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ABSTRACT 

 

Virus Vector Gene Inserts Are Stabilized in the Presence of  

the Satellite Panicum Mosaic Virus Coat Protein. (August 2008) 

Anthany Laurence Everett, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Karen-Beth G. Scholthof 

  

The coat protein of satellite panicum mosaic virus (SPMV) was used to stabilize 

viral vector gene inserts in planta.  A Potato virus X (PVX) vector carrying the SPMV 

capsid protein (CP) gene was successfully stabilized through three serial passages in 

Nicotiana benthamiana from the upper non-inoculated leaves following rub inoculation. 

The presence of SPMV CP expression from the PVX vector was confirmed by necrotic 

lesions that occur only when SPMV CP is present and by western blot and reverse-

transcription PCR analyses.  In addition, PVX-SPCP was co-inoculated onto N. 

benthamiana with a Tomato bushy stunt virus vector carrying a green fluorescent protein 

gene, which normally does not yield GFP expression in upper tissue due to loss of the 

insert. However, upon co-inoculation with PVX-SPCP, upper non-inoculated leaves 

exhibited GFP accumulation based on green fluorescence by UV illumination at 488 nm 

and western blot analysis.  GFP expression was more abundant in upper non-inoculated 

N. benthamiana leaves as well as systemic tissues when the co-inoculation experiments 

were performed at 20°C compared to 25°C.  These results suggest that SPMV CP is a 

viable molecular tool for stabilizing viral vector gene inserts in planta. 
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CHAPTER I 
 

INTRODUCTION 

 

St. Augustine Decline Disease 

St. Augustinegrass (Stenotaphrum secundatum) is a dark-green, broad-leaf, turf-

grass that is grown in tropical and sub-tropical areas of the world including Mexico, 

Australia, Africa, the Caribbean and Hawaiian Islands, and the United States Gulf Coast 

region. A disease of St. Augustinegrass, St. Augustine Decline (SAD) Disease, was first 

described in 1969 in the United States (McCoy, Toler, and Amador, 1969), and has 

subsequently been reported in almost all the Gulf Coast region states (Cabrera and 

Scholthof, 1999).  SAD, which causes millions of dollars in St. Augustinegrass damage 

annually, is characterized by turf thinning and browning. The disease is spread 

mechanically, most often by landscaping practices such as mowing and trimming. To 

date, no known insect vectors exist. In individual plots or lawns, SAD develops over the 

course of several years and severity ranges from trace to complete turf loss. Individual 

plants show a characteristic chlorotic mottle or mosaic that runs parallel to the mid-rib of 

the leaf (Buzen et al., 1984; Cabrera and Scholthof, 1999) (Fig. 1).   

 

Panicum mosaic virus and satellite panicum mosaic virus 

Panicum mosaic virus (PMV) is the causal agent of St. Augustine Decline 

Disease  (SAD) (Cabrera and Scholthof, 1999; McCoy, Toler, and Amador, 1969). PMV  

                                                
 This thesis follows Virology format. 
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FIG. 1. Symptoms of St. Augustine Decline Disease on St. Augustinegrass. Healthy (left) and 
symptomatic (right) leaves of St. Augustinegrass. The yellow mosaic or mottle occurs during 
infection of PMV or a mixed infection of PMV plus SPMV (Cabrera and Scholthof, 1999).  
Samples were harvested in April, 2008 from a private residence in College Station, TX. 
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was first reported in switchgrass (Panicum virgatum) (Sill and Pickett, 1957).  An 

infection of St. Augustinegrass with PMV results in the typical symptoms described 

previously, and PMV virions readily accumulate in the wild, the greenhouse, or under 

controlled conditions in the laboratory (Holcomb, Liu, and Derrick, 1989).  

PMV is the type species of the genus Panicovirus, in the family Tombusviridae 

(Turina et al., 1998). PMV is a 4,326 nucleotide (nt) positive-sense single-stranded RNA 

(ssRNA) genome that encodes six proteins (Turina, Desvoyes, and Scholthof, 2000; 

Turina et al., 1998) (Fig. 3). A 48 kDa and a 112 kDa protein are translated directly from 

the 5’-end of the genome following the P48 ORF (Batten, Turina, and Scholthof, 2006; 

Turina et al., 1998). The 112 kDa protein is expressed by read-through of an amber stop 

codon (UAG) (Batten, Turina, and Scholthof, 2006; Turina et al., 1998). P48 and P112 

form the replicase complex responsible for minus-strand and sub-genomic RNA 

(sgRNA) synthesis and viral genome replication (Batten, Turina, and Scholthof, 2006). 

The four remaining genes are translated from a single sgRNA. The sgRNA encodes P8 

and P6.6 which are involved in cell-to cell movement (Turina, Desvoyes, and Scholthof, 

2000). P6.6 is produced by leaky scanning of the start codon of P8. The capsid protein 

(P26), encoded downstream of P6.6, may be expressed from a yet unidentified internal 

ribosomal entry site (IRES) (Turina, Desvoyes, and Scholthof, 2000; Turina et al., 

1998). To date, the only known function of PMV CP is encapsidation of PMV and 

SPMV gRNA (Qiu and Scholthof, 2000). The P15 ORF is nested in the CP gene, 

expressed by leaky scanning, and helps in systemic movement (Turina et al., 1998).  
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FIG. 2.  Symptoms associated with a PMV alone or PMV plus SPMV infection on proso millet 
(Panicum miliaceum) plants. A) Healthy proso millet cv. Sun-up. B) An infection of proso millet 
by PMV alone results in mild mosaic symptoms and C) co-infection with PMV plus SPMV 
results in severe symptom development. Upper non-inoculated/systemic leaves of proso millet 
cv. Sun-up were photographed at 14 days post inoculation. 
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FIG. 3. The genomes of PMV and SPMV. A) The 4,326 nucleotide (nt) genome of Panicum 
mosaic virus. P48 and P112 form the replicase complex, and P112 results from read-through of 
an amber (UAG) stop codon (black chevron). The rest of the viral proteins (small colored bars) 
are expressed from a sub-genomic RNA (lower line). P8 and P6 are associated with cell-to-cell 
movement. P15 contributes to systemic movement and is expressed because of a leaky start 
codon at the 5’-end of the 26 kDa CP (P26) ORF. B) The 824 nt genome of satellite panicum 
mosaic virus. The SPMV genome carries a 438 nt CP gene (blue box). The black lines represent 
untranslated regions. 
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smaller, 16 nm particle (Buzen et al., 1984). These smaller particles were classified as 

satellite panicum mosaic virus (SPMV) (Buzen et al., 1984; Cabrera and Scholthof, 

1999), and were shown to be inconsequential to symptom development in St. 

Augustinegrass (Cabrera and Scholthof, 1999; Holcomb, Liu, and Derrick, 1989). 

Contrarily, SPMV induces a synergism of symptom development in proso millet 

(Panicum miliaceum L.) and foxtail millet (Setaria italica L.) plants during a mixedly 

infection with PMV (Scholthof, 1999b) (Fig. 2).  

SPMV is an 824 nt positive-sense ssRNA that expresses a 17 kDa capsid protein 

(Masuta et al., 1987; Turina et al., 1998) (Fig. 3). The X-ray crystalline structure of the 

SPMV virion (Ban and McPherson, 1995) show that sixty subunits of the jelly-roll motif 

capsid protein interconnect to form an icosahedral lattice with three subunits per face of 

the icosahedron (T=1) (Ban and McPherson, 1995; Makino, Larson, and McPherson, 

2005).  

SPMV requires PMV, its helper virus, for replication and movement, in host 

plants (Buzen et al., 1984; Turina et al., 1998), but has minimal sequence homology with 

the PMV genome, sharing only 7 nt at the 5’-end and 3 nt at the 3’ end, presumably used 

for recognition by the PMV replicase complex. Infectious clones of PMV and SPMV 

allow for manipulation of the cDNA of the viral genomes (Masuta et al., 1987; Turina et 

al., 1998). The cDNAs are transcribed in vitro and the resultant RNA is rubbed on a 

suitable host to produce an infection (Cabrera and Scholthof, 1999; Turina et al., 1998). 

To understand the biological roles of the proteins expressed by PMV and SPMV 

a reverse genetic approach using infectious cDNA has been employed (Batten et al., 
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2006; Batten, Turina, and Scholthof, 2006; Desvoyes and Scholthof, 2000; Omarov, Qi, 

and Scholthof, 2005; Qi, Omarov, and Scholthof, 2008; Qi and Scholthof, 2008; Qiu and 

Scholthof, 2000; Qiu and Scholthof, 2004; Scholthof, 1999b). The N- and C-terminus of 

SPMV CP were shown to have multiple biological functions, including, but not limited 

to, RNA binding, helper virus interactions, symptom development and systemic 

movement. From this the basic functions of the proteins have been determined (Batten et 

al., 2006; Batten, Turina, and Scholthof, 2006; Omarov, Qi, and Scholthof, 2005; Qi, 

Omarov, and Scholthof, 2008; Qi and Scholthof, 2008). As an additional tool to 

elucidate protein function, SPMV CP has also been expressed from two plant virus gene 

vectors. Using the viral vector expression systems, SPMV CP was able to induce 

symptoms on a non-host and interfere with a suppressor of gene silencing, P25, from 

Potato virus X (PVX) (Qiu and Scholthof, 2004). 

 

Plant virus gene vectors 

Several plant viruses have been genetically modified to be used as virus gene 

vectors. These viruses can be used to express a foreign gene or RNA in host plants.  This 

strategy was developed because plant virus vector expression of foreign genes provides 

higher concentrations and more rapid results when compared to more traditional 

methods such as transgenic expression (Canizares, Nicholson, and Lomonossoff, 2005; 

Gleba, Klimyuk, and Marillonnet, 2007; Scholthof, Mirkov, and Scholthof, 2002). The 

major limitation to using viral vector expression systems has been the instability of the 
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FIG. 4. Potato virus X and the Potato virus X vectors carrying the satellite panicum mosaic virus 
coat protein gene.  A) The 6,435 nt genome of Potato virus X (PVX) has a 5’-cap (thin black 
line) and a 3’ poly(A) tail (Huisman et al., 1988; Skryabin et al., 1988).  The thick black bar 
represents untranslated regions. The P160 protein forms the viral replicase. The P25, P12, and P8 
proteins form the triple gene block (TGB) and are responsible for suppression of gene silencing, 
systemic and cell-to-cell movement, respectively. P25 is produced from sgRNA1.  P12 and P8 
are produced from sgRNA2, and the coat protein (CP) is produced from sgRNA3. B) The full-
length infectious cDNA of satellite panicum mosaic virus (SPMV) was cleaved at the SpeI and 
BsrGI restriction enzyme sites and blunt-ended using Klenow polymerase, resulting in a 634 bp 
fragment encoding the SPMV CP.  C) PVX vectors PVX-SPCP+ and D) PVX-SPCP- were made 
by inserting the 634 nt fragment containing the SPMV CP gene in a coding and non-coding 
orientation at the EcoRV restriction enzyme site downstream of a duplicated PVX CP promoter, 
respectively (bent arrow). Note that the figures are not to scale. 
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FIG. 5.  Maps of pTBSV-GFP and TBSV-GFP.  A) A circular map of pTBSV-GFP.  The 
plasmid is a modified pUC119 with an origin of replication (ori), a β-lactamase gene (AmpR) 
(medium curved arrow), and a T7 polymerase promoter (large curved arrow). Restriction 
enzyme sites ApaI, SphI, and SmaI are marked. A GFP insert (green box) is located between the 
NotI and BalI sites of TBSV cDNA. The 5’-end of TBSV cDNA is marked (short curved arrow). 
Drawing not to scale. B) A linear map of the ca. 4,800 nt genome of a full-length infectious 
clone of TBSV carrying the ca. 700 nt GFP gene. Translation from sgRNA1 (broken arrow) 
results in a CP:GFP fusion protein that consists of the 17 N-terminal residues (light grey box) of 
the TBSV CP, and GFP (green box). The remainder of the TBSV CP gene is out of frame and 
downstream of the BalI site. 
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gene insert and subsequent loss of foreign gene expression (Avesani et al., 2007; Gleba, 

Klimyuk, and Marillonnet, 2007; Scholthof, Mirkov, and Scholthof, 2002). 

