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ABSTRACT

A Non-Photorealistic Model for Procedural 

Painterly Rendered Trees in the Style of Corot. (August 2008)

Michael Losure, B.A., Union College

Chair of Advisory Committee: Dr. Donald H. House

This thesis describes the development of a system for the procedural generation and 

painterly rendering of trees. Specifically, the rendered trees are modeled after those 

found in the oil landscape paintings of 19th century French painter Camille Corot. The 

rendering system, which is a combination of MEL-scripted Maya tools and Renderman 

shaders, facilitates the creation of still images that look convincingly painterly, as well as 

3D animations with temporal coherence. Brush stroke properties are animated based on 

distance from the camera, so that traditional painting techniques for representing depth 

are incorporated into the computer-generated animations.

During the development process, the system was generalized to apply to other structures, 

such as grass and rocks, and allows for the creation and rendering of entire landscapes. 

Several example animations were created with the system to demonstrate the ideas 

developed during the process and the quality of the results. 
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CHAPTER I

INTRODUCTION

Historically, most computer graphics research has focused on achieving photorealistic 

imagery through physical simulation, while other artistic media often purposely depart 

from realism to pursue more abstracted visuals. Non-photorealistic rendering (NPR) is 

the subgenre of computer graphics that focuses on creating expressive, artistically 

motivated images, often driven by concepts found in traditional art and 2D animation [9; 

27]. Though NPR research is defined as any computer graphics research not devoted to 

photorealistic techniques, the rest of this paper will refer to the subset of NPR research 

devoted to replicating the look of traditional artwork.

Some NPR researchers have focused on directly simulating artistic media and processes, 

creating systems that let users manipulate simulated brushes and paints on digital 

canvases. Other researchers achieve artistic results using approaches born more from 

signal processing than art, such as using 2D image processing algorithms to create 

painterly images from photographs. 

____________
The journal model is IEEE Transactions on Visualization and Computer Graphics.
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NPR techniques for animation attempt to replicate the visual complexity and beauty of 

traditional art, while simplifying the image-making process as much as possible. 

Creating an animation requires many, many images – films usually have 24 images per 

second of screen time.  For this reason alone, one of the main considerations in any NPR 

technique is how to push as much work as possible onto the computer while leaving the 

user with as much artistic control as possible.  

Imperfections and non-uniformity are two very important properties of human-created 

artwork that are often difficult to emulate with procedurally generated computer artwork. 

Many of the computer algorithms used to create this style of NPR imagery employ 

stochastic methods that work well for single frames, but introduce displeasing temporal 

noise in animated sequences. Thus systems for creating NPR animation must include a 

way of achieving temporal coherence.

Trees and natural landscapes are a serious challenge to replicate with computer graphics 

because of their visual complexity and high viewer familiarity. Traditional artists face 

the same problem and have developed a wide variety of solutions for simplifying and 

artistically representing nature. 

The primary goal of this thesis has been the development of a system for rendering trees 

in a painterly style. Since oil paint as a medium allows for an immense variety of visual 

styles, techniques and effects, this project makes no attempt to emulate the medium in its 
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entirety, and instead tries to raise the overall quality of the results by narrowing the focus 

to the oil landscape paintings of 19th century French painter Jean-Baptiste-Camille 

Corot. The resulting system is a temporally coherent procedural NPR technique for 

creating images and animations of landscapes in the style of his paintings.  

In addition to recreating Corot's style, the project focuses on the implications of adding 

time and motion to oil painting. Within a painting, distant objects are often depicted in a 

very different manner from those in the foreground, and the goal has been to allow for 

the creation of animations where objects undergo fluid changes in scale and distance. 

For example, consider a camera moving forward through a scene; as trees get closer and 

change from their background representation to their foreground representation, they 

should do so in a way that feels right for the oil medium.  Brush strokes should not scale 

in perfect linear perspective, because the size of brush strokes an artist chooses to use do 

not follow the same strict mathematical rules of perspective as 3D geometry; previous 

3D systems that have scaled brush strokes precisely with geometry immediately belay 

their digital origins, and this researcher has sought wherever possible to maintain the 

illusion that the animations are painted and not computer generated.  Additionally, since 

close-up representations of trees are painted with many more brush strokes than those in 

the background, a system has been developed for adding and subtracting brush strokes 

with distance that preserves the overall volume and silhouette of the trees. 
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The goal has been to produce output imagery that is highly controllable by the artist in 

terms of brushwork, lighting effects, and other stylistic choices, not only in still images, 

but also over the course of an animation. In the same way that a painter directs a viewer's 

eye by varying brush stroke size and detail, a cinematographer uses the camera lens and 

focus to articulate an image. A rack focus is the film technique of dynamically changing 

the camera's focus from one object to another, and a similar effect is created by changing 

brush stroke sizes and styles over time to emphasize one section of the image over 

another. By finding correlations between film and painting technique, the project brings 

together the two separate but related visual languages.
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CHAPTER II

CAMILLE COROT AND OIL PAINTING TECHNIQUE

…there is a great difference between an accomplished piece and a 
finished piece – that, in general, that which is accomplished is not  
finished, and something that is highly finished may not be accomplished 
at all – Charles Baudelaire on Corot, 1845 [15, pg. 278]

The paintings of the French painter Jean-Baptiste-Camille Corot (1796-1875) are 

remarkable for their loose, painterly brushwork and distinct color palettes. His masterful 

use of light, color, and controversially loose brush strokes were unusual for his time and 

formed a bridge between the neoclassical tradition and the later impressionists [8][19].  

As can be seen in Fig. 1, Corot’s brushwork is at times tightly controlled and blended, 

and elsewhere highly visible and full of energy. By varying his brush stroke size, 

concentration, and style, he is able to direct the viewer’s eye around his composition and 

lend emphasis to different areas. His trees in particular are often loosely painted, with a 

few distinct brush strokes giving the impression of detailed foliage. When his trees are in 

the extreme foreground, he often does not paint the branches, but implies their presence 

with a scattering of separated leaf brush strokes.
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Fig. 1. "Souvenir de Mortefontaine," Corot, 1864. [30].

Painters often mix all of the colors within a given painting from a limited set of base 

colors.  This harmonizes the image color scheme and gives the impression of light 

reflecting off of everything in the scene, the way it does in real life.  Color hue can be 

used to indicate lighting; using warm colors in light areas and cool colors in darker areas 

can give a scene a lush, natural feel.  Pure black is used very sparingly, if at all, since 

even the darkest colors are mixed from the base color palette.  Corot’s palettes are often 

full of pale yellows, de-saturated greens, and silvery grays, with a few sharp reds and 

bright colors reserved for special use. 
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Depth cueing is an important aspect of any believable natural image, and Corot employs 

several painting techniques to give his scenes depth.  As can be seen in Fig. 1, Corot's 

paintings often make strong use of atmospheric perspective; distant foliage has cooler 

hues and much less defined borders, with colors blending between objects and more 

homogenized contrast, hue, and saturation levels.
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CHAPTER III

PRIOR WORK

III.1. Painterly Rendering

There are many systems already developed for creating painterly images with a 

computer. Many of the techniques are based around methods of processing photographs 

or other 2D reference images. 

One of the systems developed by Haeberli [12] tracks a user's mouse cursor moving over 

an image and generates brush strokes based on the mouse speed, direction and various 

user-specified parameters.  The brush strokes are stored as data so their attributes can be 

manipulated later.  Fig. 2 shows an example of Haeberli's system used to create several 

different painterly images from the same input photograph. While Haeberli's results 

achieve a variety of painterly looks, his systems are not particularly suited for animation 

due to the prohibitive amount of user interaction required and the stochastic algorithms 

used to generate brush strokes.  One could add temporal coherence to Haeberli's system 

by maintaining the same brush strokes from frame to frame and changing their direction 

and color based on changes in the reference image sequence; however, this would make 

the animation seem as though it were filmed through a sheet of glass, because brush 

strokes would stick to the image plane instead of moving with the depicted forms. This 
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issue is known as the “shower door” problem and has been addressed in more recent 

research.

Fig. 2. Three paintings created from the same source image (using Haeberli's system) [12].

Litwinowicz [16] developed a system for painterly animation that avoids temporal 

aliasing and the “shower door” effect, as well as requiring less user interaction than 

Haeberli's system. His system automatically analyzes the edges and features of an input 

image to create a painted look similar to that of Haeberli's, and uses optical flow fields to 

animate the image; once brush strokes are generated for the first frame of an animation, 

pixel motion is tracked throughout successive reference frames and the motion is applied 

to the brush strokes, causing them to stick to their associated objects.  The main 

limitations of Litwinowicz's system with regards to the goals of this thesis project is the 

need for an input image sequence, and the overly 'automated' appearance of the results – 
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the brush strokes are generated without any regard for artist intent and emphasis, with a 

relatively uniform style applied over the entire image. 

