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ABSTRACT

Fault Tolerant Control Allocation in Systems with Fixed Magnitude Discrete

Controls. (December 2008)

Monika Marwaha, B.E., Punjab Engineering College, Chandigarh, India

Chair of Advisory Committee: Dr. John Valasek

The promise and potential of controllers that can reconfigure themselves in the

case of control effector failures and uncertainties, and yet guarantee stability and

provide satisfactory performance, has led to fault tolerant control being an active

area of research. This thesis addresses this issue with the design of two fault tolerant

nonlinear Structured Adaptive Model Inversion control schemes for systems with fixed

magnitude discrete controls. Both methods can be used for proportional as well as

discrete controls. However, discrete controls constitute a different class of problems

than proportional controls as they can take only binary values, unlike proportional

controls which can take many values.

Two nonlinear control laws based on Structured Adaptive Model Inversion are

developed to tackle the problem of control failure in the presence of plant and oper-

ating environment uncertainties. For the case of redundant actuators, these control

laws can provide a unique solution. Stability proofs for both methods are derived and

are presented in this thesis.

Fault Tolerant Structured Adaptive Model Inversion that has already been devel-

oped for proportional controls is extended here to discrete controls using pulse width

modulation. A second approach developed in this thesis is Fault Tolerant Control

Allocation. Discrete control allocation coupled with adaptive control has not been

addressed in the literature to date, so Fault Tolerant Control Allocation for discrete

controls is integrated with SAMI to produce a system which not only handles discrete
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control failures, but also accounts for uncertainties in the plant and in the operating

environment.

Fault tolerant performance of both controllers is evaluated with non real-time

nonlinear simulation for a complete Mars entry trajectory tracking scenario, using

various combinations of control effector failures. If a fault is detected in the control

effectors, the fault tolerant control schemes reconfigure the controls and minimize the

impact of control failures or damage on trajectory tracking. The controller tracks

the desired trajectory from entry interface to parachute deployment, and has an

adaptation mechanism that reduces tracking errors in the presence of uncertainties in

environment properties such as atmospheric density, and in vehicle properties such as

aerodynamic coefficients and inertia. Results presented in the thesis demonstrate that

both control schemes are capable of tracking pre-defined trajectories in the presence of

control failures, and uncertainties in system and operating environment parameters,

but with different levels of control effort.
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CHAPTER I

INTRODUCTION

To achieve the trajectory tracking accuracy requirements in case of control failures

and uncertainties in plant and environment parameters, it is imperative to develop

and implement sophisticated guidance and control algorithms that can sustain the

effects of control failure. One of the challenges with the design of a guidance law

or a controller is handling uncertainties that the system will encounter in operation.

Uncertainty is defined as a difference between the real system and the mathematical

model. Uncertainty can be present not only in the plant parameters, but also in

the operating environment as sometimes the environment is poorly known. Adaptive

control and guidance are one of the options available to the engineer to handle plant

and exogenous inputs.

Another challenge during operation is recovery or tolerance in the case of control

failures or faults. Control faults can be due to any malfunction in the physical system

or subsystem of the controller which results in its failure to perform as designed. The

main reasons for faults in controllers are

• Suspension of the control signal

• Damage or malfunction of system or subsystem of control system

• Partial or full damage to control effectors

The timely action taken by a reconfigurable controller reduces the chances of disas-

trous consequences. Once failure occurs, its detection and correction is important

The journal model is IEEE Transactions on Automatic Control.
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to avoid any catastrophic consequences. In Reference [1] a survey of various recon-

figurable control methodologies is presented and it is shown that most traditional

reconfiguration control approaches rely on fault detection and isolation. The com-

plexity of such a system with this feature grows with the increase in the number of

failures, and there tends to be a significant possibility of false alarms.

There are two types of fault tolerant design methods: active and passive. In

passive methods a controller is designed to handle pre-defined worst case failures.

They are also called reliable methods. In active methods, also called reconfigurable

methods, a control law is designed to handle every case of control failure. The control

reconfigures itself if any failure occurs during operation. Therefore, to follow a refer-

ence trajectory, a fault tolerant adaptive controller is required which can adapt itself

if any control failure occurs during operation. Redundant actuators are provided to

handle the control failures. When the number of actuators is more than necessary to

generate pitch, roll and yaw moments, multiple combinations can be found to generate

these moments using these actuators. The benefit offered by having multiple solu-

tions can be used to provide redundancy in case of failures or damage. Redundant

actuation combined with a control allocation [2] algorithm can be used to provide

consistent and unique solutions to the problem.

The proposed research seeks to develop an active control allocation based fault

tolerant control law for systems with fixed magnitude discrete controls. Development

of two fault tolerant controllers is proposed. The difference between the two con-

trollers lies in their fault tolerant scheme. In the first scheme Fault Tolerant SAMI

[3] is used to achieve the fault tolerance. Continuous control signals are converted

to discrete signals using pulse width modulation. A fault detection algorithm is not

required for this controller, unlike the second controller. If any control fails, Fault

Tolerant SAMI reconfigures the controls, and minimizes the error between the ref-
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erence trajectory and states of the plant, which occurs due to control failure. In

the second approach control allocation is used to reconfigure the control laws if any

fault occurs during operation. The control allocation acts as a non-uniform quan-

tizer which generates the applied moments that approximate the desired moments

generated by a continuous adaptive control law. Adaptive control is used to com-

pute desired moments for this controller, and the commanded body rates form the

input to the Structured Adaptive Model Inversion control (SAMI) [4, 5, 6, 3]. This

nonlinear control law generates the commanded moments for the control allocation

module which generates the optimal controls to follow the desired trajectory. If a

fault is detected in the controls, it reconfigures the controls to minimize the impact

of control failures or damage.

The approach developed here is demonstrated with numerical simulation results

using the Mars Ellipsled vehicle of Reference [7]. The Mars Ellipsled, shown in Figure

1, requires precision trajectory tracking so that a family of vehicles can be sent to the

same location on the surface.

Fig. 1. Mars Ellipsled

It is critical that all Ellipsleds can land in close proximity to each other since the

crew will be working with equipments and science experiments from multiple vehicles.

To be able to achieve this level of landing accuracy in case of control failures and

uncertainties, a controlled entry is necessary. The Ellipsled has only pulsed reaction
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control jets as controllers. These controllers act as discrete devices and involve a

complex on/off mechanism for operation. The mechanical devices used in the on/off

mechanism of RCS jets are susceptible to failures over time, so ideally the control

algorithm should be able to handle these failures.

The proposed research is unique because

1. Integration of the SAMI and control allocation algorithms in the proposed Fault

Tolerant Control Allocation scheme for the discrete control jets is novel. This

combination will not only handle the plant and environment uncertainties but

also provide satisfactory performance in case of control failure. The stability

proof for the fault tolerant controller is included.

2. The first control scheme is developed for the fixed magnitude discrete controls

for the first time. The proposed scheme makes use of the fault tolerant control

scheme which has already been tested for proportional controls. The existing

scheme for proportional controls is modified so that it can be used for discrete

controls.

3. Mars Ellipsled is the best choice to test both the algorithms. Not only does it has

redundant RCS jets to test the allocation schemes and fault tolerant methods,

its weight and aerodynamic data have uncertainty which requires a control

scheme robust enough to handle these uncertainties along with an uncertain

environment of Mars. A fault tolerant scheme has not been developed for Mars

entry vehicles in the past. Also no control allocation scheme has been used

which accounts for redundant discrete controls in this vehicle.

This thesis is organized as follows. Initially, the formulation of the controllers is

detailed in Chapters II and III. The modeling and simulation of the Mars Ellipsled
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and control equations used in this research is explained in the next chapter. Subse-

quently, Chapter V describes the evaluation of the controller’s performance. Finally,

conclusions and recommendations are presented.
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CHAPTER II

FAULT TOLERANT SAMI

A. Fault Tolerant Structured Adaptive Model Inversion

Structured Adaptive Model Inversion Control (SAMI) is one of the forms which has

been successfully applied to various spacecraft problems [8]. SAMI is based on the

concepts of Feedback Linearization, Dynamic Inversion, and Structured Model Ref-

erence Adaptive Control. Because dynamic inversion assumes perfect knowledge of

all the system parameters which are used to solve for the control, it is approximate in

actual implementation due to inaccurate modeling of system parameters, in SAMI an

adaptive controller is wrapped around the dynamic inversion to handle the uncertain-

ties in system parameters. Tandale and Valasek extended this theory and developed

Fault Tolerant Structured Adaptive Model Inversion control in [3] where they have

successfully applied this controller to an aircraft problem using proportional controls.

