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ABSTRACT

Mesoscopic Effects in Bose-Einstein Condensate

Fluctuations of an Ideal Gas in a Box. (August 2008)

Konstantin Dorfman, B.S., Nizhny Novgorod State University

Chair of Advisory Committee: Dr. Vitaly Kocharovsky

The mesoscopic effects in the quantum trapped gases of the Bose atoms consti-

tute the main subject of the present thesis. These effects are the most difficult for

the theoretical analysis in the quantum statistical physics since they can’t be seen by

neither a standard quantum mechanics of the simple microscopic systems of one or

very few atoms nor a standard statistical physics of the macroscopic systems that are

infinite in the bulk (thermodynamic) limit.

Most of the experiments on the cold quantum gases performed in the last decade,

starting from the first demonstration of BEC in 1995, involve the mesoscopic systems

of a finite number of atoms. The mesoscopic effects should manifest themselves most

clearly and easily near a critical temperature of BEC; however, they could be observed

also above and below the critical temperature.

Here I study the quantum and thermal fluctuations of the Bose-Einstein conden-

sate (BEC) in a box with the periodic boundary conditions under a particle-number

constraint. The above constraint is the only reason for the BEC and is crucial for the

mesoscopic effects in the BEC fluctuations, especially in the vicinity of the critical

temperature in the Bose gas.

I employ the particle-number conserving operator formalism of Girardeau and

Arnowitt introduced in 1959 to analyze the canonical ensemble fluctuations. I present

analytical formulas and numerical calculations for the central moments of the ground

state occupation fluctuations in an ideal Bose gas in a box with a mesoscopic number
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of particles.

I present the analysis of the BEC statistics both on a temperature at a fixed

number of particles and on a number of particles at a fixed temperature. Both analyses

are valid for the purpose of understanding the important mesoscopic effects near the

critical temperature. I emphasize the non-Gaussian nature of the fluctuations.

The presented formalism can be generalized to the case of a weakly interacting

Bose gas in a box in the framework of the Bogoliubov approximation. The work in

this direction is in progress but is not included in the present thesis.
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CHAPTER I

INTRODUCTION: THE PROBLEM OF BEC FLUCTUATIONS AND

MESOSCOPIC EFFECTS

A. Phenomenon of the Bose-Einstein condensation

In 1924-1925 Einstein published two papers [1, 2] where he generalized the work of

Bose [3] on the quantum statistics of photons to the case of an ideal gas with a fixed

number of atoms. In the second paper he predicted the condensation of atoms to the

lowest energy state. It was shown that at high enough temperature the distribution

function of atoms in the momentum space for a large box trap is:

n̄p =

(

exp

[

ǫ(p) − µ

T

]

− 1

)−1

, T > Tc, (1.1)

where µ < 0 is a chemical potential of a gas and ǫ(p) = p2/2m is an atomic energy as a

function of momentum p. The distribution becomes different below the temperature

of the phase transition Tc. Assuming that the degeneracy factor g = 1, one has:

Tc = 3.31
~

2

m
n2/3, (1.2)

where n is the number density of the gas. Below the critical temperature the mean

number of atoms n̄0 with the zero momentum p = 0 (the condensed atoms) is macro-

scopically large, that is proportional to the total number of particles N , namely,

n̄0 = N

[

1 −
(

T

Tc

)3/2
]

, T < Tc. (1.3)

The journal model is Physical Review Letters.
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The noncondensed atoms with the momentum p 6= 0 are distributed according to Eq.

(1.1) with the zero chemical potential µ = 0, i.e.,

n̄p =

(

exp

[

ǫ(p)

T

]

− 1

)−1

, T < Tc. (1.4)

The phenomenon of Bose-Einstein condensation (BEC) plays an important role

in many physical systems, including superliquid Helium, electrons in the supercon-

ductors, excitons in the semiconductors. In all these cases BEC is mixed with a strong

interaction or a complicated structure of the system itself. For example, there is no

doubt, that the condensate exists in the superliquid 4He, but the precise measurement

of the number of condensed atoms from the neutron scattering data is not direct and

involves complicated theoretical calculations.

The problem of BEC is related to the theory of superfluidity and the phenomenon

of second order phase transition. Following the classical Landau theory of the second

order phase transitions applied to the liquid Helium [4, 5], one can conclude that the

occurence of superfluidity in liquid helium involves a second order phase transition,

which results in the qualitative change in the properties of the matter. From the

microscopic point of view, the transition between the normal state and the superfluid

state at the λ-point depends on the certain property of the momentum distribution

of the actual particles; namely in a superfluid, a macroscopically large number of

particles have zero momentum, which means that these particles form Bose-Einstein

condensate in the momentum space.

The theory of BEC is formulated in terms of the Ψ̂ operator, which can be written

in the Heisenberg representation as follows:

Ψ̂(r, t) =
1√
V

∑

p

âp exp{ i
~
p · r − i

~

p2

2m
t}. (1.5)
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Ignoring the non-commutativity of the operators â0 and â†0, one can write the Ψ̂

operator as:

Ψ̂ = Ξ̂ + Ψ̂′, Ψ̂† = Ξ̂† + Ψ̂′†, (1.6)

where the operators Ξ† and Ξ are the creation and annihilation operators of the

particle in the condensate. In the thermodynamic limit, i.e. at N → ∞, V → ∞

and a finite given value of the number density N/V , the matrix elements of the Ξ

operators can be written as:

lim
N→∞

〈m,N |Ξ̂|m,N + 1〉 = Ξ, lim
N→∞

〈m,N + 1|Ξ̂†|m,N〉 = Ξ∗, (1.7)

where Ξ is a complex number. Since the remaining part, corresponding to the non-

condensate, converts the state |m,N〉 into states orthogonal to it, one has zero matrix

elements

lim
N→∞

〈m,N |Ψ̂′|m,N + 1〉 = lim
N→∞

〈m,N + 1|Ψ̂′†|m,N〉 = 0 (1.8)

and in the thermodynamic limit the difference between states |m,N〉 and |m,N + 1〉

disappears entirely. In this sense, the quantity Ξ becomes the mean value of the

operator Ψ̂ for that state.

In the homogeneous liquid at rest, the quantity Ξ is independent of the coordi-

nates and time, which can be proved by the appropriate choice of the phase of this

complex quantity and by considering the Hamiltonian Ĥ ′ = Ĥ − µN̂ . Therefore,

Ξ =
√
n̄0, (1.9)

where n̄0 is the mean number of the condensate particles per unit volume of the liquid.

In the case of the superfluid motion, which takes place in the liquid under the non-

stationary and non-uniform (over distances large in comparison with the interatomic

distances) external conditions, the BEC occurs, but now one cannot assert that it
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will occur in the state with the zero momentum. The quantity Ξ, defined in Eq.

(1.7), now is the function of the coordinates and time and represents the particle

wavefunction in the condensate state. It is normalized by the condition |Ξ|2 = n̄0,

and can, therefore, be expressed as:

Ξ(t, r) =
√

n̄0(t, r) exp(−iΦ(t, r)). (1.10)

The gradient of the phase of the condensate wavefunction determines the velocity of

the superflluid motion

vs = (~/m)∇Φ. (1.11)

Since there is a macroscopically large number of particles in the condensate, the wave

function of this state becomes a classical macroscopic quantity.

The existence of the condensate changes dramatically the density matrix compare

to the ordinary liquid, which is given by:

Nρ(r1, r2) = 〈m,N |Ψ̂†(t, r2)Ψ̂(t, r1)|m,N〉. (1.12)

In the homogeneous liquid, this function depends only on the difference r = r1 − r2.

Therefore, substituting the operator Ψ̂ from the Eq. (1.6) and using the properties

of Eqs. (1.7) and (1.8), we get:

Nρ(r1, r2) = n̄0 +Nρ′(r1, r2). (1.13)

The density matrix ρ′ for the noncondensed particles tends to zero as |r1 − r2| → ∞,

whereas the total density matrix ρ tends to the finite limit n̄0/N . This expresses the

“long-range order” in a superfluid, which is not present in ordinary liquids, where one

always has ρ→ 0 as |r1 − r2| → ∞. The fact that Ξ is complex, means that the order

parameter, which characterizes the symmetry of the system, has two components, and
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the effective Hamiltonian [4] of the system depends only on |Ξ|2, i.e. is invariant under

the transformation Ξ → eiαΞ for any real phase α.

The empirical results concerning the λ-transition in liquid helium, seem to indi-

cate, that there is no region in which the Landau theory of phase transitions [4-6] is

valid, since |T − Tλ| << Tλ. Hence, one should employ the fluctuation theory of the

phase transitions of the second kind to relate the temperature dependences of various

quantities. In particular, the temperature dependence of the order parameter and,

therefore, the condensate density n̄0 as T → Tλ is given by the critical index β [4, 6],

|Ξ| =
√
n̄0 ∝ (Tλ − T )β. (1.14)

The temperature dependence of the specific heat cp is of special interest. In the

following discussion, I will show that it is related to the superfluid density. One can

employ the hypothesis of the scale invariance, which implies, that the characteristic

length of the fluctuations is the correlation radius rc of the fluctuations. Thus, the

square of the superfluid velocity, obtained from Eq. (1.11) varies with temperature

according to:

v2
s ∝ 1/r2

c ∝ (Tλ − T )2ν , (1.15)

where ν is the critical index of the correlation radius. Considering the long-wavelength

fluctuations, which in fact govern the singularity of the thermodynamic quantities at

the transition point, one can assume that the kinetic energy close to the transition

point varies with the temperature in the same way as the singular part of the ther-

modynamic potential of the liquid, i.e. as (Tλ − T )2−α, where α is the critical index

of the specific heat cp. Thus, we find:

ρsv
2
s ∝ ρs(Tλ − T )2ν ∝ (Tλ − T )2−α, (1.16)
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whence ρs ∝ (Tλ − T )2−α−2ν . Using the relation 3ν = 2 − α which follows from the

hypothesis of scale invariance [4, 6], we have:

ρs ∝ (Tλ − T )(2−α)/3, (1.17)

which finally relates the temperature dependences of ρs and specific heat cp near the

phase transition point.

In order to derive the equation for the condensate wavefunction (order parameter)

Ξ(r, t), one has to write the time evolution of the field operator Ψ̂(r, t) using the

Heisenberg equation of motion with the many-body Hamiltonian [7, 8]:

i~
∂

∂t
Ψ̂(r, t) =

[

Ψ̂, Ĥ
]

=

[

−~
2∇2

2m
+ Vext(r) +

∫

dr′Ψ̂†(r′, t)V (r − r′)Ψ̂(r′, t)

]

Ψ̂(r, t),

(1.18)

where Ĥ is a many-body Hamiltonian

Ĥ =

∫

drΨ̂†(r)

[

−~
2∇2

2m
+ Vext(r)

]

Ψ̂(r) +
1

2

∫

drdr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r).

(1.19)

Replacing the operator Ψ̂ with the classical field Ξ and thus, considering only large

distances r − r′, one can specify the interaction term in Eq. (1.18) in the simplest

approximation. Assume that the gas of atoms is cold and dilute, and therefore, only

binary collisions at low energy are relevant. These collisions are characterized by

a single parameter, the s-wave scattering length a, independently of the details of

the two-body potential. Thus, one can replace the interaction term V (r − r′) in Eq.

(1.18) with the following expression:

V (r − r′) = gδ(r− r′), (1.20)



7

where the coupling constant g is related to the scattering length a as follows:

g =
4π~

2a

m
. (1.21)

The introduced above interaction term yields to the following equation of motion for

the order parameter Ξ:

i~
∂

∂t
Ξ(r, t) =

[

−~
2∇2

2m
+ Vext(r) + g|Ξ(r, t)|2

]

Ξ(r, t), (1.22)

The Eq. (1.22) is known as Gross-Pitaevskii (GP) equation. It is valid when the

s-wave scattering length is much smaller than the average distance between atoms

a << (N/V )−1/3 (the criteria of dilute gas), and the mean number of atoms in the

condensate is large, n̄0 >> 1. The GP equation can be used at low temperature, to

explore the macroscopic behavior of the system, characterized by variations of the

order parameter over distances larger than the mean distance between atoms.

The experimental systems are the collections of individual neutral alkali-gas

atoms, with a total number N ranging from a few hundred up to ∼ 1010, confined by

magnetic and/or optical means to a relatively small region of space. The achieved

densities range from ∼ 1011cm−3 to ∼ 5×1015cm−3 with a temperature, in the region

of interest, typically in the range between a few tens of nK and a few tens of µK.

An alkali atom in its ground state has a single valence electron in an ns1 state

outside one or more closed shells. Therefore the electronic state is a doublet. The

only excited state that we are interested in is a np, since it is more favorable to this

state to couple to the ground state in the sense of the radiation in optical regime.

The wavelength λ of the transition ns→ np1 lies in the range 5000−7000 A◦ and the

excited state lifetime is 20 nsec. Since for the alkali atoms the atomic number Z is

odd, it means that for odd isotopic number A, the systems such as 87Rb, 23Na, 7Li

will obey the Bose-Einstein statistics, whereas an even-A systems such as 6Li or 40K



8

will obey Fermi-Dirac statistics.

It is important to outline the general features of the resulting effective potentials

in which the atoms move, i.e. the trapping potentials. There are two types of trapping

potentials which are widely used in the experiments. The first type is based on the

atom-laser interaction. The effect that has been principally exploited in the laser

trapping of atoms in BEC regime is the so-called dipole effect, which relies on the

interaction of the laser field with the electric dipole moment which is induced in the

atom. One can define the detuning of the ns→ np transition frequency as:

∆ = ~ωlas − (ǫnp − ǫns) ≡ ~ωlas − 2π~c/λ. (1.23)

The energy change in the atom is inverse proportional to the detuning ∆. A region of

high laser intensity, thus, provides an attractive potential for ∆ < 0 (“red detuning”)

and a repulsive potential ∆ > 0 (“blue detuning”). However, there are different

problems concerning this type of confinement such as sensitivity to the hyperfine-

Zeeman splitting, the spontaneous emission, etc. which I do not discuss here.

The second type of the trap potential arises from the magnetic analogue of the

Earnshaw theorem, which forbids the magnitude of the magnetic field B(r) to have

a local maximum in free space. However, nothing forbids the occurrence of the local

minimum, which can be provided by various methods. Virtually all non-laser assisted

magnetic traps used in BEC experiments to date have had axial symmetry and a

finite offset field, thus, it can be written in cylindrical coordinates as:

|B(r)| = B0 +
1

2
αρ2 +

1

2
βz2. (1.24)

The cooling process usually consists of two steps. First, the laser cooling tech-

nique is used. Then, the atoms are evaporated from the trap. Since particles with

higher energies are evaporating faster than the ones with lower energies, the process of
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evaporation leads to the cooling. The temperature obtained in the described process

can be of the order of hundreds of nK and allows one to observe the condensate. The

most recently developed experimental techniques dropped the temperature to several

nK.