Bousseau et al. [4] improved Litwinowicz's pixel advection technique and applied it to 

their video watercolorization system. Their system simplifies the video images with a 

series of 2D image processing techniques, and then applies watercolor textures to 

finalize the look.  One of their main contributions is the success of their algorithms for 

advecting the watercolor texture with the animation, with much less distortion than 

previous techniques.  The result is a system that looks good on any still frame, but also 

provides a seamless, novel watercolor aesthetic to the whole animation.  Corot's oil 

paintings are sometimes painted thinly enough that the surface of the canvas shows 

through, and a similar texture advection effect would probably add a lot to an animation 

attempting to convey his style; however, a complex 2D video processing system is 

outside the bounds of this research, as the focus will be on the 3D rendering and stroke 

generation.  

Since painters usually mix their colors from a very small base palette, the stochastically 

generated color in Litwinowicz's and many other automatic systems often gives away its 
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photographic origins. Park and Yoon [20] suggest a system similar to Litwinowiczs' with 

an additional step for generating a limited color palette by first analyzing a number of 

input paintings. Since the work being proposed here is designed to resemble the 

paintings of one particular artist, an automated color analysis process is not needed; 

Corot’s paintings will be analyzed manually.

Some have tried to achieve a painterly look in 3D by simply using painted texture maps 

on 3D geometry.  This technique easily achieves temporal coherency, but the resulting 

imagery has an unnatural 'gift-wrapped' look, where individual brush strokes recede in 

space and wrap around shapes instead of lying in the image plane. Objects rendered this 

way also have perfectly hard, well-defined edges, which are something generally not 

found in painted imagery.  Both of these issues are evident in rocks and tree-trunks of 

Fig. 3, a screenshot from the video game “The Elder Scrolls IV: Oblivion” [29]. The tree 

foliage seems to be made up of 2D billboards and does not exhibit the 'gift-wrapped' 

problem.  
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Fig. 3.  A screenshot from the painted world of “The Elder Scrolls IV: Oblivion” [29].

The painterly rendering system developed by Meier [18] significantly manages to 

maintain frame-to-frame coherence while presenting a convincing painterly look that 

avoids the 'gift-wrapped' look as well as the 'shower door' problem.  Fig. 4 illustrates 

Meier's rendering pipeline.  Particles are generated in world space on the surface of 3D 

geometry, and then rendered as brush strokes in image space.  To determine the 

properties of the rendered brush strokes, a number of reference images are first created 

to represent brush stroke color, orientation, size, etc. These reference images are 

rendered using the initial 3D geometry, lighting information, and some custom shaders. 

During the primary render pass, the screen-space location of each particle is used to look 

up stroke attribute information from the corresponding location in the reference images. 
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Fig. 4. Meier’s rendering pipeline [18].

Meier's random-appearing brush strokes are temporally coherent, since the particles 

“stick” to the surface geometry during camera and object transformations.  By keeping 

her particle strokes in world space, Meier's strokes move properly with the associated 

shapes instead of sticking to the image plane. Another influential idea from Meier’s 

work is to break the painting into several layers, such as shadow, highlight, 

underpainting, etc., and to treat the rendering of each layer slightly differently. While 

this approach yields very good visual results, from a production standpoint, the need for 

multiple render passes adds undesirable complexity.
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Davis et al. [7] present a somewhat similar way of creating painterly rendering using 

custom tools developed for Maya, avoiding the need to write their own custom rendering 

software. Their system uses particles created from surface geometry, but instead of 

rendering the particles themselves, they use the particles to grow splines that represent 

brush strokes. Each stroke is determined to be in the foreground, background or 

middleground, based on world coordinate space.  Strokes in the background are scaled 

larger, to avoid the problem of strokes that look to small to have been physically painted 

by an artist.   The brush stroke splines are then textured and rendered.  Another 

contribution is their treatment of shadows.  They identify shadow regions in the normal 

way, but instead of treating the shadow color as the surface color mixed with black, they 

use a darker shade of the surface color's complimentary color.    

Many real-time systems for NPR rendering have been developed with ideas relevant to 

this thesis.  The real-time watercolor plants of Luft and Deussen [17] use another 

particle-based system to achieve very convincing results.  They place particles on the 

surface of geometry and assign a normal to each stroke particle.  They then use a 

threshold to determine whether each particle is in a dark, medium, or light area, and 

render each image as a composite of three separate passes.  This allows them to treat the 

darker areas of the painting differently from the lighter areas, which enables a more 

painterly look.
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Haller and Sperl [13] used GPU rendering techniques to implement a real-time system 

based on Meier's algorithm.  An initial particle set is created from geometry in a 

preprocessing step, and then a real-time algorithm decides which particles to render 

based on a desired stroke density.  In cases where the camera gets too close and the 

initial particle set did not create enough particles, the brush stroke sizes are scaled to fill 

any holes. Their system uses GPU render-to-texture functionality [26] to create reference 

image passes in real-time, and then renders the particles as 2D billboards with brush 

stroke textures and attributes pulled from the reference images. They found that they 

could use fewer particles per object, and therefore render more objects at greater frame 

rates, if they rendered the final pass as a composite of their reference pass and a layer 

rendered from particles.  Notable issues with their system include the overly uniform 

appearance of the brush strokes, and the 'popping' in and out of brush strokes in scenes 

where the camera moves.  

A central concept used in real-life painting technique is the ability, and necessity, for the 

artist to direct the viewer's eye around the image through the designed use of light, color, 

brushwork, etc.  The ability to design specific points of interest, as well other aspects of 

artistic control used by good painters, is lacking from many computer generated 

painterly rendering techniques. Kowalski et al [14] present a 'toon' style renderer for 'art-

based' rendering that allows the user to specify visual emphasis in an image.  This is 

done by specifying an emphasis attribute per object, which their shaders interpret in 

various ways to ensure that the final image's point of interest is where the artist intends. 
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They also specify a way of grouping silhouettes so that individual background objects do 

not have well-defined borders.

Artists often exaggerate the effects of light or use complimentary color hues to show 

changes in light.  Naturalistic painters rarely use pure black to represent dark areas, and 

often create darker shades of color by mixing complimentary colors – not by adding 

black. Thus, common computer graphics lighting models, such as Phong or Lambertian 

shading, are not particularly conducive to art-based rendering. Several graphics 

researchers have investigated this problem.  

Gooch et al. [10] describe a lighting model which uses a cool-to-warm color scheme that 

could be useful for creating painterly images. Their lighting model is designed to show 

volume and shading using hue and luminance changes within mid-tone colors, so that 

black and white can be reserved for prominent highlights and outlines. Fig. 5 shows the 

difference between sphere lit with their model, and spheres rendered with Phong 

shading.  Note that even with the hue changes, their spheres still retain their “color 

name”. In the Pixar film “Ratatouille”, Director of Photography and Master Lighter 

Sharon Calahan approached the lighting from a painters point of view [5]; she increased 

the saturation levels of areas with low color values to approximate the way painters mix 

dark color, and she added a bit of color spill by converting the image to HSV color space 

and slightly blurring the hue channel.
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Fig. 5. Phong shading versus Gooch et al's NPR lighting model [9].

Curtis [6] and Baxter[2; 3], as well as other researchers, have developed painterly 

rendering systems based around the use of  fluid simulation equations to model paint 

flow. Baxter's system allows a user to user to interact with his painting simulation using 

a haptic device shaped like a paint brush. As a user moves the brush in the real world, 

digital paint strokes are added to a virtual canvas; the pressure and speed of the user's 

movements are used to drive the physically simulated interaction between the brush, 

canvas, and paint. Baxter's system convincingly models the look of brush strokes mixing 

with one another, though the final results rely on the actual painting skill of the user. 

While systems such as Baxter's represent an important direction in NPR research, the use 

of physical simulation is a fundamentally different approach from that taken by this 

project.

Another problem facing computer-based attempts at creating painterly images is an 

inherent problem with the standard computer graphics RGB color model; standard RGB 

color-mixing models simply do not work the same way as pigment mixing in painting. 

Both Baxter's oil-painting system and Curtis' watercolor system use the Kubelka-Munk 
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pigment reflectance equations to achieve better-looking results.  Fig. 6 shows an 

example of the different results produced by mixing yellow and blue pigments using 

actual paint, and those produced by linearly blending RGB colors.