The Fault Tolerant Structured Adaptive Model Inversion (FSAMI) for fixed magni-

tude discrete control effectors is derived by extending the earlier version for continuous

control effectors. Pulse width modulation (PWM) [9] is used to convert continuous

signals into discrete signals, thereby approximating the continuous signals by pulses

of different width. This algorithm does not depend on fault detection information

and reconfigures itself if any fault occurs. The mathematical model used for handling

the failure is given by the following equation

Mapplied = DMcalculated + E (2.1)
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where D is a constant matrix and E is a constant vector.
ua1

ua2

ua3

 =


D11 0 0

0 D22 0

0 0 D33

 ·

uc1

uc2

uc3

 +


E1

E2

E3

 (2.2)

In the absence of any failure, entries in the D matrix should be identity matrix and

therefore the E vector should be zero. If there is any control failure, corresponding

elements in the D matrix will go to zero and the E vector will go to the constant

value at which the control is frozen.

Tracking Error 

uapp ucal Plant 

Reference 
Trajectory 

Fault 
Tolerant 

SAMI 

Pulse Width 
Modulation 

Feedback Loop 

Update Loop 

Fig. 2. Schematic of the Fault Tolerant SAMI

Figure 2 shows the schematic of the system. The tracking error feeds into the

Fault Tolerant SAMI block, which updates the control based on dynamic inversion.

The calculated control (ucal) then becomes the input to the PWM block, which ap-

proximates the continuous signal as discrete pulses. The discrete signal (uapp) is then
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fed into the plant. The vehicle trajectory is represented as

σ̇ = J(σ)ω (2.3)

Iω̇ + ω × Iω = Maerodynamic +Mapplied

ω̇ = I−1[Maerodynamic − ω × Iω] + I−1Mapplied

ω̇ = A(σ, ω) +B(σ, ω)Mapplied (2.4)

where

J(σ) = 0.25[1− σTσ]I3×3 + 2[σ̃] + 2σσT

and Maerodynamic represents aerodynamic moments, σ are Modified Rodrigues Pa-

rameters (MRP), and ω represents angular velocity. A(σ, ω) represents the unforced

behavior of the system and B(σ, ω) represents the control distribution matrix of the

system. A reference model with the same states and same structure is selected to be

σ̇r = J(σr)ωr (2.5)

ω̇r = A(σr, ωr) +B(σr, ωr)ur (2.6)

Consider that the A(σ, ω) and B(σ, ω) matrices in the original plant contain uncer-

tainties. The errors between the states and reference states can be defined as

s = σ − σr (2.7)

x = ω − ωr (2.8)

ẋ = ω̇ − ω̇r

ẋ = A(σ, ω) +B(σ, ω)Mapplied − ω̇r (2.9)

Upon substituting the expression for Mapplied from Equation 2.1 into Equation 2.9,
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the following equation for propagation of the states is obtained:

ẋ = A(σ, ω) +B(σ, ω)DMcalculated +B(σ, ω)E − ω̇r (2.10)

The objective is to drive the error between the reference and the plant to zero, hence

the following dynamics are prescribed for the error x:

ẋ = Ahx+ φ (2.11)

where Ah is a Hurwitz matrix. All eigenvalues of this matrix lie in the left half

plane so that the velocity error goes to zero asymptotically. While the choice of Ah

is arbitrary, proper selection of eigenvalues permits specifying the speed at which

the angular velocity error is driven to zero. Here φ is a forcing function on the

velocity error dynamics, which helps in achieving the tracking objective. Adding and

subtracting Equation 2.11 to Equation 2.10 results in

ẋ = Ahx+ φ+ A(σ, ω) +B(σ, ω)DMcalculated +B(σ, ω)E − (ẇr + Ahx+ φ) (2.12)

It is assumed here that all state variables are measurable. Because the rightmost

term in Equation 2.12 is known, for convenience, define this collection of variables as

ψ = ẇr + Ahx+ φ (2.13)

Since system matrices A and B are uncertain and not known exactly, best guesses

Aest and Best will be used for these matrices respectively. These can be expressed as

C∗
aAest = A (2.14)

BestD
∗ = BD (2.15)

BestE
∗ = BE (2.16)
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C∗
a is the ideal value of learning matrix Ca. Then Equation 2.12 can be written as

ẋ = Ahx+ φ+ C∗
aAest(σ, ω) +Best(σ, ω)D∗Mcalculated +Best(σ, ω)E∗ − ψ (2.17)

Matrices C∗
a , D∗ and E∗ are unknown and hence the adapted learning matrix Ca will

be updated on line to ensure stability and performance of the system. Ca will account

for uncertainty in the A matrix. Similarly the D matrix will account for uncertainties

in the B matrix. Using dynamic inversion, we can solve for the control vector so that

the velocity error x has the desired dynamics.

Mcalculated = (BestD)−1(ψ − CaAest −BestE) (2.18)

Also using Equation 2.18, ψ can be written as

ψ = BestDMcalculated + CaAest +BestE (2.19)

Equation 2.17 is updated using the value of ψ

ẋ = Ahx+ φ+ C∗
aAest +BestD

∗Mcalculated + (2.20)

BestE
∗ − CaAest −BestDMcalculated −BestE (2.21)

ẋ = Ahx+ φ+ C̃aAest +BestD̃Mcalculated +BestẼ (2.22)

where

C̃a = C∗
a − Ca (2.23)

D̃ = D∗ −D (2.24)

Ẽ = E∗ − E (2.25)
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1. Update Laws

Now let the tracking error, which includes the error terms of both the kinematic and

dynamic states, be defined as

y = ṡ+ λs

= σ̇ − σ̇r + λs

= Jω − Jrωr + λs (2.26)

where λ is a positive definite matrix. By adding and subtracting Jωr on the RHS of

Equation 2.26 it can be re-written as

y = J(ω − ωr) + Jωr − Jrωr + λs (2.27)

= Jx+ Jωr − Jrωr + λs

The following error dynamics are selected to ensure that the error converges to zero.

ẏ = Ahy (2.28)

Now ẏ can be calculated by differentiating Equation 2.27 with respect to time.

ẏ = Jẋ+ J̇x+ (J̇ − J̇r)ωr + (J − Jr)ω̇r + λṡ (2.29)

= J(Ahx+ φ+ C̃aAest +BestD̃Mcalculated +BestẼ)

+J̇x+ (J̇ − J̇r)ωr + (J − Jr)ω̇r + λṡ

Using Equation 2.28 an expression for φ can be extracted. Let the sum of all known

terms in Equation 2.29 be equal to the RHS of Equation 2.28.

JAhx+ Jφ+ J̇x+ (J̇ − J̇r)ωr + (J − Jr)ω̇r + λṡ = Ahy (2.30)

φ = J−1(Ahy − J̇ω + J̇rωr + Jrω̇r − λṡ)− ω̇r − Ahx (2.31)
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Substitution of Equation 2.31 into Equation 2.29 results in

ẏ = Ahy + J(C̃aAest +BestD̃Mcalculated +BestẼ) (2.32)

To find the update laws for matrices C, D and E, the following candidate Lyapunov

funtion is selected.

V = yTPy + Tr(C̃T
a W1C̃a + D̃TW2D̃) + ẼTW3Ẽ (2.33)

where P , W1, W2 and W3 are positive definite matrices. Here y represents the error

between position level and velocity level states, C̃, D̃ and Ẽ represent the errors

between the true and estimated matrices. Taking the time derivative of V ,

V̇ = ẏTPy + yTP ẏ + 2Tr(C̃T
a W1

˙̃Ca + D̃TW2
˙̃D) + 2ẼTW3

˙̃E (2.34)

V̇ = yTAT
hPy + yTPAhy + 2(AT

estC̃
TPy +MT

calculatedD̃
TBT

estPy (2.35)

+ẼTBT
estPy) + 2Tr(C̃T

a W1
˙̃Ca + D̃TW2

˙̃D) + 2ẼTW3
˙̃E

Now let Q be a positive definite matrix, and using the Lyapunov equation

PAh + AT
hP = −Q (2.36)

to substitute into Equation 2.35, produces the new expression

V̇ = − yTQy + 2(C̃T
a PyA

T
est + C̃T

a W1
˙̃Ca + D̃TBT

estPyM
T
calculated (2.37)

+D̃TW2
˙̃D) + 2(ẼTBT

estPy + ẼW3
˙̃E)

V̇ = −yTQy + 2Tr(C̃T
a PyA

T
est +W1C̃a) + D̃T (BT

estPyM
T
calculated (2.38)

+W2
˙̃D) + ẼT (BT

estPy +W3
˙̃E)

To make V̇ negative definite, the following adaptive laws are selected to update these
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parameters in real time.

