
A NON - PHOTOREALISTIC MODEL FOR PROCEDURAL

PAINTERLY RENDERED TREES IN THE STYLE OF COROT

A Thesis

by

MICHAEL LOSURE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2008

Major Subject: Visualization Sciences

A NON - PHOTOREALISTIC MODEL FOR PROCEDURAL

PAINTERLY RENDERED TREES IN THE STYLE OF COROT

A Thesis

by

MICHAEL LOSURE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Donald H. House
Committee Members, Carol LaFayette

John Keyser
Head of Department, Tim McLaughlin

August 2008

Major Subject: Visualization Sciences

ABSTRACT

A Non-Photorealistic Model for Procedural

Painterly Rendered Trees in the Style of Corot. (August 2008)

Michael Losure, B.A., Union College

Chair of Advisory Committee: Dr. Donald H. House

This thesis describes the development of a system for the procedural generation and

painterly rendering of trees. Specifically, the rendered trees are modeled after those

found in the oil landscape paintings of 19th century French painter Camille Corot. The

rendering system, which is a combination of MEL-scripted Maya tools and Renderman

shaders, facilitates the creation of still images that look convincingly painterly, as well as

3D animations with temporal coherence. Brush stroke properties are animated based on

distance from the camera, so that traditional painting techniques for representing depth

are incorporated into the computer-generated animations.

During the development process, the system was generalized to apply to other structures,

such as grass and rocks, and allows for the creation and rendering of entire landscapes.

Several example animations were created with the system to demonstrate the ideas

developed during the process and the quality of the results.

iii

Dedicated to mom and dad.

iv

ACKNOWLEDGEMENTS

I would like to say thank you to my committee chair Dr. Donald House for being such a

fantastic teacher and a great guy to be around, and also for indirectly introducing me to

the viz lab. Also thanks to my committee members Carol LaFayette and John Keyser for

their helpful questions and kindness. Thank you to Professor Walter Hatke, for helping

me develop as a painter, and for teaching me ways of applying that other side of my

brain to my creative endeavors. And thank you to Phillip Rollfing, for understanding

when I'd disappear from work for days at a time to go write this thesis.

Thanks also to all the students, faculty, and staff of the viz lab for making it such a great

place to have spent the last few years, especially to Patrick O’Brien, Tony Piedra, and

Seth Freeman, for all the fun, and for one particularly large and valuable distraction from

this thesis.

Thank you to my delightful girlfriend Lauren Simpson, for giving me inspiration and

love, and for making it so fun to avoid my thesis, but being understanding when I didn’t.

And thanks to Kirby, for reminding me that proper ergonomics demand frequent breaks

for fake mice, treats and general mischief.

Thanks to all my family, and lots of thanks to my parents, particularly for not giving in

to my video game demands when I was younger, and for teaching me the joys of

v

imagination, reading and forced walks in the woods – and of course for all of their love

and support, both of which were always given freely and in abundance.

vi

TABLE OF CONTENTS

 Page

ABSTRACT... iii

DEDICATION... iv

ACKNOWLEDGEMENTS... v

TABLE OF CONTENTS... vii

LIST OF FIGURES... ix

CHAPTER

I INTRODUCTION.. 1

II CAMILLE COROT AND OIL PAINTING TECHNIQUE................. 5

III PRIOR WORK ... 8

III.1. Painterly Rendering... 8
III.2. Procedurally Generated Trees and Plants.............................. 18

IV METHODOLOGY... 22

IV.1. System Framework.. 22
IV.2. Observations.. 24
IV.3. Procedural Tree Generation Tools... 26
IV.4. Shading the Trees.. 34

IV.4.1. Calculating and Modifying Illumination...................... 35
IV.4.2. Shadows.. 36
IV.4.3. Using Lightness to Select a Color................................ 37
IV.4.4. Generating Brush Stroke Masks................................... 39

IV.5. Artistic Control and Shader Interface.................................... 44
IV.6. Animation.. 48
IV.7. Generalizing the Leaf Shader for Grass, Rocks, Etc............. 53

vii

CHAPTER Page

V DISCUSSION OF RESULTS ... 60

V.1. Overview... 60
V.2. Usability.. 64
V.3. Known Problems... 67
V.4. Future Work.. 70

VI CONCLUSION... 72

REFERENCES.. 74

APPENDIX A SUPPLEMENTAL MOVIE FILES.. 77

VITA.. 78

viii

LIST OF FIGURES

FIGURE Page

1 “Souvenir de Mortefontaine,” Corot, 1864... 6

2 Three paintings created from the same source image
(using Haeberli's system).. 9

3 A screenshot from the painted world of
“The Elder Scrolls IV: Oblivion”... 12

4 Meier’s rendering pipeline ... 13

5 Phong shading versus Gooch et al.’s NPR lighting model......................... 17

6 Comparison of colors produced by mixing yellow and blue
paint versus colors produced with RGB linear blending............................ 18

7 An example “L-System” .. 19

8 Aggregate normal combined with random leaf geometry normal.............. 21

9 The interconnected MEL script and
Renderman shader development loop .. 24

10 Examples of trees painted By Corot... 25

11 GUI for MEL tree generation script ... 27

12 Tree subdivisions with and without small first step extrusion heights 29

13 GUI for MEL leaf generation tool.. 31

14 Data recorded during the leaf generation process....................................... 33

15 Sprite and NURBS sphere representations of the same trees..................... 34

16 Example color palette used for tree leaves... 38

17 1D and 2D noise functions.. 40

ix

FIGURE Page

18 Brush stroke masks created by passing
noise through a smooth-step function... 41

19 RSL shader code for generating the brush stroke masks............................ 42

20 Sprite edge masks .. 43

21 SLIM interface to the leaf shader’s parameters.. 45

22 Scene management MEL script GUI.. 50

23 Renderings of the same tree at three different depths................................. 52

24 GUI for the generalized stroke building tool.. 54

25 Dynamic resizing of edge masks, based on viewing angle......................... 59

26 Painterly rendered windmill scene with
clearly visible atmospheric perspective.. 61

27 Painterly rendered rocks, grass and trees.. 61

28 A demonstration of shadows and moving light sources............................. 62

29 A painterly rendered image with many trees.. 62

30 The effects of changing brush stroke opacity and feathering 66

31 Sprite popping problem ... 69

x

CHAPTER I

INTRODUCTION

Historically, most computer graphics research has focused on achieving photorealistic

imagery through physical simulation, while other artistic media often purposely depart

from realism to pursue more abstracted visuals. Non-photorealistic rendering (NPR) is

the subgenre of computer graphics that focuses on creating expressive, artistically

motivated images, often driven by concepts found in traditional art and 2D animation [9;

27]. Though NPR research is defined as any computer graphics research not devoted to

photorealistic techniques, the rest of this paper will refer to the subset of NPR research

devoted to replicating the look of traditional artwork.

Some NPR researchers have focused on directly simulating artistic media and processes,

creating systems that let users manipulate simulated brushes and paints on digital

canvases. Other researchers achieve artistic results using approaches born more from

signal processing than art, such as using 2D image processing algorithms to create

painterly images from photographs.

The journal model is IEEE Transactions on Visualization and Computer Graphics.

1

NPR techniques for animation attempt to replicate the visual complexity and beauty of

traditional art, while simplifying the image-making process as much as possible.

Creating an animation requires many, many images – films usually have 24 images per

second of screen time. For this reason alone, one of the main considerations in any NPR

technique is how to push as much work as possible onto the computer while leaving the

user with as much artistic control as possible.

Imperfections and non-uniformity are two very important properties of human-created

artwork that are often difficult to emulate with procedurally generated computer artwork.

Many of the computer algorithms used to create this style of NPR imagery employ

stochastic methods that work well for single frames, but introduce displeasing temporal

noise in animated sequences. Thus systems for creating NPR animation must include a

way of achieving temporal coherence.

Trees and natural landscapes are a serious challenge to replicate with computer graphics

because of their visual complexity and high viewer familiarity. Traditional artists face

the same problem and have developed a wide variety of solutions for simplifying and

artistically representing nature.

The primary goal of this thesis has been the development of a system for rendering trees

in a painterly style. Since oil paint as a medium allows for an immense variety of visual

styles, techniques and effects, this project makes no attempt to emulate the medium in its

2

entirety, and instead tries to raise the overall quality of the results by narrowing the focus

to the oil landscape paintings of 19th century French painter Jean-Baptiste-Camille

Corot. The resulting system is a temporally coherent procedural NPR technique for

creating images and animations of landscapes in the style of his paintings.

In addition to recreating Corot's style, the project focuses on the implications of adding

time and motion to oil painting. Within a painting, distant objects are often depicted in a

very different manner from those in the foreground, and the goal has been to allow for

the creation of animations where objects undergo fluid changes in scale and distance.

For example, consider a camera moving forward through a scene; as trees get closer and

change from their background representation to their foreground representation, they

should do so in a way that feels right for the oil medium. Brush strokes should not scale

in perfect linear perspective, because the size of brush strokes an artist chooses to use do

not follow the same strict mathematical rules of perspective as 3D geometry; previous

3D systems that have scaled brush strokes precisely with geometry immediately belay

their digital origins, and this researcher has sought wherever possible to maintain the

illusion that the animations are painted and not computer generated. Additionally, since

close-up representations of trees are painted with many more brush strokes than those in

the background, a system has been developed for adding and subtracting brush strokes

with distance that preserves the overall volume and silhouette of the trees.