In this study, we used two plant virus vectors, Potato virus X (PVX) (Figs. 4A, 

C-D) and Tomato bushy stunt virus (TBSV) (Fig. 5), to express SPMV CP and the green 

fluorescent protein (GFP) gene. A PVX vector, PVX-E1S, was modified to abolish a 

SalI restriction enzyme site and to use a duplicated coat protein promoter for 

independent gene expression from a sgRNA (Fig. 4) (Chapman, Kavanagh, and 

Baulcombe, 1992; Qiu and Scholthof, 2004). A TBSV vector expresses an enhanced 

green fluorescence protein (eGFP) that has been optimized with plant codons to recruit 

plant derived t-RNA, resulting in increased GFP fluorescence in planta (Fig. 5).  

Expression of foreign proteins from either the PVX vector or the TBSV vector is 

eventually lost during plant virus gene vector infection. PVX has been shown to lose 

segments of the gene insert, and thus expression, both in initially and serially passaged 

plants, and additionally, insert instability increases with insert size (Avesani et al., 2003; 

Avesani et al., 2007; Chapman, Kavanagh, and Baulcombe, 1992; Qiu and Scholthof, 

2004). TBSV vectors have been shown to lose gene expression before reaching systemic 

tissues of the host plant (Borja et al., 1999; Scholthof, 1999a; Scholthof, Morris, and 

Jackson, 1993). The loss of gene insert expression from plant virus gene vectors makes 

them ideal tools to facilitate stabilization experiments, for if foreign gene expression was 

not lost from these vectors, stabilization studies would be moot.  

 

 



 11 

SPMV and its coat protein have multiple functions 

We have observed that a SPMV mutant that did not express CP generated 

increased numbers of defective interfering RNAs (DIs) (Qi and Scholthof, 2008; Qiu and 

Scholthof, 2001a; Qiu and Scholthof, 2001b). In addition the concentration of its helper 

virus, PMV, was increased in planta when co-infected with SPMV (Qiu and Scholthof, 

2001b; Scholthof, 1999b). The increase in PMV titer and the decrease in SPMV DI 

formation suggested that SPMV CP may play a crucial role in maintaining the integrity 

of both viral genomes. During another study investigating the role of SPMV in virus 

induced gene silencing, GFP expression from TBSV-GFP (Fig. 5) was occasionally 

observed in upper non-inoculated leaf tissues of N. benthamiana during a co-infection 

with a PVX vector expressing the satellite panicum mosaic virus coat protein gene 

(PVX-SPCP+) (Qiu and Scholthof, 2004). When N. benthamiana was inoculated with 

TBSV-GFP alone, GFP expression was only observed in the inoculated leaves (Qiu and 

Scholthof, 2004).  

My hypothesis, taking the previous results together, is that SPMV CP may be 

able to be used as a molecular tool to maintain vector genome integrity or gene insert 

stability.  In this study I investigated if SPMV can fulfill such a role in N. benthamiana.  

For this, serial passages of PVX-SPCP+ was used to test the viability of this hypothesis 

of cis-stabilization of a foreign gene. Similarly, co-infection with TBSV-GFP plus PVX-

SPCP+ was used to test for in trans-stabilization of a foreign gene insert (GFP). 
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CHAPTER II 

MATERIALS AND METHODS 

 

Plant stocks   

Approximately 50 N. benthamiana seeds were spread on Metro Mix soil (SunGro 

Horticultural Distribution, Bellevue, WA) in a 4 in pot and placed in a growth chamber 

(25°C, 14 h dark and 10 h light) with regular watering. Three to four days after 

cotyledon emergence, individual seedlings were transplanted to 4 in pots filled with 

Metro Mix soil and maintained at 25°C, 14 h dark and 10 h light prior to inoculation at 

the 4-6 leaf stage.  

 

Preparation of infectious RNA stock 

The insertion of the SPMV CP gene into the PVX vector was previously 

described (Qiu and Scholthof, 2004). Briefly, a full-length infectious SPMV cDNA 

(pSPMV-1) (Turina et al., 1998) was digested with SpeI and BsrGI at positions 69 and 

703, respectively (Fig. 4B). Following treatment with Klenow polymerase (Large 

fragment), this resulted in a 634 bp fragment (SPCP) which includes the complete 473 nt 

SPMV CP gene flanked by 19 and 142 bases on the 5’- and 3’-ends, respectively. SPCP 

was ligated in a coding and reverse orientation using ligase at 4°C overnight into a 

modified pPC2S plasmid at the EcoRV site (nt 5677) (Qiu and Scholthof, 2004). The 

modification abolished the SalI restriction enzyme site at position 6572 to form PVX-
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E1S cDNA (Qiu and Scholthof, 2004) from the original pPC2S plasmid (Chapman, 

Kavanagh, and Baulcombe, 1992).  

The ligation mix containing approximately 7.5 µg of plasmid DNA was added to 

100 µL of E. coli strain XL1-Blue (Stratagene, La Jolla, CA) competent cells and was 

heat shocked for 3 min at 42°C. The transformed cells were plated on Luria-Bertani (LB) 

agar with 100 mg ampicillin/L (Sigma, St. Louis, MO) media that was pre-warmed in a 

37°C incubator for 15 min and incubated overnight at 37°C. Single colonies were 

selected and grown overnight at 37°C in 2 mL of LB liquid media with 100 mg 

ampicillin/L media (LB-Amp). The 2 mL culture was added to 48 mL of LB-Amp and 

grown over-night at 37°C. Plasmid DNA was isolated with a Qiagen Maxi-prep kit 

(Qiagen, Valencia, CA), linearized with SpeI, and transcribed using T7 polymerase, as 

described previously (Qiu and Scholthof, 2004; Scholthof, Morris, and Jackson, 1993). 

The integrity of the transcripts was confirmed by loading 3 µL of transcription solution 

mixed with 1 µL loading dye (50% glycerol, 1 mM EDTA pH. 8.0, 0.4% xylene cyanol, 

0.3% bromophenol blue) onto a 1% agarose gel and electrophoresed at 120 V for 45 min 

in 1X TBE buffer (8.9 mM Tris, 88.9 mM sodium borate, 4 mL 0.5 M EDTA, pH 8.0).  

RNA bands were visualized by soaking the agarose gels in 500 mL of TBE buffer 

containing 1 drop of 1 M ethidium bromide for 15 min followed by UV illumination at 

365 nm.  

TBSV-GFP was derived from the plasmid pTBSV-GFP containing TBSV with 

an enhanced GFP insert, a kind gift from Teresa Rubio and A. O. Jackson (Univ. of 

California, Berkeley, CA). Briefly, a GFP gene constructed to use plant optimized 
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codons (eGFP) was ligated between the NotI and BalI restriction enzyme sites of the 

pTBSV-100 plasmid carrying an infectious cDNA clone of TBSV downstream of a T7 

promoter (Hearne et al., 1990) (Fig. 5A). This fused the eGFP coding sequence 

approximately 50 nt downstream and in frame with the TBSV CP gene start codon 

resulting in a ca. 30 kDa N-terminal CP:eGFP protein during translation (Yamamura and 

Scholthof, 2005) (Fig. 5). PTBSV-GFP was isolated as described above and linearized 

with SmaI (Fig. 5A). In vitro transcripts of TBSV-GFP (Fig. 5B) were rub-inoculated to 

N. benthamiana using routine protocols (Scholthof et al., 1995).  

 

Passage of PVX-derived constructs in Nicotiana benthamiana plants 

RNA inoculation mixtures were prepared by adding 10 µL of PVX-SPCP+, 

PVX-SPCP-, or PVX-E1S transcripts to 90 µL of RNA inoculation buffer (0.05 M 

K2HPO4, 0.05 M glycine, 1% bentonite, 1% Celite, pH 9.0), as previously described 

(Qiu and Scholthof, 2004). Two-week old N. benthamiana plants were rub-inoculated 

with 10 µL of RNA inoculation mix or RNA inoculation buffer alone onto each of the 

4th, 5th, and 6th true leaves (Fig. 6A). Inoculated plants were transferred to a cardboard 

box, covered with moistened BenchGuard paper (International Product Supplies, 

London, England), and kept at room temperature overnight. The following morning, 

plants were removed to a 25°C growth chamber with 10 h light and 14 h dark.  
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FIG. 6. Passage of PVX constructs in N. benthamiana. A) The 4th, 5th, and 6th leaves of 
two-week old N. benthamiana plants were inoculated with inoculation buffer, PVX-E1S, 
PVX-SPCP+, or PVX-SPCP-. B) The inoculated plants were inspected for necrotic 
lesions in upper non-inoculated tissues at 11-14 days post inoculation (yellow). C) The 
symptomatic upper tissue was ground in a mortar with a pestle and the extract was used 
for subsequent passages and molecular analyses. D) Homogenized tissue from 
symptomatic upper leaves (as in B) was rub inoculated (passaged) onto healthy two-
week old N. benthamiana plants or E) used for RT-PCR and western blot analyses.  
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If PVX-SPCP+ plants were symptomatic at 11-14 dpi (Fig. 6B), then 0.5 g of 

uppermost non-inoculated symptomatic leaf tissue was harvested and ground in a mortar 

with a pestle in 1 mL virus inoculation buffer (0.05 M K2HPO4 pH 7.4, 1% celite) (Fig. 

6C) and mechanically passaged onto the 4th 5th, and 6th leaves of two-week old healthy 

N. benthamiana plants (Fig. 6D). The passages were repeated until i) SPMV-CP 

indicative local lesions were no longer apparent by direct observation in upper non-

inoculated plant tissues, ii) no protein was present in upper leaf tissues as determined by 

western blot, iii) and no SPMV CP RNA was present as determined by reverse 

transcription (RT) PCR (Fig. 6E). Three independent studies with five replicates per 

study were analyzed. 

 
 
Co-infection of TBSV-GFP with PVX-SPCP in Nicotiana benthamiana 

RNA inoculation mix was prepared by adding 10 µL TBSV-GFP and PVX-

SPCP+ transcripts each to 80 µL of RNA inoculation buffer. Plant inoculations, 

passages, and maintenance were described above. Upper non-inoculated leaves were 

photographed and harvested at 7-9 dpi. Three independent experiments were conducted 

using five replicates at 20°C. Three independent experiments were also performed using 

three replicates for each experiment at 25°C. 