Ċa = −W−1
1 (JTPyAT

est)

Ḋ = −W−1
2 (BT

estJ
TPyuT )

Ė = −W−1
3 (BT

estJ
TPy) (2.39)

2. Stability Analysis

Using the update laws in Equation 2.39, V̇ takes the form

V̇ = −yTQy (2.40)

The Lyapunov function is a function of C̃, D̃, Ẽ and error y. This Lyapunov function

is zero when all these terms are equal to zero. The time derivative of V is zero if

y = 0 since it is a function of only the error y. Thus V̇ is negative semi-definite. This

shows that C̃, D̃, Ẽ ∈ L∞ and y ∈ (L2 ∩ L∞). From the expression for y in Equation

2.26, it is concluded that the error s+ λṡ ∈ (L2 ∩L∞). Reference trajectories σr and

σ̇r are bounded, and hence ∈ L∞. As s and ṡ ∈ L∞ and the reference trajectories are

bounded, it is concluded from the definition of s and ṡ that (σ, σ̇) ∈ L∞. Using the

kinematic relation between σ and ω, it is concluded that ω ∈ L∞ and hence A(σ, ω)

and φ ∈ L∞. All of the terms in the expression for ẏ are bounded, and hence ẏ is

also bounded. From the properties of V and V̇ and using Barbalat’s Lemma [10],

it is concluded that σ → σr and ω → ωr as t → ∞. Hence perfect tracking can be

assured for both the kinematic and dynamic level states.

B. Pulse Width Modulation

Pulse width modulation is used here to approximate the continuous commanded signal

produced by SAMI with discrete pulses of varying width. Since SAMI is a continuous
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control law and does not have any knowledge of the discrete nature of the control

effectors, it assumes that all controls are proportional, and calculates the commanded

control value for each discrete control effector. PWM can be further used to convert

these continuous signals to discrete pulses. Since the discrete control effectors consid-

ered in this work produce a constant magnitude control input, only the width of the

pulses, not the magnitude, can be modulated. PWM is based on the concept that

the pulse width of a square wave can be modulated to obtain the average value of the

continuous signal. The average value of the waveform is given by

ȳ =
1

T

T∫
0

f(t) (2.41)

As shown in Figure 3 the value of the wave is minimum (ymin) during Dc.T < t < T

Fig. 3. Pulse Width Modulation

and maximum ymax during 0 < t < Dc.T where Dc is the duty cycle of the wave,

which is defined as the time period during which the system is active. Equation 2.41
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can be expanded as

ȳ =
1

T
(

DcT∫
0

ymaxdt+

T∫
DcT

ymindt)

=
Dc.T.ymax + T.(1−Dc)ymin

T

= Dc.ymax + (1−Dc)ymin (2.42)

If ymin is 0, Equation 2.42 reduces to

ȳ = Dc.ymax (2.43)

which shows the dependency of ȳ on the duty cycle Dc.

One of the ways to calculate the duty cycle is to make it equal to the amplitude of

the normalized pulse. For the case of more than one discrete control, the pulse width

modulation will be different for each effector. Because of the presence of different duty

cycles, the integration becomes numerically complex. Therefore to simplify numerical

integration, the Euler method is used instead of more complex Runge-Kutta schemes.

For the simulations, the pulse frequency is kept the same for all controls and the duty

cycle differs according to the amplitude of the commanded continuous control signal.

For integration all of the duty cycle time periods are sorted and then all of the small

time periods are integrated in one time step. This results in an accurate integration.
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CHAPTER III

FAULT TOLERANT CONTROL ALLOCATION

The second approach integrates Fault Tolerant Control Allocation for discrete controls

with SAMI to produce a system which not only handles discrete control failures, but

also accounts for uncertainties in the plant and in the operating environment. The

adaptive control generates the desired rolling, pitching and yawing moments to follow

the given trajectory. There are many ways to achieve these moments using the redun-

dant discrete controllers. In their basic form control allocation algorithms are useful

for finding solutions to meet desired control objectives by delivering the desired mo-

ments [11]. Bodson provides a comprehensive survey of constrained, numerical based

optimization methods for control allocation in Reference [2], and Page and Steinberg

in Reference [12] compare closed and open-loop performance for 16 different con-

trol allocation approaches. While numerous linear control allocation algorithms are

currently available, Reference [13] discusses them specifically in the context of next

generation entry vehicles. Application of control allocation is also shown in Reference

[14]. Recently Bolender and Doman have used a concept in which control allocation

is used for the aerodynamic surfaces, and dynamic inversion based adaptive control is

used for system identification, which helps in identifying any failure [15]. The control

variable rates or moments are nonlinear functions of control positions. These schemes

are applied to different aerovehicles and are shown to have good performance for con-

tinuous controls. However, this approach has not been applied to discrete controls,

since they require a different allocation algorithm than aerodynamic surfaces [16]. In

this approach, the discrete control allocation algorithm of Reference [17] is used,

which treats the reaction control system (RCS) control jets as quantized elements.

Mixed Integer Linear Programming is used for the optimization problem. The struc-
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ture of the adaptive control with discrete control allocation scheme is shown in Figure

4. The tracking error between the reference trajectory and plant states is used to up-

date the dynamic inversion based control law. The controls (ucal) calculated by the

adaptive control module become the commanded control. The control signal feeds

a control allocation module, and then the optimal control (uapp) calculated in this

module become the control which is applied to the plant. The reference trajectory,

plant states, and tracking error are all fed back to the dynamic inversion controller.

uapp 

Tracking Error 

Plant 

Reference 
Trajectory 

SAMI 

Fault 
Tolerant 
Control 

Allocation 

ucal 

Feedback Loop 

Update Loop 

Fig. 4. Schematic of the Fault Tolerant Control Allocation

A. Structured Adaptive Model Inversion

The nonlinear plant can be modeled as

σ̇ = J(σ)ω (3.1)

ω̇ = −I−1(ω̃Iω) + I−1(u+Maero) (3.2)
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where

Maero = Aerodynamic Moments = q̄Sref lref


clββ

cmαα

cnββ


and ω̃ represents skew symmetric matrix given by

[ω̃] =


0 −ω3 ω2

ω3 0 −ω1

−ω3 ω1 0


σ represents MRPs and ω represents angular velocity. J(σ) is the nonlinear transfor-

mation relating σ̇ and ω. As done in the first approach, consider a reference model

having a structure similar to that of the nonlinear plant with states σr and ωr. The

control objective is to calculate the commanded moments which track the reference

trajectory in terms of σr and ωr where σr represent the reference MRPs and ωr are

the reference angular velocities and Equation 3.1 and Equation 3.2 can be rearranged

to obtain the following form [18]

I∗a(σ)σ̈ + C∗
a(σ, σ̇)σ̇ = P T

a (σ)(u+Maero) (3.3)

where

Pa(σ) = J−1(σ)

I∗a(σ) = P T
a IPa

C∗
a(σ, σ̇) = I∗a J̇aPa + P T

a [P̃aσ̇]IPa

Here we will consider aerodynamic moments, which are modeled by separating

the known and unknown terms. In the expression for the aerodynamic moments ev-

erything is assumed to be known except for atmospheric density and the aerodynamic
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coefficients of the vehicle. These uncertain terms are separated in a column denoted

by d∗.

Maero =
1

2
Sref lrefv

2


β 0 0

0 α 0

0 0 β




ρclβ

ρcmα

ρcnβ


︸ ︷︷ ︸

d∗

(3.4)

Let Dest be the guess for d∗ and d is the gain matrix which adapts itself so that

d∗ = Destd (3.5)

Equation 3.4 can now be written as

Maero =
1

2
Sref lrefv

2


β 0 0

0 α 0

0 0 β

Destd (3.6)

Using the minimal parametrization of inertia matrix given by


I11 I12 I13

I12 I22 I23

I13 I23 I33




a1

a2

a3

 =


a1 0 0 a2 a3 0

0 a2 0 a1 0 a3

0 0 a3 0 a1 a2





I11

I22

I33

I12

I13

I23


(3.7)

i.e. the product of the inertia matrix and any vector a can be written as

Ia = Λ(a)θ, ∀a ∈ R3 (3.8)
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one can linearly parametrized the the left hand side of Equation 3.3

I∗a(σ)σ̈ + C∗
a(σ, σ̇)σ̇ = Ya(σ, σ̇, σ̈)θ (3.9)

where θ is the constant inertia parameter vector defined as θ ,

[
I11 I22 I33 I12 I13 I23

]T

and Ya(σ,σ̇,σ̈) is a regression matrix. The terms on the left hand side of Equation

3.9 can be written as

I∗aσ̈ = P T
a IPaσ̈

= P T
a Λ(Paσ̈)θ (3.10)

C∗
aσ̇ = −P T

a IPaJ̇aPaσ̇ + P T
a [P̃aσ̇]IPaσ̇

= P T
a {−Λ(PaJ̇aPaσ̇) + [P̃aσ̇]Λ(Paσ̇)}θ (3.11)

Combining Equations 3.10 and 3.11 we have the linear minimal parameterization for

the Inertia Matrix [18].

