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ABSTRACT

Essays on Time Series and Causality Analysis iartgial Markets. (December 2008)
Tatevik Zohrabyan, B.S., Armenian Agricultural Aeadly;
M.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. David A. Bess|
Dr. David J. Leatham

Financial market and its various components areeatly in turmoil. Many large
corporations are devising new ways to overcome d¢haent market instability.
Consequently, any study fostering the understandihdinancial markets and the
dependencies of various market components woulatlgrbenefit both the practitioners
and academicians. To understand different partseofinancial market, this dissertation
employs time series methods to model causalitysandture and degree of dependence.
The relationship of housing market prices for rih&. census divisions is studied in the
first essay. The results show that housing magkeery interrelated. The New England
and West North Central census divisions strongad lbouse prices of the rest of the
country. Further evidence suggests that housegoteost census divisions are mainly
influenced by house price changes of other regions.

The interdependence of oil prices and stock mairkdites across countries is
examined in the second essay. The general depend#ancture and degree is estimated
using copula functions. The findings show weak deeace between stock market

indices and oil prices for most countries exceptlfie large oil producing nations which



show high dependence. The dependence structumadst oil consuming (producing)
countries is asymmetric implying that stock marnketex and oil price returns tend to
move together more during the market downturn (utuhan a market boom
(downturn).

In the third essay, the relationship among stodkrns of ten U.S. sectors is
studied. Copula models are used to explore thelinear, general association among the
series. The evidence shows that sectors are syrogigited to each other. Energy sector
is relatively weakly connected with the other sextorhe strongest dependence is
between the Industrials and Consumer Discretiorssagtors. The high dependence
suggests small (if any) gains from industry diviezation in U.S.

In conclusion, the correct formulation of relatibips among variables of interest
is crucial. This is one of the fundamental issurepartfolio analysis. Hence, a thorough
examination of time series models that are usadhtterstand interactions of financial

markets can be helpful for devising more accuratestment strategies.
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CHAPTER |

INTRODUCTION

Financial markets have always been at the centattaftion. Many people try to
make sense of the markets and understand the dapses of various markets and its
components including the housing market, financrarket (as a whole), various
industries, etc. During a stable economy, lineadet® have been most commonly used
either devising investment strategies, or modeding forecasting the financial variables
in general. Now, that many markets are in crisisluding the housing, credit, financial,
and energy markets, the models that have beereibbef®re are being revised to better
capture the irregularities of financial markets. #«&h, more general models that are
able to capture both symmetric and asymmetriciogighips among various markets are
of great importance.

The overall aim of this dissertation is to show importance of dependence
degree and structure in financial markets. Alsghibws the importance of time series
and copula functions for modeling financial marke#®w each one of the markets is
linked with the other markets is examined whichaéstdirect implications for the
overall financial market. The objectives of eachih&f chapters are given next.

The objective of Chapter Il is to investigate tly@mamic interrelationship among

the house prices of nine U.S. census divisionss lB3ue with the census division data

This dissertation follows the format and styleloé tlournal of Econometrics



has not been extensively studied especially reggrti the causal structure. The use of
Directed Acyclic Graph (DAG) is intended to providentemporaneous causal structure
among the regional house prices. In addition, dataen identification is proposed by
utilizing the results of DAG and Vector AutoregressModel (VAR) or Vector Error
Correction Model (VECM). Finally, the purpose ofstlthapter is also to understand the
housing market and the interaction of the censussidn house prices which could be
used to correctly forecast house price series.

In Chapter lll, the objective is to explore theéemlependence of oil prices and
stock market indices. Both oil producing and oihsoming, developing and developed
countries are included to obtain a more completéupe of dependence. The sample is
partitioned into pre- and post-Euro periods to exenpossible changes in dependencies.
In addition to U.S. Dollar (USD) and Euro (EUR)aBle Aggregate Currency (SAC) is
used as a base currency for both oil price anckstoarket index series. The reason is
that a basket of currency (SAC) can minimize thehaxge rate risk. Hence, it could
provide more accurate results. In general, the mmo compare the dependence
structures across countries, currency-denominatases, oil price series used, and the
pre- and post-Euro periods.

The purpose of Chapter IV is to explain the inggehdence of industry
classification sector data in U.S. Specificallye tasymmetric dependence of stock
returns across all industry aggregations in U.Sntesnded to be uncovered which has

not been addressed in literature before. The eslitopula models that provide general



dependence structure will be compared with thosknear models already studied by

others.



CHAPTER I

COINTEGRATION ANALYSIS OF U.S. REGIONAL HOUSE PRICE S

2.1 Introduction

Real GDP is one of the many economic and finanicdicators the Federal
Reserve Bank (FED) considers in devising the naioronetary policy. Consequently,
individual components of GDP also must be importadicators for assessing the well
being of the economy. The largest component, camgriabout 70% of the GDP, is
personal consumption and real estate is an impopm of the personal consumption.
Real estate is probably the most interest-rateitsensector of the economy. Although
residential investments may not represent a langeesof GDP (about 5% of GDP), over
the short period of time they often account fomayé share of GDP changes which is
mainly due to its high volatility (about 12% of GpP

Noticeable changes in house prices will have arnomapt impact on the U.S.
economy because home ownership is the primary dsddt by many households.
Changes in house prices will result in changes oaskhold wealth. Changes in
mortgage interest rates, also will affect the firiahcost of home ownership. Moreover,

the high cost of home ownership might put the lamobility at a disadvantage, thus

! Various sources provide numbers especially fdetsht time periods, but the average is about \ghat
presented above. For more details, see McCarthwtiddel (2007), McConnell et al. (1999), and the
article in Business Week (2005). For educationappses, Federal Reserve Bank of New York provided
brief description of the economic indicators anavleach of them affects the general economy and the
Fed’s monetary policy.



negatively affecting the economy’s efficient fulocting (Alexander and Barrow, 1994).
Consequently, there is growing attention centenedreml estate from policy-makers,
investors, researchers, and individual househdltderough investigation of real estate
markets can provide clues about the short-term lang-term performances of the
economy.

This paper focuses on the regional house price mhatd.S. to examine the
linkages among the regional housing markets. Thefiis of this study, as mentioned in
the related literature, include the ripple effeegalth distribution, labor mobility, house
price prediction, and migration. The transmissidrth@ shock in house prices of one
region to another with possible time lags is reféno as ripple effect. It has been found
to be significant for UK and U.S. regional housimgrket. Consequently, the ripple
effect will have significant wealth distributionvgin the fact that housing comprises a
large share of assets for many households (Alexamo@ Barrow, 1994; Holmes and
Grimes, 2005). Furthermore, the regional housee@italysis has an impact on the labor
mobility as well as the migration, although it i®ak because most households move
from one region to another not only for house pditerences but also for other factors
(job opportunities, etc). Finally, the ability torcectly predict house prices in one region
may be improved if the significant impact of otihegional house prices is considered.

Although the importance of the regional houseera&lationship is evident, most
studies in this area are mainly concerned withiKeregional housing market. Only the
study by Pollakowski and Ray (1997) focuses onitkerrelationship among the house

price of the U.S. census divisions while the rest metropolitan or other sub-market



data. Recent methodological advances, housing maerists, extended data set, and the
need for understanding of the regional housing etackll for a complete study on the
interdependence of the regional house prices in Odhsequently, this paper attempts
to uncover the dynamic interaction among the Ueglional house prices by using
innovative causality structure and identificatidriang-run structure. The application of
the directed acyclic graphs (DAG) for analyzing dagisality pattern in the U.S. housing
market is one of the major contributions of thigo@ato the existing literature. In
addition, DAG is proposed to be used for identifma of the long-run structure of the
cointegrated Vector Error Correction Model (VECMhe data-implied causal ordering
is used to obtain impulse responses and the fdrerasr variance decompositions.
Furthermore, house price dynamics, not been thdrgwgldressed before, are studied in
this paper. The detailed examination of the extdrafga set, including such important
events as the housing market boom and busts, stagket crash, major monetary policy
changes, terrorist attack in 2001, U.S. recessibierisis, and so on is another important
addition to the existing literature. Therefore, sthpaper analyzes the dynamic
interrelationships among the house prices of ning. densus regions from a new
prospective.

This chapter proceeds as follows: Section 2.2 ples/ia brief review of the
previous research and the conceptual frameworkiid®e2.3 analyzes the time series

data and its pattern. Major methodological consitiens and misspecification tests are

2 Note that division and region in this study widl bsed interchangeably.



covered in Section 2.4. Section 2.5 presents thareral results and summary and the

conclusions are provided in Section 2.6.

2.2 Review of Previous Research

The relationship between the house prices and teierminants has been
studied by many. Numerous research projects haee bHene focusing on the house
price fundamentals, their roles and linkages wiblude prices in U.S. However, little
attention has been paid on investigating the ialationship between regional house
prices in U.S. On the other hand, many studies baem completed for the UK on this
area of research which can be separated into \&siwands. One of the strands contains
groups of studies attempting to empirically test thpple effect” hypothesis in the UK
housing market. It is commonly defined as the pnsjig of house prices to first rise in
South East of England during the upswings theerfittut to other regions of UK over
time (Holmans, 1990; MacDonald and Taylor, 1993exander and Barrow, 1994;
Drake, 1995; Ashworth and Parker, 1997; Meen, 19erson et al., 2002, Cook,
2003; Cook and Thomas, 2003; Cook, 2005; Holmes @rithes, 2008). Results of
studies on the presence of ripple effect in UK hmysnarket have been mixed. Some

studies strongly support its existence, some stualidy provide very weak and limited



evidence, while other studies argue against thetenge of the ripple effect (Meen,
1996)°

The second strand of literature tackles the issofesong-run relationship,
equilibrium, and convergence of house prices. Altgfonumerous methodologies have
been utilized, the findings commonly suggest thairisrun regional house prices might
diverge from one another, but long-run regionaldeoprices tend to some equilibrium
and relative constancy (Holmans, 1990; MacDonald &aylor, 1993; Alexander and
Barrow, 1994; Drake, 1995; Ashworth and Parker,7199een, 1999; Peterson et al.,
2002, Cook, 2003; Cook and Thomas, 2003; Cook, 2@¥®k, 2006; Holmes and
Grimes, 2008). Causality between the house pri¢edifierent UK regions has been
another important avenue for investigation. Simiiarripple effect, the results vary
across studies, but commonly suggested causatrmpaties from the South East to North
via the Midlands.

Lastly, the reasons and sources for such caudalpapossible ripple effect, and
the existence of long-run equilibrium are studieg $bme researchers. The most
commonly suggested reasons are the demand factthisas income, taxes advantages,
equity transfer, migration for job and non-job @as etc (Alexander and Barrow, 1994,

Giussani and Hadjimathrou, 1991, Gordon, 1990, Holsn 1990, Meen, 1999, Thomas,

3 Meen (1999), Cook (2005), Cook and Thomas (20D8ke (1995), and Holmans (1990) strongly
support the existence of the ripple effect emandiiom the South East of England. Conversely,
Ashworth and Parker (1997) argue against the ripfieet hypothesis and were able to empirically
support their argument. Finally, MacDonald and ©ayl993), Alexander and Barrow (1994), etc found
only limited and weak evidence of ripple effect.

* Except for Rosenthal (1986), all the studies foawidience of clear causal pattern running from the
South East to the North through the Midlands (Haind®88; Bover et al., 1989; Holmans, 1990;
Guissani and Hadjimatheou, 1991; MacDonald anddra$P93; Alexander and Barrow, 1994).



1993, Bover et al., 1989, MacDonald and Taylor,39inford, et al. 1987). There are
multiple reasons; however, there is no definiteyensally accepted cause.
Interrelationships between the house prices of. le&sus divisions are
uncovered in this paper. Therefore, studies thateotrate on similar issues are of great
interest. The best known studies that attempt thresm$ similar issues to this paper are
by MacDonald and Taylor (1993) and Alexander andd®a (1994) for the UK housing
sector, and Pollakowski and Ray (1997) for the lh@ising market. The former two
investigate cointegrating relationships between Ulikeregional house prices. In other
words, they examine whether or not the UK regidmalse prices are tied together in
long-run. Both Engle-Granger and Johansen’s maximikelihood methods for
bivariate and multivariate analysis, respectivedye utilized to shed light on the
cointegrating relations. Quarterly regional housegpindices for UK regions are used to
further test for the long-run and short-run hougeepproperties, as well as the causal
pattern. Significant number of cointegrating redat is detected that evidences the
interrelated housing market in the UK. The SoutktEagion of England is found to be a
price determining region. Moreover, East Midlandd/ar East Anglia play vital roles in
transmitting the information from south to the moriWhile Alexander and Barrow
(1994) suggest that causality flows from the Sawtithe North passing through the
Midlands, MacDonald and Taylor (1993) claim thegemce of weak segmentation in
UK housing market, particularly, between the Naatid the South. The differences of

regional house prices led to the notion of “twotorit owner-occupied housing market
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which in a way shares some similarities with thdiom of “weak segmentation”
(Hamnett, 1988).

With the emergence of new and more improved ecematand time series
methods, more studies return to the question oftlvéneor not cointegration in the UK
housing market prevails. The existence of the lamg-equilibrium among the UK
regional house prices, even with new methods,ilissgongly supported (Giussani and
Hadjimatheou, 1991; Drake, 1995; Ashworth and Rark®97; Meen, 1999; Cook,
2003; Cook and Thomas, 2003; Cook, 2005; HolmesGumuaies, 2008). Most of these
studies claim unidirectional causal flows emanafiogn the South (particularly South
East or Greater London) to the rest of the coufmrginly into North through Midlands).
The most recent development in the housing liteeats the use of non-parametric,
asymmetric adjustment, principal component, andniess cycle dating proceduredn
the economic literature, the cointegration analysél the assumption of asymmetric
adjustment mechanism are growing in their imporai@ook (2005) is the first to apply
the methodology to analyze the housing market & K. Adopting the threshold
autoregressive methods of Enders and Siklos (2@Ddgk (2005) investigates the UK
regional house price linkages from an aspect omasgtric adjustment process. His
findings show that allowing asymmetric reversiodjgatment) significantly increases
the number of long-run relationships and dramdsicahanges the overall results of
long-run relationship in UK regional house pric€&n the other hand, Holmes and

Grimes (2008) employed a new test that combinaxipal components analysis with

® Cook (2003), Cook and Thomas (2003), Cook (20086pk (2006), and Holmes and Grimes (2008) all
use one or more of the mentioned methods.
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unit root testing to examine long-run relationshipthe UK regional house prices. UK
regional house prices are driven by a single comstochastic trend which is regarded
as strong convergence in the long-run.

Little research has been conducted to addressssiues of possible long-run
relationship between the house prices in U.S. Hhguprice diffusion at the local level,
concentrating on the submarkets in Hartford, CTs widied by Tirtiroglu (1992) and
Clapp and Tirtiroglu (1994). The spatial aspectited efficiency tests was applied to
examine whether the house prices in a particulantare affected by the lagged own
and neighboring towns’ prices. They confirmed thixéstence of the spatial diffusion
pattern where the coefficients of only the neigipitowns appear to be significant.
Consequently, results consistently imply that imdlials tend to overemphasize present
evidence at the expense of historical evidence hwiscwhat is known as positive
feedback hypothesfsSubnational analysis has received large attengitthpugh very
limited for the U.S. housing market. Only Pollakéwand Ray (1997) examine the
spatial and temporal house price interrelationshie$ween the nine U.S. census
divisions as well as the metropolitan areas. Moeeoinformational efficiency of the
U.S. housing market is tested in addition to thalysis of whether the house prices in
any one location are predicted by only their owstdry or by the house price changes in
other locations as well. Using VAR, block exogeniyd Granger-causality type tests

for the period of 1975-1994, Pollakowski and Ra§94) discovered that house prices in

® positive-feedback hypothesis has been considgr&uter, Poterba, Summers (1990), DeLong et al.
(1990), Shiller (1990a, 1990b), Tirtiroglu (199€Japp and Tirtiroglu (1994), and Pollakowski and/Ra
(1997).
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U.S. are interrelated. Furthermore, census divisamalysis provide evidence of
inefficient U.S. housing market implying that shook one location do cause any
subsequent-period reactions in other locationsukey of literature on housing market
efficiency also showed considerable evidence oketanefficiency. Hence, information
transfer is relevant, affecting house price moveasef the other regions. On the
contrary to the previous studies (Tirtiroglu, 199€Japp and Tirtiroglu, 1994),
Pollakowski and Ray (1997) fail to show price d#ifon between the contiguous regions
or divisions, but rather find that price diffusigratterns for neighboring and non-
neighboring divisions are not significantly diffateThe presumed cause for such results
is the interrelated regional economies ultimatedflected in the regional housing
markets. Analysis of metropolitan areas, on theolttand, has a clear contiguous region
effect. That is, house price changes in a partiagigion (area) have much bigger effect
on the house price changes of the contiguous regjareas) than those of the non-
neighboring areas.

Geographical proximity was also considered by o#itedies and was suggested
to be important factor for house price transmisdream region to region (MacDonald
and Taylor, 1993; Alexander and Barrow, 1994; Gamssand Hadjimateou, 1991;
Drake, 1995). Testing this hypothesis for U.S. mgisnarket with the extended dataset
and improved methodologies will provide interestingights about the nature of the

possible long-run relationship.
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2.3 Data

This paper uses house price indices for the nir& densus divisions on a
guarterly basis from 1975:1 to 2006:1. The houseegndices for the nine U.S. census
divisions are retrieved from Office of Federal HiogsEnterprise Oversight (OFHEO).
The House Price Index (HPI hereafter) for each 0eBsus division is calculated using
repeated observations of housing values for indaddsingle-family residential
properties on which at least two mortgages haven beginated and afterwards
purchased by either the Federal Home Loan Mortdagmporation (Freddie Mac) or
Federal National Mortgage Association (Fannie Ma&g HPI is commonly referred as
“constant quality” house price index because tHe&eminces in quality of houses are
controlled via the use of repeat transactions. Meee it is based on the modified
version of the weighted-repeat sales methodologpgsed by Case and Shiller (1987)
and is available from January 1975.

In real estate literature, house price indices degacommonly used for analyzing
the housing market. Some studies utilize the HPthey OFHED while others tend to
construct house price indices using hedonic prigimgthod or others methods. For
example, Pollakowski and Ray (1997) construct wieiglrepeat-sales index using the
method of Case and Shiller (1987). Although houssepndex as a source for empirical
analysis has been criticized based on its consruchethod (McCarthy and Peach,

2004; Himmelberg et al., 2005; Bourassa et al..62@an and Megbolugbe, 1997), it

" Detailed technical description of the HPI anctitsistruction is provided by Calhoun (1996).
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still remains one of the best and readily availatd¢asets which controls the house
quality (Harter-Dreiman, 2004; Wheelock, 2006). Hwer, there are some limitations
of using this index such as the fact that it ac¢®udor only single-family detached
properties and excludes condominiums, multi-familgsidential properties, etc.
Moreover, houses which are bought using governnmsutred loans or more than two
mortgages are not included in the construction &f.Ht is important to note that
regardless of the construction method, the houge pmndices will always have some
limitations, which implies limitations in the ressil Pollakowski and Ray (1997) suggest
that their results cannot be applied to predictaleavior of all single-family residences.
Furthermore, additional limitations arise from tfect that data source is partially
truncated. Moreover, limitations might arise frommetfact that the results do not
distinguish between the ripple down effect causgdab arbitrage or some regional
element such as the business cycle. It has alsoqwegested that using sub-regional or
even arbitrarily defined regional boundaries migkt more appropriate than regional
house price data for analyzing the interrelatiopsbi house prices (Alexander and
Barrow, 1994; Bourassa et al., 1999; Bourassa .et28D3; Bourassa et al., 2007).
Similarly, our conclusion can be made regardingh® house price indices only for
single-family residential properties, even thoulgh analyses of other type of residential

properties will most likely closely resemble that the single-family residential

property®

8Note that this is just hypothesis.
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The nine U.S. census divisions used in this papertlae Pacific (PC), the
Mountain (MT), the West North Central (WNC), the $W&outh Central (WSC), the
East North Central (ENC), the East South Centr&8QJ the South Atlantic (SA), the
Middle Atlantic (MA), and the New England (NE). Foer analysis of the nine census

division house prices is provided in the followisigosection.

2.3.1 U.S. Economy and Housing Market

Complete understanding of the economic, finaneaisiywell as political situations
and events is necessary for modeling the intemagtid the U.S. regional housing market
correctly. On top of this, the graphical analysidl wnhance the knowledge of U.S.
housing market trend as well as the problems the¢ o be addressed to obtain reliable
implications. Historical HPIs of nine U.S. censugigions are presented in Figure 2.1.
Natural logarithmic transformation of the HPIs gd due to the assumed multiplicative
effect (Johansen, 1995). The house prices in alhihe divisions have been increasing
at a relatively constant rate starting from eamyrad 90’s, while more volatile growth
rates are observed for time periods before 90s;wtwincide with the booms and busts
in the U.S. economy and housing sector.

The graphical examination is extremely valuablassessing the nature of house
price change, i.e. whether it is permanent or teanposhift in house prices. The
distinction between the permanent and the tempashify might vary from author to
author, but, in general, at least if the change tertain direction remains for more than

several quarters (or periods), it is usually comed permanent, otherwise, temporary.
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In addition, permanent change is oftentimes reghefeone that shifts the mean of the
series for several periods (Juselius, 2006). Sindgé&inition is extended to the booms
and busts. For example, Wheelock (2006) definefitlusing boom as an increase in the
ratio of HPI to state per capita income of at I&apercent for three or more consecutive
guarters. The resulting evidence suggests thatdestvthe 1980 and 1999 U.S. states
experienced about twenty house price booms. Sontkeoge booms were followed by
housing busts, while others were not (Wheelock, 620However, most states
experienced housing booms at different time perimdat different extent, hence it is
hard to define any peaks or troughs for the redibioaise prices as booms or busts
(Wheelock, 2006). Moreover, notice that all regiomsgperience similar shocks at
different time frames with different magnitudes wahibrings up the question this study
focuses on - which region the shock in house prigeginates in? Is that shock
transmitted to other regions? Does the transmigsiooess happen immediately or with
some time lags? Does it move the house priceshefr segions in the same direction or
the opposite? These and many other questions &aded to be answered in this
chapter.

Juselius (2006) suggested using the plots on lesbl land differenced data to
get an idea of the possible misspecification pnoislein the data and model. The
assumption of the constant mean does not seemldoblaged on the level plots (see

Figure 2.1), while it appears to be more approeriat the differenced series (see Figure
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Figure 2.1 Plots of Historical Data on House Pricéndices, 1975-2006.

Note that the y-axis is house price index in ndtlogarithm and the x-axis is time in quarters gedrs,

1975-2006.

2.2. Inferences about the variance constancy igenato make from the levels of
variables, hence the differenced data is of grelgt. irrom Figure 2.2, it can be seen that
high variability in series is especially pronouneedhe beginning of the sample period.
Moreover, most series, except for the HPI change3A which are fairly stable over the

entire sample period, appear to have relativelystaont variance after the mid 1980’s.

However, a few exceptions are observed. Relativiglly variability is noticed for the
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Figure 2.2 Plots of the Differenced House Price Indes, 1975-2006.

Note that the y-axis is differenced house pricesinih natural logarithm and the x-axis is time uagers
and years, 1975-2006.

period of 1987-1989 in changes of PC and WSC. thtad, from 2003 and on there is
slight variability observed in changes of almostla series, except for WSC and ESC.
The plot of the differenced series can also bengortant tool for inspecting the
normality of the marginal processes (Juselius, 2006 the observations lie
symmetrically on both sides of the mean, then nmatgbrocesses are normal. Most of

the series do not seem to have symmetric obsensgtimt rather appear to have some

outlier observations emphasized mostly in the fpatt of the sample. Further, the
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detailed examination of the possible causes foh sutlier observations follows which
is highly important for the house price modeling.

The evolution of various events from 1970’s to 198fut the U.S. economy and
its various sectors into unstable and severe &tuathe first recession for the period of
1970-2006 was due to the first oil crisis which weted in 1973 (Mishkin, 1987). The
first signs of recovery was noticed in the firsager of 1976, which then was followed
by the slow growth rates, unemployment and prise.rMoreover, the trade balance
dramatically fell, which was followed by a sliglgcovery in the fourth quarter of the
same year (Supel, 1979). Although the U.S. econconymenced expanding with lower
unemployment rate and increasing GDP, the inflatéda continued to increase reaching
to double digits. Moreover, the second oil crisislB79-1980 seemed to aggravate the
economy leading it to the path of another econaegession. The recession affected the
nominal and real interest rates, which in turn alyeinfluenced the current as well as
the future level of investment. Consequently, Fedoainced tight or contractionary
monetary policy to ease the economic situation bgeuntaking anti-inflationary and
dollar strengthening programs. As a result, investimpurchases decreased until the
third quarter of 1980. The recession continued teg severe when Reagan came to
power in 1980. Also as a result of the Volker'sigpiels, recession lasted about two
years, in 1980 and 1981, termed as “twin recessi@wh the real interest rate and the
U.S. dollar increased sharply (Mishkin, 1987; Kitmak, 2007a). Until about 1981, the

inflation rate still remained at double-digits. Timeernational oil price rises, monetary
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policies and the governmental spending were comynoohsidered to be the main
sources for high inflation in the country.

The two-year severe recession was shortly followgdthe two-year robust
recovery in 1982. However, it should be mentionkdt tuntil 1983, the economy
followed an erratic pattern. For example, the slowd of the GDP growth in 1979 was
followed by an actual fall in GDP after the secapdrter of 1980. Starting from about
1982, the economy continued growing, inflation angémployment rates dropped, level
of investment increased, pushing the nation indoetonomic boom. In addition, the law
of the largest tax cut in U.S. was signed by Reagda®81. Consequently, tax cuts, the
increased government purchases and the anti-mlgtiogram put the U.S. economy on
the prosperous path from about 1983, which weer larmed as the “Reagan Boom”.
The economic boom of the early and mid-eightiesyeneer, coincided with a number of
alarming developments. Among those, perhaps the oudstanding are the federal tax
reform in 1986 and the stock market crash in 198 (et al., 2007a).

Most of the above mentioned economic events andedses were reflected in
the housing market. Years later a couple of mocessions occurred, however, they did
not seem to have any significant impact on the estdte marketOther factors that are
worth mentioning due to their direct effect on tih@using sector are the emergence of
the new institutions, financial system, products, & the evolution of the U.S. housing
system, the era of securitization from 1970s to0898 very important and coincided

with the above mentioned economic events. Due eoirtbrease of interest rates, there

° The recession in 1991 and the 2000 recession wiashdue to the burst of the dot-com-bubble did not
have significant influence on the log HPIs.
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was duration mismatch of assets and liabilitiess Mmas more crucial for the Savings
and Loans (S&L) institutions in 1980s. Consequentltyany banking institutions
(predominantly S&Ls) defaulted, which then initidthe need for new reforms and laws
(Integrated Financial Engineering, Inc., 2006).

All the above discussed events that took place.th Wom 1970’s to 2000’s will
be incorporated with the appropriate methodologipabcedures. In addition, the
knowledge of the possible outlier observations Wwi#l used in the following section

which deals with the modeling of the regional hopsees.

2.4  Methodology

A list of methodologies is presented here, startingh the background
information about the common methodologies thailamstudies have used. Then, the
cointegration test is described followed by the spéification tests that are used to
ensure the best model is of use. The following sctisn details the identification issue
and the proposed method of obtaining identificabbfong-run structure.

The list of the methodologies used to study theshmu market has been
expanding over time. It already has been two decaitece more powerful statistical
and/or econometric tools have emerged and beeseiby economists in various fields.
Cointegration analysis, pioneered by Engle and @ar§1987) and Johansen (1988),
has been extensively used for modeling house metermination. Observed spatial

pattern in regional house prices directed reseesdbeconsider time-series properties of
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regional price data. Numerous studies that attesnjoténclude explanatory variables for
housing market investigation, had to tolerate tagable selection problem which has
been an important empirical issue. The data limoiiatand the peculiar house price
pattern certainly impose restrictions in terms aimber of variables in the model.
Researchers have sought various ways to approash timitations. For instance, some
used reduced-form approach to identify and estinagigropriate supply and demand
variables. This approach however, presumes thasihgunarket is in the steady-state
equilibrium (Meese and Wallace, 1993). Another graaf researchers specify that
equilibrium house prices are implied by fundamentariables (Abraham and

Hendershott, 1996). Furthermore, the cointegratpproach used by Giussani and
Hadjimatheou (1991), MacDonald and Taylor (1993)exander and Barrow (1994),

Pollakowski and Ray (1997), Meen (1999) enableanth® explain the spatial

differences in regional house prices. The notiorcahtegration is concerned with the
long-run relationships among variables or sets afables. This typically tests if the

long-run movement in house price in one regioreiated to the long-run price changes
in another region(s). This study, similar to theowd mentioned ones, utilizes the
cointegration approach in addition to more reced#yeloped procedures (e.g. DAGs,
data-driven identification, and innovation accongj)i to examine the long-run

relationships of U.S. regional house prices.
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2.4.1 Cointegration Tests
Similar to most studies conducting multivariate ntegration tests, this study
uses Johansen (1988) procedure. The initial stegtagistical analysis starts with the

unrestricted vector autoregressive model (VAR). Tihalimensional VAR model of

order k with Gaussian errors is expressed by the folloveiqgation:

k
Y,=a+) AY-1t& t=1..125 (2.1)

El
where Y, is a px1vector of p series with p= 9representing the HPIs for each nine
divisions used in this pape# is a (9 x 9) coefficient matrixg is a 9 x 1 drift vector,
& Is a (9 x 1) innovation vector which are normalependent identically distributed
(N, (0,Q)), and thek is the maximum lag length. Fitting the unrestdciéAR model

with the k lags does not involve complications; they ariseemwhhe necessary
assumptions of the underlying model need to bekgtedn particular, the lag lengths
needs to be determined, the serial correlationthadconditional heteroskedasticity, as
well as the distribution of the errors should bedlted (Johansen, 1988, 1991, 1995;
Juselius, 2006). More detailed discussion of thespecification tests is given in the
following section.