3

The goal has been to produce output imagery that is highly controllable by the artist in

terms of brushwork, lighting effects, and other stylistic choices, not only in still images,

but also over the course of an animation. In the same way that a painter directs a viewer's

eye by varying brush stroke size and detail, a cinematographer uses the camera lens and

focus to articulate an image. A rack focus is the film technique of dynamically changing

the camera's focus from one object to another, and a similar effect is created by changing

brush stroke sizes and styles over time to emphasize one section of the image over

another. By finding correlations between film and painting technique, the project brings

together the two separate but related visual languages.

4

CHAPTER II

CAMILLE COROT AND OIL PAINTING TECHNIQUE

…there is a great difference between an accomplished piece and a
finished piece – that, in general, that which is accomplished is not
finished, and something that is highly finished may not be accomplished
at all – Charles Baudelaire on Corot, 1845 [15, pg. 278]

The paintings of the French painter Jean-Baptiste-Camille Corot (1796-1875) are

remarkable for their loose, painterly brushwork and distinct color palettes. His masterful

use of light, color, and controversially loose brush strokes were unusual for his time and

formed a bridge between the neoclassical tradition and the later impressionists [8][19].

As can be seen in Fig. 1, Corot’s brushwork is at times tightly controlled and blended,

and elsewhere highly visible and full of energy. By varying his brush stroke size,

concentration, and style, he is able to direct the viewer’s eye around his composition and

lend emphasis to different areas. His trees in particular are often loosely painted, with a

few distinct brush strokes giving the impression of detailed foliage. When his trees are in

the extreme foreground, he often does not paint the branches, but implies their presence

with a scattering of separated leaf brush strokes.

5

Fig. 1. "Souvenir de Mortefontaine," Corot, 1864. [30].

Painters often mix all of the colors within a given painting from a limited set of base

colors. This harmonizes the image color scheme and gives the impression of light

reflecting off of everything in the scene, the way it does in real life. Color hue can be

used to indicate lighting; using warm colors in light areas and cool colors in darker areas

can give a scene a lush, natural feel. Pure black is used very sparingly, if at all, since

even the darkest colors are mixed from the base color palette. Corot’s palettes are often

full of pale yellows, de-saturated greens, and silvery grays, with a few sharp reds and

bright colors reserved for special use.

6

Depth cueing is an important aspect of any believable natural image, and Corot employs

several painting techniques to give his scenes depth. As can be seen in Fig. 1, Corot's

paintings often make strong use of atmospheric perspective; distant foliage has cooler

hues and much less defined borders, with colors blending between objects and more

homogenized contrast, hue, and saturation levels.

7

CHAPTER III

PRIOR WORK

III.1. Painterly Rendering

There are many systems already developed for creating painterly images with a

computer. Many of the techniques are based around methods of processing photographs

or other 2D reference images.

One of the systems developed by Haeberli [12] tracks a user's mouse cursor moving over

an image and generates brush strokes based on the mouse speed, direction and various

user-specified parameters. The brush strokes are stored as data so their attributes can be

manipulated later. Fig. 2 shows an example of Haeberli's system used to create several

different painterly images from the same input photograph. While Haeberli's results

achieve a variety of painterly looks, his systems are not particularly suited for animation

due to the prohibitive amount of user interaction required and the stochastic algorithms

used to generate brush strokes. One could add temporal coherence to Haeberli's system

by maintaining the same brush strokes from frame to frame and changing their direction

and color based on changes in the reference image sequence; however, this would make

the animation seem as though it were filmed through a sheet of glass, because brush

strokes would stick to the image plane instead of moving with the depicted forms. This

8

issue is known as the “shower door” problem and has been addressed in more recent

research.

Fig. 2. Three paintings created from the same source image (using Haeberli's system) [12].

Litwinowicz [16] developed a system for painterly animation that avoids temporal

aliasing and the “shower door” effect, as well as requiring less user interaction than

Haeberli's system. His system automatically analyzes the edges and features of an input

image to create a painted look similar to that of Haeberli's, and uses optical flow fields to

animate the image; once brush strokes are generated for the first frame of an animation,

pixel motion is tracked throughout successive reference frames and the motion is applied

to the brush strokes, causing them to stick to their associated objects. The main

limitations of Litwinowicz's system with regards to the goals of this thesis project is the

need for an input image sequence, and the overly 'automated' appearance of the results –

9

the brush strokes are generated without any regard for artist intent and emphasis, with a

relatively uniform style applied over the entire image.

Bousseau et al. [4] improved Litwinowicz's pixel advection technique and applied it to

their video watercolorization system. Their system simplifies the video images with a

series of 2D image processing techniques, and then applies watercolor textures to

finalize the look. One of their main contributions is the success of their algorithms for

advecting the watercolor texture with the animation, with much less distortion than

previous techniques. The result is a system that looks good on any still frame, but also

provides a seamless, novel watercolor aesthetic to the whole animation. Corot's oil

paintings are sometimes painted thinly enough that the surface of the canvas shows

through, and a similar texture advection effect would probably add a lot to an animation

attempting to convey his style; however, a complex 2D video processing system is

outside the bounds of this research, as the focus will be on the 3D rendering and stroke

generation.

Since painters usually mix their colors from a very small base palette, the stochastically

generated color in Litwinowicz's and many other automatic systems often gives away its

10

photographic origins. Park and Yoon [20] suggest a system similar to Litwinowiczs' with

an additional step for generating a limited color palette by first analyzing a number of

input paintings. Since the work being proposed here is designed to resemble the

paintings of one particular artist, an automated color analysis process is not needed;

Corot’s paintings will be analyzed manually.

Some have tried to achieve a painterly look in 3D by simply using painted texture maps

on 3D geometry. This technique easily achieves temporal coherency, but the resulting

imagery has an unnatural 'gift-wrapped' look, where individual brush strokes recede in

space and wrap around shapes instead of lying in the image plane. Objects rendered this

way also have perfectly hard, well-defined edges, which are something generally not

found in painted imagery. Both of these issues are evident in rocks and tree-trunks of

Fig. 3, a screenshot from the video game “The Elder Scrolls IV: Oblivion” [29]. The tree

foliage seems to be made up of 2D billboards and does not exhibit the 'gift-wrapped'

problem.

11

Fig. 3. A screenshot from the painted world of “The Elder Scrolls IV: Oblivion” [29].

The painterly rendering system developed by Meier [18] significantly manages to

maintain frame-to-frame coherence while presenting a convincing painterly look that

avoids the 'gift-wrapped' look as well as the 'shower door' problem. Fig. 4 illustrates

Meier's rendering pipeline. Particles are generated in world space on the surface of 3D

geometry, and then rendered as brush strokes in image space. To determine the

properties of the rendered brush strokes, a number of reference images are first created

to represent brush stroke color, orientation, size, etc. These reference images are

rendered using the initial 3D geometry, lighting information, and some custom shaders.

During the primary render pass, the screen-space location of each particle is used to look

up stroke attribute information from the corresponding location in the reference images.

12

Fig. 4. Meier’s rendering pipeline [18].

Meier's random-appearing brush strokes are temporally coherent, since the particles

“stick” to the surface geometry during camera and object transformations. By keeping

her particle strokes in world space, Meier's strokes move properly with the associated

shapes instead of sticking to the image plane. Another influential idea from Meier’s

work is to break the painting into several layers, such as shadow, highlight,

underpainting, etc., and to treat the rendering of each layer slightly differently. While

this approach yields very good visual results, from a production standpoint, the need for

multiple render passes adds undesirable complexity.

13

Davis et al. [7] present a somewhat similar way of creating painterly rendering using

custom tools developed for Maya, avoiding the need to write their own custom rendering

software. Their system uses particles created from surface geometry, but instead of

rendering the particles themselves, they use the particles to grow splines that represent

brush strokes. Each stroke is determined to be in the foreground, background or

middleground, based on world coordinate space. Strokes in the background are scaled

larger, to avoid the problem of strokes that look to small to have been physically painted

by an artist. The brush stroke splines are then textured and rendered. Another

contribution is their treatment of shadows. They identify shadow regions in the normal

way, but instead of treating the shadow color as the surface color mixed with black, they

use a darker shade of the surface color's complimentary color.

Many real-time systems for NPR rendering have been developed with ideas relevant to

this thesis. The real-time watercolor plants of Luft and Deussen [17] use another

particle-based system to achieve very convincing results. They place particles on the

surface of geometry and assign a normal to each stroke particle. They then use a

threshold to determine whether each particle is in a dark, medium, or light area, and

render each image as a composite of three separate passes. This allows them to treat the

darker areas of the painting differently from the lighter areas, which enables a more

painterly look.

14

Haller and Sperl [13] used GPU rendering techniques to implement a real-time system

based on Meier's algorithm. An initial particle set is created from geometry in a

preprocessing step, and then a real-time algorithm decides which particles to render

based on a desired stroke density. In cases where the camera gets too close and the

initial particle set did not create enough particles, the brush stroke sizes are scaled to fill

any holes. Their system uses GPU render-to-texture functionality [26] to create reference

image passes in real-time, and then renders the particles as 2D billboards with brush

stroke textures and attributes pulled from the reference images. They found that they

could use fewer particles per object, and therefore render more objects at greater frame

rates, if they rendered the final pass as a composite of their reference pass and a layer

rendered from particles. Notable issues with their system include the overly uniform

appearance of the brush strokes, and the 'popping' in and out of brush strokes in scenes

where the camera moves.

A central concept used in real-life painting technique is the ability, and necessity, for the

artist to direct the viewer's eye around the image through the designed use of light, color,

brushwork, etc. The ability to design specific points of interest, as well other aspects of

artistic control used by good painters, is lacking from many computer generated

painterly rendering techniques. Kowalski et al [14] present a 'toon' style renderer for 'art-

based' rendering that allows the user to specify visual emphasis in an image. This is

done by specifying an emphasis attribute per object, which their shaders interpret in

various ways to ensure that the final image's point of interest is where the artist intends.

