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ABSTRACT 

 

Gender Dependent Survival of Allogeneic Trophoblast Stem Cells.  (August 2008) 

Jessica A. Epple-Farmer, B.A., Lincoln University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Duane Kraemer 

 

 Pregnancy succeeds because the fetal allograft survives in the presence of a fully 

functional maternal immune system.  The placenta, especially its trophoblast, provides 

the initial barrier between the maternal and fetal environment and, due to their location, 

trophoblast cells could be expected to be immune-privileged.  Yet in the ectopic sites 

tested thus far, trophoblast stem cell transplants have failed to show noticeable immune 

privilege and appear to lack physiological support.  However in this study, portal vein 

injected green fluorescent protein-labeled trophoblast stem cells were able to survive for 

several months in the livers of allogeneic female (14/14), but not male (0/4), mice.  

Gonadectomy experiments revealed that this gender-dependent survival does not require 

the presence of ovarian hormones (4/4) but the absence of testicular factors (5/5).  In 

contrast, similarly labeled allogeneic embryonic stem cells were reliably rejected 

(11/11); these same embryonic stem cells survived when mixed with unlabeled 

trophoblast stem cells (13/13).  The protective effect offered by the trophoblast stem 

cells did not require any immunological similarity with the co-injected embryonic stem 

cells.  Neither the trophoblast stem cells nor the co-injected embryonic stem cells gave 

rise to tumors during the study period.  Thus, this study demonstrates that, provided a 

suitable location and hormonal context, ectopic trophoblast stem cells may exhibit and 

confer immune privilege.  These findings suggest applications in cell and gene therapy 

as well as provide a new model for studying trophoblast physiology and immunology. 
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INTRODUCTION: THE IMPORTANCE 

OF RESEARCH 

 

The isolation of mouse trophoblast stem (TS) cells (1) and the ability to promote 

differentiation of  human embryonic stem (ES) cells into trophoblast cells in vitro (2) has 

increased the motivation of researchers to apply the phenomenon of trophoblast immune 

privilege (3-5) to allogeneic transplantation and cell therapy (6).  Unfortunately, attempts 

to transplant TS cells or their in vitro-differentiated derivatives have been largely 

unsuccessful.  When syngeneic TS cells were injected subcutaneously into non-pregnant 

females, they were reported to differentiate into giant cells within 5-10 days and  to 

degenerate rapidly (7).  When allogeneic TS cells and their differentiated derivatives 

were injected into the tail veins of non-pregnant females, they were removed from host 

lungs by natural killer cells within 24 hours (7).  TS cells injected subcutaneously in 

high numbers into male nude mice formed giant trophoblast and spongiotrophoblast cells 

that were resorbed within 2 weeks (8).  Thus, in the ectopic sites tested so far, all of the 

trophoblast cell transplants have failed to survive longer than a few weeks.  

Research in sheep has illuminated the important role of the uterus in pregnancy 

by revealing that the uterus becomes moderately immune-privileged under the influence 

of progesterone (9).  It is possible therefore that the failed trophoblast engraftments were 

due to injection at a poor location and so missing the synergistic interaction between the 

immune mechanisms of the trophoblast and the uterus.  Based on this, it is possible that 

an injection into a partially immune-privileged location, other than the uterus, might 

permit allografted TS cells to survive.  Furthermore if the allografted TS cells were able 

to survive in an ectopic location then they may also be able to provide protection for 

other nearby cells in a manner similar to the placenta protecting the fetus.  This 

____________ 
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protection, if successful, would enable the co-injected cells to survive in locations where 

they normally could not.  These hypotheses were tested in the present experiments.  As a 

final component of the project, the role played by sex hormones in the survival of 

ectopic TS cells was analyzed.  

The results of these investigations demonstrate that (i) the liver provides a 

physiological and immunological environment permissive of prolonged TS cell survival.  

This TS cell survival (ii) displayed a lack of dependence on the systemically provided 

ovarian hormones and a susceptibility to testicular factors.  This TS cell survival (iii) 

appeared to provide an immuno-protective effect on co-injected ES cells.  Together, 

these results provide a framework for using transplanted TS cells in cell therapy, gene 

therapy, and as a model to study trophoblast physiology and immunology. 
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BACKGROUND 
 

Previous Investigations 

The use of TS cells in this project was based on studies that described the strain-

dependent isolation, in vivo survival, lymphoid differentiation, and tolerogenicity of “rat 

embryonic stem cell-like cells” (RESC) (10).  In that project, cell lines were generated 

from three different rat strains: Wistar-Kyoto (WKY), BDIX, and Sprague-Dawley (SD).  

These cells had characteristics similar to mouse ES cells in that they exhibited a compact 

morphology and expressed the enzyme alkaline phosphatase and the cell surface marker 

Stage-Specific Embryonic Antigen-1 (SSEA-1) (10).  When the RESC line from the 

WKY background was injected into allogeneic rats, it was found that the cells: (i) 

survived and migrated to the liver, spleen and thymus, (ii) differentiated into B cells and 

macrophages that were detectable for 25+ weeks, (iii) failed to generate tumors, and (iv) 

conferred background cell specific tolerance to abdominal heart transplants.  It was 

subsequently suggested however that the identity of this RESC line was more TS like 

then ES-like.  This belief was based on the findings that the cells lacked the transcription 

factor Octamer-4 (Oct4), a crucial ES cell marker, and that the cells were able to grow in 

the absence of Leukemia Inhibitory Factor (LIF), an essential cytokine for the growth of 

mouse ES cells.   

 

Early Embryonic Development 

After fertilization, the ensuing cell divisions produce a mass of cells with an 

unlimited spectrum of differentiation possibilities that persist until the eight cell stage 

(11).  At the eight cell stage, blastomeres begin increasing their cell-to-cell contact so 

that in future divisions they produce a compacted group of cells called the morula.  As 

the cells within the early morula divide they can either take up a position on the inside 

where they are enclosed by other cells or remain on the outside in contact with the 

external environment.  Late in the morula stage a cavity ( the blastocoel) begins to form 

and marks the transition to the blastocyst stage.  From the original totipotent cell type the 
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first restriction in potential occurs with the differentiation of trophoblast stem cells from 

what will become the inner cell mass (12).  Trophectoderm cells can be distinguished by 

their expression of the transcription factor Cdx2 (13) while the cells of the inner cell 

mass express Oct4 (14).  In the current developmental model, mutual antagonism 

between Oct4 and Cdx2 reinforce this segregation (15).  Lineage-tracing experiments 

have demonstrated that the trophectoderm mainly originates from outer cells with the 

inner cells becoming the inner cell mass (16) as a result of cell polarity after cleavage 

(12).  Later in development the trophectoderm will further differentiate into other 

placental cell types.  The second restriction step occurs within 24 hours after blastocyst 

formation with the differentiation of the inner cell mass cells into either epiblast or 

primitive endoderm.  These cell fates are further reinforced by the transcription factors 

Oct4 and Nanog (17) in the epiblast and Gata4/6 (18) in the primitive endoderm.  In the 

current model for this developmental step the inner cell mass is a heterogeneous 

population of developmentally-committed cells that later migrate to the locations of the 

epiblast and primitive endoderm (15).  The primitive endoderm will go on to form the 

parietal endoderm that covers the blastocoel surface of the blastocyst and the visceral 

endoderm of the yolk sac.  The epiblast will continue to form the fetal cell populations as 

well as the mesodermal component of the yolk sac. 

 

Stem Cell Types Analyzed in This Dissertation 

 Mouse stem cells have been isolated from each of the first three embryonic 

developmental lineages: the ES cells representing the epiblast, the TS cells representing 

the trophectoderm, and the extraembryonic endoderm (XEN) cells representing the 

primitive endoderm.  This study has focused on the use of ES cells and TS cells in 

allogeneic cell transplantation. 

 

ES Cells 

In 1981 the first embryonic stem cell lines were derived from mouse blastocysts 

by two independent research groups (19, 20).  The definition of ES cells is that they are 
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self-replicating stem cells that are derived from an embryo and can differentiate into all 

cells of the body.  Investigators have however generated a list of more specific 

characteristics required of any ES cell line.  These characteristics include that they 

originate from the inner cell mass of the blastocyst.  They are capable of long-term self-

renewal.  They maintain a stable diploid karyotype.  They can be differentiated into all 

three primary germ layers of the embryo (endoderm, mesoderm, and ectoderm).  They 

are capable of integrating into all fetal tissues of a chimeric animal.  They are germ line 

competent and can be cloned.  They express the transcription factor Oct-4, and do not 

undergo X inactivation (21, 22).  

There are several published protocols for the derivation and maintence of mouse 

ES cell lines.  ES cells tend to grow in tightly packed colonies in which individual cells 

can not be identified.  If these colonies have a rough appearance in which individual 

cells can be identified, this is evidence that the culture has started to differentiate.  In 

order to prevent differentiation, the culture should be passaged frequently and medium 

replaced daily (23).  When the cells are passaged it is also important to disaggregate the 

colonies down to a single cell level in order to prevent further differentiation.   

Derivation of mouse ES cells begins with the collection of day 3.5 post coitus 

blastocysts.  These blastocysts are allowed to expand and hatch in individual 4-well 

dishes where they will adhere and flatten to the provided feeder layer.  At this stage the 

hatched blastocyst has a “fried egg” appearance and the inner cell mass is ready to be 

collected and disaggregated.  From this point forward the ES-like colonies may be 

picked, disaggregated, and moved to new culture wells containing feeder cells until they 

reach a constant density that can then be trypsinized and further passaged.   

 

TS Cells 

The first trophoblast stem cell line derivation was reported in 1998 (1).  This line 

could form all of the derivatives of the trophectoderm.  The trophectoderm is the first 

cell type to differentiate from the developing embryo.  It is involved in implantation and 

forms the fetal components of the placenta.  Trophoblast stem cells, while not as highly 
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characterized as ES cells, have specific characteristics.  These characteristics include 

their blastocyst derivation source, specific culture conditions (FGF4, heparin, and contact 

with an embryo fibroblast feeder layer) (1) and their growth morphology, as tight 

relatively flat epithelial colonies with some spontaneous differentiation at the edge.  TS 

cells are capable of long term self-renewal but can be differentiated by the removal of 

FGF4 and feeder cells.  They retain a stable diploid karyotype in their undifferentiated 

form and display primarily paternal X inactivation (24).  TS cells characteristically 

express the genes Cdx-2 (13) and Eomesodermin (25) when undifferentiated. 

There are several protocols for the derivation and maintence of TS cell lines each 

based upon the specific mouse strain being used. Maintaining a TS cell line on feeders 

requires medium changes every other day as opposed to the daily requirement of ES 

cells.  Once the cells reach about 80% confluence they should be passaged every 4 days 

although some strains can grow longer without differentiating or separating from the 

substrate.  Derivation of TS cell lines begins with the same blastocyst stage as ES cells.  

The culture medium is different (containing FGF4 and Heparin instead of LIF) as is the 

timing of the first disaggregation (one day earlier in size of primary outgrowth).  One 

derivation protocol calls for the first disaggregation and subsequent culture to take place 

within the same well as the original attachment with the medium supplemented with 

70% feeder conditioned medium until the TS cells become an established cell line (23). 