In gases, BEC was observed only in 1995, namely, in the vapor alkali gases

using the advanced experimental setup [9–12]. I will present the typical experiment

parameters based on the two pioneering papers [9, 10]. In the first experiment, BEC

was produced in a vapor of rubidium-87 atoms [9] that was confined by magnetic

field and evaporatively cooled. Six laser beams intersect in a glass cell creating a

magneto-optical trap. The cell was 2.5 cm square by 12 cm long, and the beams were

1.6 cm in diameter. The condensate fraction first appeared near the temperature

of 170 nK at a number density of 2.5 × 1012 atoms per cubic centimeter and could

be preserved for more than 15 seconds. The s-wave scattering length was about

10−6 cm. In another pioneering experiment [10] the BEC was observed in the gas of

sodium atoms, which were confined in a novel trap that employed both magnetic and

optical forces. Evaporative cooling increased the phase-space density by 6 orders of

magnitude within 7 seconds. Condensates contained up to 5× 105 atoms at densities

exceeding 1014 cm−3. The critical temperature for the experiment was 2 µK. The

trapping volume was of the order of 10−8cm. The corresponding scattering length of

the sodium atoms was 4.9 nm.

The described experimental setups later allowed one to measure directly the

number statistics in a Bose gas [13, 14]. It can be done in the following way. For

number of order 103 or larger, absorption imaging is used yielding spatial and number

information. At lower atom numbers, however, fluorescence imaging is used, because

of higher signal-to-noise ratio in this regime. This is accomplished by transferring the

atoms into a small magneto-optical trap (MOT). This transfer shows the saturation
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behavior with MOT beam intensity, indicating that all atoms are captured. The

resulting fluorescence signal is detected by a charge-coupled-device (CCD) camera

and is properly calibrated. Because of low density during exposure, there is little

possibility for multiple scattering events during detection. Therefore, the measured

fluorescence signal from the MOT is proportional to the number of atoms present.

The phenomenon of BEC can be observed not only in a harmonic trap [9–11],

but in a box as well [15]. In the latter case the axial motion of the rubidium-87 atoms

was confined by optical endcaps, producing the “textbook geometry” of a “particle in

a box”. The resulting atomic number in this box was generally from 500 to 3500 and

was controlled by evaporation timing and spacing of the endcaps. The characteristic

size of the box was 18 µm, scattering length was 5.6 nm.

The BEC has a lot of applications. The rapid progress in the quantum-coherent

manipulation of mesoscopic cold atom clouds results in the construction of the per-

manent magnet atom chips. Small-scale magnetic field patterns for atom chips can

be made using either microfabricated curent-carrying wires or microscopic structures

of permanent magnetization. The second idea is less realistic since there is no power

dissipation in a permanent magnet. Therefore, a long thin BEC can be prepared in

a microtrap formed by a videotape atom chip and can be manipulated in the waveg-

uides of the chip [16]. Moreover, the same effects were used to construct the atomic

Michelson interferometer [17]. In this case the splitting, reflecting and recombining

of condensate was achieved by a standing wave field. The differential phase shift

between two arms of the interferometer was introduced either by the magnetic-field

gradient or the initial velocity of condensate. The phase coherence effect between two

spatially separated BECs on the atomic chip was observed in [18], which showed that

it is both promising and possible to use condensate at high density for interferometry

on an atom chip.
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The confined BEC in harmonic trap can be also used to realize a quantum gyro-

scope [19] characterized by two important superfluid effects: the reduced value of the

inertia of the sample and the quantization of the angular momentum associated with

the vortex. Theoretically proposed gyroscope [19] was characterized by the precession

of the symmetry axis of the condensate around the symmetry axis of the confining

trap.

Concluding the general introduction, I can state that not only the Einstein’s

prediction was correct, but the existence of the new type of matter was discovered,

where the quantum effects play the leading role at the macroscopic and mesoscopic

scale. This phenomena has a lot of applications and connections to the different

physical effects of quantum and statistical mechanics and thermodynamics.

B. Theoretical models of BEC quantum statistics

1. Standard theory of BEC and the problem of the mesoscopic effects

Inspired by the series of papers [20, 21], in this dissertation I will try to further develop

the quantum statistical theory of BEC fluctuations. In this work I will be mostly focus

on the mesoscopic effects, i.e. effects which arise from the fact that the number of

atoms in the trap is finite and cannot be represented by an infinite thermodynamic

limit. In this chapter I review the existing in the literature understanding of the

problem of the BEC fluctuations. The difficulty in the description of the mesoscopic

effects is that there is no certain approach for tackling the problem in the standard

quantum mechanical theory of the microscopic systems of very few atoms. On the

other hand, the statistical mechanics cannot be applied either, because it deals with

the macroscopic systems in the thermodynamic limit.

As it was discussed in the previous section, the recent experimental data [9-11,
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12-15] was obtained for the mesoscopic systems of a finite number of particles (from

few hundreds to few millions). Therefore, the manifestation of the mesoscopic effects

which are clearly seen in the region close to the critical temperature of BEC, should

add the experimental and theoretical understanding to the problem of transition

between few-body systems to macroscopic systems.

The current study of the mesoscopic effects is dealing with the behavior of the

quantum fluctuations of the BEC in a box with the periodic boundary conditions.

The particle-number constraint which requires exact conservation of particles in the

trap is essentially the reason of the mesoscopic effects near the critical temperature

and is a crucial issue of this work.

Historically the previous efforts were mostly dealing with the mean value n̄0 and

variance 〈(n0 − n̄0)
2〉 of the condensed atoms. It was assumed that the condensate

fluctuations are almost Gaussian, and higher cumulants (semi-invariants) vanish. In

fact it is not true even in the thermodynamic limit that was shown in [21].

Presented in Eq. (1.19) many-body Hamiltonian is describing N weakly interact-

ing via the two-body interatomic potential V (r − r′) bosons confined by an external

potential Vext. It also reflects the processes of annihilation and creation of a particle

at the position r by the field operators Ψ̂(r) and Ψ̂†(r), respectively. Starting from

this Hamiltonian, one can derive the thermodynamic properties of the system, as

well as its ground state energy eigenvalue. The Monte-Carlo path-integral method

of calculating the thermodynamic properties of the system interacting within a re-

pulsive “hard-sphere” potential gives the exact result within statistical errors, but is

impractical for the systems with large number of atoms.

Mean-field approaches are commonly developed for interacting systems in order

to overcome the problem of solving exactly the full many-body Schroedinger equation.

Apart from the convenience of avoiding heavy numerical work, the mean-field theories
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allow one to understand the behavior of a system in terms of a set of parameters

having a clear physical meaning. This is particularly true in the case of trapped

bosons. Actually, most of the results reviewed in this work show that the mean-field

approach is very effective in providing qualitative predictions for the static, dynamic,

and thermodynamic properties of these trapped gases. The basic idea for a mean-

field description of a dilute Bose gas was formulated by Bogoliubov [5-8, 22, 23]. The

main idea is in separating the condensate contribution to the bosonic field operator.

In general, the field operator can be written as Ψ̂(r) =
∑

k Ψk(r)âk, where Ψk(r) are

single-particle wave functions and âk are the corresponding annihilation operators.

The bosonic creation and annihilation operators â†k and âk are defined in the Fock

space through the relations:

â†k|n0, n1, ..., nk, ...〉 =
√
nk + 1|n0, n1, ..., nk + 1, ...〉,

âk|n0, n1, ..., nk, ...〉 =
√
nk|n0, n1, ..., nk − 1, ...〉, (1.25)

where nk are the eigenvalues of the operator n̂k = â†kâk giving the number of atoms

in the single-particle state. They obey the usual commutation relationships:

[âp, â
†
k] = δp,k, [âk, âp] = 0, [â†p, â

†
k] = 0. (1.26)

BEC occurs when the mean number of atoms n̄0 of a particular single-particle state

becomes very large: n̄0 >> 1 and the ratio n̄0/N remains finite in the thermodynamic

limit N → ∞. In this limit the states with n̄0 and n̄0±1 ≈ n̄0 correspond to the same

physical configuration and, consequently, the operators â0 and â†0 can be treated like

c numbers: â0 = â†0 =
√
n̄0. Therefore, the Hamiltonian in Eq. (1.19) can be written
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in the momentum representation as following:

H =
∑

k

~
2k2

2m
â†kâk +Hint, (1.27)

where the interaction part of the Hamiltonian is approximated as:

Hint =
g

2V

[

n̂2
0 + 2n̂0

∑

k 6=0

(â†−kâ−k + â†kâk) + n̂0

∑

k 6=0

(â†kâ
†
−k + âkâ−k)

]

, (1.28)

where g is the interaction strength in Eq. (1.21). The total number of particles in

the system is:

N = n̂0 +
1

2

∑

k 6=0

(â†−kâ−k + â†kâk). (1.29)

Considering Bogoliubov canonical transformation of the creation and annihilation

operators, which diagonalizes the Hamiltonian in Eq. (1.28)

âk =
1

√

1 −A2
k

(

α̂k + Akα̂
†
−k

)

, â†k =
1

√

1 − A2
k

(

α̂†
k + Akα̂−k

)

. (1.30)

In new operator basis α̂k and α̂†
k, the Hamiltonian looks like:

H = E0 +
∑

k 6=0

ǫkα̂
†
kα̂k, (1.31)

with the modified spectrum

ǫk =

√

(

~2k2

2m
+
gn̄0

V

)2

−
(gn̄0

V

)2

, (1.32)

and parameters

E0 =
gN2

2V
, Ak =

V

gn̄0

(

ǫk − ~
2k2

2m
− gn̄0

V

)

. (1.33)

The result of the original Bogoliubov calculation was that only small fraction of

the atoms were removed from the condensate at T = 0 due to a weak interaction.
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Specifically, the mean number of particles in the condensate:

n̄0 = N

(

1 − 8

2

(

a3N

πV

)1/2
)

, (1.34)

where a is the s-wave scattering length. For a dilute Bose gas, we have (N/V )a3 << 1.

In spite of this small interaction-induced depletion, the Bogoliubov model shows that

the interactions in the presence of a condensate lead to an acoustic (or phonon) exci-

tation spectrum at long-wavelengths. More precisely, in the limit of small momentum

the energy in Eq. (1.32) becomes linear in momentum:

ǫk ≈ ~ck, (1.35)

with the phonon velocity c = (4π~
2a/m(N/mV ))1/2. For the large momentum the

Bogoliubov spectrum becomes the free particle spectrum:

ǫk ≈ ~
2k2

2m
, (1.36)

which agrees with Landau theory of superfluidity [4].

In the presented above Bogoliubov prescription, the condensate acts like a classi-

cal particle reservoir, which the noncondensate atoms can enter and leave via scatter-

ing. Thus, the number of atoms is no longer a constant of motion. As an immediate

consequence, one needs to include anomalous propagators (Green’s functions) repre-

senting two particles going into or out of the condensate. This approach forms the

basis of the systematic application of the quantum field theory to an interacting sys-

tem of bosons due to Beliaev [7, 8, 22]. This leads to a generalized Green’s function

formalism which builds in the crucial role of the Bose condensate, and allows one to

determine the general characteristics of the system, such as the excitation spectrum,

the momentum distribution of atoms, etc. After this pioneer work, this field of study

has been extensively developed and extended (for a review, see Ref. [8]).
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In principle, one can calculate the properties of an interacting Bose system, such

as thermodynamic potential, specific heat, condensate density, etc. As at T = 0, such

finite T calculations are complicated by the subtle role of correlations induced by the

Bose-broken symmetry. Moreover, even in a dilute gas, the finite T case is difficult

because the thermally induced depletion fraction is now large. One has to be careful

in treating the condensate and excited atoms in a consistent fashion. Another well-

known difficulty is the fact that even for regular repulsive interactions, perturbation

theory for Bose-condensed systems diverges at small momenta [8, 22]. That is to say,

certain terms in the perturbation series are singular for k → 0, a result which can

be traced back to the fact that the single-particle excitations are phonon-like. These

singularities have to be handled with care in order to obtain correct final results.

Fortunately, the infrared divergences appear to cancel out in all physical quantities

[8].

2. Microcanonical, canonical and grand-canonical statistics

Specific experimental conditions define which statistics should be applied in a given

particular situation. In view of the present experiments on the trapped atoms of dilute

gases, dealing with a finite and well defined number of particles, the most important

descriptions are due to the microcanonical and canonical ensembles, since the particle

number, even if it is not know exactly, certainly does not fluctuate after the cooling

process is over. Magnetic and optical confinement also implies that the system is

thermally isolated, which restricts one to the consideration of the microcanonical

ensemble. In the other way of cooling, so called the sympathetic cooling, which

takes place in the systems of mixed Bose-Fermi gases or Bose gases with different

components, there is an exchange of energy between different species of the gas, and

thus the canonical ensemble is much more appropriate. This description is appropriate
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also for the dilute 4He in a porous medium [24–26]. In the canonical ensemble only the

total number of particles is constrained to be conserved N̂ = const, but energy Ĥ has

non-zero fluctuations and only its average value is a constant
〈

Ĥ
〉

= H̄ = E = const,

determined by a fixed temperature of the system T .

The standard textbooks [4, 5, 22, 23] formulate the BEC statistics problem either

in a grand-canonical ensemble, allow the system to exchange both energy and particles

with a reservoir at a given temperature T and chemical potential µ, which fixes only

the average energy and number of particles, respectively, or some restricted ensembles.

The purpose of the restricted ensemble is to select only those states, which ensure the

condensate wave function to have almost fixed phase and amplitude [5]. Although

these formulations avoid the difficulties of operator constraints on the total energy and

particle number which are present in the microcanonical and canonical treatments,

they provide effective tools for study of the thermodynamic limit and hydrodynamic

properties of the many-body Bose system at the expense of the artificial modification

of the condensate statistics. In this case even below the Bose-Einstein condensation

temperature, where the ground state mean occupation number is macroscopically

large in the sense that n̄0 ≈ N , the grand-canonical distribution function

ρGC
ν (nν) =

1

1 + n̄ν

(

n̄ν

1 + n̄ν

)nν

(1.37)

in the ground state ρGC
0 (n0) becomes very broad and even at T → 0 the variance is

anomalously large 〈(n0 − n̄0)
2〉 ≈ n̄2

0 ∝ N2. This prediction contradicts with the basic

fact that at low temperatures all particles are expected to occupy the ground state

with no fluctuations left. Thus the grand-canonical ensemble could be misleading if

not revised properly. The approach that involves fixation of the phase and amplitude

of the condensate wave function is not good for the description of the condensate

formation and fluctuations at all.
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Fig. 1. Negative binomial distribution of the number of noncondensed atoms for an

ideal Bose gas in a box with total number of particles N = 10000.