15

They also specify a way of grouping silhouettes so that individual background objects do

not have well-defined borders.

Artists often exaggerate the effects of light or use complimentary color hues to show

changes in light. Naturalistic painters rarely use pure black to represent dark areas, and

often create darker shades of color by mixing complimentary colors – not by adding

black. Thus, common computer graphics lighting models, such as Phong or Lambertian

shading, are not particularly conducive to art-based rendering. Several graphics

researchers have investigated this problem.

Gooch et al. [10] describe a lighting model which uses a cool-to-warm color scheme that

could be useful for creating painterly images. Their lighting model is designed to show

volume and shading using hue and luminance changes within mid-tone colors, so that

black and white can be reserved for prominent highlights and outlines. Fig. 5 shows the

difference between sphere lit with their model, and spheres rendered with Phong

shading. Note that even with the hue changes, their spheres still retain their “color

name”. In the Pixar film “Ratatouille”, Director of Photography and Master Lighter

Sharon Calahan approached the lighting from a painters point of view [5]; she increased

the saturation levels of areas with low color values to approximate the way painters mix

dark color, and she added a bit of color spill by converting the image to HSV color space

and slightly blurring the hue channel.

16

Fig. 5. Phong shading versus Gooch et al's NPR lighting model [9].

Curtis [6] and Baxter[2; 3], as well as other researchers, have developed painterly

rendering systems based around the use of fluid simulation equations to model paint

flow. Baxter's system allows a user to user to interact with his painting simulation using

a haptic device shaped like a paint brush. As a user moves the brush in the real world,

digital paint strokes are added to a virtual canvas; the pressure and speed of the user's

movements are used to drive the physically simulated interaction between the brush,

canvas, and paint. Baxter's system convincingly models the look of brush strokes mixing

with one another, though the final results rely on the actual painting skill of the user.

While systems such as Baxter's represent an important direction in NPR research, the use

of physical simulation is a fundamentally different approach from that taken by this

project.

Another problem facing computer-based attempts at creating painterly images is an

inherent problem with the standard computer graphics RGB color model; standard RGB

color-mixing models simply do not work the same way as pigment mixing in painting.

Both Baxter's oil-painting system and Curtis' watercolor system use the Kubelka-Munk

17

pigment reflectance equations to achieve better-looking results. Fig. 6 shows an

example of the different results produced by mixing yellow and blue pigments using

actual paint, and those produced by linearly blending RGB colors.

Fig. 6. Comparison of colors produced by mixing yellow and blue paint versus colors produced by RGB
linear blending [3].

III.2. Procedurally Generated Trees and Plants

It is just as foolish for an artist, who is planning to paint out of doors, to
neglect to familiarize himself with the construction of trees, as it would be
for a portrait painter to understand thoroughly the anatomy of the human
head and its component parts with the exception, shall we say, of the
mouth; and then to paint a shapeless smootch of red where the mouth
should be... [25, pg. 5]

While a thorough botanical knowledge of trees is not necessary to artistically depict their

structure, it is good to have an idea of the rules generally followed by nature. For

example, as branches grow out, they will only decrease in diameter – to show a branch's

diameter increasing and decreasing indiscriminately is a sure way to make it appear

18

unnatural. Determining and cataloging rules such as this has suggested the basis for a

number of tree growing algorithms.

Lindenmayer and Prusinkiewicz devoted a lot of research to exploring “the elegance and

relative simplicity of developmental algorithms, that is, the rules which

describe plant development in time.”[23, v.] “L-systems” were introduced by

Lindenmeyer in 1968 as a mathematical description of plant growth. L-Systems

essentially consist of an initial state and a set of rules used to successively rewrite states

with slightly more complicated states. The resulting system can be used to represent

complex structures stemming from a few simple rules. Fig. 7 shows an L-system

consisting of the initial state “b”, and the rules “b->a” and “a-> a b”.

Fig. 7. An example “L-system.” Reprinted from Prusinkiewicz, 1990 [23].

A number of researchers have developed systems with production rules designed

specifically for tree branching. An early example is Honda, whose system used five

observations to create a variety of tree-like shapes. Example rules from his system state

19

that a mother segment produces two daughter segments through each branching process,

and that the daughter segments are shortened by constant ratios. The mother and

daughter segments were all in the same branching plane, and the branching angles were

defined with respect to the mother segment. Honda's work was extended by Aono and

Kunii in a number of ways, most notably allowing the user to bias the branch positions

in a particular direction to represent the effects of wind and other environmental strains

[23].

Reeves and Blau [24] created a rule-based system for procedurally generating both tree

branch geometry and leaf particles. Trees are built by taking user-determined parameter

values, such as branching angle for the trunk and density for the leaves, and applying a

set of rules. Reeves’ paper also contributed a probabilistic shading model for rendering

the particle leaves. Instead of standard shadow calculations, which are prohibitively

costly on so many particles, shadowing is determined stochastically based on particle

placement and orientation within the tree as a whole. A variety of factors raise or lower

the probability that the leaves will be rendered in shadow; for example, leaves that are

closer to the trunk are assumed to have a high probability of being in shadow because

light must pass through the outer leaves to reach the inner leaves.

Peterson and Lee [21] identified another way to simplify the lighting process for CG

trees. They noticed that when standard lighting equations without shadows were used to

render clusters of randomly facing particle leaves, the resulting visual noise obscured the

20

overall form of the tree shapes. To solve this, they use what they call aggregate normals,

which represent the normal of a simplified version of the leaf canopy's overall form.

Fig. 8 shows how Peterson and Lee use a blend of the aggregate normal and the random-

facing leaf normal to achieve a more visually pleasing result.

Fig. 8. Aggregate normal combined with random leaf geometry normal. Influence from aggregate normal,
left to right, 100%, 50%, 0%. Reprinted from Peterson and Lee, 2006 [21].

21

CHAPTER IV

METHODOLOGY

IV.1. System Framework

One of the initial constraints for the painterly rendering system was that it must fit easily

within an existing animation pipeline; instead of being created entirely from the ground

up, the system was designed to work with Alias' Maya [11] and Pixar's Renderman [1].

Maya is a widely-used professional animation package with a powerful internal scripting

language. The language, named MEL [11], provides access to core Maya functionality,

and provides an interface for developing custom tools.

Renderman was chosen as the rendering software because of the power and flexibility

offered by the Renderman Shading Language (RSL). RSL provides a programmable way

to define an object's surface properties and light interactions. A Renderman shader can

be thought of as a mini program that receives a limited set of information (lighting

information, geometric surface information, etc.), and outputs a final color and opacity

for each pixel based on a set of rules written by the programmer; standard computer

lighting and shading models can be completely discarded and replaced with custom

instructions. The language itself is similar to the C programming language, with the

addition of data types specific to graphics programming, such as built in vector, color,

and matrix data types and operations.

22

The two major components of the system are a set of procedural tree generation tools

and the hand coded Renderman shaders. The tree creation scripts allow a user to adjust

various parameters and then automatically generate a 3D polygonal mesh for each tree

trunk and a particle field for its leaves. As the script generates a tree, it encodes the

Maya object with data that will be used by the shader at render time. This way the

renderer can base its shading operations on information that is not usually available; for

example, the creation scripts give leaf particles a value that represents their distance

along an individual branch of the tree – at render time, this value influences what color

the leaves will be painted.

Because of the strong connection between the tree generation tools and the shaders, both

components had to be developed in an iterative process. During the development of each

version of the Renderman shaders, it often became apparent that tree creation data was

needed that was not already stored in the trees; this required rewriting the tree creation

scripts to store that data, rebuilding the set of testing trees, and then continuing to work

on the shaders. Fig. 9 demonstrates this process.

23

Fig. 9. The interconnected MEL script and Renderman shader development loop.

IV.2. Observations

Before implementing either of the tree creation scripts or the shaders, the first step was

to study Corot's paintings and identify the most important features for the system to

replicate. I was able to observe a few of his paintings in person on several occasions, but

mostly worked from printed reproductions. The visual goal of the project was more the

creation of a painterly style reminiscent of Corot's work than an attempt to specifically

recreate any one painting, so several representative trees served as the basis for

observation. Fig. 10 shows several of the trees that were used to design and evaluate the

system.

24

Fig. 10. Examples of trees painted by Corot [30].

25

IV.3. Procedural Tree Generation Tools

The tree creation tools essentially consist of two MEL scripts run from within Maya.

One script generates trunk and branch geometry, and the other script parses that

geometry to produce particle leaves. Both scripts are dependent on user-adjusted

parameters to produce controllable results.

Why generate the trees procedurally in the first place? The primary motivation for using

procedural construction methods was the desire to keep the tree models themselves

completely disposable. As previously shown in Fig. 9 (above), the development process

was iterative; each change in the underlying structure of the trees required a new set of

tree models with updated information. With a procedural work flow, the tree generation

script can very quickly create a whole new batch of trees, while simultaneously

determining and storing data to be used by the shaders at render time.

As can be seen in Fig. 10, above, Corot's tree trunks are generally fairly simplified and

abstracted. He rarely depicts intricate tangles of branches, usually letting a few separate

strokes and the arrangement of his leaves imply the underlying branching structure.

Accordingly, the procedural tree system could attain an appropriate level of detail with a

trunk and one level of branches.

26

The tree creation tools conceptually separate the tees into trunks, branches, and leaves,

and allow individual control over each component. When a user runs the first tree

generation script, it loads a new window containing a viewport, several buttons and

some adjustable parameters. The GUI shown in Fig. 11 provides tools for separately

building the trunk and branches, with parameters separated based on their relevant

components. In the “create geometry” portion of the GUI, clicking on “trunk” will

generate the trunk, “branches” adds branches to the existing trunk, and “LOD” will

create a model of the trunk with less detail.