Since there is no prior information about the aagnation rank, it is determined
using the likelihood ratio test or trace test pmgmb by Johansen (1988, 1991)
(Bruggemann et al., 2006). The null hypothesishef trace test statistics of Johansen
(1991) is that there are at mostcointegrating vectors, which in our case is 8, i.e

r =0,... 8 Furthermore, three cases are possible. Firdtgirank ofl1 is full (r = p),
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then theY, is stationary and VAR at levels is appropriatecde, if the rank is zero

(r =0), all series are nonstationary and there is no bioation of two or more
nonstationary series that is stationary at leuéésce, VAR at first differences should be
used for analyzing dynamic relationships of thaeserFinally, if the rank is between

zero and full rank, i.@<r < p, then the existence of cointegrating vectors indicates

the presence of linear combinations of the series that make tluegss stationary. In
this case, error-correction model is used (Johark@9b, Juselius, 2006). To determine
the cointegrating vector, the trace test results are compared with only vealels: the
first model includes constant (intercept) in thentegration relations, and the second
model includes the first model in addition to thetetministic trend in levels (outside the
cointegration relations). These two models areltbst to use for such data. Because
there are deterministic variables included in thedet, the critical values of Johansen
(1996) are no longer valid. For this purpose, thitical values are simulated specifically
for our modef'°

Results of the trace test indicate that the VARemor-correction form is
appropriate to use, thus further analysis are ccteduusing the vector error correction
model (VECM). Juselius (2006) provides several athges of the ECM formulation.
Among those, the multicollinearity effects are #igantly reduced in ECM formulation
and the distinction between the short-run and ehg-run effects is very clear and their
interpretations are more intuitive. Error correstimodel (ECM) can be presented based

on VAR component in first differences with the ardék-1:

19 Note that all the time series analysis are coretliasing CATS in RATS software grounded on Dennis,
Hansen, Johansen, and Juselius (2006).
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k-1
AY, = p+ Y LAY, +TY,, +&, (2.2)

i=1
M =af has a reduced rank wheoeandf are pxr matricesr < p. HereA represents
the first differences,l, and I are short-run and long-run coefficient matrices,
respectively;u is a vector of constant or drift, arkdis the appropriate number of lags.
In addition, MY,_, term is the error correction component at levelstf=1,...,125 of
total observations in this study. Furthermore, uride hypothesis of nonstationaty (1)

processes, cointegrated VAR model is given by:

k-1
AY, = p+Y A +aBY +g (2.3)

i=1
where B, is an r x1 vector of stationary cointegration relations, wher is the
loadings. The importance ¢l comes from the fact that its rank determines tnaher
of cointegrating vectors. Hence, alternative foratioh of the trace test includes the
rank of . The null hypothesis of the rarfk is r =0 at 5% significance level which
implies that no cointegrating vector exits betwdabe two series. The alternative
hypothesis of the ranKl is thatr =1, indicating that at least one cointegrating vector

exists. Depending on the decision, null goes upto. 8

2.4.2 Misspecification Tests
The model presented above is the basic one, asguitmat the model is well
specified. However, real world examples oftentinm@se one or more specification

problems. The importance of misspecification analg$ the model comes from the fact
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that a study might fail to convey reliable implicets, thus the results may not be fully
trusted. Hence, a thorough examination of the daththe model is critical.

The descriptive statistics on HPI for each diviseme presented in Table 2.1.
New England appears to have the highest mean ldRiwied by the Middle Atlantic
and Pacific. It is interesting to note also thatseh three divisions have the most volatile
HPIs. On the contrary, West South Central hasdhes$t mean HPI as well as standard
deviation. Furthermore, to avoid spurious resudit,the nine series were tested for
stationarity condition. Series are stationary dithmean and the variance are stable over
time. According to Figures 2.1 and 2.2, all the enigseries exhibit unit root or
nonstationary pattern. Several techniques are kniowthe literature to overcome the
nonstationarity problem in levels and one of theshammmonly used and easy method
is differencing the series until they are statign@ngle and Granger, 1987; Johansen,
1988; Juselius, 2006). In this paper, we conduck&y-Fuller test of stationarity, the
results of which are reported in Table #2Series are nonstationary at levels and
stationary at the first difference, thus to sustdationarity, all of the nine series are first
differenced. In other words, all the series aregrated of order one, i.¢. (IHence,
cointegration analysis can be conducted.

As suggested by Juselius (2006), every assumpitiased on the presumption

that others are satisfied. For example, to checkdomality of the series, it is assumed

" However, because Dickey-Fuller test of statiogdsitproven to have low power, other tests such as
Phillips and Perron, KPSS, and ADF have conduateddbustness purposes (DeJong et al., 1990;
Diebold and Rudebusch, 1990; Kwiatkowski, Phillisshmidt, and Shin, 1992; MacDonald and Taylor,
1993; Hansen, 1994; Johansen, 1988; so on). Thkged these tests are not reported but are dlaila
upon the request from authors. Note that the cermhs of the stationarity tests are the same rézgs df
the test used.
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Table 2.1 Descriptive Statistics on House Price Indices for iNe U.S. Census
Regions, 1975-2006

Census :
Regions Mean Mean M'r.]' Ma_x. SD. SD CVv .
(House Price (Price Rank (Price (Price (Price Rank CV Rank Skewness  Kurtosis
Index) Index) Index)
Index) Index)
PC 5.1365 3 3.7675 6.3542 0.5897 2 0.1148 1 -0.2970  .2663
MT 4.9615 6 3.9845 5.8923 0.4428 4 0.0892 4 -0.1368  .31®
SA 5.0555 4 4.2138 6.0113 04384 5 0.0867 6 -0.1017  .5272
MA 5.2429 2 4.2299 6.2524  0.5434 3 0.1036 3 -0.3768  .836eB
NE 5.3778 1 4.2103 6.4424  0.6062 1 0.1127 2 -0.3930  .80s1
ESC 4.9486 7 4.2101 5.6074 03717 8 0.0751 8 -0.1743 .85
WSC 4.8144 9 4.0635 5.3625 0.2966 9 0.0616 9 -0.6463  4706.
WNC 4.9344 8 4.1551 5.6951 0.3901 7 0.0790 7 0.0707 6229,
ENC 4.9960 5 4.1537 5.7569 04379 6 0.0877 5 -0.0558  .016b

Note: HPIs are in logarithms. The “Mean” labeled coluisnthe simple mean price index for census
divisions listed on the far left-hand-most colunireach row over the observation period 1975:1 -6200
The columns labeled “Min” and “Max” refer to themium and maximum numbers for the far left-hand-
most column over the period mentioned above. Théento headed “SD” shows the standard deviation of
each divisions’ house price index over the obsetirad period. Entries in the column labeled “CViae
to the coefficient of variation, which is SD/Meaar feach division. The table also provides the ramks
mean, standard deviation, and coefficient of vamatespectively for the far left-hand-most colunhm.

the rankings, the order is from 1 to 9, “1” beihg highest value and “9” being the least one.

Table 2.2 Dickey-Fuller Test Results of House Pricéndices of Each Nine U.S.
Census Division, 1975-2006

Series

PC
MT
SA
MA
NE
ESC
WSC
WNC
ENC

Number of Differences

S T

1

DF test

-4.163
-6.426
-5.307
-7.907
-5.343
-14.443
-5.329
-7.371
-6.120

Note: This table shows the results of Dickey-Fuller testnon-stationarity. The first column labeled

“Series” shows the logarithmic transformation o tHPI series, the second column labeled “Number of
Differences” is the number of differences neededntike the data stationary. Finally, the last column
labeled “DF-test” gives the Dickey-Fuller test waluAll the values are significant at 5% and 10%
significance levels.
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that every other assumption of the underlying masedatisfied. Hence, specification
tests have to be performed after each assumptidmeisked for to confirm that the rest is
unchanged (Juselius, 2006). The maximum numbexgsf (k) is estimated using the
Schwartz Loss (SIC) and Hannan and Quinn (HQ) hoaiices. Given the small sample
size of 125 and VAR of 9 (p) dimension, the maximlagnlength is restricted to be 5.
The results, which are reported in Table 2.3, araesvhat odd. VAR with one

lag is suggested by the SIC, while HQ metrics tesir optimal lag length of ¥:
Sometimes when the results of the information gatdo not match and large lag length
is found to be optimal by one of the measuresgtieea possibility that it is not correctly
determined due to some specification problems siscbutlier observations and mean

shifts (Juselius, 2006). Hence, we initially staith a VAR of order two.

Table 2.3 Lag Length Selection Tests

Model | K Regr Logtik | SC H-Q LM(1) | LM(K)
VAR(5) | 5 120 46 5750.242-79.321| -85.032| 0.000 | 0.090
VAR®4) | 4 120 37 5565.389-79.471| -84.065| 0.000 | 0.060
VAR(3) | 3 120 28 5378.156-79.582| -83.059| 0.000 | 0.000
VAR(2) | 2 120 19 5263.055-80.895| -83.254| 0.000 | 0.000
VAR(1) | 1 120 10 5121.032-81.760| -83.002| 0.000 | 0.000

Note: The table gives five different criteria for selegta lag length of the VAR model. The far-left-rhos
column, “Model”, is the VAR model at different lagbhe following column gives the number of lags in
the model (“K”). The third column (“T") is the nureb of observations. The fourth column (“Regr”)ligt
number of parameters to be estimated. The laghesgjection criteria starts with the fifth colunthdg-
Lik”) which is the log-likelihood ratio of the VARvith k lags (at each row k is a different lag), aHiis
maximized. The next column is the Schwartz InfoioratCriteria (“SC”) which is minimized. The
following column is the Hannan and Quinns InforroatiCriteria (“HQ”) which is also minimized. The
last two far-most-right columns (“LM(1)” and “LM(K) are the Lagrange multiplier values for one and k
lags.

12 pifferent lag lengths with a variety of determiiiscomponents, such as seasonal dummy variables,
constant, drift, and dummy variables for outligraye been used. However, the results of the laghen
have remained unchanged except for the case whers@emaximum lag length of 6 and more. In those
cases, the largest lag is found to be optimal bylé#® metrics. These results are not reported, but
available upon request from author.
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Generally, for time series data a list of misspeatfon tests are of importance
and need to be checked. Univariate misspecificagsts include the normality test for
each series using Jarque-Bera test and the AR@dteff each series for autoregressive
conditional heteroskedasticity. In addition, thestfifour moments are also highly
important to find the source of the problem, if aMultivariate tests, on the other hand,
include the LM test for residual autocorrelationung-Box test for correlation, and
Doornik and Hansen (1994) test for normality ofth#é series.

Table 2.4 provides the results of the misspecificatests for an unrestricted
VAR(2). The multivariate tests for normality andidual autocorrelation are rejected at
even 10% significance level. On the other handvanmate test for normality is not
rejected for the MT, SA, and NE regions at 5% digance level. This might be due to
the moderate skewness and kurtosis for these sbtas series, except for the MT and
ESC, pass the ARCH test at least at 10% signifiedecel. TheR? for each equation

(i.e. APC,AMT,...,AENC) is not high. However, theR* values are misleading and
should not be subject to much emphasize whencidlisulated for the unrestricted VAR
in levels. Similarly, the overall measure of goagief fit in the VAR model is given by
the trace correlation statistic which is not sigrahtly high. It can be approximately
considered as an averad® in the p VAR equations (Juselius, 2006). Overall, the
model is not well specified and from the skewness leurtosis it can be concluded that

there are large residuals. In addition, graphiegpection of both the level and the
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Trace 0.53
Correlation
Log(l?]) -86.79
Multivariate
Tests
Residual
Autocorrelation

LM(2): X2(81) 218.3 p-val. 0.00

LM(4): X3(81) 169.7 p-val. 0.00
Normality

LM: X3(81) 197.9 p-val. 0.00
Univariate Tests

APC AMT ASA AMA ANE AESC AWSC AWNC AENC
ARCH(2) 0.89 17.86 8.25 1.67 5.72 14.67 4.04 2.72 671
p-value 0.64 0.00 0.02 0.43 0.06 0.00 0.13 0.26 404
Normality 15.91 4.02 1.28 31.29 4.98 15.43 15.90 .231 14.29
p-value 0.00 0.13 0.53 0.00 0.08 0.00 0.00 0.00 0 0.0
Skewness 0.95 -0.21 -0.15 1.35 -0.43 -0.56 0.41 52-0. 0.74
Kurtosis 5.33 3.65 3.21 8.87 3.70 5.07 4.94 6.25 155.
Std. Deviation 0.01 0.01 0.01 0.01 0.01 0.01 0.01 .010 0.00
R? 0.76 0.47 0.68 0.56 0.71 0.38 0.63 0.55 0.58

Note: The table provides the results of Equation 2.kc8jgally, it gives the results of unrestricted RA
model with 2 lags.

differenced data reveals that series have seasodairending patterris.This may also
create some specification problems. Hence, detngndind seasonal adjustment
procedures are performed on all the series (HaawelyTrimbur, 2003). It is known that

each series are composed of seasonal factor, ¢ygrhel-and the irregular component.

13 Juslieus (2006) suggests that graphical analgsithé specification checking is highly recommended
and even might reveal specification problems téststfail to find.
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Multiplicative model with the seasonal span ofrfamd linear trend is calculated and
extracted leaving only the irregular componentia $eries?

The new series (detrended and seasonally adjuatedjvell-behaved without
rough spikes. Consequently, VAR is re-estimatedngisthe new dataset. The
misspecification tests using the new, correcteteseshow huge improvement in terms
of the problems that were present before. Howetlex, problem with the residual
autocorrelation and normality still exist. Furth@nalyses provide evidence of large
residuals which need to be carefully consideredemivheir importance to the

econometric results.

Usually, residuals larger thah3.30, |- |350,. dghould be treated with care

since they indicate possible outlier observatiodasélius and MacDonald, 2004,
Juselius, 2006). The residuals of most serieseatively large at the beginning of the
sample period. Given the U.S. economy at the ttheehigh residuals are quite intuitive
indicating that some sort of intervention took laEor example, the rising inflation rate
perhaps accounts for the pre-recession shock iINMNE at 1977:01 that caused the

residuals to exceetB50, . Qther series, except for PC, MT, SA, and NE alspear to

fluctuate greatly perhaps as a result of the iimitatate changes. The announcement of
the tight monetary policy by the Fed appears toehhad its effect on the housing
market. Furthermore, the lagged effect of the memyepolicy and the twin recessions

influenced housing market as well, with more prammd effect on MA in 1980:1 and

14 The classical decomposition of the series, sayift€a trend-cycle (TC), seasonal (S) and irreg(ia
components can be modeled either as additive (PESFG or multiplicative (PC=TCxSxl). The later
model is used in this paper because the seasonétiitg series seems to increase with the trend.
@classicalDecomp procedure in RATS does this tykecompositions.
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WNC in 1980:04. Furthermore, a large residual isesbed in the ENC series for the
date of 1985:03. Unlike most other shocks, thisckhadoes not appear to be intuitive
since it does not coincide with any major eventsegiin U.S. economy as a whole or
the housing sector. The large residual in the Miiesein 1986:04 and 1987:01 is
explained by the federal tax reforms and perhapsctinditions that later caused the
stock market crash (Kim et al., 2007a). The finadervation of abnormal residuals is for
PC in 2004:1. Volatile residuals for most of theiese were observed during the period
of 2004-2006. In fact, late 2005 and the beginrdh@006 was actually the start of the
housing market slowdown. Very large residuals atected for most series at this time,
therefore these two observations (i.e. 2006:01 20@5:04) are not used. Certainly,
these dates are highly informative of the housiagtar, however, the loss (arising
specification problems) from including the obseiwas for those dates outweighs the
gain. Hence, the further analysis proceed with d2&rvation rather than 125.

It is common to consider the observations with dargsiduals as outlying
observations. Outliers can seriously distort théo@arrelation structure of the time
series (Chernick et al., 1982). If the outliers @reored and left in the time series they
may seriously bias the autocorrelation function FACand partial autocorrelation
function (PACF) of series (Mills and Prasad, 1998)practice, it is common to treat
outlying observations to be the results of intetien structural break, etc. Thus, to
overcome the outlier problems, the addition ofdbenmy variables in the model is very
common. However, one needs to be careful aboutyfieeof outliers since each type of

outlier should be treated differently. For exampte additive outliers should be
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corrected for before proceeding with any analySis.the other hand, the transitory and
the permanent outliers need to be included in thdahdue to the important information
they convey?

Outlier observations are corrected with the additiof the seven dummy
variables in the VAR model. Permanent blip dummielich take a value of 1 on the
date of shock and O otherwise, are added for thiewimg observations: 1980:04,
1985:03, and 2004:01. In the case of +/- effecthef residuals which has a dynamic
effect on the later observations, transitory dumvayiable is used. Hence, transitory
dummy variables, that take a value of 1 on the Ishiate, -1 for the next observation,
and O otherwise, are set for 1977:01 and 1980:(8ervhtions. Further, a dummy
variable that takes a value of 1 on two conseculi&tes is included for 1986:04. The
difference of the last dummy variable is also ideld due to its importance for the shock
and the model. All of them are included as restdctieterministic components in the
VECM.

Although the misspecification tests may improve hwihe inclusion of the
dummy variables and suggest the goodness of theslqnibe parameters of the model
can still suffer from non-constancy. Various methdtests) are used in this paper to
tackle the parameter constancy problem thorougBlgth backward and forward
recursive tests are conducted, each of which il testing different time periods of
the entire sample. The main purpose of these ie$tsfind out if the sample period of

1975-2006 is appropriate for analysis or if thexeany structural change that suggests

15 More detailed information about the outliers, thigtection, type, and the ways of fixing them see
Franses and Lucas (1997), Nielsen (2004), Jus@ngs).
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the model needs to be re-specified for the sampt@g, perhaps partitioning it into
several sub-periods. All the following tests pemied here are recursive meaning that
the models are first estimated for sub-sample @f T1, then increasing the unit period
until it covers the full sample, whereas in casebatkward recursion, the models are
estimated first for the subsample of T to T1, thecreasing the unit period until it
covers the beginning of the sample (full samplélese procedures are fully covered in
Hansen and Johansen (1999) and Juselius (2006).

There is some evidence of parameter instabilityvener, the time range the
parameters are the most volatile is the beginnfrthe sample which coincides with the
high inflation rates, tight monetary policy, twircessions, oil shocks, etc. In other
words, it is somewhat expected even looking atptlo¢ of the differenced series. The
significance and the importance of these shift digsnare further tested to get the best
and the most parsimonious model. It is common pradd partition the sample into two
(if there is one structural break) sub-samples estinated each subsample separately
(Hansen and Johansen, 1999). However, the smalbleasize puts restrictions on the
estimation methods. Therefore, it is not optimgbantition the sample into various parts
to account for the structural breaks. The next pmpwmethod of dealing with the
parameter non-constancy is by the use of dummabkes, particularly shift dummies
(Juselius, 2006). Consequently, shift dummies actuded in the model. Interestingly,

the goodness of the model and the parameters dicchrange much with the shift
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dummies either each separately or combifietiience, insignificance of the shift
dummies leads to considering the model with nat shiflnmy variables.

Reconciling all the above changes, the VAR(K) mad&CM form is now given

by:

k-1
AY, = p+ Y LAY, +aBY,_, +®D, +¢ t=1...,123 (2.4)

i=1
The model has the same specification as Equati@) (@th the only addition of the

vector of dummy variablesD|); ® is the vector of coefficients for the dummy

variables. The estimated model is then checkedther validity of the underlying
assumptions. A clear improvement in terms of unatarnormality, the trace correlation
(goodness of fit of the model), and standard denat is revealed. Although the
multivariate normality statistics, ARCH statisticand LM(1) and LM(K) values are
greatly reduced, the null hypothesis for thesestissstill rejected. Hence, there are a few
specification issues remaining in the model.

It is well evidenced that small sample size wikly cause the series to deviate
from normality assumption, which further will causeme additional problems with
respect to residual autocorrelation, ARCH, etc. ¢¢ersome misspecification in the
model is not considered to be unusual given thédomsample size and large dimension
(Franses and Haldrup, 1994; Bruggemann et al., ;20@&elius, 2006). Consequently,
model in Equation (2.4) does seem to be acceptbén the limited sample size and

the number of parameters to be estimated.

1% The results with shift dummies are not reportethis paper.
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Cointegration analysis is conducted to shed lightttee long-run relations that
may exist among the nine series. Some authors sutjga the unrestricted VAR has to
be well specified before estimating the restriceICM, while others claim that the
model will be well specified after the estimatiointiee reduced form. The proponent of
the first approach is Juselius (2006), who propdeetest for cointegration once the
model is well specified. On the other hand, it lbaen suggested that some of the
misspecification problems that prevail should beaked again after the determination
of the correct cointegration rank. In other won@gjuced form model has to be checked
again for specification issues (Juselius, 2006;,gBeimmann et al., 2006). However, one
needs to be cautious regarding the model checkadilne small sample size distortions.

Johansen’s trace test is used to determine the ewuafbcommon cointegrating
relations in the model. Although the trace test Ibeen criticized for not accounting for
the small sample size and deterministic compon#mesgorrected version of trace test is
“Bartlett corrected” for small samples and accodatsdeterministic components added
to the model’ To calculate the corrected version of the trace, tere simulated the
critical values for 2000 replications and lengthtted random walks of 123 (i.e. number
of observations used). The importance of simulatomes from the fact that small
samples usually tend to deviate from the normahligsumption and asymptotic

distribution does not seem to hold for small sampitence, the corrections are vital for

" See Johansen (2000, 2002) and Juselius (2006)dia details about Bartlett correction and thedrac
test for more sophisticated models.
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correct results. The results of trace test arertedan Table 2.5. It can be seen that the
difference between the corrected and not corretdsts is enormous. Without Bartlett
correction for small samples and the determintimponents, the rank of 8 would have
been accepted at 4.5% significance level, whild \Biartlett correction the rank of 4 is
accepted at even 1% significance level. Thus, thallssample size distortion and the
inclusion of the deterministic component could m#sk true long-run relations among

the series.

After the determination of the cointegration ratiie tests of long-run exclusion
of a variable (i.e. a zero row restriction #h unit vector of alpha for a variable, and the
weak exogenity of a variable (i.e. a zero row festm ong ) are conducted which later
will have bearings on the identification of the rebdThe results indicate that none of
the variables are weakly exogenous which implies th short-run all of them respond

to the perturbations in long-run relations. Unittee test is rejected for all the variables

Table 2.5 Trace Test Results

Decision p-r R Eig. Trace Frac95 P-value Trace* P-value
Value
FIF* 9 0 0.781 536.974 189.418 0.000 271.730 0.000
FIF* 8 1 0.560 356.492 155.041 0.000 188.928 0.000
FIF* 7 2 0.499 258.926 124.951 0.000 128.037 0.032
FIF* 6 3 0.413 176.577 96.621 0.000 101.80¢ 0.020
F/IR* 5 4 0.248 113.117 72.605 0.000 54.439 0.524
F/IR* 4 5 0.242 79.132 50.450 0.000 38.527 0.412
FIR* 3 6 0.161 46.172 33.022 0.001 18.571 0.715
F/IR* 2 7 0.129 25.348 18.588 0.004 11.758 0.402
R/IR* 1 8 0.073 8.961 8.730 0.045 5.891 0.180

Note: * represents the Barlett corrected trace wdsch accounts for the small sample size and the
inclusion of the dummy (deterministic) componertieTrace test is accepted at >5% significance level
the Barlett-corrected trace test, while it is oblgarder line accepted (4.5%) for the traditionadt- n
corrected trace test.
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as well. On the other hand, the result of the lnngexclusion test suggests that MT is
not included in the cointegration space. Therefareshould be omitted from the
cointegration space and from the long-run relat@ins% and higher significance levels.
This information is further used to test varioustrietions. The test of restriction given
the hypothesis that MT should be omitted from thimtegration relations for

Y, =[PC MT, SA MA NE ESGC WSGC WNG ENG]
is given byH,: 5" =H¢ or RB= Q Although the hypothesis of four zero
restrictions on the MT is accepted with the p-vadi€.24, the model is not identified.
Thus, as mentioned in Juselius (2006), completeliftmg the MT series will affect the
long-run identification negatively.

Various restrictions that are either suggestechbydata (using the DAG), model
(significance levels), or by the tests (such agdnm exclusion) are investigated. The
following section will shed light on the identifitan problem and the proposed method

using DAG which is discussed next.

2.4.3 Identification

The issue of identification is central for the cdetp understanding of economic
models. Unique identification is necessary for mation and interpretation of the
parameters of the dynamics of the system of thetoveautoregressive model.
Alternatively stated, the reduced form model withrrelated innovations has to be
transformed into a structural form with uncorretgteconomically interpretable shocks.

This problem is especially pronounced in the cdseoa-stationary data (variables) that
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allows us to formulate two separate identificatmoblems: identification of the long-

run (cointegration relations) and short-run (equagi of systems) structures. The
identification of the long-run structure imposesiderun economic structure on the
unrestricted cointegration relations, whereas tleatification of the short-run structure
imposes short-run dynamic adjustment structure hen dquations for the differenced
process (Johansen, 1991, 1995; Juselius, 2006).

Cointegrated VAR model both in reduced-form and shectural form can be
used for analyzing the long-run structure. The ceduform cointegrated VAR is used in
this paper, which eliminates the worries aboutideatification of the short-run structure
as its parameters are uniquely defined in this.oc&ldleough the long-run parameters are
also uniquely defined based on the normalizationth& eigenvalue problem, just-
identifying restrictions on the long-run structame necessary.

Three different aspects of identification is ackhenged which are the generic
identification (statistical model), empirical idditation (parameter significance), and
the economic identification (Johansen and Juseli@94). The first two conditions are
satisfied if one follows the correct steps of moegtimation, while the last condition is
much more complicated. For example, if one examiae®icro or macroeconomic
problem, theory and the existing literature is atredways used for identification of the
long-run and short-run structures. The problemeariwhen research involves either
something absolutely new for which there is no teebry or dynamic relationships

(linkages) among certain variables for which nonfar theory exist$® Hence, the

18 Brief history of the identification problem is wahtroduced by Lack and Lenz (1999).
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achieved identification is not based on solid ecoicoor econometric arguments (Lack
and Lenz, 2005). In this paper we offer a new netfay long-run identification by
utilizing the causal structure which is a direcui¢ of the DAG.

The DAG, discussed in the next section, is usedbtain the causal structure
among the variables. The graph along with the tesilthe test for exclusion is used to
get just-identifying restrictions on the long-rutrusture. The DAG without MT
(excluded) confirms the above findings of four degrating vectors. Moreover, it
provides important information as to what are tloéntegrating relations and which
variables are included in it. The four major digiss (Figure 2.3) which have
arrowheads directed to them are the four cointegyatlations where only the regions
that cause these four regions are included in theetrand the others are restricted in the

long-run structure. As a result, the long-run syst&s the following forr?

PG,
MT.,
SA,
0 B, 0 pBs O 0 0 B, ﬁ01_ MA _,
:,521 0O 0 0 0 0 B, 0 B, B,| NE,
0 0 B, Bs O 0 B 0 pBs|| ESG,

0 0 0 Bis Bis B Bis B ,304_ WSC._,
WNG
ENG.,
1

19 Note that in the third relation which correspotmishe ESC equation on the graph, the effect ofiMA
not accounted for because its innovation is trarsfieto ESC via NE. Hence, NE is included but het t
MA.
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Figure 2.3 Directed Acyclic Graph with the Knowledg Tier for the Causality
Purposes.

The restriction is just-identifying and model is capted with X?*(9) =16. 389
andp —value=0. 059 The first three relations are invariant to MT lugion, and only
the fourth relation is altered due to MT. Therefottee confidence of the first three
relations to achieve long-run identification is ywehigh due to its robustness.
Conversely, the last relation is dependent uportabeof exclusion (i.e. MT exclusion)
which is why confidence of the last relation asnitfging is limited. However, even in
this case the contribution of the DAG to the idicdtion issue is enormous. Unlike the
automated identification available from CATS in R&MWwhich is not based on data
inferences or economic theory, the identificatioogedure proposed in this paper bases
completely on the observed innovations among thiebigs, data, and model inferences

using the causal structure. This is especiallyulsefien the supporting economic theory
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is incomplete or non-existent. The description ampblication of DAG in impulse

response functions is presented next.

2.4.4 Directed Acyclic Graphs (DAG)

In real estate literature that focuses primarilytba dynamic interrelations of
regional house prices, no study has ever used itteeted Acyclic Graphs (DAG). This
paper employs DAG to investigate the contemporaserausal relationships among
innovations of the nine series. In addition, itsportance for price discovery
implications which is later discussed and the abanmtioned identification issues is
inevitable. Besides its importance in model idecaifion, DAG is also highly important
in VAR-type innovation accounting as it enablestasassign the contemporaneous
causal ordering of the variables based on the #ace, instead of randomly choosing
the causal pattern, data-inferred pattern can led asd justified through DAG when
studying the dynamics of the system.

The orthogonality among the innovations is very am@ant for VAR.
Furthermore, modeling the contemporaneous cautatiomship among innovations is
vital for the accuracy and consistency of the iratmn accounting. Early papers tend to
use Choleski factorization of contemporaneous d¢amae to find the orthogonalized
innovations. Another approach, which relaxes theol€ky ordering, is used by
Bernanke (1986). The Bernanke factorization putefadentified” restrictions based on
the existing theoretical information related to tkariables. Recently, a more

sophisticated DAG approach is being used whichasetd on the observed innovations
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among the variables. This approach has been usednfavation accounting from VAR
which provides data-based ordering of the innovestigBessler and Akleman, 1998;
Hoover, 2005; Kim et al., 2007a).