It is worthwhile to compare the counting statistics (1.37) with the predictions

of other statistics, namely microcanonical and canonical ensembles [5]. For high

temperatures T > Tc, all three ensembles predict the same behavior. However it

is not the same for the low temperature region T < Tc. Here the broad grand-

canonical distribution function does not agree with the well-peacked canonical and

microcanonical distribution function ρ0(n0) around the condensate mean occupation

number value. In order to illustrate an actual distribution function, I plot in Fig. 1

the finite negative binomial distribution function of the noncondensate occupation in

an ideal Bose gas in the canonical ensemble as is derived within the master-equation

approach below in Subsection 4, Eq. (1.53). This is the sharp-peaked statistical

distribution which was naively expected for a Bose statistics.

The microcanonical and canonical ensemble formalism do not give the same result

in all situations. For different traps the agreement requires additional conditions. For

example both ensembles have been found to agree in the large-N (almost thermody-

namic limit) case for one-dimensional harmonic trap but to differ in the case of three-

dimensional isotropic harmonic trap [21]. More general in the case of d-dimensional



19

σ-power trap, microcanonical and canonical fluctuations agree in large-N limit when

d/σ < 2 and microcanonical fluctuations become smaller than the canonical ones in

the case of d/σ > 2.

For large enough particle number N > 105 the calculation of microcanonical

partition function Ω(E,N) becomes very time consuming or even impossible. In this

case one can employ the approximation technique based on the saddle-point method

which is discussed in details in Chapter IV and is widely used in the statistical physics.

In this method one starts from the grand canonical partition function and utilize

the saddle-point method for extracting its required canonical and microcanonical

parts. Furthermore, the moments of fluctuations are described by the different order

derivatives from the resulting counterparts.

Recently, the new type of ensemble was introduce, so called Maxwell’s demon

ensemble [20]. In this approach the overall system is divided into two parts: conden-

sate part and the excited states, which undergo the particle, not energy, exchange

between each other. This ensemble gives an approximate result for the ground state

fluctuations both in the microcanonical and canonical ensembles. This approximation

can be understood in the framework of the canonical ensemble quasiparticle approach

presented in Chapter II. It also implies that the higher statistical moments for a ho-

mogeneous Bose gas should take into an account the particle-number constraint even

in the thermodynamic limit.

3. Exact recursion relation for the statistics of the number of condensed atoms in

an ideal Bose gas

It is worth noting that there is one useful reference result in the theory of BEC

fluctuations, namely, an exact recursion relation for the statistics of the number of

condensed atoms in an ideal Bose gas. Although it does not give any simple analytical
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answer or physical insight into the problem, it can be used for “exact” numerical

simulations for traps containing a finite number of atoms. It is very useful as a tool

which compares different approximate analytical solutions. The recursion relation for

an ideal Bose gas had been known and used by many authors [20, 21, 23, 27]. In the

canonical ensemble, the probability to find n0 particles occupying the single particle

ground state is give by:

ρ0(n0) =
ZN−n0(T ) − ZN−no−1(T )

ZN(T )
; Z−1 ≡ 1. (1.38)

The recurrence relation for an ideal Bose gas, thus is:

ZN(T ) =
1

N

N
∑

k=1

Z1(T/k)ZN−k(T ), Z1(T ) = 1 +
∞
∑

ν=0

e−ǫν/T , Z0(T ) = 1,

(1.39)

which allows one to numerically evaluate the statistics (1.38). Here ν stands for a

set of quantum numbers enumerating a given single particle energy levels ǫν , and the

ground-state energy assumed to be ǫ0 = 0 by convention. I will apply the relation

(1.39) for evaluation the statistics of an ideal gas in a box in the following sections,

namely in Chapter II, Section C. An important example is the isotropic, three-

dimensional harmonic trap, where one has:

Z1(T ) =

∞
∑

n=0

1

2
(n+ 2)(n+ 1)e−n~ω/kBT =

1

(1 − e−~ω/kBT )
3 , (1.40)

where 1
2
(n+ 2)(n+ 1) is the degeneracy of the level ǫn = n~ω.

There is a similar recurrence relation in the microcanonical ensemble [20]:

Ω(E,N) =
1

N

N
∑

k=1

∞
∑

ν=0

Ω(E − kǫν , N − k), Ω(0, N) = 1, Ω(E > 0, 0) = 0,

(1.41)

where the sum over ν is finite, since for finite E < 0 one has Ω(E < 0, N) = 0.
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Therefore, the ground state occupation probability in the microcanonical ensemble

is:

ρMC
0 (n0) =

Ω(E,N − n0) − Ω(E,N − n0 − 1)

Ω(E,N)
; Ω(E,−1) ≡ 1. (1.42)

4. Dynamical master equation approach

Here I outline another approach to the canonical statistics of ideal Bose gases. It

was developed in [28] and utilizes a master equation for the condensate in order

to find its equilibrium solution. This approach reveals important parallels to the

quantum theory of laser and is based on the analogy between a second-order phase

transition and laser threshold behavior. The master equation can be simplified in the

approximation of detailed balance in the excited states under an assumption that for

a given arbitrary number n0 of atoms in the condensate the remaining N−n0 excited

atoms are in an equilibrium state at the prescribed temperature T .

One can consider the cooling of an ideal noninteracting N-atom Bose gas confined

inside a trap. The gas is in contact with a thermal reservoir maintained at the

temperature T . The most studies have been concerned with the evaluation of the

partition function, which is strongly related to the statistics and thermodynamics of

the Bose gas. As it was discussed in [28], one can obtain a simple master equation for

the density matrix of the Bose gas as it cools towards the ground state via exchanging

the heat with a thermal reservoir. The master equation for the distribution function

of the condensed bosons pn0 yields

˙pn0 = −κ{Kn0(n0 + 1)pn0 −Kn0−1n0pn0−1 +Hn0n0pn0 −Hn0+1(n0 + 1)pn0+1}. (1.43)

Here κHn0 and κKn0 are the heating and cooling coefficients (which depend upon

trap shape, total number of atoms in the trap N and the temperature T ) are similar
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to the cavity loss and saturated gain parameters in the original laser master equation:

Kn0 =
∑

k′>0

(ηk′ + 1)〈nk′〉n0, Hn0 =
∑

k′>0

ηk′(〈nk′〉n0 + 1), (1.44)

where:

ηk =
1

exp(ǫk/T ) − 1
, 〈nk′〉n0 =

∑

{nk}n0

nk′

pn0,{nk}n0

pn0

. (1.45)

One can obtain the steady state distribution of the number of atoms condensed to

the ground level of the trap from Eq. (1.43), thus the ground state statistics can be

determined. The detailed balance condition involving the cooling and the heating co-

efficients yields the following expression for the number distribution of the condensed

atoms:

pn0 = p0

n0
∏

i=1

Ki−1

Hi
, (1.46)

where the partition function

ZN =
1

pN
=

N
∑

n0=0

N
∏

i−n0+1

Hi

Ki−1
(1.47)

is required to obey the normalization condition
∑N

n0=0 pn0 = 1. The closed form ex-

pression for the coefficients Hn0 and Kn0 can be achieved under different approxima-

tions for a different trap shapes. For example, one can apply the so-called “quasither-

mal” approximation [28], that stems the same relative average occupation number in

the excited levels of the trap as in the thermal reservoir:

〈nk〉n0 = ηk

∑

k>0

〈nk〉n0/
∑

k′

ηk′ =
(N − n̄0)

(exp(ǫk/T ) − 1)H . (1.48)

As the result, one obtains the heating and cooling coefficients as following:

Kn0 = (N − n0)(1 + η), Hn0 = H + (N − n0)η, (1.49)
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where:

H =
∑

k>0

ηk =
∑

k>0

1

exp(ǫk/T ) − 1
, η =

1

(N − n0)

∑

k

〈nk〉n0ηk =
1

H
∑

k>0

η2
k. (1.50)

Thus, the analytical formulas for the distribution function of the condensed bosons

and the partition function are:

pn0 =
1

ZN

(N − n0 + H/η − 1)!

(H/η − 1)!(N − n0)!

(

η

1 + η

)N−n0

, (1.51)

ZN =
N
∑

n0=0







N − n0 + H/η − 1

N − n0







(

η

1 + η

)N−n0

. (1.52)

The explicit formula (1.51) obeys the same canonical recursion relation, which was

discussed previously in Section 3. One should emphasize the specific behavior of the

ground state occupation probability distribution function. It evolves from a quasi-

thermal peak edged to zero occupation n0 = 0 at T ≈ Tc through a narrow peak

centered around some n̄0 6= 0 at T ≈ Tc/2 to a δ-function-like peak near n0 = N for

a complete Bose-Einstein condensation at T << Tc. It is similar to the evolution of

the photon number distribution in a laser mode (from thermal to coherent, lasing).

The probability distribution for the total number of non-condensed atoms, n =

N − n0,

Pn = pN−n =
1

ZN







n+ H/η − 1

n







(

η

1 + η

)n

, (1.53)

is complementary to the probability distribution of the number of condensed atoms

n0 = N − n. The distribution (1.53) can be named as a finite negative binomial

distribution, since it has the form of the well known negative binomial distribution
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[29]:

Pn =







n+M − 1

n






qn(1 − q)M , n = 0, 1, 2, ...,∞, (1.54)

that was so named due to a coincidence of the probabilities Pn with the terms in the

negative-power binomial formula:

1

(1 − q)M
=

∞
∑

n=0







n +M − 1

n






qn. (1.55)

It has similar origin as the well-known binomial distribution,

Pn =







M

n






(1 − q)nqM−n, (1.56)

which was named after the Newton’s binomial formula:

[q + (1 − q)]M =

M
∑

n=0







M

n






(1 − q)nqM−n. (1.57)

The finite negative binomial distribution (1.53) tends to the well-known distribution

(1.54) only in the limit N >> (1 + η)H.

The master equation (1.43) for pn0 itself, and the analytic approximate expres-

sions (1.51) and (1.52) for the condensate distribution function pn0 and the partition

function ZN , respectively, are among the main results of the condensate master equa-

tion approach. It provides reasonably accurate description of the first two moments

of BEC fluctuations in a Bose gas for a large range of parameters and for different

trap potentials.
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5. Integral representation via the generalized Zeta function

In order to understand relations between various approximate schemes, we formulate

a systematic analysis of the equilibrium canonical-ensemble fluctuations of the BEC

based on the particle number conserving formalism of Girardeau and Arnowitt [30],

the concept of the canonical-ensemble quasiparticles, residue technique and multino-

mial expansion. This approach will be discussed in details in Chapter II, Section A.

In this section I will present an equivalent formulation of the quasiparticle approach

in terms of the poles of the generalized Zeta function.

Cumulants (semi-invariants) of the BEC fluctuations in an ideal Bose gas can be

written in a equivalent form which is quite interesting mathematically [29]. Namely,

starting with the cumulant generating function ln Θex(β, z), where β = 1/kBT and

z = eβµ,

ln Θex(β, z) = −
∞
∑

ν=1

ln(1−z exp[−β(ǫν−ǫ0)]) =

∞
∑

ν=1

∞
∑

n=1

zn exp[−nβ(ǫν − ǫ0)]

n
, (1.58)

one can use the Mellin-Barnes transform:

e−a =
1

2πi

∫ τ+i∞

τ−i∞
dt a−tΓ(t) (1.59)

to write:

ln Θex(β, z) =

∞
∑

ν=1

∞
∑

n=1

zn

n

1

2πi

∫ τ+i∞

τ−i∞
dtΓ(t)

1

[nβ(ǫν − ǫ0)]t
=

=
1

2πi

∫ τ+i∞

τ−i∞
dtΓ(t)

∞
∑

ν=1

1

[β(ǫν − ǫ0)]t

∞
∑

n=1

zn

nt+1
. (1.60)

Recalling the series representation of the Bose functions gα(z) =
∑∞

n=1 z
n/nα and

introducing the generalized, “spectral” Zeta function Z(β, t) = [β(ǫnu − ǫ0)]
−t, one
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arrives at the convenient (and exact) integral representation:

ln Θex(β, z) =
1

2πi

∫ τ+i∞

τ−i∞
dtΓ(t)Z(β, t)gt+1(z). (1.61)

Applying the well-known relation for the Bose functions z d
dz
gα(z) = gα−1(z) and

gα(1) = ζ(α), where ζ(α) denotes the original Riemann Zeta function, Eq. (1.61) can

be rewritten in terms of the cumulants of the distribution function as:

κk(β) =

(

z
∂

∂z

)k

ln Θex(β, z)|z=1 =
1

2πi

∫ τ+i∞

τ−i∞
dtΓ(t)Z(β, t)ζ(t+ 1 − k). (1.62)

Thus, by means of the residue theorem, Eq.(1.62) links all cumulants of the canonical

distribution function in the condensate regime to the poles of the generalized Zeta

function Z(β, t), which contains all the system properties, and to the pole of a system-

independent Riemann Zeta function, the location of which depends on the order k

of the respective cumulant. The formula (1.62) provides a systematic asymptotic

expansion of the cumulants κk(β) through the residues of the analytically continued

integrands, taken from right to left. The large system behavior extracted from the

condensate fluctuations is definitely seen. The details and examples of such analysis

can be found in [20].

I would like to emphasize that none of the presented above theories can de-

scribe the mesoscopic behavior of the confined Bose gas in the trap without using

some approximations, and there is no yet a complete and general theory of the BEC

fluctuations.

C. Plan of the thesis and brief discussion of the main results

The dissertation is organized as follows in Chapter II, Section A I start with the

Girardeau-Arnowitt (GA) [30, 31] particle-number conserving operator formalism of
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the canonical ensemble for analyzing the equilibrium fluctuations of the partially con-

densed Bose gas in a box with the periodic boundary conditions. GA operators can be

understood as a creation and annihilation operators of particles in the reduced many-

body Fock subspace. New quasiparticles are essentially different from the original

and allow one to obey the exact N-particle constraint in a very elegant way, taking

into account all possible correlations between bosons. In Chapter II, Section B, I ob-

tain a simple analytical expression for the characteristic function of the ground state

occupation number for an ideal gas in the a with the periodic boundary conditions

following the approach of [21].