Fig. 11. GUI for MEL tree generation script.

27

In order to generate a trunk, the script uses MEL commands to create a cube, and then

performs repeated face extrusions until the trunk reaches a maximum size or a maximum

number of growth steps occur. The user does not see the trunk building process – they

simply set the parameters, click the build button, and then choose to either accept or

rebuild the completed trunk model. The first attribute, named “unit”, sets the overall

world-space scale of the tree units, and any other attribute that specifies a length or size

is expressed in terms of the tree unit. The other available parameters control the initial

size of the trunk, and the amount of extrusion, twist and taper at each extrusion step. The

user controls these parameters by setting a base value and the amount of gaussian

variation from that value. By adding random variation with a gaussian distribution, the

user can quickly generate many unique trees that belong to the same family.

The branching function parses each face of the trunk geometry and determines, based on

user-adjusted parameters, whether or not branching occurs; if branching does occur, the

algorithm extrudes the face to create a new branch. The branching section of the GUI is

separated into primary branching attributes and per-branch-step attributes.

Primary branching attributes include values for minimum and maximum vertical trunk

heights that are eligible for branching, an overall probability that branching will occur,

and attributes for controlling the maximum length of the new branches. They also

include attributes for the first extrusion of a new branch. By starting with a cube, the

28

trunk generator ensures that any face on the trunk is quadrilateral, but since the extrusion

algorithm allows for twisting and general randomness, a given face on the trunk may not

be square or planar. Therefore, the first branch extrusion step only extrudes a small

amount, and then manually adjusts the new vertex locations in an attempt to force the

new face to be both planar and square. The two left hand images in Fig. 12 show that

keeping the extruded faces square ensures that the final subdivided model will have a

generally cylindrical shape to its branches. Also, the smaller extrusion height on the first

step greatly improves the shape of the model around areas where branching occurs. The

right hand side of Fig. 12 shows the undesired extra volume that occurs around the point

of branching if the extrusion height is not minimized for the first step.

Fig. 12. Tree subdivision with and without a small first step extrusion height.

Once the first extrusion takes place, the branching algorithm continues making

extrusions in a very similar way to the trunk creation algorithm. The per-branch-step

attributes allow control over the extrusion length, twist and taper at each branch step. If

the user is unsatisfied with the branches that are created, they may simply run the script

29

again to reset the tree to only the trunk model and create a new set of branches; the

randomness in the script ensures that the new set of branches will be different.

Once a satisfactory tree is created, the user can enter a name and then save the tree. The

script ensures that each tree has a unique name by adding a numbered suffix if

necessary. Each tree is actually a group of objects, including the trunk geometry and a

subdivided model of the trunk for rendering. The tree group also includes a locator

object, to which are attached custom attributes for storing general information about the

tree; for example, attributes for storing the beginning and ending vertices of each branch

of the tree are added to the data locator, since that information is needed by the leaf

generation script. Each object in the group is organized with a specific naming scheme

so that the other tools can perform global operations on the trees. These tools are

described later in this section.

The leaf generation script allows the user to select any existing tree object and then

either generate new leaves or modify existing ones. The original leaf generation script

generated NURBS spheres in formations around the tree branches. However, the results

of attempting to shade the NURBS spheres in a painterly manner were unsuccessful.

Since the surface normals of the NURBS spheres were used for lighting calculations, the

underlying spherical shapes were always apparent in the renders. Even though some

results looked somewhat promising in a still frame, any animation that rotated around

the trees made it immediately clear that they were simply a cluster of warped spheres.

30

Switching to a particle representation of the leaves, a decision inspired by Reeves [24],

brought much more success. The final leaf generation script parses the tree geometry and

emits leaf particles, based on user parameters and data stored in the tree group's data

locator. The GUI, as seen in Fig. 13, is very similar to the tree generation script, with the

parameters grouped into several sections. All of the parameters that specify lengths or

distances are expressed in terms of the tree object's unit size.

Fig. 13. GUI for MEL leaf generation tool.

31

Since the actual tree geometry only has one level of branching, the leaf generation

algorithm attempts to imply a more complicated structure by generating leaf particles in

branching patterns. The algorithm parses each vertex of the tree geometry, determines if

it is eligible for branching, and then determines if branching does occur. User

parameters can limit leaf branching eligibility by culling vertices at the beginning or

ending of each branch, and by setting the trunk height range at which branching may

occur. The user also sets the overall probability that is used to determine if leaf

branching will occur on an eligible tree vertex.

The leaf branching behavior section of the GUI provides the user with parameters for

leaf branching angle, length, variation, and number of particles per branch. If branching

does occur, the script emits the specified number of particles outward from the tree. For

each particle, the algorithm calculates a normal vector based on the branching angle and

the allowed stochastic variation. Each particle is placed the specified distance away from

the previous one in the direction of its normal. The result is a series of particles that form

an implied branch stemming from the tree geometry, as can be seen in Fig. 14. Each

particle stores information about its creation, for use later by the shader. The values it

stores include its normal vector, its distance from the original branching vertex, its

distance from the center of the tree, and a unique particle ID. All randomness is seeded

from the seed parameter so that the same input parameters will always produce the same

output results; changing only the seed parameter will produce similar results, depending

on how much randomness is allowed.

32

Fig. 14. Data recorded during the leaf generation process.

The particles are rendered as two-dimensional rectangular images, known as sprites,

which are constrained to always face the camera. Each individual sprite is colored to

look like a cluster of brush strokes, and since the sprites are 2D and always facing the

camera, the strokes appear to be painted in the image plane. The particles are sorted by

depth before rendering so that sprites that are closer to the camera appear to be painted

on top of more distant brush strokes. The size of each sprite is determined based on user

parameters and environmental factors, such as the particle's location within a tree. The

size can also be dynamically changed during an animation.

33

One downside to using the sprites is that their square blocky shape is so different from

the final brush strokes that it is hard to visualize the actual shape of the tree when

working in Maya. Because of this, the leaf creation script allows the option to build

proxy NURBS spheres in addition to the leaf particles. Fig. 15 shows the difference

between the different tree representations, and demonstrates the usefulness of the

NURBS proxies for visualizing the scene. When NURBS proxies are generated, they are

automatically set so that they do not render or cast shadows.

Fig. 15. Sprite and NURBS sphere representations of the same trees.

IV.4. Shading the Trees

As mentioned previously, each leaf particle stores data about its relationship to the

overall tree, as well its parent tree's relationship to the entire scene. When a scene is

rendered, the Renderman leaf shader uses each particle sprite's data to render it as a

cluster of brush strokes of the appropriate size, style, and color.

34

The shading process is separated into several main steps, each of which can be modified

using the shader parameters. The main steps are

• calculating illumination using particle's normal vector,

• modifying illumination based on particle data,

• calculating shadows,

• computing brush stroke mask, based on illumination and particle data,

• using illumination to pick color from color palette,

• modifying color based on atmospheric perspective,

• applying brush stroke mask to color and rendering.

IV.4.1. Calculating and Modifying Illumination

The system is designed for outdoor landscape rendering, and the lighting is generally

assumed to come from the sun. Multiple lights can be used, but the system may not

respond in the same way as a standard CG scene would. All of the results images were

created with only one light, and shading calculations generally assume that only one

light is used. The lighting calculation begins with the standard diffuse lighting equation,

which is just the dot product of the particle's normal and the direction vector to the light.

This value is a floating point number, which is clamped between 0 and 1. The value is

stored by the shader in a variable named lightness, which is used later to select a color.

35

Consider sunlight shining on a tree with dense leaves. The leaves on the outside of the

tree are most likely to receive sunlight, while leaves closer to the center of the tree are

increasingly more likely to be in shadows cast by the outer leaves. This effect can be

seen in Corot's trees in Fig. 10 (above). The outer leaves are painted with individual

strokes of lighter colored paint, while the interior foliage is depicted with larger, darker

strokes. The Renderman shaders reflect this concept by modifying the lightness of a

particle sprite based on its position within a tree. As particles are created, they store one

value that represents their distance outwards along their individual branch, and another

that represents their distance from the center of the tree (the “center” is a locator that can

be manipulated by the user to give a particular portion of the tree a fuller look). The

shader converts these values to ratios between 0 and 1, and then modifies the particle

lightness accordingly. Leaves on the outside are made a lot brighter, and leaves on the

very inside are made a lot darker. The effect is generally limited to the outer innermost

leaves by passing the distance ratios through gain functions prior to using them.

IV.4.2. Shadows

Shadowing initially caused a great deal of trouble, because the particle sprites cast

shadows as if they were solid squares instead of individual brush strokes. Shadows cast

on the ground had hard square edges, and self-shadows on the trees looked awful. Using

the proxy NURBS spheres to cast shadows yielded good results on the ground and other

36

trees, but still had large self-shadowing artifacts. The final system solves this problem by

forcing Renderman to evaluate the shader when it creates the shadow map; when

Renderman evaluates the shader, it uses the true opacity of the sprites, so the particles

cast shadows as if they were brush strokes instead of flat rectangles.

Instead of stopping when it hits a surface, light in the physical world continues to bounce

around and illuminate objects that are not directly in the original path of the light. This

indirect illumination does not normally occur in computer graphics, and when only one

standard CG light is used, an object in shadow generally ends up being colored black.

This is not desirable, because it completely eliminates any detail in shadowed areas and

looks unnatural. To counteract this, the shader simply rescales the 0 to 1 shadow

multipliers to range from 0.5 to 1.0. This means that objects in full shadow are treated

as being half-illuminated. In certain situations this looks unnatural, but is generally a

large improvement over using fully opaque shadows. The shader also passes the

shadows through a user-controlled bias function, which allows the user to universally

darken or lighten shadows as needed.