A directed graph is a graphical representationanfsal relationship among a set
of vertices (for this paper - among innovationsnfréthe VECM)? There are three
possibilities that the lines and the arrowheadsvbeh the variables can be arranged.
First, it is the unidirectional causal flow suchAss>B, which indicates that variable A
causes variable B. Second, it is the undetermiaedal direction, A — B, which means
that there is some relationship between A and Bjewver, the direction of the causation
is undetermined. Finally the third, in which cadeere is bidirectional causation
presented as A~ B implying that A causes B and B causes A. If thégppens, most
likely there is an omitted variable between A and B

The direction of the causal flows among the vadabis assigned using D-
separation which formally represents the screenffigphenomenon (Pearl, 2000).
Among three variables A, B, and C the following salpatterns can be formed. “Causal
fork” is formed as A- B - C, where B is the common cause of A and C, thus the
measure of unconditional association between A @nd non-zero. However, the
association between A and C will be zero if B inditioned on. Another causal pattern,
which is observationally equivalent to the causakfis the “causal chain”. A B - C.

Similar to the case of causal fork, the uncond#lassociation between A and C is non-

2 This paper will introduce the DAG in a simple arahcise way, but for readers who are motivated to
read about the DAG more detailed, we refer the@piotes et al. (1993), Pearl (2000), Bessler andgYa
(2003) and Kim et al. (2007). The latter articl@plere the DAG in economics field and motivate its
applications in applied economics.
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zero, while it becomes zero as one conditions oim Both cases, variable B screens-off
the association between the two end variables.lliFinthe last causal pattern called

“causal inverted fork” is given by A B — C and is observationally different from the

above two cases. In this case, the unconditionabciation between the two end

variables is zero, while if we condition on the ¢oon effect B, the association becomes
non-zero. The common effect B does not screenheffassociation between its common
causes.

The GES algorithm is used to assign causal flowsrayra set of variables using
the covariance of innovations. Alternatively statdee algorithm builds directed graph.
Notice that directed graph, or more precisely thieatied acyclic graph does not allow
causal flows among the variables such that theabbrithat causes another one will
eventually be caused indirectly by its own cause fcyclic graph can contain only one
of each variables). It starts with the DAG with edges. Furthermore, the addition of
edges one-by-one with all possible directions ial@ated using the Bayesian scoring
function. As a result, causal structure that olstaine maximum Bayesian score is
chosen. It is important to note that only the aicychusal structures are considefed.
The advantage of this algorithm is the independexicke final causal structure from
the significance level, while the drawback is exganally increasing models to consider
when there are many variables. However, the TETR¥Boftware which is used to

estimate the GES algorithm simplifies the matfer.

L For more information about the GES algorithm, Gaickering (2002).
%2 The web site of Carnegie-Melon University, Philplsp department provides free TETRAD IV software
(http://www.phil.cmu.edu/projects/tetrad/).
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The complete correlation matrix resulting from fbst-identifying model is fed
into TETRAD to obtain the contemporaneous causaicgire among the nine U.S.
census divisions. Given the results of the exclusest and the negligible role of MT in
the U.S. housing market, a tier (knowledge) is dddkich restricts the MT to cause any
other region contemporaneously. The resultinglgia@AG pattern illustrates how the
U.S. regions interact with each other instantangou=urther, the results of it have
bearing on the dynamic structure of the overaltesys Afterwards, due to the relative
limitation of coefficient interpretation from theduced form (just-identified) model, the
innovation accounting is utilized (Bessler and Y,arZ003). It facilitates the
interpretation and summary of the dynamic relatigmdetween regional house prices
using the findings of the above mentioned proceslre. just-identified model and

DAG).

25 Results

The above estimated just-identified model and tB&Dacilitate the calculation
of the innovation accounting. Particularly, the inge response function and the forecast
error variance decomposition are used to shed tighthe dynamics of the U.S. housing
market. The role of the DAG in directing the caudklws among the series
contemporaneously and the further use in the inimvaccounting is fully elaborated.
The results from the DAG with MT and a tier whicghprovided in Figure 2.3

and DAG without MT (Figure 2.4) differ slightly beting the confidence in the
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Figure 2.4 Directed Acyclic Graph with MT Excludedfor Identification Purposes.

resulting causal structure. The robust orderinggafsal flows show how the house
price innovations of certain census divisions cabeese price changes in others.
Among the robust causal structures is the conteamgmus causal effect of NE on PC,
MA and WNC on NE, NE on SA, MA on ESC, PC and ENCWSC. Hereafter, the
DAG with MT and a tier will be used for interpregithe instantaneous causal ordering.
The MA appears to be the only exogenous regionoatemporaneous time. Hence,
shocks arising in this region are transmitted ioteer regions affecting their housing
markets by changing the house prices. The exogehitije MA is expected due to its
importance in both economic and financial sectarthe nation. All the states included
in MA, New York, New Jersey, and Pennsylvania, hagey important roles and do
affect the dynamics of the national economy. Counsatly, the finding of MA being the
source of house prices changes in the U.S. is stems$iwith its role in the overall

economy. While the exogenity of MA is expected tlnehe high house prices and the
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leading role of the region in the overall econonys very surprising to find that NE
and PC are not exogenous in the short run. Thiperikaps due to the fact, that in the
short run a region affecting house prices in otlegions is not intuitive given that the
housing market cycle is over 6-8 years (Rosentt@6, Alexander and Barrow, 1994,
Pollakowski and Ray, 1997).

The housing prices in SA, WSC, and MT are compjatéluenced by other
regions’ house price shocks. In other words, theyiaformation “sinks” in the U.S.
regional housing market. The insignificant rolef can be explained by the fact that it
has very negligible influence in the overall ecoypralthough some of the states
included in the region are somewhat important incafjural sector. The explanation of
the WSC which is somewhat logical as house prinehase states (thus in the region
overall) are lower relative to the national averamed the growth has not been
outstanding. Conversely, it would be more logicabee SA, which includes states that
have very high house prices (such as Washington., D/@ginia, Florida, North
Carolina, etc) and high growth, as an importanyedan the housing marker rather than
as information “sink”. Other regions that extengpvéake part in transmitting the
received shocks to the other regions include PG, B&C, WNC, and ENC. While the
results might be somewhat debatable regardingetimtportance of PC and NE, they are
more intuitive with respect to the WNC, ENC, and (E@s house price shock
transmitters.

Overall, the results based on the DAG are generatlyitive and are used in

ordering of causal flows for the VAR-type innovatiaccounting. It provides the user
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imputed causal ordering among the variables in &sta decomposition which further
provides impulse response functions and the fotewrasr variance decompositions. The
later two help to summarize the structural formtled model. The impulse response
function describes the in-sample effect of a tylpgteck to the system and can be used
to economically interpret the behavior of the sysigack and Lenz, 1999). Figure 2.5
presents the impulse response functions for one-tinly positive shocks in information
from house prices in each U.S. region. In eachhgréipe vertical axis represents the
standardized responses with the range of -5 to ¥h2. horizontal axis, on the other
hand, represents time periods (in quarters) fohgwihe information shock. In each
graph we use maximum of 35 quarters (eight yeads3aguarters). Note that Figure 2.5
does not intend to explicitly show the numbers afre axis, instead, the purpose for
reporting the figures is to show the pattern ofdheves.

Large negative responses are generated by moshsedue to the innovations in
the ENC house price. The responses become mor¢iveegath the time horizon and
the adjustment process back to equilibrium apptatse very slow. On the contrary,
innovations in house price of WNC and NE generatgd positive responses which
adjust very slowly as well. Similarly, innovatioirs ESC house prices generate large
positive responses in house prices of all otheioregexcept for the MT and SA which
tend to respond by small positive changes with tehoadjustment periods. It is
interesting to note that the responses to shock#Arare mostly positive at the shorter
horizons (in short-run), becoming negative at miediate and longer time periods, with

exception of MT that does not respond and the Sihviesponds positively for the
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whole period of analysis. With some exceptions, ematé positive responses are

originated in house prices series of all the regidue to the shocks in PC, MT, and SA.

However, in some cases insignificant responses agtwthe significant ones (i.e.

innovations in SA). Lastly, the DAG-based insigcéfince of the WSC is also confirmed

by observing the impulse response functions wheoelks in WSC generate nearly no

response in the U.S. housing market.
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Overall, it can be seen that innovations in mostseoprice series generate quite
volatile responses from other regions. The adjustrback to equilibrium for most cases
is slow. It can be concluded from the impulse resgofunction that the house prices in
WSC appear to be the least influential generatimgléast responses from other series
followed by the SA and MT. On the other hand, thBl@/and NE generate the largest
positive responses in other regions with slow adjest periods. The opposite applies to
ENC and MA which have similar rate of adjustment fegative responses.

Although the impulse response function gives gaadition about the pattern
created by the shocks, the decomposition of fotemasr variance is numerically more
informative. The variance decomposition assessegportance of different shocks by
determining relative share of variance that eaalcgiral shock contributes to the total
variance of each variable (Lack and Lenz, 2005)révidetailed information about the
uncertainty in each region's price series at difietime horizons in future is reported in
Table 2.6. Forecast error variance decompositigivisn for every series at horizons of
0, 1, 8, 16, and 28 quarters ahead. It shows hewntovations in each region affects
the house prices of the same and other regionbeaspecified time horizons. The
maximum time horizon of 28 quarters is chosen dwethte suggested notion of
Pollakowski and Ray (1997) about the real estatéedyeing 6-8 years.

In the short-run, uncertainty in PC is mainly expéal by the innovations in its
own series (84%). However, 8 periods ahead (2 yetirs innovations in NE and SA
comprise large portion of uncertainty in PC (14% 42%). At the longer horizons the

role of shocks in its own series fades away becgrass significant in explaining the
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Table 2.6 Variance Decomposition of House Price Inces from Nine Census Regions
Based on Bernanke Decomposition

Horizon PC MT SA MA NE ESC WSC WNC ENC
PC
0 84.199 0.000 0.000 5.556 6.613 0.418 0.000 3.213 0.000
1 83.297 0.196 0.003 2.995 9.370 0.507 0.187 3.435 0.010
8 59.132 6.214 12.281 5.161 14.622 0.487 0.244 0.807 1.053
16 16.268 10.416 17.745 6.661 25.115 3.016 0.052 19.024 1.702
28 5.190 7.463 15.428 3.529 30.136 1.987 0.007 32.398 3.864
MT
0 11.564 80.138 0.000 0.064 0.164 7.992 0.000 0.079 0.000
1 15.474 62.819 2.229 0.141 0.371 17.257 0.087 0.467 1.154
8 11.372 36.556 2.800 1.213 12.008 12.217 2.856 14.485 6.492
16 6.897 25.855 5.037 0.610 17.392 6.754 3.316 27.915 6.225
28 2.795 14.529 9.835 0.176 23.472 3.171 1.915 39.027 5.080
SA
0 1.298 0.000 75.762 3.939 8.734 1.938 4.974 2.523 0.830
1 4.542 0.545 60.347 8.480 15.370 0.869 4.233 4.414 1.200
8 5.721 13.987 40.734 2.544 18.153 2.113 0.355 14.734 1.659
16 2.887 15.186 27.481 0.316 22.767 1.805 0.423 25.880 3.255
28 2.320 11.487 22.598 0.471 28.256 0.619 0.168 30.581 3.501
MA
0 0 0 0 100 0 0 0 0 0
1 0.384 0.030 0.188 94.068 1.207 0.000 0.181 3.688 0.253
8 5.354 0.924 6.291 17.299 10.473 5.296 3.212 48.869 2.282
16 0.930 0.654 3.670 3.110 16.766 9.359 1.279 59.376 4.855
28 1.372 0.202 1.599 6.123 17.979 11.591 0.305 55.653 5.176
NE
0 0 0 0 35.162 41.855 2.646 0 20.337 0
1 0.271 0.013 0.219 22.152 41.137 4.379 0.046 31.476 0.307
8 0.252 0.007 0.822 1.776 19.677 13.878 0.762 58.782 4.045
16 1.002 0.023 0.301 5.795 17.936 15.406 0.145 53.811 5.582
28 2.209 0.764 0.720 11.408 12.913 18.681 0.033 48.022 5.250
ESC
0 0 0 0 4.326 0 95.674 0 0 0
1 0.394 0.177 1.095 4771 1.193 88.145 0.629 3.414 0.181
8 0.389 3.618 3.870 0.289 6.544 42.659 1.760 35.221 5.651
16 0.249 3.715 3.066 0.055 11.538 25.981 1.601 45.842 7.952
28 0.067 1.508 1.854 0.561 13.053 18.407 1.430 55.523 7.597
WSC
0 15.451 0 0 0.005 6.997 8.435 59.183 0.047 9.882
1 20.096 0.081 0.574 3.161 13.601 8.034 40.859 2.037 11.558
8 33.011 3.662 0.409 13.587 21.655 11.315 5.301 5.323 5.739
16 33.367 3.470 0.130 22.197 15.044 12.635 1.517 9.048 2.592
28 18.009 1.419 0.442 23.145 16.289 13.602 0.450 24.069 2.577
WNC
0 0 0 0 0.518 0 11.454 0 88.028 0
1 0.623 0.019 0.000 0.720 0.020 13.921 1.026 83.651 0.017
8 2.704 0.188 1.369 10.093 5.333 21.696 1.702 56.319 0.597
16 2.291 0.380 2.144 9.456 11.794 16.326 0.501 54.433 2.673
28 1.188 0.300 2.811 6.847 15.263 12.123 0.337 57.348 3.782
ENC
0 0 0 0 0.121 0 2.672 0 20.534 76.674
1 0.062 0.225 1.108 0.023 0.328 9.811 1.624 32.228 54.592
8 0.050 0.855 1.884 2.139 3.795 29.480 5.291 55.062 1.443
16 0.078 0.578 2.003 1.824 9.727 20.805 2.100 59.629 3.258
28 0.244 0.153 1.100 1.252 10.782 16.172 1.441 63.885 4.971
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uncertainty in PC house prices. Instead, SA whicly influences PC, NE, and WNC
becomes more significant (about 17%, 30%, and 32¥g.percentage of uncertainty in
PC explained by other series is smaller than 10%thErmore, PC itself along with the
ESC explains about 15% uncertainty in MT in shart-becoming less important with
time and reaches to about 3% 7 years ahead. Ouwttiee hand, NE and WNC become
more significant in explaining the MT variance ong time horizons reaching to 23%
and 39%, respectively. Similar to the PC case stikexplanatory power of MT drops
dramatically from about 80% to 14% as the time zwniincreases. The MT, on the
other hand, becomes significant after about 2 yaecsunting for up to 15% of the SA
variance.

Interestingly, MA which was found to be the onbyogenous series by DAG
explaining all the uncertainty in itself, is abd®% explained by other series in the
long-term being mainly influenced by NE (17%) andN®@/ (59%). However, its role in
leading the NE in short-run and WSC in long-runregrbe left unnoticed. Up to 35% of
the uncertainty in NE is attributed to the innowas arising in MA in short-run, leaving
about 58% and 18% of uncertainty to be explainedNC and ESC in longer horizons.
NE itself appears to be one of the main leaderthé housing market affecting all
regions significantly. However, its effect on hoysees in ESC and ENC is relatively
small. The findings regarding to the NE are coesiswith those of Pollakowski and
Ray (1997) who showed the lagged NE price changeguite significant in 6-9 census

divisions. However, our findings do not support thetion that NE is a “leading
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indicator” which was suggested in the previous issidbut it certainly confirms the
finding of Pollakowski and Ray (1997) regardinghe NE’s explanatory power.

WNC appears to have the major influence on thedpuses in ESC reaching to
about 55%. Surprisingly, ESC itself explains lapgetion of its uncertainty and dies off
slowly relative to the others. The exact opposgeobserved in WSC series which
accounts for only 59% of its uncertainty in sham-exponentially dropping to 0.5%. In
addition, this is perhaps the only region where tlbeise price dynamics are greatly
influenced by innovations of more than five regidmause price series: PC (up to 33%),
MA (23%), NE (21%), ESC (13%), WNC (24%), and ENK1%b). It is the only region
that has nearly no influence on other regions’ bopsices. The exact opposite is
observed for the WNC house price series, whichleenain leaders in the U.S. housing
market and remain relatively exogenous over timeoawting for 88%-54% of its
uncertainty over time. However, three other regiexglain relatively significant portion
in the WNC house price uncertainty: NE (15%), MA%), and ESC (21%). It is the
main contributor of the house price dynamics in EBXplaining up to 63% of the
uncertainty. Similar to the WSC series, uncertaintfeNC house prices explained by
innovations arising in the own series comprisey @aty small percentage (2%) in long-
run. The other regions that have significantly ¢éam@ffect on the ENC house prices
include the NE (10%) and ESC (29%).

The overall results suggest that house prices @t megions are being influenced
by innovations in other regions more in longer tinogizons than in short-run. The most

influential region - WNC, followed by NE, MA, andSE appear to always have vital
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role for price discovery in the U.S. housing markeéh the contrary, WSC, SA, and
ENC do not seem to be part of the long-run housee pietermination, and are rather
greatly influenced by the other regional housegdgnamics. These results appear to be
consistent with the restricted model and the DAGuls. Overall, highly interrelated

U.S. regional house prices are found regardlefiseofnethods applied.

2.6 Conclusions

Real estate market has proven to be important inyna@spects. This fact has
attracted many researchers to do various analgsighing house prices and other
variables. Mostly UK studies explored the long-rtglationships between the UK
regional house prices. Only Pollakowski and Ray9{)use the U.S. census division
house price data to explore the long-run relatignshlowever, the techniques and
methodology used in their study are very simpliaticd do not allow thorough analysis
of housing market.

The data used in this study is deseasoned andndetteto allow only the
irregularities in the series. Model specificatiordadentification is extensively analyzed
leading to a highly significant and just-identifiabmodel. We use a method which
facilitates identification of the long-run structuasing the Directed Acyclic Graphs and
the results of exclusion tests. Four cointegrateglgtions among the nine variables are
found. Furthermore, using the proposed identiftcatprocedure, we find that the four

cointegrating relations are those of ESC, WSC, &#d NE. All the house price series
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are found to facilitate the adjustment back to Eguiim, but not all are part of the
cointegration space (e.g. MT). Furthermore, DAGulsssuggest that MA appears to be
the most exogenous, leading house prices in otgioms. Somewhat different results
are found based on the impulse response functiodstlae forecast error variance
decomposition suggesting the central role of WNIb¥eed by NE. The importance of
NE in the overall U.S. housing market is also sstggk by Pollakowski and Ray (1997),
who claim that it is significant for 6-9 censusidigns.

In addition, our findings provide evidence that AM[A, ESC, and ENC have
moderate impact on house price determination. Wisllywed by the SA and MT,
appears to be the least exogenous region not Ipairigpf any price discovery process.
The house prices of these regions are considenatilyenced by the rest of the market.
Moreover, all the regions appear to explain lesshefr own price uncertainty as the
time horizon increases. Put another way, at loigee horizons, such as 16 (4 years)
and 28 (7 years), the uncertainty in house priéaaast regions is mostly explained by
other regions.

The overall findings provide strong evidence of U&jional house prices being
highly interrelated which is consistent with thedings of Pollakowski and Ray (1997).
This implies that U.S. regional housing marketnsfiicient and that shocks arising in
one census division do cause the same and subsqupresd reactions in other census
divisions. In addition, the DAG results indicatee timportance of the information
transfer for house price determination. Furthermdhre causality results are not

necessarily consistent with the geographical looatiof the regions, i.e. regions do not
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necessarily influence the adjacent region more ttien non-adjacent regions. This
pattern of price diffusion is consistent with thadt Pollakowski and Ray (1997) who
showed that the price diffusion pattern does ndtedifor neighboring and non-
neighboring census divisions in terms of theiristiaal significance.

Several possible explanations for the observed miggin the U.S. housing
market can be very exhaustive including migratimmome, local economy, zoning
restrictions, etc. Migration, which was offered migito explain the empirical findings
in UK, is often associated with the availability jobs, unemployment, labor market,
demographics, as well as the lifestyle (Minforahket 1987, Bover, 1989, Gordon, 1990,
Holmans, 1990, Giussani and Hadjimatheou, 1991, éiellds and Taylor, 1993,
Alexander and Barrow, 1993, Meen, 1999). Our figdirregarding the nonspatial
diffusion of the regional house price changes aobagbly direct effect of the regional
economic interactions (Pollakowski and Ray, 199w@).other words, innovations in
particular regional economy will directly affectathregion’s housing market in addition
to transmitting the shock to other regions’ ecoresr@ventually having an impact on the
housing market. Moreover, some authors suggest zbaing restriction and the
difficulty of getting building permits might explaithe observed dynamics and high
prices in east and west of the U.S. (Glaeser andufkg, 2002). Although many
possible causes for such findings can be offeredypsthesis, it will be interesting to

study the actual cause if the data permits.
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CHAPTER Il
INTERDEPENDENCE OF OIL PRICES AND STOCK MARKET INDI CES: A

COPULA APPROACH

3.1 Introduction

Everyday major news channels discuss at least mmg about oil, its demand
and supply, present and future price movementgherpotential effect on financial
markets. Record high (crude) oil prices have begonted every single day from the
beginning to the middle of 2008. More and morege$ are being devised to cope with
the rising oil prices. All this attention on oil #&sdirect result of its importance for most
of the economies in the world (Nandha and Faff,80Moreover, the demand for oil is
increasing as countries become more developedekample, the demand for oil by
China and India which are in the process of ragidetbpment is growing over time. On
the other hand, the demand by developed countiesilf is not decreasing in spite of
the vigorous search for alternative fuel which states into less oil consumption. That
means that oil supply will remain an important éctfor the global economic
progression at least for some time. Hence, theslaiigoroducing countries will continue
having very decisive role in determining the oibguction and the pricing strategies. It
is therefore important to thoroughly comprehend éfilect of oil prices and pricing

strategies on the world economy.
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Theoretically, the oil prices influence the stateeoonomy, however, it is not
clear how the relationship changes depending uperavailability and usage of the oil
in a particular country/region. For instance, thie prices are likely to positively
influence the GDP of Saudi Arabia, whereas the sp@avould perhaps be the case for
France. Empirically, many papers showed a link leetwthe oil price and the state of
economy. Studies from 1983 up to 2007 have shovat tihe economies of most
countries are inversely related with the oil priteanges (Hamilton, 1983; Burbidge and
Harrison, 1984; Gisser and Goodwin, 1986; Lounga®86; Mork, 1989; Lee, Ni, and
Ratti, 1995; Mork, Olsen, Mysen, 1994; Mussa, 20A, 2004; Jones et al, 2004).
The data and methodologies applied in these studigs but most of them come to a
similar conclusion — oil is an important factor fbre economy. However, the issue of
whether this relationship changes for the oil rasfd high-consumption countries still
remains unanswered. Inclusion of various countsiesh as large oil producing, oil
consuming, or the combination of both in this studly help to illustrate how much, if
any, and to which direction the relation betweee til and the financial markets
changes.

The reported relationship of oil prices and theneroy brought forth new ideas
and avenues of research. The reasoning behind ofdhg recent studies arises from the
empirical evidence that oil price has an impacttlosm overall economy; hence it may
have an impact on the individual industries as we€lbnsequently, many studies
examined the relationship between the various imgwsectors and the oil prices. Faff

and Brailsfort (1999) claimed that oil, gas andedsified resources industries are
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positively correlated with the oil prices, while gagive correlation is observed for
industries, such as paper and packaging, finan@ats transport. Furthermore, the
individual stocks have become the focus of manglisss Combining the equity returns
of different industries these studies also had somastry implication and confirmed
the results of Faff and Brailsfort (1999).

Equity markets have later been studied for possitof being influenced by oil
price shocks. The rationale for the possible dd¢gmmpact on stock returns comes from
the fact that oil, being a major input, directlyfeatts the cost structure of firms. The
increased cost, ceteris paribus, will result in Engrofit which will negatively affect
the expected earnings and will result in depressgtegate stock prices (Ciner, 2001;
Nandha and Faff, 2008). These hypotheses have drapirically accepted for Greece
(Papapetrou, 2001) and for UK (El-Sharif et al.020 They show that oil price shocks
have negative and weak influence on the non-ofiar-gas stock returns. On the other
hand, if one looks from the perspective of oil protig company, the above mentioned
notion will be reversed resulting in positive impa€ oil price increases on stock returns
of mainly oil and gas industries (companies fromsthindustries). This notion seems to
be supported by some studies that use stock retdiroi$ and gas industries, individual
companies (or oil-intensive companies) and oil ggi€Al-Mudhaf and Goodwin, 1993;
Sadorsky, 1999; Faff and Brailsford, 1999; SadorskR@01; Papapetrou, 2001;
Hammoudeh and Li, 2004; El Sharif et al., 2005; d&\em and Faff, 2008; Boyer and

Filion, 2007).
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Although the individual stock returns are indeefluenced by the oil price
movements, overall stock market indices have béenvis to be unrelated to the oil
price shocks, at least in statistical sense. Tleksmarket indices are viewed as
important indicators of the state of economiesstittue relationship should be well
studied for the complete understanding of an ecgndespite the importance of such
study, only limited number of studies examinedAimong those limited studies, most
find that the two markets are independent (Huaral.ef1996). However, the analysis of
nonlinear or asymmetric relationship between tHepdces and economy, as well as
stock markets showed the existence of nonlineatiogl such that an oil price increase
is more detrimental to the U.S. economy and fir@nonarkets, than an oil price
decrease is beneficial (Mork, 1989; Hamilton, 198&tke, Brown, and Yucel, 2002). In
addition, nonlinear Granger causality from oil fetsi return to S&P 500 index return is
found (Ciner, 2001). This study investigates thkatienship between stock market
indices and oil price series for many countriesngscopula functions and Stable
Aggregate Currency (SAC) to explore the generaleddpnce without the currency
effect.

Oil prices have been mainly denominated in U.Sladsl however, the decline of
the U.S. dollar value against other currencies HasteOPEC to think of an alternative
currency for crude oil pricing (Amuzegar, 1978; Iigaton, 1991; Samii et al., 2004;
Verleger, 2003). This issue has emerged late 19a0¢ early 1980’s when the U.S.
dollar was devalued. It again has become a cuissae with the U.S. dollar quickly

losing its value and dominance in the global econormhe importance of the
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appropriate currency for crude oil pricing stemsnir the claims that oil price

movements are partially due to the currency movesaneaning that exchange rate
fluctuations cause oil price movements (Samii aném@nz, 1988; Basher and

Sadrosky, 2006). This is an important issue thatleg¢o be accounted for in such studies
since the possible significant relationship betwstertk markets and oil prices might be
masked by the exchange rate movements. Moreovenerawus studies showed that
stock markets of many countries are influenced Xghange rate movements as well.
Hence, exchange rates are common causes for bd#bles of interest and thus the

appropriate actions for consideration are impeeatitHowever, very few studies

controlled for exchange rates when studying thatieiship between the oil prices and
stock market indices. For example, Cologni and Mar{2008) included the exchange
rate as an explanatory variable in the VAR to aanfor the exchange rate risk.

Similarly, Basher and Sardosky (2006) included agihted average of the foreign

exchange value of the U.S. dollar against a sutiséte broad index currencies in the
OLS regression to account for the exchange ratecefiThis paper uses a relatively
stable currency basket which greatly eliminatesethehange rate risk and accounts for
currency movements. Specifically, SAC is employsdhe base currency (Hovanov et
al., 2003). Moreover, for comparison purpose weuihed the U.S. dollar and Euro as
alternative base currencies. However, unlike thie@o and Manera (2007) and Basher
and Sadordky (2006), all the series (oil prices stiodk market indices) are transformed

into SAC, Euro, and U.S. dollar. The results witiede modifications will provide us
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more accurate answers as to whether the oil preadly affect the stock markets when
we eliminate the effects of the exchange rate obsng

Another contribution of this paper is the examioatiof oil price and stock
market relationship from an asymmetric perspectdihough there is some limited
evidence of asymmetry in the relationship, no ca®lboked at the application of copula
functions in this field. It facilitates flexible ndeling of univariate marginal
distributions. In addition, the dependence can kémated based on the entire
dependence structure rather than just univariatesares (Chollete et al., 2005).

This paper is organized as follows. Section 3.Z¢més the construction of the
SAC, the data and its transformations into serigls minimum exchange-rate exposure.
The copula functions and the estimation procedueehbaiefed in Section 3.3. Main
results of the paper are given in Section 3.4 ¥odld by the implications and conclusion

of the results which are reported in Section 3.5.

3.2  Stable Aggregate Currency (SAC) and Data Transfmation

This section details the oil prices and stock miarkdices data for different
countries including both developed and developimprag which are some of the large
oil producing countries. Two different oil pricerss are used for the purposes of
comparison and robustness of the results. Thispoitant as the existing studies have

used different oil prices series which may be amotbason for some of the results that
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are not quite consistent with each other. In addjtia brief review of the SAC

methodology and the techniques for data transfoomas presented.

3.2.1 Review of SAC

In the literature on oil prices and stock markedsyeral studies have only
included specific currencies as explanatory vaesbih OLS or VAR analysis. Most
common ones are the U.S. dollar or Euro. Howewam eéhe most stable currencies such
as U.S. dollar and Euro fluctuate, especially dyriextreme events. The series
denominated in either currency will be affectedthy exchange rate dynamics and the
results of the studies that employ either curreasythe base will be highly dependent
upon the dynamics of the base currency chosen.djehe conclusion of a study may
change depending on which currency is used duédo fluctuations over time. In
essence, the exchange rate fluctuates as a dasmdt of both currencies. Therefore, to
sustain the stability of the exchange rates, thacehof the base currency is important.
For example, using U.S. dollar as a base currea@pposed to British pound, changes
the relationship between the Euro and Yen (Hovatosl., 2003).