 

XEN Cells 

Kunath et al (2005) (26) derived extraembryonic endoderm (XEN) stem cell lines 

from the primitive endoderm that forms on the blastocoel exposed surface of the inner 

cell mass (Figure 1).  Within the developing conceptus, primitive endoderm cells form 

the parietal yolk sac (parietal endoderm) and the definitive yolk sac (visceral endoderm).  

Like the TS cells and ES cells, the XEN stem cell line also has its own unique 

characteristics (26).  XEN cells maintain little cell-to-cell contact when grown at low 

density unlike ES and TS cell lines.  The XEN cell lines require only feeders or feeder-

conditioned medium as a supplement.  They display mixed characteristics of both 
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parietal and visceral endoderm and in chimeras can form both parietal and visceral 

endoderm lineages.  They also exhibit paternal X inactivation. The protocol for the 

derivation of XEN cells is the same as that for trophoblast derivation except that the 

blastocyst outgrowths are not promptly disaggregated.  In fact, no disaggregation is 

performed until the primitive endoderm begins to take over the culture several days later. 

 

 

 

Figure 1.  Mouse placental development highlighting the four subtypes of trophoblast 

giant cells. 

 

 

Placental Structure and Function 

Because TS cells are the precursors to a major component of the placenta, it is 

important to understand the roles they play in that organ.  Figure 1 illustrates the 

different placental structures formed in the mouse as well as the type of trophoblast in 
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each location.  Placental development begins as early as the late morula to early 

blastocyst stage with the expression of Cdx2 by the early trophoblast cells (13).  In the 

mouse, mural trophoblast cells that line the blastocoel cavity differentiate into “primary” 

trophoblast giant cells and form part of the parietal yolk sac. The polar trophoblast cells 

that overlie the inner cell mass are different from their mural counterparts in that  they 

continue to divide after implantation and form the structures of the chorionic ectoderm, 

the ectoplacental cone and secondary trophoblast giant cells (27).  These polar 

trophoblast cells are also the source of TS cells. The secondary trophoblast giant cells 

that form after implantation at the edge of the ectoplacental cone are responsible for the 

connection of the fetus to the maternal blood supply.  They do this by invading into the 

uterus and targeting maternal spiral arteries.  These giant cells are polyploid, through 

endoreduplication, and can restructure their maternal environment through the 

production of angiogenic (28), vasodilatory (29), and anticoagulative products (30, 31).  

This results in the formation of pockets of maternal blood surrounding the conceptus. 

From these pockets of blood, nutrients and oxygen can pass directly through to the yolk 

sac and on to the embryo.  In the spiral arteries the giant cells displace the endothelial 

cell lining and create entirely trophoblast lined blood spaces used to funnel maternal 

blood flow towards the site of implantation (32).   

In addition to the trophoblast, another important cell lineage in the placenta is the 

primitive endoderm. Like the trophoblast, the primitive endoderm contributes 

exclusively to extraembryonic tissues and forms the parietal and visceral endoderm 

layers of the yolk sac.  A third source of cells for the placenta comes from the 

extraembryonic mesoderm.  At gastrulation, the extraembryonic mesoderm separates 

from the developing fetus and forms the allantois and the mesodermal components of the 

visceral yolk sac, amnion, and chorion. For the placenta to be fully functional the 

chorionic ectoderm layer must interdigitate with the allantois.  This supplies the 

extraembryonic mesoderm cells from the allantios that are able to invade trophoblast 

cells and create the vascular network of the labyrinth (33).  The fetal vessels will 
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eventually interdigitate in a counter-current orientation with the trophoblast-lined 

maternal blood vessels to ensure adequate transport of nutrients (Figure 2).   

While the interdigitation is taking place, the trophoblast cells in the rodent 

differentiate into three distinct layers between the maternal blood and fetal capillaries.  

The outer-most layer consists of mononuclear trophoblast giant cells that are no longer 

dividing and in the rodent have endocrine functions (33). Below the mononuclear layer 

of giant cells are the structural layers of the spongiotrophoblast and the lower villous 

layer of the labyrinth.  The labyrinth is thought to form from the chorion and innermost 

layers of the trophoblast; the outer trophoblast layer develops into the ectoplacental cone 

and later differentiates into the spongiotrophoblast as well as the mononuclear layer of 

giant cells (33, 34).   

Recently, four distinct types of trophoblast giant cells have been identified 

through their gene expression patterns, time of formation, and location within the 

placenta (Figure 1).  They include the primary giant cells, these are the original mural 

trophoblast cells formed in the peri-implantation period that express placental lactogen I 

(35) and function to line the implantation site and form part of the parietal yolk sac (36).  

Secondary giant cells form after implantation around the edges of the ectoplacental cone 

and express placental lactogen II (36).  The spiral artery-associated giant cells are 

extremely invasive and migrate up to 300µm into the uterine wall where they make 

contact with the maternal spiral arteries (37).  The canal-associated giant cells line the 

canals that funnel maternal blood into the labyrinth of the placenta and these produce 

placental isoferritin (Plf).  Later, a fourth group of sinusoidal giant cells form within the 

cytotrophoblast layer of the labyrinth.  These giant cells are associated with the sinusoids 

that carry maternal blood in the placental labyrinth layer, and express placental lactogen 

II (38).   

Below the outer layer of mononuclear trophoblast giant cells is the 

spongiotrophoblast layer.  Little is known about the spongiotrophoblast except that it 

expresses trophoblast specific protein alpha (Tpbpa) and that it is assumed to fulfill a 

structural role based on its location within the placenta.  Below the spongiotrophoblast 
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layer is the placental labyrinth.  The labyrinth contains two syncytial layers that can be 

differentiated by their expression of transcription factor glial cells missing 1 (Gcm1) and 

their distinct structural morphologies.   

 

 

Figure 2.  Flow chart illustrating the origin of each cell type in the mature placenta.  The 

coloring reflects the placement of cell types in Figure 1. 

 

 

Liver Structure and Function 

 In this study the liver is utilized as an experimental site for trophoblast 

engraftment.  The liver is an organ of many functions including glycogen storage, bile 

production, decomposition of red blood cells, and detoxification.  When nutrient rich 

blood leaves the stomach and small intestines, it travels to the liver for filtration prior to 

bodily dissemination.  This blood enters the liver through the portal vein and then 
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infiltrates the lobes of the liver where the hepatocytes reside separated by vascular 

channels.  The hepatocyte is the functional unit of the liver.  When damaged, the liver 

has remarkable regenerative capacity both by hepatocytes, that are able to divide 

forming more hepatocytes, and by ovalocytes, that are able to form more hepatocytes 

and the epithelial cells that line the bile ducts.  Like trophoblast cells, liver hepatocytes 

have also been known to fuse although much less is known about the process.  The 

incidence of hepatocyte fusion is found to increase when the liver is under the strain of 

rapid regeneration (39).  Fusion is also documented between hepatocytes and injected 

bone marrow stem cells when the latter are used for cell therapy (40, 41).  Current 

research indicates that, in cell therapy, the specific cells fusing with the hepatocytes are 

bone marrow macrophages or cells that are their precursors (42). 

 

How the Immune System Recognizes Self/Invaders 

 Every nucleated cell in the body expresses major histocompatibility complex 

(MHC) class I molecules that the immune system recognizes as self.  Under normal 

circumstances the body’s defense system does not attack its own cells and immune cells 

are subject to self-tolerance.  The innate immune system is the generic part of immunity 

that keeps the body alive until the acquired immune system can kick in.  The innate 

immune system contains a variety of cells including neutrophils, macrophages, mast 

cells, dendritic cells, and natural killer (NK) cells.  They recognize foreign invaders 

based upon their toll like receptors (TLRs) and neutrophils, macrophages, mast cells, and 

dendritic cells are able to clear the invading microbes through phagocytosis.  Before 

invaders are phagocytosed they are first contained in a process called inflammation; 

inflammation also serves as a beacon to call in more immune cells.  In addition to 

phagocytosis, macrophages and dendritic cells are able to act as antigen-presenting cells 

for the acquired immune system by processing and presenting antigens on MHC class II 

receptors.  The acquired immune system contains cells such as B and T cells that have 

customized receptors that allow them to recognize and respond to specific antigens.  

When B and T cells are created they undergo a negative selection process where they are 
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theoretically exposed to all the normal molecules in the body and are destroyed if they 

respond to them.  This selection strongly encourages self-tolerance and in general, when 

B and T cells survive selection they contain receptors that only recognize foreign 

material.  

B cells recognize antigen, i.e. foreign material, in its native state.  The B cell 

receptor is a sample of the antibody it is prepared to manufacture in defense of the body.  

Before the B cell can become activated and start antibody production it has to have 

permission by a specific type of T cell.  This acts as an additional check on the system to 

prevent an auto-immune response.  T cells recognize only antigen that has been 

processed by other cells and is presented in an appropriate fashion along with a MHC 

self marker.  If a cell is missing the MHC self marker or is displaying the wrong MHC it 

is targeted for destruction by NK cells of the innate immune system.   

Because T cells control all acquired immune responses, a case can be made for 

calling them the master cells of the immune system.  There are three general types of T 

cells and thus three different responses an activated T cell can generate.  Helper T (Th) 

cells activate other immune cells, such as B cells and other T cells, and can facilitate the 

complex workings of the immune system.  Th cells influence the microenvironment of 

an immune response through the cytokines that they produce.  Th-1 cells secrete 

interlukin-2 and interferon-γ; these cytokines are responsible for creating a 

proinflammatory microenvironment that includes the presence of cytotoxic T (Tc) cells.  

Th-2 cells secrete interleukin-4 and interleukin-10; these cytokines aid in antibody 

production from B cells.  In addition to influencing the microenvironment for other 

immune cells, the cytokines produced by Th-1 and Th-2 cells also have an inhibitory 

function on one another ensuring only one type of response occurs from a stimulus.  Tc 

cells systematically destroy, via apoptosis, abnormal body cells that are viral-infested or 

have been transformed by cancer;   Regulatory T (Treg) cells function to suppress the 

immune system through the production of IL-10 (43) and TGF-β (44).  Both cytokines, 

IL-10 and TGF-β, play a predominant role in pregnancy immunology (see Natural 

Mechanisms to Prevent Fetal Rejection, below). 



 13 

Methods to Prevent Immune Rejection 

 In standard organ transplantation, the MHC receptors and blood group antigens 

of the donor and recipient are closely matched.  The recipient is treated with 

immunosuppressive medications such as cyclosporine and monitored for signs of 

rejection.  The main drawbacks to this procedure are the prolonged exposure to the 

immunosuppressive medication and the limited supply of donor organs.  Alternatives to 

this method of organ transplantation may include: tissue engineering, 

xenotransplantation, and the artificial generation of immune tolerance (45).  While this 

study has mainly focused on the generation of immune tolerance using a pregnancy 

specific mechanism, all three therapies are briefly discussed here.  

