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ABSTRACT 

 

Temperature Driven Diet Quality Prediction for Free-ranging Cattle. (August 2008) 

Yingjie Zhang, B.S., Beijing Institute of Technology; 

 M.S., Beijing University 

Chair of Advisory Committee: Dr. Urs Kreuter 

 

A rapid and accurate method to determine or predict cattle diet quality is essential to 

effectively manage free-ranging cattle production. One popular tool currently available 

for predicting cattle diet quality is fecal Near Infrared Reflectance Spectroscopy (NIRS) 

profiling, which requires considerable time and financial investment. Two approaches 

were taken to develop a replacement of NIRS fecal analysis for predicting real-time 

cattle diet quality. The first approach took advantage of a standing forage quantity 

monitoring and prediction model, and its animal diet selection sub model to model 

cattle diet quality. The second approach tested if a direct relationship is present between 

cattle diet quality and a simple temperature driven variable. 

 

The model used in the first approach is Phytomass Growth Model (PHYGROW). Using 

the Growing Degree Days (GDD) concept, forage crude protein estimation equations 

were developed. Coupled with PHYGROW diet selection sub model, cattle diet quality 

values were modeled. The validation study revealed good correlation between predicted 

diet quality and observed diet quality (r2=0.84).  



 iv

The Grazing Animal Nutrition lab (GAN lab) commercial fecal NIRS analyzing data 

for Major Land Resource Area 42 (MLRA 42) was used to analyze the relationship 

between GDD and cattle diet crude protein (CP). Repeatable high quality regressions 

were found for CP and GDD. A simple temperature based model was then developed to 

predict cattle diet quality for regional use. Another independent dataset for MLRA 116B 

from the GAN lab fecal NIRS data and a controlled grazing study were used to validate 

the relationship. The study showed that using GDD to predict cattle diet quality is a 

dependable tool, but regional specific relationships need to be developed.  

 

The two developed models set the foundation for remotely predicting cattle diet quality 

for effectively managing cattle production. The approaches also set the framework for 

developing broader applications for other animal species. 
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CHAPTER I 

INTRODUCTION 

 

Founded in 1991 under Texas A&M University System agricultural program, the Center 

for Natural Resource Information Technology (CNRIT) developed a series of 

information management and decision support tools for planning, monitoring and 

assessing natural resource management systems. The Phytomass Growth Model 

(PHYGROW) and The Nutritional Balance Analyzer (NUTBAL) are two of the most 

adopted tools for forage and livestock management purposes. 

 

The Ranching Systems Group (RSG) within the Center CNRIT has been working for 

over 15 years to develop a new suite of technologies that help mitigate the risk of 

drought and improve the adoption of released technologies. In 1997, the United States 

Agency for International Development (USAID) Global Livestock Collaborative 

Research Support Program (GLCRSP) funded a project to develop a Livestock Early 

Warning System (LEWS) for East Africa. The approach adopted has subsequently been 

configured for use in Texas as part of a LEWS pilot program. It also served as the basis 

for design of a new National Range and Forage Loss Insurance program administered 

by USDA-Risk Management Agency. PHYGROW is the foundation technology used in 

LEWS for monitoring the impact of emerging weather events on livestock forage 

supply both in Texas and in the pastoral regions of East Africa.  

______________ 
This dissertation follows the style of Rangeland Ecology and Management. 
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PHYGROW is a hydrologic-based plant growth simulation model that predicts standing 

crop under certain management criteria. It represents the complex interaction between 

numerous soil characteristics, plant community characteristics, grazing practices and 

weather data for a particular location (Stuth et al. 2003a). The animal diet selection sub 

model within PHYGROW enables it to simulate the kind and amount of forage being 

selectively consumed by certain animals and thereby calculates the available forage for 

a particular kind of animal. The diet selection sub model places plant species into five 

preference categories (Preferred, Desirable, Undesirable, Toxic and Emergency) and 

computes the proportion of each preference class in the diet. The animal preference of a 

plant species can be assigned by a user according to phenological stage: fast growth, 

declining growth, quiescence, dormancy and dead (Quirk and Stuth 1995). PHYGROW 

has been widely used in Texas, Oklahoma, New Mexico, East Africa and Mongolia.  

 

The NUTBAL model predicts nutrient intake, requirements and balance of protein and 

energy for grazing animals based on the physiological characteristics of the animals, the 

prevailing forage quality and availability, and weather conditions. It also estimates body 

weight change, identifies the primary limiting nutrient (energy or protein) and 

calculates dry matter intake via fecal output. Lyons and Stuth (1992) first showed that 

Near Infrared Reflectance Spectroscopy (NIRS) technology could be used to identify 

key organic chemical bonds in animal feces and successfully predict dietary 

constituents which formed the precursors to the formation of those bonds in the feces. 

This concept resulted in the development of NIRS equations for scanning feces and 
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predicting the diet crude protein (CP) and digestible organic matter (DOM) of 

free-ranging animals (Lyons and Stuth 1992; Coates 1998; Gibbs et al. 2000; Gallagher 

1990; Keating 2005). The Ranching Systems Group at Texas A&M University group 

subsequently provided a diet evaluation service based on NIRS fecal analysis to the 

public. Dr. Jerry Stuth, Grazing Animal Nutrition Lab (GAN Lab) Director, then further 

incorporated the technology into a nutritional balance profile (NUTBAL) software 

program. Since 1994, NUTBAL has helped producers, managers, and consultants to 

make more informed feeding and grazing management decisions. These methods are in 

use throughout the U.S. and the world to detect forage nutrient deficiencies and identify 

the most cost efficient supplemental strategies to meet production goals. 

 

One of the most important categories of inputs in NUTBAL relates to diet quality and 

includes CP, DOM, and the DOM/CP ratio of the diet being consumed by the animals 

under consideration. The DOM/CP ratio is an indicator of ruminal efficiency 

(McCollum 2004), which is an important factor for animal performance output in 

NUTBAL. Ruminal microbes need a balanced supply of energy and protein. Typically, 

a DOM/CP ratio of 4 results in peak fermentation rates in the rumen and optimum 

performance. DOM/CP ratios greater than 7-8 indicates amount of energy available to 

microbes exceeds the amount of available protein and limits microbial activity. When 

DOM/CP ratios are below 4, intake is suppressed with reductions up to 65% when the 

ratio approaches 2.5 due to the negative effects of excess ammonia formation in the 

rumen (Stuth 2001). Currently, input data for CP and DOM for NUTBAL are derived 
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from fecal samples analysis. GAN lab provides a service to analyze fecal samples in 

which NIRS technology is used to predict dietary CP and DOM on a dry matter basis, 

and fecal phosphorus and nitrogen. Currently, the nutritional profiles based on results 

provided by GAN Lab are in use throughout the U.S. and in other countries across the 

globe for domesticated livestock such as cattle, goats, and sheep and for wildlife such 

as bison, elk, and deer. 

 

Although NIRS fecal analysis is a relatively precise and rapid method for estimating 

dietary CP and DOM, it has some disadvantages. The average price is $25 per sample, 

which represents a considerable investment for users wishing to consistently analyze 

samples at the landscape scale. Furthermore, this approach requires users to collect 

fecal samples and deliver them to the GAN Lab in Texas. Depending on the sampling 

location, the delivery time varies from 2 to 7 work days. After the samples are received, 

they need to be dried and prepared for analysis, which usually requires 2 additional 

days. Therefore, the NUTBAL results could take 5 to 10 days to reach the users 

accounting for all these processes. The cost, the labor needed and the time lag are major 

deficiency of NUTBAL as a predicting tool for time sensitive decision making 

purposes.  

