly changes the copula results. Nearly all the copula 

parameters become larger after the creation of Euro, except for the Normal and Student 

copula parameters. This implies that similar to the dependence measures, copula 

parameters do change in the post-Euro period. Although the choice of oil price series, 

base currency, and the creation of Euro changes the copula results, overall, the 

parameters of almost all the copula functions are quite small in all cases. Moreover, in 

some cases the parameters are at the lowest limits of copula functions. Therefore, one 

major implication is that oil prices and stock market indices are nearly independent in 

almost all scenarios. In addition, the development status of a country appears to have no 

bearings on the copula results implying that weak to no dependence between the oil 

prices and stock market indices is a global phenomenon. The only strong relation is 

found between Canadian stock market index and the oil price series which in almost all 

cases has quite large parameter estimates.  

 

3.4.3 Tail Dependency Results 

 Examination of tail dependencies which are based on the estimated copula 

parameters will illustrate potential asymmetries in relationship between oil price series 

and stock market indices. Appendix A provides the tail dependencies for all scenarios. 

As mentioned earlier, Normal, Plackett, and Frank copulas have zero tail dependencies. 

Student t copula provides symmetric tail dependencies which are rather small in all 

cases.  
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In pre-Euro period tail dependencies of Clayton and Rotated Clayton copulas in 

most cases are zero (or very small) except for SAC-denominated Canada, U.S., and HK 

stock market indices. Moreover, (lower) tail dependence of Clayton copula is much 

higher than the (upper) tail dependence of Rotated Clayton copula for Canada and HK 

series. This means that oil prices and stock market indices for Canada and HK have 

higher dependencies in case of a crash than a boom. Specifically, oil price decrease 

affects the stock market indices for Canada and HK more than oil price increase. Similar 

results are reported for post-Euro period. The opposite is true for U.S. implying that oil 

price increase has more influence on U.S. stock market index than oil price decrease in 

pre-Euro period. This result is also observed in post-Euro period for EUR-denominated 

data. The finding that U.S. has the observed asymmetry is consistent with the results of 

Ciner (2001) who reported that oil prices affect the S&P 500 returns in a nonlinear 

fashion. In post-Euro period, Russia and Saudi Arabia appear to have the same pattern as 

Canada and HK. In addition, EUR-denominated stock market indices of China, Poland, 

and Venezuela are observed to have asymmetric tail dependencies as well implied by 

Clayton and Rotated Clayton copulas.  

For most series in pre-Euro period, the tail dependence implied by Rotated 

Gumbel copula which captures the left tail dependence is larger than that of Gumbel 

copula (captures the right tail dependence). Moreover, the highest tail dependencies are 

reported for U.S. and Canada in pre-Euro period for SAC-denominated data. Similar 

results are also observed in post-Euro period when tail dependencies implied by Gumbel 

and Rotated Gumbel copulas are the largest for Canada (i.e. 0.136 vs. 0.132 for Rotated 
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Gumbel and Gumbel, respectively).35 In general, most series have higher left tail 

dependence (Rotated Gumbel) than right tail dependence (Gumbel). Among those, the 

largest and most prominent left tail dependencies are for Canada, Russia, Saudi Arabia, 

Venezuela, and HK. This implies during market recession or downturns, the relation of 

stock market index returns and oil price returns become stronger for these countries. The 

only exceptions are for UK, Japan, U.S., Germany, HK, and China which have larger 

right tail dependence implying higher dependence in case of bull markets than bear 

markets.  

In general, SJC copula tail dependences are rather small across the scenarios and 

series. The largest dependencies are observed for Canada, Russia, and Saudi Arabia (HK 

is large only in pre-Euro period). Moreover, they have higher left (lower) tail 

dependencies than upper tail dependencies which again imply that the relationships 

between oil price and stock index returns are stronger during the market downturn for 

Canada, Russia, and Saudi Arabia.  

Overall, the tail dependencies change depending on the oil price series used, but 

not significantly. Moreover, there is also noticeable difference in tail dependence 

measures among the three denomination cases (two denomination cases for pre-Euro 

period). For example, if considering SAC-denominated data for the post-Euro period, we 

can see the there is a pattern according to which developed countries tend to have 

smaller tail dependence measures than the developing countries. However, such pattern 

vanishes with the use of other base currencies. Thus, it can be concluded that the choice 

                                                 
35 Numbers are reported from the Appendix A (A.7). 
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of base currency and the oil price series is important and can change the tail 

dependences.  

 

3.4.4 Copula Selection Results 

To select the best copula model, three selection criteria, reported in Appendix B, 

are used: Log Likelihood Functions (LLF), Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC).36According to the log-likelihood measure, 

Student t copula is found to be the best copula model in the pre-Euro period (except for 

the case of Canada for which Placket copula is the best) regardless of base currency 

choice. These results do not change upon the choice of the oil price series. On the other 

hand, the post-Euro period provides quite different results. Student t copula model is 

ranked the highest for many bivariate cases regardless of the base currency choice. 

However, the Opec and Brent oil series result in somewhat different model rankings in 

each case. Overall, the pre-Euro and post-Euro periods (for the same series) are very 

different in some cases. For example, in pre-Euro period, Gumbel, Rotated Gumbel, and 

SJC copula models were never reported to be ranked the first, while in post-Euro period, 

few bivariate models are explained the best by these copula models. Overall, Student t, 

Clayton, Gumbel, Rotated Gumbel, and Placket models are ranked the highest among 

the nine copula models available. This finding is consistent with all the available cases 

analyzed. However, so far we have analyzed and ranked the models based on only log-

                                                 
36 In addition, as a Goodness-of-Fit test the copula parameters are estimated from the Kendall’s tau 
coefficient. In addition, as a Goodness-of-Fit test the copula parameters are estimated from the Kendall’s 
tau coefficient. 
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likelihood functions. To get a robust ranking, one needs more than one selection 

criterion. Therefore, AIC and BIC selection criteria are applied. 

 In the pre-Euro period all three information criteria (i.e., AIC and BIC) mostly 

show the superiority of the Student t and Placket copula models. However, slight 

difference between the SAC- and USD-denomination cases is observed, with the main 

difference being that Student t copula is found to be the best for more series under the 

SAC-denomination case than the USD-denomination case. Among the other copula 

models Gumbel, Rotated Gumbel, Clayton, and Normal copulas are also ranked the 

highest for some series in the USD-denomination case. These information criteria results 

are mostly consistent with the log-likelihood function results and imply that for the 

majority of the series in the pre-Euro period Student t and Placket copula functions fit 

the best. This result is unchanged regardless of the oil price series used.  

On the other hand, the post-Euro period provides very diverse results both in 

terms of the denominations and the oil price series used. Student t, Normal, and Rotated 

Gumbel copulas are the top ranked models under the EUR-denomination and Brent oil 

case. Although top ranked Normal copula models dominate for most of the series similar 

to the Brent oil case, Placket copula is also found to be the best fitting models in the 

Opec oil case. In the USD-denomination case, Opec and Brent oil series provide quite 

similar results. The best models in this case are Student t, Rotated Gumbel, Gumbel, and 

Placket copula models. The results are partially consistent with the log-likelihood 

results.  
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Finally, the case of SAC-denomination is analyzed and the large difference 

between the Opec and Brent oil price scenarios is observed. For the former case Normal, 

Plackett, and Gumbel copulas dominate, and only for several series Clayton, Students t, 

and Rotated Gumbel copulas are ranked the highest. In case of the Brent oil price 

scenario, Student t, Clayton, and Placket copula models are the most frequently observed 

best models, and for only few Gumbel and Rotated Gumbel copula models are ranked 

the highest. The log-likelihood results for this scenario are not consistent with the 

information criteria results.  

Overall, Student t copula model is ranked high for most of the bivariate models 

in almost all the cases. Similarly, Normal copula model is also ranked high, followed by 

the Gumbel, Rotated Gumbel, and Placket copulas. Lastly, Clayton and Rotated Clayton 

copulas also fit the models the best in some cases. Among the least favorable copula 

models are the SJC and Frank. Note that there is a very distinct difference between the 

pre- and post-Euro periods. The pre-Euro period is mostly explained by the elliptical 

copulas while the post-Euro period is characterized by a mixture of the copula models, 

hence not leaning towards one common copula model. Moreover, the denomination 

scenarios are somewhat different from one another and in some special cases, they are 

completely different. Hence, it can be concluded that the choice of the best copula model 

is very sensitive to the choice of base currency. Finally, the Opec and Brent oil price 

scenarios provide generally similar outcome except for a few cases when the highly 

ranked models completely change upon scenarios used. It is worth noting that there is no 

specific ordering of copulas for the models based on the development status of a country. 
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Therefore, it can be concluded that the best copula models do not change depending on 

the developed and developing countries.37  

Patton (2004) and others have stated that Student t copula is appropriate for most 

models which is certainly true for this study. However, for some cases if there is any 

observed asymmetry in the tails, then other copulas such as Gumbel or Clayton would 

fits the model better. 

 

3.5 Conclusions 

 

Given the increasing importance of oil for global economic progress, more and 

more articles emerge aiming to explain the impact of increasing demand for oil and oil 

prices on the global economy. However, only a few study the relationship of oil prices 

and stock market indices. There still is a gap in understanding the oil price and stock 

market co-movement. Moreover, the inclusion of various countries with different levels 

of economic development is not well explored. There is also limited information about 

the asymmetric dependence between oil prices series and stock market indices. There is 

no information on adjustment for exchange rate dynamics in the existing literature on oil 

and stock market series in order to obtain results that without exchange rate risk. Hence, 

this paper addresses all these issues to fully understand the relationship between the oil 

price series and stock market indices. Specifically, we address the following questions: 

                                                 
37 To save space only the post-Euro period with EUR denomination for both Opec and Brent oil price 
scenarios is reported in Appendix B. The other scenarios (i.e. USD and SAC denominations for pre- and 
post-Euro periods) are available upon request.  
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do oil prices and stock market indices move together? Is there any asymmetry in the 

relationship? Does the dependence (if any) increase during extreme events? Does the 

dependence change for pre- and post-Euro periods? Does the choice of oil price series 

matter? Does the choice of base currency matter? Is there a specific dependence pattern 

for developed and developing countries?  

 The application of copula functions enables us to model with greater flexibility 

and explore various dependence measures. We find that the choice of oil price series, 

base currency, and the creation of Euro is indeed important. With regard to oil price 

series, we find that the copula parameter estimates and the tail dependences moderately 

change depending on which oil prices series is used. Moreover, the information criteria 

and log-likelihood functions also differ based on the use of a particular oil price series. 

On the other hand, almost all the results change depending on the base currency chosen. 