On the other hand, the use of a basket of har@caies, such as the U.S. dollar,
German mark, British pounds, Japanese yen, anctirieanc would greatly minimize
the aggregate volatility by combining the curresc some fixed proportion (Seymour,

1980; Hovanov et. al., 2003). This principle is dige construct both the Special
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Drawing Rights (SDR) and the SAT In this paper we propose the use of SAC in order
to achieve minimal exchange rate movement. Unlikenynstudies on oil prices and
stock markets, this study proposes the denominatical the series into one standard
currency or basket of currencies.

The complete details on SAC construction are givehlovanov et al. (2003),
while this paper presents a brief introduction @&&CS It starts with the Invariant
Currency Value Index (ICVI) which is the same fofix@ed set of currencies regardless
of the base currency choice. The invariance prgpeft the ICVI has important
implications especially if it is used as a baseaenry. Moreover, the fluctuation of a
particular currency and not the exchange rate (wlilcanges due to the change in
numerator and/or denominator currencies) can beodstrated through the use of ICVI.

Furthermore, Normalized Index of ValueN\{al) in exchange is used to
mathematically express the ICVI through the follogvequation:

o
J (3.1)

1”/ I'InCij

whereNValj; is the normalized value in exchangg,s the exchange coefficient (i.e. the

NVal, =

exchange rate of th#" currency for thg™ currency), wherg™ currency is the base
. - - - n
currency. The geometric mean of values in exchéinges;) is expressed by[]c; .
i=1

Given that theNVal; is invariant upon the base currency choice, it ban

substituted byNVal. Furthermore, the Reduced Normalized Value in Brge

% The SDR is proposed by International Monetary Fahith is a basket of currency comprised of hard
currencies at fixed proportions.
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(RNVal(t/ty)) is used instead ofNVal because of its convenience of further

demonstration.

NVal (t)

RNVa| (t/t,) =
|(t7%) NVal (t,)

(3.2)

Equation (3.2) expresses tR&Val(t/tp) starting fromty (to=1), where is the number of
currencies included in the SAC, i.es1,...,5 andi=1,...,4 for pre- and post-Euro
periods, respectively.. The time series of R¢Val at moment, =1 (January 8, 1982)
for each of the five and four currencies included pre- and post-Euro periods,
respectively is computed as USD(t /1) = RNValushOt /1),
JPY(t /1) = RNValJPXt /1), GBP(t /1) = RNValGBRt /1),

DEM(t/1) = RNValDEM(t /1), FRF(t/1) = RNValFRKt /1), wheret is the number of
observations (e.gt=1,..., 4290 and=1,...,2256 for the pre- and post-Euro periods,
respectivelyf* In addition, the sum product &NVal(t/to) and the weight vectaw is
calculated to determine the Index Valded(w;t ), which is mathematically presented

as:

Ind(w;t) = zw RNVa| (t/t,) (3.3)

i=1
Optimal weights of the key international currenareduded in the currency basket are

obtained by minimizing the variance subject to ¢hesonstraints: w, = 0

andw=w, +w, +...+w = 1 Formally, the varianc&(w) can be presented as:

?*In the post-Euro periodDEM (t /1) = RNValDEM(t /1) and FRF(t /1) = RNValFRHt /1) are
replaced bEUR(t /1) = RNValEURt /1) .
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S*(w) = Zn:vviwk cov(,k) = Zn:wfsz + Zn:wiwk cov(, k) (3.4)
i,k=1 i=1 ik=1
i<k

where cov(,k )is the covariance of time seri@NVal(t/to) and RNVak(t/to), s’is the

variance of the time serieRNVal(t/to), and ws,...,.w are the weight-coefficients

calculated as given:

w = 4G ) (3.5)

i ;G (t,)

The calculated optimal weights are further usedcaiculated the optimal quantities of

currencies ¢, ,...,q; ) through the following equation:

LW
a = G, (to)lu QB

Finally, the SAC is constructed by incorporating #ey currencies at calculated
optimal proportions (amount8).It will later be used to transform both the oiigerand

stock market index data into SAC-denominated series

3.2.2 Data

The data used in this study includes daily oil @reeries and stock market
indices from both developed and developing coustager the period of January 7,
1982 to December 31, 2007. The reason for the chsiseting period is due to the fact
that both oil price series are available from tthate. The stock market indices include

the Nikkei 225 Average Composite Index (Japan), ETI®0 Index (UK), DAX 30

% The currencies included in the SAC are exactlystirae currencies that comprise the SDR.
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Performance Index (Germany), DS Total Market IndErance), AEX 30 Ordinary
Index (Netherlands), DS Total Market Index (Ital&P 500 Composite Index (U.S.),
IBEX 35 Index (Spain), OMX Helsinki Index (Finland$&P/TSX Composite Index
(Canada), Swiss Market Index (Switzerland), WSE Wi@ex (Poland), Prague Stock
Exchange Index (Czech Republic), Budapest Stockh&xge Index (Hungary),
Shanghai SE Composite Index (China), RTS (Ruskialjg Seng Index (Hong Kong),
Venezuela Stock Index (Venezuela), and S&P/IFC@xnGaudi Arabia). The two oil
price series used include Brent crude oil spot F@iBe and the OPEC oil basket price.
The former is used as it is the main benchmarkA&ia, Middle East, and Europe. The
latter is used for the sensitivity purposes to testsults change substantially when the
benchmark is not used. All the data is retrievednfiDataStream database.

The creation of Euro as a common currency for nebghe EU countries has
been shown to have an influence on the dynamidianhcial series (Patton, 2006a).
The hypothesis of results being different pre- post-Euro periods is empirically tested
in this paper. The overall time period is partigdninto pre- and post-Euro periods and
the series that are available at a later date ryeimcluded in the post-Euro period. Pre-
Euro period starts at the starting date mentiotede and ends on December 31, 1998.
It includes eight stock market indices (Nikkei 2828erage Composite Index (Japan),
FTSE 100 Index (UK), DAX 30 Performance Index (Gany), DS Total Market Index
(France), DS Total Market Index (Italy), S&P 500n@mosite Index (U.S.), S&P/TSX
Composite Index (Canada), Hang Seng Index (HonggRaemnd both oil price series. In

addition to these series, the rest of stock maridites are also included in the Post-
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Euro period which ranges from January 1, 1999 toeDwer 31, 2007. The results of
the two periods (for the series that are availéteboth periods) are compared for the

possibility of changed interactions.

3.2.3 Data Transformation

Each series is denominated into the same basencyroe currency basket. This
way, the exchange rate effect is minimized resgliim more accurate results. When
stock market indices are denominated in local cwies, they incorporate both local
currency and stock market movements. Similarly,dthg@rice series in local currencies
fluctuate due to price changes and currency movesndinis way results would not
represent the pure stock market and the oil priepeddence since the currency
movement will have an influence on both series. &doer, if both oil prices and stock
market indices are denominated in U.S. dollarsqEkuhe series will in addition depend
on the exchange rate changes, i.e. the relatiomeleet the local currency and the U.S.
dollar (Euro). Consequently, studies examining steck markets of various countries,
oil prices and other macroeconomic variables inocafe exchange rate risk, thus it is
possible that the results are inaccurate. To oweecilis problem, this paper proposes to
denominate all the stock market indices and oitgwiseries in a basket of currency
(SAC), which essentially minimizes the volatilitiescomprised currencies (Hovanov et
al., 2003; Maung, 2004; Zohrabyan, 2005). The tfatasformation follows according to

the following equation:

PitSAQ = Pitcit xsé‘_q, t=1...,T (3.7)

it
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where PSis thei™ stock market index or thi" oil price series at time in the "
country’s currency. SimilarlyP>“ is thei™ stock market index (or thd" oil price
series) at timéin SAC, where SAC is the base currency, Sé%lis the exchange rate of

SAC for thei™ country’s currency at timeé All the series are then denominated into
SAC to minimize the currency movements for furtealysis. As mentioned earlier, the
U.S. dollar and the Euro (only for the post-Eurgiqa) are applied as numeraire for
comparison purposes. The data transformation uriese two alternative base
currencies is the same as the Equation (3.7) witG 8eing changed into U.S. dollar

and Euro. Hereinafter, the data used will be tramséd unless otherwise mentiorféd.

3.3 Copula Functions

Copula function which joins the marginal distrilmutifunctions to restore their
joint multivariate distribution function was firghtroduced over 50 years ago (Sklar,
1959). However, it only became popular severalyago. In his paper Mikosch (2005)
stated that within 2003 and 2005 the Google seaf¢bopula’ has increased by about
65 times’’ This shows that the application of copula funcion various studies has
skyrocketed in a short time-span. Copula functibage been widely used in finance,

economics and other social science fields. In factjsk management studies, copulas

% Exchange rate data for all the countries usetigstudy are obtained from Oanda Pacific Exchange
database. The time period for these dataset isaime as for the stock market indices.

2" Notice that not all of the items from “copula” sefawere pertaining to the copula functions used in
statistics, mathematics, finance, economics, etc.
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are now one of the most common methodologies UResearches in finance, statistics,
and economics also have increasingly used thesgcexad flexible functions. It is
apparent that copulas are useful in nonlinear arglgpecifically modeling the structure
of dependence. It has been used in spillover aisalylere its importance stems from
the fact that various copula families tackle difietraspects of dependence structure.

There is an extensive theoretical research doneopalas and, as a result, wide
variety of functional forms, copula families, an@timods of estimation are available. For
example, both parametric and non-parametric copeks be used and over ten
parametric copula families or classes can be chodes basic definition of the copula
functions, their functional forms, properties, aslimation methods are detailed below.
The most important and fundamental theorem on espislthe Sklar's theorem given by
Theorem 1 below.

Theorem: Given a2-dimensional cumulative distribution functidd (x,y of any pair
(X,Y)of continuous random variables whose marginal catiwd distributions are
F(x)andF (y), there exists a uniquzdimensional copuld :[01]° -~ [0Huch that
H(x,y) = C(F(x),F(y)) (3.8)
Conversely, if C is a 2-copula and F(x andF(y) are the marginal distribution
functions, them (x,y 5 a 2-dimensional joint distribution function with margin

F(x)andF(y) (Rodriguez, 2007). Copula functions have severgdortant properties
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such as copulas are ground2dncreasing, and if at least one of the coordin&e®ro,
then the copula will also be zero (Marshal and Z&802)?®

The increasing importance of copulas stems fromfalge that it facilitates an
easy and flexible multivariate distribution caldida using the marginal distributions
and the copula function, which is invariant undercréasing and continuous
transformations of data (Chollete et al., 2005)atTik the margins can be estimated with
the best fitting distribution, filtered, and moeifi as necessary. Following the model
selection for the margins, copula functions areduserestore the joint distribution with
the correctly specified marginal distributions atice proper dependence structure.
Moreover, copula is a measure of dependence whkiotore informative and appropriate
than the linear dependence measures.

Cherunini et al. (2004) provide different approacte estimate the copula
functions. The most popular one is the Inferencackan Marginal (IFM) approach
which consists of two stages. In the first stage niargins are being modeled with the
best fitting distribution. The parameters of theivanate marginal distribution are

estimated by:

T n

6, = ArgMax, > >"In f(x;:6,) (3.9)

t=1 j=1
The estimated parameters of marg@isare then used in the second stage of copula

parametergd, estimation.

%8 Detailed information on copula functions, propestitheir applications in finance area, and morebea
found in Joe (1997), Nelson (2006), Cherubini e{2004), Bouye et al. (2000), Embrechts et al0@0
Embrechts et al. (2003), Marshal and Zeevi (20829, Patton (2004).
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~ T ~
6, = ArgMax, > Inc(F(x),F(y,);6,.6,) 3.10)
t=1

According to IFM approach, the parameters of thegma and copulas are separately
estimated. Specifically, the two-stage semi-paramerrocedure is used in this paper
where the first-stage is estimated non-paramelyiclfM estimator is defined as the

vector:

By =(6,,6,) (3.11)
Essentially, this way the specification errors adrgins are minimized to nearly zero
implying more accurate results. The IFM approacleamputationally more attractive
and is less complex in general than the alternapgroach in which case the parameters
of both marginal distribution and copulas are eated simultaneously. Moreover,
Patton (2006b) shows that IFM estimator is conststnd asymptotically normal.
Comparing the exact maximum likelihood and the IEMimators, Xu (1996) reported

nearly the same mean square errors.

3.3.1 Stage One — Univariate Marginal Distribahs

It is a common practice to transform the priceesemto logarithmic differences
(i.e. returns) which generally results in statignseries. Many of the return series of this
study are fairly volatile. This is the case espgcibor the stock market indices of
developing countries. Moreover, most of the finahaeries tend to deviate from the
i.i.d. assumption and are usually conditional hetkedastic resulting in inaccurate

estimation of the degree of dependence (Hu, 2000t} is certainly the case with the
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return data of this study. In addition, many of theries also suffer from serial
correlatior’®. To solve both the autocorrelation and the cooditi heteroskedasticity
problems, autoregressive (AR) and generalized agtessive conditional
heteroskedastic (GARCH) models are used. Followiatjon (2006a), we assumed that
the conditional means evolve according to an agtessive (AR) process. On the other
hand, the conditional variance evolves accordingntasymmetric GARCH model.

Each of the individual return series is modeleditiyng k order autoregressive

model® It is given by the following equation:
10
o =C+Y 6,1, +& (3.12)
k=1

In addition, the conditional variance of each seri® modeled by fitting an
asymmetric GARCH model as given:

ol =k+aol, + gl +yle, <0]el, (3.13)
The asymmetric GARCH model includes the leveragasymmetry term by a Boolean
indicator taking the value of 1 if the prior modekidual is negative and O otherwise.
This model was introduced by Glosten et al. (19%2anses and Dijk (1996) showed
that GJR model can improve on the standard symen&#ARCH model mainly due to
the fact that it accounts for the negative (positiskewness of financial returns. In fact,
wheny > 0, impact is much greater in case of negative shtlcia positive shocks.

Therefore, because many of the series in this dtagye observed negative skewness, it

29 M test is performed for up to 10 lags. It wasentgd for most of the series and lag inclusion was
necessary in most cases to cure the autocorrelatatriem.

%0 Order k of the autoregressive model differs farhegeturn series as some required more lags than
others.
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is more appropriate to use GJR-GARCH than the stahdymmetric GARCH. The
GJR-GARCH (p, q) model is used with innovations eled by a Student-t asymmetric
generalized distribution of Hansen (1984).

The resulting standardized residuals from the GMRGH model are then used
to calculate the unit cumulative distributions (C&F Moreover, the non-parametric
kernel CDF's of each filtered series is estimatduciv are shown to be the best for
interior of the distribution where most of the daddound. The advantage of the non-
parametric estimation of margins is that it doe$ eotail any specification errors.
However, evidence shows that it is not the besttlfier tails of the distribution. The
extreme value theory (EVT) is therefore appliedh® standardized residuals that fall in
each tail in order to estimate the tails of thetritigtion. As a result, 10% of the
standardized residuals for the upper and lowesstiuig is used in order to estimate the
parametric Generalized Pareto Distribution (GPDnkEechts et al., 1997; Mikosch,
2003; McNeil et al., 2005). Furthermore, the maximiikelihood estimation is utilized
to fit the amount by which the extreme residualeach tail fall beyond the associated
threshold to a GPD. The negative log-likelihooddiion is then optimized to estimate
the tail index and scale parameters of the GPD. réEkalting distribution of margins

captures the heavy-tails of the series better andges more accurate CDF estimation.

31 Models for each series and each case are availablerequest from authors.
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3.3.2 Stage Two - Copula Functions

Given the parameter estimates of the margins, eogmdrameters can be
estimated in the second stage using the maximueliHdod estimator. However, to
estimate the copula parameters copula functionilyamind class have to be specified.
This study uses the following nine different constparametric copula functions from
various copula families and classes: Normal copGlayton copula, Rotated Clayton
copula, Frank copula, Plackett copula, Gumbel apRbtated Gumbel copula, Student
copula, and Symmetricized Joe-Clayton (SJC) cofula.

The most appropriate copula function for each latarmodel is selected based
on the log-likelihood functions and three infornoatimetrics (selection criteria). The
latter includes the Akaike Information Criterion Iy and Bayesian Information
Criteria (BIC). All three measures use somewhded#t approach as given below:

AIC =-2x LLF +2x Parameters (3.14)

BIC = -2x LLF +log(T) x Parameters AB)
whereLLF is the log-likelihood functionParameterdss the number of parameters, and
the T is the number of observations (4290 and 2256 foe- pand post-Euro,
respectively). The number of parameters for eaguleofunction is one except for the
Student t and SJC copula functions.

Large number of observations result in differentecia values among the three

Goodness-of-Fit measures. Hence, the copula mdaeen by the information criteria

32 patton (2004) provides the functional forms fdttla copula functions used in this study.
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to be the best fitting copula may slightly diffexpgending on the measure used. All the 9

copula functions used in this study will be rankedged on all three criteria.

3.3.3 Dependence Measures

As mentioned earlier, copula functions describestinecture of dependence and
are adequate indicators of the possible co-moveinstmteen the series (Patton, 2006b).
Moreover, copulas are related to all the associat@ncepts such as concordance, linear
correlation, tail dependence, positive quadranteddpncy, and some of the related
measures such as Kendall’s tau, Spearman’s rhosétes rho, index of tail dependency
(Cherubini et al., 2004). This study uses four delemce measures: Pearson’s rho,
Kendall's tau, Spearman’s rho, and index of tagetelency.

Pearson’s correlation (aka linear correlation),chiihas been in common use for
many years, measures the linear dependence bethegariables of interest. According
to Emnrechts et al. (2003), it is invariant undeic8y increasing linear transformation
and is easy to manipulate under linear operatiomshwis one of the main reasons for
such popularity. Moreover, it is also a naturallaceneasure of dependence in elliptical
distributions; however, in cases of non-elliptidadtributions it provides a false measure
of dependence. For instance, if the best fit of thedel are the heavy-tailed
distributions, which have infinite second momerite Pearson’s correlation can not
even be defined. The existence of outliers, unegaahnces, non-normality, and non-

linearity all influence the linear correlation cbeient (Carmona, 2004). Hence, only
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under special circumstances linear correlationpigrapriate and accurate measure of
dependence.

The other commonly used dependence measures, Spearmrho and Kendall's
tau, are non-parametric dependence (concordanaures and are often considered to
be the best dependence measures for nonellipigtaibdtions (Embrechts et al., 2003).
These concordance measures are based on the tatigics of the sample. Moreover,
the distortions that affect the linear correlationefficient are greatly minimized
resulting in rank correlations that are robust maeas of correlation. In fact, Spearman’s
rho computes the correlation between pairs of réyksiimicking the approach of linear
correlation (Genest and Favre, 2007). Specificallymeasures the probability of
concordance and discordance. Spearman’s rho, tfineardered statistics or ranks of X
and Y, is defined as:

2. =3JPr((X, = X,)(Y, = Y,) >0) = Pr((X, - X,)(Y, -Y,) <0)] (3.16)
Spearman’s rho is very closely related to the K#isdéaau which measures the
difference between the probability of concordanog probability of discordance. Given
that it is also a rank correlation, Kendall's tau the ordered statistics of X and Y is
given by:

r=Pr((X;=X,)(Y;-Y,)>0)-Pr((X; = X,)(Y;-Y,) <0) (3.17)
Similar to linear correlation coefficient, batl[- 1Hndp, U[- 11]. Both Kendall's

tau and the Spearman’s rho can be representerns té copula functions as below:

r=4f [ c(uv)dc(uv) -1 (3.18)
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p, =12[ [uvdou,v) -3 (3.19)

Copula parameters can be estimated either througkinmim likelihood or through
Kendall's tau estimator (Equation 3.18). The Ketigdahu estimator is efficient and can
be used as a Goodness-of-Fit measure of copula IsngBenbrechts et al., 2002;
Chollete et al., 2005; Hu, 2006). Specificallythe dependence parameter is relatively
the same regardless of the estimation method, tthexe is no difference whether it is
obtained from the rank of data or via the copulacfions. Essentially, this would imply
that the copula functions are well specifféd.

Lastly, tail dependence is also used in this pagest measure of dependence. In
fact, tail dependence is a property of an undeglytopula function and is used to
summarize the potential for extreme co-movementsngna set of variables (Marshal
and Zeevi, 2002). It is important to note that tae dependence differs widely for
different class or family of copulas (Rodriguezp2 For example, Normal, Frank, and
Plackett copulas have zero tail dependences anttiwot be able to capture any of the
information about the extreme co-movements or thgeddence structure in the tails.
The tail dependence for Student t-copula is give(Marshal and Zeevi (2002)):

A = Zx(l—tm(—”vﬂpﬂ]} (3.20)

p+1

% The relationship between the Kendall's tau an@pesters of different copulas is given in Embreeits
al. (2003), Cholete et al. (2005), Hu (2006), arth&t and Favre (2007). For example, the Claytdn an

Gumbel copula parameters and Kendall's tau aréegttlirough these equatior; = % and

Ty, = 1—% . In this study we computed the copula parametetis Wways. We find that they are fairly
close to each other. Hence, it can be concludddhbacopula models are well specified.
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Student t copula captures only the symmetric tapeshdence (e.d, = A, ) which is

more informative than the case of independencesthilitlacks to explain possible
asymmetries in the tails. On the other hand, ClayRotated Clayton, Gumbel, Rotated
Gumbel, and SJC all are very informative and previdormation on asymmetric depe-

ndence® The tail dependence of Clayton copula is give(Easbrechts et al., 2003):

A =27"° (8)2
where @ is the Clayton copula parameter. Note that Claytopula hasA, and zero
lower and upper tail dependences, respectivelyv@sely, Rotated Clayton copula has

zero and A, lower and upper tail dependences, respectively &duation ford, is

exactly the same a&_ (lower tail dependence of Clayton copula) onlylaemg the&
Clayton copula parameter with that of Rotated @aytSimilar relation is observed for
the Gumbel and Rotated Gumbel copulas. The uppledependence of the Gumbel
copula is the following:

A, =2-2Y°¢ (3.22)
where 8 is the Gumbel copula parameter. The lower tailedelence of the Gumbel
copula is zero. Changing only the copula parameaex the tail dependencies, the
Rotated Gumbel copula has the same tail dependaqnegion for the lower tail as the
Gumbel copula has for its upper tail dependence.

Lastly, the tail dependencies for the SJC copuéathe SJC copula parameter

estimated in the reverse order. Tail dependentiastackle only the specific tails or

% Tail dependences for each of the copula functimesl in the study are provided in Nelsen (2006),
Embrechts et al. (2002), Marshal and Zeevi (20Bajton (2004), Chollete et al. (2005), and in most
copula papers.
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both tails unequally would provide sufficient infeation on whether or not the
dependence of oil price series and stock marketesds higher during the crash than

booms.

34 Results

The results of this paper are summarized in thisti@® The results of
conventional dependence measures for oil pricesamd the stock market indices such
as Kendall's tau, Spearman’s rho, and the linearetation are illustrated first. The
copula parameter estimates, tail dependences, a@gdikélinood functions are all
represented next followed by the information ci#eesults. In other words, the nature
of the relationship, the direction of the dependerend the best fitting dependence

structure of oil price series and the stock mairkgites are illustrated in this section.

3.4.1 Results of Degree and Structure of Dependence

The results of the dependence measures are sunechariZables 3.1 and 3.2 for
Brent oil and Opec oil price series, respectivélyst, we compare whether or not the
Brent oil and Opec price series result in differer@asures of dependence. Depending
on the oil price series used, the association @egreasures result in different values
especially in the post-Euro period (with the exgapof pre-Euro Japan). For instance,
all the measures of dependence between the Swidsrsiarket index and Opec oil price

series are statistically significant even at 10gfhi$icance level, whereas in case of



Table 3.1. Correlation between Each Stock Market In

dex and Brent Oil Price Returns

81

UK

Japan

us
Germany
France

Italy
Canada

HK

China
Czech Rep.
Netherlands
Finland
Hungary
Poland
Russia
Saudi Arabia
Venezuela
Spain

Switzerland

Pre-Euro-USD

Pre-Euro-SAC

Post-Euro-USD

Post-Euro-SAC

Post-Euro-EUR

K. Tau S.Rho P.Rho

.Tau S.Rho P.Rho H

. Tau S. Rho P. Rho

K. Tau S. Rho P.Rho

. Tau S. Rho P.Rho

0.010 0.014 -0.006
0.334 0351 0.686

-0.054 -0.080 -0.057
0.000 _ 0.000 _ 0.000

0.041 0.060 0.033
0.004  0.004  0.117

0.023 0.034 0.013
0.104  0.103 _ 0.539

0.046 0.068 0.056
0.001 _ 0.001 _ 0.007

0.027 0.039 -0.031
0.008  0.010  0.043

-0.024 -0.034 -0.064
0.024 0.025 _ 0.000

0.041 0.061 0.071
0.004  0.004  0.001

0.008 0.012 0.029
0.566  0.573  0.167

0.048 0.069 0.092
0.001  0.001  0.000

-0.029 -0.043 -0.082
0.006 _ 0.005 _ 0.000

0.081 0.119 0.036
0.000 0.000  0.018

-0.012 -0.016 -0.016
0.413  0.447  0.440

0.012 0.019 0.018
0.393  0.366  0.397

0.061 0.090 0.101
0.000  0.000  0.000

0.006 0.009 -0.058
0.536  0.556 _ 0.000

-0.107 -0.156 -0.151
0.000 0.000 _ 0.000

0.017 0.026 0.007
0.222  0.222  0.756

-0.002 -0.003 -0.021
0.886  0.881  0.323

-0.014 -0.021 -0.026
0.308  0.311  0.226

0.006 0.009 -0.031
0.556 __ 0.550 _ 0.040

-0.098 -0.144 -0.135
0.000 0.000 _ 0.000

0.038 0.057 0.031
0.006 _ 0.007  0.136

0.008 0.013 -0.006
0.549  0.541  0.768

-0.006 -0.009 -0.018
0.654  0.657  0.389

0.010 0.014 -0.046
0355 0.374  0.003

-0.048 -0.063 -0.079
0.000  0.000  0.000

0.044 0.065 0.035
0.002  0.002  0.101

0.014 0.019 -0.009
0.359  0.357  0.668

-0.010 -0.014 -0.026
0515 0518  0.218

-0.004 -0.006 0.006
0687 0.679  0.715

0.084 0.124 0.099
0.000 _ 0.000 _ 0.000

0.099 0.147 0.136
0.000 _ 0.000 _ 0.000

0.106 0.157 0.149
0.000 _ 0.000 _ 0.000

0.130 0.191 0.194
0.000 _ 0.000 _ 0.000

0.019 0.029 0.004
0.064  0.061 _ 0.781

0.067 0.100 0.049
0.000 _ 0.000 _ 0.001

0.010 0.015 0.028
0468 0.477 _ 0.190

0.030 0.044 0.044
0.033 _ 0.036 _ 0.036

0.071 0.107 0.108
0.000 _ 0.000 _ 0.000

0.005 0.008 0.000
0.698  0.709  0.999

0.018 0.026 0.009
0.211 0219  0.662

0.065 0.096 0.071
0.000  0.000  0.001

0.036 0.054 0.045
0.010  0.011  0.034

-0.014 -0.019 -0.029
0.355  0.357  0.166

-0.004 -0.005 -0.004
0.798  0.796 _ 0.854

0.025 0.038 0.006
0.072  0.072  0.790

-0.002 -0.003 -0.022
0.890  0.897  0.303

-0.015 -0.022 -0.028
0.289  0.302  0.188

0.037 0.055 0.029
0.009  0.009  0.163

0.020 0.030 0.012
0.159  0.161  0.578

0.011 0.017 0.012
0.423  0.416 _ 0.569

0.044 0.066 0.057
0.002  0.002 _ 0.007

0.036 0.048 0.024
0.024  0.022  0.248

0.026 0.035 0.052
0.098  0.097  0.014

0.050 0.075 0.080
0.000  0.000 _ 0.000

0.034 0.051 0.052
0.015  0.015  0.014

0.041 0.061 0.071
0.004  0.004  0.001

0.066 0.096 0.069
0.000  0.000 _ 0.001

0.075 0.109 0.068
0.000 _ 0.000 _ 0.001

0.097 0.141 0.110
0.000 _ 0.000 _ 0.000

0.015 0.021 0.022
0.304  0.308  0.301

0.045 0.067 0.048
0.001  0.001  0.023

0.097 0.144 0.107
0.000  0.000  0.000

0.027 0.042 0.033
0.052  0.048  0.114

0.032 0.048 0.033
0.023  0.022  0.122

0.059 0.089 0.066
0.000  0.000  0.002

0.026 0.039 0.007
0.060  0.066  0.733

-0.005 -0.007 -0.031
0.724  0.730 _ 0.140

-0.022 -0.032 -0.049
0.125  0.126  0.021

0.023 0.034 0.014
0.105 0.106  0.512

-0.013 -0.019 -0.029
0.372  0.361 0.171

-0.032 -0.047 -0.044
0.024  0.024  0.036

Note: The table reports the dependence measures ingltiitKendall’s Tau (K. Tau), Spearman’s Rho (S.

Rho), and Pearson’s Rho (P. Rho) for pre- and gast-periods and three denominations: Stable Agdesg
Currency (SAC), U.S. Dollar (USD), and Euro (EURhe p-values are in italics.