 

This research here is dedicated to overcoming this deficiency by developing alternative 

approaches for predicting animal diet quality for NUTBAL or for other management 

applications instead of using NIRS fecal analysis data. The model will serve the dual 
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purposes of (1) adding a diet quality prediction function to PHYGROW and (2) 

providing an alternative approach of predicting animal diet quality for NUTBAL 

instead of using fecal analysis data. Success of the model will link two powerful tools 

(PHYGROW and NUTBAL) together to predict forage quantity and quality consumed 

by concerned animals and thus remotely monitor and predict animal performance. Two 

approaches are used to address these objectives. One is using standard weather data to 

predict forage quality and integrate with PHYGROW’s animal diet selection model to 

produce animal diet quality model. The other approach is to find a direct way to predict 

animal diet quality without using the diet selection sub model in PHYGROW through 

analyzing of GAN lab’s commercial fecal NIRS diet quality data. 

 

Since animal nutrient intake and, therefore, animal performance, are the product of the 

quantity and the nutritional quality of the consumed forage, both need to be predicted. 

The PHYGROW animal diet selection sub-model converts the predicted standing crop 

to animal intake by plant species. Thus, PHYGROW predicts the quantity of the animal 

intake by species. A predictive method that can estimate forage quality by species 

would serve as the link between PHYGROW and NUTBAL.  

 

The animal diet quality model developed will be a new component of PHYGROW. It 

will update PHYGROW’s performance to not only predict forage quantity but also 

forage quality and diet quality of grazing animals. The output of this addition to the 

PHYGROW model could be directly used as an input in NUTBAL to predict animal 
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performance instead of fecal derived NIRS values. The integrated model is best suited 

for landscape scale analysis when cost of fecal analysis is expensive. A successful 

forage quality prediction model itself would be of great benefit for managers to support 

decisions about timing of harvest which optimizes the combination of forage quality 

and quantity.  

 

The dissertation is organized in 6 parts: (1) Introduction, in this part the need of 

developing an animal diet quality model and the background information is introduced. 

(2) Background and State of Knowledge, forage quality and diet quality concepts and 

importance in literature are discussed in this part, followed by specific reviews of 

Growing Degree Days as an effective predictor for forage quality, animal diet selection 

sub model in PHYGROW and the GAN lab dataset for the second approach of my 

objectives. (3) Development of a Cattle Diet Quality Model Using Temperature Data 

and PHYGROW, using GDD as a predictor for forage quality, coupled by the animal 

diet selection sub model in PHYGROW, an animal diet quality model is developed in 

this part and validated by a grazing trial study. (4) A Simple Temperature Driven 

Animal Diet Quality Model, this part address the second approach in my objectives. By 

analyzing the GAN lab commercial data, a simplified model is developed to predict 

animal diet quality solely based on temperature data. (5) Summary and Conclusion, two 

approaches to meet the objectives are valuated and the applications of the models 

developed are discussed. (6) Literature Cited.  
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CHAPTER II 

BACKGROUND AND STATE OF KNOWLEDGE 

 

The first approach of the research involves development of a forage quality model, 

integrated with the diet selection sub model in PHYGROW to predict animal diet quality. 

Review of the literature here includes aspects of forage quality and animal diet selection 

sub model in PHYGROW. The second approach of the research involves analyzing the 

GAN lab commercial data to develop a simplified animal diet quality prediction model, 

so a review of the GAN lab dataset is also included for the purpose. 

 

Forage quality 

Forage quality is crucial for the livestock industry. They provide essential energy, 

proteins, vitamins, minerals and fibers for livestock production. Forage quality is defined 

as the sum total of the plant constituents that influence an animal’s use of the feed and 

ultimately its performance (Ball et al. 2001). This is influenced by environmental factors 

including radiation, temperature, day length, plant-available soil water and 

plant-available nitrogen and phosphorous. Forage quality also varies with plant species 

and season and location of growth (Ball et al. 2001). Range forage is often optimal for 

livestock growth and production for only a short period of the year. Early in the growing 

season, forage has a high nutrient concentration, but indicators of high forage quality 

such as protein, energy, vitamins, and minerals decline proportionally as the growing 

season progresses, while indicators of low quality, such as fiber and lignin, increase as 
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forage plants mature (Adesogon et al. 1993). Plant maturity has been viewed as the 

primary factor affecting forage quality (Kalu and Fick 1981; Perry and Baltensperger 

1979), George and Bell (2001) regressed CP on stage of maturity and explained the 

variation for six annual grasses (r2=0.79), filaree (r2=0.76), and bur clover ( r2=0.71). 

 

Evaluating and predicting forage quality is complex. Historically, forage quality has 

been assessed on physical factors like maturity, softness, color and leafiness (Ball et al., 

2001). Although this simple method is important, they are very subjective and difficult 

to standardize. 

 

Wet chemistry analysis is the conventional method to more accurately determine the 

components of forage. It is based on well-established chemical principle to determine the 

quantity and type of chemical compounds in a forage sample. Although it’s an accurate 

method, the slow turnaround time and expense associated with it restrained its use. 

 

Near Infrared Reflectance Spectroscopy (NIRS) is a computerized method of forage 

testing. It has been successfully used to predict forage quality for livestock through 

clipped forage (Barton and Burdick 1983; Park et al.1983; Marten et al. 1984). NIRS 

method greatly reduces the sample turnaround time.  

 

Either physical, wet chemical or NIRS method are only capable of assessing forage 

quality at a point of time or after samples being collected. The need to predict forage 
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quality for making timely management decisions in line with future situation is not 

addressed.  

 

Total nitrogen (N) or crude protein (usrally N × 6.25) is one of the most commonly used 

indicators for forage quality. Researchers have compared different empirical approaches 

including growing degree days (GDD), day of the year (DOY), mean stage count (MSC), 

and mean stage weight (MSW) to predict forage CP (Mitchell et al. 2001; Moore et al. 

1991; Kalu and Fick 1981; Hill et al. 1995).  

 

Mitchell et al. (2001) found that GDD (r2=0.91) was the best method for predicting CP 

values compared to DOY (r2=0.82), MSC (r2=0.87) and MSW (r2=0.84) for Switchgrass 

(Panicum virgatum), and also the best method for predicting CP values for Big blustem 

(Andropogon gerardii) with r2=0.90 compared to DOY (r2=0.81), MSC (r2=0.62) and 

MSW(r2=0.67). Similarily, Borreani et al. (2003a) also found GDD (r2=0.62) is a better 

predictor for forage quality than MSW (r2=0.47) and DOY (r2=0.31) for nutritive value 

of sulla (Hedysarum coronarium ) at two Mediterranean sites (Ancona and Sassari, Italy). 

Hill et al. (1995) found that GDD (r2=0.83) was a better predictor for CP levels in 

AU-Triumph tall fescue (Festuca arundinacea) than MSC (r2=0.35) & MSW (r2=0.61). 

West et al. (1991) also proposed GDD (r2=0.98) as a better predictor than DOY (r2=0.87) 

for CP in winter wheat. 

 

Among these predictor variables, only GDD incorporates ambient air temperature in its 
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definition (Undersander 1997). GDD calculates the heat accumulation above a minimum 

threshold temperature for plant growth, often referred to as the base temperature 

(Undersander 1997). The accumulation equation commonly used is:                 

GDD= (Tmax+Tmin)/2-Tbase [1] 

where Tmax is the daily maximum temperature, Tmin is the daily minimum temperature 

and Tbase is a species specific base temperature required for growth.  

 

Temperature is the driving force behind most physiological processes that occur in a 

plant, including translocation of nutrients and cell wall formation, both of which directly 

influence forage quality (Undersander 1997). It is reasonable then that GDD will 

produce good predictions of forage quality. To compare equations relating GDD to CP 

from various sources, they were rearranged to correspond to the following standardized 

format: 

 CP = a (GDD-b) 2 + c [2] 

where a, b and c are constants and their meaning will be discussed later. 