 

Immunoblot analyses 

Western blot analyses of upper non-inoculated leaf tissues was performed by 

harvesting 0.5 g symptomatic leaf tissue, grinding it in an ice-cold mortar with a pestle 
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with 1 mL  2X STE buffer (0.1 M Tris, 0.01 M EDTA, 2% SDS, pH 8.0). Homogenized 

tissue was transferred to a 1.5 mL micro-centrifuge tube before one-fifth volume of 5X 

cracking buffer (3.8 g Tris, 5 g SDS, 5 mL β-mercaptoethanol, 5 mg bromophenol blue, 

50 mL glycerol, 45 mL dH2O, pH. 6.8) was added. The sample was then boiled for 15 

min. A 40 µL aliquot was electrophoresed through an SDS-polyacrylamide gel (SDS-

PAGE) (Running gel: 15%  acrylamide, 1% SDS, pH 8.8; Stacking gel: 0.05% 

acrylamide, 1% SDS, pH 6.8) in Laemmli running buffer (0.5 M Tris, 1.9 M glycine, 1% 

SDS) (Laemmli, 1970) for 1.5 h at 120 V. Proteins were electro-transferred from the 

SDS-polyacrylamide gel to a nitrocellulose membrane (Pall, New York, New York) in 

transfer buffer (0.025 M Tris, 0.25 M glycine, 20% methanol) for 90 min at 265 mA  

(Bio-Rad electro-transfer apparatus, Bio-Rad Laboratories, Hercules, CA). Blots were 

soaked in 7.5% non-fat dried milk (Carnation, Solon, OH) in TBS/Tween (0.5 M Tris, 

0.2 M NaCl, 0.05% Tween-20) at 4°C overnight using standard protocols (Sambrook, 

1989). The blot was washed 3 times for 15 min each in TBS/Tween prior to adding 10 

mL of antiserum containing polyclonal rabbit antibodies raised against SPCP or mouse 

antibodies raised against GFP or TBSV P19 (1:10,000 dilution in 10 mL 7.5% milk-

TBS/Tween buffer). The blot was incubated with antibody serum at room temperature 

with gentle rotation for 4 h. The membrane was again washed 3 times in TBS/Tween for 

15 min followed by serum containing goat anti-rabbit or goat anti-mouse IgG antibodies 

conjugated to alkaline phosphatase (1:2,000 dilution in 10 mL 7.5% milk-TBS/Tween 

buffer, Sigma, St. Louis, MO) at room temperature for 4 h with gentle rotation. After 

washing in TBS/Tween again as above, the protein bands were then visualized by the 
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addition of 33 µL 5-bromo-4-chloro-3 indolyl phosphate p-toluidine (Sigma, St. Louis, 

MO), 66 µL nitrotetrazolium blue salt (Sigma, St. Louis, MO) in 1X alkaline 

phosphatase buffer, pH 9.5 for 3-5 min. 

 

RNA analyses 

Reverse transcription-polymerase chain reaction (RT-PCR) analysis of PVX-

SPCP from passaged plants was carried out on RNA isolated from 0.5 g of upper non-

inoculated N. benthamiana leaves.  Harvested tissue was ground in an ice-cold mortar 

with a pestle in 500 µL 2X STE buffer followed by the addition of 500 µL 1:1 phenol-

chloroform (pH 7.4). The homogenate was transferred to a 1.5 mL micro-centrifuge tube 

and extracted 3 times by centrifugation at 10 K rpm for 10 min at 4°C, taking the 

aqueous layer each time and adding it to 500 µL 1:1 phenol-chloroform, and mixed by 

inversion after each centrifugation. The aqueous layer was then transferred to a clean 1.5 

mL micro-centrifuge tube followed by addition of an equal volume of 100% ethanol and 

1:10 (v/v) 3 M sodium acetate (pH 5.2) and placed at -65°C overnight. The RNA was 

pelleted by centrifugation at 10 K rpm for 10 min at 4°C. The supernatant was decanted. 

The pellet was washed with ice-cold 70% ethanol and re-centrifuged at 10 K rpm for 10 

min at 4°C. After decanting the supernatant again, residual ethanol was removed from 

the pellet by vacuum centrifugation (DNA Speed Vac, Savant, Waltham, MA). The 

pellet was re-suspended in 40 µL dH2O. A forward primer                                             

(5’-GCATCGATCGCTAGTCTCACG-3’) and reverse primer                                    

(5’-TCGACGATATCACACGGTCGCC-3’) pair were designed so that the ten 5’-
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proximal nucleotides of each primer corresponded to the flanking 10 nt of the PVX 

genome (bold). The eleven 3’-proximal nucleotides of the forward primer and the twelve 

3’-proximal nucleotides of the reverse primer are complementary to the 5’- and 3’- end 

of the SPMV CP gene, respectively (Fig. 8). For, the RT-PCR, 1 ng each of the forward 

and reverse primers, and a 12-18 nucleotide oligo-dT primer (Invitrogen, Carlsbad, CA)   

were added to a pre-made RT-PCR bead (Ready-to-Go RT-PCR, GE Healthcare Bio-

Sciences, Piscataway, NJ) plus 1 µL of RNA extracted from plant tissues and 46 µL of 

dH2O. The amplification was carried out in an Applied Biosystems 2720 thermocycler 

(Applied Biosystems, Foster City, CA) under the following conditions: 42°C, 30 min for 

first strand synthesis; 95°C for 5 min, to denature the cDNA; and 42 cycles at 95°C for 1 

min, 55°C for 1 min; 72°C for 2 min. The cycle was ended after 72°C for 10 min, and 

then held at 4°C.  The RT-PCR products were analyzed for the presence of the SPMV 

CP gene by gel electrophoresis using 15 µL RT-PCR product plus 3 µL loading dye on a 

1% agarose gel for 45 minutes at 120 V in Tris-borate-EDTA (TBE) buffer (0.1 M Tris, 

1 mM EDTA, pH 8.0). The DNA bands were visualized by exposing the gel to ethidium 

bromide in TBE buffer for 20 min before UV illumination at 395 nm. 

 

Photography of plants 

 All photographs of N. benthamiana plants were taken with a Canon Powershot 

A630 (Canon, Lake Success, New York) using automatic ISO and focus settings.  

Picture size (resolution) was 3264 x 2448 pixels, and flash was used as needed. 

Photographs were manipulated by increasing/decreasing brightness and contrast or 
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cropping as needed. Nero Photosnap picture editing software was used for adjustments, 

and all pictures in individual figures were adjusted together.  The aperture priority 

setting was used for pictures taken under a UV mercury lamp (H44GS100, Osram 

Sylvania, Danvers, MA) at 488 nm and ISO and focus was automatically controlled by 

the camera.   
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CHAPTER III 

RESULTS 

 

For this study, a multi-faceted approach was used to determine if SPMV CP 

expressed from a PVX virus gene vector can stabilize virus vector gene inserts during 

systemic infection in planta. Based on observational, biochemical, and molecular data, 

SPMV CP stabilization was shown to occur, by an as yet unknown mechanism, in cis 

and in trans using PVX- and TBSV- based vectors.  

 

Cis-stabilization of the SPMV CP gene within a PVX vector by SPMV CP through 

serial passages in Nicotiana benthamiana 

An infection of N. benthamiana with a PVX vector carrying a 634 nt insert from 

SPMV containing the 473 nt CP gene transcribed from a duplicated coat protein 

promoter (PVX-SPCP+) (Fig. 4) resulted in stunting and necrotic lesions along the Type 

II and Type III veins of the leaves (Fig. 7).   In contrast, a PVX vector with the same 

SPMV 634 nt fragment in a reverse orientation (PVX-SPCP-) (Fig. 4) produced 

symptoms as PVX wild-type (Fig. 7). This was in agreement with previous observations 

(Qiu and Scholthof, 2004). For the preliminary study, the indicative symptoms of PVX-

SPCP+ infected plants were used to test for SPMV CP expression through serial 

passages of PVX-SPCP constructs in N. benthamiana.  At 25°C, upper non-inoculated 

leaves displayed necrotic lesions through at least three serial passages and in as many as 

five serial passages (Fig. 7, Table 1). This observation suggested that SPCP was stably 
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expressed, an atypical result, when compared to a plethora of other virus-gene vector 

reports (Avesani et al., 2007; Chapman, Kavanagh, and Baulcombe, 1992; Qiu and 

Scholthof, 2004; Scholthof, 1999a; Scholthof, Scholthof, and Jackson, 1996; Scholthof, 

Mirkov, and Scholthof, 2002).  

To confirm that the necrotic lesions were specifically associated with the 

expression of SPMV CP during passage experiments, both western and RT-PCR 

analyses were conducted (Figs. 8-9). N. benthamiana plants were inoculated with PVX-

SPCP+, PVX-SPCP-, or inoculation buffer to test for SPMV CP accumulation or as 

controls, respectively.  The accumulation of SPMV CP was assayed with a polyclonal 

rabbit antiserum specific for SPMV CP. Immunoblots showed the presence of the SPMV 

CP 17 kDa monomer and a 34 kDa dimer product in both upper and lower non-

inoculated leaves, although SPMV CP accumulation in lower systemic leaves is variable 

(Fig. 8). The latter result is most likely due to temporal and/or environmental effects 

during viral movement from source to sink tissues during virus infection. From this, 

SPMV CP accumulation as determined by western blot and necrotic lesions in upper 

non-inoculated tissues, leaves were selected to inoculate (passage) healthy, young plants. 

Both SPMV CP and the lesions were observed in the initially inoculated plants (passage 

0) and continued through at least three and as many as five serial passages for only those 

plants inoculated with PVX-SPCP+ (Fig. 8, Table 1) In contrast, plants inoculated with 

PVX-SPCP- or inoculation buffer, as controls, had no detectable SPMV CP present, as 

expected, based on western blot, nor necrotic lesions in the initially inoculated plant or  
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FIG. 7. Symptoms due to PVX-derivative infection on upper non-inoculated leaves of N. 
benthamiana plants at 14 days post inoculation. A) Representative upper non-inoculated leaves 
of N. benthamiana plants that were previously inoculated with inoculation buffer (Mock), 
infectious transcripts of PVX-E1S empty vector (PVX), or a PVX vector carrying the SPMV CP 
gene in an antisense (PVX-SPCP-) or coding (PVX-SPCP+) orientation 14 days before being 
removed. B) An enlargement of the PVX-SPCP+ leaf in (A). Necrotic lesions appear near Type 
I, Type II and Type III veins. Upper leaves were chosen for photographs. 
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A  B  

PVX-SPCP (-) PVX-SPCP (+) 

I 

II 

III 



 24 

 
 

TABLE 1 

The number of N. benthamiana plants showing necrotic lesions at 11-14 days post inoculation 
(dpi) in upper non-inoculated leaves following serial passages. 