Given the minimum variance of SAC, it can be assumed that SAC-denominated data 

would provide more accurate results as the exchange rate effect is nearly eliminated in 

this case. However, because nearly no difference in ranking copula models was observed 

in pre-Euro period, we can conclude that the oil price series is not an important issue in 

pre-Euro period. This is not the case for the post-Euro period. Lastly, the creation of 

Euro (1999) alters the results greatly, especially in case of the correlation or dependence 

measures. Hence, it can be concluded that dynamics of the dependence structure and 

degree between the oil prices and stock market indices changes as new major events (i.e. 

creation of Euro) occur. 
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 Overall, the dependence measures, copula parameters, as well as the tail 

dependence measures are quite small throughout the scenarios. One of the major 

bivariate case that stands out to be relatively strong all the time is the oil price series and 

the Canadian stock market index, regardless of the scenario used (e.g. time periods, oil 

price series, currency denomination, etc). Moreover, we found that left tail dependence 

is relatively stronger for this relationship than the right one implying that the two series 

are more likely to crash together than boom together. In other words, association of oil 

price return and Canadian stock market index return becomes stronger during the market 

downturn. Similarly, Russian and Saudi stock market index returns also appear to be 

more correlated with the oil price series during a market downturn than market progress. 

In most cases, this notion holds for Venezuela as well. One of the possible explanations 

is that Canada, Russia, Saudi Arabia, and Venezuela are all large (Canada is relatively 

large) oil producing countries; hence any oil price decrease is viewed adversely in the 

eyes of investors and results in larger adverse impact on stock markets than if the oil 

prices had to rise.  

On the other hand, many large oil consuming countries such UK, U.S., HK (in 

some cases), Germany (in some cases), and China do not have such relatively strong 

association with oil price returns. Moreover, asymmetry in the form of right tail 

dependence is observed for these countries. This implies that the association of oil prices 

and stock market index returns for these countries becomes stronger during the market 

upturn (boom) than market downturn. This finding can perhaps be explained by Ciner 

(2001) findings that there is bidirectional non-linear causality between the stock index 
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returns and oil price returns. In other words, stock market returns also affect the oil 

prices. Perhaps, that’s the reason that both oil price and stock market index returns move 

together more when both markets are booming. Furthermore, there seems to be a pattern 

of developed countries and developing countries having different tail dependences. The 

former ones tend to have lower tail dependences relative the developing countries. This 

is perhaps due to the fact that financial markets of developing countries are less efficient 

and tend to overreact to even a slight oil price change.  

 Investors are the main beneficiaries of this study as it presents broad empirical 

evidence of relationship between the oil price and stock market index returns. Presented 

for various possible scenarios, results will provide more options for investors to evaluate 

the possible co-movement between the two series. In addition, the results also provide 

important information regarding the diversification and possible gains from it.  
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CHAPTER IV 

THE STRUCTURE AND DEGREE OF DEPENDENCE AMONG U.S. 

INDUSTRY SECTORS 

 

 

4.1 Introduction 

 

Portfolio diversification is a common strategy to mitigate investment risk. 

Previous researchers have presented alternative investment strategies with the aim of 

minimizing the variance and/or maximizing the returns. Hence, any new methodology 

that addresses portfolio risk is of interest to both investors and academicians. The recent 

developments in the area of statistics, mathematics, and finance, particularly the correct 

formulation of the dependence among various assets are becoming more and more 

attractive for risk management purposes. Investors’ utility from a portfolio of 

investments is affected by the dependence structure because it will directly affect the 

distribution of portfolio returns and have a direct impact on the optimal investment 

portfolio and diversification.  

There are a limited number of studies that provide some information on 

relationships among stock prices indices of industry classification sectors in U.S. (Alli et 

al., 1994; Kim and Bessler, 2007). However, there are many limitations and the provided 

information is not complete. This fact emphasizes the importance of empirical analysis 

that would foster our knowledge regarding the inter-industry dependency. Kim and 
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Bessler (2007), attempted to fill this gap by examining the price transmission among ten 

aggregations of U.S. equity prices. Their findings show strong interaction among the 

sectors. Moreover, Information Technology is reported to be exogenous and along with 

Industrials and Health Care sectors has significant influence on the other sectors. 

However, they explored the causality structure from the linear perspective (e.g. linearity 

assumption is imposed). Moreover, most of the papers investigating the dependence 

structure among a set of stock indices from different industries or international markets 

assume multivariate normality and use linear correlation statistics. However, more recent 

studies find strong evidence of the presence of asymmetry in the dependence structure 

such as higher correlation during the market downturns than upturns (Longin and Solnik, 

2001; Ang and Chen, 2002; Chen, Fan, and Patton, 2004; Chollete et al., 2005; Hu, 

2006). As a result, models that allow more flexibility are proposed. With this regard, 

copulas (Sklar, 1959) have gained much attention in modeling possible nonlinear 

dependence structure of multivariate time series. Its increasing importance stems from 

the fact that it facilitates an easy and flexible multivariate distribution calculation using 

only the marginal distributions and the copula function which is invariant to 

transformation (Chollete et al., 2005). Moreover, the tail dependence which measures the 

dependence structure of upper and lower tails for various copula families is a direct 

property of a copula function. Hence, general dependence, including symmetric and 

asymmetric, and linear and non-linear, can simply be calculated via copulas.  

The use of copula functions in portfolio investment and dependence structure 

among the stock indices of various industry sectors will lead to more accurate results 
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relative to the conventional methods used before. Hence, the purpose of this paper is to 

study the general relationship of aggregations of U.S. equity prices from a copula 

perspective. Specifically, we want to explore the inter-industry dependence structure and 

the presence of possible asymmetries in the relationship. The rest of this chapter is 

organized as follows. Section 4.2 covers the data used in this paper, followed by the 

copula functions which are introduced in Section 4.3. Section 4.4 introduces the 

estimation model followed by the interpretation of the results which is covered in 

Section 4.5. Finally, conclusions close the chapter in Section 4.6.  

 

4.2 Data 

 

This chapter uses data comprised of Standard & Poor (S&P) 500 Global Industry 

Classification Sector (GICS) indices for ten sectors. The series are daily for the period of 

January 2, 1995 – July 1, 2008. The starting date is taken according to the availability of 

the GICS index. The GICS is an enhanced industry classification system which was 

developed by S&P and MSCI Barra (www.standardandpoors.com). Its creation was 

benefited by global financial community in a way that they now have a consistent set of 

global sector and industry definitions, which is used for portfolio analysis, asset 

management, and the sector and industry comparisons (www.standardandpoor.com). 

Unlike other existing industry classifications (SICS and NAICS), the GICS is based on 

the company’s financial performance. The GICS indices start with the initial value of 
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100 on January 2, 1995 and change over time due to the changes in market valuation of 

the individual equities (Kim and Bessler, 2007).  

The GICS is a four-level structure. The highest level is comprised of 10 sectors: 

Consumer Discretionary (CD), Consumer Staple (CS), Energy (EN), Financials (FI), 

Health Care (HC), Industrials (IN), Information Technology (IT), Materials (MS), 

Telecommunication Services (TC), and Utilities (UT). The second level is broken down 

into 24 industry groups. The third level breaks down the industry groups into 68 

industries which in turn are comprised of 154 sub-industries (fourth level). 38  

The majority of the sectors have changed over time according to Figure 4.1. 

However, the most notable change is observed for the IT sector during the IT bubble 

period (1999). The FI has increased until the beginning of 2007 when signs of housing 

market crisis, credit crunch, and overall economic meltdown became more noticeable 

causing the FI to decrease. On the other hand, gradual increase in oil prices especially 

last couple of years caused the increase in EN. Similarly, UT shows increasing trend 

especially starting from 2004. In general, most of the sectors increased largely from 

2003-2004 to the end of the sample, except for the IT and TC. The descriptive statistics 

is reported in Table 4.1 which shows that IT has the highest mean, followed by the FI 

and HC. On the other hand, UT has the smallest mean. In terms of standard deviation, 

again IT has the highest standard deviation followed by the EN and FI. In addition, the 

normality assumption for all the series is rejected. The series are also non-stationary at  

                                                 
38 Interested readers are referred to Standard & Poor’s website (www.gics.standardandpoors.com) for more 
information on GICS. In addition, details about the sectors, industry groups, industries, and sub-industries 
are also given in Kim and Bessler (2007).  
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Figure 4.1 Historical Plot of S&P 500 GICS Indices for Period of January 2, 1995 to 
December 31, 2007 
 

 

Table 4.1 Descriptive Statistics on Levels of Sector Data 
 CD CS EN FI HC IN IT MS TC UT 

 Mean  222.1477  215.2949  259.1996  326.9154  317.0029  241.7135  345.2631  156.4919  162.8089  148.1306 

 Median  242.6050  220.5400  214.4500  342.1400  347.5500  250.8850  318.2650  142.9500  138.7500  147.8900 

 Maximum  318.5400  306.6100  668.8100  509.5500  444.9800  381.1600  988.4900  285.9100  339.2800  223.9100 

 Minimum  99.65000  98.73000  99.15000  100.0000  98.31000  100.0000  99.04000  96.04000  79.00000  77.27000 

 Std. Dev.  57.39984  43.79138  129.1449  96.83920  85.70080  63.48212  164.6054  41.24536  61.58628  32.97880 
 Skewnes
s -0.656710 -0.624623  1.287404 -0.563319 -1.129144 -0.233029  1.439383  1.258757  1.213328  0.330697 

 Kurtosis  2.278586  3.267205  3.757687  2.766102  3.104883  2.489208  5.232200  3.838559  3.470623  2.200747 
 Jarque-
Bera  329.5284  239.4978  1057.147  194.3001  750.0201  70.16404  1947.374  1033.276  896.6641  157.9394 

 P-value  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

 



 105 

levels, but the transformation of all the series into logarithmic difference induces 

stationarity (Table 4.2).39 More detailed analyses of the data and residuals follows. 

 

Table 4.2 Dickey-Fuller Test of Stationarity for Sector Returns Data 
 CD CS EN FI HC IN IT MS TC UT 
T-test 
Statistics -57.76 -60.59 -61.07 -58.25 -57.18 -59.33 -59.89 -58.83 -60.71 -57.81 

Note: All the returns data are stationary in levels at 1% significance level. 

 

4.3 Copula Approach 

 

Most of the existing papers studying the linkage and interdependence among the 

industry sectors overlook the possible existence of asymmetric or nonlinear 

relationships, and instead concentrate on commonly used linear dependence. To fill the 

gap and study the dependence between the GICS indices from broader perspective, this 

paper proposes the use of copula functions. The latter has been extensively used in 

modeling both the contemporaneous dependence between variables and temporal 

dependence structure of time series variables (Fermanian and Scaillet, 2003; Chen and 

Fan, 2006; Patton, 2006, and Ng, 2006). Moreover, copula functions have been largely 

used in modeling observations using flexible functional forms (Kim et al., 2007b). The 

use of copula in many other areas is growing and many new uses of copula functions are 

being researched in recent studies. In general, it has become one of the hot subjects and 

tools currently used in finance and economics literature. The details about copula 

                                                 
39 The DF results are only reported for the transformed data. The DF result for the levels data is available 
from author upon request.  
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functions, their uses, and possible extensions are the essence of many books and papers, 

such as Joe (1997), Nelsen (2006), Cherubini et al (2004), Patton (2004, 2006a, 2006b), 

Embrechts et al. (2002), Genest and Rivest (1993), and Genest and Favre (2007). The 

brief review of copula for bivariate observations which can be extended to higher 

dimensions is given next.  