The equation developed by Mitchell et al. (2001) to predict CP for Switchgrass (10ºC 

base temperature, Equation 3) with r2 0.95 and RMSE 9: 

CP (g/kg) = 263.85 - 0.30 (GDD) + 0.0001 (GDD) 2  [3] 

Equation 3 can be reformatted as Equation 3'. 

CP (g/kg) = 0.00010 (GDD-1500) 2 + 38.85 [3'] 

The same authors developed an equation to predict CP for Big bluestem from GDD 

(10ºC base temperature, Equation 4) with r2 0.96 and RMSE 9: 
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CP (g/kg) = 277.32 - 0.31 (GDD) + 0.0001 (GDD) 2          [4] 

The equation can be reformatted as Equation 4': 

CP (g/kg) = 0.00010 (GDD-1550) 2 + 37.07         [4'] 

Smart et al. (2001) also developed 2 equations to predict CP for Big bluestem based on 

GDD during each of 2 trials (5 ºC base temperature) for non-grazed pasture. The trial 1 

equation (Equation 5) had r2 0.79 and RMSE 16.15:  

CP (g/kg) = 223 - 0.197 (GDD) + 0.0000612 (GDD) 2  [5] 

It can be reformatted as Equation 5': 

CP (g/kg) = 0.00006 (GDD - 1610) 2 + 64.47  [5'] 

The second equation Smart et al. (2001) developed to predict CP for Big bluestem (5 ºC 

base temperature) for non-grazed pasture (trial 2, Equation 6) had a r2 0.94 and RMSE 

10.70: 

CP (g/kg) = 220 - 0.256 (GDD) + 0.0000932 (GDD) 2  [6] 

It can be reformatted as Equation 6': 

CP (g/kg) = 0.00009 (GDD - 1373) 2 + 44.21  [6'] 

Hill et al. (1995) developed an equation to predict Tall fescue CP (a cool season grass; 5 

º C base temperatures) in which NRATE is an independent variable for the N fertilizer 

applied in kg /ha. This equation (Equation 7) had a r2 0.82 and RMSE 19: 

CP (g/kg) = 263 - 0.3499 (GDD) + 0.000156 (GDD) 2 +.2384*NRATE  [7] 

Since the variable 0.2384NRATE does not affect the constants ‘a’ &’b’ in the 

standardized equation (Equation 2). Equation 7 can be reformatted as Equation 7' in 

which d is a constant related to available N fertilizer. 
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CP (g/kg) = 0.00016 (GDD-1122) 2 + d  [7'] 

Borreani et al. (2003a) developed an equation (Equation 8) using GDD to predict CP in 

Sulla (a legume, 5 ºC base temperature) with r2 0.62 and RMSE 25: 

CP = 0.000078 GDD2 - 0.227 GDD + 288  [8] 

It can be reformatted as Equation 8': 

CP (g/kg) = 0.00008 (GDD – 1455) 2 + 151  [8']  

The equation Sanderson (1992) developed to predict CP for Alfalfa stem (Equation 9, 

base temperature not reported) had an r2 0.90 and RMSE 16.4: 

CP (g/kg) = 0.000246 (GDD) 2 - 0.394 (GDD) +262  [9] 

It can be reformatted as Equation 9': 

CP (g/kg) = 0.00025 (GDD - 801) 2 + 104.24 [9'] 

 

The number of developed equations for different species in the literature like the ones 

reported here are very limited. It is unpractical to develop one equation for each species 

concerned. Fortunately, it is found that forage CP varies more significantly between 

years than between species suggesting that environmental variables are more important 

than species differences in influencing CP levels (Hendrickson et al. 1997). Also, 

comparing the values of the constants, a trend could be found that if plant species are 

categorized. Different forage groups have different CP change patterns during the 

growing season. George and Bell (2001) using stage of maturity to predict annual range 

forage quality, found that filaree and bur clover started with higher CP levels than the 

annual grasses but CP declined more rapidly in filaree than bur clover and the annual 
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grasses as the growing season progressed. The finding suggested forage CP could be 

predicted by function groups (for example: warm-season grasses, cool-season grasses, 

legumes, and forbs) instead of by individual species. 

 

Animal intake preference 

Hardison et al. (1954) reported the first quantative results showing the degree of 

selection by grazing cattle. Lofgreen et al. (1956) showed a small but consistent 

increase in TDN (Total Digestible Nutrient) due to selective grazing. It is generally 

accepted that cattle selectively grazing on forage to acquire better nutrient level than if 

offered with hay. Quirk and Stuth (1995) first defined the method to quantifying 

herbivore diet selection based on their preference. The method was adopted in 

PHYGROW later to predict animal intake. The PHYGROW model predicts available 

forage for animals by plant species. The diet selection sub-model allows a user to 

categorize animal preference for a particular plant species according to its phonological 

growth stage (i.e. Current year’s growth during rapid growing, during declining growth, 

during dormancy, and during death). The model does this by assigning preference 

classes to each species at each growth stage as Preferred, Desirable, Undesirable, 

Emergency or Toxic (PHYGROW User Manual). From the PHYGROW source code, 

the rules for calculating plants growth stages for each species and thus their 

correspondence intake by a grazer are based on:  

Rapid Growth Stage: previous leaf turnover < previous growth 

Declining Growth Stage: previous leaf turnover > previous growth 
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Quiescence Growth Stage: previous leaf turnover = previous growth 

Dead Growth Stage: previous growth 

 

For a given herbivore, each type of forage is assigned to one of the four preferences 

categories at each growth stage. The four preference categories are: preferred (P), 

undesired (U), desired (D), and emergency (E). For each type of forage and grazer, with 

its particular growth stage and preference category, PHYGROW uses a set of rules to 

calculate its intake by the grazer. 

 

GAN lab commercial fecal diet quality data 

The second approach of the objectives requires analysis of the GAN lab commercial 

data to find direct correlation of fecal CP and GDD without using PHYGROW.  GAN 

lab is using NIRS technology to predict animal dietary CP and DOM via scanning of 

fecal samples. When shipped to GAN lab, commercial samples will be dried and 

grounded and exposed to light energy. The reflectance is influenced by number and 

type of chemical bonds in the samples. Prediction equations are built and calibrated 

through known diet samples and paired animal feces. Equations developed to date 

appear to be highly reliable across a broad spectrum of forage types to predict dietary 

CP and DOM of free-ranging animals (Lyons and Stuth 1992). Currently over 1400 

clients are using the GAN lab system in 48 states, which gives access to over 40,000 

samples with their recorded collecting date, location, grazer, vegetation type, and 

predicted CP and DOM.  
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CHAPTER III 

DEVELOPMENT OF A CATTLE DIET QUALITY MODEL USING 

TEMPERATURE DATA AND PHYGROW 

 

Overview 

For the purpose of developing a remotely accessible model to predict animal diet 

quality in replace of fecal Near Infrared Reflectance Spectroscopy (NIRS) analysis in 

the use of the Nutritional Balance Analyzer (NUTBAL) model for animal performance 

monitory and prediction, a new model was developed to predicted cattle diet quality 

based on the Phytomass Growth model (PHYGROW). Using the Growing Degree Days 

(GDD) concept, forage Crude Protein (CP %) estimation equations were developed for 

different species categories. PHYGROW cattle diet selection model was used to project 

cattle diet quantity of each available forage category. The CP quantity consumption by 

cattle was then calculated by the sum of weighted consumption of each consumed 

forage category’s CP% based on their diet demand quantity. The diet CP% was 

calculated by dividing the weighted total of consumed CP by the total consumption of 

forage. The animal diet quality outputs of PHGROW were fed into NUTBAL to predict 

animal performance. A validation study was carried out to validate the equations and 

the performance of the PHYGROW – NUTBAL model system. The PHYGROW 

predicted standing crop was validated by clipping data. The new model predicted cattle 

diet quality correlated well with fecal NIRS analyzed data. The linked 

PHYGROW-NUTBAL predicted animal performance was validated by observed data. 
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The developed PHYGROW-NUBAL system performed well in predicting cattle 

performance. The study provided a valuable management tool for cattle production 

industry. 