Brent oil price, all of the coefficients are insifigant. However, these results are only

observed for SAC- and EUR-denominated data in post- period. Overall, it can be

concluded that the dependence measures change batd®pending on the type of oll
price series used. This result is somewhat diftefrem that of Ciner (2001), who used

WTI and Brent oil price series and concluded thmgre is no significant difference

between the two series and one can choose eitkeeoosuch analysis.
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Table 3.2 Correlation between Each Stock Market Ind  ex and Opec Oil Price Returns

Pre-Euro-USD Pre-Euro-SAC Post-Euro USD Post-Euro-SAC Post-Euro-EUR

K. Tau S. Rho P. Rho|K. Tau S. Rho P.Rho|K. Tau S.Rho P.Rho|K. Tau S. Rho P.Rho|K. Tau S.Rho P. Rho

UK 0.008 0.011 -0.014|-0.072 -0.105 -0.067| 0.029 0.044 0.013]0.008 0.012 -0.013]| 0.039 0.058 0.047
0.443 0462 0.360 | 0.000 0.000 0.000 | 0.038 0.037 0542 | 0554 0559 0.538 [ 0.005 0.006 0.027

Japan 0.006 0.008 -0.065|-0.050 -0.071 -0.103| 0.032 0.048 0.059]-0.010 -0.014 0.003| 0.049 0.071 0.099
0.584  0.595 0.000 | 0.000 0.000 0.000 | 0.022 0.023 0.005 | 0491 0.493 0871 [ 0.001 0.001 0.000

us -0.024 -0.037 -0.084| 0.109 0.159 0.059|-0.012 -0.017 -0.031| 0.023 0.035 0.021( 0.085 0.125 0.128
0.018  0.017  0.000 | 0.000 0.000 0.000 | 0.399 0426 0.135 | 0.096 0.093 0.315 [ 0.000 0.000 0.000

Germany -0.008 -0.012 -0.081|-0.138 -0.202 -0.186] 0.008 0.012 -0.015-0.021 -0.032 -0.052|-0.033 -0.049 -0.053
0.429 0420 0.000 | 0.000 0.000 0.000 | 0573 0574 0479 | 0127 0125 0.013 [ 0.020 0021 0.012

France 0.003 0.005 -0.060]-0.121 -0.177 -0.174} 0.026 0.038 0.006 |-0.014 -0.020 -0.044]-0.028 -0.041 -0.054
0735 0.752  0.000 | 0.000 0.000 0.000 | 0.068 0.071 0791 | 0.330 0337 0.038 [ 0.049 0.049 0.010

Italy 0.007 0.010 -0.051]-0.049 -0.064 -0.071} 0.033 0.050 0.003]-0.007 -0.009 -0.047]-0.037 -0.049 -0.068
0.479 0495 0.001 | 0.000 0.000 0.000 | 0.017 0.018 0.879 | 0668 0676 0.026 [ 0.019 0.020 0.001

Canada 0.000 0.000 0.006|0.108 0.159 0.121|0.075 0.112 0.094]0.083 0.124 0.111] 0.114 0.169 0.173
0.974 0.986 0.677 | 0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000 [ 0.000 0.000 0.000

HK 0.009 0.014 -0.014| 0.069 0.103 0.041| 0.016 0.024 0.019] 0.045 0.067 0.047] 0.095 0.140 0.130
0.358 0.350 0.374 | 0.000 0.000 0.007 | 0254 0260 0.371 | 0001 0.001 0.024 [ 0.000 0.000 0.000

China 0.006 0.051 0.000] 0.027 0.041 0.019| 0.084 0.125 0.097
0.695 0.699 0982 | 0.055 0052 0379 | 0.000 0.000 0.000

Czech Rep. 0.035 0.054 0.038]-0.026 -0.037 -0.053-0.016 -0.023 -0.031
0.013 0015 0.070 | 0.078 0081 0012 | 0285 0.280 0.142

Netherlands 0.013 0.020 -0.011/-0.021 -0.032 -0.048]-0.033 -0.049 -0.051
0.354 0347 0611 | 0130 0130 0021 | 0019 0.020 0.016

Finland 0.026 0.039 0.018]0.004 0.006 -0.007{-0.005 -0.007 -0.003
0.062 0.066 0.385 | 0.788 0768 0747 | 0717 0751  0.890

Hungary 0.044 0.065 0.055]0.033 0.044 0.025]| 0.019 0.025 0.043
0.002 0.002 0.009 | 0.037 0036 0243 | 0230 0.228 0.039

Poland 0.046 0.069 0.057]0.028 0.042 0.037] 0.038 0.056 0.064
0.001  0.001 0.007 | 0.043 0045 0077 | 0007 0.008 0.002

Russia 0.082 0.120 0.098]0.095 0.138 0.101] 0.123 0.178 0.152
0.000 0.000 0.000 | 0.000 0.000 0.000 | 0.000 0.000 0.000

Saudi Arabia 0.024 0.036 0.027]0.066 0.098 0.069| 0.130 0.192 0.144
0.087 0.087 0.199 | 0.000 0.000 0.001 | 0.000 0.000 0.000

Venezuela 0.025 0.037 0.030] 0.041 0.061 0.042| 0.078 0.116 0.084
0.074 0.076 0.159 | 0.004 0004 0.047 | 0.000 0.000  0.000

Spain 0.014 0.021 -0.006/-0.026 -0.038 -0.057|-0.044 -0.066 -0.073
0.305 0312 0785 | 0.066 0068 0.007 | 0.002 0.002 0.001

Switzerland 0.009 0.013 -0.022]-0.038 -0.057 -0.076(-0.058 -0.086 -0.090
0534 0523 0299 | 0.007 0007 0000 | 0000 0.000 0.000

Note: The table reports the dependence measures ingltiitnKendall's Tau (K. Tau), Spearman’s Rho (S.
Rho), and Pearson’s Rho (P. Rho) for pre- and Rast-periods and three denominations: Stable Agdesg
Currency (SAC), U.S. Dollar (USD), and Euro (EURhe p-values are in italics.

Dependence measures are also compared based omoen base currency. In
pre-Euro period there is a large economic andssiEdily significant difference across
all the correlation measures for USD- and SAC-denated data. The latter case yields
significant, large, and often negative dependeneasures (e.g. -0.107 Kendall's tau
parameter for Germany under SAC-denomination casb)le the former results in

mostly insignificant and somewhat weak coefficigletg). 0.006 Kendall's tau parameter
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for Germany under USD-denomination case). The pcithanges greatly after the
creation of Euro. The dependence measures for seoists become the exact opposites.
In other words, the coefficients that were not Higant in pre-Euro period become
statistically significant in post-Euro period aniders versa. This pattern is observed for
both SAC and USD denomination cases. The only dxoeps Canadian stock market
index which in almost all cases appears (except®b-denominated data in pre-Euro
period) to be strongly and significantly associatdth Brent oil price series. Similar
results are found for Russian, Saudi Arabian, aeadéZuelan stock market index returns
and oil price returns. To a smaller degree, thegbnigs can be applied to Polish, Swiss,
and Hungarian stock index returns and oil priceeseas well.

The choice of currency appears to be importanh@slependence results greatly
change for most of the stock market indices. Fojonitg of cases, EUR- and SAC-
denominated series yield similar and more condistiependence results than USD-
denominated series (e.g. Finland, Saudi Arabiac&®epublic, etc). Moreover, there
appears to be a significant difference betweerlépendence structure of developed and
developing countries (e.g. Germany and US versissiRand Poland). Stock markets of
most developed countries exhibit no correlatiorhwval price series, whereas weak but
significant measures of dependence are observeahdst of the developing countries.
The possible explanation for such results is tloe faat most developed countries have
better functioning financial markets and are lassceptible to small changes, while the

developing countries are largely affected by smiadinges.
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Finally, the three dependence measures are comp&mzharman’s rho and
Kendall's tau result in nearly the same associat@asures, and only in few cases the
Pearson’s rho differs in both significance and degree of dependence (e.g. UK for
post-Euro period under the USD denomination casmeYuela for post-Euro period
under the SAC denomination case, lItaly for pre-Bagdod under USD-denomination
case). Hence, results are not greatly affectedhbydependence measure and the oll
price series used. However, there is a markedrdiffe in pre-and post-Euro periods
implying that the creation of Euro changed the dyita of the financial markets of the
developed countries (e.g. UK, US, France, ltalyrn@y, etc). In addition, the
development status of countries is important amgtritical role in understanding the
relationship between the oil price series and theksmarket indices. Finally, the choice
of the base currency greatly changes the dependeaasures implying its crucial role
in obtaining accurate results. Most of the stockkatindices have very small and
mostly insignificant dependence measures whichhaglly sensitive upon different
scenarios. This is consistent with the results nteploby Huang et al. (1996) who found
that oil futures returns have no impact on stockketaindices such as S&P 500. We
find that the only relatively strong and signifitassociation is observed for Canadian
stock market index returns and Brent oil price meguregardless of the different
scenarios. Strong association is also found forsRns Saudi Arabian, Venezuelan,

Polish, and Hungarian stock market index returmsahprice returns.
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3.4.2 Copula Results

The estimated copula parameters for each sceaggioeported in Tables 3.3 to
3.7. There are some differences noticed for differdenomination scenarios. For
example, in pre-Euro period SAC-denominated sehase slightly larger copula
parameters than the USD-denominated cases. Forpéxa@umbel copula parameter
estimates for USD-denominated data is 1.001 antlfé&r Canada and HK (with Brent
oil price series), respectively, whereas, the eséd® change under the SAC-
denomination case becoming 1.083 and 1.058, ragplct On the other hand, in post-
Euro period USD-denominated series have larger npetexr estimates than EUR-
denominated series, and those have larger parahter the SAC-denominated series.
Hence, in copula estimation the choice of a baseepay is crucial and depending on
that, copula results can change.

The use of Brent oil price series versus Ope@iide series changes the results
somewhat, but there is no consistency to be abhlaake solid conclusions as to how
results change. In some cases and for some coputdidns, the parameters are larger
when Opec oil series is used, whereas, in somes daseopposite is true. Hence, the
only possible conclusion made is that the copulearpaters are not the same under

different oil price series.
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Table 3.3 Estimated Copula Parameters for USD-denom  inated Data in Pre-Euro Period

|Norma| k:layton ‘2 Clayton F|Iackett Flank G|1mbe| R.|Gumbe| | Student t | SJC
UK-Brent 0.028 0.037 0.024 1.087 0.162 1.015 1.017 0.028 27.606 0.000 0.000
Jap-Brent 0.024 0.014 0.036 1.118 0.219 1.017 1.008 0.029 27.411 0.000 0.000
US-Brent -0.036 -0.025 -0.009 0.893 -0.222  1.001 1.000 -0.037  19.777 0.000 0.000
Germ-Brent 0.009 0.019 0.012 1.063 0.121 1.009 1.011 0.014 16.809 0.000 0.000
Fran-Brent 0.011 0.018 0.017 1.042 0.081 1.009 1.012 0.014 19.359 0.000 0.000
Ital-Brent -0.002 0.003 0.004 1.034 0.065 1.002 1.002 0.003 18.178 0.000 0.000
Cana-Brent 0.012 0.023 0.001 1.022 0.043 1.001 1.010 0.012 52,505 0.000 0.000
HK-Brent 0.025 0.034 0.015 1.096 0182  1.012 1.016 0.027 41976 0.000 0.000
UK-Opec 0.029 0.040 0.032 1.088 0.161 1.018 1.022 0.028 14.970 0.000 0.000
Jap-Opec 0.000 -0.007 0.012 1.045 0.086 1.007 1.000 0.004 27.350 0.000 0.000
US-Opec -0.035 -0.032 -0.021 0.926 -0.153  1.000 1.000 -0.033 27.509 0.000 0.000
Germ-Opec -0.002 -0.001 0.008 1.020 0.040 1.004 1.000 0.002 21.046 0.000 0.000
Fran-Opec 0.001 0.000 0.004 1.037 0.072 1.006 1.000 0.005 27.515 0.000 0.000
ItaI-Opec 0.005 0.018 -0.009 1.063 0.120 1.000 1.003 0.009 27.451 0.000 0.000
Cana-Opec 0.019 0.020 0.013 1.063 0.123 1.006 1.008 0.020 52.395 0.000 0.000
HK-Opec 0.017 0.024 0.006 1.077 0.148 1.007 1.008 0.019 50.691 0.000 0.000

Note: The table contains the estimated parameters éofolfowing copula functions: Normal, Clayton,
Rotated Clayton (R. Clayton), Plackett, Frank, GamBotated Gumbel (R. Gumbel), Student t, and
Symmetricized Joe-Clayton (SJC).

Table 3.4 Estimated Copula Parameters for SAC-denom  inated Data in Pre-Euro Period

|Norma| k:layton l|2 Clayton Filackett Flank Gl.umbel R.lGumbeI | Student t | SJC
UK-Brent -0.078 -0.031 -0.046 0.754 0.000 1.000 1.000 -0.088 11.796 0.000  0.000
Jap-Brent -0.051 -0.041 -0.027 0.863 0.000 1.001 1.000 -0.052 27.616 0.000  0.000
US-Brent 0.142 0.142 0.169 1.628 0.947 1.099 1.089 0.154 12.044 0.041  0.015
Germ-Brent -0.177 -0.073 -0.098 0.558 0.000 1.000 1.000 -0.188 10591 0.001  0.001
Fran-Brent -0.163 -0.076 -0.090 0.579 0.000 1.000 1.000 -0.172  10.372  0.000  0.000
Ital-Brent -0.057 -0.023 -0.050 0.734 0.000 1.000 1.000 -0.076 21.045 0.000  0.000
Cana-Brent 0.147 0.163 0.136 1576 0.909 1.083 1.001 0.152 27.798 0.008  0.035
HK-Brent 0.102 0.115 0.094 1.415 0.679 1.058 1.066 0.109 19.095 0.000 0.021
UK-Opec -0.114 0.000 -0.059 0.660 0.000 1.000 1.000 -0.129 8437 0.000 0.000
Jap-Opec -0.088 -0.063 -0.066 0.787 0.000 1.000 1.000 -0.087 27.859 0.000  0.000
US-Opec 0.184 0.189 0.228 1.913 1.263 1.136 1.122 0.202 10.777 0.081  0.023
Germ-Opec -0.233 -0.084 -0.112 0.465 0.000 1.000 1.000 -0.247 9302 0.000  0.000
Fran-Opec -0.218 -0.100 -0.100 0.501 0.000 1.000 1.000 -0.225 10.126 0.000  0.000
Ital-Opec -0.056 -0.033 -0.053 0.762 0.000 1.000 1.000 -0.074 44182 0.000  0.000
Cana-Opec 0.181 0.195 0.191 1.796 1.165 1116 1.117 0.189 20.691 0.091 0.108
HK-Opec 0.108 0.127 0.097 1.445 0.716 1.064 1.072 0.117 15.849 0.000 0.103

Note Note The table contains the estimated parameters éoiolfowing copula functions: Normal,
Clayton, Rotated Clayton (R. Clayton), Placketgrik; Gumbel, Rotated Gumbel (R. Gumbel), Student t,
and Symmetricized Joe-Clayton (SJC).
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[Normal [Clayton R. Clayton Hlackett Fank Glimbel R.|Gumbel |  Studentt | SJC
UK-Brent 0.061 0.058 0.067 1.230 0.404 1.037 1.033 0.064 19.323 0.001 0.001
Jap-Brent 0.065 0.056 0.065 1.196 0.358 1.034 1.028 0.068 100.000 0.001 0.001
US-Brent -0.016 0.006 0.000 0.951 0.001 1.005 1.005 -0.018 15.014 0.001 0.001
Germ-Brent  0.020 0.019 0.036 1.075 0.140 1.018 1.011 0.021 15,506 0.001 0.001
Fran-Brent  0.053 0.067 0.047 1.191 0.342 1.027 1.035 0.055 15.948 0.000 0.002
Ital-Brent 0.059 0.076 0.048 1.234 0413 1.031 1.044 0.065 18.311 0.000 0.006
Cana-Brent 0.157 0.177 0.164 1.618 0.954 1.095 1.105 0.163 14.030 0.023 0.043
HK-Brent 0.030 0.029 0.042 1.049 0.095 1.020 1.017 0.027 27.529 0.000 0.000
Ch-Brent 0.005 0.000 0.018 1.016 0.031 1.006 1.002 0.005 57.351 0.000 0.000
Cze-Brent 0.053 0.068 0.041 1.191 0.344 1.027 1.035 0.057 27.611 0.000 0.003
Neth-Brent  0.035 0.040 0.035 1.140 0.259 1.019 1.020 0.038 27.553 0.001 0.001
Finl-Brent 0.060 0.057 0.057 1.241 0425 1.030 1.034 0.065 46.946 0.001 0.001
Hung-Brent 0.067 0.073 0.053 1.224 0.407 1.030 1.041 0.070 79.989 0.001 0.001
Pola-Brent  0.084 0.087 0.086 1.273 0.474 1.047 1.047 0.085 27.711 0.003 0.002
Russ-Brent  0.099 0.114 0.086 1.410 0.671 1.052 1.066 0.105 27.681 0.001 0.017
Saud-Brent  0.036 0.074 0.008 1.089 0.164 1.011 1.034 0.034 18.747 0.001 0.001
Vene-Brent 0.037 0.036 0.033 1.129 0.240 1.018 1.022 0.040 100.000 0.001 0.001
Spai-Brent  0.026 0.042 0.017 1.127 0.233 1.016 1.022 0.032 18.888 0.001 0.001
Swit-Brent  0.028 0.016 0.050 1.109 0.204 1.023 1.013 0.030 17.376 0.001 0.001
UK-Opec 0.042 0.044 0.039 1.155 0.284 1.021 1.026 0.045 27.513 0.001 0.001
Jap-Opec 0.050 0.039 0.060 1.131 0.245 1.029 1.020 0.051 65.174 0.001 0.001
US-Opec -0.027  0.000 0.000 0.946 0.001 1.002 1.002 -0.025 27.583 0.001 0.001
Germ-Opec  0.002 0.001 0.010 1.024 0.047 1.003 1.005 0.003 27.425 0.001 0.001
Fran-Opec  0.027 0.043 0.013 1.098 0.185 1.005 1.023 0.030 27.456 0.000 0.000
Ital-Opec 0.034 0.056 0.007 1.141 0.264 1.006 1.030 0.039 27.445 0.000 0.000
Cana-Opec 0.111 0.141 0.096 1.414 0.689 1.059 1.079 0.119 16.453 0.000 0.043
HK-Opec 0.031 0.045 0.019 1.072 0.139 1.009 1.024 0.032 62.090 0.000 0.000
Ch-Opec 0.009 0.003 0.025 1.042 0.080 1.011 1.005 0.010 27.482 0.000 0.000
Cz-Opec 0.056 0.067 0.053 1.199 0.357 1.032 1.037 0.060 17.235 0.000 0.001
Neth-Opec  0.016 0.010 0.033 1.068 0.129 1.017 1.009 0.019 18.883 0.001 0.001
Finl-Opec 0.036 0.035 0.033 1.127 0.236 1.016 1.020 0.038 70.185 0.001 0.001
Hung-Opec 0.069 0.080 0.060 1.237 0419 1.036 1.044 0.072 27.684 0.001 0.002
Pola-Opec  0.066 0.077 0.053 1.235 0.420 1.029 1.040 0.070 27.583 0.001 0.001
Russ-Opec  0.111 0.132 0.097 1.455 0.735 1.060 1.075 0.118 19.331 0.001 0.028
Saud-Opec  0.028 0.064 0.009 1.069 0.127 1.009 1.032 0.026 14.031 0.000 0.002
Vene-Opec 0.029 0.030 0.027 1.103 0.194 1.013 1.015 0.031 56.447 0.001 0.001
Spai-Opec  0.012 0.015 0.017 1.053 0.101 1.012 1.010 0.014 27.468 0.001 0.001
Swit-Opec  0.012 0.000 0.035 1.071 0.134 1.015 1.004 0.016 19.136 0.001 0.001

Note: The table contains the estimated parameters éofolfowing copula functions: Normal, Clayton,
Rotated Clayton (R. Clayton), Plackett, Frank, GamBRotated Gumbel (R. Gumbel), Student t,

Symmetricized Joe-Clayton (SJC).
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Table 3.6 Estimated Copula Parameters for SAC-denom inated Data in Post-Euro Period

[Normal [Clayton R. Clayton Hlackett Flank Glmbel R.[Gumbel |  Studentt | SJC

UK-Brent 0.027  0.027 0.031 1.107 0.203 1.018 1.011 0.029 27.434 0.001 0.001
Jap-Brent 0.017 0.023 0.013 1.029 0.058 1.005 1.010 0.018 100.000 0.001 0.001
US-Brent 0.026  0.040 0.036 1.075 0.142 1.021 1.024 0.026 12.013 0.001 0.001
Germ-Brent -0.016 0.000 0.007 0.964 0.001 1.006 1.002 -0.016 18.180 0.001 0.001
Fran-Brent  0.006 0.024 0.004 1.033 0.064 1.006 1.010 0.008 19.298 0.000 0.000
Ital-Brent 0.010 0.032 0.000 1.077 0.145 1.002 1.014 0.014 27.362 0.000 0.000
Cana-Brent 0.167 0.188 0.184 1.699 1.039 1.110 1.113 0.177 12.582 0.039 0.042
HK-Brent 0.050 0.044 0.056 1.144 0.271 1.029 1.024 0.050 27.532 0.001 0.000
Ch-Brent 0.021  0.006 0.025 1.099 0.187 1.009 1.002 0.023 100.000 0.000 0.000
Cze-Brent -0.012 0.013 0.000 0.967 0.001 1.002 1.006 -0.012 27.474 0.000 0.000
Neth-Brent  -0.008 0.000 0.000 0.993 0.001 1.002 1.002 -0.007 27.508 0.001 0.001
Finl-Brent 0.033 0.030 0.026 1.125 0.234 1.013 1.018 0.035 85.920 0.001 0.001
Hung-Brent 0.024  0.011 0.010 1.048 0.095 1.003 1.002 0.018 100.000 0.001 0.001
Pola-Brent  0.056  0.063 0.051 1.185 0.333 1.029 1.033 0.057 27.620 0.001 0.001
Russ-Brent  0.106  0.128 0.094 1474 0.749 1.063 1.075 0.117 15.864 0.001 0.026
Saud-Brent 0.074  0.108 0.038 1.257 0.451 1.027 1.054 0.077 27.640 0.001 0.013
Vene-Brent 0.044  0.048 0.039 1.165 0.300 1.023 1.029 0.047 27.450 0.001 0.001
Spai-Brent  -0.022  0.000 0.000 0.968 0.001 1.002 1.002 -0.019 27.581 0.001 0.001
Swit-Brent  -0.027  0.000 0.002 0.932 0.001 1.008 1.002 -0.028 27.546 0.001 0.001

UK-Opec 0.001 0.002 0.004 1.027 0.053 1.008 1.002 0.002 62.478 0.001 0.001
Jap-Opec -0.013  0.000 0.000 0.933 0.001 1.002 1.002 -0.015 100.000 0.001 0.001
US-Opec 0.036  0.047 0.036 1.133 0.245 1.024 1.025 0.040 15.436 0.001 0.001
Germ-Opec -0.046 0.000 0.000 0.880 0.001 1.002 1.002 -0.049 100.000 0.001 0.001
Fran-Opec  -0.034  0.000 0.000 0.912 0.001 1.002 1.002 -0.036 100.000 0.000 0.000
Ital-Opec -0.018 0.008 0.000 0.988 0.001 1.002 1.002 -0.017 100.000 0.000 0.000
Cana-Opec 0.121  0.149 0.113 1456 0.744 1.068 1.084 0.129 14.991 0.003 0.036
HK-Opec 0.068 0.070 0.052 1.222 0.408 1.027 1.037 0.071 100.000 0.000 0.002
Ch-Opec 0.040 0.029 0.042 1.187 0.339 1.018 1.017 0.044 45.051 0.000 0.000
Cz-Opec -0.023  0.006 0.000 0.933 0.001 1.002 1.003 -0.024 27.338 0.000 0.000
Neth-Opec  -0.041  0.000 0.000 0.894 0.001 1.002 1.002 -0.042 27.293 0.001 0.001
Finl-Opec -0.004 0.003 0.000 0.988 0.001 1.002 1.002 -0.004 100.000 0.001 0.001
Hung-Opec 0.021  0.017 0.007 1.041 0.081 1.006 1.004 0.016 100.000 0.001 0.001
Pola-Opec  0.038  0.059 0.011 1.140 0.262 1.007 1.027 0.040 80.029 0.001 0.001
Russ-Opec  0.133  0.160 0.122 1599 0.918 1.079 1.092 0.145 18.041 0.002 0.044
Saud-Opec  0.087 0.112 0.067 1.316 0.538 1.039 1.062 0.091 18.157 0.001 0.012
Vene-Opec 0.053  0.053 0.050 1.206 0.366 1.025 1.030 0.057 51.186 0.001 0.001
Spai-Opec  -0.050 0.000 0.000 0.867 0.001 1.002 1.002 -0.051 44.303 0.001 0.001
Swit-Opec  -0.065 0.000 0.000 0.838 0.001 1.002 1.002 -0.066 46.493 0.001 0.001

Note: The table contains the estimated parameters éofolfowing copula functions: Normal, Clayton,
Rotated Clayton (R. Clayton), Plackett, Frank, GamBRotated Gumbel (R. Gumbel), Student t,
Symmetricized Joe-Clayton (SJC).
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|Norma| |Clayton lli Clayton F|Iackett F|ank Gljmbel R.|Gumbe| | Student t | SJC
UK-Brent 0.069 0.062 0.076 1244 0432  1.039 1.033 0.072 27588 0.003  0.001
Jap-Brent 0.075 0.078 0.072 1223 0402  1.040 1.040 0.078 52406 0.001  0.002
US-Brent 0.104 0.130 0.104 1360 0601  1.063 1.072 0107 10443 0.03 0.028
Germ-Brent  -0.033 0.000 0.000 0.905 0001  1.003 1.002 -0.035 15.641 0.001  0.001
Fran-Brent -0.018 0.002 0.000 0.948 0001  1.002 1.002 -0.019 100.000 0.000  0.000
Ital-Brent -0.033 0.000 0.000 0931 0001  1.002 1.002 -0.036 100.000 0.000  0.000
Cana-Brent ~ 0.208 0.244 0.227 1912 12718 1138 1.146 0217 12777  0.054  0.080
HK-Brent 0.110 0.107 0.114 1376 0645  1.061 1.060 0113 27.640 0.010  0.007
Ch-Brent 0.089 0.079 0.086 1373 0633  1.046 1.044 0.09 100.000 0.003  0.001
Cze-Brent 0.003 0.022 0.004 1000  0.001  1.004 1.012 0.003 18245 0.000  0.000
Neth-Brent -0.029 0.000 0.000 0.924 0001  1.002 1.002 -0.029 27532 0.001  0.001
Finl-Brent 0.020 0.016 0.017 1076 0144  1.008 1.010 0.021 93195 0.01  0.001
Hung-Brent ~ 0.031 0.021 0.035 1138 0259  1.016 1.008 0.044 100.000 0.001  0.001
Pola-Brent 0.070 0.082 0.062 1226 0397  1.036 1.043 0071 27.670 0.001  0.003
Russ-Brent 0.143 0.168 0.147 1645 0960  1.093 1.100 0156 11.964 0.013  0.043
Saud-Brent 0.150 0.191 0.125 1602 0937 1079 1.106 0157 19.273 0.001  0.072
Vene-Brent 0.093 0.107 0.089 1351 0585  1.053 1.062 0098 17821 0.001  0.014
Spai-Brent -0.051 0.000 0.000 0.879 0001  1.002 1.002 -0.050 27.603 0.001  0.001
Swit-Brent -0.053 0.000 0.000 0.851 0001  1.006 1.002 -0.056 19.521  0.001  0.001
UK-Opec 0.054 0.042 0.066 1182 0327  1.034 1.021 0.055 27529  0.001  0.001
Jap-Opec 0.075 0.067 0.078 1209 0381  1.037 1.035 0.078 94832 0.01  0.001
US-Opec 0.133 0.154 0.142 1511 0806  1.084 1.089 0140 10961 0.017  0.031
Germ-Opec  -0.061 0.000 0.000 0.831 0001  1.002 1.002 -0.063 27.286  0.001  0.001
Fran-Opec -0.058 0.000 0.000 0.838 0001  1.002 1.002 -0.061 100.000 0.000  0.000
Ital-Opec -0.071 0.000 0.000 0.814 0001  1.002 1.002 -0.076 100.000 0.000  0.000
Cana-Opec  0.175 0.211 0.176 1690 1039 1107 1122 0182 13588 0.021  0.073
HK-Opec 0.144 0.149 0.142 1527 0863  1.080 1.084 0148 56.699 0.013  0.027
Ch-Opec 0.123 0.120 0.125 1534 0858 1071 1.072 0131 27163 0.011  0.007
Cz-Opec -0.014 0.000 0.000 0.957 0001  1.002 1.003 -0.015 27.317  0.000  0.000
Neth-Opec -0.063 0.000 0.000 0.829 0001  1.002 1.002 -0.065 27.261  0.001  0.001
Finl-Opec -0.020 0.000 0.000 0935 0001  1.002 1.002 -0.021 100.000 0.001  0.001
Hung-Opec 0.037 0.005 0.063 1168 0304  1.028 1.006 0.052 100.000 0.001  0.001
Pola-Opec 0.061 0.082 0.033 1204 0368  1.020 1.040 0.063 72303 0.001  0.003
Russ-Opec 0.185 0.214 0.198 1859 1218 1124 1127 0198 14423 0.033  0.063
Saud-Opec 0.184 0.218 0.185 1792 1155 1111 1.129 0193 14543 0016  0.080
Vene-Opec 0.115 0.124 0.116 1469 0746 1.067 1.073 0122 27222 0006 0.015
Spai-Opec -0.081 0.000 0.000 0781 0001  1.002 1.002 -0.084 48975 0.001  0.001
Swit-Opec -0.098 0.000 0.000 0747 0001  1.002 1.002 -0.102 27.159  0.001  0.001

Note: The table contains the estimated parameters éofolfowing copula functions: Normal, Clayton,
Rotated Clayton (R. Clayton), Plackett, Frank, GamBotated Gumbel (R. Gumbel), Student t,

Symmetricized Joe-Clayton (SJC).
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Finally, observing the results across pre- and-poso periods, one can see that
the creation of Euro certainly changes the copwaults. Nearly all the copula
parameters become larger after the creation of ,Eaxwept for the Normal and Student
copula parameters. This implies that similar to thependence measures, copula
parameters do change in the post-Euro period. Aghahe choice of oil price series,
base currency, and the creation of Euro changesctpeila results, overall, the
parameters of almost all the copula functions anéegsmall in all cases. Moreover, in
some cases the parameters are at the lowest indspula functions. Therefore, one
major implication is that oil prices and stock netrikndices are nearly independent in
almost all scenarios. In addition, the developnstaitius of a country appears to have no
bearings on the copula results implying that weakid dependence between the oll
prices and stock market indices is a global phemameThe only strong relation is
found between Canadian stock market index and ith@ioe series which in almost all

cases has quite large parameter estimates.