Fig. 6. Comparison of colors  produced by mixing yellow and blue paint versus colors produced by RGB 
linear blending [3].

III.2. Procedurally Generated Trees and Plants

It is just as foolish for an artist, who is planning to paint out of doors, to  
neglect to familiarize himself with the construction of trees, as it would be 
for a portrait painter to understand thoroughly the anatomy of the human 
head and its component parts with the exception, shall we say, of the 
mouth; and then to paint a shapeless smootch of red where the mouth 
should be...  [25, pg. 5]

While a thorough botanical knowledge of trees is not necessary to artistically depict their 

structure, it is good to have an idea of the rules generally followed by nature. For 

example, as branches grow out, they will only decrease in diameter – to show a branch's 

diameter increasing and decreasing indiscriminately is a sure way to make it appear 
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unnatural. Determining and cataloging rules such as this has suggested the basis for a 

number of tree growing algorithms.    

Lindenmayer and Prusinkiewicz devoted a lot of research to exploring “the elegance and

relative simplicity of developmental algorithms, that is, the rules which

describe plant development in time.”[23, v.]  “L-systems” were introduced by 

Lindenmeyer in 1968 as a mathematical description of plant growth.  L-Systems 

essentially consist of an initial state and a set of rules used to successively rewrite states 

with slightly more complicated states.  The resulting system can be used to represent 

complex structures stemming from a few simple rules. Fig. 7 shows an L-system 

consisting of the initial state “b”, and the rules “b->a” and “a-> a b”.  

Fig. 7. An example “L-system.”  Reprinted from Prusinkiewicz, 1990 [23].

A number of researchers have developed systems with production rules designed 

specifically for tree branching. An early example is Honda, whose system used five 

observations to create a variety of tree-like shapes.  Example rules from his system state 
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that a mother segment produces two daughter segments through each branching process, 

and that the daughter segments are shortened by constant ratios. The mother and 

daughter segments were all in the same branching plane, and the branching angles were 

defined with respect to the mother segment. Honda's work was extended by Aono and 

Kunii in a number of ways, most notably allowing the user to bias the branch positions 

in a particular direction to represent the effects of wind and other environmental strains 

[23].

Reeves and Blau [24] created a rule-based system for procedurally generating both tree 

branch geometry and leaf particles.  Trees are built by taking user-determined parameter 

values, such as branching angle for the trunk and density for the leaves, and applying a 

set of rules. Reeves’ paper also contributed a probabilistic shading model for rendering 

the particle leaves. Instead of standard shadow calculations, which are prohibitively 

costly on so many particles, shadowing is determined stochastically based on particle 

placement and orientation within the tree as a whole.  A variety of factors raise or lower 

the probability that the leaves will be rendered in shadow; for example, leaves that are 

closer to the trunk are assumed to have a high probability of being in shadow because 

light must pass through the outer leaves to reach the inner leaves.  

Peterson and Lee [21] identified another way to simplify the lighting process for CG 

trees.  They noticed that when standard lighting equations without shadows were used to 

render clusters of randomly facing particle leaves, the resulting visual noise obscured the 
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overall form of the tree shapes.  To solve this, they use what they call aggregate normals, 

which represent the normal of a simplified version of the leaf canopy's overall form. 

Fig. 8 shows how Peterson and Lee use a blend of the aggregate normal and the random-

facing leaf normal to achieve a more visually pleasing result.

Fig. 8. Aggregate normal combined with random leaf geometry normal. Influence from aggregate normal, 
left to right, 100%, 50%, 0%. Reprinted from Peterson and Lee, 2006 [21].
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CHAPTER IV

METHODOLOGY

IV.1. System Framework

One of the initial constraints for the painterly rendering system was that it must fit easily 

within an existing animation pipeline; instead of being created entirely from the ground 

up, the system was designed to work with Alias' Maya [11] and Pixar's Renderman [1]. 

Maya is a widely-used professional animation package with a powerful internal scripting 

language. The language, named MEL [11], provides access to core Maya functionality, 

and provides an interface for developing custom tools.  

Renderman was chosen as the rendering software because of the power and flexibility 

offered by the Renderman Shading Language (RSL). RSL provides a programmable way 

to define an object's surface properties and light interactions. A Renderman shader can 

be thought of as a mini program that receives a limited set of information (lighting 

information, geometric surface information, etc.), and outputs a final color and opacity 

for each pixel based on a set of rules written by the programmer; standard computer 

lighting and shading models can be completely discarded and replaced with custom 

instructions. The language itself is similar to the C programming language, with the 

addition of data types specific to graphics programming, such as built in vector, color, 

and matrix data types and operations.   
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The two major components of the system are a set of procedural tree generation tools 

and the hand coded Renderman shaders. The tree creation scripts allow a user to adjust 

various parameters and then automatically generate a 3D polygonal mesh for each tree 

trunk and a particle field for its leaves. As the script generates a tree, it encodes the 

Maya object with data that will be used by the shader at render time. This way the 

renderer can base its shading operations on information that is not usually available; for 

example, the creation scripts give leaf particles a value that represents their distance 

along an individual branch of the tree – at render time, this value influences what color 

the leaves will be painted. 

Because of the strong connection between the tree generation tools and the shaders, both 

components had to be developed in an iterative process. During the development of each 

version of the Renderman shaders, it often became apparent that tree creation data was 

needed that was not already stored in the trees; this required rewriting the tree creation 

scripts to store that data, rebuilding the set of testing trees, and then continuing to work 

on the shaders. Fig. 9 demonstrates this process.     
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Fig. 9. The interconnected MEL script and Renderman shader development loop.

IV.2. Observations

Before implementing either of the tree creation scripts or the shaders, the first step was 

to study Corot's paintings and identify the most important features for the system to 

replicate. I was able to observe a few of his paintings in person on several occasions, but 

mostly worked from printed reproductions.  The visual goal of the project was more the 

creation of a painterly style reminiscent of Corot's work than an attempt to specifically 

recreate any one painting, so several representative trees served as the basis for 

observation. Fig. 10 shows several of the trees that were used to design and evaluate the 

system.  
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Fig. 10. Examples of trees painted by Corot [30].
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IV.3. Procedural Tree Generation Tools

The tree creation tools essentially consist of two MEL scripts run from within Maya. 

One script generates trunk and branch geometry, and the other script parses that 

geometry to produce particle leaves. Both scripts are dependent on user-adjusted 

parameters to produce controllable results.

Why generate the trees procedurally in the first place?  The primary motivation for using 

procedural construction methods was the desire to keep the tree models themselves 

completely disposable.  As previously shown in Fig. 9 (above), the development process 

was iterative; each change in the underlying structure of the trees required a new set of 

tree models with updated information. With a procedural work flow, the tree generation 

script can very quickly create a whole new batch of trees, while simultaneously 

determining and storing data to be used by the shaders at render time.   

As can be seen in Fig. 10, above, Corot's tree trunks are generally fairly simplified and 

abstracted.  He rarely depicts intricate tangles of branches, usually letting a few separate 

strokes and the arrangement of his leaves imply the underlying branching structure. 

Accordingly, the procedural tree system could attain an appropriate level of detail with a 

trunk and one level of branches.
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The tree creation tools conceptually separate the tees into trunks, branches, and leaves, 

and allow individual control over each component. When a user runs the first tree 

generation script, it loads a new window containing a viewport, several buttons and 

some adjustable parameters.  The GUI shown in Fig. 11 provides tools for separately 

building the trunk and branches, with parameters separated based on their relevant 

components.  In the “create geometry” portion of the GUI, clicking on “trunk” will 

generate the trunk, “branches” adds branches to the existing trunk, and “LOD” will 

create a  model of the trunk with less detail.  

Fig. 11. GUI for MEL tree generation script.
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In order to generate a trunk, the script uses MEL commands to create a cube, and then 

performs repeated face extrusions until the trunk reaches a maximum size or a maximum 

number of growth steps occur.  The user does not see the trunk building process – they 

simply set the parameters, click the build button, and then choose to either accept or 

rebuild the completed trunk model. The first attribute, named “unit”, sets the overall 

world-space scale of the tree units, and any other attribute that specifies a length or size 

is expressed in terms of the tree unit. The other available parameters control the initial 

size of the trunk, and the amount of extrusion, twist and taper at each extrusion step. The 

user controls these parameters by setting a base value and the amount of gaussian 

variation from that value. By adding random variation with a gaussian distribution, the 

user can quickly generate many unique trees that belong to the same family. 