 

Introduction 

Both the Phytomass Growth Model (PHYGROW) and The Nutritional Balance 

Analyzer (NUTBAL) model were developed by The Center for Natural Resource 

Information Technology (CNRIT) at Texas A&M University. PHYGROW predicts 

available forage for forage management purposes, while NUTBAL predicts animal 

performance for livestock management purposes.  

 

PHYGROW is a hydrologic-based plant growth simulation model that predicts 

available forage under certain management criteria. It represents the complex 

interaction between available forage and numerous soil characteristics, plant 

community characteristics, grazing practices and weather data for a particular location 

(Stuth 1997). PHYGROW is a major component of the Livestock Early Warning 

System (LEWS) for monitoring nutrition and livestock health for food security of 

humans. LEWS is a sub-project within the Global Livestock Collaborative Research 

Support Program (GL-CRSP) currently being implemented widely by Texas A&M 

University in East Africa, Mongolia, Texas, New Mexico and Oklahoma. 

 

NUTBAL predicts nutrient intake, requirements and balance of protein and energy for 
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grazing animals based on the physical characteristics of the animals and their 

environment including available forage, forage quality, and weather condition. It also 

estimates body weight change, identifies the primary limiting nutrient (energy or 

protein), and reports dry matter intake and fecal output. The program has been used by 

commercial ranchers to detect forage nutrient deficiencies and identify cost- efficient 

supplemental strategies to meet production goals. 

 

The original goal of PHYGROW is to predict forage availability for livestock and thus 

to manage their performance and production. The CNRIT system developed another 

model, NUTBAL, to complete the mission. The two models are tandem management 

tools for livestock production. The current version of PHYGROW only predicts the 

quantity of available forage, but knowing quantity alone is insufficient to determine 

livestock performance. The Near Infrared Reflectance Spectroscopy (NIRS) technology 

is used to predict animal diet quality from fecal analysis with resulting values used in 

NUTBAL to predict livestock performance (Lyons and Stuth 1992).  

 

Because the lack of a forage quality prediction component in PHYGROW, the output 

can not be directly fed as an input to NUTBAL for a one step animal performance 

management system. A sub model that enables PHYGROW to predict diet quality will 

link the two models in one piece for managing livestock production. 

 

The quantity and quality of consumed forage together determine the productivity of 
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free ranging animals. When quantity of forage is not a limiting factor, diet quality plays 

the major role in animal production and performance (Lyons 1990). The ability to 

determine and predict animal diet quality is essential in managing supplemental feeding 

while controlling cost and production risk. Techniques like hand plucking of forage to 

mimic free-ranging animals’ diets and the use of esophageal fistulated animals in 

determining animal diet quality are relatively low precision and labor intensive with a 

high sensitivity to bias (Kosi 2003). Forage crude protein (CP) and digestible organic 

matter (DOM) have been identified as being highly related to grazing animal forage 

intake and performance (Moore and Kunkle 1995). Ability to predict these dietary 

attributes will be of tremendous importance to free-ranging animal management. One 

popular method being used today to make such predictions is the Near Infrared 

Reflectance Spectroscopy (NIRS). The technology predicts animals’ dietary CP and 

DOM by scanning of their fecal samples (Coleman et al. 1989; Stuth et al. 1991; Lyons 

and Stuth 1992). This gives relatively precise estimates but is time and costly 

consuming due to the physical collecting and analyzing process of fecal samples. Most 

of these techniques are used to predict animal dietary quality based on their past intake. 

Some models have been developed to predict available forage quantity a week or even 

a month ahead based on weather forecasting data (Stuth 1997), but little progress has 

been made in predicting the quality of the forage ahead of time. 

 

The diet selection sub model in PHYGROW simulates animal’s selective grazing 

behavior and predicts consumption quantity of each forage species at a given projected 
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time point. We propose that coupled with some simple forage quality prediction 

equations this could be used to predict animal diet quality both in timely fashion and 

ahead of time. Many researchers found that Growing Degree Days (GDD) is a good 

predictor for predicting forage quality (Mitchell et al. 2001, Borreani et al. 2003b; and 

Hill et al. 1995). GDD is a simple temperature driven variable. The availability and 

easy access of weather forecasting data makes a GDD based model simple to use and 

suitable for diet quality forecasting. Most of the GDD predicting equations are species 

specific and different forage categories response differently to GDD accumulation. In 

order to develop a generalized model, some generalized equations need to be developed 

for categorized forage. 

 

Model development and description 

Forage CP 

GDD calculates the heat unit accumulation above a minimum threshold temperature, 

often referred to as the base temperature. The accumulation equation commonly used 

is:                 

    GDD= (Tmax+Tmin)/2-Tbase  [10] 

where Tmax is the daily maximum temperature, Tmin is the daily minimum temperature 

and Tbase is a species specific base temperature required for growth. 

 

Seven CP prediction equations are found in literature for different species (Mitchell et 

al. 2001; Smart et al. 2001; Hill et al. 1995; Borreani et al. 2003a; Sanderson 1992). We 
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rewrite them in the standard quadratic form of:  

    CP = a (GDD-b) 2+ c  [11] 

where a, b and c are constants and their meaning will be further discussed.  

 

All the constants of rewritten equations are summarized in Table 1. In the quadratic 

graph of the CP (g/kg) = a (GDD-b) 2+ c, ‘a’ is the curve factor determines the slope of 

the curve, while coordinate (b, c) determines the X and Y axis values for the lowest 

coordinates on the graph when ‘a’ is negative. In Table 1, ‘a’ for all first 4 equations for 

warm season grasses are all about 0.0001, which means the rate of CP decline with 

increasing GDD might be similar for these warm season species. We hypothesis that 

coefficient ‘a’ for warm season species is 0.0001. To test, we also hypothesize the 

coefficients ‘a’ for cool season grasses is 0.00016 and for legumes is 0.00025. 

Table 1. Literature summary of the reformed GDD as a predictor for CP equations.1 
Source Species a b c Tbase (ºC ) 

Mitchell et al. 2001 Switchgrass 0.00010 1500 38.85 10 

Mitchell et al. 2001 Big bluestem 0.00010 1550 37.07 10 

Smart et al. 2001 Big bluestem 0.00006 1610 64.47 5 

Smart et al. 2001 Big bluestem 0.00009 1373 44.21 5 

Hill et al. 1995 Tall fescue 0.00016 1122 N/A 5 

Borreani et al. 2003a Sulla 0.00008 1455 151.00 5 

Sanderson 1992 Alfalfa 0.00025 801 104.24 5 

1 a, b and c are coefficients in the format of CP (g/kg) = a (GDD-b) 2 + c, Tbase is the base 
temperature for calculating GDD. 

 
Comparing the equation’s coordinates (b, c) from Mitchell et al (2001) which is (1500, 
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38.85) to its graph in Figure 1 which is around (1550, 40), coefficient b is highly 

possible to be the highest GDD for a given plant species at the stage of quiescence, and 

coefficient c is the lowest CP upon quiescence for warm season and cool season grasses. 

Figure 2 is a CP/GDD graph for a legume which shows the lowest point is roughly (700, 

120). The finding correlate to the magnitude of Alfalfa’s lowest coordinates (801, 

104.24) in Table 1, thus the hypothesis for coefficients b, c of warm season and cool 

season grasses also appear to hold good for legumes. 