3.4.3 Tail Dependency Results

Examination of tail dependencies which are basedthe estimated copula
parameters will illustrate potential asymmetriegefationship between oil price series
and stock market indices. Appendix A provides thie dependencies for all scenarios.
As mentioned earlier, Normal, Plackett, and Fraofutas have zero tail dependencies.
Student t copula provides symmetric tail dependenevhich are rather small in all

cases.
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In pre-Euro period tail dependencies of Clayton Radated Clayton copulas in
most cases are zero (or very small) except for 8aminated Canada, U.S., and HK
stock market indices. Moreover, (lower) tail depamce of Clayton copula is much
higher than the (upper) tail dependence of Rot&tiagton copula for Canada and HK
series. This means that oil prices and stock maridites for Canada and HK have
higher dependencies in case of a crash than a b8pecifically, oil price decrease
affects the stock market indices for Canada andhitie than oil price increase. Similar
results are reported for post-Euro period. The sppas true for U.S. implying that oil
price increase has more influence on U.S. stockebandex than oil price decrease in
pre-Euro period. This result is also observed ist{ituro period for EUR-denominated
data. The finding that U.S. has the observed asymngeconsistent with the results of
Ciner (2001) who reported that oil prices affea¢ B&P 500 returns in a nonlinear
fashion. In post-Euro period, Russia and Saudi ildrappear to have the same pattern as
Canada and HK. In addition, EUR-denominated stoekket indices of China, Poland,
and Venezuela are observed to have asymmetridegiéndencies as well implied by
Clayton and Rotated Clayton copulas.

For most series in pre-Euro period, the tail depecd implied by Rotated
Gumbel copula which captures the left tail dependeis larger than that of Gumbel
copula (captures the right tail dependence). Mageathe highest tail dependencies are
reported for U.S. and Canada in pre-Euro periodSAC-denominated data. Similar
results are also observed in post-Euro period wakdependencies implied by Gumbel

and Rotated Gumbel copulas are the largest fordzatiae. 0.136 vs. 0.132 for Rotated
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Gumbel and Gumbel, respectivef§))In general, most series have higher left tail
dependence (Rotated Gumbel) than right tail depsrel¢Gumbel). Among those, the

largest and most prominent left tail dependenciesf@ Canada, Russia, Saudi Arabia,
Venezuela, and HK. This implies during market remas or downturns, the relation of

stock market index returns and oil price returnsolo@e stronger for these countries. The
only exceptions are for UK, Japan, U.S., Germank, bhd China which have larger

right tail dependence implying higher dependencedse of bull markets than bear
markets.

In general, SJC copula tail dependences are rathall across the scenarios and
series. The largest dependencies are observedaf@da, Russia, and Saudi Arabia (HK
is large only in pre-Euro period). Moreover, themvl higher left (lower) tail
dependencies than upper tail dependencies whicn aggply that the relationships
between oil price and stock index returns are georuring the market downturn for
Canada, Russia, and Saudi Arabia.

Overall, the tail dependencies change dependinifp@mil price series used, but
not significantly. Moreover, there is also notickealdifference in tail dependence
measures among the three denomination cases (tmammileation cases for pre-Euro
period). For example, if considering SAC-denomidatata for the post-Euro period, we
can see the there is a pattern according to whaleldped countries tend to have
smaller tail dependence measures than the devglapantries. However, such pattern

vanishes with the use of other base currenciess,Tihaan be concluded that the choice

% Numbers are reported from the Appendix A (A.7).
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of base currency and the oil price series is ingmirtand can change the tail

dependences.

3.4.4 Copula Selection Results

To select the best copula model, three selectibarier, reported in Appendix B,
are used: Log Likelihood Functions (LLF), Akaikefdrmation Criterion (AIC),
Bayesian Information Criterion (BIGfAccording to the log-likelihood measure,
Student t copula is found to be the best copulaehimdthe pre-Euro period (except for
the case of Canada for which Placket copula isbé) regardless of base currency
choice. These results do not change upon the clobittes oil price series. On the other
hand, the post-Euro period provides quite diffenegults. Student t copula model is
ranked the highest for many bivariate cases regssdbf the base currency choice.
However, the Opec and Brent oil series result meohat different model rankings in
each case. Overall, the pre-Euro and post-Eur@gerffor the same series) are very
different in some cases. For example, in pre-E@nod, Gumbel, Rotated Gumbel, and
SJC copula models were never reported to be rathieefirst, while in post-Euro period,
few bivariate models are explained the best byelwepula models. Overall, Student t,
Clayton, Gumbel, Rotated Gumbel, and Placket modedsranked the highest among
the nine copula models available. This finding asgistent with all the available cases

analyzed. However, so far we have analyzed anderhttie models based on only log-

% |n addition, as a Goodness-of-Fit test the copalameters are estimated from the Kendall’s tau
coefficient. In addition, as a Goodness-of-Fit thstcopula parameters are estimated from the Hiéxda
tau coefficient.
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likelihood functions. To get a robust ranking, oneeds more than one selection
criterion. Therefore, AIC and BIC selection critedre applied.

In the pre-Euro period all three information aige(i.e., AIC and BIC) mostly
show the superiority of the Student t and Plackgputa models. However, slight
difference between the SAC- and USD-denominaticsesas observed, with the main
difference being that Student t copula is foundbéothe best for more series under the
SAC-denomination case than the USD-denominatiore.cAsnong the other copula
models Gumbel, Rotated Gumbel, Clayton, and Norooglulas are also ranked the
highest for some series in the USD-denominatioe.cékese information criteria results
are mostly consistent with the log-likelihood fupat results and imply that for the
majority of the series in the pre-Euro period Shideand Placket copula functions fit
the best. This result is unchanged regardlesseobitiprice series used.

On the other hand, the post-Euro period providey déverse results both in
terms of the denominations and the oil price sarsedd. Student t, Normal, and Rotated
Gumbel copulas are the top ranked models undeEthe-denomination and Brent oil
case. Although top ranked Normal copula models daigifor most of the series similar
to the Brent oil case, Placket copula is also fotmdbe the best fitting models in the
Opec oil case. In the USD-denomination case, OpécBaent oil series provide quite
similar results. The best models in this case &ndedt t, Rotated Gumbel, Gumbel, and
Placket copula models. The results are partiallpsstent with the log-likelihood

results.
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Finally, the case of SAC-denomination is analyzed #he large difference
between the Opec and Brent oil price scenariobseived. For the former case Normal,
Plackett, and Gumbel copulas dominate, and onlygéweral series Clayton, Students t,
and Rotated Gumbel copulas are ranked the highestase of the Brent oil price
scenario, Student t, Clayton, and Placket copuldetsoare the most frequently observed
best models, and for only few Gumbel and Rotatechk&l copula models are ranked
the highest. The log-likelihood results for thisesario are not consistent with the
information criteria results.

Overall, Student t copula model is ranked highrfarst of the bivariate models
in almost all the cases. Similarly, Normal copulad®l is also ranked high, followed by
the Gumbel, Rotated Gumbel, and Placket copulastly,&Clayton and Rotated Clayton
copulas also fit the models the best in some cas®®ng the least favorable copula
models are the SJC and Frank. Note that therevésyadistinct difference between the
pre- and post-Euro periods. The pre-Euro periothastly explained by the elliptical
copulas while the post-Euro period is characterizgc mixture of the copula models,
hence not leaning towards one common copula maddeteover, the denomination
scenarios are somewhat different from one anothdri some special cases, they are
completely different. Hence, it can be concludeat the choice of the best copula model
is very sensitive to the choice of base currendyalfy, the Opec and Brent oil price
scenarios provide generally similar outcome exdepta few cases when the highly
ranked models completely change upon scenarios lisedvorth noting that there is no

specific ordering of copulas for the models basethe development status of a country.
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Therefore, it can be concluded that the best comadels do not change depending on
the developed and developing countfies.

Patton (2004) and others have stated that Studmmuia is appropriate for most
models which is certainly true for this study. Hoee for some cases if there is any
observed asymmetry in the tails, then other copsileh as Gumbel or Clayton would

fits the model better.

35 Conclusions

Given the increasing importance of oil for globabeomic progress, more and
more articles emerge aiming to explain the impddhecreasing demand for oil and oil
prices on the global economy. However, only a féwdy the relationship of oil prices
and stock market indices. There still is a gap ndarstanding the oil price and stock
market co-movement. Moreover, the inclusion of @asi countries with different levels
of economic development is not well explored. Thieralso limited information about
the asymmetric dependence between oil prices sanéstock market indices. There is
no information on adjustment for exchange rate dyina in the existing literature on oil
and stock market series in order to obtain resh#is without exchange rate risk. Hence,
this paper addresses all these issues to fullyratate the relationship between the oll

price series and stock market indices. Specificaly address the following questions:

%" To save space only the post-Euro period with EléRothination for both Opec and Brent oil price
scenarios is reported in Appendix B. The other aden (i.e. USD and SAC denominations for pre- and
post-Euro periods) are available upon request.
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do oil prices and stock market indices move togéthe there any asymmetry in the
relationship? Does the dependence (if any) increlasimg extreme events? Does the
dependence change for pre- and post-Euro periods® e choice of oil price series
matter? Does the choice of base currency mattettiete a specific dependence pattern
for developed and developing countries?

The application of copula functions enables ustwlel with greater flexibility
and explore various dependence measures. We fatdhb choice of oil price series,
base currency, and the creation of Euro is indegabitant. With regard to oil price
series, we find that the copula parameter estinatdsthe tail dependences moderately
change depending on which oil prices series is.ugkueover, the information criteria
and log-likelihood functions also differ based twe use of a particular oil price series.
On the other hand, almost all the results changerntting on the base currency chosen.
Given the minimum variance of SAC, it can be asdliitmat SAC-denominated data
would provide more accurate results as the exchaaigeeffect is nearly eliminated in
this case. However, because nearly no differencanking copula models was observed
in pre-Euro period, we can conclude that the adepseries is not an important issue in
pre-Euro period. This is not the case for the fase period. Lastly, the creation of
Euro (1999) alters the results greatly, especiallyase of the correlation or dependence
measures. Hence, it can be concluded that dynamofitise dependence structure and
degree between the oil prices and stock market@sdthanges as new major events (i.e.

creation of Euro) occur.
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Overall, the dependence measures, copula paraneisr well as the tall
dependence measures are quite small throughousdbearios. One of the major
bivariate case that stands out to be relativetynstrall the time is the oil price series and
the Canadian stock market index, regardless ottle@ario used (e.g. time periods, oil
price series, currency denomination, etc). Moreower found that left tail dependence
is relatively stronger for this relationship thdre tright one implying that the two series
are more likely to crash together than boom togetineother words, association of oil
price return and Canadian stock market index rebecomes stronger during the market
downturn. Similarly, Russian and Saudi stock markédex returns also appear to be
more correlated with the oil price series duringarket downturn than market progress.
In most cases, this notion holds for Venezuela el @ne of the possible explanations
is that Canada, Russia, Saudi Arabia, and Venearelall large (Canada is relatively
large) oil producing countries; hence any oil priecrease is viewed adversely in the
eyes of investors and results in larger adverseaainpn stock markets than if the oll
prices had to rise.

On the other hand, many large oil consuming coestsuch UK, U.S., HK (in
some cases), Germany (in some cases), and Chimatdeoave such relatively strong
association with oil price returns. Moreover, asyetmy in the form of right tail
dependence is observed for these countries. Thkesthat the association of oil prices
and stock market index returns for these countrexomes stronger during the market
upturn (boom) than market downturn. This findingy ggerhaps be explained by Ciner

(2001) findings that there is bidirectional nonelam causality between the stock index
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returns and oil price returns. In other words, ktatarket returns also affect the oil
prices. Perhaps, that's the reason that both mié@nd stock market index returns move
together more when both markets are booming. Furibee, there seems to be a pattern
of developed countries and developing countriesngagdifferent tail dependences. The
former ones tend to have lower tail dependencesivelthe developing countries. This
is perhaps due to the fact that financial markéteweloping countries are less efficient
and tend to overreact to even a slight oil pricengfe.

Investors are the main beneficiaries of this stadyit presents broad empirical
evidence of relationship between the oil price statk market index returns. Presented
for various possible scenarios, results will previdore options for investors to evaluate
the possible co-movement between the two serieadifition, the results also provide

important information regarding the diversificatiand possible gains from it.
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CHAPTER IV
THE STRUCTURE AND DEGREE OF DEPENDENCE AMONG U.S.

INDUSTRY SECTORS

4.1 Introduction

Portfolio diversification is a common strategy tatigate investment risk.
Previous researchers have presented alternatiestment strategies with the aim of
minimizing the variance and/or maximizing the resgirHence, any new methodology
that addresses portfolio risk is of interest tohbiolvestors and academicians. The recent
developments in the area of statistics, mathemadiod finance, particularly the correct
formulation of the dependence among various assetsbecoming more and more
attractive for risk management purposes. Investarslity from a portfolio of
investments is affected by the dependence struttecause it will directly affect the
distribution of portfolio returns and have a directpact on the optimal investment
portfolio and diversification.

There are a limited number of studies that provgteme information on
relationships among stock prices indices of inguskassification sectors in U.S. (Alli et
al., 1994; Kim and Bessler, 2007). However, theeenaany limitations and the provided
information is not complete. This fact emphasizes importance of empirical analysis

that would foster our knowledge regarding the wmelustry dependency. Kim and
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Bessler (2007), attempted to fill this gap by exanyg the price transmission among ten
aggregations of U.S. equity prices. Their findirgfgw strong interaction among the
sectors. Moreover, Information Technology is repdrto be exogenous and along with
Industrials and Health Care sectors has signifiagafitence on the other sectors.
However, they explored the causality structure ftbmnlinear perspective (e.g. linearity
assumption is imposed). Moreover, most of the papevestigating the dependence
structure among a set of stock indices from diffeiadustries or international markets
assume multivariate normality and use linear cati@h statistics. However, more recent
studies find strong evidence of the presence ofmasgtry in the dependence structure
such as higher correlation during the market domstthan upturns (Longin and Solnik,
2001; Ang and Chen, 2002; Chen, Fan, and Pattdd¥;20hollete et al., 2005; Hu,
2006). As a result, models that allow more flexipiare proposed. With this regard,
copulas (Sklar, 1959) have gained much attentiormwdeling possible nonlinear
dependence structure of multivariate time serissinicreasing importance stems from
the fact that it facilitates an easy and flexibleltwariate distribution calculation using
only the marginal distributions and the copula fiox which is invariant to
transformation (Chollete et al., 2005). Moreovbeg tail dependence which measures the
dependence structure of upper and lower tails &ofous copula families is a direct
property of a copula function. Hence, general ddpaene, including symmetric and
asymmetric, and linear and non-linear, can simplgdlculated via copulas.

The use of copula functions in portfolio investmemid dependence structure

among the stock indices of various industry sectatslead to more accurate results
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relative to the conventional methods used befoendd, the purpose of this paper is to
study the general relationship of aggregations db.lequity prices from a copula
perspective. Specifically, we want to explore thiel-industry dependence structure and
the presence of possible asymmetries in the restip. The rest of this chapter is
organized as follows. Section 4.2 covers the datdun this paper, followed by the
copula functions which are introduced in SectioB. 4Section 4.4 introduces the
estimation model followed by the interpretation tbe results which is covered in

Section 4.5. Finally, conclusions close the chajpt&ection 4.6.

4.2 Data

This chapter uses data comprised of Standard & 8#P) 500 Global Industry
Classification Sector (GICS) indices for ten sextdihe series are daily for the period of
January 2, 1995 — July 1, 2008. The starting dataken according to the availability of
the GICS index. The GICS is an enhanced industgsdication system which was
developed by S&P and MSCI Barra (www.standardandpoom). Its creation was
benefited by global financial community in a wagtlthey now have a consistent set of
global sector and industry definitions, which isedisfor portfolio analysis, asset
management, and the sector and industry compariGewsv.standardandpoor.com).
Unlike other existing industry classifications (S8@nd NAICS), the GICS is based on

the company’s financial performance. The GICS iadistart with the initial value of
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100 on January 2, 1995 and change over time dtleetohanges in market valuation of
the individual equities (Kim and Bessler, 2007).

The GICS is a four-level structure. The higheseles comprised of 10 sectors:
Consumer Discretionary (CD), Consumer Staple (Eergy (EN), Financials (FI),
Health Care (HC), Industrials (IN), Information Tewology (IT), Materials (MS),
Telecommunication Services (TC), and Utilities (UThe second level is broken down
into 24 industry groups. The third level breaks dothe industry groups into 68
industries which in turn are comprised of 154 suthistries (fourth level}?

The majority of the sectors have changed over taoeording to Figure 4.1.
However, the most notable change is observed ®rThsector during the IT bubble
period (1999). The FI has increased until the bago of 2007 when signs of housing
market crisis, credit crunch, and overall economeltdown became more noticeable
causing the FI to decrease. On the other handugradcrease in oil prices especially
last couple of years caused the increase in ENil&ly UT shows increasing trend
especially starting from 2004. In general, mosttted sectors increased largely from
2003-2004 to the end of the sample, except foiTh@nd TC. The descriptive statistics
is reported in Table 4.1 which shows that IT haes highest mean, followed by the FI
and HC. On the other hand, UT has the smallest meaterms of standard deviation,
again IT has the highest standard deviation foltblg the EN and FI. In addition, the

normality assumption for all the series is rejeci#tke series are also non-stationary at

3 Interested readers are referred to Standard & $wa@bsite (www.gics.standardandpoors.com) for more
information on GICS. In addition, details about fi®etors, industry groups, industries, and substioks
are also given in Kim and Bessler (2007).
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S&P 500 GICS Sector Indices
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Figure 4.1 Historical Plot of S&P 500 GICS Indicedor Period of January 2, 1995 to
December 31, 2007

Table 4.1 Descriptive Statistics on Levels of SectData

CD Cs EN Fl HC IN IT MS TC uT
Mean 222.1477 215.2949 259.1996 326.9154 317.0029 241.7135 345.2631 156.4919 162.8089 148.1306
Median 242.6050 220.5400 214.4500 342.1400 347.5500 250.8850 318.2650 142.9500 138.7500 147.8900
Maximum 318.5400 306.6100 668.8100 509.5500 444.9800 381.1600 988.4900 285.9100 339.2800 223.9100
Minimum 99.65000 98.73000 99.15000 100.0000 98.31000 100.0000 99.04000 96.04000 79.00000 77.27000
Std. Dev. 57.39984 43.79138 129.1449 96.83920 85.70080 63.48212 164.6054 41.24536 61.58628 32.97880
SSkeW”eS -0.656710 -0.624623 1.287404 -0.563319 -1.129144 -0.233029 1.439383 1.258757 1.213328 0.330697
Kurtosis  2.278586 3.267205 3.757687 2.766102 3.104883 2.489208 5.232200 3.838559 3.470623 2.200747
é]:rnaque 329.5284 239.4978 1057.147 194.3001 750.0201 70.16404 1947.374 1033.276 896.6641 157.9394
P-value  0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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levels, but the transformation of all the serietoitogarithmic difference induces

stationarity (Table 4.2%° More detailed analyses of the data and resido#tsifs.

Table 4.2 Dickey-Fuller Test of Stationarity for Setor Returns Data
CD CS EN Fl HC IN IT MS TC uT

-57.76 -60.59 -61.07 -58.25 -57.18 -59.33 -59.898.83 -60.71 -57.8]

T-test
Statistics

Note: All the returns data are stationary in levels %t dignificance level.

4.3 Copula Approach

Most of the existing papers studying the linkagd arterdependence among the
industry sectors overlook the possible existence asfymmetric or nonlinear
relationships, and instead concentrate on commuoseyl linear dependence. To fill the
gap and study the dependence between the GICS®ittimm broader perspective, this
paper proposes the use of copula functions. Thierlétas been extensively used in
modeling both the contemporaneous dependence hbetwagables and temporal
dependence structure of time series variables (@&®ian and Scaillet, 2003; Chen and
Fan, 2006; Patton, 2006, and Ng, 2006). Moreowgpula functions have been largely
used in modeling observations using flexible fumdl forms (Kim et al., 2007b). The
use of copula in many other areas is growing anaynmaw uses of copula functions are
being researched in recent studies. In generajstbecome one of the hot subjects and

tools currently used in finance and economics diteme. The details about copula

%9 The DF results are only reported for the transtatrdata. The DF result for the levels data is atbégl
from author upon request.
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functions, their uses, and possible extensionsh&ressence of many books and papers,
such as Joe (1997), Nelsen (2006), Cherubini €Qfl4), Patton (2004, 2006a, 2006b),
Embrechts et al. (2002), Genest and Rivest (1998), Genest and Favre (2007). The
brief review of copula for bivariate observationsigh can be extended to higher
dimensions is given next.

The copula function is defined by the famous Sklgf1959) theorem. Let’s
consider that X, and X,are two continuous random variables with univariate
distribution functionsF,(X,) andF,(X,), and joint distribution functiok,,(X,, X,).
The Sklar’'s theorem states that there is a unigoetionC, such that

Fo (X1, X3) = C(F (X)), R (X3)) - (4.1)
In a nutshell, copula function is the joint distriton of (U,,U,) whereU, = F (X,)
andU, = F,(X,) are uniformly distributed on (0, 1) (Kim et alQ@b). Consequently,

the uniform distribution of the variables of intstes obtained separately from the

dependence structure between them. Bivariate cdpntdions have three properties:
1. C(U,U,) isincreasingirJ, andU,.
2. COU,)=CU,0=0andC(LU,)=U,, CU,) =U,.
3. fU,<U,andU,, <U,,, then
cy,u,)-cCu,uU,)-Ccu,,,Uu,)+CU,,U,,)=0.
In words, copula function (joint probability) wilhcrease if at least one of the marginal

distributions increases given that the other maigiiistribution is constant. Likewise, it

will increase if both margins increase. In additimnt distribution is zero if at least one



of the margins has zero probability. Similarly, #@pula function equals the marginal
distribution if the other margin has probabilityafe (Rockinger and Jondeau, 2001).
Copula functions are also linked with some assmtiameasures, such as
Kendall's tau and Spearman’s rank correlation (¢gn2002; Hu, 2006; Marshal and
Zeevi, 2002f° Conversely, the Pearson’s correlation coefficisntependent not on
copula but the marginal distributions which faibspgrovide information on strengths on
different parts of the distribution. Moreover, fany correlated variates with the same
copula Kendall's tau is constant, whereas Pearsooreelation can change with the
same copula. In fact, copula parameters can betljirestimated via Kendall's tau and

vice versa given the following relation (Venter02(:
r=4f [ C(uv)dC(u,v) -1 (4.2)
0Jo ' ! ) '

Given that the tail dependencies of each parametpula function emphasize
different parts of the probability distribution, i detrimental to use as many copula
functions (with varying tail dependencies) as nsagsto understand the dependence for
the whole probability distribution. For such purppthe following six copula functions
are used in this paper: Normal, Clayton, Gumbetaia Gumbel, Student t, and SJC.
Gumbel, Rotated Gumbel, Symmetricized Joe-Clay&iC|], and Clayton copulas are
asymmetric and have more probability concentratedhe tails. On the other hand,

Normal and Student t copulas are symmetric. Thetional forms for each of the six

0 The Kendall's tau is defined as the probabilitcohcordance and probability of discordance, shah t
= Pr(( X, = X,)(Y, - Y,) > 0) = Pr(( X, = X,)(Y, - Y,) < 0) - ltis calculated from the rank of data,
rather than the sample which is the case for Pe&@rsorrelation. Therefore, it gives the non-paraine
measure of dependence (Nelsen, 2006; Marshal aend, Z29002; Venter, 2002; Hu, 2006).
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copula functions used are given in Table %4.3n addition, Table 4.3 contains

information on the relationship between the Keridathu and each of the copula

functions. Finally, the tail dependencies of eagputa function are given in Table 4.3.

Table 4.3 Functional Forms, Tail Dependences, and dfdall’'s Tau Relations for
Five Copula Functions

Normal Copula

cbF C. (U, v ) =@ (®7(U), (V)]
PDF -1/ 12 102 ) 1 L o1

6, (UV: ) = —— exp{(b (@)? + () ~200 (O W), O W) O

V1-p* 2(1-p%) 2
Paramete| o[ (-11)
r Range
Kendall's | = 2arcsinp)
Tau P ™
Tall /1 =/1 =O
Depende | - Y
ncy
Clayton Copula

CDF 1

Co(uv;@)=(u?+v?i-1°
PDF 1

Co(u,v;0) = A+ O)(uv) U +vi-1) "¢
Paramete| g[] [—1, ) \{O}
r Range
Kendall's | 7 =_6_
Tau o o+2
Tail A =210 1 =0
Depende | ~ " U
ncy

Gumbel Copula

CDF

Cs(u,v;0) = exp{

~((~logu)” + (—Iogv)‘f)f’}

*1 The functional form of SJC copula function is podvided in this paper because it is very long.
Interested reader is referred to see Patton (2004).




Table 4.3 (Continued)

PDF . o1 1
Cs(U,V;0) = Ce (u,v; 9)(logu togv) - (((—Iogu)" +(~logv)?)? +5—1}

uv((-logu)? +(~logv)®)” 2

Paramete| & [1[1, o)
r Range

Kendalls | 7 =1-1
Tau ¢ g

Tail A =0 A =2-2Y¢
Depende | ~ - v
ncy

Rotated Gumbel Copula

CDF Crc(U,v;0) =u+v-1+C,(1-ul-v;9)

PDF Crs(U,V;0) =Cs (1-ul-V;0)

Paramete| & [1[1, «)
r Range

Kendalls | 7 =1-1
Tau ¢ ¢

Tail A =2-2" 4, =0
Depende | ~ " oy ’
ncy

Student t Copuld™

CDF Cs(u,v; V) =T, (T, (U), T, (V)

PDF =
oy = P+ 2020t (1) 7 (T )™ (Tv_l(U)2 +T,1 (V) - 2pTJ1(u)T;1(v)j |
cs(u,v,pv) = x| 1+ =
Vit (v 1241~ p* v(i-p°)
Paramete| o[ (-11),v >2
r Range
Kendall's r = 2arcsin(p)
Tau pv g
Tail
Depende | } =2x|1-t Vv +1p+1
ncy p+1

It can be observed that only normal copula has mEtalependence. Student t copula

has symmetric tail dependence, whereas Clayton,i@yrand Rotated Gumbel copulas

“2|n Student t copula functioﬁfv'land t, are the inverse cdf and pdf of Student t, resyalgt In
addition, T, , is the bivariate Student t cdf.
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have asymmetric tail dependencies. Finally, thedependencies of SJC are the SJC

copula parameters in reverse order (Marshal andi Z2@02; Patton, 2004).

4.4 Estimation Methods

Copula functions allow separation of the margingind the best distributions
before restoring the joint distribution. This igpesially important if the series are not
independently and identically distributed (i.i.dThe industry sectors used in this paper
are tested for serial correlation and heterosketiyst We find that the common
technique of filtering data with AR-GJR(1,1) modrlres these problems and makes
data i.i.d. The filtered standardized residuals @ren used to obtain the marginal
distribution functions for stock returns of each thie ten sectors. Following the
Canonical Maximum Likelihood (CML) estimation methahe marginal distributions
are estimated using the empirical distribution ifleérsmoothing). On the other hand,
following the Inference for the Margins (IFM), 1096 the tails of distributions are
estimated using the Generalized Pareto Distribu{@RD) (Embrechts et al., 1997;
Mikosch, 2003; McNeil et al., 2005). In essencés thduces more accurate distribution
estimation that better captures heavy-tails ofrésduals. The estimated distribution is
then transformed into uniform distribution to fateite the estimation of the copula
functions.

The second stage of the CML estimation method deitttsthe copula parameter

estimation. For such purpose, the estimated mdrdis&ributions from the first stage
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are used. Copula parameters are then estimatedigthrdiaximum Likelihood

Estimation (MLE) method, such that
~ T ~ ~
6, = argmax, " Inc(F,(Xy),F,(X5);6,) (4.3)
t=1

where g, is the copula parameter am:gj(xn) is the estimated™ marginal distribution

(Cherubini et al., 2004). Besides the fact that ut@pparameters provide useful
information on the structure of dependence betvikerseries of interest, they are useful
in estimating other dependence measures such dspaindencies and Kendall's t&u.

Each of the six copulas provide unique informatiout the pairwise relations
among the industry sectors. However, it is impdrtanexplore which copula describes
each relationship best. We adopt the commonly wsedLikelihood Function (LLF),
Akaike Information Criterion (AIC), and Bayesiarfdnmation Criterion (BIC) methods
to rank the copula functions (Dias and Embrech®®42 Rodriguez, 2007; Chollete et
al., 2005). The LLF is essentially maximized anel topula model with the highest LLF
is ranked the highest. Conversely, the AIC and BIGrmation matrices are minimized,
hence the copula model with the lowest AIC and B#lue is ranked the highest. The
AIC and BIC are given as:

AIC =-2x LLF +2x Parameters (4.4)

BIC = -2x LLF +log(T) x Parameters (4.5)

3 Table 4.1 above illustrates these relationships.



where T is the number of observations (e.g. 3521 the Parameters is the number of
copula parametefé.Furthermore, as a goodness-of-fit test, the patenmef the highest
ranked copula models are also calculated from #mk of the data, i.e. through the
Kendall's tau given the equations in Table 4.3. Brd#ference between the copula
parameters estimated through maximum likelihoodaoks of data implies that copula

model is well specified.