I∗a(σ)σ̈ + C∗
a(σ, σ̇)σ̇ = P T

a {Λ(Paσ̈)− Λ(PaJ̇aPaσ̇) + [P̃aσ̇]Λ(Paσ̇)}θ

= Ya(σ, σ̇, σ̈)θ (3.12)

The tracking error is defined as

ε = σ − σr (3.13)

Differentiating and multiplying by I∗a on both sides

I∗a ε̈ = I∗a σ̈ − I∗a σ̈r (3.14)

Let Cd, Kd and Ki be the design matrices, adding (C∗
a + Cd)ε̇ + Kdε + Ki

∫
εdt to
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both sides of Equation 3.14

I∗a ε̈+ (Cd + C∗
a(σ, σ̇))ε̇+Kdε+Ki

∫
εdt = (I∗a σ̈ + C∗

a(σ, σ̇)σ̇)− (I∗a σ̈r + C∗
a(σr, σ̇r)σ̇r)

+Cdε̇+Kdε+Ki

∫
εdt (3.15)

Rearranging the equation above and using Equation 3.3, the RHS of the above equa-

tion can be written in the form

RHS = P T
a (u+Maero)− Y (σ, σ̇, σ̇r, σ̈r)θ + Cdε̇+Kdε+Ki

∫
εdt (3.16)

As mentioned above dynamic inversion is used to calculate the control and the control

is given by the following equation.

u = P−T
a {Ya(σ, σ̇, σ̇r, σ̈r)θ−Cdε̇−Kdε−Ki

∫
εdt}− 1

2
Sref lrefv

2


β 0 0

0 α 0

0 0 β

Dest

︸ ︷︷ ︸
L


d1

d2

d3


︸ ︷︷ ︸

d

(3.17)

1. Update Laws

The control law derived above is not implementable due to uncertainties present in

θ and d. To implement this control law estimated parameters are used instead of

unknown parameters for calculating the control. The control law takes the following
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form

u = P−T
a {Ya(σ, σ̇, σ̇r, σ̈r)θ̂−Cdε̇−Kdε−Ki

∫
εdt}− 1

2
Sref lrefv

2


β 0 0

0 α 0

0 0 β

Dest

︸ ︷︷ ︸
L


d̂1

d̂2

d̂3


︸ ︷︷ ︸

d̂

(3.18)

Using the above control law, the closed-loop dynamics takes the following form

I∗a ε̈+ (Cd + C∗
a(σ, σ̇))ε̇+Kdε+Ki

∫
εdt = −P T

a Ld̂+ P T
a Ld+ Ya(σ, σ̇, σ̇r, σ̈r)θ̃

I∗a ε̈+ (Cd + C∗
a(σ, σ̇))ε̇+Kdε+Ki

∫
εdt = −P T

a Ld̃+ Ya(σ, σ̇, σ̇r, σ̈r)θ̃ (3.19)

where

d̃ = d̂− d

θ̃ = θ̂ − θ

Equation 3.19 can be written as

I∗a ε̈+ (Cd + C∗
a(σ, σ̇))ε̇+Kdε+Ki

∫
εdt = ΨΦ̃ (3.20)

where

Φ̃ =
[
θ̃ d̃

]
Ψ =

[
Ya − P T

a L
]

If vector

y =

[ ∫
εdt ε ε̇

]
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and

A =


0 I3×3 0

0 0 I3×3

−(I∗a)−1KiI3×3 −(I∗a)−1KdI3×3 −(I∗a)−1CdI3×3


the Equation 3.20 can be written as

ẏ = Ay + ΨΦ̃ (3.21)

To obtain the update laws for the estimated parameters, the following candidate

Lyapunov function is selected

V = yTPy +
1

2
Φ̃T Γ−1Φ̃ (3.22)

where P is a positive definite matrix and Γ is a gain matrix. Vector y consists of the

tracking error, its derivative, and the integral of the tracking error. Φ̃ consists of the

errors between true and estimated inertia vector and true and estimated vector d,

vector d includes uncertainties in aerodynamic coefficients and atmospheric density.

Taking the time derivative of the Lyapunov function

V̇ = yTP ẏ + ẏPy + ˙̃ΦT Γ−1Φ̃ (3.23)

and substituting the expression for ẏ into Equation 3.23 results in

V̇ = yT (ATP + PA)y + yTPΨΦ̃ + ˙̃ΦT Γ−1Φ̃ (3.24)

Since A is a Hurwitz matrix, the Lyapunov stability criterion states that for any

positive definite matrix Q, there exists a corresponding positive definite matrix P

such that

PA+ ATP = −Q (3.25)
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Equation 3.24 becomes

V̇ = −yTQy + yTPΨΦ̃ + ˙̃ΦT Γ−1Φ̃

= −yTQy + (yTPΨ + ˙̃ΦT Γ−1)Φ̃ (3.26)

The update law selected for this system is

˙̂
Φ = −ΓΨTPy (3.27)

2. Stability Analysis

This choice of update law can be used to show that

V̇ = −yTQy ≤ 0 (3.28)

Since V > 0 and V̇ ≤ 0, all the terms which appear in the expression for V in Equation

3.22, i.e. y and Φ̃ ∈ L∞ and hence are bounded. This in turn proves that ε, ε̇, and∫
εdt ∈ L∞ as y is a vector consisting of all these terms. The reference trajectory is

bounded, and hence σr, σ̇r are bounded. Having proved that ε and σr are bounded,

from the definition of tracking error given by Equation 3.13, σ is also bounded. This

implies that Ya(σ, σ̇, σ̇r, σ̈r) is bounded. Note that V̇ = 0 only if y = 0 regardless of

the value of Φ̃, and hence V̇ is semi-negative definite. Using these properties of V

and V̇ and Barbalat’s Lemma [10], it is concluded that y ∈ L2 ∩L∞ and Φ̃ ∈ L∞. So

we can conclude that ε and ε̇ goes to zero as t approaches ∞. Hence it is concluded

that σ → σr and ω → ωr as t→∞.

B. Control Allocation

In the present work control allocation is conducted as discussed in Reference [17],

where Mixed Integer Linear Programming (MILP) [19, 20, 21] is used to implement
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the quantization strategy. Thus the controller closes the loop using a control allocator

which minimizes the difference between the commanded and the actual moments

delivered. The problem of control allocation can be posed as

min
u

3∑
i=1

|τi des −
p∑

k=1

Ti,kuk|+
p∑

k=1

wkuk (3.29)

subject to the constraints

0 ≤
p∑

k=1

Ti,kuk ≤ τi des ∀τi des ≥ 0 (3.30)

0 ≥
p∑

k=1

Ti,kuk ≥ τi des ∀τi des < 0 (3.31)

Here uk is a binary number that can be either 0 or 1. It represents the discrete

(on/off) state of the kth control effector. τi des is the desired moment in the ith

axis. Ti,k is the torque produced by the kth discrete control effector on the ith axis,

and wk ≥ 0 represents the penalty imposed on firing the kth conrol effector. The

inequality constraints given by Equations 3.30 and 3.31 are imposed to ensure that

the effective torque will not exceed the magnitude of the torque commanded by the

control laws. This constraint represents the quantization strategy, hence the control

allocator transforms the continuous commanded torque vectors in <3 to quantized

torque vectors in <3. These quantized torque vectors represent the optimal solution

of the problem. The strategy is implemented using an MILP formulation due to the

discrete control effectors. The control allocation is posed as a linear minimization

problem, so that the MILP problem can be stated as

min
u,us

[w1w2 . . . wp|wroll wpitchwyaw]

 u

us

 (3.32)
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where u is a vector of binary variables and represents the state (on/off) of each control

effector. us ∈ R3 is the vector of slack variable which is defined by

us
∆
= τi des − Tu (3.33)

Here τi des ∈ R3 is the desired torque vector and T ∈ R3×p is the matrix whose elements

represent the torque that can be provided by each control effector. The constraints

are 
−us

Tu− us

−Tu− us

 ≤


0

τi des

−τi des

 (3.34)

and

0 ≤
p∑

k=1

Ti,kuk ≤ τi des ∀τi des ≥ 0 (3.35)

0 ≤ −
p∑

k=1

Ti,kuk < −τi des ∀τi des < 0 (3.36)

1. Stability Analysis of Quantized Control

It is shown in Reference [22] that for a wide class of optimal regulators, the gain

margin is infinite with respect to increase in gain and that decrease down to 0.5

can be tolerated. Author proves this for a class of systems which are closed loop

asymptotically stable and on linearization the plant has eigenvalues strictly in left

half of the plane. Though the system presented here is not asymptotically stable as

shown in the last section, the same approach can be extended to prove the stability

of the system with the quantized control. Quantized control can be treated as some

fraction of the calculated control and if we prove that the system has some gain

margin, we can use the same concept as in Reference [22]. Nonlinear systems with
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input quantization have been proved stable in References [23, 24, 25]. Assumptions

and discussion of the stability proof for this system are presented here. The nonlinear

system considered is of the form

ẋ = f(x) +G(x)u (3.37)

where f(x) is the unforced dynamics and G(x) is the full rank control effectiveness

matrix of the system. Let us assume that there exists a feedback control law u = k(x)

with k(0) = 0 which makes the system globally asymptotically stable. It also ensures

that for some class K∞ functions α1, α2, α3, ρ1 there exists a C 1 function V : <n −→ <

which satisfies the inequalities

α1(|x|) ≤ α2(|x|) (3.38)

and

|x| ≥ ρ1(|e|) ⇒ ∂V

∂x
f(x, k(x) + e) ≤ −α3(|x|) (3.39)

for all x, e ∈ <n. This implies that the perturbed closed-loop system

ẋ = f(x) +G(x)(k(x) + e) (3.40)

is Input to State Stable (ISS) [26] with respect to the actuator disturbance input e.