Tissue Engineering could substitute for whole organ transplantation through the 

creation of devices that act as a barrier against the host’s immune system.  This 

technique would combine allogeneic living secretory cells that would normally be 

rejected with an inert encapsulating material to create a barrier between the foreign cells 

and the immune system of the host. One successful example of this mechanism being 

tested in humans involves the allograft of Sertoli cells combined with  islet cells to treat 

diabetes (46).  Sertoli cells were utilized in this study for their secretion of TGF-β that 

provided a protective environment for the transplanted islets.  Another form of tissue 

engineering is the use of syngeneic stem cells generated by cloning to engineer cells, 

tissues, or organs for transplantation.  This technique has the advantage of creating 

syngeneic organs that the host immune system would have no reason to attack.  

Xenotransplantation, animals as a transplantation source of cells/ organs for 

humans, is a further extension of tissue engineering.  Pig heart valves have been used in 

humans since the 1975 and now pig islets are being investigated for the treatment of 

diabetes (46).  In 2003, pigs were genetically engineered to remove the  1-3 galactose 

epitope that triggers immune rejection in humans.  This may eventually permit the use of 

non-human organ sources, but does not solve the need for persistent and aggressive 

immunosuppression. 
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Tolerance is achieved when foreign cells, tissues, or organs survive in a 

recipient’s body without requiring immunosuppressive therapy and/or damaging the host 

immune system.  Tolerance can be generated through lymphocyte anergy, clonal 

deletion of reactive lymphocytes, or manipulation of regulatory T cell function.  Anergy 

is created when the lymphocytes that react specifically to the transplant antigens are 

turned off or killed before having a chance to mature and circulate.  Many of the existing 

immunosuppressive drugs work by interfering with the lymphocytes ability to respond to 

such alloantigens.  Clonal deletion is the natural process by which the body eliminates 

self-reactive B and T cells in the bone marrow and thymus.  This process can be 

mimicked by killing the host immune cells through radiation and drugs, then performing 

a bone marrow transplant, with donor marrow cells.  The donor marrow cells serve as a 

source of stem cells that then regenerate the host immune system resulting in acceptance 

of grafts from the same donor background.  Regulatory T cells are a distant subset of T 

cells that function to suppress both the innate and acquired branches of the immune 

system.  Their ability to suppress immune response gives regulatory T cells the ability to 

reduce allograft rejection.   

 

Natural Mechanisms to Prevent Fetal Rejection 

The survival of the fetus and its surrounding placenta is an enigma because of its 

success as an allograft/semiallograft within the fully functional maternal immune 

system.  The fetus is typically considered a semiallograft because it contains genetic 

material from both the mother and the father, and as such should be rejected by the 

maternal immune system.  This rejection should take place because the fetus displays not 

only the maternal but also the paternal pattern of MHC expression.  With the advent of 

embryo transfer the maternal MHC of the fetus can also be different from the surrogate 

mother and still result in successful (allograft) pregnancies.  Many different pregnancy-

related tolerance mechanisms have been identified in both the rodent and human system.  

They originate from both the maternal and fetal side (Figure 3) and their relative 

importance is unclear. The maternal immune system tolerates the fetus through a  
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Figure 3.  Diagram of mechanisms involved with pregnancy immunology separated by 

their role in the mother’s immune system. 
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progesterone-mediated shift in the Th-1/Th-2 balance (47) and the production of Treg 

cells and regulatory macrophages.  Changes in the Th-1/Th-2 balance influence the two 

possible responses the immune system can have towards a stimulus: the activation of 

cell-mediated immunity or the production of antibodies.  To minimize inflammation 

within the uterus, the maternal immune system apparently shifts from a Th-1 to a Th-2 

dominated process (47).  Regulatory T cells prevent allograft rejection by generating 

peripheral tolerance (48).  This regulation is facilitated by the production of IL-10 and 

TGF-β which suppresses both Th-1 triggered inflammation and Th-2 antibody 

formation.  Macrophages serve a regulatory function by producing immunosuppressive 

(TGF-β) and anti-inflammatory (IL-10) molecules stimulated by the ingestion of 

apoptotic cells in low amounts (49).  Macrophages accumulate in large numbers 

surrounding trophoblast cells at the site of implantation and remove apoptotic 

trophoblast cells.  By removing the apoptotic trophoblast cells, the regulatory 

macrophages may prevent the release of cell contents that act as foreign antigens (50) 

The trophoblast cells of the placenta also have a major role to play in maternal 

immunoregulation.  The first mechanism utilized by the trophoblast cells is the 

expression of non-classical MHC class I molecules (HLA-C, HLA-E and HLA-G in 

humans and Qa-1 and Qa-2 in the mouse).  MHC class I molecules are located on all 

nucleated cells and present endogenously produced proteins to cytotoxic T cells and 

natural killer cells.  Foreign cells or virus-infected cells produce different proteins than 

normal cells and can be detected and destroyed based on the cell products bound to their 

MHC class I receptors.  HLA-C, in humans, prevents destruction of the placenta by 

natural killer cells through binding to their killer inhibitory receptors (51).  A parallel 

counterpart to HLA-C has not been identified in the mouse.  HLA-E prevents NK cell 

cytotoxicity toward trophoblast cells and corresponds to Qa-1 in the mouse.  HLA-G can 

be found in a number of forms including a soluble form that triggers apoptosis in 

activated cytotoxic T cells and inhibits the cytotoxicity and activation of natural killer 

cells (52).  Qa-2 is the mouse equivalent to HLA-G.  The second mechanism that the 

trophoblast cells employ is the induction of apoptosis through their expression of FAS 
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ligand (CD95L) (53).  An activated T cell expressing FAS will be killed upon contact 

with trophoblast cells bearing the FAS receptor.  The third mechanism utilized by 

trophoblast cells is the synthesis and secretion of indoleamine 2,3-dioxygenase (IDO).  

IDO aids in generating tolerance by locally depleting tryptophan thus inhibiting the 

proliferation of activated T cells (54)  A fourth mechanism for trophoblast evasion of the 

maternal immune system involves the expression of the complement regulatory protein 

Crry, which inhibits the activation of the complement system (55).  A fifth mechanism 

employed by trophoblast is the production of anti-inflammatory IL-10 (56) and 

immunosuppressive TBF-β (57).  While these mechanisms have been shown to be 

involved with the peaceful coexistence between the mother and the placenta no 

governing order of importance has been established for the existing mechanisms.  Their 

relative importance is unclear and may vary according to the stage of pregnancy and 

among species. 

The father may play a small role in pregnancy immunology through the 

production of TGF-β in the seminal fluid as well as by providing paternal antigen.  

Seminal fluid promotes the recruitment and activation of macrophages, Treg cells and 

NK cells to the uterine environment (58).  Thus the ejaculate may act as a priming event 

preparing the uterus for pregnancy in addition to providing the semen. 

 

Testosterone and the Immune System 

In the current study, testicular products appeared to play a key role in the 

rejection of allografted TS cells.  Testosterone may directly affect TS cell survival or it 

may act on the immune system to create an environment that is antagonistic to 

trophoblast survival.  Several reports indicate that androgens influence the immune 

response through their interaction with T cells, B cells, macrophages, and NK cells.  

Testosterone has two main effects on T cells; it both strengthens the Tc cell response and 

increases the numbers of Treg cells (59).  While testosterone appears to have no effect 

on the ratio of (CD8+) Tc cells to (CD4+) Th cells, it increases the production of IFN-γ,  

and IL-1, and IL-6 (60)  while reducing the production of IL-4 and IL-5 (61) by T cells.  
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This shift in cytokine production promotes inflammation which is presumably offset by 

the increased regulatory T cell presence.  High testosterone is associated with a decrease 

in B cell numbers (62) most likely due to the downstream effects of diminished IL-4 

production by T cells.  High testosterone also causes a reduction in numbers of both 

macrophages and natural killer cells (59).  The growth of macrophages is inhibited (63) 

and their apoptotic death is stimulated through the FAS/FASL pathway (64).  

Testosterone is also naturally found in the placental environment and appears to be 

utilized by the placenta to generate estrogen (65).  Its sources include the male fetus, the 

fetal adrenal glands, and the trophoblast cells themselves.  In placental explant studies 

testosterone had no effect on trophoblast survival at physiological levels and only caused 

cytotoxicity in super-physiological levels (66).   The levels of testosterone needed to be 

cytotoxic to the trophoblast were not physiologically possible in either female or male 

mice.  This however was not the case with macrophages, in that they were killed in vitro 

by physiologic normal male testosterone levels (63).  Endogenous testosterone may 

therefore act through the immune system rather than directly on the trophoblast cells.  

 

Liver Immunology- Oral Tolerance 

 The liver is an organ with tolerogeneic properties that has been compared to the 

placenta (67).  Due to the livers downstream location in relation to the small and large 

intestine, it is constantly exposed to high levels of endotoxin from commensal bacteria 

as well as antigens from the food we eat.  Most of the antigenic compounds that enter the 

liver pose no threat to the organism.  Evidence of the liver’s special tolerogeneic 

capacity can be seen in the long-term survival of liver allografts and subsequent systemic 

donor-specific tolerance to other organ transplants (68).  Possible mechanisms involved 

in the generation of liver tolerance include the presence of high levels of IDO generated 

by antigen presenting cells (69), regulatory dendritic cells that produce IL-10, other less 

professional antigen presenting cells that cause anergy and apoptosis in T cells, and the 

presence of regulatory T cells (67).  The comparison of the liver with the placenta is an 

appropriate one, since they share immunosuppressive properties. 



 19 

Stem Cell Transplantation 

 Fetal Cell Transfer 

In 1893 Georg Schmorl wrote the first paper documenting fetal-maternal cell 

trafficking in women who died of preeclampsia (70).  In this paper he described the 

presence of “trophoblast sprouts” in the lungs as well as necrotic sites within the liver.  

At the time, this trafficking of fetal cells within the mother was considered to be the 

cause of disease; the connection may not be that strait forward. 

 In 2005 Bianchi et al described pregnancy-associated progenitor cells (PAPCs) 

(71) which are fetal stem cells found in maternal tissue usually through the detection of 

male antigen on their surface.  These fetal cells circulate during all pregnancies and 

increase in frequency with gestational age (72).  By the second trimester 1-6 fetal cells 

can be found per ml of maternal blood.  After delivery the fraction of fetal cells within 

the circulation decreases, but these cells are suspected to persist in a maternal stem cell 

niche (72).  Using PCR, fetal cells were found in the blood of 30-50% of normal mothers 

from a month to decades after the pregnancy (72, 73).  Other studies have found 

microchimerism in 90% of women (74).  The PAPCs express CD34 a marker of 

hematopoietic stem cells and some also express CD38 a marker of activated 

lymphocytes (74). 

Time and the circumstances of parturition influence the transfer of fetal cells into 

the mother.  Thus having a miscarriage or abortion increases, by 2.4 times, the chance 

that fetal cells will be found within the mother (75).  Time after parturition also seems to 

play a role in the detection of fetal cells, as such cells were undetectable in several of the 

mothers of young sons (76).  

While the persistence of fetal cells within the mother is apparently normal, 

studies suggest that there may be some association between high levels of 

microchimerism and certain autoimmune diseases such as systemic sclerosis.  This is a 

disease in which there is excessive deposition of cartilage in the body and polymorphic 

eruption of pregnancy, in which a chronic hives-like rash appears on the abdomen of 

some pregnant women (73).  Fetal cells may also have a beneficial effect on the mother.  
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In 2002 Johnson et al reported on 29 mothers with thyroid disease that had experienced 

some tissue repair with male cells (77).  This group also documented a woman with 

hepatitis whose liver had evidence of repair by male cells from a fetus aborted 17 to 19 

years earlier (77).    