The copula function is defined by the famous Sklar’s (1959) theorem. Let’s 

consider that 1X  and 2X are two continuous random variables with univariate 

distribution functions )( 11 XF  and )( 22 XF , and joint distribution function ),( 2112 XXF . 

The Sklar’s theorem states that there is a unique functionC , such that  

))(),((),( 22112112 XFXFCXXF = .                                          (4.1) 

In a nutshell, copula function is the joint distribution of ),( 21 UU  where )( 111 XFU =  

and )( 222 XFU =  are uniformly distributed on (0, 1) (Kim et al., 2007b). Consequently, 

the uniform distribution of the variables of interest is obtained separately from the 

dependence structure between them. Bivariate copula functions have three properties:  

1. ),( 21 UUC  is increasing in 1U  and 2U . 

2. 0)0,(),0( 12 == UCUC  and 22 ),1( UUC = , 11 )1,( UUC = . 

3. If 1211 UU <  and 2221 UU < , then 

0),(),(),(),( 2111221121122212 ≥+−− UUCUUCUUCUUC . 

In words, copula function (joint probability) will increase if at least one of the marginal 

distributions increases given that the other marginal distribution is constant. Likewise, it 

will increase if both margins increase. In addition, joint distribution is zero if at least one 
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of the margins has zero probability. Similarly, the copula function equals the marginal 

distribution if the other margin has probability of one (Rockinger and Jondeau, 2001).  

 Copula functions are also linked with some association measures, such as 

Kendall’s tau and Spearman’s rank correlation (Venter, 2002; Hu, 2006; Marshal and 

Zeevi, 2002).40 Conversely, the Pearson’s correlation coefficient is dependent not on 

copula but the marginal distributions which fails to provide information on strengths on 

different parts of the distribution. Moreover, for any correlated variates with the same 

copula Kendall’s tau is constant, whereas Pearson’s correlation can change with the 

same copula. In fact, copula parameters can be directly estimated via Kendall’s tau and 

vice versa given the following relation (Venter, 2002): 

∫ ∫ −=
1

0

1

0
1),(),(4 vudCvuCτ .                                                                 (4.2) 

 Given that the tail dependencies of each parametric copula function emphasize 

different parts of the probability distribution, it is detrimental to use as many copula 

functions (with varying tail dependencies) as necessary to understand the dependence for 

the whole probability distribution. For such purpose, the following six copula functions 

are used in this paper: Normal, Clayton, Gumbel, Rotated Gumbel, Student t, and SJC. 

Gumbel, Rotated Gumbel, Symmetricized Joe-Clayton (SJC), and Clayton copulas are 

asymmetric and have more probability concentrated on the tails. On the other hand, 

Normal and Student t copulas are symmetric. The functional forms for each of the six 

                                                 
40 The Kendall’s tau is defined as the probability of concordance and probability of discordance, such that 

)0))(Pr(()0))(Pr(( 21212121 <−−−>−−= YYXXYYXXτ . It is calculated from the rank of data, 

rather than the sample which is the case for Pearson’s correlation. Therefore, it gives the non-parametric 
measure of dependence (Nelsen, 2006; Marshal and Zeevi, 2002; Venter, 2002; Hu, 2006). 
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copula functions used are given in Table 4.3.41 In addition, Table 4.3 contains 

information on the relationship between the Kendall’s tau and each of the copula 

functions. Finally, the tail dependencies of each copula function are given in Table 4.3. 

 

Table 4.3 Functional Forms, Tail Dependences, and Kendall’s Tau Relations for 
Five Copula Functions 

Normal Copula 
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41 The functional form of SJC copula function is not provided in this paper because it is very long.   
Interested reader is referred to see Patton (2004).  
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Table 4.3 (Continued) 
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It can be observed that only normal copula has zero tail dependence. Student t copula 

has symmetric tail dependence, whereas Clayton, Gumbel, and Rotated Gumbel copulas 

                                                 
42 In Student t copula function, 1−

νT and νt  are the inverse cdf  and pdf of Student t, respectively. In 

addition, ρν,T  is the bivariate Student t cdf.  
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have asymmetric tail dependencies. Finally, the tail dependencies of SJC are the SJC 

copula parameters in reverse order (Marshal and Zeevi, 2002; Patton, 2004).  

 

4.4 Estimation Methods  

 

Copula functions allow separation of the margins to find the best distributions 

before restoring the joint distribution. This is especially important if the series are not 

independently and identically distributed (i.i.d.). The industry sectors used in this paper 

are tested for serial correlation and heteroskedasticity. We find that the common 

technique of filtering data with AR-GJR(1,1) model cures these problems and makes 

data i.i.d. The filtered standardized residuals are then used to obtain the marginal 

distribution functions for stock returns of each of the ten sectors. Following the 

Canonical Maximum Likelihood (CML) estimation method, the marginal distributions 

are estimated using the empirical distribution (kernel smoothing). On the other hand, 

following the Inference for the Margins (IFM), 10% of the tails of distributions are 

estimated using the Generalized Pareto Distribution (GPD) (Embrechts et al., 1997; 

Mikosch, 2003; McNeil et al., 2005). In essence, this induces more accurate distribution 

estimation that better captures heavy-tails of the residuals. The estimated distribution is 

then transformed into uniform distribution to facilitate the estimation of the copula 

functions.  

The second stage of the CML estimation method deals with the copula parameter 

estimation. For such purpose, the estimated marginal distributions from the first stage 
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are used. Copula parameters are then estimated through Maximum Likelihood 

Estimation (MLE) method, such that 

));(ˆ),(ˆ(lnmaxargˆ
2221

1
12 2

θθ θ tt

T

t

XFXFc∑
=

=                                                      (4.3) 

where 2θ  is the copula parameter and )(ˆ
iti XF  is the estimated  i th  marginal distribution 

(Cherubini et al., 2004). Besides the fact that copula parameters provide useful 

information on the structure of dependence between the series of interest, they are useful 

in estimating other dependence measures such as tail dependencies and Kendall’s tau.43 

 Each of the six copulas provide unique information about the pairwise relations 

among the industry sectors. However, it is important to explore which copula describes 

each relationship best. We adopt the commonly used Log Likelihood Function (LLF), 

Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) methods 

to rank the copula functions (Dias and Embrechts, 2004; Rodriguez, 2007; Chollete et 

al., 2005). The LLF is essentially maximized and the copula model with the highest LLF 

is ranked the highest. Conversely, the AIC and BIC information matrices are minimized, 

hence the copula model with the lowest AIC and BIC value is ranked the highest. The 

AIC and BIC are given as: 

ParametersLLFAIC ×+×−= 22                                                          (4.4) 

ParametersTLLFBIC ×+×−= )log(2                                                   (4.5) 

                                                 
43 Table 4.1 above illustrates these relationships. 
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where T is the number of observations (e.g. 3521) and the Parameters is the number of 

copula parameters.44 Furthermore, as a goodness-of-fit test, the parameters of the highest 

ranked copula models are also calculated from the rank of the data, i.e. through the 

Kendall’s tau given the equations in Table 4.3. Small difference between the copula 

parameters estimated through maximum likelihood or ranks of data implies that copula 

model is well specified. 

 

4.5  Results 

 

The degree of dependence in this paper is measured with Kendall’s tau and 

Pearson’s correlation coefficient. The results of both dependence measures are reported 

in Table 4.4. According to Table 4.4, stock returns of sector aggregations in U.S. are 

very interrelated with large overall degree of dependence. Moreover, all the relationships 

are statistically significant with p-value close to zero. The weakest degree of dependence 

is 0.19 found between IT and MS and IT and EN sectors. Conversely, 0.60 is the highest 

degree of dependence observed between IN and CD sectors. Other strong relationships, 

which are higher than 0.50, are found between FI and CD, FI and IN, and IN and MS 

sectors. Similar results are reported for Pearson’s correlation. The only difference is the 

degree of dependence which is slightly higher reaching up to 0.81 in case of Pearson’s 

correlation. The strength and the weakness of the relationships are consistent under both 

dependence measures. Although it is hard to pick a particular industry sector having the  

                                                 
44 Only the Student t and SJC copula functions have two parameters. The rest of the copula models have 
only one parameter. 
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Table 4.4 Degree of Dependence Measured by Kendall' s Tau and Pearson's Rho
CD EN FI HC IN IT MA TC UT

Kendall's Tau 0.431 0.266 0.436 0.459 0.451 0.259 0.346 0.332 0.317
Pearson's Rho 0.566 0.398 0.591 0.662 0.605 0.296 0.505 0.435 0.443

Kendall's Tau 0.269 0.558 0.415 0.603 0.457 0.452 0.412 0.300
Pearson's Rho 0.396 0.763 0.570 0.819 0.651 0.642 0.584 0.408

Kendall's Tau 0.262 0.256 0.323 0.191 0.364 0.225 0.316
Pearson's Rho 0.396 0.393 0.471 0.267 0.522 0.332 0.472

Kendall's Tau 0.428 0.565 0.395 0.416 0.394 0.335
Pearson's Rho 0.585 0.780 0.556 0.600 0.567 0.472

Kendall's Tau 0.437 0.302 0.313 0.326 0.289
Pearson's Rho 0.606 0.389 0.442 0.442 0.411

Kendall's Tau 0.455 0.514 0.402 0.324
Pearson's Rho 0.657 0.723 0.578 0.467

Kendall's Tau 0.315 0.347 0.190
Pearson's Rho 0.426 0.516 0.253

Kendall's Tau 0.300 0.283
Pearson's Rho 0.423 0.408

Kendall's Tau 0.293
Pearson's Rho 0.389

CS

HC

FI

EN

CD

TC

MA

IT

IN

Note: All the coefficients are significant at 1%, 5%, and 10% significance levels. 
 

highest dependence across all the other sectors, we can observe that EN has relatively 

weak relationship with the other industry sectors which is consistent under the two 

dependence measure.  