In Chapter II, Section C, I present the calculations of the statistical moments of

the ground state occupation number that are valid not only for the low temperature

limit up to the close vicinity of the critical temperature, but for the whole temper-

ature range from zero to infinity. This is achieved by introducing the weight to the

distribution function of the number of condensed particles. Therefore properly nor-

malized “new” distribution function exactly obeys the well-known recursion relation

for an ideal gas and N-particle constraint, by its construction, which makes it truly

a solution of the problem. Improved moments and cumulants calculated from this

distribution function are in the excellent agreement with the exact numerical results

available for an ideal Bose gas via the recursion relation (1.38).

The focus of this work is the central moments µm = 〈(n− n̄)m〉. For the anal-

ysis of non-Gaussian properties it is more convenient to consider cumulants (semi-

invariants) κm which are related to the central moments µm and “generating cumu-

lants” κ̃m by the following relations:

κ1 = n̄, κ2 = µ2, κ3 = µ3, κ4 = µ4 − 3µ2
2,

κ5 = µ5 − 10µ2µ3, κ6 = µ6 − 15µ2

(

µ4 − 2µ2
2

)

, (1.63)
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κ1 = κ̃1, κ2 = κ̃2 + κ̃1,

κ3 = κ̃3 + 3κ̃2 + κ̃1, κ4 = κ̃4 + 6κ̃3 + 7κ̃2 + κ̃1, ... (1.64)

In the last two sections of the Chapter II I present the closed-form, analytical expres-

sion for the distribution function and obtain its expansion in terms of the multinomial

coefficients. Finally, I compare the condensate statistics for the finite system with its

thermodynamic limit.

In Chapter III I use another technique to obtain the the ground state occupa-

tion statistics. In contrast with Chapter II, where the properly scaled temperature

dependences of the distribution function and central moments were studied at a fixed

number of particles, I analyze the problem when the temperature is fixed and all the

physical quantities are the functions of the number of particles in the trap. In this

case the particle number constraint is still working to force BEC, since there is a

critical number of particles which is determined by the size of the trap.

This formulation simplifies calculations and gives a better accuracy. It focuses

mostly on the vicinity of the critical number of particles, thus corresponds to the

vicinity of the critical temperature in the corresponding temperature-dependent ex-

pressions. I evaluate numerically the Fourier integral which transforms characteristic

function into the distribution function using the Fast Fourier Transformation tech-

nique. I present the numerical solution of the problem and obtain the expressions

for the first four central moments of the ground state occupation number depen-

dences with respect to the number of particles. Besides that I present the asymptotic

solutions for the corresponding distribution function in the region of high and low

temperature. In the last section of the Chapter III I analyze the self-similarities of

properly scaled BEC fluctuations and extract their actual scale. I also compare these

universal expressions with the simple formulas arising from the pure Gaussian distri-



29

bution function and discuss different possibilities of the universal scale expressions.

In Chapter IV I employ the refined saddle-point approximation to obtain the

asymptotic expression for the distribution function of condensed atoms in an ideal

gas in a trap. In Section A following [27] I formulate the method for the case of a

harmonic trap and explain why the standard saddle point approximation does not

work for the systems with condensate. Then in Section B I employ this method to

find the condensate distribution function in an ideal gas in a box. In Section C I

do numerical simulations and compare the results obtained by the fixed temperature

technique in Chapter III and refined saddle-point approximation for the distribution

function.

In Appendices A, B, C I present the detailed derivation of the characteristic

function and the initial statistical moment of the ground state occupation number.

Also I present the residue technique for the condensate fluctuations and derivation of

the multinomial expansion approach for the condensate statistics.

In Chapter V I summarize the main results of this work. I discuss the next

step in the development of the current theory, namely the transition from ideal gas

model to the case of a weakly interacting Bose gas. In particular, I present the

expressions for the low and high temperature asymptotics for the first few centered

moments of ground state statistics for a weakly interacting Bose gas in the Bogoliubov

approximation.
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CHAPTER II

QUANTUM STATISTICS OF AN IDEAL BOSE GAS IN A BOX IN THE

CANONICAL ENSEMBLE

A. Canonical ensemble quasiparticle approach

The standard methods of thermodynamics are not appropriate for the analysis of

BEC fluctuations and mesoscopic effects. For example, the most widely known grand-

canonical approach suffers from the grand-canonical catastrophe [32]. The restricted

ensemble approach, which fixes the amplitude and the phase of the condensate wave

function, is unable to analyze the fluctuation problem at all. To study the fluctua-

tions, one should fix only external macroscopical and global, topological parameters

of the system such as temperature, pressure, number of particles, super-fluid flow

pattern, boundary conditions, etc. Solving the Von Neuman equation with general

initial conditions one can get all possible states of the condensate. For the real sys-

tems, especially with even weaker interactions this way is very complicated. The

perturbative series involving the initially unperturbed grand-canonical ensemble do

not converge [8], thus it is impossible to use them.

One way to handle this problem is to deal with constrained many-body Hilbert

space. The possibility of the proper reduction of the Fock space arises from introduc-

ing the new canonical ensemble quasiparticles. The usual particle number representa-

tion in many-body Hilbert space can be written as a proper combination of creation

and annihilation operators â†k and âk, which acts like:

â†k|ψ
(n)
k 〉 =

√
n + 1|ψ(n)

k 〉, âk|ψ(n)
k 〉 =

√
n|ψ(n−1)

k 〉, n̂k|ψ(n)
k 〉 = n|ψ(n)

k 〉. (2.1)

Girardeau and Arnowitt (GA) [30, 31] were the first who introduced the creation and
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annihilation operators acting in the canonical ensemble subspace of the Fock space

which takes into account the particle number constraint. These operators obey the

usual Bose commutation relations for k 6= 0 in the subspace with n0 6= 0, namely,

β̂†
k = â†kβ̂0, β̂k = β̂†

0âk, β̂0 = (1 + n̂0)
−1/2 â0,

[

β̂k, β̂
†
k′

]

= δk,k′ . (2.2)

Since the GA operator subspace excludes states with zero number of the con-

densed atoms, this approach will be relevant for almost all temperatures T < Tc,

starting even from a small condensate fraction n̄0 << N . It especially good for the

well peaked ground sate occupation number distribution and relatively small vari-

ance in comparison with mean occupation number. Thus, we approximate the exact

canonical ensemble HCE subspace by the subspace HCE
n0 6=0 with excluded zero con-

densed fraction states. This means that we are considering the transitions between

a condensate state (k = 0) and excited states (k 6= 0). Consequently, one can ex-

press all quantum properties of the system using GA operators. For example, the

total number of particles is equal to the sum of the number of condensed atoms and

excited atoms:

n̂0 = N −
∑

k 6=0

n̂k, (2.3)

where the excited state occupation number is:

n̂k = â†kâk = β̂†
kβ̂k. (2.4)

The ground state occupation statistics is very informative part of the BEC fluctua-

tions. Canonical ensemble quasiparticle states can be defined via the bare trap states

as their many-body mixture fixed by the interaction and external conditions. Besides

that, there are many other quantities which can be defined in a similar way, such as
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occupations of the dressed, excited states, etc.

B. Characteristic function for the ground state occupation number in an ideal Bose

gas

From the construction of the canonical-ensemble quasiparticles outlined in the pre-

vious section (see Eq. (2.2)), one concludes, that the occupation numbers nk can

be approximated as an independent stochastic variables and, thus, one can apply an

equilibrium distribution to the equilibrium canonical ensemble density matrix:

ρk (nk) = exp (−nkǫk/T ) [1 − exp (−ǫk/T )] . (2.5)

The distribution function of the excited atoms according to Eq. (2.3) is just a mirror

distribution of the condensed particles:

ρ (n) = ρ0 (n0 = N − n) . (2.6)

In statistical physics there is a useful formalism of describing the density matrix via

the characteristic function.

Θn (u) = Tr{eiunρ̂}, Θn (u = 0) = 1. (2.7)

Taking the inverse Fourier transformation, one obtains the distribution function:

ρ (n) =
1

2π

∫ π

−π

e−inuΘn(u) du. (2.8)

Very important property of the characteristic function is that the characteristic func-

tion for the ensemble of the independent stochastic variables is a product of the
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individual characteristic functions, thus:

Θn (u) =
∏

k 6=0

Θnk
(u) , lnΘn (u) =

∑

k 6=0

ln Θnk
(u) . (2.9)

Each individual characteristic function can be easily calculated from the equilibrium

density matrix as following:

Θnk
(u) = Tr{eiun̂k ρ̂k} = Tr{eiun̂ke−ǫkn̂k/T}

(

1 − e−ǫk/T
)

=
zk − 1

zk − z
, (2.10)

where zk = exp (ǫk/T ) and z = exp(iu) is a fugacity. Therefore for an ideal gas in

an arbitrary trap, the characteristic function of the number of excited atoms can be

written as:

Θn (u) =
∏

k 6=0

zk − 1

zk − eiu
. (2.11)

The characteristic function or its logarithm can be expanded as a Taylor se-

ries with cumulants (semi-invariants), generating cumulants or initial (noncentered)

moments as the coefficients [29]:

Θn(u) =
∞
∑

m=0

αm
(iu)m

m!
, αm ≡ 〈nm〉 =

dm

d(iu)m
Θn(u)|u=0, (2.12)

ln Θn(u) =

∞
∑

m=1

κm
(iu)m

m!
, κm =

dm

d(iu)m
ln Θn(u)|u=0, (2.13)

ln Θn (u) =
∑

k 6=0

ln

(

zk − 1

zk − z

)

=

∞
∑

m=1

κm
(iu)m

m!
=

∞
∑

m=1

κ̃m
(eiu − 1)

m

m!
. (2.14)

The cumulants κm and generating cumulants κ̃m can be related by the Stirling num-

bers of the second kind [29]:

σ(m)
r =

1

m!

m
∑

k=0

(−1)m−k







m

k






kr, (ex − 1)k = k!

∞
∑

n=k

σ(k)
n

xn

n!
. (2.15)

The useful properties is that the cumulant of the sum of independent stochastic
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variables is equal to a sum of the partial cumulants κr =
∑

k 6=0 κ
k
r . This relation

follows from the productivity property of the characteristic function (2.9). Also the

cumulants can be simply related to the initial (noncentered) and central moments of

the distribution by binomial relations [29]:

µr =

r
∑

k=0

(−1)k







r

k






αr−kn̄

k, αr =

r
∑

k=0







r

k






µr−kn̄

k (2.16)

n̄ = κ1,
〈

(n− n̄)2〉 ≡ µ2 = κ2,
〈

(n− n̄)3〉 ≡ µ3 = κ3,

〈

(n− n̄)4〉 ≡ µ4 = κ4 + 3κ2
2,

〈

(n− n̄)5
〉

≡ µ5 = κ5 + 10κ2κ3,

〈

(n− n̄)6〉 ≡ µ6 = κ6 + 15κ2

(

κ4 + 2κ2
2

)

, (2.17)

κ1 = κ̃1, κ2 = κ̃2 + κ̃1, κ3 = κ̃3 + 3κ̃2 + κ̃1,

κ4 = κ̃4 + 6κ̃3 + 7κ̃2 + κ̃1, .... (2.18)

In the case of low temperatures, far enough from the region near the critical tem-

perature of the Bose condensate, where the properties of the moments except for the

average value do not depend on the total number of atoms in a trap, i.e. the meso-

scopic effects are not important, the cumulants of the condensate distribution can be

written as:

κ̃m = (m− 1)!
∑

k 6=0

(eǫk/T − 1)−m; κr =

∞
∑

n=k

σ(k)
n κ̃m (2.19)

These formulas are valid in the case of condensate inside the infinite reservoir of the

excited atoms. This universal result was found in [21] and is valid on the basis of

the Maxwell’s demon ensemble approximaiton. In particular, this result does not

describe most of the mesoscopic effects and the temperature range near and above

critical temperature Tc.
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C. Weighted distribution function and cumulants

The approximation of the independent canonical ensemble quasiparticles outlined

in the previous section, yields too large values of the fluctuations above the critical

temperature of the condensate. It follows from the fact that the presented statistics in

general and the distribution function in particular do not depend on the total number

of atoms in the trap. Therefore it is true for an infinite number of particles. To

improve the previous result, one can construct a “new” distribution function which

coincides with the “old” one for low enough temperatures and has a significantly

different behavior close and above the critical temperature. This behavior is derived

from experimental data and exhibits a smooth decay for all central statistical moments

of the ground state occupation number, for instance, see figures on pages 44-46. It

can be done by introducing the weighting factor to the distribution function, ρ(n) →

ω(n)ρ(n) which will improve the behavior to make it correct. Now, let us analyze

the physical structure of the weighted function. The finite constraint implies that

the number of particles in the condensate can not be less than zero (n0 ≥ 0), or that

the number of excited atoms can not be larger than the total number of particles

(n ≤ N). One can conclude that the weighted function is somewhat like a theta

function, which obeys all the properties listed earlier:

ω(n) = θ(N − n) ≡











1, n ≤ N

0, n > N
(2.20)

One should properly normalize the distribution function by the factor of

〈θ(N − n)〉 =

∞
∑

n=0

θ(N − n)ρ(n) =

N
∑

n=0

ρ(n), (2.21)
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since the unit normalization is correct only for the infinite sum
∑∞

n=0 ρ(n) = 1. In

other words, we cut the distribution function of the excited states occupation number

when it reaches the physical limit, i.e. the total number of particles, and normalize

this distribution by the summation over this interval of n. Therefore, the “new”

distribution function for the excited states occupation number is:

ρnew(n) =
ρold(n)

〈θ(N − n)〉 =
ρold(n)

∑N
n=0 ρold(n)

, (2.22)

and corresponding initial (noncentered) moments are

αm ≡ 〈nm〉 =
〈nmθ(N − n)〉
〈θ(N − n)〉 =

∑N
n=0 n

mρold(n)
∑N

n=0 ρold(n)
=

N
∑

n=0

nmρnew(n). (2.23)

In the following analysis I will neglect the “new” and “old” subscripts, since all

physical quantities are written from now on in terms of the “new” variables.