The branching function parses each face of the trunk geometry and determines, based on 

user-adjusted parameters, whether or not branching occurs; if branching does occur, the 

algorithm extrudes the face to create a new branch. The branching section of the GUI is 

separated into primary branching attributes and per-branch-step attributes. 

Primary branching attributes include values for minimum and maximum vertical trunk 

heights that are eligible for branching, an overall probability that branching will occur, 

and attributes for controlling the maximum length of the new branches. They also 

include attributes for the first extrusion of a new branch.  By starting with a cube, the 
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trunk generator ensures that any face on the trunk is quadrilateral, but since the extrusion 

algorithm allows for twisting and general randomness, a given face on the trunk may not 

be square or planar.  Therefore, the first branch extrusion step only extrudes a small 

amount, and then manually adjusts the new vertex locations in an attempt to force the 

new face to be both planar and square. The two left hand images in Fig. 12 show that 

keeping the extruded faces square ensures that the final subdivided model will have a 

generally cylindrical shape to its branches. Also, the smaller extrusion height on the first 

step greatly improves the shape of the model around areas where branching occurs.  The 

right hand side of Fig. 12 shows the undesired extra volume that occurs around the point 

of branching if the extrusion height is not minimized for the first step.

Fig. 12. Tree subdivision with and without a small first step extrusion height.

Once the first extrusion takes place, the branching algorithm continues making 

extrusions in a very similar way to the trunk creation algorithm.  The per-branch-step 

attributes allow control over the extrusion length, twist and taper at each branch step.  If 

the user is unsatisfied with the branches that are created, they may simply run the script 
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again to reset the tree to only the trunk model and create a new set of branches; the 

randomness in the script ensures that the new set of branches will be different.  

Once a satisfactory tree is created, the user can enter a name and then save the tree. The 

script ensures that each tree has a unique name by adding a numbered suffix if 

necessary. Each tree is actually a group of objects, including the trunk geometry and a 

subdivided model of the trunk for rendering. The tree group also includes a locator 

object, to which are attached custom attributes for storing general information about the 

tree; for example, attributes for storing the beginning and ending vertices of each branch 

of the tree are added to the data locator, since that information is needed by the leaf 

generation script. Each object in the group is organized with a specific naming scheme 

so that the other tools can perform global operations on the trees. These tools are 

described later in this section.    

The leaf generation script allows the user to select any existing tree object and then 

either generate new leaves or modify existing ones. The original leaf generation script 

generated NURBS spheres in formations around the tree branches.  However, the results 

of attempting to shade the NURBS spheres in a painterly manner were unsuccessful. 

Since the surface normals of the NURBS spheres were used for lighting calculations, the 

underlying spherical shapes were always apparent in the renders.  Even though some 

results looked somewhat promising in a still frame, any animation that rotated around 

the trees made it immediately clear that they were simply a cluster of warped spheres. 
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Switching to a particle representation of the leaves, a decision inspired by Reeves [24], 

brought much more success. The final leaf generation script parses the tree geometry and 

emits leaf particles, based on user parameters and data stored in the tree group's data 

locator. The GUI, as seen in Fig. 13, is very similar to the tree generation script, with the 

parameters grouped into several sections. All of the parameters that specify lengths or 

distances are expressed in terms of the tree object's unit size.    

Fig. 13. GUI for MEL leaf generation tool.
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Since the actual tree geometry only has one level of branching, the leaf generation 

algorithm attempts to imply a more complicated structure by generating leaf particles in 

branching patterns. The algorithm parses each vertex of the tree geometry, determines if 

it is eligible for branching, and then determines if branching does occur.  User 

parameters can limit leaf branching eligibility by culling vertices at the beginning or 

ending of each branch, and by setting the trunk height range at which branching may 

occur. The user also sets the overall probability that is used to determine if leaf 

branching will occur on an eligible tree vertex.  

The leaf branching behavior section of the GUI provides the user with parameters for 

leaf branching angle, length, variation, and number of particles per branch. If branching 

does occur, the script emits the specified number of particles outward from the tree. For 

each particle, the algorithm calculates a normal vector based on the branching angle and 

the allowed stochastic variation. Each particle is placed the specified distance away from 

the previous one in the direction of its normal. The result is a series of particles that form 

an implied branch stemming from the tree geometry, as can be seen in Fig. 14. Each 

particle stores information about its creation, for use later by the shader. The values it 

stores include its normal vector, its distance from the original branching vertex, its 

distance from the center of the tree, and a unique particle ID. All randomness is seeded 

from the seed parameter so that the same input parameters will always produce the same 

output results; changing only the seed parameter will produce similar results, depending 

on how much randomness is allowed.
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Fig. 14. Data recorded during the leaf generation process.

The particles are rendered as two-dimensional rectangular images, known as sprites, 

which are constrained to always face the camera. Each individual sprite is colored to 

look like a cluster of brush strokes, and since the sprites are 2D and always facing the 

camera, the strokes appear to be painted in the image plane. The particles are sorted by 

depth before rendering so that sprites that are closer to the camera appear to be painted 

on top of more distant brush strokes. The size of each sprite is determined based on user 

parameters and environmental factors, such as the particle's location within a tree.   The 

size can also be dynamically changed during an animation.  

33



One downside to using the sprites is that their square blocky shape is so different from 

the final brush strokes that it is hard to visualize the actual shape of the tree when 

working in Maya. Because of this, the leaf creation script allows the option to build 

proxy NURBS spheres in addition to the leaf particles. Fig. 15 shows the difference 

between the different tree representations, and demonstrates the usefulness of the 

NURBS proxies for visualizing the scene. When NURBS proxies are generated, they are 

automatically set so that they do not render or cast shadows.  

Fig. 15. Sprite and  NURBS sphere representations of the same trees.

IV.4. Shading the Trees

As mentioned previously, each leaf particle stores data about its relationship to the 

overall tree, as well its parent tree's relationship to the entire scene. When a scene is 

rendered, the Renderman leaf shader uses each particle sprite's data to render it as a 

cluster of brush strokes of the appropriate size, style, and color.   
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The shading process is separated into several main steps, each of which can be modified 

using the shader parameters. The main steps are  

• calculating illumination using particle's normal vector,

• modifying illumination based on particle data,

• calculating shadows,

• computing brush stroke mask, based on illumination and particle data,

• using illumination to pick color from color palette,

• modifying color based on atmospheric perspective,

• applying brush stroke mask to color and rendering.

IV.4.1. Calculating and Modifying Illumination

The system is designed for outdoor landscape rendering, and the lighting is generally 

assumed to come from the sun. Multiple lights can be used, but the system may not 

respond in the same way as a standard CG scene would. All of the results images were 

created with only one light, and shading calculations generally assume that only one 

light is used. The lighting calculation begins with the standard diffuse lighting equation, 

which is just the dot product of the particle's normal and the direction vector to the light. 

This value is a floating point number, which is clamped between 0 and 1. The value is 

stored by the shader in a variable named lightness, which is used later to select a color.
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Consider sunlight shining on a tree with dense leaves. The leaves on the outside of the 

tree are most likely to receive sunlight, while leaves closer to the center of the tree are 

increasingly more likely to be in shadows cast by the outer leaves.  This effect can be 

seen in Corot's trees in Fig. 10 (above). The outer leaves are painted with individual 

strokes of lighter colored paint, while the interior foliage is depicted with larger, darker 

strokes. The Renderman shaders reflect this concept by modifying the lightness of a 

particle sprite based on its position within a tree. As particles are created, they store one 

value that represents their distance outwards along their individual branch, and another 

that represents their distance from the center of the tree (the “center” is a locator that can 

be manipulated by the user to give a particular portion of the tree a fuller look). The 

shader converts these values to ratios between 0 and 1, and then modifies the particle 

lightness accordingly.  Leaves on the outside are made a lot brighter, and leaves on the 

very inside are made a lot darker. The effect is generally limited to the outer innermost 

leaves by passing the distance ratios through gain functions prior to using them. 

IV.4.2. Shadows

Shadowing initially caused a great deal of trouble, because the particle sprites cast 

shadows as if they were solid squares instead of individual brush strokes. Shadows cast 

on the ground had hard square edges, and self-shadows on the trees looked awful. Using 

the proxy NURBS spheres to cast shadows yielded good results on the ground and other 
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trees, but still had large self-shadowing artifacts. The final system solves this problem by 

forcing Renderman to evaluate the shader when it creates the shadow map; when 

Renderman evaluates the shader, it uses the true opacity of the sprites, so the particles 

cast shadows as if they were brush strokes instead of flat rectangles.   