Consistent with the Kendall’s tau and Pearson’s rho, copula parameters, reported 

in Table 4.5, reveal that the EN has the smallest copula parameters with almost all other 

industry sectors, except for the IN, MS, and UT. Similarly, UT and TC sectors also have 

relatively small copula parameters with some of the other sectors. Furthermore, in  
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Table 4.5 Parameter Estimates of Six Copula Functio ns
Normal Clayton Gumbel R. Gumbel

CD-CS 0.618 1.151 1.727 1.757 0.643 4.357 0.406 0.483
CS-EN 0.390 0.559 1.309 1.335 0.402 8.910 0.133 0.278
CS-FI 0.625 1.156 1.730 1.765 0.647 4.950 0.406 0.482
CS-HC 0.660 1.249 1.801 1.834 0.673 5.611 0.444 0.504
CS-IN 0.639 1.247 1.768 1.818 0.662 4.412 0.409 0.515
CS-IT 0.410 0.596 1.361 1.375 0.434 5.422 0.206 0.278
CS-MS 0.496 0.822 1.468 1.511 0.519 5.182 0.232 0.398
CS-TC 0.499 0.787 1.469 1.498 0.517 6.079 0.265 0.367
CS-UT 0.486 0.755 1.438 1.472 0.498 6.622 0.230 0.365
CD-EN 0.388 0.583 1.318 1.347 0.408 6.577 0.129 0.296
CD-FI 0.751 1.691 2.261 2.301 0.766 5.956 0.536 0.597
CD-HC 0.589 1.088 1.666 1.705 0.619 4.119 0.368 0.470
CD-IN 0.790 2.038 2.520 2.662 0.803 5.949 0.558 0.661
CD-IT 0.646 1.181 1.778 1.798 0.665 5.685 0.437 0.482
CD-MS 0.630 1.186 1.722 1.772 0.650 6.011 0.375 0.503
CD-TC 0.590 1.003 1.619 1.651 0.604 8.694 0.349 0.440
CD-UT 0.447 0.676 1.396 1.418 0.468 6.819 0.206 0.326
EN-FI 0.392 0.571 1.327 1.347 0.410 6.188 0.165 0.276
EN-HC 0.373 0.563 1.295 1.332 0.390 6.736 0.099 0.295
EN-IN 0.461 0.727 1.416 1.449 0.483 6.011 0.208 0.353
EN-IT 0.294 0.397 1.220 1.237 0.310 7.134 0.091 0.184
EN-MS 0.503 0.826 1.475 1.515 0.527 6.489 0.231 0.395
EN-TC 0.327 0.452 1.251 1.269 0.345 7.848 0.104 0.216
EN-UT 0.470 0.713 1.411 1.440 0.483 8.899 0.204 0.348
FI-HC 0.601 1.116 1.679 1.725 0.628 4.516 0.366 0.480
FI-IN 0.765 1.841 2.297 2.325 0.803 5.949 0.535 0.631
FI-IT 0.574 0.923 1.631 1.625 0.310 7.135 0.091 0.184
FI-MS 0.586 1.037 1.629 1.670 0.608 5.947 0.335 0.459
FI-TC 0.571 0.931 1.600 1.611 0.587 7.008 0.364 0.402
FI-UT 0.513 0.816 1.503 1.518 0.531 5.424 0.303 0.370
HC-IN 0.608 1.175 1.709 1.763 0.639 3.722 0.378 0.499
HC-IT 0.448 0.718 1.413 1.449 0.481 4.638 0.209 0.351
HC-MS 0.442 0.734 1.402 1.448 0.475 4.399 0.178 0.368
HC-TC 0.466 0.743 1.437 1.466 0.498 5.143 0.231 0.354
HC-UT 0.435 0.656 1.378 1.405 0.452 6.037 0.190 0.322
IN-IT 0.647 1.157 1.764 1.783 0.662 7.229 0.437 0.473
IN-MS 0.702 1.462 1.921 1.979 0.717 5.842 0.460 0.564
IN-TC 0.568 0.968 1.594 1.624 0.587 5.845 0.340 0.428
IN-UT 0.488 0.773 1.457 1.483 0.506 5.701 0.250 0.367
IT-MS 0.475 0.742 1.453 1.473 0.502 4.771 0.269 0.344
IT-TC 0.495 0.753 1.459 1.482 0.512 7.671 0.266 0.347
IT-UT 0.301 0.402 1.225 1.240 0.315 7.674 0.094 0.187
MS-TC 0.431 0.666 1.378 1.409 0.456 5.783 0.185 0.327
MS-UT 0.419 0.623 1.360 1.383 0.438 6.075 0.178 0.306
TC-UT 0.429 0.611 1.372 1.384 0.448 8.184 0.208 0.283

Student SJC

 
Note: This table reports the parameter estimates of the six copula models. The parameters are reported for 
each sector combination.  
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addition to the same pairs which are strongly correlated according to the dependence 

measures (i.e. FI and CD, FI and IN, and IN and MS), strong relationships are also found 

between CD and CS, CS and FI, CS and HC, CS and IN, CD and IT, CD and MS, FI and 

HC, HC and IN, and IN and IT. These results, to some degree, are consistent with the 

Kim and Bessler’s (2007) Directed Acyclic Graph (DAG) results where they estimate 

the inter-sector relationship using contemporaneous causal model. Although causality is 

not studied in this paper, the relationships detected in Kim and Bessler (2007) mostly 

coincide with the strong dependencies reported in this study (through copula 

parameters). However, copula-based model results in more interrelated U.S. sectors. 

Also, there is a strong evidence of asymmetric relationships which is not detected in Kim 

and Bessler’s (2007) paper.  

The Rotated Gumbel copula parameter estimates for the majority cases are higher 

than Gumbel copula parameter estimates. Consequently, the dependence on the left tail 

of the distribution is higher than that on the right hand implying asymmetry for most 

relations. Tail dependencies are considered to be more informative about the dependence 

structure, than the copula parameters. 

 Similar to the degree of dependence and copula parameter results, EN has 

relatively small tail dependencies with nearly all the industry sectors (Table 4.6). The 

highest tail dependencies are found for CD and IN, FI and IN, and FI and CD pairs. 

Nearly in all cases, the lower tail dependence is higher than the upper tail dependence 

which is consistent either for the Gumbel and Rotated Gumbel copulas, or for the SJC  
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Table 4.6 Upper and Lower Tail Dependences for Five  Copula Functions
λL λU λL λU λL λU λL λU λL λU λL λU λL λU λL λU λL λU

Clayton 0.548 0.000 0.289 0.000 0.549 0.000 0.574 0.000 0.574 0.000 0.313 0.000 0.431 0.000 0.414 0.000 0.399 0.000
Gumbel 0.000 0.506 0.000 0.302 0.000 0.507 0.000 0.531 0.000 0.520 0.000 0.336 0.000 0.396 0.000 0.397 0.000 0.381
R. Gumbel 0.517 0.000 0.319 0.000 0.519 0.000 0.541 0.000 0.536 0.000 0.344 0.000 0.418 0.000 0.412 0.000 0.398 0.000
Student 0.327 0.327 0.067 0.067 0.303 0.303 0.295 0.295 0.339 0.339 0.159 0.159 0.210 0.210 0.176 0.176 0.150 0.150
SJC 0.483 0.406 0.278 0.133 0.482 0.406 0.504 0.444 0.515 0.409 0.278 0.206 0.398 0.232 0.367 0.265 0.365 0.230
Clayton 0.305 0.000 0.664 0.000 0.529 0.000 0.712 0.000 0.556 0.000 0.557 0.000 0.501 0.000 0.359 0.000
Gumbel 0.000 0.308 0.000 0.641 0.000 0.484 0.000 0.683 0.000 0.523 0.000 0.504 0.000 0.466 0.000 0.357
R. Gumbel 0.327 0.000 0.648 0.000 0.498 0.000 0.703 0.000 0.530 0.000 0.521 0.000 0.478 0.000 0.369 0.000
Student 0.114 0.114 0.369 0.369 0.321 0.321 0.412 0.412 0.286 0.286 0.262 0.262 0.154 0.154 0.132 0.132
SJC 0.296 0.129 0.597 0.536 0.470 0.368 0.661 0.558 0.482 0.437 0.503 0.375 0.440 0.349 0.326 0.206
Clayton 0.297 0.000 0.292 0.000 0.385 0.000 0.175 0.000 0.432 0.000 0.215 0.000 0.378 0.000
Gumbel 0.000 0.314 0.000 0.292 0.000 0.368 0.000 0.235 0.000 0.400 0.000 0.260 0.000 0.366
R. Gumbel 0.327 0.000 0.317 0.000 0.387 0.000 0.248 0.000 0.420 0.000 0.273 0.000 0.382 0.000
Student 0.125 0.125 0.104 0.104 0.162 0.162 0.072 0.072 0.169 0.169 0.068 0.068 0.093 0.093
SJC 0.276 0.165 0.295 0.099 0.353 0.208 0.184 0.091 0.395 0.231 0.216 0.104 0.348 0.204
Clayton 0.537 0.000 0.686 0.000 0.472 0.000 0.513 0.000 0.475 0.000 0.428 0.000
Gumbel 0.000 0.489 0.000 0.648 0.000 0.471 0.000 0.470 0.000 0.458 0.000 0.414
R. Gumbel 0.506 0.000 0.653 0.000 0.468 0.000 0.485 0.000 0.462 0.000 0.421 0.000
Student 0.308 0.308 0.412 0.412 0.072 0.072 0.234 0.234 0.187 0.187 0.207 0.207
SJC 0.480 0.366 0.631 0.535 0.184 0.091 0.459 0.335 0.402 0.364 0.370 0.303
Clayton 0.554 0.000 0.381 0.000 0.389 0.000 0.394 0.000 0.348 0.000
Gumbel 0.000 0.500 0.000 0.367 0.000 0.361 0.000 0.380 0.000 0.346
R. Gumbel 0.518 0.000 0.387 0.000 0.386 0.000 0.396 0.000 0.362 0.000
Student 0.357 0.357 0.213 0.213 0.220 0.220 0.200 0.200 0.147 0.147
SJC 0.499 0.378 0.351 0.209 0.368 0.178 0.354 0.231 0.322 0.190
Clayton 0.549 0.000 0.623 0.000 0.489 0.000 0.408 0.000
Gumbel 0.000 0.519 0.000 0.565 0.000 0.455 0.000 0.391
R. Gumbel 0.525 0.000 0.580 0.000 0.468 0.000 0.404 0.000
Student 0.231 0.231 0.325 0.325 0.225 0.225 0.184 0.184
SJC 0.473 0.437 0.564 0.460 0.428 0.340 0.367 0.250
Clayton 0.393 0.000 0.398 0.000 0.178 0.000
Gumbel 0.000 0.389 0.000 0.392 0.000 0.239
R. Gumbel 0.399 0.000 0.404 0.000 0.251 0.000
Student 0.218 0.218 0.130 0.130 0.064 0.064
SJC 0.344 0.269 0.347 0.266 0.187 0.094
Clayton 0.353 0.000 0.329 0.000
Gumbel 0.000 0.346 0.000 0.335
R. Gumbel 0.365 0.000 0.350 0.000
Student 0.157 0.157 0.140 0.140
SJC 0.327 0.185 0.306 0.178
Clayton 0.322 0.000
Gumbel 0.000 0.342
R. Gumbel 0.350 0.000
Student 0.093 0.093
SJC 0.283 0.208

CD EN FI HC UTIN IT MS TC

CD

CS

TC

MS

IT

IN

HC

FI

EN

 Note: Normal copula has zero tail dependencies, thus is not included in the table. The tail dependencies are 
estimated according to the equations in Table 4.3   
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copula. This confirms the long existing theory that during a market downturn, stock 

prices of most companies tend to be more correlated than during the market upturn.   