In contrast to the documented long-lasting microchimerism in humans, in 1995 

Tafuri et al (Figure 4) showed that allogeneic tumors of male mice were only accepted in 

female mice who were pregnant by males of the same background as the tumor and their 

acceptance only lasted as long as the pregnancy (78).  In this experiment, female mice 

with an H-2k background, were grafted with H-2b tumors then promptly rejected them.  

If the female, H-2k, mouse was mated with a male, H-2b, she would then accept the H-

2b tumor, but this acceptance lasted only as long as the female was pregnant.  In this 

experiment the tumor acceptance was paternal antigen specific; if the female was 

impregnated by a male that was not H-2b the H-2b tumor was rejected.  This suggests 

that T cells may be specifically tolerized to paternal antigens during pregnancy.  

 

 

Figure 4.  Diagram of experiment by Tafuri et al 1995 (78).  
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 ES Cell Transfer 

 In addition to natural fetal microchimerism and pregnancy specific acceptance of 

tumor transplantation, a few studies have examined the fate of transplanted allogeneic 

ES cells (Table 1).  In the paper that serves as a basis for this project, Fandrich et al 

reported the injection of ES-like rat cells into the portal vein of allogeneic rats (10).  

They found blood chimerism in some of these animals and those with chimerism went 

on to accept a heart allograft that was specific to the strain of ES cells injected.  As noted 

earlier, it is possible that these injected cells were TS-like rather that ES-like.  In 2005 

Fabricius and Zavazava investigated the consequences of injecting 2 million ES cells 

into the supra orbital vein of mice (79). They reported greater than 5% white blood cell 

chimerism in wild-type mice with 80% of the mice retaining chimerism at 14 days and 

75% retaining chimerism at 28 days.  This experiment was repeated in FAS-deficient 

mice with 50% chimerism at 14 days and 0% chimerism at 28 days.  These results led 

the researchers to question if FAS/FASL engagement was required for ES cell survival 

in allogeneic hosts.  The results of this experiment were inconsistent and the number of 

animals used in each group was unclear.  When a portion of this experiment was 

repeated on wild type mice as a control by the same lab in 2006, the results were the 

same as the earlier experimental FAS-deficient group.  When wild type animals were 

injected with ES cells, they demonstrated chimerism in 30-40% of the mice at day 7, but 

no chimerism at one month (80). Thus the repeatability of the studies was questionable. 

In 2005 Fair et al reported on the injection of 1 million mouse ES cells labeled 

with GFP (ESGFP) into the parenchyma of the mouse liver (81).  Twenty days later they 

detected no GFP-labeled cells.  However, if they differentiated the ES cells prior to 

injection, they found that approximately half (10/19) of the animals retained the ES cells 

in the liver.  The mechanism of this differentiated ES cell survival remains unclear. 

In 2006 Baertschiger et al reported that mouse ESGFP cells survived when 

injected into the liver of rats (4 of 12).  This survival was detected through FACs sorting 

one month later and was followed in three months by a mouse skin allograft from the 

same donor haplotype that was promptly rejected (82). 
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Table 1.  Allogeneic transplantation experiments with ES cells.  In parentheses is the lab 

where the research was conducted to help identify multiple works by the same labs or 

individuals. 

 

ALLOGENEIC ES CELL TRANSFER EXPERIMENTS 

 

Year &  Group 
Cells 

Injected 

Injection 

Location 

Additional 

Sx 
Results 

2002 

Fandrich et al (10) 

(Binas & Zavazava) 

1 million RESC Portal Vein of rats - 7d- Blood and liver chimerism 

1 million RESC Portal Vein of rats 
7d-(Abd) heart 

transplant 

Heart transplants survived +100d when of 

the same background as the injected stem 

cells 

2005  
Fabricius et al 

(Zavazava) (79) 

 

1 million 

ES cells 
Orbital Vein - < 3% blood chimerism 

2 million ES 

cells 
Orbital Vein - > 5% blood chimerism 

2 million ES 

cells 

Orbital Vein  w/t 

mouse 
- 

7d - 80% of the animals had blood 

chimerism 

28d – 75% of the animals had blood 

chimerism 

Orbital Vein Fas 

deficient mouse 
- 

7d – 50% of the animals had blood 

chimerism 

28d – 0% of animals had blood chimerism 

2005 

 Fair et al (81) 

(Smithies) 

1 million ES-

GFP 
Liver Paranchyma - 20d- 0 chimerism in cryosectioned liver 

1 million 

differentiated 

ES-GFP 

Liver Paranchyma - 
20d- 10/19 animals had chimerism in 

cryosectioned liver 

2005  
Swijnenburg et al (83) 

1 million ES Heart muscle - 
28d – strong immune invasion 

28-56d complete rejection 

1 million invivo 

differentiated 

ES 

Heart muscle 

14d- heart 

transplant to 

syngeneic animal 

28d – faster and stronger immune 

rejection 

2006  

Bonde and Zavazava 

(80) 

 

2 million  

ES-YFP 
Orbital Vein - 

14d – 35% of the animals had blood 

chimerism (2-5%) 

2 million  

ES-YFP 

Orbital Vein 

irradiated mice 
- 

14d – 75% of the animals had blood 

chimerism 

14d – liver cryosections contained labeled 

cells 

28d- 0% of animals had blood chimerism 

2006  

Baertschiger et al (82) 

1 million mouse 

ES-GFP 

Portal Vein 

Rat 

3mon- skin 

transplant 

28d- 4/12 of animals had 4-16% blood 

chimerism 

3mon-skin rejection 

1 million mouse 

ES-GFP 

Portal Vein 

Immune-

suppressed 

Rat 

3mon- skin 

transplant 

28d- 5/12 of animals had 6-36% blood 

chimerism 

3mon-skin rejection 

2006  

Magliocca et al (84) 

1 million  

ES-YFP 
Portal Vein 

7d- heart 

transplant same 

as cells 

14d – transplant rejection; 0% blood 

chimerism; liver tumors 

2007  

Nussbaum et al (85) 

½ million  

ES-GFP 
Heart muscle - 

 21d - cardiac teratomas but not directed 

toward cardiomeyocyte fate 

35d -rejected all injected cells 

2008  

Koch et al (86) 

1 million ES Subcutaneously - 0/10 tumors 

5 million ES Subcutaneously - 3/10 tumors 

20 million ES Subcutaneously - 9/10 Cause tumors 
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 In 2006 Magliocca et al injected yellow-fluorescent mouse ES cells (ESYFP) 

into the portal vein of mice followed by a heart allograft a week later (84).  The heart 

allografts were rejected in all animals, excluding the positive controls.  When the livers 

were cryosectioned at two weeks, tumors were detected within the liver.  

 In 2005 Kofidis (83) and in 2007 Nussbaum (85) investigated the effects of 

injecting ES cells into the heart of allogeneic animals.  Both groups reported tumor 

formation within the heart tissue and the Kofidis group demonstrated the presence of a 

strong lymphocyte infiltration.  In 2008 Koch et al demonstrated injection of 2x10
6
 ES 

cells subcutaneously resulted in the formation of tumors.  Koch et al also showed that 

the tumors were able to avoid rejection through the production of TGFβ (86).  Overall, 

studies on ES cell allogeneic injection have resulted in either complete rejection of the 

cells or in tumor formation.  The research by Fair et al may offer the most insight into 

ES cell tumor formation by having linked it with ES cell differentiation (81). 

 

TS Cell Transfer 

Early studies in trophoblast transplantation began prior to the creation and 

publication of trophoblast stem cells by Tanaka et al in 1998 (1) and are summarized in 

Table 2.  Verstuyf  (1989) utilized choriocarcinoma cells, a placenta tumor cell line, and 

demonstrated that tumor pieces inserted subcutaneously into mice formed masses after 

10-14 days (87).  The same pieces when inserted under the kidney capsule formed 

masses in only 5 days.  These results were difficult to interpret because they utilized 

both male and female animals, made no mention of how long the masses persisted, if 

they caused the recipients death, or if they were rejected. 

The usefulness of the placenta in transplantation gained new significance with 

the work of Tafuri in 1995 (Figure 4).  Here allogeneic tumors of male origin were only 

accepted in females who were pregnant by males of the same background.  The tumor 

acceptance in this experiment only lasted as long as the pregnancy and rejection 

followed parturition (78). 



 24 

 In 2002 Suzuki et al co-injected placental pieces with islets under the kidney 

capsule of allogeneic diabetic male mice (6).  This coinjection allowed insulin to reach 

normal levels by day 3 although all transplanted tissue was rejected and cleared by day 

14.  Based on the result of the present study, the outcome of this experiment was likely 

influenced by the male-sex of the recipient animals. 

In 2002 Erlebacher et al transplanted TS cells into an immunocompetent 

allogeneic environment (7).  Here 200,000 TSGFP cells were injected into the tail vein 

of female mice.  These cells were cleared by the lungs in 24 hours through the actions of 

NK cells.  When the TSGFP cells were injected subcutaneously into female mice they 

differentiated into giant cells and were undetectable by 10 days.  Thus these 

investigators demonstrated no successful engraftment of TS cells in either the lungs or 

skin of allogeneic female mice. 

In 2006 Takahashi et al injected 10-15 TSGFP cells into SOCS3 knockout 

blastocysts in order to rescue the embryos (88).  SOCS3 knockout embryos failed to 

survive due to placental defects that triggered excess trophoblast giant cell formation.  

When wild type TS cells were injected and the blastocysts transferred to recipients, 5 

pups were born.  This study demonstrated the first use of TS cells for rescuing a 

placental defect. 

In early 2008 horse chorionic girdle explants were transferred to the vulval 

surface of virgin mares to detect migration and survival (89). This was a limited study 

that reported successful allogeneic engraftment, but failed to follow the grafts beyond 

one month.  While the placental cell type (chorionic girdle) utilized in this study is 

specific to the horse, it does suggest the broad implication that the allogeneic trophoblast 

survival examined in this research is applicable to many species. 

The results of the studies on rats by Fandrich et al may be included in the 

discussion of allogeneicly injected cell types due to the speculation, noted above, that 

cells they injected were possibly TS-like in origin.  Overall, none of the reports of 

injected allogeneic TS cells showed that they were detected at times longer than one 

month after engraftment. 
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Table 2.  Transplantation experiments involving placental cell types. 