Instead of stopping when it hits a surface, light in the physical world continues to bounce 

around and illuminate objects that are not directly in the original path of the light. This 

indirect illumination does not normally occur in computer graphics, and when only one 

standard CG light is used, an object in shadow generally ends up being colored black. 

This is not desirable, because it completely eliminates any detail in shadowed areas and 

looks unnatural. To counteract this, the shader simply rescales the 0 to 1 shadow 

multipliers to range from 0.5 to 1.0.  This means that objects in full shadow are treated 

as being half-illuminated. In certain situations this looks unnatural, but is generally a 

large improvement over using fully opaque shadows. The shader also passes the 

shadows through a user-controlled bias function, which allows the user to universally 

darken or lighten shadows as needed.  

IV.4.3. Using Lightness to Select a Color

Color works very differently in standard painting and computer graphics methods. In 

computer graphics, color is determined by multiplying an object's default surface color 

by the diffuse coefficient, which is the amount of light hitting the surface; this means 
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that when an object is not lit, its color fades off to black.  A painter however, may use 

completely different colors for light and dark parts of the same object. The dark and light 

colors are usually mixed from the same base color, but the dark colors are created by 

adding in a complimentary color – not by adding black. Additionally, a painter will 

generally mix all of the colors in a scene from a relatively small color palette; this 

generally adds a lusher more natural feel to a painting, and accounts for the way color is 

transmitted from object to object when light bounces around the physical world. A major 

component of this project's painterly look is that it uses each particle's lightness not as 

a diffuse coefficient, but as a lookup for a color palette. 

The user specifies parameters that determine the ranges of what is considered dark, 

medium or light. The user also specifies appropriate colors each for dark areas, mid-

tones and light areas, and arranges them from dark to light in three separate color  

splines. A color spline is a function that accepts a value from 0 to 1 and returns a color 

based on a list of base colors given to the spline; each color in the spline is evenly 

spaced, and any value along the spline is interpolated from the two colors it falls 

between. Fig. 16 shows an example color palette.

Fig. 16. Example color palette used for tree leaves.
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The shader lighting equations determine whether a given particle lies in the dark, 

medium or light value range, and then uses the lightness value to look up a color from 

the appropriate spline. An additional parameter allows the user to add a little bit of noise 

to the color lookup, which creates color variance within each brush stroke.  This is meant 

to emulate the natural variance that occurs within brush strokes, as the paint mixes in 

slightly different ways within each stroke due to physical properties of the canvas, paint 

and brush. Shadow colors also benefit from the use of color splines. Since the shadow 

calculations are applied to the lightness variable instead of the final color, a pixel that 

is in shadow simply looks up a darker color from the palette, instead of multiplying a 

final color by black.  

IV.4.4. Generating Brush Stroke Masks

The shader prevents each sprite from rendering as a solid rectangle by creating an 

opacity mask to give the appearance of individual brush strokes. The opacity masks are 

created dynamically using thresholded noise functions. Fig. 17 shows 1D and 2D 

example noise functions. Note that although they appear random, they are also 

continuous without any distinct jumps in value. The noise function in Renderman always 

outputs a number between 0 and 1, and the same input will always produce the same 

result.  
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Fig. 17. 1D (left) and 2D noise functions. Two different frequencies of 2D noise are shown [26].

A sprite has an internal coordinate system, referred to in the shader as s and t 

coordinates, which run continuously from 0 to 1 along each direction of the sprite. A 

smooth-step function has two thresholds; any value below the low threshold is treated as 

0, any value above the high threshold is treated as 1, and values in between the two 

thresholds are interpolated between 0 and 1. Fig. 18 shows the effects of using a sprite's 

st coordinates as inputs to a 2D noise, and then passing the results through smooth-step 

function. Varying these thresholds and the frequency of the noise can give the give the 

sprite appearances ranging from small non-uniform brush strokes to one large smudge of 

color. The bigger the different between the thresholds, the more feathering will appear 

on the edges of the strokes, as is demonstrated by the right-hand side of Fig. 18.
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Fig. 18. Brush stroke masks created by passing noise through a smooth-step function. From left to right: 
low noise frequency, high frequency, and high frequency with feathered edges. 

. 

The full portion of the shader code for creating the brush strokes is shown in Fig. 19. 

The first line of the code calculates a frequency for the brush stroke noise function.  The 

frequency of the function determines how quickly the values change, and, therefore, how 

large or small the brush strokes will appear; the higher the frequency, the more the 

strokes will appear to be small individual dots of color.  The variables 

centerFrequFactor and lightnessFrequFactor are user-adjusted weights that 

determine how much the noise is influenced by the particle's distance from the center 

and the amount of light illuminating the particle, respectively. As mentioned previously, 

this idea comes from the observation that Corot's trees are painted as small detailed 

splotches of color on top of larger, looser brush strokes in the dark areas.  Giving the 

noise a higher frequency for particles that are further from the center of the tree and in 

more direct light will keep those brush strokes smaller and allow the larger brush strokes 

on more inward particle sprites to show through.  The label variable is a unique ID 
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number (between 0 and 1) that is stored in each particle, and helps to ensure that all 

particles will have unique brush stroke patterns.  

Fig. 19. RSL shader code for generating the brush stroke masks.

The second line of code shown in Fig. 19 is the primary noise function that determines 

the brush stroke noise.  This would be enough for areas in the center of each sprite, but 

would leave undesirable hard lines on the edges of the sprites.  To prevent these hard 

edges, the next few lines of shader code create a rounded feather mask on the edges of 

the sprite.  The sin and cos functions create a rounded shape with values of 1 in the 

center of the sprite, and smoothly changing values that fall off to 0 around the edges. 

The next line uses a bias function to adjust the size of this mask.  The default bias 

settings push the shape all the way to the edge so that the maximum area of the sprite is 

still visible. Fig. 20 shows edge masks created with bias values ranging from 0.8, on the 

left, to 0.2, on the right. Multiplying the results of the stroke noise function with the 
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stroke edge mask creates a noise function without hard edges. This mask could have 

been created with a texture map, but by producing it procedurally, the system is able to 

modify it during the course of an animation – the grass shader makes use of this 

functionality and is discussed later on in this chapter.

Fig. 20. Sprite edge masks. Bias values from left to right are 0.8, 0.5, 0.2.
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The next line of code is the smooth-step function that transforms the noise function into 

the actual brush strokes. The final line clamps the opacity to a user-defined maximum 

opacity and then modifies it based on the distance from the camera. Clamping the 

opacity to a number slightly less than 1 ensures that all strokes mix slightly with the 

strokes behind them and helps with the overall painterly look.  The opacity adjustments 

based on distance are used to fade out stroke detail when objects are away from the 

camera and are discussed in detail later in this chapter.

IV.5. Artistic Control and Shader Interface

Almost all of the shader processes discussed so far use parameters that are controllable 

by the user. One difficult aspect of designing any shader is figuring out how to give the 

user as much control as possible without presenting them with too many confusing 

variables and too many degrees of freedom. Since this is a research project and not a 

shader that will be handed off to another artist for use, I have erred on the side of control 

over ease of use. SLIM is a graphical interface program for changing the value of 

Renderman shader input parameters. Fig. 21 shows the SLIM interface to the particle 

sprite leaf shader.
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Fig. 21. SLIM interface to the leaf shader’s parameters.
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The first four parameters allow the user to adjust the lightness ranges that determine 

whether a particle is considered dark, medium or light; for example, any lightness 

value below the darkCutoffStart is evaluated on the dark color spline, and any value 

between the darkCutoffEnd and the midCutoffStart is evaluated in the medium color 

spline. Values that lie between the darkCutoffStart and darkCutoffEnd are evaluated 

on both color splines and then mixed together. Splitting the colors into the three ranges 

and allowing the user control over the boundaries of those ranges allows greater control 

than if all colors were represented as one continuous spline. 

The shadow bias parameter is used to darken or lighten shadows. During lighting 

calculations a shadow multiplier between 0.5 and 1.0 is calculated and then passed 

through a bias function. A bias value of less than 0.5 will make shadows darker and a 

bias of greater than 0.5 will lessen the effect of all shadows. A bias of 0.5 will leave the 

shadow values alone. 

A parameter named strokeFullness is used to bias the particle sprites edge mask.  A 

higher number will push the mask closer to the edge borders, making more of the sprite 

visible.  A lower number will increase the mask and effectively make the stroke area 

smaller. The strokefeatherMin and strokeFeatherMax are used by the stroke smooth-

step function to clamp the brush stroke noise values into distinct splotches, and the 

maxStrokeOpacity is used to clamp the final stroke opacity to a maximum value.  