 

 Figure 1. Big bluestem CP in relation to GDD. (Mitchell et al. 2001) 

 

Figure 2. Legume sainfoin (Onobrychis viciifolia) CP in relation to GDD. (Borreani et 

al. 2003b)  
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In summary, we propose that the equations for predicting forage quality are: 

    Warm season grasses: CP = 0.0001(GDD – GDDmax ) 2 + CPq [12] 

    Cool season grasses: CP = 0.00016 (GDD – GDDmax ) 2 + CPq  [13] 

    Legumes: CP = 0.00025 (GDD – GDDmax ) 2 + CPq  [14] 

where GDDmax is the maximum GDD for a given species in a growing season and CPq 

is the minimum CP level for a species upon quiescence. 

 

Animal diet selection in PHYGROW 

Besides the proposed forage quality prediction equations, how animal actually consume 

different species determines the consumed diet quality. The rules of the later are 

specified in PHYGROW’s animal diet selection sub-model. In PHYGROW Manual, for 

a given herbivore, each type of forage is assigned to one of the four preferences 

categories at each growth stage. The four preference categories are: preferred (P), 

undesired (U), desired (D), and emergency (E). For each type of forage and grazer, with 

its particular growth stage and preference category, PHYGROW uses the following rules 

to calculate its intake by the grazer. 

 

PHYGROW assumes herbivores avoid consuming emergency plants. For the other three 

categories, it calculates a "factor", represents the percentage of forage in each category 

the grazer would consume during unlimited supply, for the grazer/forage pair, e.g. 

preferedFactor, undesirableFactor, desirableFactor based on: 

    preferedFactor = 1 - exp ( -3.65 * pf / tf) 



 23

where pf is the total available preferred forage, and tf is the total available forage 

    undesirableFactor  = 0.031971 * exp(2.89 * uf / tf) 

where uf is total available undesirable forage 

    desirableFactor =1.0 - undesirableFactor- preferedFactor 

  

Then, PHYGROW calculates the "extra demand", which indicates whether herbivor is 

grazing according to its preference factors, the following rules apply: 

    pd = max(0, demand * preferedFactor - pf) 

    ud = max(0, demand * undesirableFactor - uf) 

    dd = max(0, demand * desirableFactor- df) 

    extraDemand= dd + ud + pd  

where pd is preferred forage demand, ud is undesired forage demand, and dd is desired 

forage demand; pf, uf and df are total available preferred forage, total available 

undesirable forage and total available desirable forage respectively. 

 

Then if the extra demand = 0, individual intake of different plants is calculated as: 

    For preferred forage: pi=demand * desirableFactor 

    For undesirable forage: ui=demand * undesirableFactor 

    For desirable forage: di=demand * desirableFactor 

where pi, ui and di are intake for preferred, undesired and desired forage respectively. 

 

If the extra demand > 0, the individual intake of different plants is calculated as: 
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    For preferred forage: pi=demand*pf/tf 

    For undesirable forage: ui=demand * uf/tf 

    For desirable forage: di=demand * df/tf 

where pf, uf, df are the total available preferred, undesirable, and desirable forage and tf 

is total available forage. 

 

This animal diet selection sub-model in PHYGROW coupled with the forage quality 

prediction equations proposed before provides the necessary components to calculate 

animal diet CP. 

 

Animal diet CP 

PHYGROW is designed to calculate a grazer’s intake for a particular forage species. 

PHYGROW will generate a database for a grazer that is using a particular forage 

community as following example in Table 2: 

Table 2. A PHYGROW grazer diet selection example.1 
Species Growth Stage Preference Intake Intake CP 

1 Rapid growth Preferred pi pi*CP1 

2 Dead Undesirable ui ui*CP2 

3 Declining growth Desirable di di*CP3 

4 Quiescence Emergency 0 0 

1CP1, CP2 and CP3 are predicted CP for species 1, 2 and 3 respectively using the proposed 
forage quality model. 

Now, the diet quality model for a grazer which is grazing on a pasture consisting of only 
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the four species as in Table 2 is proposed to be: 

Icp=piCP1+uiCP2+diCP3 [15] 

where Icp is the total intake CP value 

 

Animal diet DOM 

 

Figure 3. Fecal NIRS analyzed ratio of DOM/CP in relation to CP (%). 

A logistic model has been developed to regress the ratio of DOM/CP (y) on CP (x) using 

datasets from GAN lab’s commercial fecal NIRS data (Fig. 3). The dataset contains 

13,000 samples from locations all across U.S. Each sample was prepared under the 

standard procedure described by Lyons and Stuth (1991). DOM and CP here in the 

regression are predicted by these samples using the NIRS technology. The model is:  

y = a / (1 + b e -cx )  [16] 

with standard error 0.227 and r2 of 0.99, and a = 1.52, b = - 1.00 and c = 0.029 (Figure 3). 

Therefore we calculate diet DOM from established CP by using the following equation:  



 26

    Idom=1.52 Icp / (1- e -0.029 Icp)  [17] 

where Icp is diet CP and  Idom is diet DOM. 

 

Model validation 

A 2-year grazing trial was carried out to validate the intake quality models for a mixed 

plant community. Three 6-month old Angus steers in 2005 with average weight 500 ± 35 

lbs and three 6-month old Angus heifers in 2006 with average weight 432 ± 23 lbs were 

put on a 6.7 acre native range paddock with initial standing crop of 3684 ± 43 lbs/acre 

near Eastwood airport, College Station, TX (latitudes 30.5667 N, Longitudes -96.3667 

W), owned by the Department of Ecosystem Science and Management, Texas A&M 

University. This area is characterized as Texas Post Oak Savannah (Gould and Box 1958) 

dominated by warm-season, perennial grasses with sporadic woody overstory. The 

grazing trial lasted from August 01 to December 25 in 2005, and from April 15 to 

September 30 in 2006. Before the study, the pasture had not been grazed for 2 years. The 

cattle solely relied on the forage in the pasture. No supplement feeding was provided. 

Fecal samples were collected weekly from each animal at approximately the same time 

of the day. Samples were placed in polyethylene zipper-seal bags and dried in a 

forced-air oven at 60 ºC for 48 hours. Dried samples were grounded in a Udy cyclone 

mill to pass a 1-mm screen to ensure uniform particle dimension for improved precision 

of NIRS results (Norris et al. 1976). Samples then coolled 1 hour in a desiccator prior to 

NIRS analysis (Lyons and Stuth 1992) NIRS predicted CP and DOM data were obtained. 

The weights of each animal were recorded every 14 days at approximately the same time 
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of the day each time (Table 3). Mean observed weights of the three heifers in 2006 

started from 432 lbs to 615 lbs with an average daily gain range of 0. 6 lbs to 2.7 lbs 

(Table 3). Forage were clipped every month to obtain the total crop yield and compared 

with PHYGROW predicted crop yield to validate the PHYGROW function. The 

PHYGROW-NUTBAL model predicted weights in 2006 are compared with observed 

weights and NIRS fecal data predicted weights. 

Table 3. Observed weights in lbs of three heifers in 2006, range area. 
date Animal 

1 
Animal 

2 
Animal 

3 
Mean ± 

SE AverageDailyGain 

5/1 407 438 452 432 ± 23 N/A 
5/18 448 454 486 463 ± 20 2.2 
6/1 474.3 470 503 482 ± 18 1.4 
6/15 491 495 517 501 ± 14 1.3 
6/29 503 508 547 519 ± 24 1.3 
7/13 511 535 570 539 ± 30 1.4 
7/27 525 541.5 575 547 ± 25 0.6 
8/10 533 566 589 563 ± 28 1.1 
8/24 550 574 606 577 ± 28 1.0 
9/7 587 610 648 615 ± 31 2.7 

 

Figure 4. Comparison of PHYGROW predicted available forage over clipping data. 

A good relationship (y=-41.51+0.99x) of PHYGROW predicted standing crop over 

clipped data with an r2 vale of 0.99 and standard deviation of 169. 64 kg/ha validates 

PHYGROW is efficiently predicting standing crop at the experiment site (Fig. 4). The 
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results ensure the use of PHYGROW predicted forage quantity and animal diet selection 

sub-model for further simulation. 