ALLOGENEIC TS CELL TRANSFER EXPERIMENTS 

 

Year &  Group Cells Injected 
Injection 

Location 

Additional 

Sx 
Results 

1989 

Verstuyf (87) 

Choriocarcinoma 

 

Subcutaneous - 14d- tumors 

Subcapsular - 5d - tumors 

2002 

Suzuki (6) 

Islets and placental 

tissue 

Kidney capsule of 

male mice 
- 

3d- normal 

14d- reabsorbed 

2002 

Erlebacher (7) 
200,000 TS 

Tail vein - 24h – cleared from lungs 

Subcutaneous - No tumors 

2002 

Fandrich et al (10) 

(Binas & Zavazava) 

1 million RESC 
Portal Vein of rats  

?sex 

- 7d- Blood and liver chimerism 

7d-(Abd) heart 

transplant 

Heart transplants survived +100d when 

of the same background as the injected 

stem cells 

2006 

Takahashi et al (88) 
Mouse TSGFP 

SOCS3-/- 

blastocyst 
Uterine transfer 

5pups/50 blast 

 TS-injected survived 

0pups/50 blast 

 -/- neg control survived 

8 pup/ 50blast 

Tetraploid embryo pos control 

2008 

de Mestre (89) 

Horse chorionic 

girdle placental 

explants 

vulvar mucosa of 

virgin mares 
 

7d – 4/5 

14 d– 4/4 

21d – 2/2 

28d – 0/1 
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MATERIALS AND METHODS 

 

Experimental Design 

 The objective of this study was to replicate the RESC line results of Fandrich et 

al (10) with cells from better characterized mouse stem cell lines.  The initial part of the 

study involved deriving mouse stem cell lines from an inbred genetic background, 

characterizing them in regard to the traditional stem cell markers, and comparing the 

results to the markers of the RESC line.  Then the mouse cell lines (ES cells, TS cells 

and XEN cells) were each injected into a minimum of 5 allogeneic mice.  The 

transplants were monitored for survival with the expectation that the placental stem cells 

would survive in the allogeneic environment.  Finally, when one mouse stem cell line 

stood out with the ability survive in an allogeneic environment, then that cell line was 

co-injected with a different cell line that failed to survive.  The hypothesis being that 

trophoblast cells are not only able to survive in an allogeneic environment but are also 

able to extend that protection to other cell types as seen in pregnancy semi-allografts. 

 

Mouse Strain 

All animals utilized in this study were purchased from Jackson Laboratories and 

housed in a controlled environment with a 12 hour day light schedule.  The mice were 

fed a standard rodent 4% fat diet ad libitum with the additional calories of peanut butter 

added when the animals were being used for breeding or recovering from surgery.  The 

TS cell line was generated from a C57/Bl6 X Balb/c F1 hybrid embryo with a haplotype 

of H-2b&d.  The stem cell transplant recipient animals were C57/Bl6 (H-2d), Balb/c (H-

2b), C57/Bl6 X Balb/c F1 (H2-b&d), and CBA (H-2k) mice.  All procedures were 

approved by the Animal Care and Use Committee at Texas A&M University. 

 

Derivation, Culture, and Treatment of Feeder Fibroblast Cells 

 In order to successfully culture any early stem cell line, a primary culture of 

mouse embryo fetal fibroblasts must be optimally maintained to support the stem cell 



 27 

growth and prevent differentiation.  It is important to note that the feeder fibroblasts are 

a primary cell line and only useful for a maximum of four passages.  The primary culture 

has the ability to grow for a significantly longer time, but is no longer conducive for the 

support of stem cell growth.  In this project, feeder cells derived from day 12 embryos 

generated the best results for both derivation and culture.  To generate the feeder 

fibroblast cell lines, mated female mice were sacrificed 12 days following the 

appearance of the post coital plug.  The uterus was excised and placed in sterile PBS for 

transport to a sterile working surface under a laminar flow hood.  There the uterus was 

washed three more times and the embryonic vesicles exposed.  Each early fetus had its 

head and liver removed to prevent unwanted cell types from appearing in the culture.  

The remaining bodies were pooled and disaggregated with the assistance of a tissue 

sieve and glass rod in the presence of DMEM with the addition of 

penicillin/streptomycin at 50µg/ml and 10% serum.  The disaggregated pieces of tissue 

were then redistributed into 100mm dishes, allowed to reach confluence before being 

trypsinized (.25%), concentrated through centrifugation, resuspended then aliquoted in 

serum containing 10% DMSO, and finial stored in liquid nitrogen.  When needed, the 

feeder cells were thawed and cultured then passaged in a ration of 1 to 3 two times a 

week.  Confluent dishes utilized for stem cell culture were treated with mitomycin C 

overnight at 1µg/ml then trypsinized and redistributed generally at a ratio of 1 to 3 for 

ES cell and 1 to 6 for TS cell culture.  Mitomycin C halted the replication of the feeder 

cell layer while permitting their continued metabolic function. 

 

Derivation and Culture of Stem Cells  

TS Cells  

 The TS cells utilized in this study were derived using a modification of the 

procedure described by Tanaka et al (1).  Natural matings were set up between female 

Balb/c and male GFP labeled C57/Bl6 mice with intention of deriving a GFP labeled TS 

cell line.  Feeder cells were prepared as previously described.  The treated feeder cells 

were then disaggregated and replated in 4 well dishes (500 µl of 1x 10
5
 cells/ml per 
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well) with TS medium the day before blastocyst collection.  The morning before embryo 

recovery, the TS stock medium was replaced (DMEM, 20% ES qualified FBS, BME, 

P/S/F) with TS + F4Hβ medium (TS stock + 2µg/ml FGF4, 1µg/ml Heparin, 2ng/ml 

TGFβ) using 500 µl per well.  That afternoon the lower oviduct and uterus of the 3.5dpc 

mice was flushed to collect blastocysts. Using sterile conditions, each blastocyst was 

placed in its own well and cultured at 37
o
C with an atmosphere of 5% CO2.  The first 

day of culture was designated day 1.  The blastocysts that were viable hatched within 24-

48 hours on day 2 or 3.  Twelve hours after hatching the blastocysts began to attach to 

the wells.  By day 4, a small outgrowth would form from each embryo and the culture 

was fed an additional 500µl of 70% feeder conditioned medium supplemented with 

F4Hβ (70% FCM+F4Hβ).  The next day (day 5) the outgrowth was disaggregated; to 

accomplish the first disaggregation the adherent embryo was gently washed with 

calcium and magnesium free PBS then treated with .1% Trypsin with EDTA (100µl) for 

about 5 min.  After the first 2min., the embryo was observed through a stereo 

microscope located under the hood to maintain sterility.  At 5min., 500µl of 70% 

FCM+F4Hβ was added back to the well and its contents pipetted repeatedly until the 

blastocyst were disaggregated into 3-4 pieces and the culture returned to the incubator.  

Care was taken not to completely disaggregate the TS cell aggregates, as this would lead 

to a differentiated culture.  The timing for the first disaggregation was critical because if 

too much time passed and the outgrowth was too large the resulting TS cell line would 

be contaminated with endoderm.  The morning following the first disaggregation, the 

medium was changed with 70% FCM+F4Hβ (day 6).  The medium continued to be 

changed every two days until the next disaggregation step.  The TS cell colonies began 

to appear in 5-6 days and were allowed to grow until they covered 50% of the culture 

well.  Once the colonies reached the desired density, they were passaged again and 

moved to a new 4 well dish containing feeder cells of the appropriate density.  If the TS 

culture continued to grow, on the following passage they were transferred into 2 wells of 

a 4-well dish before being transferred into a 35mm dish.  Since TS cells grow best at 

high densities, care was taken not to passage the cells up to a large dish too fast or the 
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culture would be lost.  When the culture was successfully growing in a 35 mm dish, that 

passage was counted as number 1 and a cell line was officially created.  Once the line 

was established, it required passaging at a ratio of 1 to 3 twice a week and feeding every 

other day with TS F4Hβ medium (Figure 5). 

 

 

 

Figure 5. Cultured stem cells. A. ES cells (200x), B. TS cells (100x), C. XEN cells 

(400x).  ES cells exhibit the classic morphology of small cells grown in a three 

dimensional cluster where the individual cell borders are indistinguishable.  TS cell 

growth is typically two dimensional with a cobble stone appearance.  XEN cells, when 

subconfluent, are larger and round with a distinct cell membrane.   

 

 

ES Cells 

 The ES cell C57/Bl6 line was purchased from ATCC (SCRC-1002).  These cells 

were reported to test positive for SRY, male specific antigen, and were cultured in the 

standard ES cell fashion, passaging at a ratio of 1 to 5 or 1 to 10 twice a week using ES 

cell culture medium (DMEM, 15% ES qualified FBS, P/S/F, BME, nonessential amino 

acids, 1,000 µ/ml LIF) (Figure 5).  Later in the project a second ES cell line (CBA) was 

required and kindly given to the project by Dr. J. McWhir (Roslin Institute Edinburgh).  

Both ES cell lines were cultured under the same culture conditions. 
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XEN Cells 

 Extraembryonic Endoderm Stem cells (XEN) are the precursor to both the 

parietal and visceral endoderm (yolk sac).  To derive XEN cells, feeder cells were 

prepared to the same density as the ES cell culture.  One blastocyst was placed per well 

in a 4 well dish and cultured with DMEM supplemented with 20% ES qualified FBS, 

BME, and P/S/F.  The medium was changed every few days and passage when the XEN 

cells covered 75% of the well (Figure 5). 

   

Rat Embryonic Stem Cell–like Cells  “RESC” 

RESC line can grow on gelatin coated plates (Figure 6), mouse 12d feeder cells, 

or on immortalized rat feeder fibroblasts.  RESC have the same medium requirements as 

ES cells and were cultured in the standard ES cell fashion, passaging 1 to 5 or 1 to 10 

twice a week using ES cell culture medium (DMEM, 15% ES qualified FBS, P/S/F, 

BME, nonessential amino acids, 1,000 µ/ml LIF).  The cells utilized for RNA 

comparisons were cultured on rat feeder fibroblast cells and provided by Dr. Binas (10). 

 

 

 

Figure 6. Picture of rat “RESC” line grown on gelatin coated plates.  Note that the cell 

line displayed both the characteristic morphology of mouse ES cells (left) and TS cells 

(right). 
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Real Time PCR 

 In order to verify the identity of the newly derived TS cells, cultured cells were 

tested by RT PCR using the primers: Oct4 (gagggatggcatactgtggac, 

ggtgtaccccaaggtgatcc; 272); Nanog (tatcccagcatccattgcag, gtcctccccgaagttatggag; 252); 

Gata6 (gccgggagcaccagtaca, gtgacagttggcacaggacag; 419); Eomesodermin 

(cggcaaagcggacaataac, gttgtcccggaagcctttg; 361); Placental lactogen 

(ctgcttccatccatactccaga, gacaactcggcacctcaaga; 410); Errbeta (ctccagcatctccaggaagag, 

cacttggggaccagatgagc; 464); Hprt (cagtcccagcgtcgtgattag, atccagcaggtcagcaaagaac; 

229); Cdx2 (ctctcggagagcccaagtgtg, gcagtccctaggaagccaagtga;162); and FAS ligand 

(aaccccagtacaccctctgaaa, ggttccatatgtgtcttcccattc, 108).  Oct4 and Nanog are classic ES 

cell markers. Cdx2, Eomesodermin, Placental lactogen, Errbeta, and FAS ligand are all 

found in TS cells with Cdx2 and Errbeta diminishing in the cultures of differentiated TS 

cells. Gata6 is a marker for XEN and Hprt is a housekeeping gene used as an internal 

positive control.  These studies were kindly performed by Dr. B. Debeb of Texas A&M. 

 

Labeling of Cells 

One newly derived hybrid TS cell line was established (see results); when this 

was examined under UV light, it had a 50% chance of generating fluorescence but did 

not fluoresce.  As a result a decision was made to utilize pFUGW vector (90) from Dr. 