IV.4.3. Using Lightness to Select a Color

Color works very differently in standard painting and computer graphics methods. In

computer graphics, color is determined by multiplying an object's default surface color

by the diffuse coefficient, which is the amount of light hitting the surface; this means

37

that when an object is not lit, its color fades off to black. A painter however, may use

completely different colors for light and dark parts of the same object. The dark and light

colors are usually mixed from the same base color, but the dark colors are created by

adding in a complimentary color – not by adding black. Additionally, a painter will

generally mix all of the colors in a scene from a relatively small color palette; this

generally adds a lusher more natural feel to a painting, and accounts for the way color is

transmitted from object to object when light bounces around the physical world. A major

component of this project's painterly look is that it uses each particle's lightness not as

a diffuse coefficient, but as a lookup for a color palette.

The user specifies parameters that determine the ranges of what is considered dark,

medium or light. The user also specifies appropriate colors each for dark areas, mid-

tones and light areas, and arranges them from dark to light in three separate color

splines. A color spline is a function that accepts a value from 0 to 1 and returns a color

based on a list of base colors given to the spline; each color in the spline is evenly

spaced, and any value along the spline is interpolated from the two colors it falls

between. Fig. 16 shows an example color palette.

Fig. 16. Example color palette used for tree leaves.

38

The shader lighting equations determine whether a given particle lies in the dark,

medium or light value range, and then uses the lightness value to look up a color from

the appropriate spline. An additional parameter allows the user to add a little bit of noise

to the color lookup, which creates color variance within each brush stroke. This is meant

to emulate the natural variance that occurs within brush strokes, as the paint mixes in

slightly different ways within each stroke due to physical properties of the canvas, paint

and brush. Shadow colors also benefit from the use of color splines. Since the shadow

calculations are applied to the lightness variable instead of the final color, a pixel that

is in shadow simply looks up a darker color from the palette, instead of multiplying a

final color by black.

IV.4.4. Generating Brush Stroke Masks

The shader prevents each sprite from rendering as a solid rectangle by creating an

opacity mask to give the appearance of individual brush strokes. The opacity masks are

created dynamically using thresholded noise functions. Fig. 17 shows 1D and 2D

example noise functions. Note that although they appear random, they are also

continuous without any distinct jumps in value. The noise function in Renderman always

outputs a number between 0 and 1, and the same input will always produce the same

result.

39

Fig. 17. 1D (left) and 2D noise functions. Two different frequencies of 2D noise are shown [26].

A sprite has an internal coordinate system, referred to in the shader as s and t

coordinates, which run continuously from 0 to 1 along each direction of the sprite. A

smooth-step function has two thresholds; any value below the low threshold is treated as

0, any value above the high threshold is treated as 1, and values in between the two

thresholds are interpolated between 0 and 1. Fig. 18 shows the effects of using a sprite's

st coordinates as inputs to a 2D noise, and then passing the results through smooth-step

function. Varying these thresholds and the frequency of the noise can give the give the

sprite appearances ranging from small non-uniform brush strokes to one large smudge of

color. The bigger the different between the thresholds, the more feathering will appear

on the edges of the strokes, as is demonstrated by the right-hand side of Fig. 18.

40

Fig. 18. Brush stroke masks created by passing noise through a smooth-step function. From left to right:
low noise frequency, high frequency, and high frequency with feathered edges.

.

The full portion of the shader code for creating the brush strokes is shown in Fig. 19.

The first line of the code calculates a frequency for the brush stroke noise function. The

frequency of the function determines how quickly the values change, and, therefore, how

large or small the brush strokes will appear; the higher the frequency, the more the

strokes will appear to be small individual dots of color. The variables

centerFrequFactor and lightnessFrequFactor are user-adjusted weights that

determine how much the noise is influenced by the particle's distance from the center

and the amount of light illuminating the particle, respectively. As mentioned previously,

this idea comes from the observation that Corot's trees are painted as small detailed

splotches of color on top of larger, looser brush strokes in the dark areas. Giving the

noise a higher frequency for particles that are further from the center of the tree and in

more direct light will keep those brush strokes smaller and allow the larger brush strokes

on more inward particle sprites to show through. The label variable is a unique ID

41

number (between 0 and 1) that is stored in each particle, and helps to ensure that all

particles will have unique brush stroke patterns.

Fig. 19. RSL shader code for generating the brush stroke masks.

The second line of code shown in Fig. 19 is the primary noise function that determines

the brush stroke noise. This would be enough for areas in the center of each sprite, but

would leave undesirable hard lines on the edges of the sprites. To prevent these hard

edges, the next few lines of shader code create a rounded feather mask on the edges of

the sprite. The sin and cos functions create a rounded shape with values of 1 in the

center of the sprite, and smoothly changing values that fall off to 0 around the edges.

The next line uses a bias function to adjust the size of this mask. The default bias

settings push the shape all the way to the edge so that the maximum area of the sprite is

still visible. Fig. 20 shows edge masks created with bias values ranging from 0.8, on the

left, to 0.2, on the right. Multiplying the results of the stroke noise function with the

42

stroke edge mask creates a noise function without hard edges. This mask could have

been created with a texture map, but by producing it procedurally, the system is able to

modify it during the course of an animation – the grass shader makes use of this

functionality and is discussed later on in this chapter.

Fig. 20. Sprite edge masks. Bias values from left to right are 0.8, 0.5, 0.2.

43

The next line of code is the smooth-step function that transforms the noise function into

the actual brush strokes. The final line clamps the opacity to a user-defined maximum

opacity and then modifies it based on the distance from the camera. Clamping the

opacity to a number slightly less than 1 ensures that all strokes mix slightly with the

strokes behind them and helps with the overall painterly look. The opacity adjustments

based on distance are used to fade out stroke detail when objects are away from the

camera and are discussed in detail later in this chapter.

IV.5. Artistic Control and Shader Interface

Almost all of the shader processes discussed so far use parameters that are controllable

by the user. One difficult aspect of designing any shader is figuring out how to give the

user as much control as possible without presenting them with too many confusing

variables and too many degrees of freedom. Since this is a research project and not a

shader that will be handed off to another artist for use, I have erred on the side of control

over ease of use. SLIM is a graphical interface program for changing the value of

Renderman shader input parameters. Fig. 21 shows the SLIM interface to the particle

sprite leaf shader.

44

Fig. 21. SLIM interface to the leaf shader’s parameters.

45

The first four parameters allow the user to adjust the lightness ranges that determine

whether a particle is considered dark, medium or light; for example, any lightness

value below the darkCutoffStart is evaluated on the dark color spline, and any value

between the darkCutoffEnd and the midCutoffStart is evaluated in the medium color

spline. Values that lie between the darkCutoffStart and darkCutoffEnd are evaluated

on both color splines and then mixed together. Splitting the colors into the three ranges

and allowing the user control over the boundaries of those ranges allows greater control

than if all colors were represented as one continuous spline.

The shadow bias parameter is used to darken or lighten shadows. During lighting

calculations a shadow multiplier between 0.5 and 1.0 is calculated and then passed

through a bias function. A bias value of less than 0.5 will make shadows darker and a

bias of greater than 0.5 will lessen the effect of all shadows. A bias of 0.5 will leave the

shadow values alone.

A parameter named strokeFullness is used to bias the particle sprites edge mask. A

higher number will push the mask closer to the edge borders, making more of the sprite

visible. A lower number will increase the mask and effectively make the stroke area

smaller. The strokefeatherMin and strokeFeatherMax are used by the stroke smooth-

step function to clamp the brush stroke noise values into distinct splotches, and the

maxStrokeOpacity is used to clamp the final stroke opacity to a maximum value.

46

The centerFrequFactor and lightnessFrequFactor are used to increase the

frequency of the brush stroke noise – and therefore reduce the size of the brush strokes –

for leaf particle sprites that are further away from the tree center and in greater

illumination, respectively. The subStrokeFrequ is used for the color variation noise

within a particular brush stroke.

Every tree is given a unique ID during its creation, which can be used to apply an overall

unique tint to individual trees. The tint color is interpolated between the two tint colors

based on the unique tree ID, and the uniqueTintAmt determines the amount of the tint

color to mix into the tree's normal color. Since the tint color is uniformly applied over

the entire tree, very low tint amounts must be used to avoid washing out the tree colors.

If large color differences are desired between trees, the user should instead use separate

leaf shaders with different color palettes.

The parameters with the dist prefix determine how the tree changes in appearance when

it is far away from the camera. The specifics of the camera distance effects are

discussed in the next section, but they are mostly designed to emulate how atmosphere

effects color.

The remaining parameters are all data that is stored in the particles and should not be

changed by the user. These parameters include the leaf's normal, information about its

position within a tree and within the world, and unique Ids for both the tree and the leaf.

47

Ideally, these parameters would not be visible to the user, but it is the only way to pass

custom data directly from Maya into the Renderman shader.

IV.6. Animation

In a painting, brush stroke size does not scale linearly with perspective – distant objects

are not just painted with tiny strokes, but instead are generally painted with fewer brush

strokes and less detail. Because of this, one of the original guidelines for the system is

that it must be able to use different representations for trees that are in the background

than those in the foreground, and it must be able to smoothly animate between

representations. The first step in working towards this goal was developing a system for

defining what constitutes foreground and background.

Renderman has a built in level-of-detail (LOD) control, and initially the system tried to

make use of this functionality. With Renderman's built in LOD, a user can specify

multiple models, and the renderer will automatically interpolate between them. The main

purpose of the Renderman system is to reduce the complexity of scenes by using less

complex models when objects are too small on the screen for a viewer to tell the

difference. This means that there is no continuous interpolation between models, but

instead one model simply fades into another by animating the opacity of each. Because

of this, it is generally only necessary to have two or three different models. The ranges

for where the transitions occur are specified in screen space area. These attributes work

48

very well for their intended purpose, but make Renderman LOD completely

inappropriate for system that needs a continuous change over a large range of distances.