D. Properties of the spectrum of the box with the periodic boundary conditions

In this section I explain the subtle points of the momentum summation (product)

that occurs in the different statistical quantities in an ideal gas in a box with periodic

boundary conditions. Consider an atomic gas with a mass M in the large 3D box of a

volume L3 with periodic boundary conditions, which looks almost like a free particle

spectrum, beside the certain quantized momentum ~kl

ǫk =
~

2k2

2M
, kl =

2π

L
l, l = (lx, ly, lz). (2.24)

The characteristic quantity zk = eǫk/T = eǫ1l2/T has the meaning of the inverse prob-

ability of finding particle in the state with energy ǫk, and the energy gap parameter

is:

ǫ1/T = (2π~/L)2/(2MT ). (2.25)
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It is obvious, that the critical temperature is different for different number of par-

ticles, even-though the temperature scale is always the critical temperature for the

thermodynamic limit of an ideal gas in a box:

Tc =
2π~

2

M

(

N

L3ζ(3/2)

)2/3

, (2.26)

so that:

n̄0 = N − n̄ = N − κ1 = N
[

1 − (T/Tc)
3/2
]

. (2.27)

One can simplify the summation involved in the computation of cumulants and prod-

uct in characteristic function by applying the symmetry of the boundaries and spec-

trum. Let us focus on the summation, for instance. One has the sum over all modes

beside the mode with zero energy - the excluded zero origin. This summation can be

performed over different 3D, 2D, and 1D submanifolds in the momentum space of the

box separately. It is obvious that modes with k and −k have the same energy. For 3D

subspace one has 8 equivalent domains with positive (kx, ky, kz) and 6 ways of rear-

ranging them in the order, for example: kx > ky > kz or kx > ky < kz, etc. The total

degeneracy will be 8 · 6 = 48. Similarly, one can obtain the following degeneracies for

2D submanifold: 4 · 3 = 12 domains for the pair and 2 ways of rearranging kx < ky

or kx > ky, thus the total 2D degeneracy is 24. Note, that 1D submanifold contains

three types of subvolumes; namely a domain where for example: kx 6= 0, ky = kz = 0

with degeneracy 2 · 3 = 6, corresponding to the ribs of the cube, kx = ky 6= 0, kz = 0

with degeneracy 4 · 3 = 12, corresponding to the diagonals of each of eight sides of

the cube and domain with kx = ky = kz 6= 0 with degeneracy 8, as a diagonal in each

of eight quadrants of positive or negative k-axis. Thus, one can conclude, that the

summation (product) of an arbitrary function f(k) over all momentum space with
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excluded origin can be written as:

∑

k 6=0

f(k) =
∑

k≡(kx,ky,kz)6=0

f(kx, ky, kz) = 48
∑

kx≥ky>kz>0

f(kx, ky, kz) +

24
∑

kx>ky>0

f(kx, ky, 0) + 6
∑

kx>0

f(kx, 0, 0) + 12
∑

kx>0

f(kx, kx, 0)+ (2.28)

+8
∑

kx>0

f(kx, kx, kx).

For example, the characteristic function (2.11) of the total number of noncondensed

particles can be written as:

Θ(z) =
∏

k 6=0

zk − 1

zk − z
=

∞
∏

kz=1

∞
∏

ky=kz+1

∞
∏

kx=ky

(

eǫ1(k2
x+k2

y+k2
z)/T − 1

eǫ1(k2
x+k2

y+k2
z)/T − z

)48

×

×
∞
∏

ky=1

∞
∏

kx=ky+1

(

eǫ1(k2
x+k2

y)/T − 1

eǫ1(k2
x+k2

y)/T − z

)24 ∞
∏

kx=1

(

eǫ1(k2
x)/T − 1

eǫ1(k2
x)/T − z

)6

× (2.29)

×
∞
∏

kx=1

(

eǫ1(2k2
x)/T − 1

eǫ1(2k2
x)/T − z

)12 ∞
∏

kx=1

(

eǫ1(3k2
x)/T − 1

eǫ1(3k2
x)/T − z

)8

.

E. Multinomial expansion

The following discussion will be dedicated to the derivation of the closed form ex-

pression for the distribution function, its cumulants, as well as the initial and central

moments using the combinatorial analysis of the multinonial coefficients. The detailed

derivation of the following formalism is presented in Appendices.

Consider the characteristic function of the total number of noncondensed atoms

given in Eqs. (2.9)-(2.11). It can be written as following:

Θ (z) =
∏

k 6=0

zk − 1

zk − z
= Θ0 exp

(

−
∑

k 6=0

ln(1 − z/zk)

)

, (2.30)

where z = eiu, Θ0 ≡ Θ(z = 0) =
∏

k 6=0
zk−1

zk
is the characteristic function at zero

fugacity z. Employing the Taylor expansion of the logarithm under the summation
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about the point z = 0 and changing the summation order in the exponent power, one

can rewrite (2.30) as following

Θ(z) = Θ0 exp

( ∞
∑

m=1

fmz
m

)

. (2.31)

Employing the approach discussed in the Appendices of expressing the condensate

statistics as a residues of the characteristic function evaluated at z = 0 (see Eq. (A.4))

one can conclude, that ρ(n) is nothing else but the Taylor coefficient of the zn term,

ρ(n) =
Θ0

n!

dn

dzn

( ∞
∑

r=0

1

r!

( ∞
∑

m=1

fmz
m

)r)
∣

∣

∣

z=0
, (2.32)

since all the other are zero. One can now employ the wonderful properties of the

multinomial coefficients [29]:

( ∞
∑

m=1

fmz
m

)r

≡ r!

∞
∑

n=r

zn

n!

∑

(n; a1, a2, a3..., an)∗fa1
1 fa2

2 fa3
3 ...fan

n , (2.33)

summed over a1 + a2 + a3 + ...+ an = r and a1 + 2a2 + 3a3 + ..+ nan = n, where the

multinomial coefficients have the following closed form expression:

(n; a1, a2, a3..., an)∗ = n!/1a1a1!2
a2a2!3

a3a3!...n
ann!, (2.34)

with the same restricted summation a1 + 2a2 + 3a3 + .. + nan = n. The meaning

of these coefficients is the number of permutations of n = a1 + 2a2 + 3a3 + .. + nan

symbols composed of ak cycles of length k for k = 1, 2, 3, ..., n.

Applying the expression (2.33) to obtain the distribution function and changing

the summation order as well as employing the fact, that n-th derivative is non zero
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only for n-th term in the expansion, the result can be written as:

ρ(n) =
Θ0

n!

n
∑

m=0

∑

0

B

B

B

B

@

a1 + a2 + ...+ an = m

a1 + 2a2 + ... + nan = n

1

C

C

C

C

A

(n, a1, a2, ..., an)∗
n
∏

j=1

f
aj

j . (2.35)

This closed form expression for the distribution function is exact and no approxima-

tions were implied so far. The centered analytical moments calculated with such a

distribution function coincide perfectly with the exact recursion relation of Eq. (1.38).

ρ0(n0) =
ZN−n0(T ) − ZN−no−1(T )

ZN(T )
; Z−1 ≡ 1, (2.36)

ZN(T ) =
1

N

N
∑

k=1

Z1(T/k)ZN−k(T ),

Z1(T ) = 1 +
∑

k 6=0

e−ǫk/T .

The perfect match can be confirmed by numerical simulations. The resulting temper-

ature scaled first four central moments of the ground state occupation fluctuations for

an ideal gas in a box, calculated from the Eqs. (2.23) and (2.16) forN = 100, 500, 1000

using the multinomial expansion formalism in Eq. (2.35) and exact recursion relation

for an ideal gas in Eq. (2.36) are presented in figures on pages 44-46.

F. Mesoscopic effects versus the thermodynamic limit

In this section, I summarize the results obtained in the previous section for the meso-

scopic condensate statistics and compare it to the thermodynamic limit statistics,

obtained in [21] for an ideal Bose gas in a box. The first four central moments of

the distribution function in the mesoscopic system can be found by plugging in the

distribution function (2.35) into the expressions for the initial moments (2.23) and for
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the central moments (2.16). The expressions for the first four central moments in the

thermodynamic limit are obtained through the cumulants (2.19), generating cumu-

lants (2.18), and their connection to the central moments (2.17). For the particular

case of an ideal Bose gas in a box it can be written as follows:

κ̃m = (m− 1)!
∑

l={lx,ly,lz}6=0

(eǫ1l2/T − 1)−m; κr =

∞
∑

n=k

σ(k)
n κ̃m, (2.37)

where the energy gap parameter ǫ1 is defined in Eq. (2.25).

n̄ = κ1,
〈

(n− n̄)2〉 ≡ µ2 = κ2,
〈

(n− n̄)3〉 ≡ µ3 = κ3,

〈

(n− n̄)4〉 ≡ µ4 = κ4 + 3κ2
2. (2.38)

If the temperature is much smaller than the energy gap T << ǫ1, all cumulants and

moments become the same, starting with the variance

µm ≈ κm ≈ κ1 ≈ f1 ∝
(

T

Tc

)3/2

N, m ≥ 2, (2.39)

since all fm << f1 are exponentially small for m ≥ 2 as follows:

κ̃m ≈ fm ≈ 6(m− 1)!e−mǫ1/T . (2.40)

Thus, the low temperature distribution of the number of noncondensed atoms is

Poissonian, and therefore, the condensed atoms are distributed as a “mirror” image

(non-Poissonian) as n0 = N − n. This result agrees with the previous calculations

[21] for the low temperature behavior in the thermodynamic limit. It can be simply

performed, expanding formula (2.35) at low temperature. This consistency is not

surprising, since in the low temperature region, the finite number of particles does not

play an important role in the evaluation. High temperature asymptotics differ much

from the previous calculations. It can be seen from the expressions in Eq. (2.19) for
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the cumulants, that all the moments are anomalously large and lowest-energy-mode

dominates, i.e., formally infrared divergent. One can expand exp(ǫ1l
2/T )−1 ≈ ǫ1l

2/T ,

so that

κm ≈ κ̃m ∝ Tm ∝ N2m/3, m ≥ 2. (2.41)

In this case even the variance should be calculated from the Eq. (2.19) as a discrete

sum:

µ2 = κ2N
4/3

(

T

Tc

)2
s4

π2[ζ(3/2)]4/3
, (2.42)

where ζ is the zeta function of Riemann,

s4 =
∑

l 6=0

1

l4
, (2.43)

and Tc is the standard critical temperature in the thermodynamic limit, which was

defined in Eq. (2.26). It is worth noting that an excess coefficient, i.e. the fourth

cumulant normalized by the variance to the fourth power,

γ2 ≡
κ4

κ2
2

→ const 6= 0, (2.44)

remains finite in the thermodynamic limit N → ∞. Therefore, it is clear that the

condensate fluctuations are not Gaussian in the thermodynamic limit.

The multinomial approach corrects the temperature dependence of the cumu-

lants. The resulting expression exhibits a decay at high temperatures that is con-

sistent with the grand canonical result for an ideal gas, a result, which is physically

reasonable, since at high temperature the condensate fraction is almost zero and the

gas behaves like classical ideal gas:

κm ≈ κ̃m ∝ (T/Tc)
−3/2. (2.45)

The grand-canonical approach gives, for instance, the mean ground state occupation
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number n̄0 satisfying the self-consistent equation:

N − n̄0 =
∑

k 6=0

1
(

1 + 1
n̄0

)

eǫk/T − 1
. (2.46)

In the case when T >> Tc the condensate fraction is small n̄0 << 1, and therefore

one can expand the right hand side of Eq. (2.46). Combining the terms with n̄0, one

can obtain the following result:

n̄0 ≈
N

1 +
∑

k 6=0 e
ǫk/T

. (2.47)

The summation in the denominator can be performed in the continuum limit, neglect-

ing the excluded point of zero energy, since we are considering an ideal gas model,

that yields:

n̄0 ≈ ζ

(

3

2

)(

T

Tc

)−3/2

, (2.48)

which confirms the analytical asymptotics of the formula (2.45) at high enough tem-

peratures. The comparison between the multinomial expansion approach and the

thermodynamic limit for the first four central moments is presented in Figs. 2-6.

Concluding the whole chapter, I briefly emphasize its main points. First, I con-

structed the set of new canonical ensemble quasiparticles (GA operators) which take

into account the particle number constraint. Using the outlined method I analyzed the

structure of the characteristic function of the total number of noncondensed atoms.

Then I introduced the new properly normalized distribution function, which correctly

describes the behavior of the ground-state fluctuations in any temperature regime,

which was constructed from the simple physical reasons. I considered the asymptotic

expressions for the fluctuations and compared them with the well know grand canon-

ical formalism for high temperatures. I obtained the numerical dependences for the

fluctuations for the mesoscopic system of an ideal gas in a box with periodic bound-
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T

Tc

0.2

0.4

0.6

0.8

1.0

QHN - nL

Fig. 2. Temperature scaling of the normalization factor, i.e. Θ(N−n) for an ideal Bose

gas (N = 100 - grey line, N = 1000 - black line). Temperature is normalized

by the standard thermodynamic limit critical value Tc(N = ∞) that differs

from the finite-size Tc(N) as is clearly seen in graphs.
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Tc
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0.6

0.8

1.0

n0

N

Fig. 3. Temperature scaling of the mean value of the ground state occupation fluctu-

ations for an ideal Bose gas (N = 100 - grey, N = 1000 - black) obtained from

thermodynamic limit expression in Eq. (2.19) - (dashed lines) compared with

the multinomial expansion in Eq. (2.35) - (dotted lines) and with the exact

recursion relation for an ideal gas in Eq. (2.36) - (solid lines). The multinomial

expansion result is almost indistinguishable from the recursion relation as it is

clearly seen in graphs.
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ZIn0 - Yn0]M2^

N

Fig. 4. Temperature scaling of the variance of the ground state occupation fluctuations

for an ideal Bose gas (N = 100 - grey, N = 1000 - black) according to Eq. (2.19)

- (dashed lines), Eq. (2.35) - (dotted lines), and Eq. (2.36) - (solid lines).

0.5 1.0 1.5 2.0 2.5

T

Tc

-1.5
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0.5

1.0

ZIn0 - Yn0]M3^3

N

Fig. 5. Temperature scaling of the third central moment µ3 of the ground state occu-

pation fluctuations for an ideal Bose gas (N = 100 -grey, N = 1000 - black)

according to Eq. (2.19) - (dashed lines), Eq. (2.35) - (dotted lines), and Eq.

(2.36) - (solid lines).
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ZIn0 - Yn0]M4^4
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Fig. 6. Temperature scaling of the fourth central moment µ4 of the ground state oc-

cupation fluctuations for an ideal Bose gas (N = 100 - grey, N = 1000 - black)

according to Eq. (2.19) - (dashed lines), Eq. (2.35) - (dotted lines), and Eq.

(2.36) - (solid lines).

ary conditions as well. All the listed calculations are valid for the whole temperature

range from zero to infinity.

