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ABSTRACT 

Role of Hypoxia and Hypoxia-induced Factors in the Development of 

 Breast Cancer Brain Metastasis. 

(August 2008) 

Gina Florentina Lungu, B.S., University of Bucharest; 

M.S., Texas Woman’s University 

Chair of Advisory Committee:  Dr. Gheorghe Stoica 

 

Here we studied the role of hypoxia and hypoxia-induced factors in the 

development of breast cancer brain metastasis by using ENU1564, a carcinogen-induced 

mammary adenocarcinoma cell line. 

We detected hypoxia noninvasively by using a novel spectroscopic photoacoustic 

tomography technology (SPAT). Sprague-Dawley rats inoculated intracranially with 

ENU1564, a carcinogen-induced rat mammary adenocarcinoma cell line, were imaged 

with SPAT three weeks post inoculation. Proteins important for tumor angiogenesis and 

invasion were detected in hypoxic brain foci identified by SPAT and were elevated 

compared with control brain. We showed that HIF-1α, MMP-9, VEGF-A, and VEGFR2 

(Fkl-1) protein and mRNA expression levels were higher (P < 0.05) in brain tumor tissues 

compared to normal brain. We also found an increased expression of HIF-1α proteins, 

MMP-9, VEGF-A and VEGFR2 mRNA and proteins in hypoxic ENU1564 cells in vitro. 

We also demonstrated the involvement of PI3K-Akt pathway in hypoxic regulation of 

MMP-9 and VEGF but not VEGFR2 by using specific PI3K inhibitor. Using MEK1/2 
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inhibitor we showed that hypoxic regulation of MMP-9, VEGF-A and VEGFR2 also 

involve MEK1/2-ERK pathway.  

We also investigated the effect of fibroblast growth factor-1 (FGF-1), one of the 

factors known to be upregulated by hypoxia, on the expression of MMP-9 in ENU1564 

cell line. We observed that FGF-1 induces an increase in MMP-9 mRNA, protein, and 

activity in ENU1564 cells. Next, we investigated the role of components of PI3K-Akt and 

MEK1/2-ERK signaling pathways in our system. We demonstrated that FGF-1 increases 

Akt phosphorylation, triggers nuclear translocation of NF-κBp65, and enhances 

degradation of cytoplasmic IκBα. Pretreatment of cells with LY294002, a PI3K inhibitor, 

significantly inhibited MMP-9 protein expression in FGF-1-treated cells. Conversely, our 

data showed that FGF-1 increases ERK phosphorylation in ENU1564 cells, increases c-jun 

and c-fos mRNA expression in a time-dependent manner, and triggers nuclear 

translocation of c-jun. Pretreatment of cells with PD98059, a MEK1/2 inhibitor 

significantly inhibited MMP-9 protein expression in FGF-1 treated cells. Finally, we 

observed increased DNA binding of NF-κB and AP-1 in FGF-1-treated cells and that 

mutation of either NF-κB or AP-1 response elements prevented MMP-9 promoter 

activation by FGF-1.  
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CHAPTER I 
 

INTRODUCTION 
 
 
 
 

Overview of tumor hypoxia 
 

The metastatic process of breast cancer (BC) has been subjected to intense 

scrutiny. We know today that the brain is one of the most common organs affected in the 

spread of BC that ultimately results in fatal overcome of the disease. More than 30% of 

breast cancer patients develop brain metastasis [1]. Many theories have been developed 

to study and understand the metastatic behavior. Factors like neoplastic cells, molecular 

and genetic characteristics [2] and biologic environment are thought to be determinants 

in the metastatic process. The process of breast cancer progression is characterized by 

rapid cellular growth, accompanied by alteration of the microenvironment of the tumor 

cells. Alterations in the cellular microenvironment are due to an inadequate oxygen 

level, and the resultant hypoxia [3].  

Hypoxia, or lack of oxygen to the tissues, plays a significant role in tumor 

biology by altering the pattern of gene expression. Under hypoxia, a number of 

important proteins are up-regulated, and many of these contribute to cancer invasion and 

metastasis. 

 

 

This dissertation follows the style of Clinical & Experimental Metastasis. 
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The question is why there is an inadequate oxygen supply to the tumor? The 

answer lies in the fact that the newly formed tumor must form their own vascular 

network and blood supply either by the process called angiogenesis or by incorporating 

preexisting host vessels [4]. The fact is that the newly formed vascular network differs 

from the normal tissue and display lots of abnormalities including tortuous architecture, 

incomplete or absent endothelial lining and basement membranes which lead to irregular 

and sluggish blood flow [3, 5]. All this will diminish the delivery of oxygen (and 

nutrients) to the tumor cells, with the resultant development of hypoxia or even anoxia 

[5]. 

 Hypoxia has been shown to provide an important prognostic value in clinical 

trials involving radiation and chemotherapy. It is usually associated with adverse clinical 

outcomes and reduced patient survival [6]. Tumor hypoxia has been recognized for 

many years as a potential therapeutic problem because of its adverse impact on the 

effectiveness of radiation therapy.  According to previous studies, tumor hypoxia has 

emerged as a major factor that influences tumor proliferation and invasion [7], and 

malignant progression associated with tumor hypoxia appears to be mediated by several 

mechanisms, including changes in gene expression regulation and activation of 

oncogenes.  

Although tissue hypoxia usually occurs very early in tumor development due to 

inadequate blood supply, hypoxia remains a constant feature of these tumors even after 

neovascularization [8].  A series of studies are currently underway targeting molecular 

processes related to tumor hypoxia in tumor cells. Since the molecular mechanisms are 
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becoming more clear, future therapies may find new target molecules in tumor cells, 

finally leading to more and more efficient treatment of aggressive and metastasizing 

tumors. 

 

 

Animal model and cell lines 
 

Different animal models have been used for in vivo study of the mechanisms of 

cancer metastasis and for the role of matrix metalloproteinases (MMPs) and other 

proteins in the development of cancer. Most of these studies describe lung, bone and/or  

lymph node metastasis and are usually concurrent with the studies conducted on human 

patients that correlated MMPs with increased tumor invasion and metastatic behavior [9, 

10, 11]. 

In our laboratory we have developed a syngeneic model to study distant 

metastasis of breast cancer. Using this model Mendes et al., showed that MMP-2, -3, and 

-9 are involved in mammary adenocarcinoma metastasis to the brain [12]. Mendes, by 

using 40 day old BD-IV rats inoculated with 1x104 ENU1564 cells via left ventricle, 

characterized the metastasis of breast cancer cells in numerous tissues such as bone, 

lung, kidney and brain. 

 The ENU1564 cell line used in our study is a highly metastatic breast cancer cell 

line originated from N-ethyl-N-nitrosourea (ENU)-induced mammary adenocarcinoma 

in a female Berlin-Druckrey IV (BD-IV) rat (Figure 1). This cell line is highly 

metastatic to brain and bone tissues [13].  
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Figure 1. Chemical structure of N-ethyl N-Nitrosurea (ENU). 

 

ENU is a carcinogenic substance that acts as a specific alkylating agent of DNA 

and RNA nucleotide bases [14]. It has high affinity for oxygen causing frequent 

alkylations of the 2’-O ring in DNA phosphodiesteres and 2’-O of RNA riboses. [15]. 

All 2’-O from DNA bases can react with ENU and ring OH is also susceptible to ENU 

ethylation [16]. Additionally, ethylation can also occur in a ring N position. Ethylation 

of 7’-N causes rapid depurination and subsequent DNA chain breakage. Alkylation of 

4’-O of uridine or thymidine causes mispairing. Alkylation of 2’-O causes 

depyrimidiazation and possible deletion [17]. In vivo the bases that are more susceptible 

to ethylation are thymidine and guanidine, followed by cytosine [18, 19, 20] (Figure 2). 

  Throughout this study, we used three-week old Sprague-Dawley (SD) rats 

obtained from a colony maintained at Texas A& M University. All animal experiments 

were done in accordance with protocol approved by our Institutional Animal Care and 

Use Committee (IACHC) and following National Institute of Health (NIH) guidelines 

for animal welfare.  
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Figure 2. DNA and RNA base alkylation sites by N-ethyl N-Nitrosurea. 

 

 

In our study, SD rats were inoculated with tumor cells (ENU1564) intracranially 

into the forebrain since we were mainly interested in locating tumor implant and 

detecting tumor hypoxia inside the brain using SPAT, as an assessment of this new 

technology. The mechanism of tumor invasion may apply to tumor metastasis because 

metastasis mediators are involved in both of these processes. In a pilot experiment we 
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also inoculated SD rats with ENU1564 (1x104) cells via the left ventricle and observed 

that they consistently produced brain metastasis (Figure 3). 

 

 

Figure 3. Histology of metastatic foci in ENU1564-SD rat. (a, b)  H&E staining showing the presence of 

metastatic tumor in the rat brain which also shows increased tumor vascularization (red, blood vessels); 

Bars indicate 200 µm.   

 

 

Overview of hypoxia-induced factors 
 
Hypoxia areas are common features of rapidly growing malignant tumors and 

their metastasis. Due to an inadequate blood supply, tissue hypoxia is supposed to occur 

very early during tumor development beginning at a tumor diameter of a few millimeter 

[21]. Hypoxia not only accounts for cell necrosis but has also a strong impact on tumor 

cell biology [22]. The hypoxic tumor cell response is very important for the 
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understanding of tumor progression.  A variety of proteins important in tumor cell 

progression and metastasis were found to be up-regulated under hypoxia. 

The master regulator of hypoxic environment is hypoxia-inducible factor 1 α 

(HIF-1 α).  In the presence of oxygen, HIF-1α protein is destroyed rapidly by the 

proteasome so the steady-state levels are very low [22]. In hypoxia, this process is 

suppressed, allowing activation of the transcriptional response. Under hypoxic 

conditions, the transcriptional activator HIF-1 α is stable and able to stimulate the 

expression of hypoxia-induced genes important in tumor migration and metastasis like 

metalloproteinases, vascular endothelial growth factor, fibroblast growth factors and 

others (Figure 4). HIF-1α expression is commonly observed at the invading margins of 

human cancers and tumor cells exposed to hypoxic conditions showed enhanced 

metastatic ability [23].  

It is well established that local growth and metastasis of a large variety of 

malignant tumors are dependent on neovascularization. Several studies demonstrated 

that HIF-1α activity resulted in the transcriptional regulation of may angiogenic factors 

including VEGF-A, VEGFR’s, IL-8, angiopoetin 2, and inducible nitric oxide synthase 

(iNOS) [23,24]. There are also several protein kinases that are activated by hypoxia and 

may contribute to tumor metastasis. Among those are mitogen activated protein kinases 

(MAPK) family members stress-activated protein kinases (SAPKs)/c-Jun N-terminal 

kinases (JNKs) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) [25], but 

also phosphoinositide-3 kinase (PI3K-Akt) pathway. Several metalloproteinases as 

MMP-2, MMP-9 and MT1-MMP were found to be up-regulated under hypoxic 
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conditions [24] and those proteins play a crucial in tumor metastasis. MMPs play a key 

role in angiogenesis by degrading the extracellular matrix and permitting the migration 

and tube formation of endothelial cells. 

 Based on the current knowledge about its role in hypoxia-induced genes 

expression and the mechanisms of molecular regulation, HIF-1α might be an interesting 

target for future tumor therapy.  

 

 

 
 

Figure 4.  HIF-1α regulates several proteins important in tumor invasion and metastasis. Hypoxia-

inducible factor 1 α (HIF-1α) can regulate several proteins important in tumor migration and metastasis. 

Under normoxia, HIF-1α is rapidly degraded but under hypoxic conditions HIF-1α is stable and forms 

heterodimer with the HIF-1β. The heterodimer translocates to the nucleus where it regulates the expression 

of hypoxia-induced genes. 
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Overview of matrix metalloproteinases 
 

Matrix metalloproteinases (MMP) are structurally related endopeptidases that 

have multiple biological roles including the degradation of the extracellular matrix 

(ECM). There are 24 mammalian MMP members (MMP 1-28), each a product of a 

different gene which encode for zinc-dependent and calcium dependent proteases that 

are endopeptidases [26].  There are in fact 23 mouse MMPs and 24 human MMPs [27]. 

There are also two other large families of proteases that have major roles in extracellular 

proteolysis, the ADAM family (a disintegrin and metalloproteinase domain, with about 

33 members in humans) and the ADAMTS family (a disintegrin-like and 

metalloproteinase domain (reprolysin type) with thrombospondin type I repeats, with 

about 19 members in humans).  

Numerous classifications of MMPs can be made. Based on their solubility they 

can be divided in two major groups. Based on their substrates, they can be devided in 

several groups. They are known to degrade a large array of substrates such as Collagens 

(C), Fibronectin (FN), Cartilage oligomeric protein (COMP), Laminin (LN) and 

Proteoglycan (PG) [26] (Table 1). 

They can also be classified according to their solubility. (A) Soluble type MMPs; 

include collagenases, stromelysins, gelatinases and matrilysins. (B) Membrane-anchored 

metalloproteinases; include Type II and type II types. 
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Table 1. MMP classification. 
Protein MMP MW 

(kDa) 
Substrate(s) 

Soluble Type    
Collagenase    

Collagenase 1 MMP1 52/41 C-II, II, III, X 
Collagenase 2 MMP8 5/64 C-I, II, III 
Collagenase 3 MMP13 65/55 C-I, II, IV, X, XIV, FN, aggrecan, 

tenascin 
Stromelysin    

Stromelysin 1 MMP3 57/45,28 PG, FN, C-III, IV, VII, IX, Gelatin, 
LN 

Stromelysin 2 MMP10 56/47,24 C-III, IV, V, gelatin, PG, FN 
Gelatinase    

Gelatinase A MMP2 72/67 Gelatin, C-IV, FN, PG, LN 
Gelatinase B MMP9 92/67 Gelatin, C-III, IV, V, elastin  

Matrylisin    
Matrylisin 1 MMP7 28/19 Gelatin, C-IV, FN, PG, LN 
Matrylisin 2 MMP26 29/19 Gelatin, C-IV, FN, fibrinogen 

Others    
Stromelysin 3 MMP11 58/28 Gelatin, PG, LN, FN 
Epilysin MMP28 56/45 Casein 
Not named MMP19 57 Gelatin, aggrecan, COMP, LN, 

nidogen, tenascin, C-IV, FN 
Matalloelastase MMP12 54/45,22 Elastin 
Enamelysin MMP20 54/43 Amelogenin, aggrecan, COMP, FN, 

CIV, LN 
Membrane-anchored  

 
Type I transmem- 

brane-type 

   

MT1-MMP MMP14 66/60 C I, II, III, gelatin, PG, FN 
MT2-MMP MMP15 68/62 FN, aggrecan, nidogen, tenascin, 

perlecan, LN 
MT3-MMP MMP16 64/55 C-III, FN, gelatin 
MT5-MMP MMP24 73/64 PG 

GPI-type    
MT4-MMP MMP14 71/67 Fibrin, fibrinogen 
MT6-MMP MMP25 62/58 Gelatin 

Type II transmem- 
brane-type 
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Metalloproteinases are composed by a pre-catalytic, a pro-catalytic domain, a 

fibronectin-like domain, a domain for binding to zinc and a homeopexin domain [28] 

(Figure 5). 

 

 

 

Figure 5. Domain structure of MMP proteins. 

 

The prodomain keeps the enzyme latent using the thiol group of a highly 

conserved cysteine at its carboxyl terminus. This conserved cysteine acts as an 

inactivating ligand for the catalytic zinc atom in the active state, resulting in the 

exclusion of water and rendering the enzyme inactive. In order to be activated a cystein 

residue that inactivates ligand binding to the zinc catalytic site must be removed (Figure 

6).  
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Figure 6. Mechanism of MMPs activation.  

 

This can be done by conformational change or proteolysis accomplished by 

plasmin or other MMPs. MMPs are responsible for the turnover of the ECM that is rich 

in growth factors and other bioactive molecules and in this way contribute to numerous 

physiological and pathologic processes. Matrix metalloproteinases have multiple 

important roles in cancer development.  

(A) MMPs are related to tumor angiogenesis; 

(B) MMPs are crucial in degradation of basement membrane and extracellular 

matrix (Figure 7); 



 13

(C) MMPs are related to tumor invasion and metastasis; 

(D) MMPs are correlated with cell proliferation. 

 

 
 
 Figure 7. MMPs role in cancer cell extravasation from blood vessel, cancer cell migration and 

establishment of metastatic foci. 

 

 

The morphological localization of MMPs intratumoral in breast cancer has been 

the subject of numerous studies. Different studies have generated-contradictory data on 

the location of MMPs. Some co-localize MMP with neoplastic epithelial cells whereas 

others associated them with different components of the neoplastic stroma. No matter 

where they localized, the tumor environment is very important for the expression and 

activities of MMPs.  To date, few studies are available on the expression of MMPs 

within breast cancer metastasis [29, 30]. For example, MMP-9 has been associated with  
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the neoplastic cell plasma membrane, non-neoplastic ducts and acini, epithelial cells and 

macrophages, stromal fibroblasts and endothelial cells, tumor-infiltrating stromal cells, 

including neutrophils, macrophages, and vascular pericytes. 

 

 

Overview of fibroblast growth factor 1 (FGF-1) 
 
 Fibroblast growth factors (FGFs) constitute a large family of structurally related 

polypeptide growth factors found in organs ranging from nematodes to humans. To date, 

the mammalian FGF proteins are encoded by twenty-three distinct genes [31].  FGFs 

differ significantly in both size (17-29 KDa) and sequence, but all contain a core region 

of homology encompassing 120-130 residues. 