Similarly, in the case of industry sectors the idea is the same and the results show that 

the relationships among the sectors are higher during the market downturn than a market 

boom. However, the asymmetric copula models may not be the best relative to the more 

conventional copula models. Hence, the LLF, AIC, and BIC are used to rank the copula 

models (Table 4.7).  

The Student t copula model is found to be the best in all cases except for the EN 

and HC and FI and IT sectors. The best fitting copula model for EN and HC sectors is 

the Rotated Gumbel copula, while for the latter pair Normal copula model appears to be 

the best. Consequently, it was found that most of the dependencies are heavy-tailed 

distributed but not necessarily asymmetrically. In other words, most models seem to 

have symmetric tail dependencies which capture the fat tails of the distributions. 

The best copula models are then tested using the Kendall’s tau and copula 

relation. The estimated Student t copula parameters using Kendall’s tau are very close to 

those estimated using maximum likelihood. Similarly, the difference is nearly zero for 

copula parameter estimates of Rotated Gumbel and Normal copula for EN-HC and FI-IT 

pairs, respectively. Consequently, the copula functions are well specified. In other 

words, there are negligible or no specification errors in terms of parametric copula 

estimation, specifically, highest ranked copula estimation (i.e. Student t, Rotated 

Gumbel, and Normal copulas). 
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Table 4.7 The LLF, AIC, and BIC for the Highest Ran ked Copula Models
CD EN FI HC IN IT MS TC UT

LLF 964.96 313.63 963.67 1066.91 1035.65 380.41 565.10 552.26 510.45
AIC -1925.93 -623.26 -1923.35 -2129.83 -2067.30 -756.83 -1126.19 -1100.53 -1016.90
BIC -1913.59 -610.93 -1911.01 -2117.50 -2054.96 -744.49 -1113.86 -1088.19 -1004.57
LLF 329.96 1537.70 872.96 1799.47 1016.58 956.67 778.57 439.96
AIC -655.93 -3071.39 -1741.92 -3594.94 -2029.17 -1909.35 -1553.15 -875.93
BIC -643.60 -3059.06 -1729.59 -3582.61 -2016.84 -1897.02 -1540.82 -863.59
LLF 339.50 303.99 473.59 190.12 562.97 226.94 461.53
AIC -674.99 -605.98 -943.18 -376.24 -1121.94 -449.87 -919.05
BIC -662.66 -599.82 -930.84 -363.90 -1109.61 -437.54 -906.72
LLF 885.92 1799.47 704.63 798.16 732.53 605.45
AIC -1767.84 -3594.94 -1407.26 -1592.32 -1461.05 -1206.91
BIC -1755.51 -3582.61 -1401.09 -1579.99 -1448.72 -1194.58
LLF 945.61 476.38 478.18 498.02 411.43
AIC -1887.22 -948.75 -952.37 -992.05 -818.86
BIC -1874.89 -936.42 -940.03 -979.71 -806.53
LLF 997.15 1254.45 734.73 530.86
AIC -1990.30 -2504.90 -1465.47 -1057.71
BIC -1977.97 -2492.56 -1453.14 -1045.38
LLF 525.08 525.86 193.73
AIC -1046.16 -1047.73 -383.46
BIC -1033.83 -1035.40 -371.13
LLF 411.84 384.99
AIC -819.68 -765.97
BIC -807.35 -753.64
LLF 387.00
AIC -770.00
BIC -757.67

CS

CD

EN

FI

TC

HC

IN

IT

MS

 
Note: The best copula models for each two-sector combinations are chosen based on the maximum LLF 
and minimum AIC and BIC values. Minimum Student t copula is the highest ranked copula model for all 
the pairs except for the HC-EN and IT-FI which are in bold and italics. Rotated Gumbel copula fits HC-
EN pairs the best and Normal copula is ranked the highest for IT-FI pair.  
 
 
Table 4.8 Parameter Estimates of Highest Ranked Cop ula Models via Kendall's Tau

CD EN FI HC IN IT MS TC UT
0.626 0.405 0.633 0.660 0.651 0.396 0.517 0.499 0.478 CS

0.411 0.768 0.606 0.812 0.657 0.652 0.603 0.454 CD
0.401 1.343 0.486 0.295 0.541 0.346 0.476 EN

0.623 0.775 0.581 0.608 0.580 0.503 FI
0.634 0.456 0.472 0.490 0.438 HC

0.656 0.722 0.591 0.488 IN
0.474 0.518 0.294 IT

0.454 0.430 MS
0.445 TC  

Note: The table reports the Student t copula parameter estimates using Kendall’s tau. The two pairs that 
are best described by Rotated Gumbel and Normal Copula are in bold and italics. HC-EN pair is described 
best by Rotated Gumbel copula, thus the parameter is estimated using the relation between the Kendall’s 
tau and the Rotated Gumbel copula. Similarly, the parameter for FI-IT pair is estimated using the relation 
between the Kendall’s tau and Normal Copula. These numbers are intended to be compared with the 
parameter estimates of the selected copula models from Table 4.5. 
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4.6 Conclusions 
 
  

Failure of many financial variables to satisfy the normality assumption originated 

the need for more restrictive models to analyze the dependencies among them. In 

investment analysis such models are of great interest due to the possible improvement of 

risk management techniques. The diversification which is considered to be central for 

reducing investment risk can also be assessed through such models. Particularly, the 

formulation of the “true” dependence among a set of variables can be used to calculate 

the diversification gain (loss) (Hu, 2006).  

 The interdependence between the aggregations of ten U.S. sector equity prices is 

explored in this paper. The detection of possible asymmetries in dependence is 

specifically analyzed by using copula functions. The use of copula functions eases the 

modeling of joint distribution in such a way that marginal distributions can initially be 

separately modeled. This is especially critical when the variables deviate from the 

normality assumption and the only way to model joint distribution is by breaking it 

down into margins and the copula. In addition, copula functions are used for estimating 

the dependence structure across ten industry sectors in the U.S.   

Overall, the results are very consistent across different dependence measures 

applied in this paper. The industry sectors are highly dependent upon each other which 

are consistent with the results Kim and Bessler (2007). Although the lower tail 

dependence structure is more signified than the upper tail dependence indicating some 

degree of asymmetry, the best model that helps explain dependencies between most of 
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the industry sectors appears to be the Student t copula which is symmetric and captures 

the heavy tails of the distributions.  

The Consumer Discretionary, Consumer Staples, Financials, and Industrials 

sectors have strong relationships with other sectors. Conversely, the Telecommunication 

Services, Utilities, and Energy sectors do not have a strong relationship with other 

sectors. Most of these findings are consistent with the Kim and Bessler’s (2007) DAG 

results which provide contemporaneous linear dependence. Consequently, it can be 

implied that linear and non-linear (general) models do provide somewhat similar results 

in showing sectors are strongly related with each other, but they differ greatly in terms of 

providing information of possible asymmetries which was detected by the copula-based 

models. Moreover, the high interdependence across the aggregations of U.S. stock prices 

implies that industry diversification gains may be fairly small.. One of the reasons for 

such findings might be the fact that the data used in this study is aggregate masking any 

possible inverse or no dependencies across certain industries disappear. Hence, these 

results should be used with care especially for investment purposes.   
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CHAPTER V 

CONCLUSIONS 

 

 

Time series modeling and dependence formulation for financial markets is the 

focus of this dissertation. Time series models are used to investigate interrelationships 

among the U.S. housing market, interdependence between oil prices and stock market 

indices, and inter-industry dependence across the aggregations of U.S. equity prices.  

 Housing prices of nine U.S. census divisions are studied in the first essay. House 

price series are found to be cointegrated, thus are modeled by VECM. Furthermore, the 

Directed Acyclic Graphs (DAGs) are used to build the contemporaneous causal structure 

among the house price series. The combination of VECM and DAG results are used in 

order to obtain data-driven identification. Just-identified models can be obtained by 

placing restrictions on the VECM according to the DAG results. This proposed 

identification method is data-driven and explains the model much better than the 

automatic identification included in many software programs. The findings suggest 

highly interrelated regional housing market in U.S. Moreover, West North Central is the 

leading cause for house price changes in other regions. Similarly, Middle Atlantic and 

New England also have significant influence in house price changes in the country. On 

the contrary, the East North Central has the least important role in the U.S. housing 

market. Overall, it can be concluded that house prices of other regions, especially the 
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leading regions, should be considered for forecasting house price of any census 

divisions.  

 Interdependence of oil prices and stock market indices across many countries is 

investigated in the second essay. Both oil producing and oil consuming, developing and 

developed countries are included to obtain a more complete picture of dependence. In 

addition to U.S. Dollar (USD) and Euro (EUR), Stable Aggregate Currency (SAC) is 

used as a base currency for both oil price and stock market index series. The reason is 

that a basket of currency (SAC) can minimize the exchange rate risk. Hence, it provides 

more accurate results free of exchange rate risk. All these scenarios are studied using 

copula functions which allow flexible calculation of joint distributions and measurement 

of structure and degree of dependence.  

The evidence shows weak (strong) dependence between oil prices and stock 

market indices for oil consuming (producing) nations. Moreover, the detected 

asymmetry in the dependence suggests that during market downturn (upturn) oil prices 

and stock market indices are more correlated in case of oil producing (consuming) 

countries such as Canada, Russia, Saudi Arabia, and Venezuela (UK, France, Germany, 

U.S., and China). There is negligible difference between the copula results for developed 

and developing countries. However, significant change is detected between the pre- and 

post-Euro period results. Specifically, the dependence between the oil prices and stock 

market indices become more significant after the creation of Euro.  

 Third essay analyzes the inter-industry dependence among the U.S. equity 

aggregations. The series are filtered by AR-GARCH models. The univariate 
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distributions of the filtered residuals are further used in copula modeling. The results 

offer strong sector interdependence which is consistent across all the dependence 

measures. The least connected sectors include the Utilities, Telecommunication 

Services, and the Energy. Conversely, the most interrelated sectors are the Consumer 

Discretionary, Consumer Staple, and Industrials. Although the dependence measure is 

higher for the lower tails than the upper tails potentially implying asymmetric 

dependence, the copula model that describes the relationships the best is the Student t 

copula. The latter is symmetric but captures the heavy-tails of distribution. Overall, 

results of this essay are very similar to those reported by Kim and Bessler (2007) which 

are obtained using linear causality models. Hence, it can be concluded that for this 

particular dataset the linear and non-linear, asymmetric models provide essentially 

similar results. Lastly, given that U.S. equity aggregations are strongly interrelated, the 

diversification gains resulting from inter-industry investments may be small.  

 All the three essays can be extended further either analyzing certain points that 

were not considered in this dissertation, or by focusing on the limitations of each of the 

essays. The limitations of dissertation are given for each of the three essays. In Chapter 

II the limited dataset imposes certain restrictions on the number of lags and possible 

exogenous variable inclusion. Also, census division data is used which averages out 

house price changes at state level resulting in smoother house price series over time. In 

Chapter III, bivariate parametric copula functions are used instead of multivariate and 

non-parametric copula functions. Limitations in Chapter IV include the data set which is 

aggregate and thus masks some of the industry-specific information that could 
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potentially result in profitable investment. There is room for improvement and extension 

for each of the essays as detailed below: 

1. In Chapter II, out-of-sample forecasting should be used to test the accuracy of 

the VECM model and DAG’s causal structure results.  