 

 

a. N. benthamiana plants were inoculated with: inoculation buffer (Mock), PVX-E1S empty 
vector (PVX), PVX-SPCP- (SPCP-), or PVX-SPCP+ (SPCP+). 
b. At 14 dpi, 0.5 g of symptomatic systemic leaf tissue was homogenized in a mortar with a 
pestle and then rub-inoculated onto the 4th, 5th, and 6th leaf of two-week old N. benthamiana 
plants. See Fig. 6 for strategy. 
c. The total number of plants exhibiting necrotic lesions in upper non-inoculated leaves out of 3 
independent sets of 5 replicate plants (n=15).  
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any serial passage thereof (Fig. 8, Table 1). 

To test whether the presence of SPMV CP was due to viral vector stabilization or 

an increase in SPMV CP translation, RT-PCR and immunoblot analyses were 

performed. If the vector was being stabilized, PVX-SPCP+ should be intact and present 

in upper non-inoculated leaf tissues. For this, primers that crossed the SPMV CP gene 

insertion site were used to determine if the SPMV insert was being maintained. The 

primers for RT-PCR were designed with the ten 5’-proximal nucleotides of the forward 

and reverse primers corresponding to the vector genome, and the eleven 3’-proximal 

nucleotides of the forward primer and twelve 3’-proximal nucleotides of the reverse 

primer corresponding to the insert (Fig. 9A). Linear PVX-SPCP+ DNA (template) as a 

positive PCR reaction control was tested along with upper non-inoculated leaf tissue 

from plants inoculated with inoculation buffer or PVX-SPCP- which were used as 

negative controls. Based on this, only samples from PVX-SPCP+ inoculated plants gave 

an RT-PCR product (Fig. 9B) of the expected ca. 700 nt size. Upper non-inoculated leaf 

tissues that were confirmed to contain the SPMV CP by western blot analysis also 

showed necrotic lesions and a RT-PCR product (Fig. 9C). Taken together, the data show 

that SPMV CP was maintained in a PVX viral vector through serial passages in N. 

benthamiana. Since this experiment shows that SPMV CP was able to stabilize its own 

gene within PVX-SPCP+ (cis-stabilization), it was of interest to see if SPMV CP could 

stabilize the expression of foreign genes in trans. 
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FIG. 8. Western blot analysis of upper non-inoculated leaf tissue from the third passage of plants 
infected with PVX-SPCP+. Two-week old N. benthamiana plants were inoculated with 
infectious transcripts of PVX-SPCP+ and monitored for the presence of indicative necrotic 
lesions (as shown in Fig. 6B) at 11-17 days post inoculation (dpi). Three serial passages were 
performed, and systemically infected leaf tissues from symptomatic plants inoculated with PVX-
SPCP+ were assayed for the presence of SPMV CP using rabbit polyclonal antibodies specific 
for SPMV CP. Inoculation buffer (Mock) inoculated plants and PVX-SPCP- (data not shown) 
that had undergone three serial passages were also tested as control, and showed no SPMV CP 
product.  

 

 

 

 

 

 

kDa 

36 
28 

17 

11 

SPMV CP (monomer) 

SPMV CP (dimer) 

 
 

11     14      11    14     11    17    11    17  

Upper        Lower  Upper      Lower  

Mock PVX-SPCP +  



 27 

 

 

  

 

FIG. 9. RT-PCR analyses of PVX-SPCP+ infected plants. A) An RT-PCR analysis was 
performed using oligo-dT primers for first strand synthesis and specific primers that border the 
insertion site of SPMV CP. The first 10 nt of each primer corresponds to viral vector RNA 
(bold). B) RT-PCR products were tested for the presence of the SPMV insert on 1% agarose 
gels. Lanes were loaded with RT-PCR products of linear PVX-SPCP+ DNA (+), upper non-
inoculated tissue from mock (M), PVX-E1S empty vector (PVX), PVX-SPCP- (SPCP-), or 
PVX-SPCP+ inoculated plants. The numbers represent samples collected from separate PVX-
SPCP+ inoculated plants. The SPMV CP insert plus the primer ends yields a 654 nt fragment. C) 
Western blot analysis using rabbit polyclonal antibodies specific for the 17 kDa SPMV CP was 
performed using the same plant tissues as for (B). 
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FIG. 10. TBSV-GFP infection of N. benthamiana. A) GFP fluoresces green under UV 
illumination at 488 nm in leaves of N. benthamiana 7 dpi with TBSV-GFP (broken arrow).  
Upper non-inoculated leaves (white arrow) were harvested for western blot analyses. B) TBSV-
GFP infected N. benthamiana plants were monitored for the presence of the TBSV P19 protein, 
an indicator of TBSV vector presence, daily for one week using rabbit polyclonal antibodies. As 
control, upper leaf tissue from a plant inoculated with infectious transcripts of TBSV wild-type 
(+) or inoculation buffer (M) were loaded. An asterisk (*) indicates a host protein that cross-
reacts with the P19 antiserum, and serves as a loading control. 
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Trans-stabilization of a GFP gene within a TBSV vector by SPMV CP expressed 

from PVX-SPCP+ 

Based on the results from the cis-stabilization studies that SPCP was stabilized 

through serial passages in N. benthamiana, we developed experiments to determine if 

the stabilizing function of SPMV CP could be used to stabilize a GFP gene within a 

TBSV vector (TBSV-GFP) in trans. Vector construction and detailed experimental setup 

was described in the Materials and Methods (Chapter II). Briefly, in this experiment 

two-week old N. benthamiana plants were co-inoculated with TBSV-GFP and PVX-

SPCP+ and upper non-inoculated tissues observed for the presence of GFP green 

fluorescence by UV illumination at 7 dpi.  Control plants were inoculated with 

inoculation buffer, TBSV wild-type, PVX-E1S empty viral vector, PVX-SPCP+, PVX-

SPCP-, TBSV-GFP plus PVX-E1S, and TBSV-GFP plus PVX-SPCP-. None of the 

control plants inoculated with inoculation buffer or viral vector constructs without the 

GFP insert showed GFP fluorescence in any tissues.  In general, inoculation of N. 

benthamiana with TBSV-derived vectors results in foreign gene expression in only 

inoculated leaves (Scholthof, 1999a; Scholthof, Morris, and Jackson, 1993). This 

remains true for plants inoculated with TBSV-GFP alone or during co-infection with 

PVX-E1S or PVX-SPCP-, as GFP expression (fluorescence) is generally seen only in 

inoculated leaves of N. benthamiana 7 dpi (Fig. 10A). The accumulation of P19 in upper 

non-inoculated tissues, as determined by immunoblot analyses using P19 specific 

mouse-antibodies (Fig. 10B), showed that a viable TBSV viral vector is present in both 

inoculated and systemic tissues when plants are inoculated with TBSV-GFP. From this  
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FIG. 11. In trans stabilization study in N. benthamiana using TBSV and PVX vector derivatives. 
A) N. benthamiana plants were inoculated with inoculation buffer (Mock), or PVX-E1S empty 
vector (PVX), PVX-SPCP-, PVX-SPCP+, TBSV-GFP, TBSV-GFP plus PVX-SPCP-, or TBSV-
GFP plus PVX-SPCP+. Plants were monitored for GFP fluorescence in non-inoculated systemic 
tissues at 7 dpi at 20°C. B) In addition to increased GFP expression in upper non-inoculated 
leaves, plants inoculated with TBSV-GFP plus PVX-SPCP+ showed GFP expression in lower 
non-inoculated systemic tissues at 20°C (white arrows). Conducting the same experiments as in 
(A) at 25°C showed that green fluorescent lesions in non-inoculated upper leaf tissues were ten 
fold lower (see Table 2) at the higher temperature (white arrow). 
 

25° C 

Mock PVX 

TBSV-GFP 

PVX-SPCP- PVX-SPCP+ 

TBSV-GFP+PVX-SPCP- 

20° C 

TBSV-GFP+PVX-SPCP+ 

TBSV-GFP+PVX-SPCP+ 

A   

B   



 31 

and RNA analyses showing that non-essential genes, like GFP, are deleted or severely 

mutated during virus vector replication, it can be assumed that the resultant viral vector 

TBSV RNA in systemic tissues is comparable in protein expression, genome sequence, 

and basal functionality to that of wild-type TBSV (Scholthof, Mirkov, and Scholthof, 

2002; Tzfira, Kozlovsky, and Citovsky, 2007). In addition, GFP fluorescence dampens 

over the course of TBSV-GFP infection. Interestingly, we observed that co-infection of 

TBSV-GFP with PVX-SPCP+ resulted in GFP expression in upper and lower non-

inoculated leaves at 20°C, and vibrant GFP fluorescence was maintained in both 

inoculated and systemic leaves. This was readily observed by UV illumination at 488 nm 

(Fig. 11A). Expression of GFP in the upper tissues is characterized by fluorescent foci or 

spots that are approximately 4-8 mm in diameter and have comparable margins to the 

fluorescent foci found in lower inoculated tissues, though the spots in lower tissues are 

8-15 mm in diameter. Of 20 co-infected plants showing GFP expression in the 

inoculated leaves, 19 were observed to have expression in the upper non-inoculated 

leaves, and a total of 225 fluorescent foci were counted in the upper tissues of 19 plants 

(Table 2), and fluorescence was primarily localized to secondary and tertiary veins.  

Western blot analysis using a polyclonal mouse anti-P19 antibody confirmed the 

presence of the TBSV vector (Fig. 12) as expected based on infections with TBSV-GFP 

alone (Fig. 10B). To test for GFP accumulation in systemic tissues, two-week old N. 

benthamiana plants were inoculated with inoculation buffer, or transcripts of TBSV 

wild-type, TBSV-GFP, PVX-E1S, TBSV-GFP plus PVX-E1S, TBSV-GFP plus PVX-

SPCP-, or TBSV-GFP plus PVX-SPCP+. Upper non-inoculated tissue from infected 
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plants was harvested 7 dpi and analyzed by immunoblot assays using mouse anti-GFP 

(Fig. 13A).  In addition, the former tissues were also assayed for the presence of SPMV 

CP using rabbit anti-SPMV CP (Fig. 13B) antibodies.  

In all instances where GFP fluorescence was observed in upper non-inoculated 

leaf tissues of plants co-infected with TBSV-GFP plus PVX-SPCP+, accumulation of 

both GFP and SPMV CP was observed by western blot analysis (Table 2, Fig. 13B). 

Interestingly, the control experiments revealed that occasionally plants inoculated with 

TBSV-GFP or co-infected with TBSV-GFP plus PVX-SPCP- or TBSV-GFP plus PVX-

E1S (the empty vector) had a few fluorescent spots in upper tissues. However, this 

represents an approximately 10- to 40-fold fewer spots than those plants co-infected with 

TBSV-GFP and PVX-SPCP+ (Table 2). When analyzed by immunoblot assays, the 

same tissues from control plants were confirmed to contain the GFP protein (data not 

shown).  

Therefore, our observation of GFP fluorescence in systemic tissues indicates that 

GFP gene expression or GFP gene integrity has been maintained in plants co-inoculated 

with TBSV-GFP plus PVX-SPCP+ (Table 2). Curiously, the GFP protein also 

accumulated in non-fluorescing upper leaf tissues of control plants co-infected with 

TBSV-GFP and PVX-E1S empty vector or PVX-SPCP- by western blot analysis (Fig. 