45 Results

The degree of dependence in this paper is measmitbdKendall's tau and
Pearson’s correlation coefficient. The results athbdependence measures are reported
in Table 4.4. According to Table 4.4, stock retuafissector aggregations in U.S. are
very interrelated with large overall degree of defence. Moreover, all the relationships
are statistically significant with p-value closeziero. The weakest degree of dependence
is 0.19 found between IT and MS and IT and EN ssctoonversely, 0.60 is the highest
degree of dependence observed between IN and GbrseOther strong relationships,
which are higher than 0.50, are found between Bl @D, FI and IN, and IN and MS
sectors. Similar results are reported for Pearsooreelation. The only difference is the
degree of dependence which is slightly higher remchp to 0.81 in case of Pearson’s
correlation. The strength and the weakness ofdlaionships are consistent under both

dependence measures. Although it is hard to ppdracular industry sector having the

4 Only the Student t and SJC copula functions hareparameters. The rest of the copula models have
only one parameter.
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Table 4.4 Degree of Dependence Measured by Kendall' s Tau and Pearson's Rho

CD EN Fl HC IN IT MA TC uT
Kendall's Tau 0.431 0.266 0.436 0.459 0.451 0.259 0.346 0.332 0.317 cs
Pearson's Rho 0.566 0.398 0.591 0.662 0.605 0.296 0.505 0.435 0.443
Kendall's Tau 0.269 0.558 0.415 0.603 0.457 0.452 0.412 0.300 cD
Pearson's Rho 0.396 0.763 0.570 0.819 0.651 0.642 0.584 0.408
Kendall's Tau 0.262 0.256 0.323 0.191 0.364 0.225 0.316 EN
Pearson's Rho 0.396 0.393 0.471 0.267 0.522 0.332 0.472
Kendall's Tau 0.428 0.565 0.395 0.416 0.394 0.335 El
Pearson's Rho 0.585 0.780 0.556 0.600 0.567 0.472
Kendall's Tau 0.437 0.302 0.313 0.326 0.289 HC
Pearson's Rho 0.606 0.389 0.442 0.442 0.411
Kendall's Tau 0.455 0.514 0.402 0.324 IN
Pearson's Rho 0.657 0.723 0.578 0.467
Kendall's Tau 0.315 0.347 0.190 T
Pearson's Rho 0.426 0.516 0.253
Kendall's Tau 0.300 0.283 MA
Pearson's Rho 0.423 0.408
Kendall's Tau 0.293 TC
Pearson's Rho 0.389

Note: All the coefficients are significant at 1%, 5%, ak@s6 significance levels.

highest dependence across all the other sectorsawebserve that EN has relatively
weak relationship with the other industry sectorsicl is consistent under the two
dependence measure.

Consistent with the Kendall's tau and Pearson’s dopula parameters, reported
in Table 4.5, reveal that the EN has the smallegtila parameters with almost all other
industry sectors, except for the IN, MS, and UTni&rly, UT and TC sectors also have

relatively small copula parameters with some ofdtieer sectors. Furthermore, in
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Table 4.5 Parameter Estimates of Six Copula Functio ns

Normal Clayton Gumbel R. Gumbel Student SJC
CD-CS 0.618 1.151 1.727 1.757 0.643 4357 0.406 0.483
CS-EN 0.390 0.559 1.309 1.335 0.402 8.910 0.133 0.278
CS-FI 0.625 1.156 1.730 1.765 0.647 4950 0.406 0.482
CS-HC 0.660 1.249 1.801 1.834 0.673 5.611 0.444 0.504
CS-IN 0.639 1.247 1.768 1.818 0.662 4412 0.409 0.515
CS-IT 0.410 0.596 1.361 1.375 0.434 5422 0.206 0.278
CS-MS 0.496 0.822 1.468 1.511 0.519 5.182 0.232 0.398
CSs-TC 0.499 0.787 1.469 1.498 0.517 6.079 0.265 0.367
CS-UT 0.486 0.755 1.438 1.472 0.498 6.622 0.230 0.365
CD-EN 0.388 0.583 1.318 1.347 0.408 6.577 0.129 0.296
CD-FI 0.751 1.691 2.261 2.301 0.766 5956 0.536 0.597
CD-HC 0.589 1.088 1.666 1.705 0.619 4.119 0.368 0.470
CD-IN 0.790 2.038 2.520 2.662 0.803 5949 0558 0.661
CD-IT 0.646 1.181 1.778 1.798 0.665 5.685 0.437 0.482
CD-MS 0.630 1.186 1.722 1.772 0.650 6.011 0.375 0.503
CD-TC 0.590 1.003 1.619 1.651 0.604 8.694 0.349 0.440
CD-UT 0.447 0.676 1.396 1.418 0.468 6.819 0.206 0.326
EN-FI 0.392 0.571 1.327 1.347 0.410 6.188 0.165 0.276
EN-HC 0.373 0.563 1.295 1.332 0.390 6.736 0.099 0.295
EN-IN 0.461 0.727 1.416 1.449 0.483 6.011 0.208 0.353
EN-IT 0.294 0.397 1.220 1.237 0.310 7.134 0.091 0.184
EN-MS 0.503 0.826 1.475 1.515 0.527 6.489 0.231 0.395
EN-TC 0.327 0.452 1.251 1.269 0.345 7.848 0.104 0.216
EN-UT 0.470 0.713 1.411 1.440 0.483 8.899 0.204 0.348
FI-HC 0.601 1.116 1.679 1.725 0.628 4516 0.366 0.480
FI-IN 0.765 1.841 2.297 2.325 0.803 5949 0535 0.631
FI-IT 0.574 0.923 1.631 1.625 0.310 7.135 0.091 0.184
FI-MS 0.586 1.037 1.629 1.670 0.608 5.947 0.335 0.459
FI-TC 0.571 0.931 1.600 1.611 0.587 7.008 0.364 0.402
FI-UT 0.513 0.816 1.503 1.518 0.531 5.424 0.303 0.370
HC-IN 0.608 1.175 1.709 1.763 0.639 3.722 0.378 0.499
HC-IT 0.448 0.718 1.413 1.449 0.481 4.638 0.209 0.351
HC-MS 0.442 0.734 1.402 1.448 0.475 4399 0.178 0.368
HC-TC 0.466 0.743 1.437 1.466 0.498 5143 0.231 0.354
HC-UT 0.435 0.656 1.378 1.405 0.452 6.037 0.190 0.322
IN-IT 0.647 1.157 1.764 1.783 0.662 7.229 0.437 0473
IN-MS 0.702 1.462 1.921 1.979 0.717 5.842 0.460 0.564
IN-TC 0.568 0.968 1.594 1.624 0.587 5.845 0.340 0.428
IN-UT 0.488 0.773 1.457 1.483 0.506 5.701 0.250 0.367
IT-MS 0.475 0.742 1.453 1.473 0.502 4771 0.269 0.344
IT-TC 0.495 0.753 1.459 1.482 0.512 7.671 0.266 0.347
IT-UT 0.301 0.402 1.225 1.240 0.315 7.674 0.094 0.187
MS-TC 0.431 0.666 1.378 1.409 0.456 5.783 0.185 0.327
MS-UT 0.419 0.623 1.360 1.383 0.438 6.075 0.178 0.306
TC-UT 0.429 0.611 1.372 1.384 0.448 8.184 0.208 0.283

Note This table reports the parameter estimates o$itheopula models. The parameters are reported for
each sector combination.
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addition to the same pairs which are strongly dateel according to the dependence
measures (i.e. Fl and CD, Fl and IN, and IN and ,M8png relationships are also found
between CD and CS, CS and FI, CS and HC, CS an@I\and IT, CD and MS, FI and
HC, HC and IN, and IN and IT. These results, to safagree, are consistent with the
Kim and Bessler's (2007) Directed Acyclic Graph (GAresults where they estimate
the inter-sector relationship using contemporaneawsal model. Although causality is
not studied in this paper, the relationships detééh Kim and Bessler (2007) mostly
coincide with the strong dependencies reported his tstudy (through copula
parameters). However, copula-based model resulis:idre interrelated U.S. sectors.
Also, there is a strong evidence of asymmetridiaiahips which is not detected in Kim
and Bessler’s (2007) paper.

The Rotated Gumbel copula parameter estimatefiédomijority cases are higher
than Gumbel copula parameter estimates. Conseguéml dependence on the left tail
of the distribution is higher than that on the tigfand implying asymmetry for most
relations. Tail dependencies are considered todre mformative about the dependence
structure, than the copula parameters.

Similar to the degree of dependence and copulanpsea results, EN has
relatively small tail dependencies with nearly thk industry sectors (Table 4.6). The
highest tail dependencies are found for CD andANand IN, and Fl and CD pairs.
Nearly in all cases, the lower tail dependenceigbdr than the upper tail dependence

which is consistent either for the Gumbel and Ramta&umbel copulas, or for the SJC
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Table 4.6 Upper and Lower Tail Dependences for Five ~ Copula Functions

A A A A AN A A AN A AN A AN N AN N AN KA
CD EN Fl HC IN IT MS TC uT
Clayton 0.548 0.000 0.289 0.000 0.549 0.000 0.574 0.000 0.574 0.000 0.313 0.000 0.431 0.000 0.414 0.000 0.399 0.000
Gumbel  0.000 0.506 0.000 0.302 0.000 0.507 0.000 0.531 0.000 0.520 0.000 0.336 0.000 0.396 0.000 0.397 0.000 0.381
R. Gumbel 0.517 0.000 0.319 0.000 0.519 0.000 0.541 0.000 0.536 0.000 0.344 0.000 0.418 0.000 0.412 0.000 0.398 0.000| CS
Student  0.327 0.327 0.067 0.067 0.303 0.303 0.295 0.295 0.339 0.339 0.159 0.159 0.210 0.210 0.176 0.176 0.150 0.150
SJC 0.483 0.406 0.278 0.133 0.482 0.406 0.504 0.444 0515 0.409 0.278 0.206 0.398 0.232 0.367 0.265 0.365 0.230
Clayton 0.305 0.000 0.664 0.000 0.529 0.000 0.712 0.000 0.556 0.000 0.557 0.000 0.501 0.000 0.359 0.000
Gumbel 0.000 0.308 0.000 0.641 0.000 0.484 0.000 0.683 0.000 0.523 0.000 0.504 0.000 0.466 0.000 0.357
R. Gumbel 0.327 0.000 0.648 0.000 0.498 0.000 0.703 0.000 0.530 0.000 0.521 0.000 0.478 0.000 0.369 0.000| CD
Student 0.114 0.114 0.369 0.369 0.321 0.321 0.412 0.412 0.286 0.286 0.262 0.262 0.154 0.154 0.132 0.132
SJC 0.296 0.129 0.597 0.536 0.470 0.368 0.661 0.558 0.482 0.437 0.503 0.375 0.440 0.349 0.326 0.206
Clayton 0.297 0.000 0.292 0.000 0.385 0.000 0.175 0.000 0.432 0.000 0.215 0.000 0.378 0.000
Gumbel 0.000 0.314 0.000 0.292 0.000 0.368 0.000 0.235 0.000 0.400 0.000 0.260 0.000 0.366
R. Gumbel 0.327 0.000 0.317 0.000 0.387 0.000 0.248 0.000 0.420 0.000 0.273 0.000 0.382 0.000] EN
Student 0.125 0.125 0.104 0.104 0.162 0.162 0.072 0.072 0.169 0.169 0.068 0.068 0.093 0.093
SJC 0.276 0.165 0.295 0.099 0.353 0.208 0.184 0.091 0.395 0.231 0.216 0.104 0.348 0.204
Clayton 0.537 0.000 0.686 0.000 0.472 0.000 0.513 0.000 0.475 0.000 0.428 0.000
Gumbel 0.000 0.489 0.000 0.648 0.000 0.471 0.000 0.470 0.000 0.458 0.000 0.414
R. Gumbel 0.506 0.000 0.653 0.000 0.468 0.000 0.485 0.000 0.462 0.000 0.421 0.000| FI
Student 0.308 0.308 0.412 0.412 0.072 0.072 0.234 0.234 0.187 0.187 0.207 0.207
SJC 0.480 0.366 0.631 0.535 0.184 0.091 0.459 0.335 0.402 0.364 0.370 0.303
Clayton 0.554 0.000 0.381 0.000 0.389 0.000 0.394 0.000 0.348 0.000
Gumbel 0.000 0.500 0.000 0.367 0.000 0.361 0.000 0.380 0.000 0.346
R. Gumbel 0.518 0.000 0.387 0.000 0.386 0.000 0.396 0.000 0.362 0.000| HC
Student 0.357 0.357 0.213 0.213 0.220 0.220 0.200 0.200 0.147 0.147
SJC 0.499 0.378 0.351 0.209 0.368 0.178 0.354 0.231 0.322 0.190
Clayton 0.549 0.000 0.623 0.000 0.489 0.000 0.408 0.000
Gumbel 0.000 0.519 0.000 0.565 0.000 0.455 0.000 0.391
R. Gumbel 0.525 0.000 0.580 0.000 0.468 0.000 0.404 0.000] IN
Student 0.231 0.231 0.325 0.325 0.225 0.225 0.184 0.184
SJC 0.473 0.437 0.564 0.460 0.428 0.340 0.367 0.250
Clayton 0.393 0.000 0.398 0.000 0.178 0.000
Gumbel 0.000 0.389 0.000 0.392 0.000 0.239
R. Gumbel 0.399 0.000 0.404 0.000 0.251 0.000| IT
Student 0.218 0.218 0.130 0.130 0.064 0.064
SJC 0.344 0.269 0.347 0.266 0.187 0.094
Clayton 0.353 0.000 0.329 0.000
Gumbel 0.000 0.346 0.000 0.335
R. Gumbel 0.365 0.000 0.350 0.000| MS
Student 0.157 0.157 0.140 0.140
SJC 0.327 0.185 0.306 0.178
Clayton 0.322 0.000
Gumbel 0.000 0.342
R. Gumbel 0.350 0.000] TC
Student 0.093 0.093
SJC 0.283 0.208

Note Normal copula has zero tail dependencies, thu®tisncluded in the table. The tail dependencies a
estimated according to the equations in Table 4.3



copula. This confirms the long existing theory tlating a market downturn, stock
prices of most companies tend to be more correlii@a during the market upturn.
Similarly, in the case of industry sectors the ide#he same and the results show that
the relationships among the sectors are highenguhnie market downturn than a market
boom. However, the asymmetric copula models mayedhe best relative to the more
conventional copula models. Hence, the LLF, AlG] &iC are used to rank the copula
models (Table 4.7).

The Student t copula model is found to be the imeall cases except for the EN
and HC and FI and IT sectors. The best fitting ¢@poodel for EN and HC sectors is
the Rotated Gumbel copula, while for the latter pdormal copula model appears to be
the best. Consequently, it was found that mosthef dependencies are heavy-tailed
distributed but not necessarily asymmetrically.other words, most models seem to
have symmetric tail dependencies which capturdathails of the distributions.

The best copula models are then tested using theddlés tau and copula
relation. The estimated Student t copula paramet@rgy Kendall's tau are very close to
those estimated using maximum likelihood. Similathe difference is nearly zero for
copula parameter estimates of Rotated Gumbel amesh&la@opula for EN-HC and FI-IT
pairs, respectively. Consequently, the copula fonst are well specified. In other
words, there are negligible or no specificationoesrin terms of parametric copula
estimation, specifically, highest ranked copulainestion (i.e. Student t, Rotated

Gumbel, and Normal copulas).



11¢€

Table 4.7 The LLF, AIC, and BIC for the Highest Ran ked Copula Models

CD EN Fl HC IN IT MS TC Ut
LLF 964.96 313.63 963.67 1066.91 103565 380.41 565.10 552.26 510.45
AIC -1925.93 -623.26 -1923.35 -2129.83 -2067.30 -756.83 -1126.19 -1100.53 -1016.90] CS
BIC -1913.59 -610.93 -1911.01 -2117.50 -2054.96 -744.49 -1113.86 -1088.19 -1004.57
LLF 329.96 1537.70 872.96 1799.47 1016.58 956.67 77857 439.96
AIC -655.93 -3071.39 -1741.92 -3594.94 -2029.17 -1909.35 -1553.15 -875.93| CD
BIC -643.60 -3059.06 -1729.59 -3582.61 -2016.84 -1897.02 -1540.82 -863.59
LLF 339.50 303.99 47359 190.12 56297 226.94 461.53
AIC -674.99 -605.98 -943.18 -376.24 -1121.94 -449.87 -919.05| EN
BIC -662.66 -599.82 -930.84 -363.90 -1109.61 -437.54 -906.72
LLF 885.92 1799.47 704.63 798.16 73253 605.45
AIC -1767.84 -3594.94 -1407.26 -1592.32 -1461.05 -1206.91| FI
BIC -1755.51 -3582.61 -1401.09 -1579.99 -1448.72 -1194.58
LLF 945.61 476.38 478.18 498.02 411.43
AIC -1887.22 -948.75 -952.37 -992.05 -818.86| HC
BIC -1874.89 -936.42 -940.03 -979.71 -806.53
LLF 997.15 1254.45 734.73 530.86
AIC -1990.30 -2504.90 -1465.47 -1057.71| IN
BIC -1977.97 -2492.56 -1453.14 -1045.38
LLF 525.08 525.86 193.73
AIC -1046.16 -1047.73 -383.46( IT
BIC -1033.83 -1035.40 -371.13
LLF 411.84 384.99
AIC -819.68 -765.97| MS
BIC -807.35 -753.64
LLF 387.00
AIC -770.00| TC
BIC -757.67

Note: The best copula models for each two-sector contibimaare chosen based on the maximum LLF
and minimum AIC and BIC values. Minimum Studenbpula is the highest ranked copula model for all
the pairs except for the HC-EN and IT-FI which ardold and italics. Rotated Gumbel copula fits HC-
EN pairs the best and Normal copula is ranked ttlegst for IT-FI pair.

Table 4.8 Parameter Estimates of Highest Ranked Cop  ula Models via Kendall's Tau
CD EN Fl HC IN IT MS TC uT
0.626 0.405 0.633 0.660 0.651  0.396 0.517 0.499 0.478 CS
0.411 0.768  0.606 0.812  0.657 0.652 0.603 0.454 CD
0.401 1.343 0.486 0.295 0.541 0.346 0.476 EN
0.623 0.775 0.581 0.608 0.580 0.503 Fl
0.634  0.456 0.472 0.490 0.438 HC
0.656 0.722 0.591 0.488 IN
0.474 0.518 0.294 IT
0.454 0.430 MS
0.445 TC
Note: The table reports the Student t copula parametémates using Kendall's tau. The two pairs that
are best described by Rotated Gumbel and Normall@ape in bold and italics. HC-EN pair is desadibe
best by Rotated Gumbel copula, thus the parametestimated using the relation between the Kerdall’
tau and the Rotated Gumbel copula. Similarly, taemeter for FI-IT pair is estimated using the trefa
between the Kendall's tau and Normal Copula. Thasmbers are intended to be compared with the
parameter estimates of the selected copula moaetsTable 4.5.




4.6 Conclusions

Failure of many financial variables to satisfy tt@mality assumption originated
the need for more restrictive models to analyze dependencies among them. In
investment analysis such models are of great isitelge to the possible improvement of
risk management techniques. The diversificationctvhs considered to be central for
reducing investment risk can also be assessedghreuch models. Particularly, the
formulation of the “true” dependence among a setasfables can be used to calculate
the diversification gain (loss) (Hu, 2006).

The interdependence between the aggregations @.&. sector equity prices is
explored in this paper. The detection of possibsynmanetries in dependence is
specifically analyzed by using copula functionseTuse of copula functions eases the
modeling of joint distribution in such a way thaarginal distributions can initially be
separately modeled. This is especially critical wihbe variables deviate from the
normality assumption and the only way to model tjadistribution is by breaking it
down into margins and the copula. In addition, dagunctions are used for estimating
the dependence structure across ten industry senttre U.S.

Overall, the results are very consistent acrostergit dependence measures
applied in this paper. The industry sectors aréliligdependent upon each other which
are consistent with the results Kim and BesslerOT20 Although the lower tall
dependence structure is more signified than theewtgl dependence indicating some

degree of asymmetry, the best model that helpsagxplependencies between most of
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the industry sectors appears to be the Studemiulaavhich is symmetric and captures
the heavy tails of the distributions.

The Consumer Discretionary, Consumer Staples, Eial) and Industrials
sectors have strong relationships with other sectonversely, the Telecommunication
Services, Utilities, and Energy sectors do not havstrong relationship with other
sectors. Most of these findings are consistent WithKim and Bessler’'s (2007) DAG
results which provide contemporaneous linear depecel Consequently, it can be
implied that linear and non-linear (general) modisprovide somewhat similar results
in showing sectors are strongly related with eable but they differ greatly in terms of
providing information of possible asymmetries whighs detected by the copula-based
models. Moreover, the high interdependence achesaggregations of U.S. stock prices
implies that industry diversification gains may faérly small.. One of the reasons for
such findings might be the fact that the data usdtis study is aggregate masking any
possible inverse or no dependencies across cendustries disappear. Hence, these

results should be used with care especially foestment purposes.
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CHAPTER V

CONCLUSIONS

Time series modeling and dependence formulatiorfif@ncial markets is the
focus of this dissertation. Time series modelsusm®ed to investigate interrelationships
among the U.S. housing market, interdependenceeeetwil prices and stock market
indices, and inter-industry dependence acrossgbeegations of U.S. equity prices.

Housing prices of nine U.S. census divisions &rdied in the first essay. House
price series are found to be cointegrated, thusrer@eled by VECM. Furthermore, the
Directed Acyclic Graphs (DAGSs) are used to build tontemporaneous causal structure
among the house price series. The combination aEMEnd DAG results are used in
order to obtain data-driven identification. Justntified models can be obtained by
placing restrictions on the VECM according to théA® results. This proposed
identification method is data-driven and explaife tmodel much better than the
automatic identification included in many softwgseograms. The findings suggest
highly interrelated regional housing market in UM&reover, West North Central is the
leading cause for house price changes in otheomsgiSimilarly, Middle Atlantic and
New England also have significant influence in leopsice changes in the country. On
the contrary, the East North Central has the leapbrtant role in the U.S. housing

market. Overall, it can be concluded that houseegriof other regions, especially the



leading regions, should be considered for foremgstiouse price of any census
divisions.

Interdependence of oil prices and stock market@glacross many countries is
investigated in the second essay. Both oil prodyeind oil consuming, developing and
developed countries are included to obtain a moraptete picture of dependence. In
addition to U.S. Dollar (USD) and Euro (EUR), Stalflggregate Currency (SAC) is
used as a base currency for both oil price anckstoarket index series. The reason is
that a basket of currency (SAC) can minimize theherge rate risk. Hence, it provides
more accurate results free of exchange rate riflkthAse scenarios are studied using
copula functions which allow flexible calculatiofjoint distributions and measurement
of structure and degree of dependence.

The evidence shows weak (strong) dependence betniéagrices and stock
market indices for oil consuming (producing) nasonMoreover, the detected
asymmetry in the dependence suggests that durimgetdownturn (upturn) oil prices
and stock market indices are more correlated ire adsoil producing (consuming)
countries such as Canada, Russia, Saudi Arabiayandzuela (UK, France, Germany,
U.S., and China). There is negligible differencentaen the copula results for developed
and developing countries. However, significant geis detected between the pre- and
post-Euro period results. Specifically, the dep&debetween the oil prices and stock
market indices become more significant after tleaton of Euro.

Third essay analyzes the inter-industry dependeamoeng the U.S. equity

aggregations. The series are filtered by AR-GARCHbdels. The univariate
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distributions of the filtered residuals are furthesed in copula modeling. The results
offer strong sector interdependence which is ctesisacross all the dependence
measures. The least connected sectors include tilgies] Telecommunication
Services, and the Energy. Conversely, the mostreitded sectors are the Consumer
Discretionary, Consumer Staple, and Industrialshé&igh the dependence measure is
higher for the lower tails than the upper tails gumially implying asymmetric
dependence, the copula model that describes thgoreships the best is the Student t
copula. The latter is symmetric but captures thavidails of distribution. Overall,
results of this essay are very similar to thosenep by Kim and Bessler (2007) which
are obtained using linear causality models. Heitcean be concluded that for this
particular dataset the linear and non-linear, asgimm models provide essentially
similar results. Lastly, given that U.S. equity segations are strongly interrelated, the
diversification gains resulting from inter-industnwestments may be small.

All the three essays can be extended further reéthalyzing certain points that
were not considered in this dissertation, or byusieg on the limitations of each of the
essays. The limitations of dissertation are givanefach of the three essays. In Chapter
Il the limited dataset imposes certain restrictiemsthe number of lags and possible
exogenous variable inclusion. Also, census divigilata is used which averages out
house price changes at state level resulting inoimo house price series over time. In
Chapter lll, bivariate parametric copula functicare used instead of multivariate and
non-parametric copula functions. Limitations in @tea IV include the data set which is

aggregate and thus masks some of the industryfgpdoformation that could
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potentially result in profitable investment. Théseoom for improvement and extension

for each of the essays as detailed below:

1.

In Chapter I, out-of-sample forecasting shouldubed to test the accuracy of
the VECM model and DAG'’s causal structure results.

In Chapter Ill, multivariate copula models with then-linear causal
structure should be used to investigate generadatairucture. This would
be very helpful in determining the direction of thausality (i.e. whether
stock market indices affect the oil prices or weesa).

In Chapter IV, analyzing the data with VAR-Copulapeoach and applying
non-linear DAG will allow direct comparison of rdsuof non-linear and

linear models.
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APPENDIX A

TAIL DEPENDENCE PARAMETERS

A.1 Tail Dependence Parameters for Nine Copulas in

pre-Euro period for USD-Denominated Data

14z

Normal  Clayton R. Clayton Plackett Frank Gumbel  R. Gumbel Studentt  SJC
UK-Brent Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000
Jap-Brent Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000
US-Brent Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000
Germ-Brent Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.001 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.001 0.000
Fran-Brent Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000
\tal-Brent Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000
Cana-Brent Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
HK-Brent Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000
Note: For each of the copula function, the lower (laftfl upper (right) tail dependences are reported.
A.2 Tail Dependence Parameters for Nine Copulasin  pre-Euro period for USD-Denominated Data
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Studentt  SJC
UK-Opec Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.001 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.001 0.000
Jap-Opec Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Upper 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.001
US-Opec Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Germ-Opec Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
Fran-Opec Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000
Ital-Opec Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cana-Opec Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000
HK-Opec Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000
Upper 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000

Note: For each of the copula function, the lower (laftfl upper (right) tail dependences are reported.