Fibroblast growth factor 1 or acidic (FGF-1) interact with a family of four 

distinct, high-affinity tyrosine kinase receptors, designated FGFR-1 to -4 [32]. FGF-1 

also binds with a relative high affinity to heparan sulphates, which in general are present 

as covalently linked side chains on cell-surface proteoglycans. [33]. Upon binding to the 

ligand, it appears that the FGF receptor complexes dimerize, in conjunction with a 

heparan moiety, and the tyrosine kinase is activated through autophosphorylation [34, 

35] (Figure 8).  Ultimately, activation of FGF receptors leads to signal transduction 

through multiple pathways including mitogen-activated protein kinases (MAPK), 

phosphatidylinositol 3-kinase (PI3K), phospholipase Cγ (PLCγ) [36, 37], leading to cell 

proliferation, and survival in a variety of cells [36]. 
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The multifunctional FGF-1 and its receptor may play a role in autocrine and 

paracrine growth control of malignant tumors, its overexpression or a constitutive 

activation of FGF-1 signaling is often associated with cancer [38].  FGF-1 have been 

shown to increase the mobility and invasiveness of a variety of cell types. Thus, FGF-1 

has a broad range of biological activities that can play an important role in 

tumorigenesis.  

 

 

Figure 8. FGF receptor structure and FGF signaling. 
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In order to analyze the expression of FGF-1 in our breast cancer tumor, we 

inoculated three-week old Sprague–Dawley (SD) rats intracranially with ENU1564 

tumor cell suspensions (5x106 cells). Three weeks post inoculation we sacrificed the 

animals and brain tumors were collected for semi-quantitative RT-PCR analysis and 

immunohistochemistry analysis. We showed that there is a significantLY higher level of 

FGF-1 mRNA in brain tumor foci than in normal brain tissues (control) from age-

matched-non-inoculated rats (Figure 9).  FGF-1 can be released from the tumor cells 

and can act as an autocrine or paracrine mitogenic factor to induce angiogenesis and 

tumor invasion. 

 

 

 
 
Figure 9. Increased expression of FGF-1 mRNA in the rat neoplastic brain foci. Semi-quantitative RT-

PCR was used to detect FGF-1 in total RNAs from normal brain and neoplastic brain foci. β-actin was 

used as an internal control. Data are represented as mean ± standard deviation for three independent 

experiments and asterisks indicate statistically significant differences (*, P < 0.05).  
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 Next we wanted to investigate if our cancer cells were expressing any of the four 

possible FGF-1 receptors, FGFR1-4. Using semi-quantitative RT-PCR we analyzed the 

expression of two of the FGF-1 receptors, FGFR1, and FGFR2 in the ENU1564 cell 

lines.  We found that both receptors were expressed in ENU1564 cell lines (Figure 10).  

Because FGFR1 and FGFR2 are expressed in the cancer cells, FGF-1 can act as a 

mitogen on cancer cells and in turn, can activate many signal transduction cascades. 

                    

 

Figure 10. Expression of FGFR1 and FGFR2 mRNA in ENU1564 cell lines. 
 
 
 
 

 We also analyzed the expression of FGFR1 by IHC using SD rats brain tumor 

sections (Figure 11) and revealed that FGFR1 was highly expressed in the brain tumor 

foci. 
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Figure 11. Expression of FGFR1 in the brain tumor foci. (A, B, C, D) Immunolocalization of FGFR1 in 

the brain tumor foci as indicated by red arrows. Yellow arrows indicate the tumor area. Bars indicate 200 

µm. 

 

Like FGF-2, FGF-1 does not have a signal peptide for channeling through the 

classical secretory pathway; however does possess a nuclear localization motif and has 

been found associated with the nucleus [39]. The presence of a nuclear localization motif 

appears to be important for FGF-1-induced mitogenesis. FGF-1 has also been shown to 

stimulate DNA synthesis without signaling through a cell-surface FGF receptor, 
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suggesting that the nuclear localization signal may allow FGF-1 to act through an 

intracrine mechanism [39]. Once FGF-1 is secreted can it bound to the extracellular 

matrix and can be released by the activity of degradative enzymes such as proteases 

(Figure 12). In addition, FGF-binding protein, a 17 KDa secreted polypeptide, can 

facililate release of FGFs from extracellular matrix and interaction of this growth factor 

with cellular receptors [40]. Following release from the extracellular environment FGF-1 

binds cell surface receptors that, in turn, can activate many signal transduction cascades. 

These signal transduction pathways will then activate various genetic programs through 

the concerned regulation of transcription factors, stimulating cell growth by promoting 

cell cycle progression and inhibiting pathways of cell death. FGF-1 can be secreted from 

cancer cells and can act as an autocrine growth factor and/or paracrine angiogenic factor 

and this has been shown to occur in human gliomas [41]. It was found that FGF-1 is an 

important mitogen in prostate cancer due to the fact that it is mitogenic when it binds 

any type of isoform of FGF receptor [42].  Previous studies showed that FGF-1 is 

released in response to severe cellular injuries such as hypoxia [43] and serum starvation 

[44]. 
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Figure 12. FGF-1 secretion and mechanism of action. Secreted FGF-1 can bound to the extracellular 

matrix (ECM) and can be released from ECM by the activity of degradative enzymes such as proteases. 

Once released from the matrix, FGF-1 is bounding to any of the four FGFRs on different cells in an 

autocrine or paracrine fashion (like endothelial cells, glial cells, cancer cells). 
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There are still a number of unresolved issues regarding of how FGF-1 is released 

from the cells that produce it and how it influences tumor progression. In this study we 

investigated the mechanism of MMP-9 regulation by FGF-1.  Among MMPs, MMP-9 

(gelatinase B) appears to play an important role in a wide array of patho-physiological 

processes including development, wound healing, angiogenesis, inflammation, invasion, 

and metastasis [39].   

 

 

Specific objectives 

Regulation of gene expression by oxygen is an important feature of many 

biological processes, and hypoxia is a powerful modulator of gene expression. The effect 

of hypoxia on malignant progression is mediated by a series of hypoxia- induced factors 

which contributes to angiogenesis and lysis of the extracellular matrix which enable 

tumor cells to escape their oxygen-deficient environment. Here we propose the use of a 

novel spectroscopic photoacoustic tomography technology (SPAT) for the detection of 

tumor hypoxia, an important parameter of tumor pathogenesis, by measuring the level of 

brain blood oxygenation. Validation of this technology will be supported by our 

molecular biology findings aimed to elucidate the etiopathogenesis of SPAT detected 

hypoxia and angiogenesis. SPAT will be useful for monitoring the development of 

hypoxia, which may have an important role in determining the timing and type of 

therapy. We want to explore if hypoxia and hypoxia-induced factors contribute to tumor 

invasion and metastasis.  Previous studies showed that fibroblast growth factors 1 or 
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acidic (FGF-1) is one of the factors released in response severe hypoxia [45]. FGF-1 

signaling also appears to play in important role in tumor growth and angiogenesis, and 

autocrine and paracrine FGF signaling may be particularly important in the progression 

of cancer. However, there are a number of unresolved issues regarding the mechanism(s) 

by which FGFs signaling contributes to cancer progression. We want to investigate the 

role of FGF-1 in matrix metalloproteinase 9 (MMP-9) expression in breast cancer cells 

which might contribute to cancer progression. Such an understanding will facilitate the 

development of cancer therapies to target this signaling pathway. Our hypothesis is that 

hypoxia and hypoxia-induced factors contributes to tumor invasion and metastasis. 

The first objective is to study the role of hypoxia and hypoxia-induced factors in 

tumor detection and progression (in vivo and in vitro study). The first approach will be to 

detect tumor hypoxia in a rat by measuring the brain tumor oxygen saturation (SO2) 

through the intact skin and skull using a novel noninvasive spectroscopic photoacoustic 

tomography (SPAT) technology. To achieve this goal, Sprague-Dawley rats will be 

inoculated intracranially with ENU1564, a carcinogen-induced rat mammary 

adenocarcinoma cell line, and will be imaged with SPAT two-three weeks post 

inoculation. Sprague-Dawley rats inoculated intracranially with DMEM medium, will be 

used as controls. Our analysis will focus on histological examination of the neoplastic 

tumor foci inside the rat brain imaged by SPAT will be achieved. 

The second approach is to study the role of hypoxia in driving tumor invasion 

and metastasis through upregulation of target genes important for these functions. Our in 

vivo studies will focus on characterization of HIF-1α, VEGF-A, VEGFR2, and MMP-9 
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expression in hypoxic brain foci compared with normal brain. We will evaluate and 

quantify HIF-1α, VEGF-A, and VEGFR2 protein expression by Western blot (WB) and 

immunohistochemistry (IHC) and will quantify MMP-expression by gelatin 

zymography. We will also quantify the expression of HIF-1α, VEGF-A, VEGFR2, 

MMP-9 mRNA by semi-quantitative RT-PCR. Our in vitro studies will determine if 

hypoxia influences the tumor invasion and the expression of HIF-1α, VEGF, VEGFR2, 

and MMP-9 proteins in ENU1564 cells. Our analysis will focus on the evaluation of in 

vitro invasiveness of ENU1564 cells grown under hypoxic conditions and compare with 

ENU1564 cells grown under normoxic conditions. We will also evaluate the expression 

of HIF-1α, VEGF-A, VEGFR2, and MMP-9 mRNA and proteins in breast cancer cells 

grown under hypoxic conditions and determine the mechanism of hypoxia-induced HIF-

1α, VEGF-A, VEGFR2, and MMP-9  gene expression in ENU1564 cells. 

The second objective is to study the role of fibroblast growth factor-1 (FGF-1) in 

the expression of MMP-9 in ENU1564 cells (in vitro study). To achieve this goal we 

will determine if FGF-1 upregulates MMP-9 mRNA (RT-PCR) and protein expression 

(WB and gelatin zymography) in FGF-1 treated ENU1564 cells grown in culture and 

compared with untreated ENU1564 cells. Next we will investigate the mechanisms of 

MMP-9 activation in FGF-1 treated ENU1564 cells. We will investigate both mitogen 

activated protein kinase (MAPK), and phosphoinositil-3-OH kinase (PI3K/Akt) 

pathways and determine if use of MAPK or Akt inhibitors will alter FGF-1 mediated 

MMP-9 upregulation. We will also investigate the transcription factor(s) with critical 

role in MMP-9 transcriptional regulation by FGF-1: activator protein-1 (AP-1), nuclear 
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factor-k beta (NF-kB) or both- WB analysis of the cytoplasmic and nuclear FGF-1 

treated ENU1564 cells extracts (target the expression of c-jun, c-fos, IkBα. Our analysis 

will also involve cloning of the MMP-9 promoter and transient transfection experiments 

using a reporter plasmid (GFP or luciferase) bearing full length MMP-9 promoter (wild-

type) or MMP-9 promoter with AP-1 or NF-kB mutation sites into the ENU1564 cells. 

We will perform electromobility shift assay (EMSA) to confirmed which transcription 

factor(s) is/are critical for FGF-1 mediated MMP-9 up-regulation (also super-shift assay 

to determine the exact factor or combination of factors responsible for transcriptional up-

regulation of MMP-9 by FGF-1.  

 

 

Summary 

 In summary, the objectives of this project are two fold.  The first objective will 

provide an integrated approach to define the oxygen status (hypoxia) of tumors by using 

SPAT and to correlate hypoxia with tumor invasion and metastasis by using ENU1564 

cell line. Such information can be used not only as a prognostic tool for tumor invasion 

but also as the basis for developing and evaluating patient-specific treatment modalities 

for many types of cancers. For the second objective, we will investigate the mechanism 

of MMP-9 regulation by FGF-1.  A clear understanding of the mechanism by which 

FGF-1 signaling contributes to tumor progression and/or metastasis will facilitate the 

development of cancer therapies to target this signaling pathway. By upregulation of 

MMP-9 in the cancer cells, the FGF-1 may contribute to cancer progression (invasion) 
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not only by facilitating enzymatic cleavage of ECM by MMP-9 but also by increasing 

the availability of FGFs to cancer cells due to mobilization of FGF from the ECM, 

which in turn can act on cancer or stromal cells.  If ENU1564 cells express and secret 

FGF-1 and also express FGFRs receptors, FGF-1 might play a role in the tumor 

progression of breast cancer cells not only by a paracrine but also by an autocrine 

mechanism. 
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CHAPTER II 

ROLE OF HYPOXIA IN BRAIN TUMOR DETECTION 

USING SPECTROSCOPIC PHOTOACOUSTIC TOMOGRAPHY 

TECHNOLOGY (SPAT) * 

 

 

Introduction 

The oxygen status of tumors plays a central role in tumor pathophysiology and 

treatment. It is also a powerful prognostic factor of disease-free survival. In addition, it 

appears to be strongly associated with tumor growth, malignant progression, and 

resistance to various therapies including radiotherapy, photodynamic therapy, and 

chemotherapy [46]. Prior studies involving different techniques have measured one or 

more parameters to define tumor hypoxia status. These include magnetic resonance 

imaging to monitor vascular oxygenation and blood flow [47], phosphorescence lifetime 

(quench) imaging [48] to measure oxygen diffusion distances between microvessels [49] 

and evaluate longitudinal tissue gradients of oxygen [50],  cryospectrophotometry to 

measure hemoglobin saturation [51] single-photon emission computed tomography and 

positron-emission tomography assays to measure perfusion and mark hypoxic areas 

[52,53] and  hypoxia markers to identify hypoxic tumor regions [54].  

 
*Reprinted with permission from “In vivo imaging and characterization of hypoxia 
induced neovasculatization and tumor invasion” by Lungu GF, Li LM, Xie X, Wang LV, 
Stoica G, 2007. International Journal of Oncology, 30:45-54, Copyright 2008 by 
International Journal of Oncology. 
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Unfortunately, none of these technologies have produced a reliable measurement 

of tumor oxygen status and tumor vascularity primarily because solid tumors are usually 

characterized by a high degree of vascular and oxygen tension heterogeneity. The 

technique used in this study, spectroscopic photoacoustic tomography (SPAT) is based 

on the measurement of laser-induced ultrasonic waves and has contrast similar to that of 

pure optical imaging with spatial resolution similar to that of pure ultrasonic imaging. 

Therefore SPAT combines the advantages of two imaging modalities in a single 

modality.  The laser-induced ultrasonic signals from biological samples depend on 

optical absorption in the sample to reveal the structure of the tissue based on optical 

contrast [55]. The distribution of optical absorption in the object can be reconstructed 

using photoacoustic signals which are detected by highly sensitive piezoelectric devices. 

This technique used for detection of oxygen saturation (SO2) is a noninvasive imaging 

modality, based on the spectroscopic differences between oxyhemoglobin (O2Hb) and 

deoxyhemoblobin (HHb) [56]. Since HHb and O2Hb are the dominant absorbers in the 

rat brain, with the reconstructed images at multiple optical wavelengths, the 

contributions to the photoacoustic signals from HHb and O2Hb can be separated by 

SPAT; thus spatial distribution of total hemoglobin (HbT) and SO2 based on the 

estimated concentration of HHb and O2Hb can be reconstructed. SPAT has the ability to 

image HbT and SO2 with satisfactory penetration depth in the rat brain. 

Here we are defining the oxygen status (hypoxia) of tumors by using SPAT. In 

the next chapter we will correlate hypoxia with the invasion process of mammary 

adenocarcinoma cell line ENU1564 inoculated intracranially in a rat model. The 
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mechanism of tumor invasion may apply to tumor metastasis because metastasis 

mediators are involved in both of these processes. Here we were able to successfully 

obtain the brain oxygenation images, which clearly showed tumor hypoxia. 

 

 

Materials and methods 

Reagents 

Chemicals, stains and solutions were obtained from Sigma Chemical Company 

(St. Louis, MO, USA) unless otherwise indicated.  

 

Cell culture  

The ENU1564 tumor cell line used in this study was originally developed in our 

laboratory and originated from an N-ethyl-N-nitrosourea-induced mammary 

adenocarcinoma in a female Berlin-Druckrey IV (BD-IV) rat. This cell line is highly 

metastatic to brain and bone tissues [13]. Prior to inoculation, the cell line was 

maintained in Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA, USA), 

(DMEM) supplemented with 10% fetal bovine serum (Invitrogen) and antibiotics (100 

units/ml penicillin and 100 µg/ml streptomycin).   

 

Rat inoculation  

Three-week old Sprague–Dawley (SD) rats obtained from a colony maintained at 

Texas A& M University were used. All animal experiments were done in accordance 
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with protocol approved by our Institutional Animal Care and Use Committee (IACHC) 

and following National Institute of Health (NIH) guidelines for animal welfare. 

Stereotaxic implantation of tumor cells was performed under full anesthesia using a 

mixture of Ketamine (Ketant, Fact Dodge Animal Health) and xylazin (Ane Sed, Lloud 

Laboratories). A stereotaxic frame was used to stabilize the animal’s head. The hair on 

the rat’s head was gently removed with hair-removal lotion. The site of inoculation was 

marked at a point 2.5 mm lateral and 1 mm anterior to the bregma. This point was 

chosen because of its location directly above the caudate nucleus, which has been shown 

to be a highly reliable intracranial site for tumor engraftment. The cells were inoculated 

intracranially at 3 mm depth from the cranial surface. A 10µl Hamilton syringe was used 

to inoculate 3 µl tumor cell suspensions (5x106 cells) over 5 minutes period. Three 

weeks post inoculation the animals were subjected to SPAT evaluation. After the SPAT 

evaluation the animals were euthanatized with Pentobarbital (150 mg/kg, intraperitoneal 

injection) and the brains were used for imunohistochemistry analysis. 