2. In Chapter III, multivariate copula models with the non-linear causal 

structure should be used to investigate general causal structure. This would 

be very helpful in determining the direction of the causality (i.e. whether 

stock market indices affect the oil prices or vice versa).  

3. In Chapter IV, analyzing the data with VAR-Copula approach and applying 

non-linear DAG will allow direct comparison of results of non-linear and 

linear models.  
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APPENDIX A 

TAIL DEPENDENCE PARAMETERS 

 

 

A.1 Tail Dependence Parameters for Nine Copulas in pre-Euro period for USD-Denominated Data
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.001 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.001 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000

Fran-Brent

Ital-Brent

Cana-Brent

HK-Brent

UK-Brent

Jap-Brent

US-Brent

Germ-Brent

 Note: For each of the copula function, the lower (left) and upper (right) tail dependences are reported.  

 

A.2 Tail Dependence Parameters for Nine Copulas in pre-Euro period for USD-Denominated Data
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.001 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.001 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000

Fran-Opec

Ital-Opec

Cana-Opec

HK-Opec

UK-Opec

Jap-Opec

US-Opec

Germ-Opec

 Note: For each of the copula function, the lower (left) and upper (right) tail dependences are reported. 
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A.3 Tail Dependence for Copulas in pre-Euro period for SAC-Denominated Data
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.002 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

Lower 0.000 0.007 0.000 0.000 0.000 0.000 0.110 0.009 0.015

Upper 0.000 0.000 0.016 0.000 0.000 0.121 0.000 0.009 0.041

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.002 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lower 0.000 0.014 0.000 0.000 0.000 0.000 0.112 0.000 0.035

Upper 0.000 0.000 0.006 0.000 0.000 0.103 0.000 0.000 0.008

Lower 0.000 0.002 0.000 0.000 0.000 0.000 0.084 0.001 0.021

Upper 0.000 0.000 0.001 0.000 0.000 0.074 0.000 0.001 0.000

Fran-Brent

Ital-Brent

Cana-Brent

HK-Brent

UK-Brent

Jap-Brent

US-Brent

Germ-Brent

Note: For each of the copula function, the lower (left) and upper (right) tail dependences are reported. 

 
 
Table A.4 Tail Dependence for Copulas in pre-Euro p eriod for SAC-Denominated Data

Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.006 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lower 0.000 0.026 0.000 0.000 0.000 0.000 0.145 0.016 0.023

Upper 0.000 0.000 0.048 0.000 0.000 0.159 0.000 0.016 0.081

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Lower 0.000 0.029 0.000 0.000 0.000 0.000 0.140 0.001 0.108

Upper 0.000 0.000 0.027 0.000 0.000 0.139 0.000 0.001 0.091

Lower 0.000 0.004 0.000 0.000 0.000 0.000 0.091 0.002 0.103

Upper 0.000 0.000 0.001 0.000 0.000 0.081 0.000 0.002 0.000

Fran-Opec

Ital-Opec

Cana-Opec

HK-Opec

UK-Opec

Jap-Opec

US-Opec

Germ-Opec

 
Note: For each of the copula function, the lower (left) and upper (right) tail dependences are reported. 
 
 

 



 144 

 

 

A.5 Tail Dependences USD-Denominated Data in post-Eur o period 
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.044 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.045 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.001 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.001 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.001 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.025 0.000 0.001 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.046 0.001 0.002

Upper 0.000 0.000 0.000 0.000 0.000 0.036 0.000 0.001 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.058 0.001 0.006

Upper 0.000 0.000 0.000 0.000 0.000 0.041 0.000 0.001 0.000

Lower 0.000 0.020 0.000 0.000 0.000 0.000 0.127 0.005 0.043

Upper 0.000 0.000 0.015 0.000 0.000 0.117 0.000 0.005 0.023

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.046 0.000 0.003

Upper 0.000 0.000 0.000 0.000 0.000 0.036 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.027 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.026 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.040 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.054 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.040 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.062 0.000 0.002

Upper 0.000 0.000 0.000 0.000 0.000 0.061 0.000 0.000 0.003

Lower 0.000 0.002 0.000 0.000 0.000 0.000 0.084 0.000 0.017

Upper 0.000 0.000 0.000 0.000 0.000 0.068 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.045 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.001 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.001 0.001

Vene-Brent

Spai-Brent

Swit-Brent

Hung-Brent

Pola-Brent

Russ-Brent

Saud-Brent

Ch-Brent

Cze-Brent

Neth-Brent

Finl-Brent

Fran-Brent

Ital-Brent

Cana-Brent

HK-Brent

UK-Brent

Jap-Brent

US-Brent

Germ-Brent

 Note: For each of the copula function, the lower (left) and upper (right) tail dependences are reported. 
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A.6 Tail Dependences USD-Denominated Data in post-E uro period 
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.035 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.027 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.039 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.041 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000

Lower 0.000 0.007 0.000 0.000 0.000 0.000 0.099 0.002 0.043

Upper 0.000 0.000 0.001 0.000 0.000 0.076 0.000 0.002 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.049 0.001 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.043 0.000 0.001 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.057 0.000 0.002

Upper 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.053 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.039 0.000 0.000 0.001

Lower 0.000 0.005 0.000 0.000 0.000 0.000 0.094 0.001 0.028

Upper 0.000 0.000 0.001 0.000 0.000 0.077 0.000 0.001 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.043 0.002 0.002

Upper 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.002 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.018 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.001

Saud-Opec

Vene-Opec

Spai-Opec

Swit-Opec

Finl-Opec

Hung-Opec

Pola-Opec

Russ-Opec

HK-Opec

Ch-Opec

Cze-Opec

Neth-Opec

UK-Opec

Jap-Opec

US-Opec

Germ-Opec

Fran-Opec

Ital-Opec

Cana-Opec

 Note: For each of the copula function, the lower (left) and upper (right) tail dependences are reported. 
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A.7 Tail Dependences SAC-Denominated Data in post-E uro period 
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.004 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.029 0.000 0.004 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Lower 0.000 0.025 0.000 0.000 0.000 0.000 0.136 0.008 0.042

Upper 0.000 0.000 0.023 0.000 0.000 0.132 0.000 0.008 0.039

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.038 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.017 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.043 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.039 0.000 0.000 0.001

Lower 0.000 0.004 0.000 0.000 0.000 0.000 0.094 0.002 0.026

Upper 0.000 0.000 0.001 0.000 0.000 0.080 0.000 0.002 0.001

Lower 0.000 0.002 0.000 0.000 0.000 0.000 0.070 0.000 0.013

Upper 0.000 0.000 0.000 0.000 0.000 0.036 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.039 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.001

Spai-Brent

Swit-Brent

UK-Brent

Jap-Brent

US-Brent

Germ-Brent

Fran-Brent

Ital-Brent

Cana-Brent

Hung-Brent

Ch-Brent

Cze-Brent

Neth-Brent

Finl-Brent

HK-Brent

Pola-Brent

Russ-Brent

Saud-Brent

Vene-Brent

 Note: For each of the copula function, the lower (left) and upper (right) tail dependences are reported. 
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A.8 Tail Dependences SAC-Denominated Data in post-E uro period 
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.034 0.001 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.001 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Lower 0.000 0.009 0.000 0.000 0.000 0.000 0.105 0.003 0.036

Upper 0.000 0.000 0.002 0.000 0.000 0.087 0.000 0.003 0.003

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.002

Upper 0.000 0.000 0.000 0.000 0.000 0.036 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.025 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.036 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.001

Lower 0.000 0.013 0.000 0.000 0.000 0.000 0.114 0.001 0.044

Upper 0.000 0.000 0.003 0.000 0.000 0.099 0.000 0.001 0.002

Lower 0.000 0.002 0.000 0.000 0.000 0.000 0.079 0.001 0.012

Upper 0.000 0.000 0.000 0.000 0.000 0.052 0.000 0.001 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Vene-Opec

Spai-Opec

Swit-Opec

Hung-Opec

Pola-Opec

Russ-Opec

Saud-Opec

Ch-Opec

Cze-Opec

Neth-Opec

Finl-Opec

UK-Opec

Jap-Opec

US-Opec

Germ-Opec

Fran-Opec

Ital-Opec

Cana-Opec

HK-Opec

 Note: For each of the copula function, the lower (left) and upper (right) tail dependences are reported. 
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A.9 Tail Dependences EUR-Denominated Data in post-Euro period 

Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Stud ent t SJC

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.044 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.051 0.000 0.000 0.003

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.052 0.000 0.002

Upper 0.000 0.000 0.000 0.000 0.000 0.052 0.000 0.000 0.001

Lower 0.000 0.000 0.005 0.000 0.000 0.000 0.091 0.011 0.028

Upper 0.000 0.000 0.000 0.001 0.000 0.080 0.000 0.011 0.003

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Lower 0.000 0.059 0.000 0.000 0.000 0.000 0.169 0.010 0.080

Upper 0.000 0.000 0.047 0.000 0.000 0.161 0.000 0.010 0.054

Lower 0.000 0.002 0.000 0.000 0.000 0.000 0.077 0.000 0.007

Upper 0.000 0.000 0.002 0.000 0.000 0.078 0.000 0.000 0.010

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.058 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.061 0.000 0.000 0.003

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.057 0.000 0.003

Upper 0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.001

Lower 0.000 0.016 0.000 0.000 0.000 0.000 0.122 0.009 0.043

Upper 0.000 0.000 0.009 0.000 0.000 0.115 0.000 0.009 0.013

Lower 0.000 0.027 0.000 0.000 0.000 0.000 0.128 0.001 0.072

Upper 0.000 0.000 0.004 0.000 0.000 0.099 0.000 0.001 0.001

Lower 0.000 0.002 0.000 0.000 0.000 0.000 0.079 0.001 0.014

Upper 0.000 0.000 0.000 0.000 0.000 0.069 0.000 0.001 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.001

Vene-Brent

Spai-Brent

Swit-Brent

Hung-Brent

Pola-Brent

Russ-Brent

Saud-Brent

Ch-Brent

Cze-Brent

Neth-Brent

Finl-Brent

Fran-Brent

Ital-Brent

Cana-Brent

HK-Brent

UK-Brent

Jap-Brent

US-Brent

Germ-Brent

 Note: For each of the copula function, the lower (left) and upper (right) tail dependences are reported. 
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A.10 Tail Dependences EUR-Denominated Data in post- Euro period 
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.045 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.046 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.049 0.000 0.000 0.001

Lower 0.000 0.011 0.000 0.000 0.000 0.000 0.110 0.011 0.031

Upper 0.000 0.000 0.007 0.000 0.000 0.105 0.000 0.011 0.017

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Lower 0.000 0.037 0.000 0.000 0.000 0.000 0.145 0.006 0.073