In the next chapter I will discuss another approach in analyzing these fluctua-

tions, in the vicinity of the critical temperature.
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CHAPTER III

FIXED TEMPERATURE ANALYSIS OF THE BEC FLUCTUATIONS

A. Fixed temperature technique

The essence of this chapter is the development of a formalism which allows for a more

efficient calculation and a detailed analysis of the BEC fluctuations in the vicinity of

the critical temperature. In the previous chapters I presented a technique based on

the fixed total number of particle and I analyzed the temperature dependence of the

fluctuations. Another approach is to assume that the temperature is fixed and let the

number of particles vary. In this sense the temperature and the number of particles

are analogue of a conjugate variables. As it was known before, for an arbitrary trap

one introduces the critical temperature Tc in the thermodynamic limit, above which

there is no condensate in the system. This temperature depends only on the size

of the trap and the total number of particle in the system. Assume now that the

temperature in the system is constant and equal to the critical temperature, but the

number of particles can be changed, then the maximum number of particles in the

system is “critical”, i.e. number of particles corresponding to the critical temperature.

Therefore, one can analyze the structure of the statistical moments of the ground state

occupation number with respect to the total number of particles in the system which

now can vary but still is constrained by the size of the trap, and thus is a known

constant.

The relation between a given temperature T and the critical number of particles

for a given trap size is given by the following equation:

T =
2π~

2

M

(

Nc

L3ζ(3/2)

)2/3

, (3.1)
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0

N+

T+

Phase with BEC

Phase without BEC

N

T

Ε1

Fig. 7. BEC phase transition diagram for study of the mesoscopic effects. The tem-

perature axis is scaled to the energy gap ǫ1 in accord with Eq. (2.25).

that determines a formal border between the states with and without BEC in the

phase diagram on the plane of the parameters T and N as is shown in Fig. 7. The

fixed temperature technique is formed on the studies of the mesoscopic effects when N

crosses the initial value Nc and T =const along the direction N+ as it is shown in Fig.

7. Meanwhile in a standard treatment of the second-order phase transitions people

usually study the effects when T crosses the critical temperature Tc and N =const

along the direction T+ (see Fig. 7).

One can now invert (3.1) in a way that the critical number of particles is defined

in terms of the fixed temperature. Any quantity is a function of the number of atoms

in the trap. For example the cumulants κm(N, T ) = κm(N,Nc) are functions of N ,

Nc, and T =const.

It turns out that this approach is more powerful in the sense of a numerical

analysis. It allows one to study in details the systems with the large total number

of particles, N ≈ 104 − 107. It is large enough to ensure that properties of such a

systems will be very close to those in the thermodynamic limit. Of course it is just
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an approximation, but quantitatively it works with a great accuracy. I will employ

the Fast Fourier Transformation technique to evaluate the integral in Eq. (2.8) and

furthermore, I will plot the fluctuation statistics dependences with respect to the

upper limit of the sum in Eqs. (2.22), (2.23), i.e. the total number of particles in the

trap.

B. Fast Fourier Transformation numerical analysis

I start with evaluating the Fourier integral in Eq. (2.8) by employing the FFT

(Fast Fourier Transformation)[29] - the discrete approximation for the integral. The

distribution function is localized in the vicinity of N = Nc and decays very fast

at smaller values of the argument. In fact, it is almost zero in the region with

N < s ≡ Nc − α
√
κ2, where α is a constant of the order of 5. The value of α slightly

varies depending on the size of the trap. I will assume the distribution function to be

zero in that region. I checked numerically that the approximation does not change the

numerical error, which remains to be totally due to rounding to a finite number of the

significant figures in computer simulations, and does not exceed a certain value of the

order of 10−20. This approximation allows us to shift the domain of the integration

to the region of sufficiently non zero values of the ρ(N).

Thus, the distribution function can be written as follows:

ρ(n) =
1

2π

∫ π

−π

e−inuΘn(u) du ≡ 1

m

m
∑

r=1

(

e−2πisr/mΘn

( r

m

)

e−2πi(r−1)(n−1)/m
)

, (3.2)

where m is the dimension of the array and u = r/m is a discrete argument of the

characteristic function. The result of evaluation (3.2) is presented in figure on page

59. The crucial advantage of this method is that one needs to evaluate the Fourier

transformation only once, for a single value of the temperature and then compute the
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analytical moments as functions of the upper limit of the sum. This approach yields

to faster results than the evaluation of the Fourier integral for different temperature

points when the number of particles is as large as of the order of 105 and higher.

The macroscopic order parameter 〈Ψ0(N)〉 = 〈
√

n0(N)〉 in Eq. (3.3), the ground

state occupation number in Eq. (3.4) 〈n0(N)〉 and its fraction in the total system

〈n0(N)/N〉 are calculated and plotted as the functions of the number of particles in

Figs. 8, 9, and 10 respectively. Three curves correspond to N = 100 - (dashed line),

N = 1000 - (gray line) and N = 10000 - (solid black line) number of atoms in a

box. The dotted curve is calculated in accord with Landau theory of phase transition

in the mean field approximation
√
n0 ∝ (T − Tc)

1/2 ∝ (N − Nc)
1/2, and therefore

n0 ∝ N−Nc. It can be seen that for large number of particle starting with N = 1000

the shape of the curve follows the mean field approximation, which was obtained

in the thermodynamic limit. For N = 100 the curve at large N becomes close to

the thermodynamic limit, which corresponds to low temperature region, as expected.

The mesoscopic region at low N is broad for small number of atoms,

〈
√

n0(N)〉 =

N
∑

n=0

(N − n)1/2ρ(n), (3.3)

〈n0(N)

N
〉 =

1

N
〈n0(N)〉 =

1

N

N
∑

n=0

(N − n)ρ(n), (3.4)

The variance of the macroscopic order parameter 〈
(

√

n0(N) −
√

n0(N)
)2

〉 in

Eq. (3.5) is plotted as a function of the number of particles in Fig. 11 for the

N = 100 - (dashed line), N = 1000 - (gray line) and N = 10000 - (solid black line)

atoms in a box. The variance of the ground state occupation number in Eq. (3.6) is

plotted in Fig. 12 for N = 100 and in Fig. 13 for N = 1000 atoms in a trap. One can

see, that in the region of small values of argument for small enough total number of
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Fig. 8. Macroscopic order parameter (condensate wave function) forN = 100 - (dashed

line), N = 1000 - (grey line), and N = 10000 - (solid black line) atoms in a

box calculated via the FFT technique in accord with Eq. (3.3) compared

with the mean field approximation
√
n0 ∝ (T − Tc)

1/2 ∝ (N − Nc)
1/2 in the

thermodynamic limit - (dotted black line).
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N

Nc

0.2

0.4

0.6

0.8

Yn0HNL]
Nc

Fig. 9. Mean number of condensed atoms for N = 100 - (dashed black line), N = 1000

- (solid grey line), and N = 10000 - (solid black line) atoms in a box calculated

via the FFT technique in accord with Eq. (3.4) compared with the mean field

approximation n0 ∝ N −Nc in the thermodynamic limit - (dotted black line).
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Fig. 10. Mean fraction of condensed atoms forN = 100 - (dashed black line), N = 1000

- (solid grey line), and N = 10000 - (solid black line) atoms in a box calculated

via the FFT technique in accord with 〈n0(N)/N〉 compared with the mean

field approximation n0/N ∝ 1 −Nc/N in the thermodynamic limit - (dotted

black line).

atoms in a trap (N = 100) the variance of the order parameter does not go to zero,

in contrast with the case of large total number of atoms. Also, for large argument all

curves go to zero, corresponding to the low temperature exponential decay (see Eq.

(2.40)). The variance of ground state occupation number goes to zero at low N for

both cases of N = 100, 1000. The difference is that the behavior at N = 1000 is more

sharp compare to broad curve at N = 100,

〈
(

√

n0(N) −
√

n0(N)
)2

〉 = 〈n0(N)〉 − 〈
√

n0(N)〉2 =

=

N
∑

n=0

(N − n)ρ(n) −
(

N
∑

n=0

√
N − nρ(n)

)2

, (3.5)

µ2(N) = 〈(n0(N) − n0(N))2〉 = 〈n2
0(N)〉 − 〈n0(N)〉2 = 〈n2(N)〉 − 〈n(N)〉2 =

=

N
∑

n=0

n2ρ(n) −
(

N
∑

n=0

nρ(n)

)2

. (3.6)
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Fig. 11. Variance of macroscopic order parameter for N = 100 - (dashed black line),

N = 1000 - (solid grey line), and N = 10000 - (solid black line) atoms in a

box calculated via the FFT technique in accord with Eq. (3.5).

The central third moment in Eqs. (3.7) is plotted with respect to number of

particles for N = 100 (Fig. 14) and N = 1000 (Fig. 15) total number of atoms

in a box. The third central moment and the third cumulant are characterizing the

asymmetry of the distribution function from the purely symmetric Gaussian function.

Thus, they can be both negative and positive for the different values of argument.

The curve for N = 100 is more smooth and broad compared to the case of N = 1000,

which makes the corresponding distribution function more sharp and asymmetric for

the case of N = 1000 compared to the case of N = 100:

µ3(N) = 〈(n0(N) − n0(N))3〉 = −〈(n(N) − n(N))3〉 =

= −〈n3(N)〉 + 3〈n2(N)〉〈n(N)〉 − 2〈n(N)〉2. (3.7)

The central fourth moment in Eq. (3.8) is plotted with respect to the number of
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Fig. 12. Variance of condensed atoms for N = 100 atoms in a box calculated via the

FFT technique in accord with Eq. (3.6).
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Fig. 13. Variance of condensed atoms for N = 1000 atoms in a box calculated via the

FFT technique in accord with Eq. (3.6).
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Fig. 14. Third central moment of condensed atoms for N = 100 atoms in a box calcu-

lated via the FFT technique in accord with Eq. (3.7).
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Fig. 15. Third central moment of condensed atoms for N = 1000 atoms in a box

calculated via the FFT technique in accord with Eq. (3.7).
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Fig. 16. Fourth central moment of condensed atoms for N = 100 atoms in a box

calculated via the FFT technique in accord with Eq. (3.8).

particles for N = 100 (Fig. 16) and N = 1000 (Fig. 17) total number of atoms in the

trap. The fourth central moment and the fourth cumulant are very important charac-

teristics of non-Gaussian distributions, related to the excess coefficient (in particular

hydrodynamic processes the “flatness” coefficient). The shape of these curves should

be similar to the variance, but have sharper character and a more rapid tendency

to zero. The curve for N = 100 is more smooth and broad compared to the case of

N = 1000,

µ4(N) = 〈(n0(N) − n0(N))4〉 = 〈(n(N) − n(N))4〉 =

= 〈n4(N)〉 − 4〈n3(N)〉〈n(N)〉2 + 6〈n2(N)〉〈n(N)〉2 − 3〈n(N)〉4. (3.8)

The shapes of the curves are similar to the corresponding previous results rep-

resented in Figs. 3 - 6. The two methods, discussed in the current chapter and in

Chapter II provide in a sense the mirror dependences, namely, the low temperature

in the first method corresponds to the large number of particles in the second method

and vice versa. This is especially accurate in the vicinity of the critical point. The
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Fig. 17. Fourth central moment of condensed atoms for N = 1000 atoms in a box

calculated via the FFT technique in accord with Eq. (3.8).

problem with the current approach is that in order to evaluate the distribution func-

tion and its moments at very low temperatures, one needs to calculate the Fourier

integral in Eq. (3.2) for a very large array of numbers, which is not possible for a

typical physical systems. Thus, I will be focused in providing a numerical analysis of

the mesoscopic effects in the most interesting critical region.

C. Self-similarity in BEC fluctuations

In this section, I analyze the structure of BEC fluctuations in the sense of their sim-

ilarities. The idea is the following: analyzing the natural scales of the fluctuations,

one can guess the simple analytical expression for them, which then can be checked

asymptotically with the exact solutions (see Chapter IV). In this case, one can com-

pare the properly scaled fluctuations and state, that if the dimensionless functions

(functions with no free parameters) as the graphical illustrations will match for dif-

ferent trap size or total particle number, then these scales were guessed correctly, or

vice versa. Obviously, such a universality is expected in the thermodynamic limit.
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Let us discuss the natural scale of the distribution function of condensed atoms for

an ideal gas in a box. First of all, the distribution function should be characterized

by some height and width. The width scale is related to the variance and to the

approximation of the distribution function by the Gaussian function. One can plot

the distribution function for different number of particles scaled to its particular

variance and normalized by the maximum value ρ(n̄) that is close to the value of the

distribution function at the mean occupation number of the excited states n̄ = N−n̄0.

As it is seen in Fig. 18, a difference between the normalized distribution functions is

present only in the regions far away from the maximum, and is of the order of several

percents for the sufficient range of the argument. Part of this difference is due to

rounding in numerical simulation and can be decreased by increasing the precision

of the FFT calculation, since the regions of large deviation arise when the particular

value of the distribution function is of the order of 10−15 or less (Fig. 19). Hence,

the finite number of terms in calculation of the mean occupation number as well as

variance can strongly affect the result.

It would be also interesting to find a universal behavior of the wings of the

distribution function, considering the width of the function as a fixed value and the

value at the maximum point as a free parameter. However, it will be discussed

elsewhere.

One can also try to extract the universal scale for the ground state occupation

moments, namely for the mean ground state occupation number. In Fig. 20 I present

the numerical result, which describes the total number of particles N as function

of mean ground state occupation number n̄0. I assume the universal scale of this

function to be the same as in the case of distribution function, namely the thermal

dispersion ∆, which is defined in Eq. (3.11). The result of the fitting the curves

for different number of particles, namely N = 100, 1000? by the universal function
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Fig. 18. Scaled noncondensate distribution function for N = 100 - (dashed black line),

N = 1000 - (solid grey line), and N = 10000 - (solid black line) atoms in a

box calculated via the FFT technique in accord with Eq. (3.2).
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Fig. 19. Scaled noncondensate distribution function for N = 100 - (dashed black line),

N = 1000 - (solid grey line), and N = 10000 - (solid black line) atoms in a

box calculated via the FFT technique in accord with Eq. (3.2) for large values

of argument N >> N̄ .



60

1 2 3 4

Yn0HNL]
D

0.2

0.4

0.6

0.8

1.0

N - Nc

Yn0HNL]

Fig. 20. The ratio of the total number of particles in a box N shifted by the critical

number Nc and the mean ground state occupation number n̄0 as a function

of the properly scaled argument n̄0/∆ for N = 100 - (dashed black line) and

N = 1000 - (solid grey line) atoms in a box calculated via the FFT technique,

the numerical fit in accord with Eq. (3.9) - (solid black line), and the mean

field approximation N −Nc = n̄0 - (dotted black line).

yields the following expression:

N −Nc

n̄0
= 1 −

exp
(

−2 n̄0√
2∆

)

(

n̄0√
2∆

)3/2
(3.9)

and is plotted in Fig. 20. One can see the good agreement between graphs and the

expected tendency to the thermodynamic limit result, calculated via the mean field

approximation. This result confirms the initial guess of the characteristic scale of the

BEC fluctuations to be the thermal dispersion ∆. The approach which led to this

result will be developed somewhere else.