  

Immunohistochemistry  

Five-micron (5µm) paraffin-embedded sections were used for 

immunohistochemical study. After deparafinization, the sections were subjected to an 

antigen retrieval protocol by heating them in 10 mM citrate buffer (pH 6.0) for 10 

minutes. Potential non-specific binding sites were blocked with 5% normal goat or rabbit 

serum in PBS. After blocking, the sections were incubated for 1 hour to overnight with 

primary antibody.  For activated microglial cells we used a mouse anti rat CD68: biotin 
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from Serotec Company (Hidlington, Oxford, UK).  Mouse anti-glial fibrillary acidic 

protein (GFAP) was purchased from Chemicon International (Temecula, CA, USA). 

Following primary antibody reaction, sections were washed and incubated with either 

biotin-conjugated anti-rabbit or anti-goat IgG (Vector Laboratories, Burlingame, CA, 

USA). A Vector-ABC streptavidin-peroxidase kit with a benzidine substrate for color 

was used for color development. Counter-staining was done with diluted hematoxylin. 

Sections that were not incubated with primary antibody served as negative control. To 

visualize the tumor foci on paraffin-embedded sections, hematoxylin and eosin staining 

was performed.  

 

Experimental setup of SPAT 

Three weeks after intracranial inoculation, experimental rats had developed 

neurological signs such as ataxia and head tilt. At that time the experimental rats were 

imaged using SPAT. Four successful SPAT images showing tumor hypoxia in the SD rat 

brains were achieved as described in (Figure 13). Rats of similar age, inoculated 

intracranially with 3 µl of DMEM medium, were used as controls. Briefly, each animal 

was anesthetized using Ketamine (87mg/kg, intramuscular injection) and the hair from 

the top of the head was removed.  A tunable Ti:Sa nanosecond pulse laser (LT-2211A, 

Lotis T II, Minsk, Belarus) pumped by an Nd:YAG laser was employed to provide laser 

pulses with a pulse repetition rate of 10 Hz. The laser beam was expanded by a concave 

lens and homogenized by a light diffuser and then delivered to the animals head (Figure 

13). The incident energy density of the laser beam on the surface of the rat head was 
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controlled at ~ 20mJ/cm2 (within the ANSI standard). Each single laser pulse’s energy 

was monitored using a photodiode (PD) and recorded. The photoacoustic signals were 

normalized by the recorded PD signals to reduce the effect of laser-energy fluctuation. A 

2.25-MHz ultrasonic transducer (V323, Panametrics) was used to detect the laser-

induced acoustic signals. The active area diameter was 6 mm and it had a nominal 

bandwidth of 66%. A computer controlled step motor drove the 2.25MHz transducer to 

circularly scan the head of the SD rat at a depth of ~3mm below the skin surface, at a 

radius of 4.5 cm, and with a step size of 3 degree. During the SPAT scan, the rat was 

fixed by a homemade restraint mount. A water tank was used that had a sealed opening 

in the bottom such that the rat’s head could protrude along the bottom of the water 

surface and stay dry (Figure 13). The hole was sealed with a piece of polyethylene 

membrane. The rat head surface was covered with a thin layer of ultrasonic coupling gel. 

Health status, pulse rate and the global arterial blood oxygenation of the rat were 

monitored throughout the entire experiment using a pulse oximeter. The detected 

photoacoustic signals were amplified, digitized by an oscilloscope, and then transferred 

to a computer. Four wavelengths (764 nm, 784 nm, 804 nm, and 824 nm) were changed 

at each scanning step. After a single full-view scan, the images at different wavelengths 

were reconstructed based on a modified back projection algorithm [57]. Then the 

reconstructed images at the four different wavelengths were used to estimate the spatial 

distribution of the concentration of HHb and O2Hb using a standard linear least-squares 

method. 
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Figure 13. Experimental setup for the in vivo SPAT analysis. 
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Results 

Spectroscopic photoacoustic tomography (SPAT) imaging of the SD rat brain 

tumor three weeks after inoculation with ENU1564 cell line 

SPAT images from four tumor-bearing SD rat brains showed hypoxia. The most 

representative SPAT image of brain tumor hypoxia is showed in Figure 14. None of the 

SPAT images of tumor-free SD rat control brains showed hypoxia. Differences in brain 

vasculature between a tumor-free SD rat brain (Figure 14a) and a tumor-bearing SD rat 

brain (Figure 14b) are illustrated.  Compared with the tumor-bearing rat brain, SPAT 

images of the tumor-free brain showed a well-defined symmetrical vascular architecture 

in both cerebral hemispheres. In Figure 14c, an open-skull photograph of the rat brain 

taken right after the SPAT experiment, showed a tumor in the right hemisphere. The 

position of the tumor corresponded with the location of the tortuous irregular distorted 

vessels shown in Figure 14c.  The SO2 image of the rat brain with intra-cranial 

inoculation of ENU1564 cells is represented in Figure 14d. The SO2 value is lower in 

the brain tumor area compared to the rest of the brain.   
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Figure 14. Estimated brain blood oxygen saturation image from noninvasive in vivo spectroscopic 

photoacoustic tomography. The circle indicates the position of the tumor. (a) SPAT image of a tumor-free 

rat brain, which shows well-defined symmetrical vascular architecture in both cerebral hemispheres. (b) 

SPAT image of the rat brain inoculated intracranially with ENU1564 cells and reveals the vascular 

architecture associated with the tumor, which is different from that of a normal brain SPAT image. (c) 

Open-skull photograph of the rat brain after SPAT experiment shows the tumor position in the cerebral 

hemisphere. (d) Estimated brain blood oxygen saturation (SO2) image. 
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H&E staining of the tumor foci inside the rat brain imaged by SPAT is 

represented in Figure 15. The diameter of the tumor area was approximately 2.5 mm. 

Histological examination of H&E-stained brain sections revealed an increased mitosis in 

the tumor cells which demonstrated that ENU1564 cell line was highly invasive.    

 

 

Figure 15. H&E staining of the tumor foci inside the SD rat brain at various microscopic magnifications. 

The tumor is observed as a basophilic, hypercellular area composed of neoplastic epithelial cells. Bars 

indicate 200 µm.   

 

Histological evaluation of the neoplastic foci 

Three weeks after intracranial inoculation with ENU1564 cells the rats were 

euthanatized. Histological evaluation of the brain revealed intra-cranial neoplasia 

affecting the caudate nuclei most frequently. Morphologically, clusters of epithelial 

neoplastic cells resembling the cultured cell line were observed. Marked gliosis 

consisting of astrocytes (Figure 16a) and microglial cells (Figure 16b) was observed 

around and inside the neoplastic foci.  
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Figure 16. Activation of astrocytes and microglial cells around and inside the brain tumor foci.  Panel (a) 

shows activation of astrocytes (brown color) around tumor foci (immunohistochemical staining for 

GFAP). No reactivity of astrocytes was observed inside the brain tumor foci. Panel (b) shows active 

microglial cells around and inside the tumor foci (brown color). Black arrows indicate the tumor foci and 

red arrows indicate activated glial cells. The data represent three separate experiments with similar results. 

Bars indicate 200 µm.  
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Discussion 

             In the present study we were able to detect tumor hypoxia in a rat intracranially 

implanted with a malignant mammary tumor cells by measuring the brain tumor SO2 

through the intact skin and skull using a novel noninvasive spectroscopic photoacoustic 

tomography technology. Validation of this technology will be supported by our 

molecular biology findings.  Detection and measurement of the level of brain blood 

oxygenation can be used to monitor tumor hypoxia, an important parameter of tumor 

pathogenesis. 

              Previously, Mendes et al., using an in vivo animal model, showed that MMP-2, 

-3, and -9 are involved in mammary adenocarcinoma metastasis to the brain [12]. The 

animal model used in those studies was developed in our laboratory [13]. The syngeneic 

animals inoculated with ENU1564 cells via the left ventricle consistently produced brain 

metastasis. For our study we chose to inoculate the tumor cells (ENU1564) intracranially 

into the rat forebrain since we were mainly interested in locating tumor implant and 

detecting tumor hypoxia inside the brain using SPAT, as an assessment of this new 

technology. The mechanism of tumor invasion resulting from the tumor implant may 

apply for tumor metastasis because metastasis mediators are involved in both of these 

processes. Our results showed the presence of tumor hypoxia in the rat brain three weeks 

post inoculation.                                   

Because evidence suggested that astrocytes and /or glial cells may have a role in 

tumor invasion [12] we analyzed how these cell types reacted in a tumor –bearing brain. 

Prior studies showed that astrocytes are thought to play a role in MMP-9 activation and 
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expression [58]. Immunohistochemical staining using GFAP antibody (glial fibrillary 

acidic protein) demonstrated marked astrocytic proliferation around neoplastic foci 

(Figure 16a). Astrocytes, which populated brain parenchyma, synthesized a host of 

biological proteins including TGF-β, TNF-α, interferon-γ, IL-1, IL-3, IL-6, and other 

cytokines which may be very important for tumor invasion [58]. Studies showed that 

brain metastatic and parental cancer cell line co-cultured with astrocytes or cell culture 

supernatants of astrocytes, exhibited increased adherence to astrocytes and grew better in 

response to the conditioned media [59].  Microglial reactivity around and inside the 

tumor foci was also confirmed (Figure 16b). The presence of reactive glial cells around 

tumor cells in the brain suggests the possibility that these cell types could be interacting. 

Further studies are needed in order to characterize the role of those cells in tumor 

progression into the brain parenchyma.  

Tumor oxygen status appears to be strongly associated with tumor growth, 

malignant progression, and resistance to various therapies [46]. Among the genes 

upregulated in hypoxia, those involved in angiogenesis and degradation of extracellular 

matrix appears to be very important in malignant progression [62]. Tumor oxygen status 

may also be important in the assessment of the efficacy of agents classified as 

antiangiogenic compounds, which target tumor vasculature [46]. Therapy with 

antiangiogenic compounds may be more important than those which cause direct 

cytotoxicity to malignant cells. Detection of tumor hypoxia can be used as a prognostic 

tool and for developing and evaluating patient specific treatment modalities for many 

types of cancer.  In 2004, Evans et al., showed that the presence of more severe hypoxia 
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in glial tumors correlated with a more aggressive clinical behavior [61]. Also, the 

presence of hypoxia in locally cured high-grade sarcomas was associated with a greater 

likelihood of metastasis and death [62].         

This study shows that SPAT can be an important tool for noninvasive detection 

of intracranial tumors. Moreover, SPAT would be useful for monitoring the development 

of hypoxia, which may have an important role in determining the timing and type of 

therapy. SPAT is also a promising imaging modality for the study of the functional and 

structural organization of the brain. In combination with reporter genes, SPAT offers 

promise for imaging pathological processes at molecular levels, and monitoring the 

delivery of vectors to specific cells by gene therapy.  
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CHAPTER III 

ROLE OF HYPOXIA-INDUCED FACTORS IN TUMOR 

INVASION AND METASTASIS* 

 
 
 

 
Introduction 
 

Angiogenesis is an essential component for the growth of tumors. It is an 

invasive process that requires lyses of the extracellular matrix (ECM) plus proliferation 

and migration of the endothelial cells [60]. This complex process, regulated by 

angiogenic factors and cytokines, is important for tumor invasion [63]. Vascular 

endothelial growth factor (VEGF), an angiogenic mitogen secreted from various types of 

cells, is involved in various physiological and pathological conditions, including 

embryonic development, wound healing and solid tumor growth. VEGF is known to 

stimulate the production of various cytokines, growth factors, and proteinases, including 

MMP-1, -3, and -9 [64].  The expression of VEGF is regulated by various physiological 

and pathological stimuli. Hypoxia is a strong inducer of VEGF, and hypoxia-induced 

VEGF expression determines the course of various disease conditions, such as solid 

tumor growth [65].  

 

*Part of this data reported in this chapter is reprinted with permission from “In vivo 
imaging and characterization of hypoxia induced neovasculatization and tumor invasion” 
by Lungu GF, Li LM, Xie X, Wang LV, Stoica G, 2007. International Journal of 
Oncology, 30:45-54, Copyright 2008 by International Journal of Oncology. 
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VEGF binds to a family of class III tyrosine kinase receptors, including fms-like 

tyrosine kinase 1 and 4 (flt-1 or VEGFR1 and flt-4 or VEGFR-3) and kinase insert 

domain-containing receptor (flk1/KDR or VEGFR2) [5].  

Among these receptors, VEGFR-2 is responsible for the mitogenic signaling and 

proliferation, thus is has been thought to be the principal receptor for VEGF signaling 

[5]. The interaction between VEGF and VEGFR-2 in an autocrine manner may play a 

role in tumor cell growth. It has been shown that VEGFR-1 is transcriptionally 

upregulated by HIF-1α under hypoxic conditions [66], while VEGFR-2 receptor 

expression is mediated by posttranscriptional mechanisms such as enhanced protein 

stability [67]. Tang et al., 2004 demonstrated that VEGFR-2 protein expression was 

upregulated by hypoxia in endothelial cells and that loss of HIF-1α results in a decreased 

VEGF expression and loss of autocrine response of VEGFR-2 [68]. 

 Hypoxia has been shown to provide an important prognostic value in clinical 

trials involving radiation and chemotherapy. It is usually associated with adverse clinical 

outcomes and reduced patient survival [69]. Although tissue hypoxia usually occurs very 

early in tumor development due to inadequate blood supply, hypoxia remains a constant 

feature of these tumors even after neovascularization [8]. Several studies have shown 

that the regulation of gene expression by oxygen is an important feature of many 

biological processes, and hypoxia is a powerful modulator of gene expression [70,71]. 

The main regulator which orchestrates the cellular responses to hypoxia is hypoxia-

inducible factor-1 (HIF-1), a heterodimeric transcription factor composed of α and β 

subunits critical for adaptive responses to reduced oxygen [72]. The HIF-1β is thought to 
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be expressed constitutively and ubiquitously. HIF-1α is also constitutively expressed, but 

is continuously degraded in the presence of oxygen, by von Hippel Lindau tumor 

suppressor protein leading to decreased HIF1α levels in normoxia and high levels in 

hypoxia. Elevated HIF-1α expression, which could be an indicator of the existence of 

hypoxia, has been reported in a variety of human tumors and pre-neoplastic lesions 

[73,74]. The critical role of HIF-1α in tumor metastasis arises from the fact that it is a 

potent activator of angiogenesis and invasion through its upregulation of target genes 

important for these functions. Hill and co-workers have found that exposure of tumor-

bearing rodents to cyclical, but not chronic, hypoxia produces a significant increase in 

metastasis to the lungs [75]. Hypoxia was also found to be important in activation of 

extracellular matrix degrading proteases [76].                                                                                                 

Matrix metalloproteinases (MMPs) are structurally related endopeptidases that 

play a role in proteolytic degradation of structural components of extracellular matrix 

[77].  They not only facilitate breakdown of extracellular matrix, but also affect early 

carcinogenesis, tumor development and growth. They also play an important role in 

angiogenesis and mammary gland involution [27]. Among these enzymes, matrix 

metalloproteinase-9 (MMP-9) or gelatinase B plays an important role in tumor invasion 

and metastasis because of its specificity for type IV collagen. Recent studies have 

demonstrated that the switch from vascular quiescence to angiogenesis involves MMP-9/ 

gelatinase B, which is upregulated in angiogenic islets and tumors, releasing VEGF from 

an extracellular reservoir [78]. Prior observations have suggested that acidity in the 

tumors can be caused by hypoxia-dependent and/or-independent pathways and MMP-9 
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was found to be induced by culturing cells at acidic pH [79]. Acidic pH was also found 

to increase the expression of vascular endothelial growth factor in glioma [80], and 

glioblastoma [81].        

Here we evaluated the expression of HIF-1α, VEGF-A, VEGFR2 and MMP-9 

protein and mRNA levels in the hypoxic brain tumor foci identified by SPAT and in 

ENU1564 cells exposed to hypoxia. We demonstrated by Western blot analysis and 

imunohistochemistry that the levels of HIF-1α, VEGF-A, VEGFR2 proteins were higher  

in brain tumor foci compared to those from normal brain tissues. Additionally, MMP-9 

enzymatic activity was higher in brain tumor foci. The results were confirmed by semi-

quantitative RT-PCR. Next we analyzed the expression of these proteins in vitro in 

ENU1564 cells grown in hypoxic conditions. We found that the levels of HIF-1α, 

VEGF-A, VEGFR2 and MMP-9 from ENU1564 cells grown in hypoxia are higher 

compared to those from normoxic ENU1564 cells. We demonstrated that hypoxia leads 

to activation of ERK1/2, Akt, but not p38 or SAPK/JNK in ENU1564 cells. We also 

demonstrated that MEK1/-ERK pathway is important in hypoxic regulation of VEGF-A, 

VEGFR2 and MMP-9 while PI3K-Akt is important in hypoxic regulation of MMP-9 and 

VEGF-A but not VEFGR2, by using specific MEK1/2 and PI3k inhibitors. The 

regulation of proteins targeted in our in vivo study may be directly correlated with 

hypoxia detected in the brain tumor foci by SPAT. Such informations can be used not 

only as a prognostic tool for tumor invasion but also as the basis for developing and 

evaluating patient-specific treatment modalities for many types of cancers. It should be 
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possible to target hypoxic cells by developing a gene therapy strategy that uses plasmids 

containing suicide genes that are selectively expressed under hypoxic conditions.  