Assuming κ to be some class K∞ function with the following property

κ(r) ≥ max
|x|≤r

|k(x)| ∀r ≥ 0

we get

|k(x)| ≤ |κ(x)| ∀x (3.41)



28

If µ is defined as

qµ(z) = µq(
z

µ
) (3.42)

the closed-loop system with quantized feedback control law

u = qµ(k(x)) (3.43)

becomes

ẋ = f(x) +G(x)(qµk(x)) (3.44)

This takes the form of Equation 3.40 if

e = qµk(x)− k(x) (3.45)

The behavior of the trajectories of Equation 3.44 for fixed µ is characterized by the

following Lemma.

Lemma 1. Assume that we have

α1 ◦ κ−1(Mµ) > α2 ◦ ρ1(∆µ) (3.46)

Then the sets

R1(µ) :=
{
x : V (x) ≤ α1 ◦ κ−1(Mµ)

}
(3.47)

and

R2(µ) := {x : V (x) ≤ α2 ◦ ρ1(∆µ)} (3.48)

are invariant regions for the system of Equation 3.40. Moreover all solutions of

Equation 3.40 that start in the set R1(µ) enters the smaller set R2(µ) in finite time,

given by the formula

Tµ =
α1 ◦ κ−1(Mµ)− α2 ◦ ρ1(∆µ)

α3 ◦ ρ1(∆µ)
(3.49)
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The unforced system

ẋ = f(x, 0) (3.50)

is called forward complete if for every initial state x(0) the solution ξ(x(0), .) is defined

for all t ≥ 0.

Theorem 1. Assume that the system in Equation 3.50 is forward complete and we

have

α−1
2 ◦ α1 ◦ κ−1(Mµ) > ρ1(∆µ) ∀µ > 0 (3.51)

then there exists a hybrid quantized feedback control policy that makes the system

globally asymptotically stable.

Proof. The zooming-out stage : Set the control to zero, and let µ(0) = 1. Increase µ

fast enough to dominate the rate of growth of |x(t)|. Then there will be a time t0 ≥ 0

such that

|x(t0| ≤ ρ1(∆µ(t0)) < α−1
2 ◦ α1 ◦ κ−1(Mµ(t0)) (3.52)

hence x(t0) belongs to the set R1(µ(t0)) given by Equation 3.47.

The Zooming in stage : For t ≥ t0 apply the control law in Equation 3.43. Let

µ(t) = µ(t0) for t ∈ [t0, t0 + Tµ(t0)], where Tµ(t0) is given by Equation 3.49. Then

x(t + Tµ(t0)) belongs to the set R2. Using Equation 3.49 to calculate Tω(µ(t0)), where

ω is the function defined by

ω(r) :=
1

M
κ ◦ α−1 ◦ α2 ◦ ρ1(∆r), r ≥ 0 (3.53)

For t ∈ [t0 + Tµ(t0), t0 + Tµ(t0) + Tω(µ(t0))], let

µ(t) = ω(µ(t0)) (3.54)

We have µ(t0+Tµ(t0)) < µ(t0) by Equation 3.46, and R2(µ(t0)) = R1(µ(t0+Tµ(t0)). So
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we can conclude that x(t0 + Tµ(t0) + Tω(µ(t0)) belongs to R2(µ(t0 + Tµ(t0))). Repeating

the procedure now let µ(t) = ω(µ(t0 + Tµ(t0))) for the next time interval of length

given by Equation 3.49. Lyapunov stability of equilibrium x = 0 of the continuous

dynamics follows from the adjustment policy for µ. Also the above analysis imples

that x(t) → 0 as t→∞.

As seen from the above discussion that the system can be proved stable if it is

asymptotically stable and is autonomous. To extend this proof it is assumed here that

though the system presented in this work is changing with time but the variation is

very very small and hence it is equivalent to an autonomous system.
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CHAPTER IV

MODELING AND SIMULATION

This chapter describes the simulation set up used to evaluate the performance of both

the controllers. The following sections describe the characteristics of the model used

for the numerical example and different assumptions made for modeling of the vehicle

and RCS control jets.

A. Vehicle Model

The vehicle model used to demonstrate both control law schemes and to evaluate

their performance is a scaled down model of the Mars Ellipsled entry vehicle taken

from Reference [7]. The Mars Ellipsled is a cylinder with diameter of 3.75 meters and

length of 6.323 meters whose external physical characteristics are shown in Figure 5.

Fig. 5. Physical Charactersitics of Mars Ellipsled

The Mars Ellipsled has 18 RCS thrusters, which can be characterized as force

producing devices with only two states: on and off. Each thruster is capable of

producing some force F = f n̂ when it is on, where f is the magnitude of thrust

and n̂ is the unit vector. Therefore the torque produced by a particular thruster is

calculated as τ = r × f , where r is the distance between the center of gravity and
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the location of a particular thruster. There are 2p combinations of torques that can

be achieved using p number of jets. It is assumed that all of the RCS jets produce

significant coupling in more than one axis (i.e roll, pitch and yaw). The time lag for

the RCS jets to reach a steady-state value and conversely to ramp down to zero are

not considered. Also it is assumed that the thruster performance will not decrease

with time as propellant decreases. All the jets have the same efficiency, and it is

constant. There are nine jets on each side, located in three clusters of three jets

each: three side jets, three up jets, and three down jets. Table I provides thrust

characteristics for all 18 jets.

Table I. Reaction Control System Jets

Location of Jets Identification Numbers Moment arm (m) Single Jet Thrust (N)

Up Jets 1, 2, 3, 4, 5, 6 1.88 14

Side Jets 7, 8, 9, 10, 11, 12 2.98 14

Down Jets 13, 14, 15, 16, 17, 18 2.98 95

1. Equations of motion

The equations of motion are expressed in a body-fixed reference frame which is defined

in Figure 6. Lift, drag and gravity forces act on the vehicle and the magnitudes of

lift, drag and gravitational force are modeled using the following equations

L = −q̄ScLαα (4.1)

D = −q̄ScDαα (4.2)

Fg = mg (4.3)
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(a) Side view (b)Back view

Fig. 6. Ellipsled Free Body Diagram

From Newton’s second law, the dynamic translational equations of the mass center

of the vehicle are given by

[F]w = m [a]w (4.4)

−D −m g sin γ = mv̇ (4.5)

mg cos γ sinφ = −mvγ̇ sinφ (4.6)

−L+mg cos γ cosφ = −mvγ̇ cosφ (4.7)

Rearranging the first equation, and adding the second and third equations, produces

v̇ = −D
m
− g sin γ (4.8)

γ̇ =
L

mv
cosφ− g

v
cos γ (4.9)

These equations are the translational equations of motion, or guidance equations,

for the Mars Ellipsled. The rotational equations of motion for a nonlinear dynamic

system that is affine in the control, can be split into a structured form consisting

of an exactly known kinematic differential equation and a momentum level equation
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with uncertain parameters.

σ̇ = J(σ)ω (4.10)

ω̇ = A(σ, ω) +B(σ, ω)u (4.11)

where σ ∈ Rn is the vector of position level coordinates, and ω ∈ Rn is the vector of

velocity level coordinates. Here the matrix J is given in terms of MRPs such that

J(σ) = 0.25[1− σTσ]I3×3 + 2[σ̃] + 2σσT (4.12)

and the A and B matrices can be developed from Equation 4.13:

[
ω̇

]
= I−1




L

M

N

−
[
ω̃Iω

]
 + I−1u (4.13)

Here, aerodynamic moments are represented by L, M, and N , and u is the control

input from the RCS jets. The magnitudes of the aerodynamic moments are the

following.

L = q̄ Sref lref clββ (4.14)

M = q̄ Sref lref cmαα (4.15)

N = q̄ Sref lref cnβ
β (4.16)

Additional details of the vehicle modeling are contained in Reference [7].

B. Reference Trajectory

The reference trajectory is given in terms of non-smooth, discrete bank angle com-

mands as a series of step inputs. A polynomial fit is used to generate a smooth

continuous command sequence which acts as an input reference trajectory to the con-
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troller. The trajectory is 350 seconds long and includes several bank angle reversals

as shown in Figure 7.

Fig. 7. Command Input Reference Trajectory

C. Numerical Examples

Two numerical examples are presented in the next chapter using both the controllers.