 

The equations of the GDD model predicted cattle diet CP over fecal samples predicted 

diet CP for 2005 and 2006 are y=2.15+0. 62x and y=1.82+0.80x respectively. They 

both give a positive intercept, 2.15 for 2005 and 1.82 for 2006. The r2 value for 2005 is 

0.78 and for 2006 is 0.82 indicates the correlations are significant (Fig. 5 and Fig. 6). P 

value for testing the two year interaction of intercept and slope are <0.0001 and 0.0409, 

respectively, indicating there is no significantly consistent trends for prediction bias 

between the two years. The 2 year (2005 and 2006) pooled equation is y=1.57+0.81x 

with a positive intercept and a slope less than 1. The r2 value of 0.84 indicates the 

correlation is significant (Fig. 7). P values are all less than 0.0001 for the test of slope = 

1 and intercept = 0 indicates prediction biases are insignificant (Table 4).  

 

Figure 5. Comparison of new model predicted cattle diet CP% over fecal sample 

predicted cattle diet CP% for 2005. 

y=2.15+0.62x 
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Figure 6. Comparison of new model predicted cattle diet CP% over fecal sample 

predicted cattle diet CP% for 2006. 

 

 

Figure 7. Comparison of new model predicted cattle diet CP% over fecal sample 

predicted cattle diet CP% for 2005 and 2006 combined.  

Table 4. Validation of the diet CP quality prediction model by fecal NIRS predicted CP 
in 1995, 1996 and 2 year combined.1  

Validation Source Intercept 
Linear 

Coefficients 
r2 Root MSE 

2005 2.15(<.0001) 0.62(<.0001) 0.78 0.69 

2006 1.82(<.0001) 0.80(<.0001) 0.82 0.82 

2 year combined 1.57(<.0001) 0.81(<.0001) 0.84 0.94 
1n= 25 (2005), 73 (2006), and 98 (2 year combined), Parenthetic values following intercepts 
and linear coefficients are the P values for the intercept 0 and slope 1 tests respectively. 

S = 0.95013648
r = 0.91878623
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y=1.57+0.81x 
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NIRS fecal data predicted weights versus observed weights curve give a straight line 

(y=0.23+0.81x, Fig. 8) with interception of 0.23 (r2=0.94, s=0.16). This validates the 

NUTBAL model running well for the case. 

 
Figure 8. NIRS fecal data predicted weights over observed weights.  

 
Figure 9. PHYGROW-NUTBAL predicted weights over observed weights. 

 
Figure 10. PHYGROW-NUTBAL predicted weights over NIRS fecal data predicted 
weights. 

y=0.23+0.81x 

y=0.17+0.92x 

y=-0.06+1.11 x 
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Both PHYGROW-NUTBAL predicted weights versus observed weights curve 

(y=0.17+0.92x, r2=0.96, s=0.15, Fig. 9) and PHYGROW-NUTBAL predicted weights 

versus NIRS fecal data predicted weights curve (y=-0.06+1.11 x, r2=0.97, s=0.13, Fig. 

10) display a straight line with interceptions of around 0 (-0.06, and 0.17).  

 

Discussion  

Validation of the model predicted cattle diet quality by fecal NIRS predicted cattle diet 

quality indicates the developed model can be used to predict cattle diet quality to 

replace the fecal NIRS approach. One would find it useful in making management 

decisions regarding large scale grazing land where fecal NIRS method is difficult to 

apply or when cattle dietary information needs to be obtained immediately which Fecal 

NIRS method could not offer. The validation of the developed cattle diet quality model 

and its application in PHYGROW-NUTBAL system indicates the model could be used 

to link PHYGROW and NUTBAL together to provide integrated decision supporting 

system for grazing cattle management.  

 

The source of the error may come from the three step modeling process: the error from 

PHYGROW modeled standing crop; the error from forage quality predictions; and the 

error from animal diet quality selection sub-model in PHYGROW. Further studies 

should focus on increasing the accuracy of the model by decreasing all the three sources 

of error. Because there is no other economically alternative tool available to give better 

estimates of animal diet quality, the developed model is thus an encouraging first step 
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towards development of an accurate yet economically available tool assisting 

management decision making. It also provides a foundation for future application study 

for a variety of animal kinds.  
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CHAPTER IV 

A SIMPLE TEMPERATURE DRIVEN CATTLE DIET QUALITY MODEL 

 

Overview 

In searching for a simplified model to predict cattle diet quality, Grazing Animal 

Nutrition lab (GAN lab) commercial fecal Near Infrared Reflectance Spectroscopy 

(NIRS) analyzing data for Major Land Resource Area 42 (MLRA 42) is used to analyze 

the relationship between Growing Degree Days (GDD) and cattle diet Crude Protein 

(CP%) and Digestible Organic Matter (DOM %). Eight ranches within the region were 

randomly selected for analysis. Fecal CP and DOM for each ranch is regressed over 

GDD for that ranch and its species composition. Repeatable high quality regressions are 

reported for CP and GDD for these ranches. A simple temperature based model then is 

developed to predict cattle diet quality for the regional use for native pasture with no 

supplement feeding. Data from another region (MLRA 116B) and a controlled grazing 

study carried out in College Station, TX, were used to validate the application of the 

relationship over different regions. The study showed Using GDD to predict cattle diet 

quality is a valuable tool, but region specific relationships need to be developed.  

   

Introduction 

Knowing diet quality is essential for effective cattle production from rangelands 

because it reveals the quantity and quality of supplement feeding requirements. One of 

the popular tools currently available for predicting cattle diet quality is fecal Near 
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Infrared Spectroscope (NIRS) profiling (Stuth et al. 2003b; Lyons and Stuth 1992; 

Coates 1998; Gibbs et al. 2002; Gallagher 1990; Keating 2005). Although it is a fairly 

quick and accurate method, it does require time and financial investment. When there is 

a need to consistently monitor diet quality for grazing animals over a considerable time 

for distant locations or over large areas, or obtain results rapidly, NIRS fecal analysis 

may be neither logistically or economically feasible. 

 

A model that can predict cattle diet quality in remote locations is very valuable. 

However, little research has been done to address this need. This may be partly because 

of the difficulty of modeling the complex nature of herbivore-forage interaction with 

respect to diet selection behavior.  

 

A model has been developed to predict cattle diet quality based on a forage production 

predicting model (PHYGROW) and one newly developed plant CP prediction model. 

PHYGROW is a hydrologic-based plant growth simulation model that predicts standing 

crop under certain management criteria. It represents the complex interaction between 

numerous soil characteristics, plant community characteristics, grazing practices and 

weather data for a particular location (Stuth et al. 2003b). The animal diet selection sub 

model within PHYGROW enables it to simulate the kind and amount of forage being 

selectively consumed by certain animal and thus calculate the available forage for a 

particular kind of animal. The diet selection sub model places plant species into five 

preference categories (Preferred, Desirable, Undesirable, Toxic and Emergency) and 
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computes the proportion of each preference class in the diet. The animal preference of a 

plant species can be assigned by a user according to phonological stage: fast growth, 

declining growth, quiescence, dormancy and dead (Quirk and Stuth 1995). The plant CP 

prediction model I developed was using Growing Degree Days (GDD) to predict plant 

CP content. The relationship of plant CP and GDD is well documented (Mitchell et al. 

2001; Borreani et al. 2003a; Hill et al. 1995; West et al. 1991). PHYGROW produces 

available forage quantity by species; the animal diet selection sub model in PHYGROW 

projects how animals selectively graze each species. By scaling predicted species 

specific plant CP by the amount each is being grazed, animal diet CP proportional 

content of each species in their diets and thus the total CP content are predicted.   