A.3 Tail Dependence for Copulas in pre-Euro period

for SAC-Denominated Data

14

Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Studentt SJC
UK-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.002 0.000
Jap-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000
US-Brent Lower 0.000 0.007 0.000 0.000 0.000 0.000 0.110 0.009 0.015
Upper 0.000  0.000 0.016 0.000 0.000 0.121 0.000 0.009 0.041
Germ-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.002 0.001
Fran-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000
ltal-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cana-Brent Lower 0.000 0.014 0.000 0.000 0.000 0.000 0.112 0.000 0.035
Upper 0.000  0.000 0.006 0.000 0.000 0.103 0.000 0.000 0.008
HK-Brent Lower 0.000 0.002 0.000 0.000 0.000 0.000 0.084 0.001 0.021
Upper 0.000  0.000 0.001 0.000 0.000 0.074 0.000 0.001 0.000
Note: For each of the copula function, the lower (laftfl upper (right) tail dependences are reported.
Table A.4 Tail Dependence for Copulas in pre-Euro p  eriod for SAC-Denominated Data
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Student t SJC
UK-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.006 0.000
Jap-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
US-Opec Lower 0.000 0.026 0.000 0.000 0.000 0.000 0.145 0.016 0.023
Upper 0.000  0.000 0.048 0.000 0.000 0.159 0.000 0.016 0.081
Germ-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000
Fran-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
Ital-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cana-Opec Lower 0.000 0.029 0.000 0.000 0.000 0.000 0.140 0.001 0.108
Upper 0.000  0.000 0.027 0.000 0.000 0.139 0.000 0.001 0.091
HK-Opec Lower 0.000 0.004 0.000 0.000 0.000 0.000 0.091 0.002 0.103
Upper 0.000  0.000 0.001 0.000 0.000 0.081 0.000 0.002 0.000

Note: For each of the copula function, the lower (laftfl upper (right) tail dependences are reported.
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A.5 Tail Dependences USD-Denominated Data in post-Eur o period
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Studentt SJC
UK-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.044 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.048 0.000 0.000  0.001
Jap-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.037 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.045 0.000 0.000  0.001
US-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.007 0.001  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.006 0.000 0.001  0.001
Germ-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.015 0.001  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.025 0.000 0.001  0.001
Fran-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.046 0.001  0.002
Upper 0.000  0.000 0.000 0.000 0.000 0.036 0.000 0.001  0.000
ital-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.058 0.001  0.006
Upper 0.000  0.000 0.000 0.000 0.000 0.041 0.000 0.001  0.000
Cana-Brent Lower 0.000  0.020 0.000 0.000 0.000 0.000 0.127 0.005  0.043
Upper 0.000  0.000 0.015 0.000 0.000 0.117 0.000 0.005  0.023
HK-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.023 0.000  0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.028 0.000 0.000  0.000
Ch-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000  0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.008 0.000 0.000  0.000
Cze-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.046 0.000  0.003
Upper 0.000  0.000 0.000 0.000 0.000 0.036 0.000 0.000  0.000
Neth-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.027 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.026 0.000 0.000  0.001
Finl-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.045 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.040 0.000 0.000  0.001
Hung-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.054 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.040 0.000 0.000  0.001
Pola-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.062 0.000  0.002
Upper 0.000  0.000 0.000 0.000 0.000 0.061 0.000 0.000  0.003
Russ-Brent Lower 0.000  0.002 0.000 0.000 0.000 0.000 0.084 0.000  0.017
Upper 0.000  0.000 0.000 0.000 0.000 0.068 0.000 0.000  0.001
Saud-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.045 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.015 0.000 0.000  0.001
\Vene-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.030 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.024 0.000 0.000  0.001
Spai-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.029 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.022 0.000 0.000  0.001
Swit-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.017 0.001  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.031 0.000 0.001  0.001

Note: For each of the copula function, the lower (laftfl upper (right) tail dependences are reported.
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A.6 Tail Dependences USD-Denominated Data in post-E  uro period
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Studentt SJC
UK-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.035 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.001
Jap-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.027 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.039 0.000 0.000 0.001
US-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001
Germ-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.001
Fran-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
ital-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.041 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000
Cana-Opec Lower 0.000  0.007 0.000 0.000 0.000 0.000 0.099 0.002 0.043
Upper 0.000  0.000 0.001 0.000 0.000 0.076 0.000 0.002 0.000
HK-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.032 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000
Ch-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000
Cze-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.049 0.001 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.043 0.000 0.001 0.000
Neth-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.001
Finl-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.028 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.001
Hung-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.057 0.000 0.002
Upper 0.000  0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.001
Pola-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.053 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.039 0.000 0.000 0.001
Russ-Opec Lower 0.000  0.005 0.000 0.000 0.000 0.000 0.094 0.001 0.028
Upper 0.000  0.000 0.001 0.000 0.000 0.077 0.000 0.001 0.001
Saud-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.043 0.002 0.002
Upper 0.000  0.000 0.000 0.000 0.000 0.013 0.000 0.002 0.000
Vene-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.021 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.018 0.000 0.000 0.001
Spai-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.001
Swit-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.001

Note: For each of the copula function, the lower (laftfl upper (right) tail dependences are reported.
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A.7 Tail Dependences SAC-Denominated Data in post-E  uro period
Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Studentt SJC
UK-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.015 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.024 0.000 0.000  0.001
Jap-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.013 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.007 0.000 0.000  0.001
US-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.032 0.004  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.029 0.000 0.004  0.001
Germ-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.009 0.000 0.000  0.001
Eran-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.014 0.000  0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.008 0.000 0.000  0.000
tal-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.019 0.000  0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000  0.000
Cana-Brent Lower 0.000  0.025 0.000 0.000 0.000 0.000 0.136 0.008  0.042
Upper 0.000  0.000 0.023 0.000 0.000 0.132 0.000 0.008  0.039
HK-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.032 0.000  0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.038 0.000 0.000  0.001
Ch-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000  0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.012 0.000 0.000  0.000
Cre-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.008 0.000  0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000  0.000
Neth-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000  0.001
Finl-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.024 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.017 0.000 0.000  0.001
Hung-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.004 0.000 0.000  0.001
Pola-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.043 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.039 0.000 0.000  0.001
Russ-Brent Lower 0.000  0.004 0.000 0.000 0.000 0.000 0.094 0.002  0.026
Upper 0.000  0.000 0.001 0.000 0.000 0.080 0.000 0.002  0.001
Saud-Brent Lower 0.000  0.002 0.000 0.000 0.000 0.000 0.070 0.000  0.013
Upper 0.000  0.000 0.000 0.000 0.000 0.036 0.000 0.000  0.001
\Vene-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.039 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.031 0.000 0.000  0.001
Spai-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000  0.001
Swit-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000  0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.011 0.000 0.000  0.001

Note:For each of the copula function, the lower (leftl upper (right) tail dependences are reported.




A.8 Tail Dependences SAC-Denominated Data in post-E  uro period

Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel Studentt SJC
UK-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.001
Jap-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001
US-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.034 0.001 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.032 0.000 0.001 0.001
Germ-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001
Fran-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000
Ital-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000
Cana-Opec Lower 0.000  0.009 0.000 0.000 0.000 0.000 0.105 0.003 0.036
Upper 0.000  0.000 0.002 0.000 0.000 0.087 0.000 0.003 0.003
HK-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.002
Upper 0.000  0.000 0.000 0.000 0.000 0.036 0.000 0.000 0.000
Ch-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.024 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.025 0.000 0.000 0.000
Cze-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000
Neth-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001
Finl-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001
Hung-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.001
Pola-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.036 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.001
Russ-Opec Lower 0.000 0.013 0.000 0.000 0.000 0.000 0.114 0.001 0.044
Upper 0.000  0.000 0.003 0.000 0.000 0.099 0.000 0.001 0.002
Saud-Opec Lower 0.000  0.002 0.000 0.000 0.000 0.000 0.079 0.001 0.012
Upper 0.000  0.000 0.000 0.000 0.000 0.052 0.000 0.001 0.001
Vene-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.040 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.033 0.000 0.000 0.001
Spai-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001
Swit-Opec Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001

Note:For each of the copula function, the lower (leftfl upper (right) tail dependences are reported.
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Normal Clayton R. Clayton Plackett Frank Gumbel R.Gumbel Stud entt SJC
UK-Brent Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.044 0.000 0.001
Upper 0.000 0.000 0.000 0.000 0.000 0.051 0.000 0.000 0.003
Jap-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.052 0.000 0.002
Upper 0.000  0.000 0.000 0.000 0.000 0.052 0.000 0.000 0.001
US-Brent Lower 0.000 0.000 0.005 0.000 0.000 0.000 0.091 0.011 0.028
Upper 0.000 0.000 0.000 0.001 0.000 0.080 0.000 0.011 0.003
Germ-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.001 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.004 0.000 0.001 0.001
Fran-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000
ltal-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000
Cana-Brent Lower 0.000 0.059 0.000 0.000 0.000 0.000 0.169 0.010 0.080
Upper 0.000 0.000 0.047 0.000 0.000 0.161 0.000 0.010 0.054
HK-Brent Lower 0.000  0.002 0.000 0.000 0.000 0.000 0.077 0.000 0.007
Upper 0.000  0.000 0.002 0.000 0.000 0.078 0.000 0.000 0.010
Ch-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.058 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.061 0.000 0.000 0.003
Cze-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000
Upper 0.000  0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000
Neth-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001
Finl-Brent Lower 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.001
Upper 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.001
Hung-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.001
Pola-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.057 0.000 0.003
Upper 0.000  0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.001
Russ-Brent Lower 0.000 0.016 0.000 0.000 0.000 0.000 0.122 0.009 0.043
Upper 0.000  0.000 0.009 0.000 0.000 0.115 0.000 0.009 0.013
Saud-Brent Lower 0.000 0.027 0.000 0.000 0.000 0.000 0.128 0.001 0.072
Upper 0.000  0.000 0.004 0.000 0.000 0.099 0.000 0.001 0.001
\Vene-Brent Lower 0.000  0.002 0.000 0.000 0.000 0.000 0.079 0.001 0.014
Upper 0.000  0.000 0.000 0.000 0.000 0.069 0.000 0.001 0.001
Spai-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001
Swit-Brent Lower 0.000  0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001
Upper 0.000  0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.001

Note: For each of the copula function, the lower (laftfl upper (right) tail dependences are reported.
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Normal Clayton R. Clayton Plackett Frank Gumbel R. Gumbel

Studentt SJC

UK-Opec

Jap-Opec

US-Opec

Germ-Opec

Fran-Opec

Ital-Opec

Cana-Opec

HK-Opec

Ch-Opec

Cze-Opec

Neth-Opec

Finl-Opec

Hung-Opec

Pola-Opec

Russ-Opec

Saud-Opec

Vene-Opec

Spai-Opec

Swit-Opec

Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.011
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.037
0.000
0.010
0.000
0.003
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.039
0.000
0.042
0.000
0.004
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.007
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.019
0.000
0.007
0.000
0.004
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.030
0.000
0.024
0.000
0.003
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Euro period

0.000  0.000
0.000  0.045
0.000  0.000
0.000  0.049
0.000  0.000
0.000  0.105
0.000  0.000
0.000  0.003
0.000  0.000
0.000  0.003
0.000  0.000
0.000  0.003
0.000  0.000
0.000  0.130
0.000  0.000
0.000  0.100
0.000  0.000
0.000  0.090
0.000  0.000
0.000  0.003
0.000  0.000
0.000  0.003
0.000  0.000
0.000  0.003
0.000  0.000
0.000  0.038
0.000  0.000
0.000  0.027
0.000  0.000
0.000  0.147
0.000  0.000
0.000 0.134
0.000  0.000
0.000  0.085
0.000  0.000
0.000  0.003
0.000  0.000
0.000  0.003

0.029
0.000
0.046
0.000
0.110
0.000
0.003
0.000
0.003
0.000
0.003
0.000
0.145
0.000
0.105
0.000
0.091
0.000
0.004
0.000
0.003
0.000
0.003
0.000
0.008
0.000
0.053
0.000
0.150
0.000
0.153
0.000
0.092
0.000
0.003
0.000
0.003
0.000

0.000
0.000
0.000
0.000
0.011
0.011
0.000
0.000
0.000
0.000
0.000
0.000
0.006
0.006
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.006
0.006
0.005
0.005
0.000
0.000
0.000
0.000
0.000
0.000

0.001
0.001
0.001
0.001
0.031
0.017
0.001
0.001
0.000
0.000
0.000
0.000
0.073
0.021
0.027
0.013
0.007
0.011
0.000
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.003
0.001
0.063
0.033
0.080
0.016
0.015
0.006
0.001
0.001
0.001
0.001

Note: For each of the copula function, the lower (laftfl upper (right) tail dependences are reported.
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APPENDIX B

COPULA MODEL RANKING

B.1 Log-Likelihood Functions for EUR-Denominated Da  ta in post-Euro Period

|Norma| |Clayton 12 Clayton F|Iackett Flank G{meel R.IGumbeI Student t |SJC
UK-Brent 5.411 3.413 5.512 5.549 5.470 7.192 3.126 6.683 6.593
7 8 5 4 6 1 9 2 3
Jap-Brent 6.417 5.715 4.571 4.721 4.702 5.164 6.119 6.823 7.340
3 5 9 7 8 6 4 2 1
US-Brent 12.341 14.391 9.761 10.759 10.456 13.904 18.993 22.042 19.068
6 4 9 7 8 5 3 1 2
Germ-Brent 1.226 -0.005 -0.001 1.118 -0.011 0.117 -0.223 5.405 -9.985
2 6 5 3 7 4 8 1 9
Fran-Brent 0.360 0.004 -0.003 0.334 -0.006 -0.002 -0.099 1.396 -2.309
2 4 6 3 7 5 8 1 9
Ital-Brent 1171 -0.005 -0.006 0.499 -0.007 -0.185 -0.131 1.303 -4.054
2 4 5 3 6 8 7 1 9
Cana-Brent 49.929 41.849 37.544 48.037 46.412 47.217 50.159 55.909 55.723
4 8 9 5 7 6 3 1 2
HK-Brent 13.780 9.753 11.631 12.264 12.338 12.621 11.475 14.814 15.484
3 9 7 6 5 4 8 2 1
Ch-Brent 8.991 4.937 6.289 11.817 11.753 5.689 4.965 9.079 7.427
4 9 6 1 2 7 8 3 5
Cze-Brent 0.011 0.509 0.015 0.000 0.000 0.067 0.633 3.271 -0.473
6 3 5 7 8 4 2 1 9
Neth-Brent 0.918 -0.003 -0.004 0.733 -0.009 -0.151 -0.166 2.426 -10.211
2 4 5 3 6 7 8 1 9
Finl-Brent 0.436 0.233 0.285 0.618 0.610 0.236 0.359 0.545 -3.271
4 8 6 1 2 7 5 3 9
Hung-Brent 0.997 0.253 0.957 0.877 0.875 1.108 0.147 0.874 -0.371
2 7 3 4 5 1 8 6 9
Pola-Brent 5.513 6.315 3.576 4.709 4.585 4714 6.922 7.263 7.034
5 4 9 7 8 6 3 1 2
Russ-Brent 23.409 21.450 16.357 27.379 26.136 21.028 26.746 29.729 26.742
6 7 9 2 5 8 3 1 4
Saud-Brent 25.691 28.750 12.189 25.800 25.404 15.015 30.772 28.676 30.242
6 3 9 5 7 8 1 4 2
Vene-Brent 9.692 9.186 6.974 9.984 9.671 8.604 11.145 12.512 11.608
5 7 9 4 6 8 3 1 2
Spai-Brent 2.882 -0.006 -0.010 1.903 -0.015 -0.297 -0.221 4.387 -13.805
2 4 5 3 6 8 7 1 9
Swit-Brent 3.139 -0.010 -0.002 3.050 -0.019 1.809 -0.413 6.359 -12.432
2 6 5 3 7 4 8 1 9

Note:Copula models are ranked according to the higbgstkelihood function. 1 to 9 are the rankingseafch of the nine copula
models, where 1 is the best fitting copula model @iis the worst fitting copula model.
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B.2 Log-Likelihood Functions for EUR-Denominated Da  ta in post-Euro Period

INormaI hlayton IIR Clayton ﬂlacken F|ank G‘meel R.lGumbeI Student t FJC
UK-Opec 3.272 1.597 4.397 3.212 3.148 6.234 1.316 4.545 4.038
5 8 3 6 7 1 9 2 4
Jap-Opec 6.414 4.264 5.481 4.241 4.253 4511 4.452 6.352 6.745
2 7 4 9 8 5 6 3 1
US-Opec 20.280 18.967 16.666 19.373 18.716 21.772 22.739 29.498 26.002
5 7 9 6 8 4 3 1 2
Germ-Opec 4.213 -0.010 -0.009 3.980 -0.021 -0.452 -0.381 4.919 -15.884
2 5 4 3 6 8 7 1 9
Fran-Opec 3.835 -0.008 -0.012 3.694 -0.021 -0.544 -0.389 3.907 -6.605
2 4 5 3 6 8 7 1 9
Ital-Opec 5.487 -0.010 -0.015 4211 -0.020 -0.635 -0.514 4.879 -9.531
1 4 5 3 6 8 7 2 9
Cana-Opec 35.133 33.397 23.812 31.985 31.201 30.756 39.402 40.794 41.612
4 5 9 6 7 8 3 2 1
HK-Opec 23.588 17.668 16.421 21.873 22.099 18.164 20.408 24.012 23.995
3 8 9 5 4 7 6 1 2
Ch-Opec 17.186 10.935 12.517 21.642 21.534 12.918 12.535 17.778 15.350
4 8 9 1 2 6 7 3 5
Cz-Opec 0.218 0.000 -0.001 0.218 -0.005 -0.078 0.063 2.660 -2.055
3 5 6 2 7 8 4 1 9
Neth-Opec 4.451 -0.011 -0.008 4114 -0.022 -0.374 -0.429 6.070 -15.786
2 5 4 3 6 7 8 1 9
Finl-Opec 0.429 -0.002 -0.005 0.531 -0.008 -0.252 -0.110 0.369 -9.683
2 4 5 1 6 8 7 3 9
Hung-Opec 1.410 0.014 3.044 1.225 1.197 2.629 0.095 1.545 0.861
4 9 1 5 6 2 8 3 7
Pola-Opec 4.246 6.415 0.970 4.030 3.996 1.147 6.008 4.438 4.248
5 1 9 6 7 8 2 3 4
Russ-Opec 39.220 33.370 26.982 43.719 42.171 33.793 39.544 43.983 40.852
6 8 9 2 3 7 5 1 4
Saud-Opec 38.799 34.895 25915 39.181 38.092 28.671 42171 44.050 41.836
5 7 9 4 6 8 2 1 3
Vene-Opec 15.051 12.220 11.170 16.280 15.682 12.063 13.655 17.133 15.654
5 7 9 2 3 8 6 1 4
Spai-Opec 7.441 -0.014 -0.013 7.150 -0.029 -0.532 -0.560 7.912 -19.249
2 5 4 3 6 7 8 1 9
Swit-Opec 10.977 -0.019 -0.012 9.934 -0.034 -0.495 -0.706 12.461 -21.356
2 5 4 3 6 7 8 1 9

Note: Copula models are ranked according to the higbgsikelihood function. 1 to 9 are the rankingseafch of the nine copula
models, where 1 is the best fitting copula model @&is the worst fitting copula model.



B.3 Akaike Information Criteria for EUR-Denominated Data in post-Euro Period

|Normal lCIayton '2 Clayton Filackett Flank GImeeI R.|Gumbe| StLId entt  |SJC
UK-Brent -8.821 -4.826 -9.024 -9.097 -8.939 -12.385 -4.252 -9.366 -9.187
7 8 5 4 6 1 9 2 3
Jap-Brent -10.835 -9.429 -7.142 -7.441 -7.403 -8.329 -10.237 -9.645 -10.680
1 5 9 7 8 6 3 4 2
US-Brent -22.682  -26.781 -17.523 -19.518  -18.911  -25.808 -35.985 -40.083 -34.137
6 4 9 7 8 5 2 1 3
Germ-Brent  -0.451 2.010 2.003 -0.237 2.023 1.765 2.447 -6.809 23.971
2 6 5 3 7 4 8 1 9
Fran-Brent 1.280 1.992 2.005 1.332 2.012 2.005 2.197 1.208 8.619
2 4 6 3 7 5 8 1 9
Ital-Brent -0.342 2.010 2.012 1.001 2.014 2.369 2.261 1.393 12.108
1 4 5 2 6 8 7 3 9
Cana-Brent ~ -97.859  -81.698 -73.088 -94.074  -90.824  -92.435 -98.319 -107.817  -107.447
4 8 9 5 7 6 3 1 2
HK-Brent -25.561  -17.505 -21.263 -22.527  -22.675  -23.243 -20.949 -25.629 -26.969
3 9 7 6 5 4 8 2 1
Ch-Brent -15.981 -7.874 -10.578 -21.633  -21.506 -9.378 -7.930 -14.159 -10.854
3 9 6 1 2 7 8 4 5
Cze-Brent 1.979 0.981 1.970 2.000 2.000 1.867 0.734 -2.542 4.947
6 3 5 7 8 4 2 1 9
Neth-Brent 0.163 2.006 2.009 0.534 2.019 2.302 2.332 -0.851 24.423
2 4 5 3 6 7 8 1 9
Finl-Brent 1.127 1.535 1.431 0.764 0.780 1.528 1.282 2.910 10.541
3 7 5 1 2 6 4 8 9
Hung-Brent 0.007 1.494 0.087 0.246 0.250 -0.216 1.705 2.252 4.742
2 6 3 4 5 1 7 8 9
Pola-Brent -9.025 -10.630 -5.152 -7.418 -7.170 -7.429 -11.843 -10.526 -10.068
5 2 9 7 8 6 1 3 4
Russ-Brent  -44.818  -40.899 -30.714 -52.758  -50.272  -40.056 -51.493 -55.458 -49.484
6 7 9 2 4 8 3 1 5
Saud-Brent  -49.381  -55.500 -22.378 -49.599  -48.809  -28.030 -59.543 -53.351 -56.485
6 3 9 5 7 8 1 4 2
Vene-Brent  -17.385  -16.373 -11.947 -17.967  -17.343  -15.208 -20.290 -21.024 -19.215
5 7 9 4 6 8 2 1 3
Spai-Brent -3.765 2.011 2.021 -1.807 2.030 2.595 2.442 -4.775 31.609
2 4 5 3 6 8 7 1 9
Swit-Brent -4.278 2.021 2.005 -4.101 2.038 -1.617 2.826 -8.719 28.863
2 6 5 3 7 4 8 1 9

Note:Copula functions are ranked based on the AIC madeithe model with the smallest AIC value is rahttee highest. 1 to 9
are the rankings of each of the nine copula moedisre 1 is the best fitting copula model and thésworst fitting copula model.
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B.4 Akaike Information Criteria for EUR-Denominated Data in post-Euro Period

|N0rmal k:layton 12 Clayton FIIackett F|ank Gbmbel R. |Gumbe| |Student t ISJC
UK-Opec -4.543 -1.194 -6.795 -4.425 -4.296 -10.468 -0.632 -5.090 -4.077
4 8 2 5 6 1 9 3 7
Jap-Opec -10.828 -6.528 -8.962 -6.483 -6.505 -7.023 -6.904 -8.703 -9.491
1 7 3 9 8 5 6 4 2
US-Opec -38.559 -35.933 -31.333 -36.747 -35.431 -41.545 -43.479 -54.996 -48.005
5 7 9 6 8 4 3 1 2
Germ-Opec -6.427 2.021 2.018 -5.959 2.043 2.905 2.763 -5.837 35.768
1 5 4 2 6 7 8 3 9
Fran-Opec -5.669 2.015 2.025 -5.388 2.042 3.088 2.779 -3.814 17.211
1 4 5 2 6 8 7 3 9
Ital-Opec -8.975 2.020 2.031 -6.422 2.041 3.271 3.028 -5.758 23.061
1 4 5 2 6 8 7 3 9
Cana-Opec -68.267 -64.794 -45.624 -61.971 -60.401 -59.512 -76.804 -77.588 -79.223
4 5 9 6 7 8 3 2 1
HK-Opec -45.177  -33.336 -30.843 -41.746  -42.199  -34.327 -38.816 -44.023 -43.991
1 8 9 5 4 7 6 2 3
Ch-Opec -32.371  -19.870 -23.033 -41.284  -41.068  -23.836 -23.070 -31.555 -26.699
3 9 8 1 2 6 7 4 5
Cz-Opec 1.564 2.000 2.002 1.563 2.010 2.156 1.873 -1.320 8.110
3 5 6 2 7 8 4 1 9
Neth-Opec -6.903 2.022 2.016 -6.227 2.044 2.749 2.858 -8.140 35.572
2 5 4 3 6 7 8 1 9
Finl-Opec 1.142 2.004 2.009 0.937 2.016 2.503 2.220 3.262 23.365
2 3 4 1 5 7 6 8 9
Hung-Opec -0.821 1.972 -4.088 -0.450 -0.395 -3.258 1.810 0.910 2.277
3 8 1 4 5 2 7 6 9
Pola-Opec -6.492 -10.829 0.060 -6.059 -5.992 -0.293 -10.016 -4.877 -4.496
3 1 9 4 5 8 2 6 7
Russ-Opec -76.440 -64.741 -51.963 -85.437 -82.342 -65.586 -77.088 -83.966 -77.704
6 8 9 1 3 7 5 2 4
Saud-Opec  -75.599  -67.790 -49.829 -76.362  -74.183  -55.342 -82.343 -84.100 -79.673
5 7 9 4 6 8 2 1 3
Vene-Opec  -28.101  -22.439 -20.340 -30.560 -29.364  -22.125 -25.309 -30.265 -27.307
4 7 9 1 3 8 6 2 5
Spai-Opec -12.882 2.028 2.026 -12.300 2.058 3.064 3.120 -11.825 42.499
1 5 4 2 6 7 8 3 9
Swit-Opec -19.954 2.038 2.025 -17.867 2.068 2.990 3.411 -20.922 46.712
2 5 4 3 6 7 8 1 9

Note:Copula functions are ranked based on the AIC madeithe model with the smallest AIC value is rahttee highest. 1 to 9
are the rankings of each of the nine copula moddisre 1 is the best fitting copula model and hésworst fitting copula model.
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B.5 Bayesian Information Criteria for EUR-Denominat  ed Data in post-Euro Period

INormaI |CIayton Ik Clayton FIIackett Flank Giimbel R. IGumbeI IStudentt ISJC
UK-Brent -3.100 0.895 -3.303 -3.376 -3.218 -6.663 1.469 2.077 2.256
5 6 3 2 4 1 7 8 9
Jap-Brent -5.114 -3.708 -1.421 -1.720 -1.682 -2.607 -4.516 1.797 0.763
1 3 7 5 6 4 2 9 8
US-Brent -16.961 -21.060 -11.802 -13.797 -13.190 -20.087 -30.264 -28.640 -22.694
6 4 9 7 8 5 1 2 3
Germ-Brent 5.270 7.732 7.724 5.485 7.744 7.487 8.168 4.634 35.413
2 6 5 3 7 4 8 1 9
Fran-Brent 7.001 7.713 7.726 7.053 7.734 7.726 7.919 12.651 20.061
1 3 5 2 6 4 7 8 9
Ital-Brent 5.379 7.731 7.733 6.723 7.735 8.091 7.982 12.836 23.551
1 3 4 2 5 7 6 8 9
Cana-Brent -92.137 -75.977 -67.366 -88.353 -85.102 -86.713 -92.598 -96.374 -96.004
4 8 9 5 7 6 3 1 2
HK-Brent -19.839 -11.784 -15.541 -16.806 -16.954 -17.521 -15.228 -14.186 -15.526
1 9 5 4 3 2 7 8 6
Ch-Brent -10.260 -2.153 -4.857 -15.912 -15.784 -3.656 -2.208 -2.716 0.588
3 2 3 1 2 6 7 8 9
Cze-Brent 7.700 6.702 7.691 7.721 7.721 7.588 6.456 8.900 16.390
5 2 4 6 7 3 1 8 9
Neth-Brent 5.885 7.727 7.730 6.255 7.740 8.023 8.054 10.591 35.865
1 3 4 2 5 6 7 8 9
Finl-Brent 6.849 7.256 7.152 6.486 6.501 7.249 7.004 14.353 21.984
3 6 5 1 2 7 4 8 9
Hung-Brent 5.728 7.215 5.808 5.967 5.971 5.505 7.427 13.695 16.185
2 6 3 4 5 1 7 8 9
Pola-Brent -3.304 -4.909 0.570 -1.696 -1.449 -1.707 -6.122 0.916 1.374
3 2 7 5 6 4 1 8 9
Russ-Brent -39.097 -35.178 -24.993 -47.037 -44.551 -34.334 -45.771 -44.016 -38.041
5 7 9 1 3 8 2 4 6
Saud-Brent -43.660 -49.779 -16.656 -43.878 -43.087 -22.308 -53.822 -41.909 -45.042
5 2 9 4 6 8 1 7 3
Vene-Brent -11.664 -10.651 -6.226 -12.246 -11.621 -9.487 -14.568 -9.581 -1.772
3 5 9 2 4 6 1 7 8
Spai-Brent 1.957 7.732 7.742 3.915 7.751 8.316 8.163 6.668 43.052
1 4 5 2 6 8 7 3 9
Swit-Brent 1.444 7.742 7.726 1.620 7.759 4.104 8.548 2.724 40.306
1 6 5 2 7 4 8 3 9

Note: Copula functions are ranked based on the BIC manttthe model with the smallest BIC value is rahttee highest. 1 to 9
are the rankings of each of the nine copula moedisre 1 is the best fitting copula model and thésworst fitting copula model.
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|N0rmal |Clayt0n ‘2 Clayton FIIackett Flank Gllmbel R. |Gumbe| |Studentt IS.]C
UK-Opec 1.178 4.527 -1.073 1.297 1.425 -A4.747 5.090 6.353 7.366
3 6 2 4 5 1 7 8 9
Jap-Opec -5.107 -0.806 -3.240 -0.761 -0.784 -1.302 -1.183 2.739 1.952
1 5 2 7 6 3 4 9 8
US-Opec -32.838 -30.212 -25.611 -31.025 -29.710 -35.824 -37.758 -43.553 -36.562
5 7 9 6 8 4 3 1 2
Germ-Opec -0.706 7.742 7.739 -0.238 7.764 8.626 8.484 5.605 47.211
1 5 4 2 6 8 7 3 9
Fran-Opec 0.052 7.737 7.746 0.333 7.763 8.809 8.500 7.629 28.654
1 4 5 2 6 8 7 3 9
Ital-Opec -3.253 7.742 7.752 -0.700 7.762 8.992 8.750 5.685 34.504
1 4 5 2 6 8 7 3 9
Cana-Opec -62.546 -59.073 -39.903 -56.249 -54.680 -53.790 -71.082 -66.145 -67.781
4 5 9 6 7 8 1 3 2
HK-Opec -39.455 -27.615 -25.121 -36.025 -36.477 -28.606 -33.094 -32.581 -32.548
1 8 9 3 2 7 4 6 5
Ch-Opec -26.650 -14.148 -17.312 -35.563 -35.347 -18.115 -17.349 -20.113 -15.256
3 9 7 1 2 5 6 4 8
Cz-Opec 7.286 7.722 7.723 7.284 7.731 7.877 7.595 10.123 19.553
2 4 5 1 6 7 3 8 9
Neth-Opec -1.181 7.744 7.737 -0.506 7.765 8.470 8.580 3.303 47.015
1 5 4 2 6 7 8 3 9
Finl-Opec 6.863 7.726 7.730 6.659 7.737 8.224 7.941 14.704 34.808
2 3 4 1 5 7 6 8 9
Hung-Opec 4.900 7.693 1.634 5.272 5.327 2.463 7.531 12.353 13.720
3 7 1 4 5 2 6 8 9
Pola-Opec 0.771 -5.108 5.782 -0.338 -0.271 5.428 -4.295 6.566 6.947
3 1 7 4 5 6 2 8 9
Russ-Opec -70.719 -59.019 -46.242 -79.716 -76.621 -59.865 -71.367 -72.523 -66.261
5 8 9 1 2 7 4 3 6
Saud-Opec -69.878 -62.069 -44.108 -70.641 -68.462 -49.620 -76.621 -72.657 -68.230
4 7 9 3 5 8 1 2 6
Vene-Opec -22.380 -16.718 -14.618 -24.839 -23.643 -16.404 -19.588 -18.822 -15.864
3 6 9 1 2 7 4 5 8
Spai-Opec -7.160 7.749 7.747 -6.579 7.779 8.785 8.842 -0.382 53.941
1 5 4 2 6 7 8 3 9
Swit-Opec -14.233 7.759 7.746 -12.146 7.789 8.711 9.132 -9.479 58.155
1 5 4 2 6 7 8 3 9

Note: Copula functions are ranked based on the BIC manttthe model with the smallest BIC value is rahttes highest. 1 to 9
are the rankings of each of the nine copula moedisre 1 is the best fitting copula model and thésworst fitting copula model.
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