The nonlinear, non real-time simulation model of the Mars Ellipsled is developed using

the mass properties, center of gravity location, and aerodynamics given in Tables II,

III, and IV respectively. There are 18 RCS jets, and the torque matrix is assumed to

be constant at the values specified in the Appendix A. Since the vehicle is using 18

RCS thrusters there are 218 possible combinations of thruster firing that can be used

to produce the torque commanded by the reference trajectory.

The objective of the simulations is to test controller performance under plant

uncertainties, with and without various combinations of control effectors. The per-

formance of both controllers is evaluated in terms of tracking error in different states,

and by the control effort used to track these states. Both the controllers cannot

be compared directly due to the implementation of control schemes. Fault Tolerant

SAMI generates individual commands which are calculated for each control effector,

and then converts them to discrete commands using PWM. By contrast, in Fault
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Tolerant Control Allocation continuous moments are calculated in three axes, and

then depending upon that individual control effector the control input is calculated.

For the PWM Euler integration is used to make the effect of failures less adverse. In

Fault Tolerant Control Allocation a more sophisticated Runge-Kutta method is used.

The specific mathematical formulations of both controllers make it difficult to inject

exactly the same kind of failures in each controller, so both are evaluated separately.

Each test case has uncertainties in the aerodynamic coefficients, moments of inertia,

and atmospheric density. Uncertainty of 10 to 30 percent is introduced in all of the

moments of inertia. The density is lumped along with the aerodynamic coefficients so

that uncertainty is introduced in both of the terms together. The initial conditions

for all cases are a speed of 7.3 km/sec, altitude of 125 km, and bank angle of 85

degrees. An initial condition error of 5 degrees is introduced into the bank angle.

Control failures in all cases are introduced at 2.5 seconds, and consist of a fault in the

on/off firing capability of certain jets, and a corresponding decrease in their efficiency.

Table II. Ellipsled Mass and Inertia Properties

Mass 3000 kg

Ixx 2983 kg ·m2

Iyy 4909 kg ·m2

Izz 5683 kg ·m2
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Table III. Ellipsled Geometric Properties

Reference area S 11.045 m2

Reference Length l 6.323 m

x center of gravity xcg 0.182 m

y center of gravity ycg 0 m

z center of gravity zcg −0.175 m

Table IV. Ellipsled Aerodynamics

α cL cD cnβ
cmα clβ

45o 0.652 1.568 -0.02 0.037 -2.279

50o 0.659 1.740 0 0.019 -2.354

55o 0.633 1.910 .015 0.000 -2.414

60o 0.573 2.069 .034 -0.211 -2.462

65o 0.481 2.208 .05 -0.428 -2.495
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D. Evaluation Criteria

To evaluate the performance of both the controllers following criteria are used:

1. Is the controller robust enough to handle the control failures? Is it able to

handle all types of failures?

2. How well does it perform in the presence of large initial errors in bank angle

and uncertainties in plant and environment parameters?

3. What is the performance of the controller for trajectory tracking? Can it track

rapidly changing trajectories? How well does it track the trajectories in the

presence of control failures?

4. Does the discrete nature of the controls have any limitations for trajectory

tracking or handling of control failures?

1. Test Case Definitions

The test cases evaluate different types of failures according to the criteria specified

above. Results are presented first for the Fault Tolerant SAMI scheme, and then for

the Fault Tolerant Control Allocation scheme. The two test cases for the Fault Tol-

erant SAMI controller assume that all of the jets can produce thrust in any direction,

i.e. they all can produce both the positive and negative moments. This assumption is

made because SAMI, being unaware of the discrete nature of the jets, produces con-

tinuous control values for each individual jet which can be either positive or negative.

To apply the same moment to the system, discrete jets accommodate the magnitude

of the commanded torque by varying the width of the pulses and the sign of the

commanded torque by suppling both the positive and negative moments.
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1. Test Case 1 = jets 2, 3, 5, 12, 15 and 17 are always on and produce a positive

moment continuously throughout the trajectory. As described in Section II,

Fault Tolerant SAMI generates the control values while taking into account

these positive moments and reconfiguring accordingly.

2. Test Case 2 = jets 1, 2, 3, 5, 10, 12 and 15 are always on and they always

produce a negative moment. Here Fault Tolerant SAMI not only calculates

the control to track the reference trajectory, but also nullifies the effect of this

negative moment.

Three test cases are evaluated for the Fault Tolerant Control Allocation con-

troller. Control failures in these three cases are introduced at 2.5 seconds that consist

of a fault in the on/off firing capability of certain jets and a corresponding decrease

in their efficiency. The discrete control allocation scheme calculates the combinations

of these controls optimally. Unlike the Fault Tolerant SAMI controller which does

not require any algorithm to identify a failure, the Fault Tolerant Control Allocation

controller assumes that a fault identification algorithm has already identified any

failures.

1. Test Case 3 = jets 1, 2, 17 and 18 do not produce any thrust, such that the

control allocation cannot use these jets.

2. Test Case 4 = jets 2 , 3, 4, 5, 8, 9 and 10 are always on. While reconfiguring the

controller there is some level of thrust that is always produced by these jets.

3. Test Case 5 = some jets produce less than full thrust, e.g. if a jet can produce a

thrust of 14 N it produces only 5 N due to a control malfunction in the valves

or due to leakage, etc.
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CHAPTER V

RESULTS

The results for both the control schemes are presented in this chapter. These results

are based on the simulations performed for the cases that were discussed in the

previous chapter. The results for the Fault Tolerant SAMI are presented and discussed

first followed by the same for Fault Tolerant Control Allocation. The performance of

the controllers is judged based on the criteria discussed in the last chapter.

A. Results for Fault Tolerant Structure Adaptive Model Inversion Controller

1. Test Case 1

Figure 8 shows a time history of the operation of the 18 RCS jets without any failure,

for period of 0.1 seconds for the sake of clarity. The time history for some of the

jets overlap since they stop at the same time. Therefore out of the 18 jets, the time

histories of only 15 of them are visible in the figure. Note that some of the jets are

marked in the figure to illustrate that the identification numbers of the jets do not

necessarily correspond to the order in which they stop. In Test Case 1 jets 2, 3, 5, 7,

10, 12, 14, 15 and 17 are always on and they continuously produce a positive moment

after 2.5 seconds. All of the jets operate after every 0.01 seconds. Figures 9 and 10

show that jets, which are failed after 2.5 seconds, are always on and rest of the jets

act as pulses and try to approximate the continuous control. Time histories of all the

jets are shown for only 0.01 seconds so as to illustrate their operation to the reader.
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Fig. 9. Test Case 1, RCS Jets (1-9)
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Fig. 10. Test Case 1, RCS Jets (10-18)

Figure 11 shows the bank angle trajectory. It is evident from Figure 11 that error

in bank angle increases on introducing jet failure but the controller is designed such

that it can reduce the error to zero and track the reference trajectory. The controller

performs very well and the error quickly reduces to zero and the system tracks the

reference bank angle trajectory. The effect of failure introduction is shown in Figure

12. It can be seen in this figure that as soon as the failure is introduced bank angle

trajectory changes and controller reconfigures itself to bring it back to the nominal

path.
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Fig. 11. Test Case 1, Bank Angle and Bank Angle Error
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Figure 13 shows the error in angular velocity about all the three axis. It is

observed that the failure does not affect the angular velocity much about roll and

yaw axis but it has some effect on the angular velocity about pitch axis. It can be

observed that there are some oscillations in angular velocity about pitch axis. These

oscillations result due to PWM but the magnitude of these oscillations is of the order

10−3.
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Fig. 13. Test Case 1, Errors in Angular Velocity

Figure 14 shows the errors in the MRPs. It is observed in the following figure

that the errors are more in MRPs during the bank angle reversals as compared to the

rest of the trajectory. Also since angular velocity is related to the MRPs through a

nonlinear transformation matrix J(σ), it is expected that the error will occur in the

MRPs also. The second parameter has more error than the first and last parameters

due to failure injection.
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Figure 15 shows the elements of adaptive gain matrix C. These adaptive param-

eters converge to constant values quickly, even though these constant values might

not be their true values. Nevertheless, these constant values result in good tracking

performance of the system. Similar observations can be made from Figures 16 and

17 which show the elements of adaptive gain matrices D and E respectively. These

matrices handle uncertainties in B matrix and failure.
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Fig. 17. Test Case 1, Elements of Adaptive Gain E Matrix

Figure 18 shows the translational states of the system. γ and velocity do not

depend on control or any other rotational state of the system and hence it is expected

that except β, all the other states should be exactly the same for both the nominal as

well as the failed jet case(s). However, from the figure it is evident that the velocity

and γ values do not match for the two cases,namely, the nominal and the failed jet

case. It is due to the fact that, Euler integration is used to integrate the equations

of motion and due to different time steps, which are determined by the width of the

pulse, there is a slight difference between the two cases.