Upper 0.000 0.000 0.019 0.000 0.000 0.130 0.000 0.006 0.021

Lower 0.000 0.010 0.000 0.000 0.000 0.000 0.105 0.000 0.027

Upper 0.000 0.000 0.007 0.000 0.000 0.100 0.000 0.000 0.013

Lower 0.000 0.003 0.000 0.000 0.000 0.000 0.091 0.000 0.007

Upper 0.000 0.000 0.004 0.000 0.000 0.090 0.000 0.000 0.011

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.038 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.053 0.000 0.003

Upper 0.000 0.000 0.000 0.000 0.000 0.027 0.000 0.000 0.001

Lower 0.000 0.039 0.000 0.000 0.000 0.000 0.150 0.006 0.063

Upper 0.000 0.000 0.030 0.000 0.000 0.147 0.000 0.006 0.033

Lower 0.000 0.042 0.000 0.000 0.000 0.000 0.153 0.005 0.080

Upper 0.000 0.000 0.024 0.000 0.000 0.134 0.000 0.005 0.016

Lower 0.000 0.004 0.000 0.000 0.000 0.000 0.092 0.000 0.015

Upper 0.000 0.000 0.003 0.000 0.000 0.085 0.000 0.000 0.006

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001

Upper 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Saud-Opec

Vene-Opec

Spai-Opec

Swit-Opec

Finl-Opec

Hung-Opec

Pola-Opec

Russ-Opec

HK-Opec

Ch-Opec

Cze-Opec

Neth-Opec

UK-Opec

Jap-Opec

US-Opec

Germ-Opec

Fran-Opec

Ital-Opec

Cana-Opec

 Note: For each of the copula function, the lower (left) and upper (right) tail dependences are reported. 
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APPENDIX B 

COPULA MODEL RANKING  

 

B.1 Log-Likelihood Functions for EUR-Denominated Da ta in post-Euro Period
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

UK-Brent 5.411 3.413 5.512 5.549 5.470 7.192 3.126 6.683 6.593

7 8 5 4 6 1 9 2 3

Jap-Brent 6.417 5.715 4.571 4.721 4.702 5.164 6.119 6.823 7.340

3 5 9 7 8 6 4 2 1

US-Brent 12.341 14.391 9.761 10.759 10.456 13.904 18.993 22.042 19.068

6 4 9 7 8 5 3 1 2

Germ-Brent 1.226 -0.005 -0.001 1.118 -0.011 0.117 -0.223 5.405 -9.985

2 6 5 3 7 4 8 1 9

Fran-Brent 0.360 0.004 -0.003 0.334 -0.006 -0.002 -0.099 1.396 -2.309

2 4 6 3 7 5 8 1 9

Ital-Brent 1.171 -0.005 -0.006 0.499 -0.007 -0.185 -0.131 1.303 -4.054

2 4 5 3 6 8 7 1 9

Cana-Brent 49.929 41.849 37.544 48.037 46.412 47.217 50.159 55.909 55.723

4 8 9 5 7 6 3 1 2

HK-Brent 13.780 9.753 11.631 12.264 12.338 12.621 11.475 14.814 15.484

3 9 7 6 5 4 8 2 1

Ch-Brent 8.991 4.937 6.289 11.817 11.753 5.689 4.965 9.079 7.427

4 9 6 1 2 7 8 3 5

Cze-Brent 0.011 0.509 0.015 0.000 0.000 0.067 0.633 3.271 -0.473

6 3 5 7 8 4 2 1 9

Neth-Brent 0.918 -0.003 -0.004 0.733 -0.009 -0.151 -0.166 2.426 -10.211

2 4 5 3 6 7 8 1 9

Finl-Brent 0.436 0.233 0.285 0.618 0.610 0.236 0.359 0.545 -3.271

4 8 6 1 2 7 5 3 9

Hung-Brent 0.997 0.253 0.957 0.877 0.875 1.108 0.147 0.874 -0.371

2 7 3 4 5 1 8 6 9

Pola-Brent 5.513 6.315 3.576 4.709 4.585 4.714 6.922 7.263 7.034

5 4 9 7 8 6 3 1 2

Russ-Brent 23.409 21.450 16.357 27.379 26.136 21.028 26.746 29.729 26.742

6 7 9 2 5 8 3 1 4

Saud-Brent 25.691 28.750 12.189 25.800 25.404 15.015 30.772 28.676 30.242

6 3 9 5 7 8 1 4 2

Vene-Brent 9.692 9.186 6.974 9.984 9.671 8.604 11.145 12.512 11.608

5 7 9 4 6 8 3 1 2

Spai-Brent 2.882 -0.006 -0.010 1.903 -0.015 -0.297 -0.221 4.387 -13.805

2 4 5 3 6 8 7 1 9

Swit-Brent 3.139 -0.010 -0.002 3.050 -0.019 1.809 -0.413 6.359 -12.432

2 6 5 3 7 4 8 1 9

 Note: Copula models are ranked according to the highest log-likelihood function. 1 to 9 are the rankings of each of the nine copula 
models, where 1 is the best fitting copula model and 9 is the worst fitting copula model. 
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B.2 Log-Likelihood Functions for EUR-Denominated Da ta in post-Euro Period
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

UK-Opec 3.272 1.597 4.397 3.212 3.148 6.234 1.316 4.545 4.038

5 8 3 6 7 1 9 2 4

Jap-Opec 6.414 4.264 5.481 4.241 4.253 4.511 4.452 6.352 6.745

2 7 4 9 8 5 6 3 1

US-Opec 20.280 18.967 16.666 19.373 18.716 21.772 22.739 29.498 26.002

5 7 9 6 8 4 3 1 2

Germ-Opec 4.213 -0.010 -0.009 3.980 -0.021 -0.452 -0.381 4.919 -15.884

2 5 4 3 6 8 7 1 9

Fran-Opec 3.835 -0.008 -0.012 3.694 -0.021 -0.544 -0.389 3.907 -6.605

2 4 5 3 6 8 7 1 9

Ital-Opec 5.487 -0.010 -0.015 4.211 -0.020 -0.635 -0.514 4.879 -9.531

1 4 5 3 6 8 7 2 9

Cana-Opec 35.133 33.397 23.812 31.985 31.201 30.756 39.402 40.794 41.612

4 5 9 6 7 8 3 2 1

HK-Opec 23.588 17.668 16.421 21.873 22.099 18.164 20.408 24.012 23.995

3 8 9 5 4 7 6 1 2

Ch-Opec 17.186 10.935 12.517 21.642 21.534 12.918 12.535 17.778 15.350

4 8 9 1 2 6 7 3 5

Cz-Opec 0.218 0.000 -0.001 0.218 -0.005 -0.078 0.063 2.660 -2.055

3 5 6 2 7 8 4 1 9

Neth-Opec 4.451 -0.011 -0.008 4.114 -0.022 -0.374 -0.429 6.070 -15.786

2 5 4 3 6 7 8 1 9

Finl-Opec 0.429 -0.002 -0.005 0.531 -0.008 -0.252 -0.110 0.369 -9.683

2 4 5 1 6 8 7 3 9

Hung-Opec 1.410 0.014 3.044 1.225 1.197 2.629 0.095 1.545 0.861

4 9 1 5 6 2 8 3 7

Pola-Opec 4.246 6.415 0.970 4.030 3.996 1.147 6.008 4.438 4.248

5 1 9 6 7 8 2 3 4

Russ-Opec 39.220 33.370 26.982 43.719 42.171 33.793 39.544 43.983 40.852

6 8 9 2 3 7 5 1 4

Saud-Opec 38.799 34.895 25.915 39.181 38.092 28.671 42.171 44.050 41.836

5 7 9 4 6 8 2 1 3

Vene-Opec 15.051 12.220 11.170 16.280 15.682 12.063 13.655 17.133 15.654

5 7 9 2 3 8 6 1 4

Spai-Opec 7.441 -0.014 -0.013 7.150 -0.029 -0.532 -0.560 7.912 -19.249

2 5 4 3 6 7 8 1 9

Swit-Opec 10.977 -0.019 -0.012 9.934 -0.034 -0.495 -0.706 12.461 -21.356

2 5 4 3 6 7 8 1 9

 Note: Copula models are ranked according to the highest log-likelihood function. 1 to 9 are the rankings of each of the nine copula 
models, where 1 is the best fitting copula model and 9 is the worst fitting copula model. 
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B.3 Akaike Information Criteria for EUR-Denominated  Data in post-Euro Period
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Stud ent t SJC

UK-Brent -8.821 -4.826 -9.024 -9.097 -8.939 -12.385 -4.252 -9.366 -9.187

7 8 5 4 6 1 9 2 3

Jap-Brent -10.835 -9.429 -7.142 -7.441 -7.403 -8.329 -10.237 -9.645 -10.680

1 5 9 7 8 6 3 4 2

US-Brent -22.682 -26.781 -17.523 -19.518 -18.911 -25.808 -35.985 -40.083 -34.137

6 4 9 7 8 5 2 1 3

Germ-Brent -0.451 2.010 2.003 -0.237 2.023 1.765 2.447 -6.809 23.971

2 6 5 3 7 4 8 1 9

Fran-Brent 1.280 1.992 2.005 1.332 2.012 2.005 2.197 1.208 8.619

2 4 6 3 7 5 8 1 9

Ital-Brent -0.342 2.010 2.012 1.001 2.014 2.369 2.261 1.393 12.108

1 4 5 2 6 8 7 3 9

Cana-Brent -97.859 -81.698 -73.088 -94.074 -90.824 -92.435 -98.319 -107.817 -107.447

4 8 9 5 7 6 3 1 2

HK-Brent -25.561 -17.505 -21.263 -22.527 -22.675 -23.243 -20.949 -25.629 -26.969

3 9 7 6 5 4 8 2 1

Ch-Brent -15.981 -7.874 -10.578 -21.633 -21.506 -9.378 -7.930 -14.159 -10.854

3 9 6 1 2 7 8 4 5

Cze-Brent 1.979 0.981 1.970 2.000 2.000 1.867 0.734 -2.542 4.947

6 3 5 7 8 4 2 1 9

Neth-Brent 0.163 2.006 2.009 0.534 2.019 2.302 2.332 -0.851 24.423

2 4 5 3 6 7 8 1 9

Finl-Brent 1.127 1.535 1.431 0.764 0.780 1.528 1.282 2.910 10.541

3 7 5 1 2 6 4 8 9

Hung-Brent 0.007 1.494 0.087 0.246 0.250 -0.216 1.705 2.252 4.742

2 6 3 4 5 1 7 8 9

Pola-Brent -9.025 -10.630 -5.152 -7.418 -7.170 -7.429 -11.843 -10.526 -10.068

5 2 9 7 8 6 1 3 4

Russ-Brent -44.818 -40.899 -30.714 -52.758 -50.272 -40.056 -51.493 -55.458 -49.484

6 7 9 2 4 8 3 1 5

Saud-Brent -49.381 -55.500 -22.378 -49.599 -48.809 -28.030 -59.543 -53.351 -56.485