 

The GDD model developed for predicting diet quality is a fairly accurate tool that can be 

applied in remote locations. When used with PHYGROW, trained professionals are 

needed and the initial setup requires extensive sampling on the physical location. In an 

effort to develop a further simplified model to predict diet quality, and inspire by the idea 

that GDD is the driving force of plant quality and cattle often attempt to obtain the best 

diet quality available from a forage community, the direct relationship between GDD 

and cattle diet CP is assessed. 

 

Repeatable relations between GDD and cattle diet CP is highly valuable in remotely 

predicting cattle diet quality, especially on landscape level where no other alternative 

method is economically available. The attractive feature of temperature driven models is 
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that it is useful not only for predicting current cattle diet quality but for projecting future 

diet quality based on forecast weather data. After baseline information, (forage 

community composition, dominated species and base temperature), is collected from 

field survey or from similar proximate areas, the remaining cost of running the model 

will be the cost of acquiring temperature data from government or commercial weather 

data storage and forecasting centers. The model developed here is a low cost, easy to 

access and convenient tool for grazing cattle management. 

 

We regressed animal diet CP over GDD for Major Land Resource Area 42 (MLRA 42, 

Figure 11) from GAN lab commercial dataset. A given MLRA usually has similar soil, 

geographic features and thus plant community composition. The analyses are done at the 

individual ranch scale and data combined to assess the correlations. Data for MLRA 

116B and a controlled grazing study in College Station, TX were also analyzed to look at 

the applicability of a universal relationship. Diet DOM is also regressed over GDD. 

Since a good relationship between diet DOM/CP over CP were found based on GAN lab 

data (Fig. 3), the two methods of predicting DOM from GDD and predicting DOM from 

CP are compared. 

 

Data and methods 

The dataset used to develop the relationship was obtained from the GAN lab. 

Information about each sample in this dataset includes ranch name from which fecal 

sample was collected, date the fecal sample was collected, latitude and longitude of the 
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collection location, kind of animal, vegetation type at the location, GAN lab predicted 

diet CP% and DOM%.  

 

  

Figure 11. Map of MLRA 42 (Southern Desertic Basins, Mountains, and Plains). 

The subset randomly chosen for analysis was MLRA 42 (Fig. 11), Southern Desertic 

Basins, Plains, and Mountains (USDA NRCS 1997). This region comprises 13 million 

ha and extends from Texas northwest to include portions of Arizona and New Mexico. 

Annual average precipitation in the area ranges from 203mm to 262mm. The average 

annual air temperature is about 16 °C. Frost free season exceeds 200 days and extends 

from April 1 to November 1. The temperature regime and rainfall distribution favor the 

growth of warm-season perennial plants on the site. Spring moisture conditions are only 

occasionally adequate to cause significant growth during this period of the year.  

 

Samples collected during winter months were eliminated to avoid distortion due to 
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possible supplement feeding. GDD were computed by subtracting a base temperature 

for plant growth from daily average temperature. The equation used to determine GDD 

was:  

  GDD= (Tmax+Tmin)/2-Tbase  [18] 

Base temperature of 10 ºC was used because the dominated plant species in this region 

are warm season grasses. We regressed 7 ranches for their fecal CP over GDD using 

CurveExpert 1.37. These ranches were selected because they are cattle operations that 

match the study subject, and they represent native rangeland to eliminate the possibility 

that improved pasture could have very different forage complex and thus with different 

base temperature than the one we selected to calculate GDD. The curves which 

provided the highest r2 value, i.e, best fit, are reported. All the data then pooled to 

regress CP over GDD for an overall fit. For the quadratic fit relations, the equations 

were converted to the standard form of Equation 2 to compare their similarity, 

  CP = a (GDD-b) 2 + c  [2] 

where a, b and c are constants. Coordinates (b, c) represents the highest or lowest point 

on the quadratic graph of the equation and a represents the slope of the graph. 

 

A different region, MLRA 116B, was selected to validate the model. This area is 

predominantly in southwest Missouri and extends for a short distance into the northeast 

corner of Oklahoma and southeast Kansas. It makes up about 352.01 square miles 

(USDA NRCS 1997). Elevation ranges from 200 to 500m. Average annual precipitation 

is 975 to 1,225 mm. Maximum precipitations is mainly in spring and early in summer, 
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and the minimum is in midsummer. Average annual temperature is -13 to 16°C. Average 

freeze-free period is -180 to 200 days. This area supports savanna vegetation. Dominant 

grassland species are Big bluestem, little bluestem, indiangrass, and switchgrass.  

 

A grazing trial was also carried out to validate the application of the model over other 

regions. Three 6-month old Angus heifers in 2006 with average weight 432 ± 23 lbs 

were put on a 6.7 acre native range paddock with initial standing crop of 3684 ± 43 

lbs/acre near Eastwood airport, College Station, TX (latitudes 30.5667 N, Longitudes 

-96.3667 W), owned by the Department of Ecosystem Science and Management, Texas 

A&M University. This area is characterized as Texas Post Oak Savannah (Gould and 

Box 1958) dominated by warm-season, perennial grasses with sporadic woody overstory. 

The cattle solely relied on the forage in the pasture. No supplement feeding was 

provided. Fecal samples were collected weekly from each animal at approximately the 

same time of the day. Samples were placed in polyethylene zipper-seal bags and dried in 

a forced-air oven at 60 ºC for 48 hours. Dried samples were grounded in a Udy cyclone 

mill to pass a 1-mm screen to ensure uniform particle dimension for improved precision 

of NIRS results (Norris et al. 1976). Samples then coolled 1 hour in a desiccator prior to 

NIRS analysis (Lyons and Stuth 1992) NIRS predicted CP and DOM data were obtained. 

The diet CP was then regressed over GDD with base temperature of 10 ºC.  

 

Results  

The regressions of CP% over GDD repeatedly gave good quadratic relationships for all 
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the seven ranches (Figure 12:A-G). Coefficients of determination range from 0.52 to 

0.99 (Table 5), and standard deviation ranges from 0.49 to 1.93 (Table 5). All the 

ranches combined for MLRA 42, a general quadratic regression could be developed 

(Fig. 12: MLRA 42) with coefficient of determination of 0.64 and standard deviation of 

1.67. Regression equations for each ranch and combined are summarized in Table 5 and 

the coefficients a, b and c in the format of Equation 2 are also summarized in Table 5. 

Coefficients a represents how fast the diet CP increase or decrease, coordinate (b, c) 

represents the highest CP and the GDD when the highest CP occurs. Comparing 

coefficients a, b and c for the seven ranches, the highest diet CP is ranging from 9. 65 to 

12.57 and the GDD at which when the highest CP occurs is ranging from 1095.43 to 

1890.73 (Table 5).  

Table 5.  Relationships between CP and GDD for MLRA 42. 
Ranch Equations S r2 a (e-06) B c 

A 2.44+0.01x-0.000004x2 1.74 0.85 -3.95 1595.60 12.49 

B 0.21+0.01x-0.000004x2 1.39 0.92 -3.54 1890.78 12.45 

C 3.23+0.01x-0.000003x2 2.06 0.52 -3.24 1407.45 9.65 

D 3.38+0.01-0.000003x2 1.90 0.72 -3.16 1654.12 12.03 

E 3.69+0.01-0.000002x2 2.05 0.99 -2.23 1841.16 11.25 

F 0.18+0.01-0.000004x2 0.49 0.99 -4.33 1520.41 10.19 

G 3.55+0.02-0.000008x2 1.93 0.60 -7.52 1095.43 12.57 

Combined 3.84+0.01-0.000003x2 1.67 0.64 -2.59 1727.00 11.58 
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Figure 12. Relationship between CP% (Y axis) and GDD (X axis) for the seven ranches 

(A-G) and the combined in MLRA 42.  
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The regressions for DOM % over GDD have high r2 values but relationships 

significantly differ among sample locations (Table 6). A logistic model has been 

developed to regress the ratio of DOM/CP on CP (%) using datasets from GAN lab’s 

commercial fecal NIRS data. The model is:  

  y = a / (1 + b e -cx )  [16] 

Once CP is determined, using the relation of DOM/CP over CP would be a better way 

to predict diet DOM values than directly predict DOM from GDD (Fig. 3).  