Although the instantaneous values of the altitude and the downrange are different

for the nominal and the failed jet cases, the slope of the trajectory is almost the same

in both the cases. This is evident from Figure 19. This implies that the descent rate

for the vehicle is almost equal for the two cases.
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Fig. 18. Test Case 1, Translational States
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2. Test Case 2

In Test Case 2, jets 1, 2, 3, 5, 10, 12, 15, 17 and 18 are failed i.e these jets are always

on and produce negative moment. Figures 20 and 21 show the jets after failure

introduction. All the failed jets are always on and provide negative moment in this

case.
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Fig. 20. Test Case 2, RCS Jets (1-9)

Figure 22 shows the error in bank angle trajectory. It can be observed from

figure that bank angle error is more mainly during the bank reversals for the failed

jet case as compared to the nominal case. Though bank angle is greater, it is well

within the range. The maximum error in the bank angle for the failed case is ±5

degrees. Figure 22 shows that controller is able to handle the jet failures and bring

the error to zero.
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Fig. 21. Test Case 2, RCS Jets (10-18)
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Failure is introduced at 2.5 seconds, Figure 23 shows that trajectory for bank

angle will change after failure is introduced. Fault Tolerant SAMI recalculates the

control so that it should follow the reference trajectory with minimum error.
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Fig. 23. Test Case 2, Bank Angle Error Response Due To Failure Injection

Figure 24 shows the three components of the angular velocity. As was observed

in Test Case 1, the angular velocity component along pitch axis has oscillations of

negligible magnitude for the case of jet failure. It is therefore evident from the figure

that the controller is able to track not only the kinematic states but also the dynamic

states of the vehicle.
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Fig. 24. Test Case 2, Errors in Angular Velocity
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Fig. 25. Test Case 2, Errors in Modified Rodrigues Parameters
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Figure 25 shows that the error in MRPs is slightly more in the case of failed

jets than in the nominal case. Also, the reduction in the error in all the MRPs to

zero manifests that the controller can reconfigure itself and is able to handle the jet

failure.

All the adaptive parameters i.e. elements of C, D and E matrices are shown

below in Figures 26, 27 and 28. Using the update laws derived in Chapter II, these

parameters are updated and used in the control laws. Based on the earlier discussion,

it can be concluded that the control law calculated using these parameters results in

good tracking performance.
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Fig. 26. Test Case 2, Elements of Adaptive Gain C Matrix
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Fig. 27. Test Case 2, Elements of Adaptive Gain D Matrix
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Figure 29 shows the time histories of the translational states for the Test Case

2. The states settle down to slightly different values for the failed and the nominal

case. On comparison with the previous case, it can be inferred that the translational

states are very similar for the two cases.
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Fig. 29. Test Case 2, Time Histories of Translational States

Figure 30 shows the altitude versus downrange plot for the present case.
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Fig. 30. Test Case 2, Altitude v/s Downrange

B. Results for Fault Tolerant Control Allocation Controller

1. Test Case 3

In Test Case 3 jets 1, 2, 17 and 18 are considered inoperable such that they do not

provide thrust after 2.5 seconds as shown in Figures 31 and 32. These discrete jets

can only take the binary value of 1 or 0. As shown in the plots, once the failure is

introduced, the numerical value for the failed jets is 0 and this implies that they are

off.



57

0 200
0

0.5

1

Je
t_

1

0 200
0

0.5

1

Je
t_

2

0 200
0

0.5

1

Je
t_

3

0 200
0

0.5

1
Je

t_
4

0 200
0

0.5

1

Je
t_

5

0 200
0

0.5

1

Je
t_

6

0 200
0

0.5

1

Je
t_

7

Time (sec)
0 200

0

0.5

1

Je
t_

8

Time (sec)
0 200

0

0.5

1

Je
t_

9

Time (sec)

Fig. 31. Test Case 3, RCS Jets (1-9)
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Fig. 32. Test Case 3, RCS Jets (10-18)
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By comparing the failed jet response to the nominal case, as shown in Figure

33, it is observed that as soon as the failure is introduced, the tracking performance

degrades and the settling time increases. However the system is able to regulate

the tracking error to near zero values within the first few seconds after the failure is

introduced. Also, whenever the bank angle reversal occurs, the error is greater in the

failed jet case than in the nominal case.
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Fig. 33. Test Case 3, Bank Angle and Bank Angle Error

Figure 34 shows the effect of the initial condition error on the bank angle response

and the failure. The initial condition error makes the tracking difficult, but the

controller is able to handle the failure too.
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Fig. 34. Test Case 3, Bank Angle Error Response Due To Failure Injection

The controller is also designed to track the reference angular velocities. Figure

35 compares the error in the three angular velocity components for Test Case 3 and

the nominal case, and shows the ability of the controller to track the reference angular

velocities.

The MRPs (kinematics state) for Test Case 3 also follow the reference MRPs as

shown in the Figure 36. The errors in all three components of the MRP vectors show

that the failed jets have more of an adverse effect on the second component of the

MRP vector, and hence it takes more time to follow the reference vector as compared

to the other two components.



60

0 50 100 150 200 250 300 350
−10

0

10

δP
(d

eg
/s

ec
)

0 50 100 150 200 250 300 350
−5

0

5
δQ

 (
de

g/
se

c)

0 50 100 150 200 250 300 350
−20

0

20

δR
 (

de
g/

se
c)

Time (sec)

 

 

Nominal
Failed Jets

Fig. 35. Test Case 3, Errors in Angular Velocity
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Fig. 36. Test Case 3, Errors in Modified Rodrigues Parameters
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Due to the jet failure some of the jets are not participating in tracking the

reference trajectory. This is equivalent to a situation in which the moment produced

by the jets is less than the nominal case, resulting in more tracking error as compared

to the nominal case. To reduce this error the commanded and hence applied control

is greater in the case of the failed jets. Time histories of the commanded control and

the applied control are shown in Figures 37 and 38 respectively. It is evident from

Figure 38 that the applied control in failed case is greater than the nominal case.
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Fig. 37. Test Case 3, Commanded Control
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Fig. 38. Test Case 3, Applied Control

The adaptive controller performs as expected and updates both the inertia vector

and d vector as shown in Figures 39 and 40. All of the adaptive parameters converge

to constant values as defined by the update laws. How fast the adaptive parameters

converge to a constant value depends upon the gain matrix.

The translational states β, γ, and velocity are shown in Figure 41. Since the

equations for velocity and γ do not depend on rotational states and control, they are

exactly the same for both the nominal and failed jet cases. β changes with the failure

of jets and therefore settles down at a slightly different value.
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Fig. 39. Test Case 3, Elements of Inertia Matrix
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Fig. 40. Test Case 3, Adaptive Parameters
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Fig. 41. Test Case 3, Translational States
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Fig. 42. Test Case 3, Control Effort
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It was observed earlier that the commanded and the applied control are greater

in the case of failed jets. Therefore, it is expected that control effort, defined as uTu,

is greater in the case of failed jets. Figure 42 shows the control effort and as expected,

the required control effort is greater in the failed jet case than in the nominal case. In

summary, the results of Test Case 3 demonstrate that failed jets can be easily handled

by the combined adaptive control and Fault Tolerant Control Allocation scheme.

In the plot of altitude versus downrange trajectory in Figure 43, the vehicle is

seen to lose altitude at the same rate in both simulations.
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Fig. 43. Test Case 3, Altitude v/s Downrange

In summary, the results of Test Case 3 demonstrate that failed jets can be easily

handled by the combined adaptive control and Fault Tolerant Control Allocation

scheme.
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2. Test Case 4

For Test Case 4 some of the jets are always on. Due to this failure a moment is

continuously generated in a particular direction. Figures 44 and 45 show that jets 2,

3, 4, 5, 8, 9 and 10 are always on after 2.5 seconds and produce thrust continuously.
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Fig. 44. Test Case 4, RCS Jets (1-9)
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Fig. 45. Test Case 4, RCS Jets (10-18)
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Fig. 46. Test Case 4, Bank Angle Error Due To Injection of Failure
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Figure 46 shows the effect of the initial condition error in bank angle, and the

introduction of the failure. The error on Φ increases as expected due to the error in

the initial condition, yet the algorithm efficiently handles both the initial condition

error and the failure at the same time.

Figure 47 shows the error in bank angle for the complete trajectory. The error is

greater than the nominal case, but the controller is able to handle the error not only

during the constant command, but also during the bank angle reversals.
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Fig. 47. Test Case 4, Bank Angle and Bank Angle Error

Figure 48 shows the time histories of errors in the MRPs and also compares the

MRPs in Test Case 4 to those of the nominal case. As expected the error in the

MRPs is greater compared to the nominal case MRPs. It is observed from Figure

48 that all three components of the MRPs show greater error during the bank angle

reversals in the case of failed jets.
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Fig. 48. Test Case 4, Errors in Modified Rodrigues Parameters
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Fig. 49. Test Case 4, Errors in Angular Velocity
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The controller is seen to handle not only the kinematic but also the dynamic

state errors during this kind of failure. It is clear from Figure 49 that this failure

resulted in greater errors about the roll and pitch axis, but not much less about the

yaw axis.