Baltimore (Caltech) to create fluorescently labeled TS cell and ES cell lines.  Initially the 

lentiviral vector was engineered with DSRed2 but that proved ineffective as a marker 

with stem cells.  Later, Dr. B. Debeb of Texas A&M was kind enough to retransform the 

cell line using a GFP labeled lentiviral vector (pFUGW).  Both ES and TS cells were 

seeded at a moderate density in 60mm dishes and incubated overnight.  Then 2 hours 

before transduction, the medium was changed and the cells transduced for 24 hours at a 

multiplicity of infection of ~1 in the presence of 8µg/ml Polybrene (Sigma). The 

transduced cells were then passaged at low density.  After 7-14 days the fluorescent 

colonies of stem cells were picked, pooled, and further expanded. 
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Preparation of Cells for Injection 

 Cultured stem cells were trypsinized with 0.25% Trypsin and pipetted vigorously 

to ensure a near single-cell suspension.  The cell suspension was then centrifuged, 

counted and aliquoted into tubes of one million cells each.  The cells were resuspended 

in 200-250 µl of 0.1% PBS/BSA to prevent the stem cells from adhering to one another 

and stored on ice until injected (within the next 5 hours).  When the TS and ES cells 

were co-injected, both cell types were trypsinized and counted independently then ½ 

million of each cell type was combined in each tube for injection.   

 

Surgical Procedures 

 Portal Vein Injection 

 Mice were anesthetized with isoflurane to effect and injected with 0.008-0.029 

mg/kg of buprenorphine to reduce discomfort. The animals were prepared for surgery, 

then a ventral midline skin and abdominal muscle wall incision (1cm) was made into the 

abdominal cavity. Sterile gauze was used as a draping material and was placed around 

the incision site. The cecum was exteriorized and enfolded in wet sterile gauze to 

prevent drying.  The portal vein was visualized running parallel to the rostrocaudal axis 

of the mouse into the liver.  The cell suspension was aspirated into a 1 ml syringe 

attached to a 25 gauge needle and injected into the lumen of the portal vein.  Pressure 

was then applied to the injection site with wetted cotton-tipped applicators to reduce 

blood leakage.  The viscera were then repositioned and the abdominal wall closed with 

absorbable sutures. The abdominal skin incision was then closed with 4-7 wound clips.  

In the cases of multiple surgeries such as ovarectomy or castration, the second surgery 

was performed at least 2 weeks after the gonadectomy to allow the animal time to 

recover and clear hormones from the system. 

 

Ovarectomy 

Using aseptic technique on fully anesthetized mice (as described above), a small 

incision was made on the dorsal aspect of the female mice over the ovarian fat pads.  
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The ovarian fat pad was grasped and exposed from the mouse with the oviduct and 

uterus attached.  A loop of 2.00 absorbable suture was then tied between the oviduct and 

the ovary to ligate the ovarian artery and vein before the ovary was removed distal to the 

suture.  The uterine horn was replaced in the body cavity and closed with absorbable 

suture.  The skin incision was secured with 2 wound clips.  Using this technique, both 

ovaries were removed from each mouse. 

 

Castration 

Using aseptic technique on fully anesthetized mice (as described above), the 

testes were pushed down into the scrotal sac by gently applying pressure to the abdomen.  

A 1cm incision was made through the skin along the midline of the scrotal sac.  The 

midline wall appeared as a whitish line between the testes, in the sacs, under the 

covering membranes.  A 5mm incision was made in the membrane on the left side of the 

midline wall.  The testes were exposed using blunt forceps to grasp the testicular fat pad.  

The vas deferens and prominent blood vessel was ligated using 2.00 absorbable suture 

prior to removal of the testicle.  This procedure was repeated on the right side, then the 

remaining fat pad was pushed back into the scrotal sac and the skin closed with an 

absorbable suture.   

 

Blood Collection 

Blood was collected when the animal was terminated in order to determine if the 

injected stem cells were differentiating into lymphocytes.  Mouse blood (50µl) was 

collected in heprinized hematocrit tubes via tail tip bleeding.  The tubes were then 

centrifuged for 5 min. and broken between the red and white blood cell layer to permit 

the extraction of the buffy coat.  The white blood cells were resuspended in HEPES 

buffered medium containing Hoechst nuclear stain and examined for green fluorescence.  

If hematopoietic chimerism was present, then some of the white blood cells would have 

been co-labeled with green fluorescence from the GFP in addition to blue fluorescence 

from the Hoechst dye (Figure 7). 
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Histology and Microscopy 

In order to view GFP labeled cells within tissue, mice were killed via CO2 

overdose and the liver removed.  The liver tissue was first fixed in 4% paraformaldehyde 

at 4˚ C for 24 hours then incubated an additional 48- 72 hours in 30% sucrose at 4˚ C.  

Paraformaldehyde preserves the GFP in the cells while minimizing the auto fluorescence 

of the remaining tissue.   Upon removal from sucrose the liver tissue pieces were placed 

in 4 cryomolds with OTC and frozen at -180˚C for a minimum of 24 hours before 

cryosectioning.  Serial cryosections of 7-10 µm were cut from calculated locations 

within each liver piece using a Tissue Tek II cryotome (Miles, Inc.).  The sections were 

viewed with an Olympus IX 71 microscope fitted with a wide GFP fluorescence filter 

(U-N31054).  In order to prevent the cryosectioned tissue from separating from the slide, 

a thin coating of 1% celloidin solution was applied to the slides for 5 minutes then 

allowed to dry for 30 minutes prior to staining with the standard hematoxylin & eosin 

(H&E) protocol.   

 

 

 

Figure 7.  White blood smear panel showing parallel bright field image (left), GFP 

(center), and Hoechst stain (right). Note that the single positive GFP location does not 

correspond to any of the nuclei stained by Hoechst and thus is not a white blood cell. 
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Allograft Survival and Survival Index 

 The liver of each animal was cut into 8 pieces and placed into 4 cryomolds. 

Initially one quarter of the total liver was cryosectioned, resulting in about 50 equally 

spaced sections.  If one of the cryosectioned slides contained four or more intact 

fluorescent cells, the allograft was considered to have survived and the remaining 

quarters not studied.  If, however, the first quarter did not reveal allograft survival, an 

additional quarter was analyzed.  As a semi-quantitative assessment of the survival, a 

“survival index” was constructed using the percentage of slides containing at least five 

or more distinct fluorescent cells compared to the total number of slides analyzed per 

animal and all results from each grouping of animals were pooled. 
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RESULTS 

 

Derivation and Characterization of a New TS Cell Line 

A new F1 cell line was derived from the mating of a C57Bl/6 GFP male mouse 

with a Balb/c female.  Following embryo collection (1d), representative pictures of the 

initial growth and development up to the first disaggregation (6d) are documented in 

Figure 8A.  Eventually the culture resulted in the TS cell line depicted in Figure 8B  

 

 

Figure 8.  Derivation and characterization of new F1 TS cell line.  A. Early pictures of 

the developing TS cell line from mouse embryo collection (day 1) to the first 

disaggregation (day 6).  B.TS cell line transformed to express GFP.  C.  RT PCR results 

characterizing the newly derived trophoblast line (F1 TSCs) by comparing gene 

expression with,  a differentiated culture of the new line (F1 TSCs diff.), the original 

trophoblast line (ICR TSCs), a differentiated culture of the original trophoblast cell line 

(ICR TSCs diff.), mouse ES cells (ESCs), mouse XEN cells (XEN), mouse feeder cells, 

and to the original rat stem cell line (RESCs).  Note that the new trophoblast line 

displays the same characteristic gene expression as the original trophoblast line and the 

rat “RESC” line. 
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(left).  While the matings to generate the trophoblast cell line involved a GFP 

heterozygous male mouse, the resulting cell line did not express the GFP protein.  GFP 

is lethal to homozygous embryos so use of a heterozygous male was the only option but 

provided only a 50% possibility of creating a GFP positive cell line. 

Due to the unlabeled nature of the newly derived TS cell line, a stably transfected 

cell line was needed to track the survival of the injected cells.  The cell line was 

transformed using the FUGW lentiviral vector with GFP insert as can be seen in Figure 

8B (right).  The newly derived F1 TS cell line displayed the characteristic two 

dimensional growth patterns of other TS cell lines.  RNA from the cell line was further 

characterized through RT PCR comparisons with the original TS cell line (1) and the 

RESC line (10) (Figure 8C).  Following comparisons utilizing RT PCR, the F1 TS cell 

line expressed all of the traditional TS cell line markers (Cdx2, Eomesodermin, Err-β, 

Placental Lactogen, and FAS Ligand) and was negative for the ES (Oct4 and Nanog) and 

the XEN cell marker (Gata6).  The RESC line, upon which this research was based, 

displayed an expression pattern more characteristic of TS cells then ES cells (Cdx2, 

Eomesodermin, Err-β, Placental Lactogen, and FAS Ligand), supporting the hypothesis 

that mouse TS cells are comparable to the RESC line. 

 

TS Cells Survive Portal Vein Injection 

Prior studies indicated that TS cells survived at least a month within the mouse liver 

(Table 2 Group 1) (91).  This experiment was repeated using our own TS cell line 

(Figure 8) and confirmed that TS cells survive at least 1 month when injected into either 

Balb/c (Figure 9) or CBA female mice (Table 3 Group 2 & 5).  In this study a total of 8 

Balb/c female mice were injected with allogeneic TS cells; 5 animals survived the 

surgery and all 5 livers contained GFP labeled cells.  The newly derived TS cell line (F1/ 

C57Bl/6[H2k-b] x Balb/c[H2k-d]) was considered allogeneic because cells from that 

cross should express both H2k-b and H2k-d haplotypes and thus should be rejected by 

both the Balb/c (H2k-d) and CBA (H2k-k) strains of mice.  A total of 6 CBA mice were 

injected with allogeneic TS cells; 5 died during the injection procedure resulting in only 



 38 

1 surviving animal.  The results from this single female recipient suggested that MHC 

similarity was not required for TS cell allograft survival.  When the livers were removed 

at one month, blood was collected for detection of hematopoietic chimerism and none 

was detected.   

As a positive control, the TS cells were injected into animals with the same F1 

Balb/c x B6 background.  This F1 injection of TS cells would also detect potential tumor 

problems, similar to what ES cells exhibit when injected into syngeneic environments.  

A total of 6 F1 Balb/c x B6 female mice and 4 male mice were injected with allogeneic 

TS cells (Table 3 Group 3 & 4).  Three of the 6 female animals survived the surgery and 

one month later all 3 livers contained GFP labeled cells.  In the F1 males, 3 out of 4 

survived the injection of TS cells but only 1 liver contained GFP positive cells one 

month later.   