 

 

Materials and methods 
 

Reagents 

Chemicals and solutions were obtained from Sigma Chemical Company (St. 

Louis, MO, USA) unless otherwise indicated. PD98059 was purchased from EMD 

Biosciences (EMD Biosciences, Inc. San Diego, CA). LY294002 was purchased from 

Cell Signaling Technology (Cell Signaling Technology, Inc. Danvers, MA).  

 

Cell culture  

The ENU1564 tumor cell line used in this study was originally developed in our 

laboratory and originated from an N-ethyl-N nitrosourea-induced mammary 

adenocarcinoma in a female Berlin-Druckrey IV (BD-IV) rat. This cell line is highly 

metastatic to brain and bone tissues [13]. Prior to inoculation, for the in vivo 

experiments, the cell line was maintained in Dulbecco’s modified Eagle’s medium 

(Invitrogen, Carlsbad, CA, USA), (DMEM) supplemented with 10% fetal bovine serum 

(Invitrogen) and antibiotics (100 units/ml penicillin and 100 µg/ml streptomycin).  For 

the in vitro experiments ENU1564 cells were incubated at 37°C in a humidified 

atmosphere of 5% CO2 in air or in hypoxic conditions of 5% CO2, and 95% N2 for 24 

hours.   
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Treatment of ENU1564 cells with LY294002 and PD98059. 

For these experiments, ENU1564 cells were preincubated with either PI3K 

inhibitor LY294002 (10 µM), or MEK1/2 inhibitor PD98059 (25µM) (EMD Bioscience, 

Inc., San Diego, CA) for an hour. Cells were then incubated at 37°C in hypoxic 

conditions of 5% CO2, and 95% N2 for 24 hours.  Control cells were incubated at 37°C 

in a humidified atmosphere of 5% CO2 in air for 24 hours. 

 

Invasion assay 

In vitro invasiveness was evaluated using the method previously described [82] 

which used Boyden invasion chambers. Briefly, each Boyden chamber (Becton 

Dickinson Biosciences, NJ, USA) consists of a BD Falcon TC Companion Plate with 

Falcon Cell Culture inserts containing an 8-µm pore PET membrane with a thin layer of 

Matrigel basement membrane matrix. First, the interior of the inserts was rehydrated for 

2 h with warm (37°C) bicarbonate based culture medium. The upper chambers were 

filled with 0.5 ml of cell suspension (1.25x105cells/ml) of ENU1564 in serum free 

DMEM medium. Ten percent fetal bovine serum in Dulbecco's Modified Eagle Medium 

(Invitrogen) was placed in the lower chambers as a chemoattractant. The chambers were 

incubated at 37°C in a humidified atmosphere of 5% CO2 in air or in hypoxic conditions 

of 5% CO2, and 95% N2 for 24 hours.  Non-migrating cancer cells on the upper surface 

of the inserts was removed by wiping with a cotton swab; migrating cells on the lower 

surface were fixed and stained with Insta Stain 3 Step (S&K Reagent, Denver, CO, 

USA). The invasive potential was quantified by counting the total number of cells on the 
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lower surface of the inserts under a light microscope. Three random visual fields were 

counted for each assay. Each invasion experiment was carried out in triplicate.  

 

Rat inoculation  

Three-week old Sprague–Dawley (SD) rats obtained from a colony maintained at 

Texas A& M University were used. All animal experiments were done in accordance 

with protocol approved by our Institutional Animal Care and Use Committee (IACHC) 

and following National Institute of Health (NIH) guidelines for animal welfare. 

Stereotaxic implantation of tumor cells was performed under full anesthesia using a 

mixture of Ketamine (Ketant, Fact Dodge Animal Health) and xylazin (Ane Sed, Lloud 

Laboratories). A stereotaxic frame was used to stabilize the animal’s head. The hair on 

the rat’s head was gently removed with hair-removal lotion. The site of inoculation was 

marked at a point 2.5 mm lateral and 1 mm anterior to the bregma. This point was 

chosen because of its location directly above the caudate nucleus, which has been shown 

to be a highly reliable intracranial site for tumor engraftment. The cells were inoculated 

intracranially at 3 mm depth from the cranial surface. A 10µl Hamilton syringe was used 

to inoculate 3 µl tumor cell suspensions (5x106 cells) over 5 minutes period. Three 

weeks post inoculation the animals were sacrificed and the brain tumors used for 

Western blot, immunohistochemistry, gelatin zymography, and RT-PCR experiments. 
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Tissue processing and tumor collection 

For Western blot, gelatin zymography, and RT-PCR, brains were immediately 

removed after death and placed on powdered dry ice. Brains from rats inoculated 

intracranially with tumor cells (n=3) and from age-matched-non-inoculated control rats 

(n=3) were used.  Samples were kept at -80oC. Brain tumors were collected from frozen 

brain sections. The half of the brain that was frozen in powdered dry ice was sectioned 

using a cryostat (Bright Instrument Company, LTD, Huntington Cambs, England) in 12 

µm sections and placed on slides. Every fifth slide was stained with 0.1% thionine 

solution. Thionine solution stained the cell nuclei and displayed the tumor foci under 

light microscopy. The information was used to dissect the tumor foci, on frozen brain 

tissue sections.  For immunohistochemistry,  brain tumor-bearing (n=3) and tumor-free 

(n=3)  SD rats were perfused with 4% paraformaldehyde (PFA) solution (Electron 

Microscopy Science, PA, USA) in PBS (phosphate buffer saline) using a peristaltic 

pump. Brains were then removed and post fixed in 4% PFA in PBS for 24 hours, after 

which the brains were further processed.  

 

Immunohistochemistry  

Five-micron (5µm) paraffin-embedded sections were used for 

immunohistochemical study. After deparafinization the sections were subjected to an 

antigen retrieval protocol by heating them in 10 mM citrate buffer (pH 6.0) for 10 

minutes. Potential non-specific binding sites were blocked with 5% normal goat or rabbit 

serum in PBS. After blocking, the sections were incubated for 1 h at room temperature to 



 48

overnight at 4oC with primary antibody. The primary antibodies, MMP-9, VEGF-A, 

VEGFR2, and HIF-1α were purchased from Santa Cruz Bitotech (Santa Cruz, CA) and a 

1:50 dilution was used. Following primary antibody reaction, sections were washed and 

incubated with either biotin-conjugated anti-rabbit or anti-goat IgG (Vector 

Laboratories, Burlingame, CA, USA). A Vector-ABC streptavidin-peroxidase kit with a 

benzidine substrate for color and Streptavidin-Phosphatase Kit (KPL, Maryland, USA) 

with a HistoMark Red substrate (KPL, Maryland, USA) were used for color 

development. Counter-staining was done with diluted hematoxylin. Sections that were 

not incubated with primary antibody served as negative control. To visualize the tumor 

foci on paraffin-embedded sections, hematoxylin and eosin staining was performed.  

 

Western blot analysis 

After microscopic dissection of frozen brain specimens, the tissues was 

homogenized in lysis buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM 

CaCl2, 1 mM MgCl2, 0.1% Triton X-100.  For the in vitro experiments, the cells were 

washed twice with cold Hank’s balanced salt solution and lysed in the same buffer 

solution as for the tissue. The lysates were cleared by centrifugation at 13,000 x g at 4oC 

for 30 min., and the supernatant kept frozen at 80oC.  The protein content of the lysates 

was determined using Bradford Assay (Bio-Rad), with bovine serum albumin as the 

standard. Proteins (15 to 30 µg) were separated by 9-12% SDS polyacrylamide gel 

electrophoresis (SDS-PAGE) and transferred to nitrocellulose membranes (Schleicher 

and Schuell, Keene, NH, USA). Membranes were incubated one hour in blocking buffer 
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(20 mM Tris-HCl buffered saline containing 5% nonfat milk powder and 0.1% Tween 

20) at room temperature and then probed with appropriate antibodies in blocking buffer 

or blocking buffer including 5% bovine serum albumin instead of 5% nonfat milk 

overnight at 4oC. Blots were incubated at 4oC overnight with anti-MMP9 (1:200); anti-

HIF-1α (1:200), anti-VEGF-A (1:200), anti-VEGFR2 (Fkl-1) (1:100), (all antibodies 

from Santa Cruz Bitotech, Santa Cruz, CA) The blots were also incubated with anti-

phospho-Akt (1:1000), anti-phospho p-44/42 MAPK (1:1000), anti-phospho p38 

(1:1000), and anti-phospho SAPK/JNK(1:1000) (all antibodies were purchased from 

Cell Signaling Technology, Inc.). The blots were washed extensively and then incubated 

for one hour with a 1:5000 dilution of secondary antibody. Peroxidase labeled anti-rabbit 

and anti-mouse secondary antibody were purchased from Kirkegaard and Perry 

Laboratories (Maryland, USA). Monoclonal mouse IgG antibody against beta-actin was 

purchased from Sigma Chemical Company. After additional washes, the blots were 

incubated with chemiluminescent substrate, according to directions in the kit (Super 

Signal West Pico, Pierce, Rockford, IL).  

 

Gelatin zymography 

Gelatinolytic activities were analyzed by gelatin zymography as previously 

described [83]. After microscopic dissection of frozen brain specimens, the tissues was 

homogenized in lyses buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM 

CaCl2, 1 mM MgCl2, 0.1% Triton X-100. For the in vitro experiments, the conditioned 

media were collected after the cells were cultured in hypoxic and normoxic conditions, 
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concentrated 30-fold using an Amicon Ultra-15 Centrifugal Filter Device (Millipore, 

Bedford, MA). Protein lysates (in vivo experimnets) and concentrated conditioned media 

(in vitro experiments) (15 μg of protein)  were incubated at 37°C for 30 minutes in SDS 

sample buffer without reducing agent and then subjected to SDS-PAGE in 10% (wt/vol) 

polyacrylamide gels containing 0.1% (wt/vol) gelatin. The gels were washed twice for 

30 minutes in 2.5% (vol/vol) Triton X-100 at room temperature and then incubated for 

24 h in substrate reaction buffer (50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 10 mM 

CaCl2, 0.002% NaN3) at 37oC. The gels were then stained with Coomasie Brilliant Blue 

R250 in 10% (vol/vol) acetic acid and 30% (vol/vol) methanol for 1 h and destained 

briefly in the same solution without dye. Proteolytic activities were detected as clear 

bands indicating the lysis of the substrate.  

 

Total RNA extraction and semi-quantitative RT-PCR 

     Total RNA was extracted from frozen specimens or ENU1564 cells using a SV 

RNA extraction kit (Promega) using manufacturer’s directions. RNA was quantified by 

absorbance at 260 nm. Using a Super Script III First Strand Synthesis System 

(Invitrogen), 100ng of total RNA was amplified by reverse transcription polymerase 

chain reaction (RT-PCR) and the cDNAs were amplified in a 25 µl reaction. PCR 

primers were as follows:          

 HIF-1α primers: (forward5’-GTCGGACAGCCTCACCAAACAGAGC-3’; 

reverse, 5’-GTTAACTTGATCCAAAGCTCTGAG-3’) [84];  
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 MMP 9 primers: (forward, 5'- CCCCACTTACTTTGGAAACGC-3'; reverse, 5'- 

ACCCACGACGATACAGATGCTG-3') [12];  

 VEGF primers: (forward: 5’-GACCCTGGTGGACATCTTCCAGGA-3’; 

reverse, 5’-GGTGAGAGGTCTAGTTCCCGA-3’) [64];   

 VEGFR2  primers: (forward: 5’-GCCAATGAAGGGGAACTGAAGA-3’; 

reverse, 5’-CTCTGACTGCTGGTGATGCTGTC-3’) [85]; 

 β-actin primers (forward, 5'- ATGTACGTAAGCCAGGC-3'; reverse, 5'-

AAGGAACTGGAAAAGAGC -3') [12]. 

Expected size for MMP-9 PCR product was 686 base pairs (bp). PCR condition for 

MMP-9 was carried out with an initial denaturation of 94oC for 2 minutes, followed by 

30 cycles at a denaturation of 94oC for 1 minute, annealing at 59.1oC for 30 seconds and 

extension at 72oC for 1 minute. A final extension of 5 minutes at 72oC was carried out.  

For HIF-1α, 25 cycles were carried out with 30 seconds at 95oC, 1 minute at 55oC and 

2.5 minutes at 72oC. A final extension of 7 minutes at 72oC was carried out. The PCR 

product size for HIF-1α was 487 bp.  For VEGF, one set of rat primers, which amplified 

3 splicing variants of a rat VEGF mRNA (VEGF 120, VEGF 164 and VEGF 188) was used. 

The PCR profile consisted of initial denaturation at 94oC for 7 minutes, followed by 35 

cycles of denaturation at 94oC for 30 seconds, annealing at 58oC for 30 seconds, 

extension at 72oC for 90 seconds, and extension at 72oC for 7 minutes.  The expected 

length of the PCR products was 330 bp for VEGF 120, 462 bp for VEGF 164, and 514 bp 

for VEGF 188.  Expected size for VEGFR2 PCR product was 537 base pairs. PCR 

condition for VRGFR2 was carried out with an initial denaturation of 94oC for 3 
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minutes, followed by 30 cycles at a denaturation of 94oC for 30 seconds, annealing at 

60oC for 30 seconds and extension at 72oC for 30 seconds. A final extension of 5 

minutes at 72oC was carried out. To demonstrate the integrity of the RNA samples used 

in the RT-PCR reactions, parallel amplifications with oligonucleotide primers for mouse 

β-actin were performed. The expected size for β-actin PCR product was 403 bp. PCR 

fragments were analyzed on 1.5% agarose gels stained with ethidium bromide. 

 

Statistical analysis 

Quantification of the Western blot, gelatin zymography, and semi-quantitative 

RT-PCR bands density was performed on a Macintosh computer using the public 

domain NIH Image program (developed at the U.S. National Institutes of Health and 

available on the Internet at http://rsb.info.nih.gov/nih-image. Data were presented as 

mean ± S.D., and statistical comparisons were made using Student t-test. A P-value of < 

0.05 was considered statistically significant.  

 

 

Results: In vivo studies 
 

Immunolocalization of HIF-1α protein in the tumor foci 

Tumor cells respond to low-oxygen conditions via the stabilization and activation 

of hypoxia-inducible factor 1α (HIF-1α), a transcription factor critical for adaptive 

responses to reduced oxygen.  Immunohistochemistry for HIF-1α was performed in 

order to demonstrate that hypoxia was localized within the tumor foci. IHC results 
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showed the cytoplasmic and nuclear immunolabeling with moderate intensity of the 

neoplastic cells within the brain tumor foci (Figure 17a, and 17b). Positive control, 

represented in Figure 17c and 17d, showed that some neurons also had moderate 

staining in the cytoplasm but not in the nucleus. A negative control is represented in the 

Figure 17e.  

 

 

Figure 17. Localization of HIF-1α in hypoxic tumor foci.  Immunohistochemical staining (red) of HIF-1α 

protein in the tumor foci revealed positivity within neoplastic cell cytoplasm and nucleus (a, b). Arrows 

indicate the neoplastic cells within tumor foci which stain positive for HIF-1α in both cytoplasm and 

nucleus. Positive control is represented in panel (c) and revealed cytoplasmic HIF-1α staining. (d) Higher 

magnification view of the neurons in panel (c). Note the absence of nuclear HIF-1α staining in neurons. 

Arrow indicates cytoplasmic HIF-1α staining of the neurons. Sections exposed to a negative control 

antibody showed no staining reactions (e). Bars indicate 200 µm.  
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Immunohistochemistry for vascular endothelial growth factor (VEGF-A) and 

vascular endothelial growth factor receptor VEGFR2 (Flk-1) 

Further analysis was focused on the VEGF-A and VEGF receptor, VEGFR2 (Flk-1). 

Immunohistochemical staining for VEGF and VEGFR2 (Flk-1) was performed in order 

to characterize the expression of these proteins within tumor foci.  Previous studies 

showed that HIF-1α is the major transcription factor responsible for induction of VEGF 

production and secretion.  IHC staining for VEGFR2 (Flk-1) showed immunolabeling of 

the neoplastic cells (Figure 18a, 18b and 18c). Endothelial cells lining blood vessels 

also show positivity for VEGFR2 (Figure 18d). No staining was observed in the 

negative controls (data not shown). 

 

 

Figure 18. Localization of VEGFR2 (Flk-1) in the brain tumor foci. (a) VEGFR2 labeling of the tumor 

foci. (b, c) Higher magnification views of tumor cells showing cytoplasmic and membrane VEFGR2 

staining. (d) Endothelial cells lining a blood vessel adjacent to the tumor foci also stain positive for 

VEGFR2. Bars indicate 200 µm.  
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VEGF staining was observed in the cytoplasm of the neoplastic cells (Figure 19a 

and 19b).  Positive control revealed that some glial cells are also labeled for VEGF-A 

(Figure 19c). Endothelial cells lining blood vessels also show positivity for VEGF-A 

(Figure 19d). No staining was observed in the negative controls (data nor shown). 