One can analyze the structure of the fluctuations if the distribution function

would be a pure Gaussian function.The Gaussian anzats can be used as an estimate,

and are very useful for consistency of the present discussion. So let the distribution
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function be described by:

ρ(n) ≈ 1√
2π∆

exp

(

−(n− n̄)2

2∆2

)

, (3.10)

with characteristic parameters of the mean value and dispersion defined as

n̄ =
∑

k 6=0

1

exp(ǫk/T ) − 1
and ∆ = 〈(n− n̄)2〉. (3.11)

One can check that close to the maximum value, the distribution function is almost

Gaussian (see Figs. 21 and 22), but far away, where the contributions from the wings

are more important, the distribution function is essentially non-Gaussian. These

features are clearly seen in Fig. 18 plotted for the total number of particlesN = 10000.

Let us calculate the initial moments of this Gaussian distribution function as:

n̄k(N) =
N
∑

n=0

nkρ(n) ≈
∫ N

0
xk 1√

2π∆
exp

(

− (x−n̄)2

2∆2

)

dx

∫ N

0
1√
2π∆

exp
(

− (x−n̄)2

2∆2

)

dx
, (3.12)

where I used the continuum limit. The result for the mean occupation number of the

ground state is:

n̄0(N) ≈

≈
e−

N2+n̄2

2∆2

(

2

(

−e N2

2∆2 + e
Nn̄

∆2

)

∆ + e
N2+n̄2

2∆2
√

2π
(

erf
(

n̄−N√
2∆

)

− erf
(

n̄√
2∆

))

(n̄−N)

)

√
2π
(

erf
(

n̄√
2∆

)

− erf
(

n̄−N√
2∆

)) ,

(3.13)

where erf(x) = 2/
√
π
∫ x

0
e−t2dt is a standard error function. Higher order moments

can also be written in the similar way, but I will not discuss them here.

The mean occupation number calculated by the FFT technique versus Gaussian

approximation is presented in Figs. 23 and 24. One can see that close to the mean

occupation number, the graphs are almost indistinguishable, even for relatively small

total number of particles N = 1000, but far away the deviation is increasing. It
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Fig. 21. Noncondensate particle number distribution function for N = 10000 atoms

in a box calculated via the FFT technique in accord with the Eq. (3.2) -

(solid line) compared with the Gaussian distribution function in Eq. (3.10) -

(dashed line).
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Fig. 22. Noncondensate particle number distribution function for N = 10000 atoms

in a box calculated via the FFT technique in accord with the Eq. (3.2) -

(solid line) compared with the Gaussian distribution function in Eq. (3.10) -

(dashed line) in the logarithmic scale.
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Fig. 23. Mean occupation number of condensed atoms for N = 1000 atoms in a box

calculated via the FFT technique - (solid gray line) in accord with Eq. (3.4)

compared with the same quantity calculated in the Gaussian approximation

in Eq. (3.13) - (dashed black line) and mean field approximation n̄0 ∝ N−Nc

in the thermodynamic limit - (black dotted line)
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Fig. 24. Mean occupation number of condensed atoms for N = 1000 atoms in a box

calculated via the FFT technique - (solid gray line) in accord with Eq. (3.4)

compared with the the same quantity calculated in the Gaussian approxi-

mation in Eq. (3.13) -( dashed black line) and mean field approximation

n̄0 ∝ N −Nc in the thermodynamic limit - (black dotted line) in the logarith-

mic scale.
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Fig. 25. Third central moment of condensed atoms for N = 1000 atoms in a box

calculated via the FFT technique - (solid gray line) in accord with Eq. (3.7)

compared with the same quantity calculated in the Gaussian approximation

in Eq. (3.12) - (dashed black line).

corresponds to the non-Gaussian behavior of the distribution function at the wings.

Higher moments will deviate much more. The latter can be seen in Fig. 25 for the

case of the third moment, that has even qualitatively different structure. In Gaussian

approximation, the distribution function is purely symmetric, which means that the

third moment would have the same sign for all values of argument. The higher order

cumulants turn out to be essentially non-zero, which is a distinctive feature of any

non-Gaussian probability distribution.

Using the simple argument and consideration of the one-scale problem, one can

apply the above formalism to a direct calculation of the asymptotic expression for

the distribution function, which is done in the following Chapter IV. In the following

discussion, I will analyze not only the Gaussian approximation for the distribution

function, but each scale for each part of the distribution function corresponding to

the high and low values of the argument.
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CHAPTER IV

SADDLE-POINT METHOD FOR CONDENSED BOSE GASES

A. Review of the saddle-point method for a condensed Bose gas in a harmonic trap

The saddle-point method is a very powerful technique in statistical physics, but its

canonical form is not applicable in the case of a systems with condensate. As it is

discussed in Appendices, the characteristic function has an infinite number of poles

on the real positive half of z axis. The lowest order pole is at the point z1 = eǫ1/T .

Since we are integrating over the unit circle in the complex plane and the distance

between the saddle point and the lowest pole can be infinitesimal, the traditional

Gaussian approximation requires the vicinity of the saddle point to have no singular-

ities. Following the approach introduced by Holthaus and Kalinowski [20, 27], I will

give a solution to this problem by exempting the minimal energy contribution from

the characteristic function treating it explicitly, and performing the Gauss integra-

tion as usual. As result, I will obtain an expression in terms of the hypergeometric

functions, which leads to the parabolic cylinder functions. First, I will apply this

technique to the problem of an ideal Bose gas in a harmonic trap, reviewing the

solution in thermodynamic limit. I start with the grand canonical partition function:

Ξ(β, z) =
∞
∏

ν=0

1

1 − z exp(−βǫν)
, (4.1)

where ǫν are single-particle energies, β = 1/T ( T is expressed in energy units) and

z = exp(βµ). The grand canonical partition function Ξ(β, z) generates the canonical

partition function ZN(β) by means of the expansion:

Ξ(β, z) =
∞
∑

N=0

zNZN(β). (4.2)
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Then one can treat z as a complex variable and express ZN(β) as a contour integral

using the Cauchy’s theorem:

ZN(β) =
1

2πi

∮

dz
Ξ(β, z)

zN+1
=

1

2πi

∮

dz exp(−F (z)), (4.3)

where the path of integration encircles the origin counterclockwise, and

F (z) = (N + 1) ln(z) + ln Ξ(β, z) = (N + 1) ln(z) +

∞
∑

ν=0

ln (1 − z exp(−βǫν)) . (4.4)

The usual definition for the saddle point (z = z∗) requires the first derivative to be

zero in this point

dF

dz

∣

∣

∣

z=z∗
= 0, (4.5)

which gives the following equation for z∗

N + 1 =

∞
∑

ν=0

1

exp(βǫν/z∗(N)) − 1
. (4.6)

This is almost the grand canonical relation between particle number N + 1 and the

fugacity z0. In the case of a harmonic trap (linear spectrum) [27] this equation can

be solved in the continuum limit, which leads to the dilogarithm functions. In the

canonical saddle-point method the Taylor expansion of the function F (z) yields

F (z) ≈ F (z∗) +
1

2
F ′′(z∗)(z − z∗)2. (4.7)

Thus, performing the Gaussian integral, one can obtain:

ZN(β) ≈ exp(−F (z∗(N)))
√

−2πF ′′(z∗(N))
. (4.8)

The canonical occupation number of the ground state, and its mean-square fluctua-

tions, are obtained by differentiating the canonical partition function:

n̄0 =
∂ZN (β)

∂(−βǫ0)
=

1

ZN(β)

1

2πi

∮

dz
∂Ξ(β, z)

∂(−βǫ0)
, (4.9)
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∆n0 =
∂2ZN(β)

∂(−βǫ0)2
= −n̄2

0 +
1

ZN(β)

1

2πi

∮

dz
∂2Ξ(β, z)

∂(−βǫ0)2
. (4.10)

The saddle-point approximation is then applied to the integrands of Eqs. (4.9) and

(4.10). In the condensate region there is a substantial deviation of the saddle-point

expressions from the “exact” numerical answer obtained from the exact recursion

relation (2.36).

The reason of this inaccuracy is that in the condensate region, the saddle-point

z0 lies close to the singular point z = eβǫ0 of the function F (z). As result, the

approximation in Eq. (4.8) becomes invalid in the condensate region. To improve

this method, it was proposed in Ref. [27] to treat the potentially dangerous term in

(4.4) as it is, and represent ZN(β) as:

ZN(β) =
1

2πi

∮

dz
exp(−F1(z))

1 − z exp(−βǫ0)
, (4.11)

where

F1(z) = (N + 1) ln(z) +

∞
∑

ν=1

ln (1 − z exp(−βǫν)) (4.12)

has no singularity at z = eβǫ0 . If the point of singularity exists, it is shifted now to the

next available pole, i.e. z = eβǫ1 . Since z∗ < eβǫ0 , the saddle point is far away from

the singularity point by the distance eβǫ1 − eβǫ0 ≈ ~ω/T , which makes the expansion

(4.12) valid and safe for sufficiently large number of particles N . One can use the

following expression for the integral in Eq. (4.11):

1

2πi

∮

dz
exp [−f1(z) − (σ − 1)βǫ0]

(1 − z exp(−βǫ0))σ ≈

≈ 1√
2π

(

−f ′′

1 (z∗)
)(σ−1)/2

exp
(

βǫ0 − f1(z
∗) − σ + η2/2 − η2

1/4
)

D−σ(η1), (4.13)

where η = (exp(βǫ0) − z∗)
√

−f ′′

1 (z∗), η1 = η − σ/η, z∗ is a saddle point of the
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function,

f(z) = f1(z) + (σ − 1)βǫ0 + σ ln(1 − z exp(−βǫ0)), (4.14)

and D−σ(z) is a parabolic cylinder function. This function can be further written as

a combination of the hypergeometric functions as

Ds(z) = 2s/2e−z2/4
√
π

[

1F1(−s/2, 1/2, z2/2)

Γ[(1 − s)/2]
−

√
2z ·1 F1((1 − s)/2, 3/2, z2/2)

Γ[−s/2]

]

.

(4.15)

Thus, the integration in Eq. (4.11) yields:

ZN(β) =
1

2
exp

(

βǫ0 − F1(z
∗) − 1 + η2/2

)

erfc

(

η1√
2

)

, (4.16)

where erfc(z) = 2/
√

2
∫∞

z
exp(−t2)dt is the complementary error function,

η = (exp(βǫ0) − z∗)
√

−F ′′

1 (z∗), η1 = η − 1/η, (4.17)

since in the case of a harmonic trap σ = 1. Calculations of the occupation number,

variance, and higher moments deal with the integrals from derivatives of Ξ(β, z) with

respect to −βǫ0. The refined saddle-point expressions for the first four central mo-

ments or cumulants are in remarkable agreement with the numerical results obtained

from the exact recursion relation for an ideal gas in a harmonic trap.

B. The development of the saddle-point method for a condensed Bose gas in a box

I express the characteristic function as the contour integral over the unit circle in the

complex z-plane using the Cauchy’s theorem for z = eiu:

ρ (n) =
1

2π

∫ π

−π

e−inuΘn(u) du =
Θ0

2πi

∮

|z|=1

dz
Θ̃(z)

zn+1
=

1

2πi

∮

|z|=1

dz exp(−F (z)),

(4.18)
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where the path of integration encircles the origin counterclockwise, and in the case

of a box:

Θ0 =
∏

k 6=0

(1 − 1/zk) , Θ̃(z) =
∏

k 6=0

1

1 − z/zk
, (4.19)

F (z) = (n + 1) ln(z) + ln Θ(z) = (n+ 1) ln(z) +
∑

k 6=0

ln (1 − z/zk) . (4.20)

The equation for the saddle point z∗ is:

n+ 1 =
∑

k 6=0

1

zk/z∗(n) − 1
. (4.21)

As result, for the standard saddle-point approximation one can obtain:

ρ(n) ≈ exp(−F (z∗(n)))
√

−2πF ′′(z∗(n))
. (4.22)

In fact, the deviation from the exact solution in the canonical saddle-point method

for a box can only be seen in the condensate regime, and thus, for our purposes, (in

the critical region), the approximation in Eq. (4.22) gives precise enough estimate.

Nevertheless, the refined saddle-point method gives a much better accuracy. Hence,

one should express the distribution function in the following way:

ρ (n) =
Θ0

2πi

∮

|z|=1

dz
exp(−F1(z))

1 − z/z0
, (4.23)

where the function

F1(z) = (n+ 1) ln(z) +
∑

k 6=0,1

ln (1 − z/zk) , (4.24)

has no singularity at z = eǫ1/T . If the point of singularity exists, it is shifted now

to the next available pole, i.e. z = e2ǫ1/T . Since z∗ < eǫ1/T , the saddle point is far

away from the singularity point by the distance e2ǫ1/T − eǫ1/T ≈ Nǫ1/T , which makes

the expansion in Eq. (4.24) valid for sufficiently large number of particles N . Now I
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employ the expression obtained in the previous section for the integral in Eq. (4.13).

The corresponding degeneracy is g1 = σ = 6 and, thus, one can express the resulting

distribution function as:

ρ(n) =
1√
2π

(

−F ′′

1 (z∗(n))
)5/2

×

× exp
(

ǫ1/T − F1(z
∗(n)) − 6 + η2(n)/2 − η2

1(n)/4
)

D−6(η1(n)). (4.25)

Using the above result, one can analyze the asymptotical behavior of the distribution

function and estimate the leading term in the expansion. I return to the Eq. (4.21)

for the saddle point definition. Let us consider a small n, so that n << N . The

particular choice of the estimate is obvious. I would like to analyze the behavior far

from the maximum value of the function, where it can be approximated by Gaussian

function. In this case, expanding the right-hand-side of the Eq. (4.21) and implying

that z∗(n = 0) ≈ 0, δz = z∗ − 0 ≈ (n + 1)/f1(0), where:

fm(z) =
∑

k 6=0

(z − zk)
−m, (4.26)

the saddle-point approximation yields the following result ρ(n)|n<<N ≈ nn, or more

accurately:

ρ(n)|n<<N ∝ nne(ln f1(0)+1/2)n. (4.27)

Here all n’s are properly normalized by the variance. Going further, one can obtain

that the dependence in the vicinity of the maximal value is truly gaussian with the

parameters n̄ and ∆. In this case δz = z∗ − z̄ = z̄δn
z̄2f2(z̄)+n̄

. Thus, performing the

integration, one can obtain:

ρ(n ≈ n̄) ∝ e
− (n−n̄)2

f2(z̄)z̄2+n̄ ≈ e−
(n−n̄)2

∆2 , (4.28)
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where z̄ = z(n̄). At large n, of the order of N , the value z(N) is close to the pole at

z = e2ǫ1/T , which means, that the Gaussian function should decay fast enough from

its maximum value. In other words, the width of the Gaussian function should be

much smaller than the distance between the saddle point itself and the closest pole:

z(N) − z(n) << e2ǫ1/T − z(N). Therefore, the allowed region for n is N − n << ∆.