 

 

 

 

 

Trophoblast Portal Vein Injection Following 1 Month Engraftment 

Trophoblast Background [Haplotype] 

Recipient Animal 

[Haplotype] 

Recipient 

Sex Survival 

1 TS – ICR [?] Balb/c [H2k-d] F 3/3 

2 TS – B6xBalb/c [H2k-b&d] Balb/c [H2k-d] F 5/5 

3 TS – B6xBalb/c [H2k-b&d] B6xBalb/c [H2k-b&d] F 3/3 

4 TS – B6xBalb/c [H2k-b&d] B6xBalb/c [H2k-b&d] M 1/3 

5 TS – B6xBalb/c [H2k-b&d] CBA [H2k-k] F 1/1 

Table 3.  Results of trophoblast injections into both allogeneic and syngeneic males and 

females after 1 month. 
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Figure 9.  The presence of GFP labeled TS cells within livers one month after intra-

portal injection (100x).  Note the very high tissue autofluorescence in some samples as 

well as the brighter regions generated by tissue folds.  The presence of TS cells is readily 

apparent despite the areas of high autofluorescence. 

 

 

When the cryosectioned liver samples were examined under UV microscopy, 

they were compared to similarly prepared liver sections from both uninjected animals 

and GFP-labeled animals purchased from Jackson Laboratory (Figure 10).  Liver 

samples from female recipients of syngeneic and allogeneic injections were completely 

indistinguishable from one another in regard to survival and location of the GFP-labeled 

cells.  Following the unusual results of the syngeneic male injections (1/3), it was 

suggested that a sex difference in survival might exist.  This was examined in greater  

 

 

Figure 10. Representative liver slide from negative control animal (left) and positive 

control GFP labeled animal (right). 100x magnification. 
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detail later in the study.  Syngeneicly injected TS cells failed to form the tumors (0/3) 

observed by others in the subcutaneous environment (7).  This survival, but lack of 

growth and tumor formation, suggests that the TS cells may undergo differentiation 

following their allograftment. 

 

Duration of TS Cell Survival 

 The initial experiments, highlighted in Table 3, demonstrated that TS cells could 

survive for at least one month without any detectable proliferation due to suspected 

differentiation.  In order to determine the duration of this survival and to detect any slow 

proliferation, female recipient mice were examined at 2, 3, and 4 months after 

engraftment.  The degree of survival was estimated by comparing the ratio of positive 

slides with the total number examined.  The results demonstrated that there was no 

significant change in GFP-labeled cell numbers until 4 months when they were 

undetectable in 4/5 animals (Figures 11 & 12).  This survival for at least 3 months 

without any detectable increase in cell numbers supports the concept that the TS cells 

differentiate when injected into the mouse. 

 

 

 

Figure 11.  Allogeneic TS cell survival in liver at 1, 2, 3, and 4 months. This graph uses 

the standard error of the mean to display the ratio of slides with positive cell engraftment 

locations to the total number examined per animal.  The sample number is given in 

parenthesis and the time of engraftment analysis is in superscript. 
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Figure 12. Examples of positive allogeneic engraftment locations from each of the GFP 

labeled TS cell injections.  Top row are injections that were analyzed at 1 month; middle 

row are injections that were analyzed at 2 months; bottom left are the livers examined at 

3 months; bottom right is the single location of cells found in 1/5 animals at 4 months. 

 

 

ES Cell Allografts Are Rejected Following Portal Vein Injection 

 When allogeneic GFP-labeled ES cells from three different genetic backgrounds 

(129, B6, & CBA) were injected into female Balb/c mice, none of thirteen transplants 

were detectable at week 4 (Table 4 Group 1, 2, & 3).  The preliminary experiment using 

129 ES cells failed to survive 1 month within the mouse liver (0/2) (Table 4 Group 1) 

(91).  This experiment was repeated with the inbred mouse strains B6 (0/6) and CBA 

(0/5) with the same negative results.  One animal from the B6 group was excluded from  
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Table 4.  ES cell survival in allogeneic and syngeneic animals after 1 month. Note that 

the control injection into syngeneic animals survived in 3/3 and generated tumors in 2/3. 

 

 

the study due to visible tumor formations on the liver at the time of collection.  This 

sporadic allogeneic ES cell tumor formation has been reported previously (10, 84, 86).  

In contrast to the failed ES cells allografts, isograft injections survived (3/3) and formed 

tumors (2/3) in the B6 background (Table 4 Group 4 & Figure 13).  As expected, these 

tumors exhibited tissues from all three germ layers, attesting to the health and 

pluripotency of the ES cell lines used in this study.  While the entire group of allogeneic  

 

 

 

Figure 13.  Representative pictures of tumors generated after control injections of ES 

cell into syngeneic animals. 

ES Cell Survival 1 Month Following Portal Vein Injections 

ES Cell 

 Background [Haplotype] 

Recipient Strain 

[Haplotype] 

Recipient 

Sex 

Transplants 

Surviving 

1 ES – ICR  Balb/c [H2k-d] F 0/2 

2 ES – B6 [H2k-b] Balb/c [H2k-d] F 0/6 

3 ES – CBA [H2k-k] Balb/c [H2k-d] F 0/5 

4 ES – B6 [H2k-b] B6 [H2k-b] F 3/3 - tumors 
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ES cell injections failed to survive one month, at 2 weeks labeled cells were still present 

in an animal that was terminated early.  The two week survival of ES cells has been 

demonstrated by other researchers at different injection locations (80, 86).  The slow 

rejection of mouse ES cells has been attributed to their low immunogenicity and their 

production of TGFβ (86).  In summary, GFP-labeled allogeneic ES cells failed to survive 

longer than two weeks within the livers of female mice. 

 

XEN Injection into the Portal Vein 

 XEN cell intraportal injections were uniformly lethal (21/21) for unknown 

reasons.  This difference in survival following injection is suspected to be due to the 

larger size of the XEN cells compared to the much smaller TS and ES cells.   

 

Mouse TS Cells Injected into the Rat Portal Vein 

Due to the survival of TS cell injections into mice, a xenograft was attempted 

with the same TS cell line.  A single female rat was injected with 5 million TS cells.  

One month later GFP positive cells were observed at a single trace location (results not 

shown).  A repeat of this experiment using 10 million cells gave negative results.  Thus 

the results of this study were inconclusive.  

 

TS Cells Rescue Co-injected ES Cells  

 Having successfully demonstrated that allografted TS cells but not ES cells 

survive allogeneic portal vein injection, the cells were mixed in order to determine if the 

TS cells could influence the survival of ES cells.  The first series of injections used the 

newly derived unlabeled TS cells (F1 C57Bl/6xBalb/c) together with a commercially 

available B6 ES cell line that was transformed to express GFP (Table 5 Group 5).  One 

month following the co-injection the livers displayed large clusters of labeled cells 

(Figure 14), suggesting that the TS cells had permitted the survival of the ES cells.  

Since the TS cells were F1 B6xBalb/c and the ES cells were B6, there was the possibility 

 



 44 

Table 5.  ES cell survival when co-injected with TS cells and examined at both one and 

two months. Note that the ES and TS cell haplotypes can differ and the ES cells still 

survive. 

  

 

 

 
Figure 14.  Examples of positive allogeneic engraftment by GFP labeled ES cells that 

were co-injected with unlabeled TS cells and examined at 1 month.  The top row 

demonstrates C57Bl/6 ES cell engraftment and the bottom row demonstrates CBA ES 

cell engraftment when co-injected with TS cells into the portal vein of the liver. 

Co-Injection Survival Following Portal Vein Injection 

Cell Type 

Injected 

Recipient 

Background 

Engraftment 

Time 

Transplants 

Surviving 

1 TS  Balb/c 1 month 5/5 

2 TS  Balb/c 2 month 6/6 

3 Sham Balb/c 2 month 0/4 

4 ES-B6 Balb/c 1 month 0/6 

5 TS + ES-B6 Balb/c 1 month 5/5 

6 TS + ES-B6 Balb/c 2 months 4/4 

7 ES-CBA Balb/c 1 month 0/5 

8 TS + ES-CBA Balb/c 1 month 4/4 
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that a haplotype overlap was required for successful ES cell engraftment.  Subsequent 

co-injection experiments used CBA ES cells (H2k-k) from a completely different 

haplotype (Table 5 Group 7).  This experiment suggested that the CBA ES cells survived 

to the same extent as the previously injected B6 ES cells (Figure 15).  All of the 

allogeneic ES cell allografts survived at least one month when co-injected with TS cells. 

When co-injections using TS cells mixed with B6 ES cells were examined after two 

months, the percentage of GFP positive areas appeared to have almost tripled, 

suggesting that the ES cells had begun to proliferate (Table 5 Group 6 & Figure 15.); 

they did not, however, form tumors, suggesting that differentiation may have occurred. 

In similar experiments, other investigators  reported hematopoietic chimerism 

after (non-hepatic) injection of allogeneic mouse ES cells (80). This study also examined 

if GFP-expressing ES cells were present in the blood of injected or co-injected mice.  

Blood was collected at the time of liver examination and no hematopoietic chimerism 

was ever detected. 

 

 

 

Figure 15.  ES cell survival at 1 month and 2 months when co-injected with TS cells.  

Note that the number of slides with positive ES cell engraftment locations has increased 

by almost three fold.  This graph uses the standard error of the mean to display the ratio 

of slides with positive cell engraftment locations to the total number examined per 

animal.  The sample number is given in parentheses and the time of engraftment analysis 

is in superscript. 
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Table 6.  Gender differences in TS cell survival.  TS cells survive in intact females 

without regard to their background, ovarectomized females, and castrated males.  TS 

cells fail to survive when transplanted into allogeneic males containing a single trace 

location in one animal when injected into syngeneic males. 

Sex Effect on Trophoblast Survival 1 Month Following Injection 

Cell Type Injected 
Recipient 

Background 

Recipient Sex / 

Gonadectomy 

Transplants 

Surviving 

1 TS  syngeneic F 3/3 

2 TS allogeneic F 6/6 

3 TS allogeneic F / ovarectomized 4/4 

4 TS allogeneic M / castrated 5/5 

5 TS allogeneic M 0/4 

6 TS syngeneic M 1/3 

 

 

TS Cell Survival Is Sensitive to Male Hormonal Influence 

 Initially all TS cell injections were performed on female animals.  Other 

investigators have utilized male recipients, albeit unsuccessfully, or utilized both sexes 

and failed to distinguish the results by sex (6, 7, 87).  The suitability of male mice as 

hosts was questioned in this study when they failed to demonstrate significant syngeneic 

TS cell survival (0/4) (Table 6 Group 5).  It was speculated that the male mouse’s 

inability to support TS cells resulted from either a lack of female hormones or as a result 

of adverse effects by male hormones.  In order to distinguish between these possibilities, 

studies were conducted using both gonadectomized female (Table 6 Group 3) and male 

recipients (Table 6 Group 4). These experiments showed that castration completely 

abolished the gender difference while ovarectomy had no effect on TS cell survival 

(Figure 16).  Together these results suggest it is the absence of testicular hormones 

instead of the presence of ovarian hormones that allows the survival of ectopic TS cells. 
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Figure 16. Gender differences in TS cell survival.  TS cells survive in intact females 

without regard to their background, ovarectomized females, and castrated males.  TS 

cells fail to survive when transplanted into allogeneic males and contain a single trace 

location in one animal when injected into syngeneic males.  This graph uses the standard 

error of the mean to displays the ratio of slides with positive cell engraftment locations 

to the total number examined per animal.  The sample number is given in parentheses. 