 

 

Figure 19. Immunolocalization of VEGF-A in brain tumor foci and surrounding glial cells.  (a) low-power 

view of VEGF-A-positive tumor foci. (b) Higher magnification view of tumor cells showing cytoplasmic 

VEGF-A staining. (c) positive control showing VEGF-A labeling of some glial cells. (d) Endothelial cells 

lining a blood vessel adjacent to the tumor foci also stain positive for VEGF-A. Bars indicate 200 µm.   
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Immunohistochemistry for MMP-9 in brain tumor foci 

Given the fact that in addition to the upregulation of VEGF, hypoxia may be a 

factor in activation of extracellular matrix degrading proteases, we evaluated IHC for 

MMP-9. Immunohistochemical staining for MMP-9 showed immunolabeling with 

moderate intensity in the neoplastic cell cytoplasm and faint staining of the glial cells 

(Figure 20a and 20b). Negative control slide is represented in Figure 20c. 

 

 

Figure 20. Localization of MMP-9 in the brain tumor foci. (a) Immunohistochemical staining (brown) of 

MMP-9 protein in the tumor foci. Note moderate staining in the neurons. (b) Higher magnification view of 

the tumor cells showing cytoplasmic MMP-9 staining. Arrows indicate the tumor foci. Negative control 

for MMP-9 is shown in panel (c). Bars indicate 200 µm.  

 

Increased expression of HIF-1α, VEGF-A and VEGFR2 (Flk-1) proteins in brain 

tumor foci 

To confirm the IHC results on HIF-1α, VEGF-A and VEGFR2 (Flk-1) we 

extracted proteins from brain tumor foci and control brain. Evaluation of protein 

expression by Western blotting revealed that all three proteins were significantly higher 
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in tumor foci compared with control tissue from brains of age-matched-non-inoculated 

rats (Figure 21a).  

 

 

Figure 21. Increased expression of HIF -1α, VEGF-A, and VEGFR2 (Flk-1) proteins in neoplastic cells.  

(a) Evaluation of protein expression by Western blotting. The membranes were stripped and re-probed 

with β-actin antibody to confirm equal loading. (b, c, d) Densitometric analysis of HIF -1α, VEGF-A, and 

VEGFR2 (Flk-1) protein expression in tumor cells showed significant increases compared with control 

brain. The results represent the mean ± standard deviation for three control and three tumor samples. C-

control, T-tumor; Asterisks indicate statistically significant differences (*, P < 0.05). 
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Given that HIF-1α is the major transcription factor responsible for induction of 

VEGF production and secretion it was important to determine if VEGF was also 

upregulate in neoplastic cells. VEGFR2 (Flk-1) protein, which is a VEGF receptor was 

also found to be significantly upregulate in tumor foci. Quantitative analysis (Figure 

21b, 21c, and 21d) was determined by densitometry.  

 

Increased MMP-9 activity in brain tumor foci 

To confirm the IHC results on MMP-9 protein expression and to evaluate the 

enzymatic activity of MMP-9 in the brain tumor foci gelatin zymography was 

performed. The results revealed an increase in enzymatic activity of MMP-9 in brain 

tumor foci compared with control brain (Figure 22A).  Quantitative analysis determined 

by densitometry revealed an increase in pro and active forms of MMP-9. Figure 22B 

represents the quantitative analysis of MMP-9 determined by densitometry of the active 

band (b). 
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Figure 22. MMP-9 enzymatic activity in brain tumor foci compared with brain control.  (A) Increased 

MMP-9 enzymatic activity in the tumor foci. The double band at 97 KDa corresponded to the latent form 

(a) (proenzyme) and active form (b) of MMP-9. (B) Quantitative analysis of MMP-9 was determined by 

densitometry of the active band (b). Data are represented as mean ± standard deviation, for three 

independent experiments and asterisks indicate statistically significant differences (*, P < 0.05).  

 

 

Increased expression of HIF-1α, VEGF-A, and MMP-9 mRNA in the SD rat 

brain tumor cells 

To confirm the IHC and Western blot results on HIF-1α, VEGF-A, and MMP-9 

protein expression, we prepared cDNA from dissected tumor sample and performed 

semi-quantitative RT-PCR analysis.  Although this technique is semi-quantitative, our 

results indicate that there were higher levels of HIF-1α, VEGF-A, and MMP-9 mRNA in 

brain tumor foci than in normal brain tissues from age-matched-non-inoculated rats 

(Figure 23a).  

 



 60

 

Figure 23. Increased expression of HIF-1α, VEGF, and MMP-9 mRNA in the rat neoplastic brain foci. (a) 

Semi-quantitative RT-PCR was used to detect HIF-1α, VEGF, and MMP-9 and β-actin in total RNAs from 

normal brain and neoplastic brain foci. β-actin was used as an internal control.  For VEGF three alternative 

splicing variants were identified. A 330 bp product, which is identical to that of the alternative splicing 

VEGF 120 isoform. A second 462 bp product, corresponding to the VEGF164 isoform, and a third 514 bp 

product, corresponding to the VEGF188 isoform were also detected. VEGF188 isoform expression was 

greater than those of VEGF164 and VEGF120. (b, c, d) .Quantitative analysis of VEGF, MMP-9, and HIF-1 

was determined by densitometry. The results are mean ± standard deviation from three controls and three 

tumor samples. * P <0.05. 
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Results: In vitro studies 
 

In vitro invasive potential of cancer cells 

To determine whether hypoxia influences the in vitro ENU1564 cells invasive 

potential we used a Matrigel-based invasion assay. The in vitro invasive potential of 

ENU1564 cells grown under hypoxic conditions were compare with ENU 1564 cells 

grown under normoxic conditions. Boyden chamber chemoinvasion analysis showed 

that a significant smaller number of hypoxic ENU1564 cells (P< 0.05) invaded the 

Matrigel compared with ENU1564 cells grown in normoxic conditions (Figure 24). 

 
 
 

 
 
Figure 24. Metastatic potential of hypoxic ENU1564 cells. In vitro invasive chamber assay was performed 

as described in material and methods. The results showed in the histogram are the mean of ± standard 

deviation of two independent experiments run triplicate; (*) statistically significant (P< 0.05). 
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Increase HIF-1α protein expression in hypoxic ENU1564 cells 

Next we investigated whether exposure of ENU1564 cells to hypoxia for 24 

hours would increase HIF-1α protein levels. As expected, HIF-1α protein levels were 

increased in response to hypoxia after 24 hours (Figure 25) compared with ENU1564 

cells grown in normoxic conditions, where the levels of HIF-1α protein was very low. 

 

Figure 25. Increased HIF-1α protein expression in hypoxic ENU1564 cells. (a) Western blot analysis 

showing increase HIF-1α protein expression in hypoxic ENU1564 cells. (b) Quantitative analysis of HIF-1 

was determined by densitometry. The results are mean ± standard deviation from three independent 

experiments. * P <0.05. 
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Increased MMP-9 mRNA expression in hypoxic ENU1564 cells 

MMP-9 plays an important role in tumor invasion and metastasis. Prior 

observations have suggested that acidity in the tumors can be caused by hypoxia-

dependent and/or-independent pathways and MMP-9 was found to be induced by 

culturing cells at an acidic pH [79]. We investigated the MMP-9 mRNA expression in 

ENU1564 cells grown in normoxic and hypoxic environment to asses the role of MMP-9 

in tumor invasion and metastasis. We found a significant increase in MMP-9 mRNA 

expression in hypoxic ENU1564 cells compared with normoxic ENU1564 cells (Figure 

26). MMP-9 is one of the proteins responsible for degradation of extracellular matrix 

and increased invasion potential of ENU1564 cells. We can conclude that hypoxia 

through upregulation MMP-9 expression is a powerful stimulus for cancer cell invasion 

and metastasis.   
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Figure 26.  Increased expression of MMP-9 mRNA in hypoxic ENU1654 cells. (a) Semi-quantitative RT-

PCR was used to MMP-9 and β-actin in total RNAs from ENU1564 cells grown in hypoxic and normoxic 

conditions as described in materials and methods. β-actin was used as an internal control.  (b) Quantitative 

analysis of MMP-9 mRNA was determined by densitometry. The results are mean ± standard deviation 

from three controls (cells grown in normoxia) and three hypoxic samples. * P <0.05. 

 

 

Increased MMP-9 activity in hypoxic ENU1564 cells 

To confirm the RT-PCR results on MMP-9 mRNA expression we evaluated the 

enzymatic activity of MMP-9 in the conditioned media collected from ENU1564 cells 

grown in hypoxic and normoxic condition by gelatin zymography. The results revealed 

that hypoxia increases MMP-9 secretion from ENU1564 cells when compared with the 

levels of MMP-9 from normoxic ENU1564 cells (Figure 27).  Quantitative analysis 
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determined by densitometry revealed an increase in pro and active forms of MMP-9. 

Figure 27 represents the quantitative analysis of MMP-9 determined by densitometry of 

the active band (b). 

 

 

 

Figure 27.  Increased MMP-9 enzymatic activity in hypoxic ENU1564 cells.  (a) Gelatin zymography of 

ENU1564 conditioned media was performed as described in Materials and Methods. Conditioned media 

was collected from ENU1564 cells grown in normoxic and hypoxic condition. The double band at 97 KDa 

corresponded to the latent form (A) (proenzyme) and active form (B) of MMP-9. (b) Quantitative analysis 

of MMP-9 was determined by densitometry of the active band (B). Data are represented as mean ± 

standard deviation, for three independent experiments and asterisks indicate statistically significant 

differences (*, P < 0.05); N1-N2, normoxic cells; H1-H3, hypoxic cells.  
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Increased expression of VEGF-A and VEGFR2 in hypoxic ENU1564 cells 

Hypoxia was found to be is a strong inducer of VEGF, and hypoxia-induced 

VEGF expression determines the course of various disease conditions, such as solid 

tumor growth [65]. We found that both VEGF-A and VEGFR2 mRNA expression are 

significantly elevated in hypoxic ENU1564 cells compared to normoxic ENU1564 cells 

(Figure 28).   

 

 

Figure 28.  Increased VEGF-A and VEGFR2 mRNA expression in hypoxic ENU1564 cells. (a) VEGF-A 

and VEGFR2 mRNA expression in hypoxic ENU1564 cells compared with normoxic cells. β-actin was 

used as an internal control.  (b) Quantitative analysis of VEGF-A and VEGFR2 mRNA expression was 

determined by densitometry. The results are mean ± standard deviation from three controls and three 

tumor samples. * P <0.05. 
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Increased Akt phosphorylation in hypoxic ENU1564 cells 
 

Several kinase pathways, including PI3K-Akt and ERK1/2 have been described 

to be activated by hypoxia [86]. Here we provide evidence that hypoxia induce a 

significant increase in phosphorylation of Akt in ENU1564 cell line compared with 

normoxic ENU1564 cells (Figure 29).   

 
 
 

 
 
Figure 29. Increased Akt phosphorylation in hypoxic ENU1564 cells. (a) Western blot analysis of 

phospho–Akt expression in ENU1564 cells grown in hypoxic and normoxic conditions for 24 hour as 

described in Materials and Methods. β-actin was used as an internal control.  (b) Quantitative analysis of 

phospho-Akt was determined by densitometry. The results are mean ± standard deviation from three 

controls (cells grown in normoxia) and three hypoxic samples. * P <0.05. 
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Hypoxia-induced expression of MMP-9, VEGF-A but not VEGFR2 involves 

PI3K-Akt pathway 

 We next investigated the role of PI3K-Akt pathway in hypoxia-induced 

expression of MMP-9, VEGF-A, and VEGFR2 by using a specific PI3K inhibitor, 

LY294002. The ENU1564 cells were pretreated with or without (DMSO only) the 

inhibitor for 1 hour and then cultured in hypoxic conditions for 24 hours as described in 

materials and methods. ENU1564 cells grown in normoxic conditions were used as 

controls. We investigated the expression of the proteins of interest by Western blot 

analysis. We showed that hypoxia induced increased expression of MMP-9, VEGF-A 

and VEGFR2, and the pretreatment of ENU1564 cells with PI3K inhibitor significantly 

decreased the levels of MMP-9 and VEGF-A but there was no change in the levels of 

VEGFR2 compared with untreated cells (Figure 30). From this experiment we conclude 

that hypoxia regulation of VEGFR2 levels in ENU1564 cells may involve a different 

signaling pathway other than PI3K-Akt. 

 

Increased ERK1/2 phosphorylation in hypoxic ENU1564 cells 
 

The mitogen activated protein kinase (MAPK) pathway is one of most important 

transduction signaling pathways that is related with numerous pathogenic processes, 

including neoplasia. ERK1/2 has been described to be activated by hypoxia [86]. 
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Figure 30.  Involvement of PI3K-Akt signaling pathway in hypoxia-induced expression of MMP-9, 

VEGF-A, but not VEGFR2 expression.  (a) Western Blot analysis using anti-MMP-9, anti-VEGF-A, anti-

VEGFR2 and β-actin antibodies (loading controls) were performed and show increased levels of MMP-9, 

VEGF, and VEGFR2 in hypoxic ENU1564 cells compared with normoxic ENU1564 cells. The levels of 

MMP-9 and VEGF-A proteins significantly decreased when the cells were pretreated with PI3K inhibitor 

for 1 hour prior to exposure to hypoxic conditions but there was no change in VEGFR2 levels; (b) 

Quantitative analysis of MMP-9, VEGF, and VEGFR2 was determined by densitometry, The results 

represent the mean of ± standard deviation from three independent experiment; (*significant different from 

normoxic cells, P< 0.05, (**,significant different from hypoxic untreated cells, P< 0.05). 
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These points prompted us to investigate if ERK1/2 is activated in hypoxic 

ENU1564 cells. Our results showed that there is a significant increase of phospho-

ERK1/2 in hypoxic ENU1564 cells (Figure 31). 

 
 

Figure 31. Increased ERK1/2 phosphorylation in hypoxic ENU1654 cells. (a) Western blot analysis of 

phospho–ERK1/2 expression in ENU1564 cells grown in hypoxic and normoxic conditions as described in 

materials and methods. β-actin was used as an internal control.  (b) Quantitative analysis of phospho-ERK 

1/2 was determined by densitometry. The results are mean ± standard deviation from three controls (cells 

grown in normoxia) and three hypoxic samples. * P <0.05; C1-C3, normoxic cells (control), H1-H3, 

hypoxic cells. 
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Activation of the MAPK pathway in tumor cells is well correlated with cancer cell 

invasive and metastatic phenotype [87]. MAPK pathway has been related to MMP 

activation and expression [81, 87]. 

 

Hypoxia-induced expression of MMP-9, VEGF and VEGFR2 involves ERK1/2 

Next we wanted to investigate the role ERK1/2 pathways in hypoxia-induced 

expression of MMP-9, VEGF-A and VEGFR2 protein expression. The ENU1564 cells 

were pretreated with or without (DMSO only) the inhibitor for 1 hour and then cultured 

in hypoxic conditions for 24 hours. Cells grown in normoxic conditions were used as 

controls. Total lysates were collected for WB analysis. Figure 32 shows that there is a 

significant increase in phospho-ERK1/2 in hypoxia which was prevented by MEK1/2 

inhibitor, PD98059. Also, it shows that there is a significant increase in MMP-9, VEGF-

A and VEGFR2 in hypoxic ENU1564 cells compared with normoxic cells, which was 

decreased by MEK1/2 inhibitor, PD98059. These results confirm the involvement of 

MEK1/2-ERK1/2 in hypoxic stimulation of MMP-9, VEGF and VEGFR2 proteins. 
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Figure 32.  Involvement of MEK1/2-ERK1/2 signaling in hypoxia-induced expression of MMP-9, VEGF-

A, and VEGFR2 expression.  (a) Western blot analysis using anti-phospho ERK1/2, anti-MMP-9, anti-

VEGF-A, anti-VEGFR2 and β-actin antibodies (loading controls) were performed and show increased  

levels of  phospho-ERK1/2, MMP-9, VEGF-A and VEGFR2 in hypoxic ENU 1564 cells compared with 

normoxic ENU 1564 cells. The levels of these proteins significantly decreases when the cells were 

pretreated with MEK1/2 inhibitor for 1 hour prior to exposure to hypoxic conditions; (b) Quantitative 

analysis of MMP-9 proteins, VEGF-A, and VEGFR2 was determined by densitometry, The results 

represent the mean of ± standard deviation from three independent experiment; (*,significant different 

from normoxic cells, P<0.05, (**,significant different from hypoxic untreated cells, P< 0.05). 
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Hypoxia did not activate p38 nor SAPK/JNK in ENU15464 cells 

We demonstrated that hypoxia activates both Akt and ERK1/2 signaling 

pathways in ENU1564 cells. Since hypoxia is a typical stress factor for rapidly growing 

tumors cells, it was interesting to analyze whether hypoxia might infuce p38 or 

SAPK/JNK activation in cancer cells. Surprisenly, Western blot analysis showed no 

difference in the phosphorylation levels of these proteins in normoxic and hypoxic cells 

(Figure 33). Activation of there proteins might be a cell specific phenomenon. 

 

 

 

Figure 33.  Hypoxia did not activate p38 nor SAPK/JNK in ENU1564 cells. (a) Western Blot analysis 

using anti-phospho p38, anti-SAPK/JNK, and anti-β-actin antibodies (loading controls) were performed 

and show no change in  the levels of  phospho-p38 and phospho-SAPK/JNK in hypoxic ENU1564 cells 

compared with normoxic ENU 1564 cells. The experiment was run in triplicate with the same result. 
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Discussion 

We found increased expression of HIF-1α, VEGF-A, VEGFR2, and MMP-9 

mRNA and proteins in the brain tumor foci suggesting that these molecules may be 

induced by tumor hypoxia and may be directly involved in the invasion of the tumor 

cells into the brain parenchyma. 