Additionally, the appropriate level of detail needs to be decided by distance from the

camera, not screen space size. For example, a giant mountain may be extremely far in

the background and need to be painted as such, but may also still occupy a fairly large

portion of the screen.

The LOD system developed for this project uses a fairly simple and intuitive way of

letting the user specify which objects are foreground and which are background. The

GUI created by the scene management script, shown in Fig. 22, provides the user with

several useful tools for building animations. Clicking the create camera button, listed

under the Scene prep tab, builds a camera with custom attributes and two circle objects

constrained so they can only move along the camera's view axis; these circles allow a

user to specify the distance ranges, as shown in Fig. 22. Anything closer to the camera

than the near circle is rendered with the highest detail possible, and anything farther

away than the distant object is rendered with the lowest detail. Objects between the two

circles are assigned an interpolated distance value between 0 and 1, and rendered

accordingly. The distance to the camera is calculated relative to a plane perpendicular to

the view vector, which means that any objects in this plane are considered to be the same

distance away. If a camera is animated, these circles follow with it, but can also be

animated individually for added effect.

49

Fig. 22. Scene management MEL script GUI.

Maya allows a user to define relationships between objects using MEL-scripted

expressions. Expressions are evaluated every time an event, such as changing the current

animation frame, forces an update. The system uses an expression to keep track of the

world space distance between the camera and its circle tools, and stores these distances

in custom attributes. There is a separate pair of distance circles that is used to specify

distances for the tree trunks, and these are handled the exact same way.

The scene management tool has a button that parses a scene and updates every object's

distance values. For trees, it calculates the distance between the camera and the center of

the tree, compares that distance to those of the camera distance circles, and then updates

the tree's distance value accordingly. For testing scenes, it is generally only necessary to

50

update the current frame; for animations, there is another button that goes frame by

frame and sets animation keys for the distance values so that they will animate correctly

over the course of an animated shot.

The particle leaf objects have expressions attached to them that update several of the

individual particle attributes, based on the tree's distance value. When individual leaf

particles are created, they are assigned two distance value thresholds. These thresholds

are used to adjust the particle's opacity based on distance from the camera. The particle

is either made fully opaque, fully transparent, or, if the value falls between the

thresholds, is given an interpolated opacity. The effect of this is that the particles will

slowly disappear as the camera moves away from the tree. The leaf creation script allows

the user to specify the minimum separation for these thresholds in order to control the

distance of the fade. At render time, the shader also puts a slight gain on the opacity

values in order to ease in and out of the fade. The leaf creation script also allows the

user to specify a gaussian variance on the thresholds so that each leaf begins to fade

away at a slightly different time.

The distance thresholds are assigned to the particles such that those farthest away from

the center of the tree disappear sooner than those on the inside. Since particles on the

inside have lower frequency strokes, the effect is that the apparent detail of the trees is

reduced. Fig. 23 shows the same tree represented as near, far, and several stages in

between. In order to maintain a relatively constant silhouette and overall tree size, the

51

Maya expressions continuously scale up the remaining particles to account for the

missing leaves. The leaf shader also must account for the removal of leaf particles. In the

high detail representation of the trees, interior leaves are artificially darkened to account

for the probability that they are in shadow from the exterior leaves. As the tree gets

farther away from the camera and the exterior leaves disappear, this darkening effect is

diminished and then removed, to prevent the tree from appearing to darken. The shader

handles this by including the distance value in its probabilistic lighting calculations.

Fig. 23. Renderings of the same tree at three different depths.

In painting, the effect that atmosphere has on objects that are distant to the viewer is

referred to as atmospheric perspective. In addition to losing detail clarity, distant objects

tend to be painted with less contrast and saturation, and tend to have their hue shifted

towards the sky color. The shader has parameters that account for each these attributes,

and their effects can be seen on the trees in Fig. 23 (above). The attribute named

52

distHueColor is mixed with a distant tree's color in an amount determined by the

distHueStrength parameter. The saturation of distant objects may be limited by the

distSatLimiter, and the value of distant colors may be clamped by the distValueMix

and distValueMax parameters. The distCurveBias is used to bias distance of the

object from the camera, effectively changing distance values from a linear interpolation

into a curve that increases more with distance.

IV.7. Generalizing the Leaf Shader for Grass, Rocks, Etc.

It was difficult to evaluate the success of the painterly rendering system when the only

results were trees by themselves. By adjusting the leaf shader to fit more general forms, I

was quickly able to populate an entire scene with grass, rocks, and other surfaces that fit

within the same painterly style as the trees. The generalized shader was designed

specifically for grass, but purposely left general enough to accommodate other surfaces.

The system's generalized brush stroke creation tool, as shown in Fig. 24, is another MEL

script that allows a user to select any NURBS surface and convert it into a field of

particle sprites. The script divides the NURBS surface into a user specified number of

divisions in the u and v directions, and then emits a specified number of particles

randomly within each section of the surface. The reason for dividing the surface instead

of generating particles randomly over the entire surface is because the user can specify

53

separate u and v division numbers, generating more particles in one particular direction;

for a long thin piece of geometry, this is required to keep an even distribution over the

entire surface. When the particles are emitted, they store the surface normal and uv

coordinates of the surface at the point of their generation.

Fig. 24. GUI for the generalized stroke building tool.

The user also specifies a displacement height for the particle surface. As each particle is

generated, it is displaced either up or down a random amount less than or equal to the

54

specified displacement height. Each particle's height is then normalized from 0 to 1, with

0 being below the surface and 1 above, and then stored for later use by the shader.

Corot often painted his grass as large low-detail blends of color punctuated by a few

specific vertical brush strokes. The few, generally lighter, detail strokes are enough to

give the impression that an entire hillside is covered with grass. Because of this, the

generalized stroke shader is organized so that smaller detailed strokes are placed on top

of darker, less-detailed strokes.

After generation, the user is able to prepare the particles for render and adjust them as

necessary. The prep for render button converts the particles to particle sprites, and sizes

them based on several parameters set by the user. There is a parameter for the overall

size of the particle, as well as controls for adding some size randomness and making the

width different than the height. Another parameter allows resizing the sprites based on

their depth value; in general, it is desirable to have the deepest sprites sized much larger

than the top-most sprites. This allows for fewer sprites to cover the area of a surface, and

also allows for the appearance of small detail strokes on top of larger strokes.

There are also parameters that govern the effects of camera distance on the brush

strokes. Brush strokes that are considered to be 'detail' strokes fade away at great

distances, and one of the parameters sets the height threshold for which strokes are

considered detail. Any strokes with a displacement height of greater than the threshold

55

are considered detail, and are eligible to fade away. Lower strokes never fade away,

since if they disappeared, holes would appear in the surface. Distance thresholds are

assigned randomly to the detail particles, but there is a parameter to specify the

minimum distance span over which a particle may disappear.

The distance values of the generalized particles are computed in a very similar way to

the tree distances. When the scene management tool is used to update scene distances, it

calculates the distance of each corner of the NURBS surface, relative to the camera

viewing direction and the distance circles. Individual particle distances are then

interpolated from the corner distances using the particle's stored uv coordinates.

The shader for generalized particle strokes is conceptually very similar to the leaf

shader; it computes a lightness value, manipulates that value based on particle data, and

then uses it as a lookup to a color palette. The opacity mask of each sprite is then created

with a thresholded noise algorithm that is very similar to the one used by the leaf shader.

There are, however, slight differences at nearly every step.

The initial lighting calculation uses the concept of aggregate normals, as suggested by

Peterson and Lee [21]. In addition to the normal of of the surface where it was

generated, called the aggregate normal, each particle contains a random-facing normal.

The normal vector used for lighting calculations is a blend of the aggregate normal and

the random normal, based on a user controlled blending weight. Allowing the random-

56

normal to blend with the aggregate normal introduces some random variation on the

surface of the object. Allowing too much influence from the random normal, however,

risks losing the overall shape of the surface.

After the initial diffuse lighting calculation, the lightness of the particles is modified

based on their displacement height. Particles that are deeper are artificially darkened

based on a user-adjusted parameter. Without this feature, detail brush strokes might

receive the same illumination, and therefore the same color as strokes beneath them, and

would be invisible. Since the lower strokes are darkened slightly, the detail brush strokes

show up on top.

The generalized particle strokes receive shadows the same way as the leaf particles, with

the same bias function used to manipulate the overall strength of the shadows. Unlike the

leaf particles, the generalized particles themselves do not cast shadows. The surface that

is used to create the particles is made invisible to the primary render pass, but is set to

cast shadows. Since it is roughly the same shape as the particles created from it, it gives

off proper shadows.

Color values are not computed inside the generalized stroke shader. Instead, the

lightness value, as well as the user-adjusted substroke frequency and lightness level

thresholds is sent to a material definition function that is stored in the same file as the

color definitions. The shader also passes the material function a user-specified string

57

that names the desired material. The material function takes the name of the material

and the lightness values, and determines an output color using the same color palette

spline methods as the leaf shader. The reason for separating the color calculations into a

separate material function is that multiple shaders can then easily share the same

material and color palette. Also, an individual shader can potentially have multiple

materials. For example, a hillside shader could use a noise function or texture map to

determine if a specific particle was in a grassy section or a dirt section, and then

determine the particle's color by passing the lighting information and the name of the

desired material to the material function.