13).  This anomalous result (i.e. GFP protein, but no fluorescence) suggests that SPMV 

CP not only stabilizes the GFP insert within the vector, but that the gene sequence and/or 

functional integrity of the expressed protein is maintained. This is an important 

observation as it indicates that protein expression does not always result in biological 
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activity (Fig. 13B), but that the presence of SPMV CP in systemic non-inoculated tissues 

harboring TBSV-GFP allows for expression of biologically active (fluorescing) GFP. 

During routine experimentation of the stabilizing effects of SPMV CP on the 

GFP gene insert of TBSV-GFP in N. benthamiana, climate control systems 

malfunctioned, and the temperature where plants were grown decreased from 25°C to 

20°C.  The drop in temperature caused a marked increase in the number of fluorescent 

green spots in the upper non-inoculated tissues of plants infected with TBSV-GFP plus 

PVX-SPCP+ (Fig. 11B).  For this, a temperature study to test for environmental effects 

on GFP expression was undertaken. The results show that there was little difference 

between the number of plants showing GFP expression in upper non-inoculated tissues 

when the above experiments were conducted at 20°C as compared to 25°C (Fig. 11B, 

Table 2). Remarkably, the number of GFP fluorescent spots, as determined by UV 

illumination at 488 nm, was increased 10-fold in upper non-inoculated leaf tissues for 

plants co-inoculated with TBSV-GFP plus PVX-SPCP+ and maintained at 20°C versus 

plants maintained at 25°C (Table 2). These results show that stabilization of viral 

vectors, and thus biologically active protein expression, facilitated by SPMV CP has the 

potential to be optimized. 
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TABLE 2 
 

Comparison of GFP expression in N. benthamiana at 7 days post inoculation (DPI) at 20°C and 
25°C. 

                                                                                                                    
                                                                                                                  TBSV-GFPa plus 

 Mockb TBSVb PVXb TBSV-GFPb PVXb PVX-
SPCP-c 

PVX-
SPCP+c 

Plantsd 
20°Ce 0/20    

(0%) 
0/20    
(0%) 

0/20    
(0%) 

3/20      
(15%) 

1/20    
(5%) 

5/20 
(25%) 

19/20 
(95%) 

25°Ce 0/9      
(0%) 

0/9      
(0%) 

0/9      
(0%) 

1/9        
(11%) 

0/9      
(0%) 

3/9 
(33%) 

8/9  
(89%) 

        

Spotsf 

20°Cg 
0/20     
(0.0) 

0/20     
(0.0) 

0/20     
(0.0) 

3/20       
(0.15) 

1/20   
(0.05) 

9/20 
(0.45) 

225/20 
(11.25) 

25°Cg 0/9       
(0.0) 

0/9       
(0.0) 

0/9       
(0.0) 

0/9           
(0.0) 

1/9     
(0.11) 

0/9    
(0.0) 

27/9  
(3.00) 

 

a. Infectious transcripts of TBSV-GFP were co-inoculated with PVX-based vectors onto the 4th, 
5th, and 6th leaves of two-week old N. benthamiana plants (see Fig. 6). 
b. Controls for this study include inoculation buffer (Mock), and infectious transcripts of TBSV, 
PVX-E1S empty vector (PVX), and TBSV-GFP. 
c. PVX-E1S-based vectors that do not (PVX-SPCP-) or do express (PVX-SPCP+) SPMV CP. 
d. ‘Plants’ represents N. benthamiana plants scored for GFP fluorescence in systemic non-
inoculated tissues at 7 dpi. 
e. The number of plants (numerator) observed to have green fluorescence in upper non-
inoculated leaf tissues in the total number of plants observed (denominator) was used to calculate 
the percentage of plants with fluorescence in upper leaves, indicated in parentheses, at different 
temperatures. 
f. ‘Spots’ represents the number of green fluorescent foci that were scored in systemic non-
inoculated tissues of N. benthamiana plants at 7 dpi. 
g. The number of fluorescent foci (numerator) in the total number of plants observed 
(denominator) was used to calculate the average number of fluorescent spots per plant, indicated 
in parentheses. 
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FIG. 12. Western blot analyses of P19 accumulation in upper non-inoculated leaves of N. 
benthamiana plants inoculated with TBSV-GFP plus PVX-SPCP+ at 2 to 7 days post inoculation 
(DPI). N. benthamiana plants were monitored for the presence of TBSV P19 protein from 2-7 
days post inoculation. As control, upper leaf tissue from a plant inoculated with TBSV (+), mock 
inoculation (M1 and M2), or PVX-SPCP+ (PVX) were loaded. An asterisk (*) marks a host 
protein that cross-reacts with P19 serum was used as a loading control. A double asterisks (**) 
marks an unknown host protein.  
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FIG. 13. GFP accumulation in upper non-inoculated leaves of N. benthamiana co-infected with 
TBSV-GFP plus PVX-SPCP derivatives. A) N. benthamiana plants were inoculated with 
inoculation buffer (Mock), TBSV, TBSV-GFP, PVX-E1S empty vector (PVX WT), TBSV-GFP 
plus PVX-E1S, TBSV-GFP plus PVX-SPCP-, or TBSV-GFP plus PVX-SPCP+. At 7 days post 
inoculation tissue was assayed for the presence of the 27 kDa GFP protein by western blot. 
Inoculated leaves of plants infected with TBSV-GFP were used as a positive control. Plants 
showing GFP fluorescence in upper non-inoculated tissues are indicated with a plus symbol (+).  
Western blots from two replicate experiments were combined to show that the accumulation of 
GFP in control plants was variable. Note that plants may accumulate GFP, but lack fluorescent 
spots in the absence of SPMV CP. B) Samples from (A) were used to test for the presence of the 
17 kDa SPMV CP by western blot analysis. The SPMV CP band in the last lane has shifted up 
due to smiling. There is not equal loading of tissue samples in (A) or (B). Note that PVX-E1S 
(PVX*) was not co-inoculated with TBSV-GFP. 
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CHAPTER IV 

CONCLUSIONS, FUTURE EXPERIMENTS AND FINAL REMARKS 

 

 As world populations and the cost of research increases, socially responsible 

biotechnology systems must be developed to address the ever growing needs of those 

populations at costs that are logistically feasible for researchers. These systems should 

include novel reagents that increase product output while being generally regarded as 

safe and executing sound environmental and fiscal practices (Scholthof, 2001; Scholthof, 

2003). One way to address these issues is to develop biological tools that can supplement 

or improve existing systems. For example, pro-insulin was once purified from bovine 

pancreas. The process was extremely cost ineffective due to livestock maintenance and 

posed extreme danger to both the animals and their handlers.  Additionally, feedlot waste 

and animal culling raised environmental and ethical concerns. One advance from the 

abattoir was producing proteins in E. coli, a bacterial system that could be easily 

manipulated to produce large amounts of pro-insulin in one million liter bio-reactors 

(Johnson, 2003; Kelley, 2001; Swartz, 2001; Zahn et al., 2008). However, this also is 

extremely cost ineffective as sterile environments had to be maintained to prevent 

contamination of the samples. Furthermore, ramp-up time takes weeks since a few 

milliliter samples of bacteria must be used as starting cultures and then progressively get 

larger to reach the one million liter limit (Johnson, 2003). Other problems with this 

system include energy costs related to bio-reactor usage or programmed apoptosis by the 
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bacteria, and/or deletions or mutations in the expressed gene, any of which can result in 

complete loss of a batch of cells (Kelley, 2001).  

Agrobacterium tumifaciens provided an additional strategy to express a protein 

of interest by producing transgenic plants (An et al., 1985; Tzfira and Citovsky, 2006; 

Zahn et al., 2008). This system was an improvement over the fermentation process, as 

transgenic plants can be used for gene expression in combination with traditional 

methods for improving desired traits, such as breeding and nutrient supplementation. 

Moreover, transgenic plants produce seed that carries the gene of interest in the germ 

line (Lienard et al., 2007; Watrud et al., 2004). Plant systems offered an environmentally 

and financially sound option, as plants are relatively cheap to grow using well- 

established agricultural practices (Lienard et al., 2007). The caveat is that the modified 

genes are carried in pollen, making the genes hard to contain in the open when grown to 

scale (Dlugosch and Whitton; Pogue et al., 2002; Watrud et al., 2004). Additionally, 

large amounts of plant biomass are required due to the small amount of protein produced 

from individual plants (Pogue et al., 2002).  

As a third alternative for large scale production of proteins, recent research has 

been developed that focuses on using viruses as gene expression vectors (Chung, 

Vaidya, and Tzfira, 2006; Zahn et al., 2008). The viruses can be used to produce foreign 

proteins in animals or plants without genetically modifying the host cell, as described in 

detail in recent reviews (Gleba, Klimyuk, and Marillonnet, 2007; Pogue et al., 2002; 

Scholthof, Mirkov, and Scholthof, 2002; Zahn et al., 2008). Virus replication is 

exponential in individual animal, insect, and plant cells and has the potential for 
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producing a thousand-fold more protein for the same amount of biomass compared to 

transgenic systems. The benefit of virus expression systems over bacterial systems is 

evident, as about one kilogram of desired protein can be produced in one acre of tobacco 

for $100, compared to $3 million for the equivalent amount of protein from a large-scale 

E. coli bio-reactor operating at capacity (Zahn et al., 2008).  Using viruses as expression 

vectors and plants as the bio-reactors does not leave the large amount of hazardous waste 

that is observed with cattle feedlots or large scale fermentation reactions. Of course, viral 

vector systems are not flawless, as expression of the foreign gene or production of a 

functional protein product is lost from the vector (Gleba, Klimyuk, and Marillonnet, 

2007; Pogue et al., 2002; Scholthof, Mirkov, and Scholthof, 2002). Because of this, 

using viruses for large scale production of proteins would greatly benefit by finding a 

plant host, viral vector, or molecular tool that maintains or stabilizes the gene insert 

within the viral gene vector.  

 

Conclusions 

The basis of my research was an earlier observation that the coat protein of 

satellite panicum mosaic virus might be useful as a molecular tool. This followed from 

previous research showing that SPMV CP has multiple biological roles in addition to 

cognate genome encapsidation (Desvoyes and Scholthof, 2000; Omarov, Qi, and 

Scholthof, 2005; Qi, 2007; Qi and Scholthof, 2008; Qiu and Scholthof, 2000; Qiu and 

Scholthof, 2001a; Qiu and Scholthof, 2001b; Qiu and Scholthof, 2004).  For instance, 

SPMV CP was shown to increase PMV titers during a co-infection in N. benthamiana, 
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possibly through interactions with the PMV CP, which is known to be involved in helper 

virus replication (Batten, Turina, and Scholthof, 2006). In another study, green 

fluorescence of GFP was noted to be observed in systemic tissues of N. benthamiana 

during a co-infection of Tomato bushy stunt virus plus Potato virus X vectors expressing 

GFP (TBSV-GFP) or SPMV CP (PVX-SPCP+), respectively, though it was not known 

if SPMV CP was the causal agent of systemic GFP expression.  Based on the results of 

the previous research, experiments were developed to test if SPMV CP could be used to 

stabilize PVX vectors with an SPMV CP insert in cis, or a TBSV vector expressing GFP 

in trans.   