We used non-inoculated brains of age-matched rats as controls, assuming that 

differences in HIF-α, VEGF, VEGFR2, and MMP-9 would be attributable to the 

presence of tumors.  Our results showed the increased expression of HIF-1α at both 

protein and mRNA levels, which is an indicator of the existence of hypoxia in the brain 

tumor foci. These results were in accordance with previous studies, which showed 

elevated HIF-1α expression in a variety of human tumors and pre-neoplastic lesions [73, 

74]. Immunohistochemistry revealed the localization of HIF-1α protein in the cytoplasm 

and nucleus of neoplastic cells. Localization of the HIF-1α in the nucleus is an indication 

of protein stability in hypoxic conditions which is the major transcription factor 

responsible for induction of VEGF production but can also activate different genes by 

binding to their promoter sequences. Hypoxia-induced expression of VEGF has been 

well established in various types of non-neoplastic and neoplastic cells [88, 89]. 

Considering that previous studies showed that matrix metalloproteinases are 

important in tumor invasion and metastasis [27, 78, 12], we focused on MMP-9 

expression in brain tumor foci. Evidence suggested that MMP-9 was associated with 

intra-tumoral angiogenesis and with the metastatic process of breast cancer. Our results 

showed an increase expression of protein and mRNA level of MMP-9 in the brain tumor 
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foci compared with non-inoculated control brain. Gelatin zymography confirmed an 

increase in gelatinase activity of MMP-9 in tumor brain foci. These results are in 

accordance with the previous reports correlating MMP-9 activity with invasive and 

metastatic behavior [90]. The upregulation of MMP-9 in brain tumor foci might be 

directly related to the presence of hypoxia in the brain tumor foci. Interestingly, previous 

studies showed that besides the upregulation of HIF-1α in hypoxia other transcription 

factors such as c-jun/AP-1 (activator protein) are also upregulated [69]. Elevation of AP-

1 level in hypoxic cells can be one possible mechanism of the MMP-9 upregulation 

since the promoter of MMP-9 has a site for binding of AP-1 complex.  

We analyzed the expression level of VEGFR2 and VEGF-A in brain tumor foci 

since the mechanism involved in tumor invasion may include hypoxic regulation of 

cytokine release, and growth factor receptor. In this study, comparison of tumor 

xenograft and control brains demonstrated that the brain tumor up-regulated the 

expression of VEGF mRNA and protein, which arose as three alternative splicing 

variants VEGF120, VEGF164 and VEGF188. The genetic studies showed that the 

VEGF120 isoform alone is able to initiate, but not complete, the angiogenic programme 

[63]. Although the target of VEGF was thought to be restricted to endothelial cells, more 

and more evidence has indicated that nonendothelial cells can be VEGF targets by 

expressing VEGF receptors [63]. The production and upregulation of VEGF in brain 

tumor foci is important for tumor vascularization and may confer proteolytic activity to 

the neoplastic cells by induction of MMP-9.  Our results showed that VEGFR2 protein 

was upregulated in brain tumor foci compared with brain control (Fig. 9a). VEGFR2 is 
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considered to be the main mitogenic signaling receptor for VEGF [91]. Skobe et al, 

demonstrated the role of VEGFR2 for the invasive growth of skin squamous cell 

carcinoma cells [91]. Recently, Noda et al., 2005 demonstrated the hypoxic upregulation 

of VEGF and VEGFR2 and their involvement in hypoxia-induced MT1-MMP 

expression in retinal glial cells. This upregulation was abrogated in the presence of 

SU1498, a selective inhibitor of VEGFR2 or by using a neutralizing anti-VEGF antibody 

[92]. The upregulation of VEGF, VEGFR2 and MMP-9 might be a consequence of 

decreased tissue oxygen concentration which leads to upregulation of HIF-1α. Direct or 

indirect interaction of both transcription factors c-jun/AP-1 and HIF-1α is a suggested 

mechanism for regulation of at least some of the known hypoxia-inducible genes. 

Upregulation of all these factors under hypoxic conditions enables the cells to survive 

reduced tissue oxygen concentration by promoting angiogenesis and tumor metastasis.     

In order to confirm the in vivo results regarding the expression of HIF-1α, MMP-

9, VEGF-A and VEGFR2 proteins we cultured our cells line ENU1564 in hypoxic and 

normoxic conditions and analyzed the expression of these proteins. We found an 

increased expression of HIF-1α proteins, MMP-9, VEGF-A and VEGFR2 mRNA and 

proteins in hypoxic ENU1564 cells compared with normoxic cells. We also 

demonstrated the involvement of PI3K-Akt pathway in hypoxic regulation of MMP-9 

and VEGF but not VEGFR2 by using specific PI3K inhibitor. Also we showed that 

hypoxic regulation of MMP-9, VEGF and VEGFR2 also involve MEK1/2-ERK pathway 

by using MEK1/ inhibitor. We conclude that hypoxia-induced expression of MMP-9 and 

VEGF involved a dual signaling pathway, PI3K-Akt and MEK1/2-ERK, and a single 
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signaling pathway for VEGFR2, MEK1/2-ERK. The difference in the regulation of these 

proteins in hypoxic ENU1564 cells may reside in the different promoter regions of these 

proteins. W also analyzed the activation of p38 and SAKP/JNK in hypoxic ENU1564 

cells and found no difference in the phosphorylation levels of these proteins in normoxic 

and hypoxic cells.  

These results demonstrated that hypoxia frequently observed within solid tumors, 

can stimulate multiple signaling pathways that regulate important factors in tumor 

angiogenesis and invasion. 
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CHAPTER IV 
 

ROLE OF FIBROBLAST GROWTH FACTOR-1 

(FGF-1) IN THE EXPRESSION OF MMP-9 IN ENU 

1564 CELLS* 

 

 

Introduction 
 

Matrix metalloproteinases (MMPs) are structurally related zinc- and calcium-

dependent endopeptidases that play a role in proteolytic degradation of structural 

components of the extracellular matrix [93]. They not only facilitate breakdown of the 

extracellular matrix, but also affect early carcinogenesis, tumor development and 

growth, and play an important role in angiogenesis and mammary gland involution [27]. 

Among these enzymes, matrix metalloproteinase-9 (MMP-9) or gelatinase B plays an 

important role in tumor invasion and metastasis because of its specificity for type IV 

collagen. Previous studies demonstrated that MMP-9 plays an important role in an array 

of patho-physiological processes including wound healing, inflammation, tumor 

invasion and metastasis [94, 95]. Signal transduction responsible for MMP-9 regulation 

was investigated by several laboratories. 

 

*Reprinted with permission from “FGF-1-induced matrix metalloproteinase-9 
expression in breast cancer cells is mediated by increased activities of NF-κB and 
activating protein-1” by Lungu G, Covaleda L, Mendes O, Stoica HM, Stoica G, 2007, 
Molecular Carcinogeneis In press. Copyright 2008 by Wiley-Liss Inc. a subsidiary of 
John Wiley & Sons Inc. 
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Their results indicated that depending on stimulus and cell types, induction of 

MMP-9 synthesis involves several signaling cascades, including extracellular signal-

regulated kinase (ERK), jun-N-terminal kinase (JNK), protein kinase C (PKC), 

serine/threonine protein kinase (Akt/PKB) and phospholipase D signaling pathway 

[96,97].    

Fibroblast growth factors (FGFs) and FGF signaling pathways appear to play 

significant roles not only in normal development and wound healing, but also in 

resistance to cell death, increased motility and invasiveness, increased angiogenesis, 

enhanced metastasis, and resistance to chemotherapy and radiation, all of which can 

enhance tumor progression and clinical aggressiveness [36]. FGF-1, also known as 

acidic FGF, is a pleiotropic growth factor whose biological activities are mediated by 

high-affinity cell surface receptors that possess tyrosine kinase activity [38]. FGF-1 

binds at the cell surface to any of four closely related high affinity receptors (FGFR1-4).  

FGF-1 also binds with a relatively high affinity to heparan sulphates, which in general 

are present as covalently linked side chains on cell-surface proteoglycans [98]. Unlike 

other members of FGF family, which currently includes 23 members, FGF-1 and FGF-2 

lack a classical signal sequence for secretion [99]. Previous studies showed that FGF-1 is 

released in response to severe cellular injuries such as hypoxia [45] and serum starvation 

[100].  

  FGF-1 and its receptors were found to play a role in autocrine and paracrine 

growth control of malignant tumors; their overproduction is often associated with cancer 

[38,101]. Also, FGF-1 was found to play a key role in early stages of angiogenesis by 
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mediating MMP-1 proteolytic activity in endothelial cells [102]. Recent reports indicate 

that FGF-2 (bFGF), the other primary member of the FGF family, can regulate MMP-9 

secretion from MCF-2 cancer cells through PKC activation of the Ras/ERK pathway 

[103].  

Activator protein-1 (AP-1) and nuclear factor kappa B (NF-κB) are transcription 

factors important in the regulation of MMP-9, as the promoter of MMP-9 gene contains 

binding sites for both AP-1 and NF-κB [104].  AP-1 is a ubiquitous protein complex that 

can be induced by multiple stimuli, and its activation can lead to various pathological 

outcomes, such as carcinogenesis [105,106]. Stimulation of AP-1 occurs through a 

combination of signaling events, leading to an increased activity of proteins that directly 

potentiate Jun and Fos family members or activates transcription factors that regulate 

expression of jun and fos [107,108,109]. NF-κB comprises a family of inducible 

transcription factors which regulate host inflammatory and immune responses [110]. 

Stimulation of NF-κB pathway is mediated by diverse signal transduction cascades 

[110]. In unstimulated cells, NF-κB proteins are localized in the cytoplasm, and 

associated with a family of inhibitor proteins known as IκB. NF-κB was found to be 

activated following the interaction of FGF-1 with FGFR-1 [111]. Regarding the 

activation of the transcription factors AP-1 and NF-κB, previous studies showed that 

MEK1/2-ERK signaling pathway is important for activation of c-jun/AP-1, whereas 

activation of NF-κB requires PI3K-Akt, or p38 depending on cell type [97,112,113]. 

Extracellular signal-regulated kinase belongs to the mitogen-activated protein (MAP) 
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kinase family and is predominantly stimulated by mitogens and hormones, inducing 

proliferation, cell growth or differentiation [114,115].  

In our previous study [116], we detected tumor hypoxia in a rat intracranially 

implanted with ENU1564 mammary adenocarcinoma cells by measuring the brain tumor 

oxygen saturation (SO2) through the intact skin and skull using a novel noninvasive 

spectroscopic photoacoustic tomography (SPAT) technology. We also found and 

increased expression of MMP-9 in the brain tumor foci suggesting that increased 

expression of MMP-9 may be induced by tumor hypoxia and may be directly involved in 

the invasion of the tumor cells into the brain parenchyma. We also found an increase in 

MMP-9 expression in hypoxic ENU1564 cells (Figure 34). We demonstrated that 

hypoxic regulation of MMP-9 involves a dual signaling pathway, PI3K-Akt and 

MEK1/2-ERK. The mechanism by which FGF-1 regulates MMP-9 expression in cancer 

cells was not elucidated.  

 

 

Figure 34. Hypoxia and FGF-1 induce MMP-9 expression in ENU1564 cell. We found that hypoxia-

induced MMP-9 expression involves a dual signaling pathway, PI3K-Akt and MEK1/2-ERK. The 

mechanism by which FGF-1 regulates MMP-9 expression in ENU1564 cells was not elucidated. 
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Here we investigate the mechanisms involved in FGF-1-mediated regulation of 

MMP-9 expression in ENU1564 mammary adenocarcinoma cells. We showed for the 

first time that FGF-1-upregulates MMP-9 expression in ENU1564 cell lines by 

increasing the activities of NF-κB and AP-1 and involve activation of a dual signaling 

pathway, PI3K-Akt and MEK1/2-ERK.  

 

 

Materials and methods 
 

Reagents 

Recombinant human FGF acidic was purchased from R&D Systems (R&D 

System, Inc. Minneapolis, MN). PD98059 was purchased from EMD Biosciences (EMD 

Biosciences, Inc. San Diego, CA). LY294002 was purchased from Cell Signaling 

Technology (Cell Signaling Technology, Inc. Danvers, MA). Heparin and all other 

chemicals were purchased from Sigma Chemical Company (St. Louis, MO) unless 

otherwise indicated.  

 

Cell culture 

The ENU1564 breast cancer cell line used in this study was originally developed 

in our laboratory and originated from an N-ethyl-N nitrosourea-induced mammary 

adenocarcinoma in a female Berlin-Druckrey IV (BD-IV) rat. This cell line is highly 

metastatic to brain and bone tissues [12]. The cell line was maintained in Dulbecco’s 

modified Eagle’s medium (Invitrogen, Carlsbad, CA), (DMEM) supplemented with 10% 
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fetal bovine serum (Invitrogen) and antibiotics (100 units/ml penicillin and 100 µg/ml 

streptomycin). 

 

Treatment with FGF-1, LY 294002 and PD98059 

Stock solution of recombinant FGF-1 (10 µg/ml) was prepared in 5,000 USP 

units/mL heparin in PBS [100]. For all experiments ENU1564 cells were maintained in 

serum-free medium for 24 hours before inhibition assays and FGF-1 treatment. After 24 

hours of starvation, cells were washed twice with Hank’s balanced salt solution 

(Invitrogen, Carlsbad, CA) and stimulated with FGF-1 at the indicated concentrations for 

24 hours before preparation of cell lysates. For time-course experiments, cells were 

treated with 10 ng/ml FGF-1 for different time points (0- 24 hours). Control cells were 

incubated with 5U/ml heparin in PBS. PI3K inhibitor LY294002 (10 µM) or the 

MEK1/2 inhibitor PD98059 (25 µM) was added at least 1 hour before FGF-1 treatment.  

For inhibition experiments, cells were incubated with either the inhibitor or dimethyl 

sulfoxide (DMSO) (control cells).  

 

Western blot analysis 

The cells were washed twice with cold Hank’s solution and lysed in buffer 

containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 0.1% 

Triton X-100. The lysates were cleared by centrifugation at 13,000 x g at 4oC for 30 

minutes and the supernatant kept frozen at 80oC. Nuclear and cytoplasmic extracts for 

Western blot analysis were prepared as described previously [117]. The protein content 
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of the lysates was determined using Bradford Assay (Bio-Rad Laboratories, Hercules, 

CA), with bovine serum albumin as the standard. Proteins (15 to 30 µg) were separated 

by 9-12% SDS polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to 

nitrocellulose membranes (Schleicher and Schuell, Keene, NH). Membranes were 

incubated one hour in blocking buffer (20 mM Tris-HCl buffered saline containing 5% 

nonfat milk powder and 0.1% Tween 20) at room temperature, then probed with 

appropriate antibodies in blocking buffer or blocking buffer including 5% bovine serum 

albumin instead of 5% nonfat milk overnight at 4oC. Blots were incubated at 4oC 

overnight with anti-MMP-9 (1:200), anti-c-jun (1:200), anti-NF-κBp65 (1:200), IκBα 

(1:200) antibodies (all antibodies were obtained from Santa Cruz Biotechnology, Inc., 

Santa Cruz, CA). Monoclonal mouse IgG antibody against beta-actin was purchased 

from Sigma Chemical Company (St. Louis, MO). The blots were also incubated with 

anti-phospho-Akt (1:1000), and anti-phospho p-44/42 MAPK (1:1000) (all antibodies 

from Cell Signaling Technology, Inc. Danvers, MA). The blots were washed 

extensively, and then incubated for one hour with a 1:5000 dilution of secondary 

antibody. Peroxidase labeled anti-rabbit (1:10000) and anti-mouse secondary antibody 

(1:5000) were purchased from Kirkegaard and Perry Laboratories (Gaithersburg, MD). 

After additional washes, the blots were incubated with chemiluminescent substrate, 

according to directions in the kit (Super Signal West Pico, Pierce, Rockford, IL).  
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Gelatin zymography 

Gelatinolytic activities were analyzed by gelatin zymography as previously 

described [83]. For the preparation of conditioned medium, cells were washed with 

Hank’s balanced salt solution and maintained for 24 hours in serum-free medium. After 

the starvation period, cells were stimulated with the indicated concentrations with FGF-1 

and cultured for 24 hours. The conditioned media were collected, concentrated 30-fold 

using an Amicon Ultra-15 Centrifugal Filter Device (Millipore, Bedford, MA). 

Concentrated conditioned media (15 μg of protein) were incubated at 37°C for 30 

minutes in SDS sample buffer without reducing agent, then subjected to SDS-PAGE in 

10% (wt/vol) polyacrylamide gels containing 0.1% (wt/vol) gelatin. The gels were 

washed twice for 30 minutes in 2.5% (vol/vol) Triton X-100 at room temperature and 

then incubated for 24 hours in substrate reaction buffer (50 mM Tris-HCl (pH 7.5), 100 

mM NaCl, 10 mM CaCl2, 0.002% NaN3) at 37oC. The gels were then stained with 

Coomasie Brilliant Blue R250 in 10% (vol/vol) acetic acid and 30% (vol/vol) methanol 

for 1 hour and destained briefly in the same solution without dye. Proteolytic activities 

were detected as clear bands indicating the cleavage of the substrate.  