46



The centerFrequFactor and lightnessFrequFactor are used to increase the 

frequency of the brush stroke noise – and therefore reduce the size of the brush strokes – 

for leaf particle sprites that are further away from the tree center and in greater 

illumination, respectively. The subStrokeFrequ is used for the color variation noise 

within a particular brush stroke.

Every tree is given a unique ID during its creation, which can be used to apply an overall 

unique tint to individual trees. The tint color is interpolated between the two tint colors 

based on the unique tree ID, and the uniqueTintAmt determines the amount of the tint 

color to mix into the tree's normal color. Since the tint color is uniformly applied over 

the entire tree, very low tint amounts must be used to avoid washing out the tree colors. 

If large color differences are desired between trees, the user should instead use separate 

leaf shaders with different color palettes.  

The parameters with the dist prefix determine how the tree changes in appearance when 

it is far away from the camera.  The specifics of the camera distance effects are 

discussed in the next section, but they are mostly designed to emulate how atmosphere 

effects color. 

The remaining parameters are all data that is stored in the particles and should not be 

changed by the user. These parameters include the leaf's normal, information about its 

position within a tree and within the world, and unique Ids for both the tree and the leaf. 

47



Ideally, these parameters would not be visible to the user, but it is the only way to pass 

custom data directly from Maya into the Renderman shader. 

IV.6. Animation

In a painting, brush stroke size does not scale linearly with perspective – distant objects 

are not just painted with tiny strokes, but instead are generally painted with fewer brush 

strokes and less detail. Because of this, one of the original guidelines for the system is 

that it must be able to use different representations for trees that are in the background 

than those in the foreground, and it must be able to smoothly animate between 

representations. The first step in working towards this goal was developing a system for 

defining what constitutes foreground and background. 

Renderman has a built in level-of-detail (LOD) control, and initially the system tried to 

make use of this functionality. With Renderman's built in LOD, a user can specify 

multiple models, and the renderer will automatically interpolate between them. The main 

purpose of the Renderman system is to reduce the complexity of scenes by using less 

complex models when objects are too small on the screen for a viewer to tell the 

difference. This means that there is no continuous interpolation between models, but 

instead one model simply fades into another by animating the opacity of each. Because 

of this, it is generally only necessary to have two or three different models. The ranges 

for where the transitions occur are specified in screen space area. These attributes work 
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very well for their intended purpose, but make Renderman LOD completely 

inappropriate for system that needs a continuous change over a large range of distances. 

Additionally, the appropriate level of detail needs to be decided by distance from the 

camera, not screen space size.  For example, a giant mountain may be extremely far in 

the background and need to be painted as such, but may also still occupy a fairly large 

portion of the screen.

The LOD system developed for this project uses a fairly simple and intuitive way of 

letting the user specify which objects are foreground and which are background. The 

GUI created by the scene management script, shown in Fig. 22, provides the user with 

several useful tools for building animations. Clicking the create camera button, listed 

under the Scene prep tab, builds a camera with custom attributes and two circle objects 

constrained so they can only move along the camera's view axis; these circles allow a 

user to specify the distance ranges, as shown in Fig. 22. Anything closer to the camera 

than the near circle is rendered with the highest detail possible, and anything farther 

away than the distant object is rendered with the lowest detail. Objects between the two 

circles are assigned an interpolated distance value between 0 and 1, and rendered 

accordingly. The distance to the camera is calculated relative to a plane perpendicular to 

the view vector, which means that any objects in this plane are considered to be the same 

distance away. If a camera is animated, these circles follow with it, but can also be 

animated individually for added effect.
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Fig. 22. Scene management MEL script GUI.

Maya allows a user to define relationships between objects using MEL-scripted 

expressions. Expressions are evaluated every time an event, such as changing the current 

animation frame, forces an update. The system uses an expression to keep track of the 

world space distance between the camera and its circle tools, and stores these distances 

in custom attributes. There is a separate pair of distance circles that is used to specify 

distances for the tree trunks, and these are handled the exact same way. 

The scene management tool has a button that parses a scene and updates every object's 

distance values. For trees, it calculates the distance between the camera and the center of 

the tree, compares that distance to those of the camera distance circles, and then updates 

the tree's distance value accordingly. For testing scenes, it is generally only necessary to 
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update the current frame; for animations, there is another button that goes frame by 

frame and sets animation keys for the distance values so that they will animate correctly 

over the course of an animated shot. 

The particle leaf objects have expressions attached to them that update several of the 

individual particle attributes, based on the tree's distance value. When individual leaf 

particles are created, they are assigned two distance value thresholds. These thresholds 

are used to adjust the particle's opacity based on distance from the camera. The particle 

is either made fully opaque, fully transparent, or, if the value falls between the 

thresholds, is given an interpolated opacity. The effect of this is that the particles will 

slowly disappear as the camera moves away from the tree. The leaf creation script allows 

the user to specify the minimum separation for these thresholds in order to control the 

distance of the fade. At render time, the shader also puts a slight gain on the opacity 

values in order to ease in and out of the fade.  The leaf creation script also allows the 

user to specify a gaussian variance on the thresholds so that each leaf begins to fade 

away at a slightly different time. 

The distance thresholds are assigned to the particles such that those farthest away from 

the center of the tree disappear sooner than those on the inside.  Since particles on the 

inside have lower frequency strokes, the effect is that the apparent detail of the trees is 

reduced. Fig. 23 shows the same tree represented as near, far, and several stages in 

between. In order to maintain a relatively constant silhouette and overall tree size, the 
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Maya expressions continuously scale up the remaining particles to account for the 

missing leaves. The leaf shader also must account for the removal of leaf particles. In the 

high detail representation of the trees, interior leaves are artificially darkened to account 

for the probability that they are in shadow from the exterior leaves. As the tree gets 

farther away from the camera and the exterior leaves disappear, this darkening effect is 

diminished and then removed, to prevent the tree from appearing to darken. The shader 

handles this by including the distance value in its probabilistic lighting calculations.

Fig. 23. Renderings of the same tree at three different depths.

In painting, the effect that atmosphere has on objects that are distant to the viewer is 

referred to as atmospheric perspective. In addition to losing detail clarity, distant objects 

tend to be painted with less contrast and saturation, and tend to have their hue shifted 

towards the sky color. The shader has parameters that account for each these attributes, 

and their effects can be seen on the trees in Fig. 23 (above). The attribute named 
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distHueColor is mixed with a distant tree's color in an amount determined by the 

distHueStrength parameter. The saturation of distant objects may be limited by the 

distSatLimiter, and the value of distant colors may be clamped by the distValueMix 

and distValueMax parameters. The distCurveBias is used to bias distance of the 

object from the camera, effectively changing distance values from a linear interpolation 

into a curve that increases more with distance. 

IV.7. Generalizing the Leaf Shader for Grass, Rocks, Etc.

It was difficult to evaluate the success of the painterly rendering system when the only 

results were trees by themselves. By adjusting the leaf shader to fit more general forms, I 

was quickly able to populate an entire scene with grass, rocks, and other surfaces that fit 

within the same painterly style as the trees. The generalized shader was designed 

specifically for grass, but purposely left general enough to accommodate other surfaces.

The system's generalized brush stroke creation tool, as shown in Fig. 24, is another MEL 

script that allows a user to select any NURBS surface and convert it into a field of 

particle sprites. The script divides the NURBS surface into a user specified number of 

divisions in the u and v directions, and then emits a specified number of particles 

randomly within each section of the surface. The reason for dividing the surface instead 

of generating particles randomly over the entire surface is because the user can specify 

53



separate u and v division numbers, generating more particles in one particular direction; 

for a long thin piece of geometry, this is required to keep an even distribution over the 

entire surface. When the particles are emitted, they store the surface normal and uv 

coordinates of the surface at the point of their generation.

Fig. 24. GUI for the generalized stroke building tool.

The user also specifies a displacement height for the particle surface. As each particle is 

generated, it is displaced either up or down a random amount less than or equal to the 
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specified displacement height. Each particle's height is then normalized from 0 to 1, with 

0 being below the surface and 1 above, and then stored for later use by the shader.  

Corot often painted his grass as large low-detail blends of color punctuated by a few 

specific vertical brush strokes. The few, generally lighter, detail strokes are enough to 

give the impression that an entire hillside is covered with grass. Because of this, the 

generalized stroke shader is organized so that smaller detailed strokes are placed on top 

of darker, less-detailed strokes. 