 

 

 

 

Figure 17.  Examples of successful cell incorporation in both subcapsular and 

intramedullary regions of the liver.  Both TS cells and ES cells co-injected with TS cells 

are found in each region of the liver. 
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Location of Successful Engraftment and Immune Cell Infiltration 

 Colony engraftment locations were consistent between all cell types injected and 

were focused in both the subcapsular and intramedullary regions of the liver (Figure 17).  

Serial sections from GFP positive locations were stained with H&E and examined. 

Similarities were evident in both the numbers and type of invading immune cells present 

within the tissue.  These same sections contained peculiar brown cells at the engraftment 

site.  Initially, when TS cells were injected into female mice and examined after a month 

there were low/moderate levels of lymphocytes and neutrophils present within the tissue  

 

 

 

Figure 18.  H&E stain of TS cell allograft locations within the liver at 1 (left) and 2 

(right) months. Each location is magnified at 100x and 400x.  Under 400x light 

microscopy, a moderate infiltration of neutrophils and round mononuclear cells (most 

probably lymphocytes) can be seen at 1 month and then at low levels at 2 months. 
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Figure 19.  H&E stain of ES allografts at 2 ½ weeks.  Each location is magnified at 

100x and 400x.  Under 400x light microscopy a high level of macrophages and round 

cells can be seen with plasma cells and neutrophils also in attendance. 

 

 

(Figure 18).  The numbers of invading cells dropped off to very low levels by two 

months and continued through month four with macrophages making up the majority of 

the infiltrating cell population at months three and four.  The lymphocytes present within 

the cryosectioned tissue were determined through histological examination of cell 

morphology.  ES cells injected alone were completely rejected by one month, but when 

one animal was examined at two and a half weeks with labeled cells still evident, large 

numbers of immune cells were present with macrophages and large lymphocytes 

predominating (Figure 19).  Animals co-injected with both TS and ES cells displayed the 

same moderate lymphocyte population at the first month with levels dropping by the 

second (Figure 20).  In general all animals with successfully engrafted cells displayed a 

similar moderate cell infiltration at one month that rapidly diminished by two months.  
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While high levels of lymphocytes typically indicates rejection that might not be the case 

in this model.  Successful pregnancies are known to have a significant uterine 

lymphocyte infiltration.  All examined trophoblast engraftments contained some 

lymphocytes, but numbers were fewer than the ES cell location at 2 ½ weeks.   

 

 

 

Figure 20.  H&E stain of co-injection TS and ES cell allografts at 1 (left) and 2 (right) 

months. Each location is magnified at 100x and 400x.  Under 400x light microscopy, a 

moderate level of round cells can be seen at 1 month and low levels at 2 months. 
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SUMMARY 

 

There are three important findings reported in this study.  First, allogeneic mouse 

TS cells appear to survive in the liver without rejection for over 3 months.  This is 

significant because allogeneic TS cells have failed to survive for longer than 3 weeks in 

any of the other ectopic locations tested so far.  It is possible that in this model, the liver 

plays a uterus-like role both physiologically and immunologically by supplying a 

nutrient rich environment that also contains a certain degree of immune privilege (92).  

While the TS cells appear to survive in the liver for up to 4 months, the gestation 

length of mice is only 3 weeks.  It is unclear whether this prolonged survival is due to a 

maximum 4 month lifespan of each trophoblast cell or if the TS cells replicate at a low 

level.  The latter could result in a persistent population of TS cells but would mean that 

the trigger for their rejection would need to originate from outside the system of 

trophoblast growth.  The survival of allogeneic TS cells, regardless of their background, 

suggests that the mechanisms involved in their survival are fundamental to the 

trophoblast identity.  While the engraftment location, as discussed earlier, seems to be 

important, and possibly critical, the immune privileged characteristics of trophoblast 

cells (4, 5, 93) also influence their survival.  This was clearly demonstrated when the 

GFP-labeled TS cells survived where the ES cells could not (81).  Note that while the ES 

cells were reliably rejected in this model, this has not been a universal observation (84).  

Factors influencing ES cell survival include cell dosage, recipient age/strain/health, time 

point studied, and the immunogenicity of GFP (86, 94-98).  Except when the 

environment is appropriate for tumor formation, allogeneic ES cells are generally 

rejected by 3 weeks (81, 83).  This rejection is thought to be triggered following the 

differentiation of the stem cells into cell types with surface antigens that the recipient 

immune system can access and recognize as foreign.  Tumor formation can be 

consistently triggered by using immunocompromised recipients or by injecting massive 

numbers of stem cells at a single location (86, 94-98).  The general failure of allogeneic 

ES cells to survive makes using them in cell therapy problematic.  The use of syngeneic 
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ES cells through therapeutic cloning would remove any rejection issue but would add the 

risk of tumor formation. 

The second significant result of this study involves the role of recipient gender in 

transplanted TS cell survival.  TS cell allografts were unable to survive in male 

recipients.  This seemed to suggest that the female hormonal environment was necessary 

for trophoblast survival.  When tested in gonadectomized mice, TS cells survived in both 

ovarectomized females and castrated males, indicating that survival does not require the 

presence of ovarian hormones, but the absence of testicular factors presumably male 

hormones.  There are no reports in the literature that testicular factors have a detrimental 

influence on in vivo trophoblast survival. It has, however, been reported that super 

physiological doses of testosterone can be toxic to freshly isolated human trophoblast 

cells (66).  When placental explants were exposed to normal physiological doses of 

testosterone they responded with increased estrogen production (65).  Other research 

indicates that male hormones elicit a pro-inflammatory shift (99) in the immune system 

and that a proinflammatory environment is linked to spontaneous abortion (100). This 

proinflammatory influence in the immune system could explain the in vivo sex specific 

engraftment failure of TS cell transplants in the male while allowing the survival of their 

in vitro placental explant counterparts.   

 The third significant result of this study involves the apparent protection of ES 

cells by the presence of co-injected TS cells.  When GFP-labeled ES cells were injected 

alone into allogeneic female animals they failed to survive in the liver and were 

undetectable within one month.  The single animal examined at 2 ½ weeks still 

contained surviving ES cells.  This finding is supported by the literature in which ES 

cells, injected into mice, survived for about 3 weeks (81, 83).  Viability of the GFP-

labeled ES cells was demonstrated when they were injected into control syngeneic 

female recipients; the ES cells survived in 3/3 mice and tumors were generated in 2 out 

of 3 animals.  Examination of liver sections indicated the presence of all three 

developmental layers within locations of ES cell growth.  The presence of all three 

layers suggests that the ES cell line was undifferentiated and healthy. 
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Once the extent of GFP-labeled ES cell allograft survival was established on its 

own, the ability of unlabeled TS cells to influence this survival could be assessed.  In all 

cases, coinjection of TS cells with GFP-labeled ES cells permitted the survival of the ES 

cells for at least 1 month.  This suggests that the ES cells benefited in some way from the 

change in local environment generated by their trophoblast cell neighbors (4, 5, 93).  

Given the tendency of trophoblast cells to fuse with each other in the placental 

environment (101), it cannot be excluded that the two cell types fused.  This fusion 

might maintain the immune privilege of trophoblast cells and permit hybrid cell survival.  

However, the high efficiency of ES cell rescue and the increasing numbers of labeled 

cells in the second month argue against cell fusion being the cause of GFP-labeled cell 

survival.  The increase in the numbers of ES cell positive locations from 1 to 2 months 

suggests that the ES cells were replicating.  It is generally believed that fused trophoblast 

lose the ability to replicate there by providing a second argument against cell fusion.  An 

important facet of coinjection survival is that TS cells appeared to provide the same 

protection to the ES cells of different lineages (CBA) as to the ES cells of similar lineage 

(B6).  This nonspecific protection may be related to some of the non-specific 

mechanisms of local trophoblast immune suppression such as IDO, TGFβ, and IL-10 

production.  

The validity of the stem cell survival results is complicated by the amount of 

autofluorescence found within the liver.  It is true that the liver contains a background 

level of autofluorescence that is readily observed, but that background is consistent and 

doesn’t prohibit the identification of individual labeled cells.  Pictured in Figure 10 are 

representative slides from a negative control uninjected animal and from a positive 

control GFP-labeled animal purchased from Jackson Laboratory.  The identification of 

false positives was ruled out by the requirement of four or more positive cells in a given 

location to declare a section positive.   

Due to the presence of the Kupffer cells within the liver, there is the possibility 

that the fluorescent cells, seen on the slides, are macrophages that have concentrated the 

debris of GFP-labeled stem cells.  If this were the case, the label would have been 
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restricted to phagosomes as seen in Figure 21 (left).  The difference in appearance of 

GFP ingested by phagocytic cells and GFP-labeled intact cells is readily apparent (50). 

This is not to imply that immune cells are absent from the site of engraftment.  

Every cluster of labeled cells within the liver that was examined using H&E stain 

contained at least a few immune cells, but there were differences in the immune cell type 

and quantity if the stem cells were destined to survive.  Both the surviving TS cells and 

co-injected ES cells with TS cells had the same moderate round cell infiltration at 1 

month which dropped to low levels at 2 months.  In contrast, the ES cells seen in the one 

animal examined at 2 ½ weeks were surrounded by numerous macrophages, round cells, 

neutrophils, and plasma cells.  This cell presence surrounding the diminishing ES cells 

may suggest that the immune system is playing a role in the failure of allogeneic ES 

cells to survive. 

 

 

 

Figure 21. Comparison of phagocytic cells containing ingested GFP labeled cells (left) 

and large successfully engrafted GFP labeled stem cells (right).  Pictures are of the same 

magnification. (400x) 
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The rat research, upon which this study was based, caused confusion with the 

assumption that the cell line used was ES-like in origin (10).  The results of the current 

project confirm the suspicion of Buehr et al (102) that the RESC line was not wholly ES 

like in origin.  Upon closer inspection the RESC line contained a gene expression profile 

more closely linked to mouse trophoblast cells, but displayed the unusual characteristics 

when injected making the line not completely TS-like.  The RESC line, unlike the 

typical trophoblast lineage, expressed the ES marker Oct4,  was able to generate blood 

chimerism in allogeneic injected animals (10), and could form tumors in syngeneic 

animals (91), all characteristics reported of ES cells.  The RESC line displayed 

characteristics of both mouse ES and TS cell lines and appeared to share the immune 

privilege mechanisms displayed by the mouse trophoblast cells used in this project. 

Like most research, this project has generated more questions than it could 

answer.  The results of this study suggest that portal vein-injected TS cells or their 

coinjection with ES cells may prove a useful tool for cell therapy.  Future research 

should determine the limitations associated with this therapy.  Such details include 

determination if trophoblasts are able to protect cell types other than embryonic stem 

cells. How long the protection lasts; if it extends beyond the four month life span 

inherent to the trophoblasts in this study.  Do both cell types have to be injected at the 

same time and at the same location?  (It stands to reason that if cells from different 

backgrounds are injected; the protected area under influence by the trophoblast cells 

would probably be small, limited only to the organ or area of injection.)  If the 

trophoblast were exerting a systemic effect, that could leave the animal open to 

microbial invasion.  Finally, and most importantly, this model of trophoblast survival 

and protection should be tested in other species to determine if this important finding is 

limited to small rodents. 
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