 

Cis- stabilization of a Potato virus X gene vector by SPMV CP 

As stated in previous sections, gene inserts in PVX vectors are deleted following 

as few as two serial passages in N. benthamiana (Avesani et al., 2007). The most 

straightforward means to test for cis-stabilization by SPMV CP is to passage infected 

tissue through a plant host (Fig. 6) and look for evidence of the presence (or lack) of 

foreign protein expression. The presence of SPMV CP expressed from PVX-SPCP+ was 

tested for in three ways. Previous research showed that SPMV CP caused necrotic 

lesions in N. benthamiana. These small necrotic islands occurred mainly around Type I, 

II and III vascular tissues in non-inoculated systemic leaves (Qiu and Scholthof, 2004). 

The lesions only occurred when SPMV CP was present. The formation of local lesions 

in these tissues is likely due to a non-host response similar to that observed for other 

virus proteins in non-hosts (Goldberg, 1989). By direct observation, the indicative 
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symptoms, due to SPMV CP accumulation, allowed for quick determination of those 

plants retaining the SPMV CP gene.  Based on these observations, SPMV CP stabilized 

its own 634 nt insert in a PVX vector (PVX-SPCP+) through as many as five serial 

passages in N. benthamiana. The number of plants with indicative symptoms was 

observed through three passages, but markedly decreased by the fourth passage.  By the 

fifth passage, only 1 in 19 plants showed indicative symptoms (Table 1).  

Multiple possibilities may exist for the formation of the necrotic lesions. For this, 

western blot analyses were used to confirm the presence or absence of SPMV CP in non-

inoculated systemic tissues of passage plants. First, if SPMV CP was not detected where 

necrotic lesions were present, then SPMV CP could be responsible for a host response or 

signal in source tissues that induces formation of the systemic lesions (Durrant and 

Dong, 2004; Goldberg, 1989; Qiu and Scholthof, 2004). Second, if necrotic lesions were 

formed only when SPMV CP was present in the same tissues, then SPMV CP could be 

considered the causal agent of, as well as a viable way to monitor, PVX-SPCP+ cis-

stabilization. Using immunoblot analyses, SPMV CP was detected in non-inoculated 

systemic tissues in all plants in which indicative symptoms were observed regardless of 

the passage, lending support to the hypothesis that SPMV CP is the stabilizing agent. 

However, the signal for SPMV CP in immunoblots, which was prominent through three 

serial passages, became increasingly difficult to detect in the fourth and fifth passages. 

Overexposure of western blots using upper non-inoculated tissue harvested from fourth 

and fifth passage plants allowed for the detection of SPMV CP (data not shown). 

However, the concentrations of SPMV CP that are at the boundary of the lower limit of 
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detection by the assay used likely reflect the eventual loss of SPMV CP expression. 

These results suggest that the PVX vector PVX-SPCP+ has increased stability due to the 

presence and activity of SPMV CP in cis. To investigate if SPMV CP accumulation in 

symptomatic systemic leaves was a result of protein mobility from source to sink tissues, 

RT-PCR analyses were used to test for co-localization of intact PVX-SPCP+ in these 

tissues(Fig. 9). Using primers that bordered the insertion site of SPMV CP, RT-PCR 

analyses showed the presence of the expected ca. 700 bp product. Sequencing must be 

performed to confirm that this product is the SPMV CP gene. Yet, direct observation and 

western blot analyses showed that indicative necrotic lesions and SPMV CP were 

present, respectively, in the same tissues that showed an SPMV-specific PCR product. 

RT-PCR analysis also confirmed the absence of PVX-SPCP+ in mock or PVX-SPCP- 

inoculated tissues, as expected. In order to get a direct comparison of stabilization, 

primers that border the SPCP- insert must be used on all samples to show that SPCP- is 

lost as passages progress.  

In total, the results of the experiments with PVX-SPCP+ are significant 

especially in light of previous research that showed gene insert stabilization in PVX 

vectors decreases as insert size increases (Avesani et al., 2007; Chung, Canto, and 

Palukaitis, 2007; Scholthof, Mirkov, and Scholthof, 2002). In fact, prior to this study, an 

intact gene insert in PVX of approximately 200 nt, or one-third the size of the SPMV CP 

insert, was stable through only 2 serial passages and another insert approximately twice 

that of the SPMV CP insert was not stable in the initially inoculated N. benthamiana 

plant (Avesani et al., 2007). The experiments for stabilization by SPMV CP gave 
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support to the hypothesis in multiple ways. Lesions that occur only when SPCP was in 

the correct orientation were present through three serial passages and as many as five. 

Whereas plants, initially inoculated with buffer only or PVX-SPCP-, never developed 

symptoms or accumulated SPMV CP, as determined by immunoblot assays. However, 

the plants that were observed to have those lesions were positive for SPMV CP presence. 

Finally, passages that had necrotic lesions and were positive for SPMV CP gave an RT-

PCR product that confirmed the presence of an intact PVX-SPCP+ vector. Mock or 

PVX-SPCP- control plants did not give an RT-PCR product, and RT-PCR analysis using 

primers that border the SPCP- insert still need to be performed to show the degree of 

stabilization that is occurring. Together, the results show that SPMV CP is able to 

stabilize itself within a PVX vector in N. benthamiana. 

 

In trans stabilization of a Tomato bushy stunt virus gene vector by SPMV CP 

The utility of SPMV CP as a molecular tool to stabilize plant virus gene vectors 

would be negligible if the only gene insert able to be stabilized was the SPMV CP gene. 

Therefore, and based on the results from the passage studies, it was important to 

determine if SPMV CP could stabilize plant virus gene vectors in trans. The vector to be 

stabilized by SPMV CP in the following experiments was TBSV-GFP. A TBSV vector 

was chosen because it is a well defined system and because green fluorescence in upper 

non-inoculated tissues of N. benthamiana plants allows for quick determination of 

TBSV-GFP presence under UV illumination (Qiu, Park, and Scholthof, 2002; Scholthof, 

1999a; Scholthof, Morris, and Jackson, 1993; Yamamura and Scholthof, 2005).  
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To test for SPMV CP in trans activity, PVX-SPCP+ was co-inoculated with 

TBSV-GFP onto N. benthamiana and upper non-inoculated tissues observed for the 

presence of green fluorescent foci, an indicator of functional GFP accumulation. If 

SPMV CP is unable to stabilize TBSV-GFP, then no fluorescence would be observed in 

upper non-inoculated tissues. Whereas, green fluorescence should be observed in non-

inoculated upper and/or systemic tissues if the GFP gene insert is stabilized by the 

presence of SPMV CP.  Seven days post co-inoculation, green fluorescence was 

observed in the upper leaves of almost every plant inoculated with TBSV-GFP plus 

PVX-SPCP+. In addition, plants co-inoculated with TBSV-GFP plus PVX-SPCP+ 

showed GFP expression in lower non-inoculated systemic leaves. This is the first report 

of foreign gene expression in upper and lower non-inoculated leaf tissue from the 

TBSV-GFP vector. When plants were co-inoculated with TBSV-GFP plus PVX-E1S or 

PVX-SPCP- GFP fluorescence was also observed on some upper leaves, but to an equal 

or lesser degree than that of plants that were inoculated with TBSV-GFP alone (Table 2). 

Therefore, a co-inoculation with PVX-SPCP+ appeared to be able to stabilize the GFP 

insert when compared to control plants. 

It was important to make sure that GFP fluorescence in systemic leaves was due 

to the in trans stabilization activity of SPMV CP and not the PVX vector or hyper-

transportation of GFP to non-inoculated sink tissues from inoculated leaves. To test this, 

experiments were developed to determine if the TBSV vector, as well as SPMV CP, was 

in the same leaves in which GFP fluorescence was observed. For this, immunoblot 
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assays were performed to test for the presence of the TBSV vector, SPMV CP, and GFP 

in upper non-inoculated leaves.  

TBSV encodes a 19 kDa protein (P19) that is responsible for pathogenicity and 

suppression of gene silencing (Scholthof, 2006). The presence of P19 in plant tissues of 

suitable hosts is an indicator of viable TBSV replication and systemic movement. 

Therefore, if P19 is detected in systemic tissues of TBSV-GFP inoculated N. 

benthamiana plants, then TBSV-GFP is also in those tissues. In agreement with the 

passage studies and the in trans stabilization activity hypotheses, the presence of GFP 

fluorescence in non-inoculated tissues, where TBSV vector and SPMV CP accumulation 

have been confirmed, would lend strong evidence that SPMV CP has in trans 

stabilization activity.  

Immunoblot assays revealed that plants infected with TBSV-GFP, confirmed by 

green fluorescence in inoculated leaves, had P19 protein in upper-non-inoculated leaves 

(Fig. 10B). This means that the TBSV vector reached upper tissues even if no green 

fluorescence is observed in those tissues. From this, TBSV-GFP either lost the ability to 

express GFP or expresses a biologically inactive form of the protein over the course of 

infection. Comparable to an infection with TBSV-GFP alone, the TBSV P19 protein was 

detected in systemic tissues when TBSV-GFP was co-inoculated with PVX-SPCP+.  

In all instances in which TBSV-GFP was co-inoculated with PVX-SPCP+ and 

green fluorescence was observed in inoculated leaves, green fluorescent foci also were 

observed in upper-non-inoculated leaves (Fig. 11). This is in contrast to control plants, in 

which GFP fluorescence was either not present or was present to a much lower extent 
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(Fig. 11, Table 2). For example, nineteen of twenty plants exhibited green fluorescent 

foci in systemic leaves when co-infected with TBSV-GFP plus PVX-SPCP+, whereas, 

only one or three plants had green fluorescent foci in systemic tissues when infected 

with TBSV-GFP alone or TBSV-GFP plus PVX-E1S, respectively. The results show 

that plants co-inoculated with TBSV-GFP plus PVX-SPCP+ more readily exhibit green 

fluorescence in systemic leaves, likely due to the expression and accumulation of SPMV 

CP. Immunoblot analyses testing for SPMV CP accumulation confirmed the presence of 

SPMV CP in upper tissues that were also observed to have green fluorescence (Fig. 13). 

SPMV CP accumulation was not observed in systemic leaves of the control plants. 

Taken together, these results suggest that SPMV CP presence is stabilizing the GFP gene 

insert within TBSV-GFP, and ultimately that SPMV CP activity works in trans.    