 

Total RNA extraction and semi-quantitative RT-PCR 

Total RNA was extracted from ENU1564 cells using an SV RNA extraction kit 

(Promega Corporation, Madison WI) using the manufacturer’s directions. RNA was 

quantified by absorbance at 260 nm. Using a Super Script III First Strand Synthesis 

System (Invitrogen), 100 ng of total RNA was amplified by reverse transcription 
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polymerase chain reaction (RT-PCR) and the cDNAs were amplified. We used primers 

for MMP-9 (forward, 5'-CCCCACTTACTTTGGAAACGC-3'; reverse, 5'-

ACCCACGACGATACAGATGCTG-3') [12], β-actin (forward, 5'- 

ATGTACGTAAGCCAGGC-3'; reverse, 5'-AAGGAACTGGAAAAGAGC-3') [12], c-

jun (forward, 5’-ATGACTGCAAAGATGGAAACG-3’; reverse, 5’-

TGCCGCGGAGGTGACACTGGG-3’) [118], and c-fos (forward 5’- 

ATGATGTTCTCGGGTTTCAAC-3’; reverse, 5’-AGGAGATAGCTGCTCTACTTT-

3’) [118]. The expected size for the MMP-9 PCR product was 686 base pairs (bp). PCR 

conditions for MMP-9 were an initial denaturation of 94oC for 2 minutes, followed by 30 

cycles of denaturation at 94oC for 1 minute, annealing at 59.1oC for 30 seconds and 

extension at 72oC for 1 minute. A final extension of 5 minutes at 72oC was carried out.  

The expected size for c-jun and c-fos products was 402 bp. PCR conditions for c-jun and 

c-fos were an initial denaturation at 94oC for 2 minutes, followed by 32 cycles of 

denaturation at 94oC for 60 seconds, annealing at 58oC for 75 seconds and extension at 

72oC for 1 minute. 

 

DNA extraction 

DNA was extracted from ENU1564 cells using the Wizard Genomic DNA 

Purification kit (Promega Corporation, Madison WI) following manufacturer’s 

directions. DNA was quantified by absorbance at 260 nm. 
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Cloning of rat MMP-9 promoter and transient transfection  

A 630-bp fragment of the 5’-flanking region of the MMP-9 gene (-595 to +17), 

containing one AP-1 and one NF-κB binding sites [104], was obtained by PCR 

amplification using stringent conditions on  genomic DNA isolated from ENU1654 

cells, using the following primers: 5'-

CGGCTAGCGGAGTCAGCCTGCTGGGGTTAG-3' (forward); 5'-

CGCTCGAGTGAGAACCGAAGCTTCTGGGT-3' (reverse). The fragment obtained by 

PCR was gel analyzed and cloned into p-Glow-TOPO vector encoding for green 

fluorescence protein (GFP) (Invitrogen Corporation, Carlsbad, CA) using the 

manufacturer’s directions to generate p-Glow-TOPO-MMP-9 wild type (MMP-9 wt). 

Introduction of a double-point mutation into the NF-κB-site (GGAATTCCCCC to 

GGAATTGGCCC) to generate pGlow-MMP-9-  NF-κB was performed using the 

following (forward) primer: 5'-GGGTTGCCCCGTGGAATTGGCCCAAATCCTGC-3' 

(corresponding to a region from -572 to -541). Creation of a double transition within the 

AP-1 binding site (CTGAGTCA to CTGAGTTG) to generate pGlow-MMP-9 AP-1 

was performed using the following (forward) primer: 5'-

CACACACCCTGAGTTGGCGTAAGCCTGGAGGG-3' (corresponding to a region 

from -98 to -65). The mutants were generated using the Quik Change Site-Directed 

Mutagenesis Kit (Stratagene, La Jolla, CA). Transient transfections of ENU1564 cells 

were performed using Lipofectamine (Invitrogen Carlsbad, CA) according to the 

manufacturer’s instructions. Transfections were performed in triplicate and were 

repeated at least twice to ensure reproducibility of the results. After transfections, 
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ENU1564 cells were incubated for 24 hours with 10 ng/ml of FGF-1 or 5U/ml heparin in 

PBS (control). Transfection efficiency was monitored by co-transfection with 0.2 µg of 

the pSV/β-gal plasmid encoding for β-galactosidase (Promega Corporation, Madison, 

WI). Twenty-four hours post-transfection GFP activity was measured using a Spectra 

Max GeminiEM dual detector (Sunnyvale, CA). The β-galactosidase activity was 

detected using the Beta-Glow Assay System (Promega Corporation, Madison, WI) 

according with manufacturer’s instructions. The luminescence signal generated by the 

Beta-Glow Reagent was measured with the same detector used for GFP expression. The 

ratio of fluorescence activity to β-galactosidase activity in each sample served as a 

measure of normalized fluorescence activity. 

 

Electrophoretic mobility shift assay (EMSA) 

For EMSA we used FGF-1 treated and untreated ENU1564 cell nuclear extract. 

EMSA analysis was performed using consensus oligonucleotides for NF-κB and AP-1. 

The crude nuclear extracts from FGF-1 (10 ng/ml) treated ENU1564 cells were obtained 

as previously described [117].  Both NF-κB (AY1030P) and AP-1(AY1055P) EMSA 

kits were obtained from Panomics (Panomics, Inc. Redwood, CA) and used according to 

manufacturer’s instructions. Competition experiments were performed by adding excess 

unlabeled double-stranded oligonucleotide (cold probe) in the DNA-protein binding 

reaction. For supershift assays, polyclonal antibodies to NF-κBp65, NF-κBp50, c-jun 

and c-fos (Santa Cruz Biotechnology, Inc.) were preincubated for 30 minutes with the 

nuclear extracts before the probe was added. 
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Statistical analysis 

Quantification of the Western blot, gelatin zymography, and semi-quantitative 

RT-PCR bands density was performed on a Macintosh computer using the public 

domain NIH Image program (developed at the U.S. National Institutes of Health and 

available on the Internet at http://rsb.info.nih.gov/nih-image. Data were presented as 

mean ± S.D., and statistical comparisons were made using Student t-test. A P-value of < 

0.05 was considered statistically significant. Data are representative of three independent 

experiments. 

 

 

Results 

FGF-1 stimulates expression and secretion of MMP-9  

We first examine the effect of FGF-1 on the MMP-9 expression in ENU1564 

cells. The cells were cultured for 24 hours in a serum-free medium and then treated with 

incremental concentrations of FGF-1 (0-10 ng/ml) for an additional 24 hours.  We 

measured the mRNA levels of MMP-9 after FGF-1 treatment by semi-quantitative RT-

PCR, (Figure 35A and B), MMP-9 protein expression by Western blot analysis, and 

gelatinolytic activity in the conditioned medium by gelatin zymography.   
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Figure 35. Increased expression of MMP-9 mRNA in FGF-1 treated ENU1564 cells. ENU1564 cells were 

incubated with FGF1 (0- 10 ng/ml) for 24 hours. (A) RT-PCR analyses of MMP-9 mRNA in ENU1564 

cells treated with FGF-1. Total RNA was extracted, and mRNAs encoding for MMP-9 and β-actin were 

identified and measured. (B)  Densitometric analysis of MMP-9 mRNA in ENU1564 cells The results 

represent the mean ± standard deviation for three independent experiments. Asterisks indicate statistically 

significant differences (P < 0.01). 

 

As shown in Figure 35A, FGF-1 stimulation of ENU1564 cells increases MMP-

9 mRNA expression in a concentration-dependent manner. Densitometry analysis of 

MMP-9 mRNA in FGF-1-treated ENU1564 cells shows an increased of 3-, (1 ng/ml 

FGF-1) 4.8- (5 ng/ml FGF-1) and 5- (10 ng/ml FGF-1) fold, respectively, compared to 

untreated cells (Figure 35B). 
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To confirm the RT-PCR results, we evaluated the MMP-9 protein expression in 

FGF-1 treated ENU1564 cells by Western blot analysis. As shown in Figure 36A, FGF-

1 stimulated MMP-9 protein expression in a concentration- dependent manner. 

Densitometry analysis shows increased levels of MMP-9 protein (*Different from 

controls, P<0.01) in FGF-1 treated ENU1564 cells compared to untreated cells, which is 

consistent with the increases in MMP-9 mRNAs (Figure 36B). Treatment of ENU1564 

cells with FGF-1 also activated MMP-9 secretion in a concentration-dependent manner 

(Figure 36C). The densitometry results revealed a significant increase in enzymatic 

activity of MMP-9 (*Different from control P<0.01) in FGF-1 treated cells compared 

with control cells (Figure 36D). 

 

 

Activation of Akt is required for FGF-1-dependent MMP-9 expression 

Next, we wanted to investigate the signaling pathway(s) involved in FGF-1 

stimulation of MMP-9 expression in our cell line. Previous reports provided evidence 

that PI3K-Akt can be stimulated by growth factors and it was  demonstrated that PI3K-

Akt is an important signaling pathway in FGF-1 cell-mediated angiogenesis response 

[119]. First, we examined if stimulation of ENU1564 cells with FGF-1 activates Akt in a 

time-dependent manner by measuring its phosphorylation level. 
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Figure 36.  Increased MMP-9 protein expression and gelatinolytic activities in FGF-1 treated ENU1564 

cells. (A) Western blot analysis showing increased MMP-9 protein expression in FGF-1 treated ENU1564 

cells. β-actin used as loading control. (B) Densitometric analysis of MMP-9 protein expression in 

ENU1564 cells shows a significant increase when compared to untreated cells. The results represent the 

mean ± standard deviation for three independent experiments. Asterisks indicate statistically significant 

differences (p<0.01). (C) Gelatin zymography of ENU1564 cells conditioned medium was performed as 

described in Material and Methods. ENU1564 cells were stimulated with FGF-1 at 1, 5 and 10 ng/ml or 

left untreated as controls. Conditioned media was collected after 24 hours. (D) Quantitative analysis of 

MMP-9 enzymatic activity was determined by densitometry and was found to be increased in FGF-1 

treated ENU1564 cells compared with control.  The double band at 97 KDa corresponded to the latent 

form (proenzyme) (a) and active form (b) of MMP-9. Figure 2D represents the quantitative analysis of 

MMP-9 determined by densitometry of the active band (b). The results represent the mean ± standard 

deviation for three independent experiments. Asterisks indicate statistically significant differences (P < 

0.01). 
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As shown in Figure 3A, treatment of ENU1564 cells with 10 ng/ml FGF-1 led to 

increased phosphorylation of Akt in a time- dependent manner (0-24 hours), starting at 2 

hours and continuing to 24 hours after the treatment. To confirm whether the effect of 

FGF-1 on MMP-9 expression involves the PI3K-Akt pathway, we used the specific 

PI3K inhibitor, LY294002.  ENU1564 cells were pretreated with LY294002 or DMSO 

(control) for 1 hour and subsequently stimulated with FGF-1 (10 ng/ml) for 24 hours. 

Total lysates were collected and subjected to the Western blot analysis for Akt activation 

and MMP-9 protein expression.  The expression of MMP-9 protein significantly 

increases in FGF-1 treated cells compared with untreated cells (Figure 37B and 37C, 

*significantly different from control P<0.01). Pretreatment of ENU1564 cells with the 

inhibitor completely blocked the FGF-1 dependent activation of Akt and decreased 

MMP-9 protein levels (Figure 3B and 3C) compared with untreated cells (** 

significantly different from untreated cells P<0.05). The level of MMP-9 protein 

expression in ENU1564 cells treated with only the inhibitor was similar to that in control 

cells (Figure 37B and 37C). 
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Figure 37.  Requirement of PI3K-Akt signaling for FGF-1-dependent MMP-9 expression.  (A). Western 

blot analyses show increased levels of phospho-Akt in FGF-1(10 ng/ml) treated ENU1564 cells in a time-

dependent manner compared with untreated cells. Similar results were obtained from two independent 

experiments run in duplicates.  (B) Cells were pretreated with LY294002 or DMSO for 1 hour and then 

stimulated with 10 ng/ml FGF-1 for 24 hour. Total lysates were probed with anti-phospho Akt, anti-MMP-

9 and anti-β actin (loading control). (C) Quantitative analysis of MMP-9 protein expression was 

determined by densitometry. The amount of MMP-9 protein in ENU1564 cells treated with FGF-1(10 

ng/ml) was significantly increased when compared with untreated cells (*significantly different from 

control P<0.01). Pretreatment of ENU1564 cells with the inhibitor completely blocked the FGF-1 

dependent activation of Akt and decreases MMP-9 protein levels compared with untreated cells 

(**significantly different from untreated cells P<0.05). The results represent the mean ± standard 

deviation for three independent experiments.  
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FGF-1 stimulation of ENU1564 cells induces nuclear translocation of NF-κB 

and cytoplasmic degradation of IκB-α protein 

In our effort to elucidate the mechanisms of FGF-1-induced MMP-9 expression 

in our system, we investigated the activation of two transcription factors, NF-κB and 

AP-1, both binding to the corresponding regulatory elements within the promoter region 

of MMP-9 gene. Previous studies show that cytokine-mediated regulation of MMP-9 

expression critically depends on the activation of NF-κB and AP-1 [95, 104].  We 

demonstrated that PI3K-Akt pathway is involved in FGF-1-induced MMP-9 expression 

in ENU1564 cells and previous studies showed that this pathway is important for 

activation of NF-κB transcription factor [120, 121]. Using Western blot analysis, we 

examined whether FGF-1 stimulation of ENU1564 cells will result in nuclear 

translocation of NF-κBp65 proteins. As shown in Figure 38A, treatment of ENU1564 

cells with FGF-1 (10 ng/ml) results in nuclear translocation of NF-κBp65 in a time-

dependent manner (0-24 hours) when compared with untreated cells. Previous studies 

show that NF-κB proteins are retained in the cytoplasm by their inhibitors (IκB) in an 

inactivated state, and that activation of NF-κB and nuclear translocation requires a rapid 

degradation of their inhibitors [117]. We demonstrated that FGF-1 (10 ng/ml) treatment 

of ENU1564 cells displayed a marked decrease in IκBα protein expression in a time-

dependent manner (Figure 38B).  
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Figure 38. Nuclear accumulation of NF-κBp65 and IκBα protein degradation in FGF-1 treatment of 

ENU1564 cells. (A) Western blot analysis showing increased levels of NF-κBp65 in nuclear extracts from 

in FGF-1 (10 ng/ml) treated ENU1564 cells in a time-dependent manner (0-24 hours) compared with 

untreated cells; β actin was used as loading control.  Nuclear extracts were prepared from stimulated and 

unstimulated cells (control) as described in Materials and Methods. Similar results were obtained from two 

independent experiments run in duplicates. (B) ENU1564 cells were treated for different time points (0-24 

hours) with 10 ng/ml FGF-1. Cytosolic extracts were prepared from stimulated and unstimulated cells 

(control) as described in Materials and Methods and subjected to Western blot analysis using anti-IκBα 

antibodies and anti-β actin as loading control. Western blot analysis is showing a decrease in the levels of 

cytoplasmic IκBα in treated compared with untreated ENU1564 cells. Similar results were obtained from 

two independent experiments run in duplicates. 
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Activation of ERK1/2 is required for FGF-1-dependent MMP-9 expression 

 MEK1/2-ERK pathway has been reported to be activated by growth factors 

[96].This pathway was found to be involved in FGF-1 stimulation of MMP-14 

expression in prostate carcinoma cells [122]. First, we examined if stimulation of 

ENU1564 cells with FGF-1 activates ERK in a time-dependent manner by measuring its 

phosphorylation level. As shown in Figure 5A, treatment of ENU1564 cells with 10 

ng/ml FGF-1 led to increased phosphorylation of ERK in a time-dependent manner (0-

24 hours). Increase started at 2 hours after the treatment, continued at 6 hours, then 

decreased at 12 hours after the treatment and increase again at 24 hours. To determine 

the role of MEK1/2-ERK pathway in FGF-1-dependent expression of MMP-9, we used 

the specific MEK1/2 inhibitor, PD98059. ENU1564 cells were pre-treated with 

PD98059 or DMSO (control) for 1 hour and then stimulated with FGF-1 (10 ng/ml) for 

24 hours. Cell lysates were collected and assayed for phosphorylated ERK1/2, β-actin, 

and MMP-9 protein expression. Treatment of ENU1564 cells for 24 hours with FGF-1 

increased phosphorylation of ERK1/2, (Figure 5B). MMP-9 protein expression is 

upregulated in FGF-1 treated cells when compared to untreated cells (*significantly 

different from control, P < 0.01) (Figure 39B and 39C). Pre-treatment of cells with the 

MEK1/2 inhibitor completely inhibited FGF-1 dependent activation of ERK1/2 and 

suppressed MMP-9 protein expression compared with untreated cells (** significantly 

different from untreated cells P<0.05).  
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Figure 39. Requirement of MEK1/2-ERK signaling for FGF-1-dependent MMP-9 expression. (A). 

Western blot analyses using anti-phospho ERK and anti-β-actin (loading control) were performed and 

show increased levels of phospho-ERK in FGF-1(10 ng/ml) treated ENU1564 cells in a time-dependent 

manner (0-24 hours). Similar results were obtained from two independent experiments run in duplicates. 