The generalized particle shader allows more detailed control over the frequencies used

for the stroke-generation noise. There are parameters for a base noise, and an amount to

increase that noise for the detailed particles. There are also separate frequency modifiers

for the s and t directions for both the base strokes and the detail strokes. The grass shader

uses much higher frequencies in the s direction than the t direction of detail strokes in

order to give the detail strokes the thin, vertical appearance of tufts of grass. The rock

shader uses frequencies that are the same in both directions in order to keep circular,

non-directional brush strokes.

The edge masks for the particle strokes are computed in a nearly identical method to

those of the leaf strokes. One of the problems with using the particle system to cover a

piece of landscape is trying to generate enough particles to completely cover the surface

58

with 'paint', without having so many particles that render times are too slowed. Particle

sprites in areas that have normals parallel to the view direction need to be large to

maximize coverage, but sprites at the portions of a surface with normals perpendicular to

the view direction, such as at the crests of the hills in Fig. 25, need to have smaller

heights so that they do not extend too far above the surface of the hill. The shader

handles this by adjusting the vertical portion of the edge mask gain function according to

the dot product of the surface normal and the viewing direction; regular sprites are

rendered at their full size, while sprites at the crest of a hill are drastically shorted by the

increased mask size. This effect is visible in the left hill of Fig. 25, which is missing the

blurry circular strokes visible in the top right of the right hill.

Fig. 25. Dynamic resizing of edge masks, based on viewing angle.

The generalized particle shader handles the effects of atmospheric perspective in the

same way as the leaf shader, with identical controls for the variation of hue, value and

saturation with distance.

59

CHAPTER V

DISCUSSION OF RESULTS

V.1. Overview

The overall result is a temporally coherent system that achieves a painterly look for 3D

rendered animations. Fig. 26 through Fig. 29 show some still frames from animations

produced with the system. Light and color are handled in a manner that adds to the

painterly aesthetic of the final imagery. The system is able to convey form and depth,

while still appearing to be painted in a 2-dimensional image plane. The images are

rendered in a style that is clearly influenced by Corot, while not specifically recreating

any of his paintings. In the judgment of several viewers, the system achieves a great deal

of success in producing a painterly look; several have even mistaken rendered images for

photographs of paintings.

60

Fig. 26. Painterly rendered windmill scene with clearly visible atmospheric perspective.

Fig. 27. Painterly rendered rocks, grass and trees.

61

Fig. 28. A demonstration of shadows and moving light sources.

Fig. 29. A painterly rendered image with many trees.

62

The use of procedural strokes is fairly successful at creating a painterly look. The shader

parameters offer enough control over the brush strokes to effectively convey different

surface types, such as grass or rock, and to depict these surfaces at varying distances.

Many systems use predefined brush stroke textures, but the procedural nature of this

system's brush strokes allow for a lot of dynamic manipulation and variance that would

probably be harder to achieve using predefined stroke textures. Even in large areas

covered with one shader, such as the grassy hills from Fig. 29, the randomly created

procedural brush strokes offer enough variance that no pattern is discernible pattern.

One of the main goals of the system was to represent depth in a painterly way, both in

terms of brushwork and color. All of the coloring, depth effects and brush stroke

stylization visible in the above images was done at render-time - all of the images were

rendered in one pass, and have had no post processing applied to them. The grass shader

used on the hills in the windmill painting clearly demonstrates the system's effectiveness

at conveying depth. The shader is the same on all three hills, and all visible changes are

caused only by distance to the camera. The hill to the right of the windmill appears much

farther away due to color changes and the use of fewer, larger brush strokes. These depth

effects are all dynamically controlled by the shader, and can be animated to smoothly

change over the course of an animation.

Animations created with the system are temporally coherent, and do not exhibit either

the shower door problem or the gift-wrapped look. The brush strokes look as though

63

they were painted in the image plane, but the three-dimensional form of objects is not

lost. Complete camera freedom is allowed, and objects smoothly transition between

different levels of detail. Dynamic changes in atmospheric perspective and brush stroke

stylization add a temporal painterly element to animated sequences.

V.2. Usability

The tree creation tools are very easy to use. A tree can be created in seconds, with only a

few mouse clicks. The scripts successfully accomplish their primary goal, with is to

provide an interface for the quick creation of generalized tree shapes. However,

attempting to create very specific shapes can be counterintuitive and sometimes

impossible. Although they do not function as an artist tool for creating art directable

scenes, as a testing tool, the tree generation scripts work quite well. Due to the large

amount of randomness in the script, it will occasionally generate completely

inappropriate shapes; however, it only takes one mouse click to discard these shapes and

rebuild a new one.

One feature designed to improve usability is a set of functions for saving and loading

parameter settings. If a user calibrates the tree generation parameters to produce a

desirable type of trees, they may save those settings as a named preset and then reload

them for later use.

64

The system also allows the user to label trees as they are generated with names such as

“poplar” or “tall tree”, and then perform universal actions on these groups of trees. The

scene management tools allow a user to select groups of trees by name, or subparts of

trees by name, or even specifically by name and type. This allows the user to, for

example, use one mouse click to select all leaf particle shapes from the “poplar” trees in

a scene and then apply a shader or perform some other action to only these objects.

The scene management also makes handling the distance calculations easy. When it is

time to prepare an animation for rendering, the user may click on a button, and the script

will parse the animation frame by frame, setting all distance values properly.

Both the leaf scripts and the generalized stroke scripts allow a user to modify particles

after they are created. For example, the user may select a tree and load the leaf

generation script. Instead of re-generating the leaf particles, the user may choose to only

adjust one or more of the size parameters. Also, if a user wishes to generate particles

with slightly different values, they may select a tree and run the leaf generation script.

When it load the GUI, it will already have the parameters pre-set to the values that were

used to create the leaves, instead of the default values; this allows the user to make a few

slight changes to the parameters and regenerate the particles, instead of trying to

remember the original settings that were used. The generalized particle script operates

the same way.

65

Another useful byproduct of the way the generalized particle generation script works is

that model perfection is unnecessary. Landscapes may be created by arranging NURBS

surfaces so that they roughly correspond to each other – it is not necessary to carefully

stitch the surfaces together, as it would be if they were being rendered normally. This

allows for 'sketchy' modeling, and speeds up the process of modeling a landscape.

The shader is designed to emulate a relatively loose, nonuniform style, but does allow

some control over the brush strokes. Changing the relative frequency and direction of

brush strokes can make them appear to represent different surfaces, such as grass, leaves

or rock. Changing other parameters can change the aesthetic of the entire image. Fig. 30

shows how changing the noise smooth-step thresholds and opacity clamps can create a

fair amount of variation in the appearance of the strokes.

Fig. 30. The effects of changing brush stroke opacity and feathering.

66

The scene management tools are quite accessible and greatly speed up the process of

building and animating a scene. Both the tree generation MEL scripts and the shaders

were designed with control placed over ease of use, and have an intimidating number of

parameters for someone unfamiliar with the system. While they are easy to use for

someone who does know the system, they would need to be streamlined and better

documented for use by other artists.

V.3. Known Problems

Although the system achieves most of the goals originally specified, there are a few

areas in which improvements could be made. The most noticeable problem with the final

images is the lack of foreground detail. The highest detail allowed by the system

generally works well for most objects until they are in the extreme foreground. Both

grass and trees look blurry with brush strokes that are too large when they get too near

the camera. This could probably be fixed by extending the LOD system to include a

method for handling objects in the extreme foreground. In many of Corot's paintings,

trees that are very close to the viewer are depicted as very sparse, separated brush

strokes. Perhaps as trees get very close to the camera, the interior leaves could disappear,

allowing the viewer to see through the foliage. The process for doing so could be added

using many of the same methods that allow the exterior leaves to disappear as the tree

recedes into the distance. Some of the lack of detail in foreground objects also comes

from the way that distances are computed on the grass particles. For a large patch of

67

grass, it is fairly inaccurate to base the distances only on the relationship between the

camera and the corners of the NURBS patch; this seems to occasionally assign incorrect

distance values to foreground particles. This method was chosen for speed and ease, but

should probably be replaced with a more accurate system.

Another problem with the images is that some areas appear too procedural and lack the

variation and detail of brush stroke styles that would be present in a real painting. The

brush strokes are controllable to a degree, but they lack the finesse and variety of styles

that Corot employed in his paintings. The colors are also not as varied and rich as they

are in Corot's paintings. Some of this is because of the limitations of RGB color mixing,

but some of it is also because of the difficulties in choosing a proper palette; it is very

difficult to match Corot's eye for color.

One problem with the animations is that the particle sprites do sometimes pop in and out

of view as a camera moves. The reason for this is that the particles are really just single

points in space, and the sprites rotate around the particles to match the camera viewing

angle. It is possible for the camera angle to change such that one sprite will suddenly pop

in front of another sprite. Fig. 31 demonstrates this problem, showing how the sprites

react as a camera rotates around a scene.

68

Fig. 31. Sprite popping problem. Because the sprites are oriented towards the camera, a change in viewing
angle will cause one sprite to move in front of the other.

This problem is fairly fundamental to the way sprites are used by the system.

Nevertheless, since the popping seems to occur fairly regularly over the entire image, it

is not nearly as distracting as if it happened only in one particular spot. Since it is just

general visual noise, it is fairly easy to tune out. This problem could probably be fixed

with some sort of localized frame-blending or other post-processing technique.

Expanding the popping to be a smooth change over the course of three to five frames

would probably make it unnoticeable.

Another problem with animations is that it is difficult to properly calibrate the system

that adds and removes leaf particles with distance. When it is not calibrated correctly,

the silhouettes fluctuate in size, and some parts of the tree appear to change too

suddenly. In a complex scene, however, this is not particularly noticeable.