6 3 9 5 7 8 1 4 2

Vene-Brent -17.385 -16.373 -11.947 -17.967 -17.343 -15.208 -20.290 -21.024 -19.215

5 7 9 4 6 8 2 1 3

Spai-Brent -3.765 2.011 2.021 -1.807 2.030 2.595 2.442 -4.775 31.609

2 4 5 3 6 8 7 1 9

Swit-Brent -4.278 2.021 2.005 -4.101 2.038 -1.617 2.826 -8.719 28.863

2 6 5 3 7 4 8 1 9

 Note: Copula functions are ranked based on the AIC model and the model with the smallest AIC value is ranked the highest. 1 to 9 
are the rankings of each of the nine copula models, where 1 is the best fitting copula model and 9 is the worst fitting copula model. 
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B.4 Akaike Information Criteria for EUR-Denominated  Data in post-Euro Period
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

UK-Opec -4.543 -1.194 -6.795 -4.425 -4.296 -10.468 -0.632 -5.090 -4.077

4 8 2 5 6 1 9 3 7

Jap-Opec -10.828 -6.528 -8.962 -6.483 -6.505 -7.023 -6.904 -8.703 -9.491

1 7 3 9 8 5 6 4 2

US-Opec -38.559 -35.933 -31.333 -36.747 -35.431 -41.545 -43.479 -54.996 -48.005

5 7 9 6 8 4 3 1 2

Germ-Opec -6.427 2.021 2.018 -5.959 2.043 2.905 2.763 -5.837 35.768

1 5 4 2 6 7 8 3 9

Fran-Opec -5.669 2.015 2.025 -5.388 2.042 3.088 2.779 -3.814 17.211

1 4 5 2 6 8 7 3 9

Ital-Opec -8.975 2.020 2.031 -6.422 2.041 3.271 3.028 -5.758 23.061

1 4 5 2 6 8 7 3 9

Cana-Opec -68.267 -64.794 -45.624 -61.971 -60.401 -59.512 -76.804 -77.588 -79.223

4 5 9 6 7 8 3 2 1

HK-Opec -45.177 -33.336 -30.843 -41.746 -42.199 -34.327 -38.816 -44.023 -43.991

1 8 9 5 4 7 6 2 3

Ch-Opec -32.371 -19.870 -23.033 -41.284 -41.068 -23.836 -23.070 -31.555 -26.699

3 9 8 1 2 6 7 4 5

Cz-Opec 1.564 2.000 2.002 1.563 2.010 2.156 1.873 -1.320 8.110

3 5 6 2 7 8 4 1 9

Neth-Opec -6.903 2.022 2.016 -6.227 2.044 2.749 2.858 -8.140 35.572

2 5 4 3 6 7 8 1 9

Finl-Opec 1.142 2.004 2.009 0.937 2.016 2.503 2.220 3.262 23.365

2 3 4 1 5 7 6 8 9

Hung-Opec -0.821 1.972 -4.088 -0.450 -0.395 -3.258 1.810 0.910 2.277

3 8 1 4 5 2 7 6 9

Pola-Opec -6.492 -10.829 0.060 -6.059 -5.992 -0.293 -10.016 -4.877 -4.496

3 1 9 4 5 8 2 6 7

Russ-Opec -76.440 -64.741 -51.963 -85.437 -82.342 -65.586 -77.088 -83.966 -77.704

6 8 9 1 3 7 5 2 4

Saud-Opec -75.599 -67.790 -49.829 -76.362 -74.183 -55.342 -82.343 -84.100 -79.673

5 7 9 4 6 8 2 1 3

Vene-Opec -28.101 -22.439 -20.340 -30.560 -29.364 -22.125 -25.309 -30.265 -27.307

4 7 9 1 3 8 6 2 5

Spai-Opec -12.882 2.028 2.026 -12.300 2.058 3.064 3.120 -11.825 42.499

1 5 4 2 6 7 8 3 9

Swit-Opec -19.954 2.038 2.025 -17.867 2.068 2.990 3.411 -20.922 46.712

2 5 4 3 6 7 8 1 9

 Note: Copula functions are ranked based on the AIC model and the model with the smallest AIC value is ranked the highest. 1 to 9 
are the rankings of each of the nine copula models, where 1 is the best fitting copula model and 9 is the worst fitting copula model. 
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B.5 Bayesian Information Criteria for EUR-Denominat ed Data in post-Euro Period
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

UK-Brent -3.100 0.895 -3.303 -3.376 -3.218 -6.663 1.469 2.077 2.256

5 6 3 2 4 1 7 8 9

Jap-Brent -5.114 -3.708 -1.421 -1.720 -1.682 -2.607 -4.516 1.797 0.763

1 3 7 5 6 4 2 9 8

US-Brent -16.961 -21.060 -11.802 -13.797 -13.190 -20.087 -30.264 -28.640 -22.694

6 4 9 7 8 5 1 2 3

Germ-Brent 5.270 7.732 7.724 5.485 7.744 7.487 8.168 4.634 35.413

2 6 5 3 7 4 8 1 9

Fran-Brent 7.001 7.713 7.726 7.053 7.734 7.726 7.919 12.651 20.061

1 3 5 2 6 4 7 8 9

Ital-Brent 5.379 7.731 7.733 6.723 7.735 8.091 7.982 12.836 23.551

1 3 4 2 5 7 6 8 9

Cana-Brent -92.137 -75.977 -67.366 -88.353 -85.102 -86.713 -92.598 -96.374 -96.004

4 8 9 5 7 6 3 1 2

HK-Brent -19.839 -11.784 -15.541 -16.806 -16.954 -17.521 -15.228 -14.186 -15.526

1 9 5 4 3 2 7 8 6

Ch-Brent -10.260 -2.153 -4.857 -15.912 -15.784 -3.656 -2.208 -2.716 0.588

3 2 3 1 2 6 7 8 9

Cze-Brent 7.700 6.702 7.691 7.721 7.721 7.588 6.456 8.900 16.390

5 2 4 6 7 3 1 8 9

Neth-Brent 5.885 7.727 7.730 6.255 7.740 8.023 8.054 10.591 35.865

1 3 4 2 5 6 7 8 9

Finl-Brent 6.849 7.256 7.152 6.486 6.501 7.249 7.004 14.353 21.984

3 6 5 1 2 7 4 8 9

Hung-Brent 5.728 7.215 5.808 5.967 5.971 5.505 7.427 13.695 16.185

2 6 3 4 5 1 7 8 9

Pola-Brent -3.304 -4.909 0.570 -1.696 -1.449 -1.707 -6.122 0.916 1.374

3 2 7 5 6 4 1 8 9

Russ-Brent -39.097 -35.178 -24.993 -47.037 -44.551 -34.334 -45.771 -44.016 -38.041

5 7 9 1 3 8 2 4 6

Saud-Brent -43.660 -49.779 -16.656 -43.878 -43.087 -22.308 -53.822 -41.909 -45.042

5 2 9 4 6 8 1 7 3

Vene-Brent -11.664 -10.651 -6.226 -12.246 -11.621 -9.487 -14.568 -9.581 -7.772

3 5 9 2 4 6 1 7 8

Spai-Brent 1.957 7.732 7.742 3.915 7.751 8.316 8.163 6.668 43.052

1 4 5 2 6 8 7 3 9

Swit-Brent 1.444 7.742 7.726 1.620 7.759 4.104 8.548 2.724 40.306

1 6 5 2 7 4 8 3 9

 Note: Copula functions are ranked based on the BIC model and the model with the smallest BIC value is ranked the highest. 1 to 9 
are the rankings of each of the nine copula models, where 1 is the best fitting copula model and 9 is the worst fitting copula model. 
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B.6 Bayesian Information Criteria for EUR-Denominat ed Data in post-Euro Period
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC

UK-Opec 1.178 4.527 -1.073 1.297 1.425 -4.747 5.090 6.353 7.366

3 6 2 4 5 1 7 8 9

Jap-Opec -5.107 -0.806 -3.240 -0.761 -0.784 -1.302 -1.183 2.739 1.952

1 5 2 7 6 3 4 9 8

US-Opec -32.838 -30.212 -25.611 -31.025 -29.710 -35.824 -37.758 -43.553 -36.562

5 7 9 6 8 4 3 1 2

Germ-Opec -0.706 7.742 7.739 -0.238 7.764 8.626 8.484 5.605 47.211

1 5 4 2 6 8 7 3 9

Fran-Opec 0.052 7.737 7.746 0.333 7.763 8.809 8.500 7.629 28.654

1 4 5 2 6 8 7 3 9

Ital-Opec -3.253 7.742 7.752 -0.700 7.762 8.992 8.750 5.685 34.504

1 4 5 2 6 8 7 3 9

Cana-Opec -62.546 -59.073 -39.903 -56.249 -54.680 -53.790 -71.082 -66.145 -67.781

4 5 9 6 7 8 1 3 2

HK-Opec -39.455 -27.615 -25.121 -36.025 -36.477 -28.606 -33.094 -32.581 -32.548

1 8 9 3 2 7 4 6 5

Ch-Opec -26.650 -14.148 -17.312 -35.563 -35.347 -18.115 -17.349 -20.113 -15.256

3 9 7 1 2 5 6 4 8

Cz-Opec 7.286 7.722 7.723 7.284 7.731 7.877 7.595 10.123 19.553

2 4 5 1 6 7 3 8 9

Neth-Opec -1.181 7.744 7.737 -0.506 7.765 8.470 8.580 3.303 47.015

1 5 4 2 6 7 8 3 9

Finl-Opec 6.863 7.726 7.730 6.659 7.737 8.224 7.941 14.704 34.808

2 3 4 1 5 7 6 8 9

Hung-Opec 4.900 7.693 1.634 5.272 5.327 2.463 7.531 12.353 13.720

3 7 1 4 5 2 6 8 9

Pola-Opec -0.771 -5.108 5.782 -0.338 -0.271 5.428 -4.295 6.566 6.947

3 1 7 4 5 6 2 8 9

Russ-Opec -70.719 -59.019 -46.242 -79.716 -76.621 -59.865 -71.367 -72.523 -66.261

5 8 9 1 2 7 4 3 6

Saud-Opec -69.878 -62.069 -44.108 -70.641 -68.462 -49.620 -76.621 -72.657 -68.230

4 7 9 3 5 8 1 2 6

Vene-Opec -22.380 -16.718 -14.618 -24.839 -23.643 -16.404 -19.588 -18.822 -15.864

3 6 9 1 2 7 4 5 8

Spai-Opec -7.160 7.749 7.747 -6.579 7.779 8.785 8.842 -0.382 53.941

1 5 4 2 6 7 8 3 9

Swit-Opec -14.233 7.759 7.746 -12.146 7.789 8.711 9.132 -9.479 58.155

1 5 4 2 6 7 8 3 9

 Note: Copula functions are ranked based on the BIC model and the model with the smallest BIC value is ranked the highest. 1 to 9 
are the rankings of each of the nine copula models, where 1 is the best fitting copula model and 9 is the worst fitting copula model. 
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