After generation, the user is able to prepare the particles for render and adjust them as 

necessary. The prep for render button converts the particles to particle sprites, and sizes 

them based on several parameters set by the user. There is a parameter for the overall 

size of the particle, as well as controls for adding some size randomness and making the 

width different than the height. Another parameter allows resizing the sprites based on 

their depth value; in general, it is desirable to have the deepest sprites sized much larger 

than the top-most sprites. This allows for fewer sprites to cover the area of a surface, and 

also allows for the appearance of small detail strokes on top of larger strokes. 

There are also parameters that govern the effects of camera distance on the brush 

strokes. Brush strokes that are considered to be 'detail' strokes fade away at great 

distances, and one of the parameters sets the height threshold for which strokes are 

considered detail. Any strokes with a displacement height of greater than the threshold 
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are considered detail, and are eligible to fade away. Lower strokes never fade away, 

since if they disappeared, holes would appear in the surface. Distance thresholds are 

assigned randomly to the detail particles, but there is a parameter to specify the 

minimum distance span over which a particle may disappear.

The distance values of the generalized particles are computed in a very similar way to 

the tree distances. When the scene management tool is used to update scene distances, it 

calculates the distance of each corner of the NURBS surface, relative to the camera 

viewing direction and the distance circles. Individual particle distances are then 

interpolated from the corner distances using the particle's stored uv coordinates. 

The shader for generalized particle strokes is conceptually very similar to the leaf 

shader; it computes a lightness value, manipulates that value based on particle data, and 

then uses it as a lookup to a color palette. The opacity mask of each sprite is then created 

with a thresholded noise algorithm that is very similar to the one used by the leaf shader. 

There are, however, slight differences at nearly every step.

The initial lighting calculation uses the concept of aggregate normals, as suggested by 

Peterson and Lee [21]. In addition to the normal of of the surface where it was 

generated, called the aggregate normal, each particle contains a random-facing normal. 

The normal vector used for lighting calculations is a blend of the aggregate normal and 

the random normal, based on a user controlled blending weight. Allowing the random-
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normal to blend with the aggregate normal introduces some random variation on the 

surface of the object. Allowing too much influence from the random normal, however, 

risks losing the overall shape of the surface. 

After the initial diffuse lighting calculation, the lightness of the particles is modified 

based on their displacement height. Particles that are deeper are artificially darkened 

based on a user-adjusted parameter. Without this feature, detail brush strokes might 

receive the same illumination, and therefore the same color as strokes beneath them, and 

would be invisible. Since the lower strokes are darkened slightly, the detail brush strokes 

show up on top. 

The generalized particle strokes receive shadows the same way as the leaf particles, with 

the same bias function used to manipulate the overall strength of the shadows. Unlike the 

leaf particles, the generalized particles themselves do not cast shadows. The surface that 

is used to create the particles is made invisible to the primary render pass, but is set to 

cast shadows. Since it is roughly the same shape as the particles created from it, it gives 

off proper shadows.     

Color values are not computed inside the generalized stroke shader.  Instead, the 

lightness value, as well as the user-adjusted substroke frequency and lightness level 

thresholds is sent to a material definition function that is stored in the same file as the 

color definitions.  The shader also passes the material function a user-specified string 
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that names the desired material.  The material function takes the name of the material 

and the lightness values, and determines an output color using the same color palette 

spline methods as the leaf shader. The reason for separating the color calculations into a 

separate material function is that multiple shaders can then easily share the same 

material and color palette. Also, an individual shader can potentially have multiple 

materials. For example, a hillside shader could use a noise function or texture map to 

determine if a specific particle was in a grassy section or a dirt section, and then 

determine the particle's color by passing the lighting information and the name of the 

desired material to the material function. 

The generalized particle shader allows more detailed control over the frequencies used 

for the stroke-generation noise. There are parameters for a base noise, and an amount to 

increase that noise for the detailed particles. There are also separate frequency modifiers 

for the s and t directions for both the base strokes and the detail strokes. The grass shader 

uses much higher frequencies in the s direction than the t direction of detail strokes in 

order to give the detail strokes the thin, vertical appearance of tufts of grass. The rock 

shader uses frequencies that are the same in both directions in order to keep circular, 

non-directional brush strokes. 

The edge masks for the particle strokes are computed in a nearly identical method to 

those of the leaf strokes. One of the problems with using the particle system to cover a 

piece of landscape is trying to generate enough particles to completely cover the surface 
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with 'paint', without having so many particles that render times are too slowed. Particle 

sprites in areas that have normals parallel to the view direction need to be large to 

maximize coverage, but sprites at the portions of a surface with normals perpendicular to 

the view direction, such as at the crests of the hills in Fig. 25, need to have smaller 

heights so that they do not extend too far above the surface of the hill. The shader 

handles this by adjusting the vertical portion of the edge mask gain function according to 

the dot product of the surface normal and the viewing direction; regular sprites are 

rendered at their full size, while sprites at the crest of a hill are drastically shorted by the 

increased mask size. This effect is visible in the left hill of Fig. 25, which is missing the 

blurry circular strokes visible in the top right of the right hill.

 

Fig. 25. Dynamic resizing of edge masks, based on viewing angle.

The generalized particle shader handles the effects of atmospheric perspective in the 

same way as the leaf shader, with identical controls for the variation of hue, value and 

saturation with distance.
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CHAPTER V

DISCUSSION OF RESULTS

V.1. Overview

The overall result is a temporally coherent system that achieves a painterly look for 3D 

rendered animations. Fig. 26  through Fig. 29 show some still frames from animations 

produced with the system. Light and color are handled in a manner that adds to the 

painterly aesthetic of the final imagery. The system is able to convey form and depth, 

while still appearing to be painted in a 2-dimensional image plane. The images are 

rendered in a style that is clearly influenced by Corot, while not specifically recreating 

any of his paintings. In the judgment of several viewers, the system achieves a great deal 

of success in producing a painterly look; several have even mistaken rendered images for 

photographs of paintings.
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Fig. 26. Painterly rendered windmill scene with clearly visible atmospheric perspective.

Fig. 27. Painterly rendered rocks, grass and trees.
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Fig. 28. A demonstration of shadows and moving light sources.

Fig. 29. A painterly rendered image with many trees.
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The use of procedural strokes is fairly successful at creating a painterly look. The shader 

parameters offer enough control over the brush strokes to effectively convey different 

surface types, such as grass or rock, and to depict these surfaces at varying distances. 

Many systems use predefined brush stroke textures, but the procedural nature of this 

system's brush strokes allow for a lot of dynamic manipulation and variance that would 

probably be harder to achieve using predefined stroke textures. Even in large areas 

covered with one shader, such as the grassy hills from Fig. 29, the randomly created 

procedural brush strokes offer enough variance that no pattern is discernible pattern. 

One of the main goals of the system was to represent depth in a painterly way, both in 

terms of brushwork and color. All of the coloring, depth effects and brush stroke 

stylization visible in the above images was done at render-time - all of the images were 

rendered in one pass, and have had no post processing applied to them. The grass shader 

used on the hills in the windmill painting clearly demonstrates the system's effectiveness 

at conveying depth. The shader is the same on all three hills, and all visible changes are 

caused only by distance to the camera. The hill to the right of the windmill appears much 

farther away due to color changes and the use of fewer, larger brush strokes. These depth 

effects are all dynamically controlled by the shader, and can be animated to smoothly 

change over the course of an animation.

Animations created with the system are temporally coherent, and do not exhibit either 

the shower door problem or the gift-wrapped look. The brush strokes look as though 
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they were painted in the image plane, but the three-dimensional form of objects is not 

lost. Complete camera freedom is allowed, and objects smoothly transition between 

different levels of detail. Dynamic changes in atmospheric perspective and brush stroke 

stylization add a temporal painterly element to animated sequences.

V.2. Usability

The tree creation tools are very easy to use. A tree can be created in seconds, with only a 

few mouse clicks. The scripts successfully accomplish their primary goal, with is to 

provide an interface for the quick creation of generalized tree shapes. However, 

attempting to create very specific shapes can be counterintuitive and sometimes 

impossible. Although they do not function as an artist tool for creating art directable 

scenes, as a testing tool, the tree generation scripts work quite well. Due to the large 

amount of randomness in the script, it will occasionally generate completely 

inappropriate shapes; however, it only takes one mouse click to discard these shapes and 

rebuild a new one.  