69

V.4. Future Work

The generalized particle stroke generator is a big step towards making the system useful

as a general rendering system, but it would benefit from additional control over the brush

stroke styles. The current controls allows for roundish shapes and either dominantly

vertical or horizontal strokes, but does not allow much major control beyond that. One

potentially simple improvement would be to allow control over the particle sprites'

“twist” property, which allows the sprite to rotate around the camera's view axis. This

would introduce more variance in the strokes and allow greater control over their

primary direction, which would add to the believability of the resulting images.

Also, there is currently no support for animating surface deformations with the system.

Once particles are created, they have no direct tie to the surfaces they were generated

from. Perhaps the simplest possible solution would be to use Maya's built in deformation

system; the version of Maya used for this project has a documented software bug that

does not preserve custom particle attributes when they are animated with deformers;

since the particle's custom data is absolutely crucial for this rendering system, the use of

deformers was not an option. The problem may well have been fixed in more recent

versions of Maya, and then the use of wrap deformers could be a quick way to add a lot

of functionality to the system. However it is accomplished, the system would be more

useful if it allowed the animation of more than just the camera.

70

It would also be useful to add shaders for generating procedural skies and water. Both of

these could probably be achieved with relatively few modifications to the generalized

stroke shader. It could also be interesting to address the interaction of the paint and the

surface of the canvas. Corot's paintings are occasionally painted thinly enough to allow

the canvas surface to show through, which is an element of his paintings not addressed

in the rendering system.

71

CHAPTER VI

CONCLUSION

The primary goal of this research project was to develop techniques for creating 3D

animations with a visual aesthetic similar to the work of French painter Camille Corot.

Instead of developing an isolated system, the development process emphasized the

creative expansion of existing software, which allowed for more robust results and

quicker development times.

Many efforts in NPR oil research have taken the broad approach of attempting to

replicate oil painting as a medium, but the vast array of styles and effects possible with

physical oil paint makes such an endeavor far beyond the scope of a master's thesis. The

choice to limit the system to replicating one particular artist's style allowed for placing

more emphasis on visual quality than range. Narrowing the primary focus further still to

just trees allowed more time to be spent exploring the possibilities offered by time-based

oil painting.

The resulting system provides a flexible interface with powerful tools for quickly

generating painterly renderings of 3D scenes. Images created with the system clearly

exhibit Corot's influence, and allow for CG light and form to be communicated with

painterly language. The power of the automated brush stroke system comes at the cost of

72

the per-brush-stroke complete artistic control that a real painter would have, but the

shaders and tools allow a large degree of high level artistic control.

Animations created with the system combine film language and painting technique to

bring a new aesthetic to time-based work. The results of this research suggest ideas that

could be explored at a much greater depth in the future, but, as it is now, the system

already provides a new tool for artistic expression.

73

REFERENCES

[1] Apodaca, A. and Gritz, L. Advanced Renderman: Creating CGI for Motion
Pictures. San Diego, CA: Academic Press, 2000.

[2] Baxter, W., Wendt, J., and Lin, M. C. “IMPaSTo: a realistic, interactive model
for paint.” In Proceedings of the 3rd International Symposium on Non-
Photorealistic Animation and Rendering (Annecy, France, June 07 - 09, 2004).
S. N. Spencer, ed. NPAR '04. New York, NY: ACM Press, pp. 45-148. 2004.

[3] Baxter, B., Scheib, V., Lin, M. C., and Manocha, D. “DAB: interactive haptic
painting with 3D virtual brushes.” In Proceedings of the 28th Annual Conference
on Computer Graphics and interactive Techniques SIGGRAPH '01. New York,
NY: ACM Press, pp. 461-468. 2001.

[4] Bousseau, A., Neyret, F., Thollot, J., and Salesin, D. Video watercolorization
using bidirectional texture advection. ACM Trans. Graph. Vol. 26, no. 3, article
104. July 2007.

[5] Calahan, S. “Lighting on Ratatouille”. Lecture, Texas A&M University, Feb 7,
2008.

[6] Curtis, C. J., Anderson, S. E., Seims, J. E., Fleischer, K. W., and Salesin, D. H.
“Computer-generated watercolor.” In Proceedings of the 24th Annual
Conference on Computer Graphics and interactive Techniques International
Conference on Computer Graphics and Interactive Techniques. New York, NY:
ACM Press/Addison-Wesley Publishing Co., pp. 421-430. 1997.

[7] Davis, A., Johnson, S. R. “Impressionist paint 2008.” Proceedings of
Computational Aesthetics in Graphics, Visualization and Imaging 2008, to
appear.

[8] Fabbri, F, ed. Corot: I Maestri Del Colore. Milan, Italy: A. & G. Marco, 1965.

[9] Gooch, B. and Gooch, A. Non-photorealistic Rendering. Natick, MA: A K
Peters, Ltd., 2001.

[10] Gooch, A., Gooch, B., Shirley, P., and Cohen, E. “A non-photorealistic lighting
model for automatic technical illustration.” In Proceedings of the 25th Annual
Conference on Computer Graphics and interactive Techniques SIGGRAPH '98. ,
New York, NY: ACM Press, pp. 447-452. 1998.

74

[11] Gould, D. Complete Maya Programming: An Extensive Guide to MEL and C++
API. San Francisco, CA: Morgan Kauffman, 2002.

[12] Haeberli, P. “Paint by numbers: abstract image representations.” SIGGRAPH
Comput. Graph. Vol. 24, no. 4, pp. 207-214. Sep 1990.

[13] Haller, M. and Sperl, D. “Real-time painterly rendering for MR applications.” In
Proceedings of the 2nd International Conference on Computer Graphics and
Interactive Techniques in Australasia and South East Asia (Singapore, June 15 -
18, 2004). S. N. Spencer, ed. GRAPHITE '04. New York, NY: ACM Press, pp.
30-38. 2004.

[14] Kowalski, M. A., Hughes, J. F., Rubin, C. B., and Ohya, J.“User-guided
composition effects for art-based rendering.” In Proceedings of the 2001
Symposium on Interactive 3D Graphics I3D '01. New York, NY: ACM, pp.
99-102. 2001.

[15] Leymarie, J. Corot. New York, NY: Rizzoli International Publications, Inc.,
1979.

[16] Litwinowicz, P. “Processing images and video for an impressionist effect.” In
Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques. New York, NY: ACM Press/Addison-Wesley Publishing
Co., pp. 407-414. 1997.

[17] Luft, T. and Deussen, O. “Real-time watercolor illustrations of plants using a
blurred depth test.” In Proceedings of the 4th International Symposium on Non-
Photorealistic Animation and Rendering (Annecy, France, June 05 - 07, 2006).
NPAR '06. New York, NY: ACM Press, pp.11-20. 2006.

[18] Meier, B. J. “Painterly rendering for animation.” In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques
SIGGRAPH '96. New York, NY: ACM Press, pp. 477-484. 1996.

[19] Mettais, V. Louvre - 7 Centuries of Painting. Versailles, France: Art Lys, 2000.

[20] Park, YS and Yoon, KH. “Adaptive brush stroke generation for painterly
rendering.” In Proceedings of Eurographics 2004, Short Presentations,
EUROGRAPHICS, Aire-la-Ville, Switzerland, pp. 65--68. 2004.

[21] Peterson, S. and Lee, L. “Simplified tree lighting using aggregate normals.” In
ACM SIGGRAPH 2006 Sketches (Boston, Massachusetts, July 30 - August 03,
2006). SIGGRAPH '06. New York, NY: ACM Press, pp. 47. 2006.

75

[22] Petrides, G. A. Peterson Field Guides: A Field Guide to Trees and Shrubs.
Boston, MA: Houghton Mifflin Company, 1958.

[23] Prusinkiewicz, P. and Lindenmayer, A. The Algorithmic Beauty of Plants. New
York, NY: Spinger-Verlag, 1990.

[24] Reeves, W. T. and Blau, R. “Approximate and probabilistic algorithms for
shading and rendering structured particle systems.” In Proceedings of the 12th
Annual Conference on Computer Graphics and Interactive Techniques
SIGGRAPH '85. New York, NY: ACM Press, pp. 313-322. 1985.

[25] Rines, F. M. Design and Construction in Tree Drawing. Pelham, NY: Bridgman
Publishers, Inc. 1936.

[26] Rost, R. J. OpenGL Shading Language. Boston, MA: Addison-Wesley, 2004

[27] Strothotte, T. and Schlechtweg, S. Non-photorealistic Computer Graphics. San
Francisco, CA: Morgan Kauffman, 2002.

[28] Schwarz, M., Isenberg, T., Mason, K., and Carpendale, S. “Modeling with
rendering primitives: an interactive non-photorealistic canvas.” In Proceedings
of the 5th International Symposium on Non-Photorealistic Animation and
Rendering (San Diego, California, August 04 - 05, 2007). NPAR '07. New York,
NY: ACM Press, pp. 15-22. 2007.

[29] The Elder Scrolls IV: Oblivion. Bethesda Softworks, 2006.

[30] The Yorck Project: 10,000 Meisterwerke der Malerei.
http://en.wikipedia.org/wiki/Jean-Baptiste-Camille_Corot.

76

APPENDIX A

SUPPLEMENTAL MOVIE FILES

Several supplemental Quicktime movies are available for download. These animations

demonstrate the system’s temporally coherent response to varying speeds of forward and

rotational camera motion; as distance from the camera changes, the shape, size and color

of brush strokes are automatically modified. Also shown are the effects of moving

camera distance markers independently from the camera, and animating the position of

the light source.

77

VITA

Name: Michael Losure

Address: Texas A&M University
C418 Langford Center
3137 TAMU
College Station, TX 77843-3137

Email Address: losurem@gmail.com

Education: B.A., Computer Science and Visual Arts, Union College, 2004
M.S., Visualization Sciences, Texas A&M University, 2008

78