(B) Cells were pretreated with PD98059 or DMSO for 1 hour and then stimulated with 10 ng/ml FGF-1 

for 24 hours. Western blot analysis using anti-phospho ERK1/2, anti-MMP-9, and anti-β-actin antibodies 

was performed. Phospho-ERK1/2 was increased in FGF-1 stimulated ENU1564 cells compared with β-

actin and was completely abrogated in ENU1564 cells treated with the MEK1/2 inhibitor. (C) Quantitative 

analysis of MMP-9 protein expression was determined by densitometry. The amount of MMP-9 protein in 

ENU1564 cells treated with FGF-1(10 ng/ml) was increased when compared with untreated cells 

(*significantly different from control p<0.01). Pretreatment of cells with MEK1/2 inhibitor decreased 

MMP-9 protein levels compared with untreated cells (**significantly different from untreated cells 

P<0.05). The results represent the mean ± standard deviation for three independent experiments.  
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FGF-1 induces early gene expression of c-fos and c-jun in ENU1564 cells 

Previous studies have shown that MEK1/2 –ERK signaling pathway is important 

for activation of AP-1 transcription factor [97]. Since both c-jun and c-fos are members 

of the AP-1 transcription factor complex, it is important to determine if treatments of 

ENU1564 cells with FGF-1 will upregulate their expression. RT-PCR analysis 

demonstrated that mRNA levels of early gene expression c-jun and c-fos are upregulated 

in FGF-1 treated ENU1564 cells as early as 15 minutes after FGF-1 stimulation, 

compared with control ENU1564 cells (Figure 40A). Quantitative analysis of c-jun and 

c-fos mRNA determined by densitometry is represented in Figure 40B and shows the 

transient activation of both c-jun and c-fos genes by FGF-1. Next, we determined if 

FGF-1 will affect the nuclear translocation of one of the active subunits of the AP-1 

transcription factor, c-jun.  For this purpose we used nuclear extracts from ENU1564 

cells treated with FGF-1 (10 ng/ml) for different time points (0-24 hours).  
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Figure 40. Regulations of early gene expression c-jun and c-fos in FGF-1 treated ENU1564 cells.  (A) 

ENU1564 cells were serum starved for 24 hours and treated with 10ng/ml FGF-1. Total RNA was 

extracted at indicated time points and mRNAs encoding for c-jun, c-fos and β-actin were identified and 

measured using semi-quantitative RT-PCR. (B, C) Quantitative analysis of c-jun and c-fos was determined 

by densitometry. Data are represented as mean ± standard deviation for three independent experiments.  
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Figure 41 shows that FGF-1 induces nuclear translocation of c-jun in a time-

dependent manner compared with untreated cells. 

 

 

 

Figure 41. Nuclear accumulation of c-jun in ENU1564 cells is modulated by FGF-1. ENU1564 cells were 

treated for different time points (0-24 hours) with 10 ng/ml FGF-1. Nuclear extracts were prepared from 

stimulated and unstimulated cells (control) as described in Materials and Methods and subjected to 

Western blot analysis using anti-c-jun antibodies and anti-β actin as loading control. Similar results were 

obtained from two independent experiments run in duplicates. 

 

 

FGF-1 treatment of ENU1564 cells increases DNA binding activity of NF-κB 

and AP-1 

Further, we wanted to demonstrate that FGF-1 treatment of ENU1564 cells 

would lead to an increase in DNA binding capacity of NF-κB and AP-1, in addition to 

their nuclear translocation. To accomplish this, we performed EMSA analysis using 

consensus oligonucleotides for NF-κB, AP-1 and 24 hours FGF-1 (10 ng/ml) treated and 

control ENU1564 cells nuclear extract. As shown in Figure 42A, stimulation of 

ENU1564 cells with 10 ng/ml FGF-1 confirmed increased DNA binding activity of NF-
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κB-bound complexes compared with control cells (untreated). Competition experiments 

with unlabeled competitor probe confirmed the specificity of binding. To detect the 

presence of specific NF-κB protein in the DNA-protein complexes, we performed gel 

supershift assays using anti-antibodies against NF-κBp65 and NF-κBp50. As shown in 

Figure 42A, antibodies against these proteins completely supershifted the DNA 

complexes formed with these proteins.  Using the same extract, we performed EMSA 

analysis using AP-1 specific oligonucleotides. As shown in Figure 42B, treatment of 

ENU1564 cells with 10 ng/ml FGF-1 confirmed binding of AP-1 to DNA compared with 

control ENU1564 cells nuclear extract (untreated). Competition experiments using an 

unlabeled competitor probe confirmed specificity of binding.  We performed gel 

supershift assay with antibodies against c-jun and c-fos to detect their presence in the 

DNA protein complexes. Antibodies against either c-jun or c-fos completely 

supershifted the DNA complexes formed with these proteins (Figure 42B). Taken 

together, the data indicate that an increased translocation of c-jun and NF-κB proteins 

demonstrated in FGF-1 treated ENU1564 cells is functionally linked to a rise in DNA 

binding affinity of transcription factors AP-1 and NF-κB. 
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Figure 42. FGF-1 induced NF-κB and AP-1 DNA binding activity. EMSA analysis was carried out to 

determine the NF-κB and AP-1 DNA binding activity as described in Materials and Methods. (A) 

Treatment of ENU1564 cells with FGF-1(10 ng/ml) for 24 hours induces DNA binding activity of NF-κB 

(2) compared with untreated cells (1). The band representing the specific binding of NF-κB to the DNA, 

was completely abolished by competition assay using an excess of unlabeled oligonucleotide (3). For 

supershift analysis antibodies against NF-κBp65 (4), and NF-κBp50 (5) were included to the binding 

reaction. (B) Treatment of ENU1564 cells with FGF-1(10 ng/ml) for 24 hours induces DNA binding 

activity of AP-1 (2) compared with untreated cells (1). The band representing the specific binding of AP-1 

to the DNA, was completely abolished by competition assay using an excess of unlabeled oligonucleotide 

(3). The specificity of DNA-bound complexes was determined by supershift analysis. For supershift 

analysis, antibodies for c-jun (4) and c-fos (5) were included in the binding reaction.  NF-κB (arrow) and 

AP-1 (arrow) indicates specific NF-κB and AP-1 binding complexes. NS,  Nonspecific binding, * 

supershift bands. 
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NF-κB and AP-1 binding sites are important in FGF-1 activation of MMP-9  

Next, we investigated if FGF-1-mediated MMP-9 expression critically depends 

on NF-κB or/and AP-1 binding sites within MMP-9 promoter. We used reporter gene 

constructs containing the MMP-9 promoter harboring a double-point mutation in NF-κB 

binding site and a double transition in AP-1 binding sites as described in Materials and 

Methods (Figure 43A). We transiently transfected ENU1564 cells with plasmids 

containing MMP-9 wild type (MMP-9wt) and mutated promoters, and treated the cells 

with FGF-1 (10 ng/ml) or heparin (control) for 24 hours. As shown in Figure 43B, 

transient transfection of ENU1564 cells with p-Glow-MMP-9wt showed a 1.7-fold 

increase in fluorescence activity 24 hours after FGF-1 (10 ng/ml) treatment compared 

with control cells. This induction was lost in both promoter mutants. The results 

indicated that FGF-1-mediated MMP-9 expression critically depends on both KF-κB and 

AP-1 binding sites. 
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Figure 43. Increase of MMP-9 promoter activity by FGF-1 is inhibited by mutation in either NF-κB or AP-

1 binding sites. (A) MMP-9 promoter was obtained as described in Materials and Methods. Reporter gene 

constructs containing MMP-9 promoter harboring a double point mutation in NF-κB binding site and a 

double transition in AP-1 binding sites were used. (B) ENU1564 cells were cultured in 96 well plates and 

co-transfected with 0.2 μg of pGlow-TOPO-MMP-9wt, pGlow-TOPO-MMP-9-^ NF-κB, or pGlow-

TOPO-MMP-9-^AP-1 and 0.2 μg of pSV/β-gal. Six hours after transfection cells were treated with 10 

ng/ml FGF-1 for 24 hours or with 5U/ml heparin in PBS (control). Values of GFP fluorescence activities 

were corrected for transfection efficiency by assaying for β-galactosidase activity as described in Materials 

and methods. Data are the mean of ± SD. Statistical analysis was carried out using Student’s t-test. P < 

0.05.  
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Discussion 
 

MMP-9 expression can be upregulated by a number of factors, including growth 

factors and cytokines [123,124]. Previous reports indicate that inflammatory cytokines, 

interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) were able to induce MMP-9 

expression in rat C6 glioma cells [97,125]. MMP-9 was also found to be induced in 

MCF-7 cells by a member of FGFs family, called basic fibroblast growth factor along 

with 12-O-tetradecanoylphorbol 13-acetate (TPA) [103]. 

In this report, we provide evidence of the mechanism involved in regulation of 

MMP-9 expression in ENU1564 mammary adenocarcinoma cell line by another member 

of FGFs family called acidic fibroblast growth factor (FGF-1). Previous studies 

demonstrate that FGF-1 is released in response to severe cellular injuries, hypoxia [45] 

and in breast cancer [126,127]. FGF-1 also regulates several matrix metalloproteinases. 

It induces promarilysin (MMP-7) expression through activation of ERK pathway [122], 

and transcriptionally induces MT1-MMP expression in LNCaP prostate carcinoma cells 

in a mechanism that involves FGFRs and STAT [38]. FGF-1 also plays a key role in the 

early stages of angiogenesis by mediating MMP-1 proteolytic activity [102].  

We previously reported that MMP-9 mRNA and protein expression was 

upregulated in brain tumor foci originating from ENU1564 cells [116].  Here, we 

demonstrate that FGF-1 transcriptionally induces MMP-9 expression in ENU1564 cells. 

Consistent with current literature [36,127], we observed that ENU1564 breast cancer 

cells produce FGF-1 and express FGFR-1, as confirmed by RT-PCR and IHC analysis 

(data not shown).  
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In this report, we show that FGF-1 stimulation of ENU1564 cells increases 

MMP-9 mRNA expression in a dose-dependent manner, increases MMP-9 protein 

expression and increases enzymatic activity of MMP9. Additionally, we show that FGF-

1 regulation of MMP-9 expression in ENU1564 cells is associated with MEK1/2-ERK 

and PI3K-Akt signaling pathways. 

MMP-9 regulation and FGF-1 signaling have been associated with the PI3K-Akt 

pathway. IL-1β stimulation of Balb 3T3 cells activates MMP-9 secretion by activation of 

the PI3K-Akt pathway [97]. PI3K activity has been previously implicated as a 

requirement for translocation of exogenous FGF-1 into cytosol and nucleus [128]. Very 

recently, FGF-1 was shown to stimulate angiogenesis through stimulation of PI3K-Akt 

pathway [104]. FGF-1 was also found to target the degradation of IκBα [111]. We 

observed that treatment of ENU1564 cells with FGF-1 led to increased phosphorylation 

of Akt in a time-dependent manner and pretreatment of ENU1564 cells with LY294002 

(PI3K inhibitor) decreased MMP-9 protein levels. Additionally, treatment of ENU1564 

cells with FGF-1 resulted in nuclear translocation of NF-κBp65, and targets the 

degradation of IκBα in a time-dependent manner. 

MMP-9 expression and FGF-1 regulation have been associated with the 

MEK1/2-ERK pathway. Previous studies showed that MMP-9 secretion by FGF-2 

requires activation of MEK1/2-ERK signaling in breast cancer line, MCF-7 [129]. Other 

studies reported that regulation of MMP-9 by heregulin-beta1 in cancer cells was ERK, 

p38, and PKC- dependent [96]. IL-1β stimulation of Balb 3T3 cells activates MMP-9 

secretion by activation of the MEK1/2-ERK pathway [97]. The report by Udayakumar et 
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al. showed that FGF-1 was able to induce promarilysin (MMP7) expression in LNCaP 

through activation of ERK pathway [115]. Previous studies showed that FGF-2 induces 

the expression of c-jun and c-fos members of AP-1 complex [130]. We observed that 

treatment of ENU1564 cells with FGF-1 lead to increased phosphorylation of ERK1/2 in 

a time-dependent and treatment of ENU1564 cells with PD98059 (MEK1/2) inhibitor 

decreased FGF-1 dependent-MMP-9 expression. Also, we showed that FGF-1 induces 

nuclear translocation of c-jun, and increased early gene expression c-jun and c-fos. 

Previous reports demonstrated that the induction of MMP-9 transcriptional 

promoter activity in response to FGF-2 is dependent on AP-1, but not NF-κB, response 

elements in rabbit corneal fibroblasts [131]. Other studies reported that regulation of 

MMP-9 by heregulin-beta1 in cancer cells was ERK, p38, PKC- dependent but Akt-

independent [96]. Previous reports showed that MEK1/2-ERK signaling pathway is 

important for AP-1 binding activity, while NF-κB require Akt or p38 depending on the 

cell type [97,112,113]. We observed that stimulation of ENU1564 cells with FGF-1 

increased DNA binding activity of NF-κB-bound and AP-1-bound complexes. Transient 

transfection of ENU1564 cells with p-Glow-MMP-9wt showed a 1.7-fold increase in 

MMP-9 promoter activity 24 hours after FGF-1 treatment which, was completely 

abolished by mutation in either NF-κB or AP-1 response elements.  

In conclusion, this report shows for the first time that FGF-1-induced MMP-9 

expression involves a dual signaling pathway PI3K-Akt (Figure 44) and MEK1/2-ERK 

(Figure 45) and depends on increased activities of two transcription factors NF-κB and 

AP-1.  
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Figure 44.  Involvement of PI3K-Akt signaling in FGF-1-induced expression of MMP-9 in ENU1564 

cells. 
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Figure 45.  Involvement of MEK1/2-ERK signaling in FGF-1-induced expression  

of MMP-9 in ENU1564 cells. 

 

 These findings support the idea that FGF-1 can act as a paracrine and autocrine 

factor and plays an important role in the regulation of MMP-9 expression in mammary 

adenocarcinoma cells. We reason that secreted FGF-1 could rapidly bind to cancer cells 

due to its paracrine/autocrine function and promote metastasis. This study complements 

other studies regarding the mechanisms underlying dysregulated MMP-9 expression in 

breast cancer cells. A clearer understanding of the mechanism by which FGF-1-signaling 

contributes to tumor progression and/or metastasis will facilitate the development of 

cancer therapies to target this signaling pathway.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

 

This dissertation provides a comprehensive analysis of the role of hypoxia and 

hypoxia-induced factors in the development of breast cancer invasion and metastasis by 

using a highly malignant tumor cell line ENU1564, originally developed in our 

laboratory.  

Chapter I provides a comprehensive review of hypoxia and hypoxia-induced 

factors, FGF-1 and MMP biology and their role in cancer development and invasion. 

Also in this chapter we present the specific objectives of our study and the hypothesis. 

Chapters II and III (in vivo studies only) contain the first manuscript generated 

from this work which was published in the International Journal of Oncology in January 

2007. Chapter II describes a novel spectroscopic photoacoustic tomography technology 

(SPAT) for the detection of tumor hypoxia, an important parameter of tumor 

pathogenesis, by measuring the level of brain blood oxygenation. We showed that SPAT 

would be an important tool for noninvasive detection of intracranial tumors. Moreover, 

SPAT would be useful for monitoring the development of hypoxia, which may have an 

important role in determining the timing and type of therapy. Validation of this 

technology was supported by our molecular biology findings aimed to elucidate the 

etiopathogenesis of SPAT detected hypoxia and angiogenesis. In Chapter III (in vivo 

studies) we evaluated the expression of HIF-1 α, VEGF-A, VEGFR2 and MMP-9 
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protein and mRNA levels in the hypoxic brain tumor foci identify by SPAT. Chapters II 

and III  provide an integrated approach to define the oxygen status (hypoxia) of tumors 

by using SPAT and to correlate hypoxia with the invasion process of a breast cancer cell 

line, ENU1564, inoculated intracranially in a rat model. 

Chapter III (in vitro studies) describes the expression of HIF-1 α, VEGF-A, 

VEGFR2 and MMP-9 protein and mRNA in ENU1564 cells grown under normoxic and 

hypoxic conditions and is aimed to validate the role of hypoxia in the regulation of these 

proteins and their role in cancer invasion and metastasis. Additionally we explored the 

pathways involved in the regulation of these proteins in hypoxic ENU1564 cells by 

using specific inhibitors for each pathway. 

Chapter IV contains the second manuscript generated from this work which was 

published in the Molecular Carcinogenesis journal in November 2007. This chapter 

describes the mechanism by which FGF-1, a factor found to be up-regulated in hypoxia, 

regulates MMP-9 expression in ENU1564 cancer cells. We showed for the first time that 

FGF-1-upregulated MMP-9 expression in ENU1564 cell lines by increasing the 

activities of NF-kB and AP-1 and involve activation of a dual signaling pathway 

PI3K/Akt and MEK1/2-ERK [132]. 

In conclusion, this work provides a comprehensive analysis of the role of 

hypoxia and hypoxia-induced factors in breast cancer brain metastatic disease. We also 

described a novel spectroscopic photoacoustic tomography technology (SPAT) for the 

detection of tumor hypoxia. Such information can be used not only as a prognostic tool 

for tumor invasion but also as the basis for developing and evaluating patient-specific 



 113

treatment modalities for many types of cancer including breast cancer. A clear 

understanding of the mechanism by which these factors contributes to tumor progression 

and /or metastasis will facilitate the development of cancer therapies to target these 

signaling pathways. 
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