As previously stated, green fluorescence was occasionally observed in systemic 

tissues of control plants that did not harbor SPMV CP. In instances where GFP 

fluorescence was observed, GFP protein was also determined to be present by western 

blot analyses (data not shown). Of interest is that GFP protein was also detected in upper 

leaf tissues of plants co-infected with TBSV-GFP plus PVX-E1S empty vector or PVX-

SPCP- when no green fluorescence was observed. This indicates that the GFP protein is 

still being produced from TBSV-GFP in non-inoculated tissues, but that the biological 

activity (i.e. fluorescence) has been lost. In addition, the presence of GFP protein in 

these control plants was variable when GFP fluorescence was not observed in the upper 

leaves. The results suggest that SPMV CP presence also helps to maintain the functional 

integrity of the GFP gene product. 
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Two possibilities that explain the accumulation of GFP protein, but not 

fluorescence in non-inoculated tissues are viral recombination or the introduction of 

point mutations during replication of the TBSV-GFP genome. In viral recombination, 

segments of the TBSV genome or GFP gene are inserted or deleted (or both), 

respectively, into or from TBSV-GFP in a process known as template switching by the 

replicase during replication (Borja et al., 1999; Bujarski, Nagy, and Flasinski, 1994; 

Chung, Canto, and Palukaitis, 2007; Desvoyes and Scholthof, 2002; Rao and Hall, 

1993). Fluorescence could be lost if these modifications occur in the location of the GFP 

gene that codes for the functional (fluorescent) part of the GFP protein. The introduction 

of point mutations in the GFP gene could also affect the fluorescent activity of GFP. If 

the mutations occur in the coding sequence of the active site of the GFP gene, this would 

result in loss of fluorescence. Another possibility is that point mutations in codons that 

lie upstream or downstream of the active site sequence could modify amino acid residues 

involved in protein folding. This is significant, as fluorescence of GFP is dependent on 

secondary structure (Crameri et al., 1996; Remington, 2006). For the purpose of 

developing new tools for biotechnology, maintenance of functional integrity is as 

important as gene insert stabilization, as expressed proteins that have lost their biological 

activity may be of little use, especially if that activity is the desired property of the 

protein product, as in GFP. For example, pro-insulin produced by a viral vector that had 

lost the ability to regulate blood sugar in humans would have not pharmaceutical 

usefulness. That SPMV CP stabilizes gene inserts within virus gene vectors and 
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maintains the fluorescent function of GFP in cis and in trans, it may be a viable 

molecular tool for utilitarian purposes. 

The aforementioned trans-stabilization studies showing that SPMV CP 

contributes to GFP fluorescence in systemic tissues of N. benthamiana were conducted 

at 20°C. Earlier studies were conducted at 25°C, but during one set of experiments, the 

temperature dropped, resulting in the fortuitous observation that at 20°C there was a 

marked increase in the number of green fluorescent foci compared to plants that had 

been maintained at 25°C. The positive effect of lowering temperature on in trans 

stabilization exists within a narrow range. Preliminary trans-stabilization studies 

conducted at 15°C showed that number of green fluorescent foci in upper leaves was 

equal to or less than that of the plants grown at 25°C (data not shown). The increase in 

the number of green fluorescent spots at 20°C may indicate that stabilization is affected 

by host or viral processes that are regulated by temperature, and that those processes 

contribute to stabilization between 15-25°C with optimal contributions around 20°C. For 

example, the activity of proteins involved in host defense responses pathways (Durrant 

and Dong, 2004; Kaper et al., 1995; Kovalchuk et al., 2003) or the incidence of viral 

genome recombination (Bujarski, Nagy, and Flasinski, 1994; Simon and Bujarski, 1994) 

may decrease to contribute to in trans stabilization at lower temperatures. The increase 

in GFP fluorescence at 20°C suggests that stabilization of plant virus gene inserts by 

SPMV CP is a promising system that can be optimized, and that there may be other 

factors that can be manipulated to increase SPMV CP stabilization activity.  
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These results also suggest that activity can be altered to meet the needs of the 

application in which stabilization is to be used, which is a true hallmark of a utilitarian 

molecular tool. To compare, another useful molecular tool, E. coli, can be genetically 

altered to be temperature sensitive in order to test for effects of mutations in the areas 

responsible for the temperature sensitivity (Hooke, 1994). The results of stabilization 

studies at different temperatures in N. benthamiana showed that stabilization can be 

altered as more or less GFP was observed to fluoresce at 20°C or 25°C, respectively. 

Therefore, SPMV CP stabilization activity can be environmentally modified to meet the 

needs of in planta research. Future endeavors may concentrate on genetically modifying 

SPMV CP to alter stabilization. For example, SPMV CP could be mutated to have 

activity at temperatures that were previously non-permissive to stabilization, similar to 

the E. coli system. Additional genetic modifications could be used to increase the cost-

benefit to biotechnology as well as research by altering the regions of SPMV CP 

responsible for increasing viral vector titers to further enhance viral vector replication. 

For this, less starting inocula or fewer applications of the viral vector would be needed to 

achieve the same amount of protein output. Additionally, molecular biology and plant 

pathology would benefit from a modifiable SPMV CP, as the effects on hosts or host 

processes due to attenuated or prolonged exposure of the foreign protein could be 

monitored and tested.  

The use of PVX-SPCP+ is not without pitfalls. As shown in Table 1, stabilization 

of viral vectors by SPMV CP is not indefinite, though this could be argued to be 

beneficial, as the issue of containment is solved by loss of the gene insert (Pogue et al., 
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2002). The addition of RT-PCR and protein sequence analysis still must be conducted to 

test for maintenance of the integrity of both SPMV CP during passage studies, as well 

as, GFP in trans stabilization studies.  

It is also of great interest to find other methods to test, manipulate, or optimize 

viral vector stabilization. The experiments detailed above show how modified SPMV CP 

can be tested for changes in stability by comparing results to information gathered here 

on the activity of wild-type SPMV CP. Manipulations and mutations of SPMV CP have 

already been shown to have major effects on the biological activity of the protein (Qi 

and Scholthof, 2008; Qiu and Scholthof, 2001b), but at this time nothing is known of the 

effects of those mutations on viral vector stabilization. The goals of optimization include 

increasing the number of viral vectors still carrying a foreign gene insert or the level of 

foreign gene expression. There are multiple strategies to accomplish this goal.  

Stabilization may be improved by having SPCP present in plant cells before the 

addition of TBSV-GFP, as plant processes needed for virus vector translation would be 

limited to the viral vector of interest instead of that vector and PVX-SPCP+. To test this, 

multiple N. benthamiana plants will be inoculated with PVX-SPCP+ and then co-

inoculated on different days with TBSV-GFP to test if the level of GFP expression can 

be increased in systemic tissues, characterized by an increase in the number of 

fluorescent spots in upper and lower non-inoculated leaf tissues. If successful, these 

studies could be followed-up with experiments in which transgenic plants expressing 

SPCP are infected with TBSV-GFP. TBSV-GFP produces a functional P19 protein 

responsible for interception of siRNA to circumvent the RNAi gene silencing pathway 
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(Omarov et al., 2006; Scholthof, 2006; Scholthof et al., 1995). For this, PVX-SPCP+ is 

not an optimal choice for a viral vector in transgenic studies, as the SPCP gene interferes 

with the gene silencing suppression activity of P25, expressed by PVX, in the host (Qiu 

and Scholthof, 2004). To test if P25 interference is a liability to viral vector stabilization, 

passage studies need to be repeated using a P25 deficient PVX mutant or an alternate 

vector in which SPMV CP is unable to interfere with silencing suppression, such as 

TMV.  

 Also, testing viral vector stabilization by SPMV CP in different hosts could 

prove to be beneficial in optimizing stabilization activity. Studies have shown that 

different hosts have variable levels of viral vector gene insert stabilization (Seaberg, 

2008). Many of the hosts tested have been solenaceous plants, and the vector used was 

RMJ1, a derivative of TBSV-GFP (Seaberg, 2008). RMJ1 has the portion of the CP gene 

that lies between the NotI and BglI restriction enzyme sites removed before the addition 

(ligation) of the GFP gene between those sites. In these studies it was shown that host 

factors may be playing a role in vector stabilization (Seaberg, 2008). Additionally, 

establishing an infection library comparing the stabilization of different viral vectors 

carrying SPMV CP through serial passages in several host plants should be undertaken. 

As an alternative, different hosts could be co-infected with TBSV-GFP plus viral vectors 

carrying SPMV CP.  Formation of this library would provide a useful reference. For this, 

researchers could determine the best plant/vector combinations to use in order to meet 

the needs of different applications.  
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Future experiments 

Possible mechanisms of SPMV CP stabilization of plant virus gene vectors 

The major question of stabilization is the mechanism by which it occurs. I have 

four possible models that can be tested (Figs. 15-16), some of which have been noted 

earlier. In the first model, SPMV CP could be interacting with viral vector RNA to 

prevent template switching that results in homologous and non-homologous 

recombination or to prevent the introduction of point mutations in the gene insert during 

replication (Figs. 14-16). The fidelity of the replicase complex could be increased by 

interactions with SPCP, or SPCP could be interacting with host plasmodesmata to 

decrease modified virus filtration. This effect has been observed for geminiviruses 

(Gilbertson et al., 2003). 

It is known that SPCP interacts with cognate RNA because SPMV exists as 

virions in wild-type infections of switchgrass and St. Augustinegrass, and several 

previous studies have shown an SPMV CP: RNA interaction in vitro (Desvoyes and 

Scholthof, 2000; Omarov, Qi, and Scholthof, 2005; Qiu and Scholthof, 2001b). What is 

not known is if SPMV CP interacts with non-cognate RNA. If the interaction does exist, 

this may show that SPMV is acting to protect non-cognate RNA. The most 

straightforward assay is a northwestern blot using SPMV CP and non-cognate RNA. For 

this, radioactively labeled transcripts of PVX, TBSV-GFP, and SPMV (as control) can 

be individually washed over SPCP bound to a nitrocellulose membrane followed by 

exposure to autoradiography film, as described previously (Desvoyes and Scholthof, 

2000). If a radioactive signal is detected, then SPMV CP may be acting to shield viral  
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 FIG. 14. Template switching and genome slippage results in the loss of gene insert 
expression. A) As the viral replicase (light blue circle) synthesizes a complementary 
strand of viral RNA (black line), it switches to another viral RNA strand (bent grey 
arrow) to produce a revertant viral genome (small grey arrow) that is unable to express a 
functional gene insert (orange bar). The revertant RNA is then available to the replicase 
to undergo further recombination (large grey arrow). B) Due to slippage of the viral 
replicase during complementary strand synthesis, mutations are introduced that abolish 
gene insert expression to produce revertant RNA (large grey arrow).  
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FIG. 15. Possible mechanisms of stabilization due to an SPMV CP interaction with viral vector 
RNA. SPMV CP (dark blue circle) interacts with viral vector RNA (black line) to prevent 
template switching by the viral replicase (light blue circle) to maintain an intact viral vector 
(small grey arrow).  This occurs by preventing access to revertant viral RNA (solid black line) 
that has lost the ability to express a functional gene insert (orange bar) or by inducing secondary 
structure that is non-conducive to homologous and non-homologous recombination.  
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FIG. 16. Possible mechanisms of stabilization due to an SPMV CP interaction with the viral 
vector replicase. A) An interaction with SPMV CP monomers or dimers (dark blue circle) 
prevents access to revertant RNA (solid black line) unable to express a functional gene insert 
(orange bar) by the viral replicase (light blue circle) to stabilize the viral vector (small grey 
arrow). B) SPMV CP prevents the introduction of mutations that abolish expression of the gene 
insert by interaction with the viral replicase (large grey arrow)(see Fig. 4).  
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vector RNA from homologous and non-homologous recombination or creating a more 

stable secondary structure in the insert or viral vector RNA (Braun and Hemenway, 

1992; Carpenter et al., 1995). An alternate approach would be a gel mobility shift assay.  

Briefly, SPMV CP would be exposed in increasing amounts to radioactively labeled 

viral vector RNA and then analyzed by electrophoresing the sample in a polyacrylamide 

gel followed by northern blot as previously described ((Desvoyes and Scholthof, 2000). 