Table 6.  Relationships between DOM and GDD for MLRA 42. 
Ranch Equations S r2 

A y=(0.02+60.49x0.70)/(4.12+x0.70) 3.13 0.99 

B y=(2800.64+59.23x2.69)/(4000919.00+x2.69) 3.05 0.99 

C y=21.54+0.18x+0.0002x2+… 9.58 0.58 

D y=(0.02+61.36x0.68)/(4.70+x0.68) 2.15 0.98 

E y=58.05(1-exp(-0.02x)) 0.49 0.99 

F y=63.04(1-exp(-0.13x)) 1.09 0.99 

G y=-1.11e9x/(1-1.91e7x+947.68x2) 1.93 0.60 

Combined y=71.45x0.10/(0.41+x0.10) 3.66 0.80 

CP data are also regressed over GDD for the validation site MLRA 116B (Fig. 14) and 

for the controlled study in Range Area (Fig. 13). Different equations were found which 

are not consistent with the quadratic equations found for MLRA 42 although it has good 

correlation (r2=0.81, 0.77; Fig. 13, and Fig. 14). This indicates there may be different 
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relationships for different regions. 

 

Figure 13. Relationship between CP% and GDD for range area.  

*Model: y=(a*b+c*xd)/(b+xd), with a=0.01, b=-1210.16, c=7.55 and d=1.27 

S = 1.51542567
r = 0.87953833
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Figure 14. Relationship between CP% and GDD for MLRA 116B.  
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y=1/( 1.57x0.01-1.55)
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Discussion 

With no other economically sound alternative methods for predicting cattle diet quality 

over landscape scales, the relations could be used commercially for predicting cattle 

diet quality under the following conditions: No supplement feeding is added, cattle only 

or dominated herd composition, light to medium grazing pressure. 

 

One prediction equation could be developed for one geographic region with similar 

climate and vegetation community. The smaller the scale of the application area is, the 

higher the accuracy. Depending on the forage community and climate, different 

landscape should have very different relationships. Fortunately, databases like the one 

of GAN lab are available for diet quality information all across America. Landscape 

relationships between diet quality and GDD could be developed remotely based on 

these data. Once regional common relationships are developed, coupled with weather 

predicting information system, regional or even national real time and forecasting 

livestock diet quality map could be developed.   

 

These relations are applicable under the situation of free ranging animals with 

unlimited or minor restrained supply of forage. Because the fraction of diet quality 

either supplied by supplement feeding or restrained by limited forage supply are 

relatively easy to measure, future research could be expected for successfully 

developing an advanced model for extent use under these situations.  
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CHAPTER V  

SUMMARY AND CONCLUSION 

 

Two different approaches were taken to predicting cattle diet quality. The first approach, 

which will hereafter be referred as the integrated model, incorporated GDD based 

forage quality prediction equations with PHYGROW and its animal diet selection sub 

model to predict animal diet quality. The other significant outcome of the approach is 

that PHYGROW and NUTBAL are now could be linked together using the diet quality 

prediction method instead of NIRS fecal analysis to provide a more economic and rapid 

tool for rangeland grazing management. The second approach, which will hereafter be 

referred as the simple model, is a simple temperature driven prediction model that 

predicts cattle diet quality directly from GDD. 

 

For predicting cattle diet quality, both approaches discussed here have broader 

applications than NIRS fecal analysis, hand plucking of forage to mimic free-ranging 

animals’ diets and the use of esophageal fistulated animals in determining animal diet 

quality. The most significant advantage of the developed models is that they can be 

used remotely. After the initial forage sampling and set up of PHYGROW, the 

integrated model could be used to predict cattle diet quality just with the added input of 

weather data, which could be obtained from various resources without ongoing sample 

collection on the physical location. The simple model only has air temperature as its 

input and a predetermined plant growth base temperature. Once the plant community 
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composition is been assessed and the base temperature for plant growth is determined, 

with empirical data record for NIRS fecal predicted cattle diet quality, a equation 

directly link cattle diet quality to GDD could be developed for the location concerned. 

And ongoing cattle diet quality could be predicted by feeding remotely accessible 

temperature data in the equation. The second advantage of the two developed models is 

their low maintenance cost feature. Compared to other methods which require extensive 

ongoing labor, time and financial investment, the only maintenance cost of the two 

models is the cost to acquire weather data. The third advantage is that the models are 

feasible to be used in managing large scale land units. The other three techniques are all 

suited for small scale production management because of the enormous cost they 

associated to generate information over large landscape scale.  

 

The two models are similar in their required inputs (weather data), fundamental 

structure (GDD driven) and accuracy. Their applications should be differentiated, 

however, to optimize their use. The integrated model involves use of PHYGROW and 

its setup which requires initial forage sampling. The information of plant community, 

its composition and relative abundance, must be obtained beforehand, thus suited for 

medium to small scale application. The simple model doesn’t need any sampling once 

equations are initially set up through existing data like GAN lab dataset, thus could be 

used in all scales. Since the integrated model has more information of the study areas 

like the plant community, the grazing pressure, the management rules applied, its 

application will be more general than the simple model. The simple model has limited 
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application when the study area is heavily grazed or supplement feeding is present. The 

integrated model, on the other hand, could be used with various grazing pressure and 

whether or not supplement feeding is present. Although both models are developed for 

cattle only operation, the integrated model can be easily converted for other grazing 

animals or mixed herd operation then the simple model. Since the forage quality and 

animal selection are two separate modeling steps in the integrated model, and the 

forage quality modeling step dose not involve any variables for the grazing animal. All 

that is need to apply it for a new kind of animal is the assignment of different animal 

preference values in the animal selection step will convert the model for a new kind of 

grazing animal or even a mixed herd. Theory behind the simple model is like a black 

box. Cattle are the black boxes. How they selectively grazing to get the best out of the 

resources and how the composition of the forage community affects their intake and 

digestion are unknown. Since cattle are the mystery here, conversion of the model for 

other grazing animals will be not feasible. Although one can develop equations for 

other kinds of animals based on their fecal analysis data, what worked for cattle may 

not work for other kinds of animals. 

 

This is a pioneer research in predicting cattle diet quality indirectly other than fecal 

NIRS analysis. The two developed models provided a rapid, economically sound, 

remotely accessible tool for predicting cattle diet quality. Application of the models will 

provide the general users of the cattle production industry an excellent way to calculate 

production cost and thus better managing their cost and revenue. Integrated with 
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PHYGROW and NUTBAL, animal nutritional requirements and performance could be 

predicted. Profound influences in the industry are expected to happen once the models 

are widely adopted.  

 

The research also provided a framework and foundation for future work. One direction 

of further research will be to develop applications for different grazing animals using 

the same frameworks. The other direction is to increase the accuracy of the integrated 

model by looking at the three modeling steps separately.  

 

The research focused on application within ranches or regions sharing uniform 

environment. Since the simple model requires fewer inputs and the necessary inputs are 

relatively easy to acquire, an amazing potential application for the simple model is to be 

used to develop diet quality map for across regions or even the whole US. This diet 

quality map application requires baseline data of regional plant growth base 

temperature to calculate GDD, the information could be obtained through field survey, 

literature data or approximation from surrounding regions or regions with similar plant 

community and environment. Since GDD and diet quality relations are proved to be 

different among regions, regional specific equations need to be developed based on 

empirical fecal NIRS data record. Embedding the equations into Geographic 

Information System (GIS) fed with time series of GDD, a real time and forecasting 

cattle diet quality map could be produced. The map could be of great use in regional or 

national management of cattle industry. 
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