The inertia vector and d vector are updated based on the adaptive laws derived

earlier. It is shown in Figures 50 and 51 that although these adaptive parameters

may not converge to their original value, they do converge to a constant value which

results in a control signal which is able to track the reference trajectory.
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Fig. 50. Test Case 4, Elements of Inertia Matrix
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Fig. 51. Test Case 4, Adaptive Parameters
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Fig. 52. Test Case 4, Control Effort
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Figure 52 shows the control effort. As expected the control effort required is

greater in this case as compared to the nominal case. As seen from Figures 48 and

49 the error in both the dynamic and kinematic level states is greater for the case of

jet failure as compared to the nominal case, and hence more control effort is required

to reduce this error over time. Due to greater tracking errors the controller will

command more control effort. The control allocation algorithm solves this problem

by supplying more control according to the given constraints.
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Fig. 53. Test Case 4, Commanded Control

Time histories of the commanded and applied control are shown in Figures 53

and 54. It can be seen that in the case of failed jets the commanded and hence applied

control is large. Comparison of the translational states β, γ and velocity are shown in

Figure 55. As explained in Test Case 3, it is expected that in the failed jet case β will

settle down at a different value than the nominal case. The other translational states

do not depend on rotational states or control directly, and hence will be exactly the

same for both cases.
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Fig. 54. Test Case 4, Applied Control
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Fig. 55. Test Case 4, Time Histories of Translational States
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Figure 56 shows the altitude versus downrange.
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Fig. 56. Test Case 4, Altitude v/s Downrange

3. Test Case 5

Test Case 5 assumes that the thrust producing capacity of certain jets is diminshed.

Instead of producing torque equal to the constants given in matrix A in the Appendix

A, some of the jets produce less thrust. Figure 57 shows that the error due to the

bank angle initial condition gets added to the error due to the jet failures at 2.5

seconds, resulting in a larger error during the first few seconds of the trajectory. The

simulation results demonstrate that the algorithm handles these errors well.
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Fig. 57. Test Case 5, Bank Angle Error Response Due To Injection of Failure
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Fig. 58. Test Case 5, Bank Angle and Bank Angle Error
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In Figure 58 the error in the bank angle trajectory is shown for the complete

trajectory. As seen in Test Cases 3 and 4 this type of failure also produces large

errors, but the controller is able to handle them and reduces the tracking error.

Comparison of the errors in Test Case 5 with the nominal case in Figures 59 and 60

show that both the kinematic and dynamic level states indicated differences in the

two cases. Time histories of the error show that jet failure produces more error in all

of the states.
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Fig. 59. Test Case 5, Errors in Modified Rodrigues Parameters

Failure of jets will result in angular velocity errors about all three axes due to the

assumption that each jet contributes torque in all three directions. Errors in angular

velocity components δP , δQ and δR are shown in the Figure 60 and it is seen that

using the Fault Tolerant Control Allocation the working jets are able to reduce the

error in all three components.
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Fig. 60. Test Case 5, Errors in Angular Velocity
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Fig. 61. Test Case 5, Control Effort
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Figure 61 shows that when the jets are producing less thrust than their normal

output due to a fuel leakage, valve malfunction, or similar failure the controller re-

configures and provides sufficient control to reduce the tracking error. The inertia

vector and d vector updates are shown in Figures 62 and 63. It is observed that the

inertia vectors and adaptive parameters converge to a constant value, which is used

in the control laws instead of the uncertain parameters.
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Fig. 62. Test Case 5, Elements of Inertia Matrix

Due to failures more control effort is required to reduce the tracking error. As

expected the commanded and hence the applied torque are greater in Test Case 5

than in the nominal case, because of the decreased capacity of the jets to produce

thrust. Commanded and applied control is shown in Figures 64 and 65.
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Fig. 63. Test Case 5, Adaptive Parameters
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Fig. 64. Test Case 5, Commanded Control
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Fig. 65. Test Case 5, Applied Control
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Fig. 66. Test Case 5, Time Histories of Translational States
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Fig. 67. Test Case 5, Altitude v/s Downrange

Except for β all the translational states are expected to behave alike in both the

nominal and jet failure case, and this can be verified from Figures 66 and 67.
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CHAPTER VI

CONCLUSIONS

Based on the results presented in this thesis, the following conclusions can be drawn:

1. The Fault Tolerant Structured Adaptive Model Inversion controller successfully

handles failures if one or several discrete control effectors fail, or if the efficiency

of one or several control effectors decreases. This is demonstrated in the presence

of simultaneous initial condition errors and uncertainties in plant and operating

environment parameters, without a fault detection scheme. The maximum bank

angle error is ± 5 degrees.

2. The Fault Tolerant Control Allocation controller with discrete control allocation

successfully handles failures if one or several jets fail, or if the efficiency of one or

several jets decreases. Recovery and re-tracking of reference states and angular

velocity is observed after all failures, and the maximum bank angle error due

to failures is ± 5 degrees. This controller is able to successfully track both

the kinematic and dynamic states during and after failures. The control effort

required to track the desired trajectory for the nominal and failed jet cases is

greater for the failed jets case, yet trajectory tracking is still within acceptable

limits.

3. While the Fault Tolerant Control Allocation controller places no restriction

on the magnitude of the desired control, it was observed that large control

magnitudes and the non-existence of optimal solutions for a particular case

may result. Some control scheme would be needed to handle such situations.
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CHAPTER VII

RECOMMENDATIONS AND FUTURE RESEARCH DIRECTIONS

Following recommendations have been made for the future research.

1. The most pertinent extension of this work is to find the Lyapunov function

for the nonlinear system to prove the stability using quantized control for the

uniformly stable system. Two approaches which were discussed in this thesis

can then be extended to prove the stability of such systems.

2. Uncertain coefficients and Mars atmospheric density were combined in this work

and were treated as one adaptive parameter. These parameters can be studied

more carefully by treating them as separate parameters in mathematical equa-

tions as done for moments of inertia in Chapter III. Once these parameters are

separated it is easy to check the difference between their true values and the

values at which they converge.

3. Fault Tolerant Control Allocation places no restriction on the magnitude of the

desired control, which results in the non-existence of optimal solutions for a

particular case. The design of some control scheme to handle such situations

is needed. One of the ways to approach this problem is to tune gains in SAMI

and restrict the commanded control. However to find a permanent solution to

this problem reference trajectory can be changed accordingly to reach the final

point or adaptive guidance can be used to generate the reference trajectory.

4. Fault Tolerant SAMI is well formulated to handle the proportional controls, but

to handle the discrete jets, it needs an additional scheme of pulse width modu-

lation. The scheme of pulse width modulation is not very easy to implement in
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real-time, especially for a large number of control jets. An approach involving

the extension of matrix theory could be considered to handle the discrete jets,

as had been done for the proportional controls. Matrices can be constrained so

that they can take only binary values to handle the discrete controls.

5. In the Fault Tolerant Control Allocation algorithm, a method to identify the

failed jets is necessary. In this thesis it was assumed that the controller has the

information about the failed jets a priori. H∞ controller has been used success-

fully in the literature to identify failures. Same approach can be combined with

this controller to identify failures.

6. One of the extensions can be to combine this work with the active on-line

adaptive guidance where guidance can handle some of the uncertainties in the

planet’s atmosphere and can generate an online trajectory. Uncertainties in

winds and density can be handled by putting appropriate constraints.

7. In this thesis over-actuated systems were considered for application of both

the control algorithms. In future under-actuated systems can be considered

and both the control algorithms can be applied to these systems. In under-

actuated systems there are more states to be tracked than available controls.

Fault tolerant control schemes can be applied to under-actuated systems by

extending both the schemes presented in this thesis.
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APPENDIX A

TORQUE MATRIX

Torque matrix A is a 3 × 18 constant matrix composed of torques provided by each

jet in three axes.

A =

[
A1 A2 A3

]
(A.1)

where

A1 =


−26.3200 0 26.3200 26.3200 0 −26.3200

41.7200 −41.7200 −41.7200 41.7200 −41.7200 −41.7200

−41.7200 41.7200 −41.7200 41.7200 −41.7200 41.7200

 (A.2)

A2 =


−26.3200 0 26.3200 26.3200 0 −26.3200

41.7200 −41.7200 −41.7200 41.7200 −41.7200 −41.7200

−41.7200 41.7200 −41.7200 41.7200 −41.7200 41.7200

 (A.3)

and

A3 =


−17.6000 0 17.6000 17.6000 0 −17.6000

283.1000 −283.1000 −283.1000 283.1000 −283.1000 −283.1000

−283.1000 283.1000 −283.1000 283.1000 −283.1000 283.1000

 (A.4)
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