If the band corresponding to the viral vector RNA in the western blot shifts up, showing 

an increase in molecular weight, then evidence would exist that SPMV CP interacts with 

viral vector RNA.  

Multiple observations suggest that SPMV CP may affect an interaction of viral 

vector RNA with the viral vector RNA dependent RNA polymerase (RdRp). From these, 

a second and third model of viral vector stabilization can be formed (Figs. 15-16). First, 

SPMV interacts with the replicase complex of its helper virus, PMV (Batten, Turina, and 

Scholthof, 2006). Second, PMV titers are increased in the presence of SPMV (Scholthof, 

1999b). Taken together, these data suggest that the fidelity or processivity of the 

replicase complex of viral vectors may also be increased by SPCP.  

For the second model (Fig. 16A), two experiments can be performed to test for 

an SPCP-associated increase in viral vector replicase fidelity. By performing a real-time 

RT-PCR time-course assay using protoplasts and infected plant tissue can be used to 

determine the concentration of both the empty vector and the stabilized vector during the 

progression of an infection. Here, specific primers for sequences corresponding to the 

replicase complex genes, which are highly conserved, could be used to monitor the 
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concentration of both empty and transgenic viral vector RNA. Using primers specific for 

different parts of the interior of the SPCP gene would tell if the integrity of the gene is 

being maintained as well as give clues to any mutational “hot spots” that may exist in the 

CP gene, these results could be easily supported by sequencing the PCR products. The 

data from the vector and SPCP gene studies could then be compared. Based on the 

results in this thesis, my prediction is that the titer of viral vectors will be increased in 

the presence of SPCP as compared to the empty vector in inoculated host plants. From 

this, stabilization may be occurring by increasing the fidelity of the replicase complex of 

viral vectors.  

For the third model (Fig. 16B), a test for a direct interaction between SPCP and 

viral vector replicases needs to be performed. The replicase proteins could be produced 

by in vitro translation and used as “bait” in a co-immunoprecipitation pull-down assay, 

where SPMV CP is the “prey”. Here, the approach is to bind SPCP or the replicase 

proteins to a resin bead by use of antibodies specific for SPMV CP or the replicases. 

Then, exposure of the “bait-bound” bead to either the replicase proteins or SPCP would 

capture the prey proteins, respectively. Following the pull-down assay with western blot 

analysis using antibodies specific for either the replicase proteins or SPCP should show 

if there was an interaction. Earlier results have shown that an SPMV CP mutant R7/8 

with tyrosine and leucine residues substituted for arginine residues at positions 7 and 8, 

respectively, of the CP is unable to bind RNA and therefore unable to form virions (Qi 

and Scholthof, 2008). From this, it may be possible to increase the stability of the PVX-

SPCP+ construct by substitution the SPMV CP with R7/8, thereby preferentially 
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facilitating movement or replication efficiency. Another mutant, S130D, has an aspartate 

residue substituted for a serine residue at position 130 of the CP and is unable to form 

virions or CP dimers (Qi and Scholthof, 2008), but is movement competent in millet. 

Using a PVX-SPCP+ construct with an S130D mutation will provide a means to test if 

SPMV CP dimerization is essential for gene insert stabilization. This event, or 

abrogation of the effect, would limit SPCP to stabilization and away from dimerization. 

Both PVX-R7/8 and PVX-S130D may be a limiting factor for stabilization if the role of 

SPCP is primarily movement. Alternately, dimers may be critical for supporting the 

fidelity of viral vector replicases in cis or in trans. Based on SPCP-viral replicase 

interaction model (Fig. 16), the CP dimer would interact with RdRp or host encoded 

factors to positively affect full-length RNA accumulation. If the mechanism of 

stabilization involves interactions with viral vector RNA, as in the SPCP-viral RNA 

interaction model (Fig. 15), then R7/8 would show decreased levels of stabilization, as it 

cannot bind RNA (Qi, 2007). Whereas the S130D mutant may show increased levels of 

stabilization as it does not form virions or dimers, therefore limiting its function to RNA 

binding. If the mechanism of stabilization involves an interaction with viral vector 

replicases, as in the SPCP-viral replicase interaction model (Fig. 16), then both R7/8 and 

S130D mutants may show increased levels of stabilization, as the loss of RNA binding 

or dimerization functions may limit them to replicase interaction. If SPMV CP dimers 

are needed for stabilization to occur, then R7/8 would show increased levels of 

stabilization as its function has been limited towards replicase interaction, but S130D 

would show less stabilization. 
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Stabilization of GFP by SPMV CP in trans may also be due to a decrease in viral 

vector recombination and subsequently the generation of DI RNAs (Figs. 14A, 15, 16A). 

Previous work has shown that SPMV constructs unable to express the CP have increased 

amounts of DI formation in planta (Qiu and Scholthof, 2001b). Stabilization may also be 

occurring by increasing the fidelity or processivity of the replicase to either prevent 

template switching or to decrease the introduction of point mutations in the foreign gene 

insert during replication (Rao and Hall, 1993; Reade, Wu, and Rochon, 1999; Wang et 

al., 2004). RT-PCR analysis of SPCP cis-stabilization through serial passages indicates 

that SPMV is active at the level of recombination, since the gene products observed are 

of the expected size (ca. 650 nt) (Fig. 9B). The appearance of fluorescent and non-

fluorescent GFP in non-inoculated systemic tissues suggests that the accumulation of 

SPMV CP prevents or abrogates the loss of fluorescence of the GFP gene product.  

Therefore, stabilization may be occurring by preventing the loss of the non-essential 

GFP gene or of point mutations resulting in loss of the fluorescence function of the GFP 

protein (Fig. 14). This may occur by preventing template switching or genome slippage 

by the viral encoded replicase of the plant virus vectors (Figs. 15-16).  

In one mechanism, SPMV CP is preventing the introduction of mutations in the 

GFP gene at key sites responsible for fluorescence (Figs. 14B, 16B). GFP is highly 

dependent on a serine-tyrosine-glycine residue triad at amino acid positions 65-67 for 

green fluorescence, and mutations within this triad can greatly diminish GFP 

fluorescence as well as disrupt chromophore-dependent secondary structure (Remington, 

2006). Sequencing the TBSV-expressed GFP (Fig. 5) is planned to determine if there has 
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been mutations in the GFP gene that results in the loss of fluorescence of the protein.  If 

no mutations are observed, this may mean that SPMV CP interacts with a host protein(s) 

that interferes with GFP functionality.  If mutations are detected, this would lend strong 

evidence for SPMV stabilization. It is also possible that both mechanisms, or modes of 

action, occur and that SPMV CP stabilization both decreases recombination and 

increases replicase fidelity (Figs. 15-16). 

 In addition, viral vector stabilization may include the facilitation of systemic 

movement of viral vectors by SPCP. Research has shown that plasmodesmata play a role 

in filtering out undesirable or non-cognate sequences from a plant virus (Gilbertson et 

al., 2003). RNA viruses, including PVX and TBSV, have proteins that interact with 

plasmodesmata for the purposes of transporting their genomes from cell-to-cell and/or 

increasing the size exclusion limit of the plasmodesmata (Ju et al., 2007; Krishnamurthy 

et al., 2003; Krishnamurthy et al., 2002; Mitra et al., 2003; Scholthof, 2005; Scholthof et 

al., 1995; Verchot-Lubicz, 2005; Verchot-Lubicz, Ye, and Bamunusinghe, 2007). 

Studies have shown that SPMV CP associates with the cell-wall, cytosolic, nuclear, and 

nucleolar fractions and may interact with Cajal bodies (Qi and Scholthof, 2008). SPMV 

CP also has a high affinity for cognate RNA and greatly contributes to the accumulation 

of SPMV RNA in systemic tissues of proso millet (Desvoyes and Scholthof, 2000; 

Omarov, Qi, and Scholthof, 2005). An interaction of SPMV CP and non-cognate viral 

vector RNA may support this hypothesis. Preliminary experiments tested movement 

complementation by SPMV CP during a co-infection of proso millet with PMV that 

lacks the ability to express the P8 movement protein (Turina, Desvoyes, and Scholthof, 
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2000). The data suggest that SPMV CP does not complement the cell-to-cell movement 

function of P8, as PMV is not found in systemic tissues of proso millet or Brachypodium 

distachyon by immunoblot analyses testing for PMV CP accumulation at 14 or 21 days 

post inoculation (data not shown). Alternatively, SPMV CP may contribute to systemic 

movement (Turina, Desvoyes, and Scholthof, 2000), so a similar approach will be 

undertaken using a PMV construct unable to express the P15 protein believed to be 

involved in systemic spread of the helper virus (Turina, Desvoyes, and Scholthof, 2000). 

If successful, SPMV facilitated systemic movement of its helper virus, PMV, should 

result in symptoms comparable to a co-infection with wild-type PMV. If movement can 

be restored by SPMV CP, then evidence would exist to support stabilization by an 

SPMV CP interaction with viral vector RNA. Furthermore, it may show that movement 

within a host is one of the determining factors of viral vector stability.  

 

Final remarks 

The use of viral vectors to express foreign proteins are attractive because of the 

rapid and high yield of gene product that can be achieved compared to other systems 

currently in use, especially transgenic expression (Chapman, Kavanagh, and Baulcombe, 

1992; Gleba, Klimyuk, and Marillonnet, 2007; Gleba, Marillonnet, and Klimyuk, 2004; 

Nagyova and Subr, 2007; Scholthof, 1999a; Scholthof, Scholthof, and Jackson, 1996; 

Scholthof, Mirkov, and Scholthof, 2002; Tzfira, Kozlovsky, and Citovsky, 2007). One 

difficulty in using PVX and TBSV as viral vectors, compared to transgenic expression, 

has been the restriction of gene expression to the inoculated leaves. In this research we 
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have discovered that SPMV expressed in cis and in trans from virus vectors renders the 

systems permissive for systemic expression.  

In all, SPMV CP was shown to stabilize its own gene within a PVX vector 

through multiple passages in N. benthamiana, showing that functional viral vector 

expression systems could be maintained without the need for booster or re-inoculations 

of plants used as viral “bio-reactors”.  SPMV CP was also able to stabilize GFP within 

TBSV-GFP in trans. Here, the potential usefulness of SPMV CP as a molecular tool is 

shown. The utility of this protein was applied to TBSV-GFP to show that SPMV CP 

could stabilize plant virus gene vectors in trans, and this may hold true for other vectors. 

In the future, SPMV CP may prove to be a powerful reagent in plant and virus molecular 

biology as well as plant pathology, agriculture, and biotechnology. Using SPMV CP, 

information can be gained that was previously unavailable due to the loss of the foreign 

gene or inaccessibility of plant tissues to that foreign gene after the onset of virus 

infection. Additionally, functional GFP was found in all parts of N. benthamiana that 

was co-inoculated with TBSV-GFP plus PVX-SPCP+, showing that in addition to gene 

insert stabilization and maintained expression, that functionality of the protein was also 

maintained.  This is of particular importance if the activity of the gene product is the 

desired trait of the inserted gene. Overall, this system has the potential to result in 

exciting new applications for high throughput analysis for genomics, overexpression of 

valuable proteins for biotechnology, including bio-fuel, pharmaceutical, and crop 

improvement applications.  
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