One feature designed to improve usability is a set of functions for saving and loading 

parameter settings. If a user calibrates the tree generation parameters to produce a 

desirable type of trees, they may save those settings as a named preset and then reload 

them for later use. 
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The system also allows the user to label trees as they are generated with names such as 

“poplar” or “tall tree”, and then perform universal actions on these groups of trees.  The 

scene management tools allow a user to select groups of trees by name, or subparts of 

trees by name, or even specifically by name and type. This allows the user to, for 

example, use one mouse click to select all leaf particle shapes from the “poplar” trees in 

a scene and then apply a shader or perform some other action to only these objects.  

The scene management also makes handling the distance calculations easy.  When it is 

time to prepare an animation for rendering, the user may click on a button, and the script 

will parse the animation frame by frame, setting all distance values properly. 

Both the leaf scripts and the generalized stroke scripts allow a user to modify particles 

after they are created.  For example, the user may select a tree and load the leaf 

generation script. Instead of re-generating the leaf particles, the user may choose to only 

adjust one or more of the size parameters.  Also, if a user wishes to generate particles 

with slightly different values, they may select a tree and run the leaf generation script. 

When it load the GUI, it will already have the parameters pre-set to the values that were 

used to create the leaves, instead of the default values; this allows the user to make a few 

slight changes to the parameters and regenerate the particles, instead of trying to 

remember the original settings that were used. The generalized particle script operates 

the same way. 
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Another useful byproduct of the way the generalized particle generation script works is 

that model perfection is unnecessary. Landscapes may be created by arranging NURBS 

surfaces so that they roughly correspond to each other – it is not necessary to carefully 

stitch the surfaces together, as it would be if they were being rendered normally. This 

allows for 'sketchy' modeling, and speeds up the process of modeling a landscape.  

The shader is designed to emulate a relatively loose, nonuniform style, but does allow 

some control over the brush strokes. Changing the relative frequency and direction of 

brush strokes can make them appear to represent different surfaces, such as grass, leaves 

or rock. Changing other parameters can change the aesthetic of the entire image. Fig. 30 

shows how changing the noise smooth-step thresholds and opacity clamps can create a 

fair amount of variation in the appearance of the strokes. 

Fig. 30. The effects of changing brush stroke opacity and feathering.
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The scene management tools are quite accessible and greatly speed up the process of 

building and animating a scene. Both the tree generation MEL scripts and the shaders 

were designed with control placed over ease of use, and have an intimidating number of 

parameters for someone unfamiliar with the system. While they are easy to use for 

someone who does know the system, they would need to be streamlined and better 

documented for use by other artists. 

V.3. Known Problems

Although the system achieves most of the goals originally specified, there are a few 

areas in which improvements could be made. The most noticeable problem with the final 

images is the lack of foreground detail. The highest detail allowed by the system 

generally works well for most objects until they are in the extreme foreground. Both 

grass and trees look blurry with brush strokes that are too large when they get too near 

the camera. This could probably be fixed by extending the LOD system to include a 

method for handling objects in the extreme foreground. In many of Corot's paintings, 

trees that are very close to the viewer are depicted as very sparse, separated brush 

strokes. Perhaps as trees get very close to the camera, the interior leaves could disappear, 

allowing the viewer to see through the foliage. The process for doing so could be added 

using many of the same methods that allow the exterior leaves to disappear as the tree 

recedes into the distance. Some of the lack of detail in foreground objects also comes 

from the way that distances are computed on the grass particles. For a large patch of 
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grass, it is fairly inaccurate to base the distances only on the relationship between the 

camera and the corners of the NURBS patch; this seems to occasionally assign incorrect 

distance values to foreground particles. This method was chosen for speed and ease, but 

should probably be replaced with a more accurate system.

Another problem with the images is that some areas appear too procedural and lack the 

variation and detail of brush stroke styles that would be present in a real painting. The 

brush strokes are controllable to a degree, but they lack the finesse and variety of styles 

that Corot employed in his paintings.  The colors are also not as varied and rich as they 

are in Corot's paintings. Some of this is because of the limitations of RGB color mixing, 

but some of it is also because of the difficulties in choosing a proper palette; it is very 

difficult to match Corot's eye for color.

One problem with the animations is that the particle sprites do sometimes pop in and out 

of view as a camera moves. The reason for this is that the particles are really just single 

points in space, and the sprites rotate around the particles to match the camera viewing 

angle. It is possible for the camera angle to change such that one sprite will suddenly pop 

in front of another sprite. Fig. 31 demonstrates this problem, showing how the sprites 

react as a camera rotates around a scene. 
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Fig. 31. Sprite popping problem. Because the sprites are oriented towards the camera, a change in viewing 
angle will cause one sprite to move in front of the other.

This problem is fairly fundamental to the way sprites are used by the system. 

Nevertheless, since the popping seems to occur fairly regularly over the entire image, it 

is not nearly as distracting as if it happened only in one particular spot. Since it is just 

general visual noise, it is fairly easy to tune out. This problem could probably be fixed 

with some sort of localized frame-blending or other post-processing technique. 

Expanding the popping to be a smooth change over the course of three to five frames 

would probably make it unnoticeable.       

Another problem with animations is that it is difficult to properly calibrate the system 

that adds and removes leaf particles with distance. When it is not calibrated correctly, 

the silhouettes fluctuate in size, and some parts of the tree appear to change too 

suddenly. In a complex scene, however, this is not particularly noticeable.
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V.4. Future Work

The generalized particle stroke generator is a big step towards making the system useful 

as a general rendering system, but it would benefit from additional control over the brush 

stroke styles.  The current controls allows for roundish shapes and either dominantly 

vertical or horizontal strokes, but does not allow much major control beyond that. One 

potentially simple improvement would be to allow control over the particle sprites' 

“twist” property, which allows the sprite to rotate around the camera's view axis. This 

would introduce more variance in the strokes and allow greater control over their 

primary direction, which would add to the believability of the resulting images.

Also, there is currently no support for animating surface deformations with the system. 

Once particles are created, they have no direct tie to the surfaces they were generated 

from. Perhaps the simplest possible solution would be to use Maya's built in deformation 

system; the version of Maya used for this project has a documented software bug that 

does not preserve custom particle attributes when they are animated with deformers; 

since the particle's custom data is absolutely crucial for this rendering system, the use of 

deformers was not an option. The problem may well have been fixed in more recent 

versions of Maya, and then the use of wrap deformers could be a quick way to add a lot 

of functionality to the system. However it is accomplished, the system would be more 

useful if it allowed the animation of more than just the camera.
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It would also be useful to add shaders for generating procedural skies and water. Both of 

these could probably be achieved with relatively few modifications to the generalized 

stroke shader. It could also be interesting to address the interaction of the paint and the 

surface of the canvas. Corot's paintings are occasionally painted thinly enough to allow 

the canvas surface to show through, which is an element of his paintings not addressed 

in the rendering system.
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CHAPTER VI

CONCLUSION

The primary goal of this research project was to develop techniques for creating 3D 

animations with a visual aesthetic similar to the work of French painter Camille Corot. 

Instead of developing an isolated system, the development process emphasized the 

creative expansion of existing software, which allowed for more robust results and 

quicker development times.

Many efforts in NPR oil research have taken the broad approach of attempting to 

replicate oil painting as a medium, but the vast array of styles and effects possible with 

physical oil paint makes such an endeavor far beyond the scope of a master's thesis. The 

choice to limit the system to replicating one particular artist's style allowed for placing 

more emphasis on visual quality than range. Narrowing the primary focus further still to 

just trees allowed more time to be spent exploring the possibilities offered by time-based 

oil painting.   

The resulting system provides a flexible interface with powerful tools for quickly 

generating painterly renderings of 3D scenes. Images created with the system clearly 

exhibit Corot's influence, and allow for CG light and form to be communicated with 

painterly language. The power of the automated brush stroke system comes at the cost of 
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the per-brush-stroke complete artistic control that a real painter would have, but the 

shaders and tools allow a large degree of high level artistic control. 

Animations created with the system combine film language and painting technique to 

bring a new aesthetic to time-based work. The results of this research suggest ideas that 

could be explored at a much greater depth in the future, but, as it is now, the system 

already provides a new tool for artistic expression.  
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APPENDIX A

SUPPLEMENTAL MOVIE FILES

Several supplemental Quicktime movies are available for download. These animations 

demonstrate the system’s temporally coherent response to varying speeds of forward and 

rotational camera motion; as distance from the camera changes, the shape, size and color 

of brush strokes are automatically modified. Also shown are the effects of moving 

camera distance markers independently from the camera, and animating the position of 

the light source.
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