In this case, one can expect the linear-exponentially decaying behavior, i. e.,

δz = z(N) − z(n) ≈ z(N)δn
z2(N)f2(z(N))+N

, and finally

ρ(n ≈ N) ∝ e− ln(z(N))(N−n) ∝ e−3(N−n)/∆ (4.29)

I intentionally dropped the pre-exponential factors, which depends on n, since I am

considering the leading order asymptotical behavior of the distribution function. The

universality of the asymptotics is really surprising, since the proper scaled distribution

functions for the different size of the traps have not only the same shape, but are

almost identical, which means, that there are only two real macroscopical scales of the

distibution function. First scale is its maximum value at thermal mean occupation

number n̄. The second one is the characteristic width scale, which is essentially

the variance, calculated in the thermal approximation. Those similarities imply the

universality in the description of the statistical moments, the same way it was done

for the distribution function in Chapter III. Many efforts were done to analyse the

closed form of universal function such as n0(N) (see Chapter III, Section C) and

higher moments, but this result will not be discuss in the present work.

C. Comparison with the numerical results

In this section, I present the comparison of the obtained results with the numerical

simulations. I will compare the refined saddle point approximation results for the
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Fig. 26. Canonical ensemble distribution function in the vicinity of its maximum as a

function of the number of noncondensed particles in a box with N = 10000

atoms. Dashed and solid lines are obtained by the numerical calculation of

discrete Fourier summation in Eq. (3.2) for an ideal gas and refined saddle–

point method in Eq. (4.28), respectively.

asymptotical behavior of the distribution function and the result of applying the

FFT technique in Eq. (3.2). It is worth noting that I am not using the saddle-point

approximation for calculation of the condensate fluctuations, like it was done in the

case of a harmonic trap. According to the asymptotic formulas in Eqs. (4.27)-(4.29),

one can separate the whole region of the distribution function by three parts.

The contribution around the mean occupation number of the condensate n̄ is

Gaussian, with a relatively good accuracy (see Eq. (4.28) and Fig. 26). It has a

little shift in its maximum value due to the fact that one used the finite summation

over momenta when evaluating the thermal mean occupation number and its variance

instead of performing the infinite summation.

A similar analysis can be performed in the evaluation of the contributions at the

wings. I found that, in the lower-N region, the behavior is almost exponential, which

means that its logarithm is a linear function of N (see Eq. (4.27) and Fig.27). It
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Fig. 27. Logarithm of the canonical ensemble distribution function in the region of

small n as a function of a number of noncondensed particles in a box with

N = 10000 atoms. Dashed and solid lines are obtained by the numerical

calculation of discrete Fourier summation in Eq. (3.2) for an ideal gas and

refined saddle-point method in Eq. (4.27), respectively.

follows from the fact that log(n) term in the exponent is a smooth function, almost

a constant if the argument N is varying slowly. The distribution function for the

small N is plotted in the inverse direction from large N to small N , starting from 4∆

distance from the maximum value n̄.

Similarly, one can consider the large N region. Here, one can see the exponential

decay as well, but with a more smooth behavior (see Eq. (4.29) and Fig.28).

In conclusion, the saddle point method, which is truly very powerful approxi-

mation method in theoretical physics, leads to the simple analytical formulas for the

BEC fluctuations in the different regions of the parameters.
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Fig. 28. Logarithm of the canonical ensemble distribution function in the region where

n is of the order of N as a function of a number of noncondensed particles

in a box with N = 10000 atoms. Dashed and solid lines are obtained by the

numerical calculation of discrete Fourier summation in Eq. (3.2) for an ideal

gas and refined saddle-point method in Eq. (4.29), respectively.
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CHAPTER V

CONCLUSIONS AND DISCUSSIONS

A. What is next: from ideal towards weakly interacting Bose gas

The presented above analysis of the condensate fluctuations in an ideal Bose gas in

a box, in particular, the canonical ensemble quasiparticle method, can be extended

to more realistic models of Bose-Einstein condensate in a dilute gases which include

interaction between atoms. The analytical formulas for the characteristic function

and all cumulants are the generalizations of the expressions obtained for an ideal gas.

Here I do not discuss the results in details, and only outline some of them.

The ground state occupation statistics is not Gaussian even in the thermody-

namic limit. The effect of Bogoliubov coupling reveals the suppression of the ground-

state occupation fluctuations, first found in [21, 33] and governed by a pair-correlation,

squeezing mechanism. There is a crossover between an ideal and weakly interacting

Bose gas, which can be described in a very elegant way, using the asymptotical expan-

sion of the occupation statistics with respect to the interaction strength parameter.

The pair correlation mechanism is a consequence of two-mode squeezing due to Bo-

goliubov coupling between k and −k modes. Thus, the fact that the dispersion of

the condensate fluctuations in the interacting Bose gas is 1/2 of that in an ideal Bose

gas is not an accident.

The effect of suppression of the condensate fluctuations at low temperatures

(T << Tc) can be deduced from the asymptotic expansion of the properly normalized

first four central moments of the ground state occupation statistics via the solution of

the non-linear self-consistency equation for the mean ground state occupation number.

These asymptotics are close to that, obtained from the cumulant analysis in [21]
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similar to the formulas for an ideal gas in Eq. (2.19). The expressions presented

below were obtained in the framework of the multinomial expansion (see Chapter

II, Section E), taking into account modifications originated from the effect of weak

interaction via the Bogoliubov spectrum and squeezed states. Thus, using explicitly

the particle conserving formalism I found the following formulas for the mean value

and its variance:

n̄0

N
= 1 − 1

2

s2α
2

N

(

1 +
v2(T )

α2

)

, (5.1)

µ2 = s2α
2

(

1 +
2v2(T )

α2

)

, (5.2)

where

sj =
∑

k 6=0, (k,−k)

1

k2j
, (5.3)

vj(T ) =
∑

k 6=0, (k,−k)

k2j exp(−jǫ1k2/T ), (5.4)

α =
U0N

ǫ1L3
. (5.5)

The summation in Eq. (5.3) is running over all different pairs of (k,−k) modes,

U0 = 4π~
2a

m
is an interaction strength, proportional to the s-wave scattering length

a. The results in Eqs. (5.1) and (5.2) are valid when v2 << α2, which follows from

the condition T << ǫ1 and prove that in the zero temperature limit the condensate

fluctuations are suppressed by the factor proportional to the square of the interaction

strength parameter and tend to zero for all moments except for the ground state mean

occupation number.

One can also obtain the crossover between fluctuations in an ideal and weakly

interacting Bose gases. In particular, I obtain the high temperature asymptotics

(T >> Tc) for the initial moments of the BEC fluctuations of any order. Below I
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present these formulas in term of relations between the condensate fluctuations in the

weakly interacting Bose gas (left-hand-side with “int” subscript) to the condensate

fluctuations in an ideal Bose gas (right-hand-side, without subscripts). The solution of

the nonlinear self-consistency equation for the mean ground state occupation number

is:

〈n0int
〉 =

〈n0〉
1 − ξ

(

〈n2〉−〈n〉〈nT 〉
N

+ 〈nT 〉 − 〈n〉
) . (5.6)

The initial (noncentered) moments of the number of the noncondensed atoms are:

〈np
int〉 =

1 − ξ
(

〈n2〉
N

− 〈n〉 + 〈np+1〉
〈np〉 〈n0

N
〉
)

1 − ξ 〈(n−〈n〉)2〉
N

〈np〉, (5.7)

where 〈nT 〉 =
∑

k 6=0 (exp(ǫk/T ) − 1)−1 is the usual Bose-Einstein occupation number

and ξ = ǫ1α/T . It is easy to check that in the limiting case of vanishing interaction

strength the fluctuations become the same as they were in an ideal gas. The condition

of an applicability of the presented above high temperature asymptotical expansions

is:

T

Tc
>> 2

a

L
(ζ(3/2))2/3N1/3n̄0 (5.8)

where I explicitly used the expression for the interaction strength in term of the s-

wave scattering length, U0 = 4π~
2a/m. This condition is satisfied for a wide range

of parameters in real experiments [12–14] and thus can be used to illuminate the

crossover between the fluctuations in the ideal and weakly interacting Bose gases. I

would like to emphasize that the above crossover relations, i.e. the high tempera-

ture asymptotics, were derived using the particle-number constraint, the canonical

ensemble quasiparticle formalism, and the multinomial expansion.
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B. Summary of the main results

The statistics of the BEC fluctuations in an ideal gas in a box in the thermodynamic

limit and in the systems with a finite number of particles is essentially the statistics

of the sum of the noncondensed quasiparticles nk, n0 = N −∑k 6=0 nk. This statistics

is very different from the standard thermodynamics fluctuations and is strongly non-

Gaussian. It justified it by explicit calculation of the cumulants and central moment

of all orders in the properly reduced many-body Fock space in this work.

In Chapter I, Section A, I outlined the phenomenon of Bose-Einstein condensa-

tion and the concept of the condensate wave function as a coherent macroscopic order

parameter of the BEC second order phase transition, first introduced by Landau in

the theory of superfluidity. I briefly discussed the parameters of the recent BEC ex-

periments such as the parameters of the trapping potentials and laser beams as well

as the methods of trapping and cooling.

In Section B, I presented the main theoretical concepts in analyzing the problem

of BEC fluctuations and mesoscopic effects. I started with the classical formulation

of the problem and discussed two major steps in the development of the microscopic

theory due to Bogoliubov and Belyaev. I compared the results obtained in the micro-

canonical, canonical, and grand-canonical ensembles and the exact recursion relation

for the distribution function of the condensed atoms which is useful for numerical com-

putation of the statistics of BEC. I briefly outlined the dynamical master-equation

approach and analogy with the laser transition. I discussed also the integral repre-

sentation of the distribution function in terms of the generalized zeta function which

is an alternative way of applying the canonical quasiparticles formalism, presented in

Chapter II.

In Chapter I, I presented mostly the known results and made an introduction to
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the subject of the present work.

The rest of the chapters are mainly devoted to the presentation of the new results.

In Chapter II, Section A, I formulated the known canonical quasiparticle formal-

ism, which allows one to analyze the condensate fluctuations as being complimentary

to the independent fluctuations of the noncondensate quasiparticles.

In Section B, I presented the characteristic function for the ground state occu-

pation number of an ideal Bose gas and its connection to the distribution function

of the noncondensed atoms in a trap. Then I discussed the problem of the meso-

scopic effects, which were not taken into account in the previous works utilizing the

Maxwell’s demon ensemble approximation [20, 21, 28, 34].

In Section C, I presented the weighted distribution function Eq.(2.22), which

was constructed via appropriate implementation of the particle-number constraint

and, therefore, allows one to avoid an incorrect growth of the statistical moments at

T > Tc in Eq. (2.23).

In Section D, I described a proper way of the evaluation of the sums and products

in the momentum space using the symmetry of the boundary conditions. In particular,

I calculated in this way the characteristic function in Eq. (2.29).

In Section E, Eq. (2.35) I presented one of the main results of the work, namely,

I derived the closed form expression for the distribution function of the noncondensed

atoms in an ideal Bose gas in a box using the multinomial expansion. The analyti-

cal formulas for the moments presented in Eq. (2.23) with the distribution function

in Eq. (2.35) explicitly obey the particle number constraint and are in the good

agreement with the exact recursion relation in Eq. (2.36) for an ideal gas [20]. The

latter was shown in Section F, where I plotted the temperature scaled fluctuations in

Figs. 2-6 calculated via the multinomial expansion and compared them with the ther-

modynamic limit expressions [21]. The low-temperature asymptotic formula (2.40)
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coincides with the formula obtained previously in [21]. In contrast with that, the

high temperature asymptotics, which were infinitely large in Eq. (2.41) for all mo-

ments starting from the variance in [21], in this work is finite and consistent with the

grand-canonical ensemble expression for an ideal gas in Eq. (2.45), that is true high

temperature asymptotics.

In Chapter III, Section A, I presented the detailed analysis of the distribution

function for the canonical ensemble statistics within the fixed temperature approach.

It essentially lowers the number of the operations involved in the evaluation of the

Fourier integrals for the sufficiently large but finite number of particles, and is true

even for the thermodynamic limit.

In Section B the technique of the Fast Fourier Transformation (FFT) was used

in the numerical computation of the distribution function of the noncondensed atoms

and its moments Eq. (3.2). I computed the macroscopic order parameter in Eq.

(3.3) and the ground state occupation number in Eq. (3.4). I plotted both of them

as the functions of the number of particles in a trap in Figs. 8 and 9, respectively.

I compared the obtained above expressions with the mean field approximation, of

the Landau theory of phase transitions [4, 5] which is valid in the thermodynamic

limit. The variance of the macroscopic order parameter in Eq. (3.5) is plotted as

the function of the number of particles in Fig. 11. The variance of the ground state

occupation number in Eq. (3.6) is plotted in Fig. 12. The central third moment

in Eq. (3.7) is plotted as a function of the number of particles in Figs. 14 and 15.

The central fourth moment in Eq. (3.8) is plotted in Figs. 16 and 17. I explicitly

checked that the mesoscopic fluctuations tend to the thermodynamic limit results

when N → ∞, V → ∞, and N/V = const.

In Section C, I discussed the self-similarities in the BEC fluctuations. I intro-

duced the universal scale of the distribution function and showed that in the lowest
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order approximation in the region around the maximum, |N−N̄ | << N , the properly

scaled distribution functions are described by a numerical curve (see Figs. 18 and

19). The proper scale is the variance of ground state occupation number calculated in

the thermal approximation in Eq. (3.11). I checked that if the distribution function

was a pure Gaussian function as in Eq. (3.10) and Fig. 21, the fluctuations behave

wrongly almost for all values of the argument N , starting from the mean occupation

number of the ground state in Figs. 23 and 24 for small N , and have qualitatively

wrong behavior for higher moments, Fig. 25.

In Chapter IV, I analyzed the asymptotical behavior of the ground state occupa-

tion statistics in the framework of the refined saddle point approximation. In Section

A I reviewed the saddle-point method for a Bose gas in a harmonic trap following

[27].

In Section B, I applied the presented formalism to the condensed Bose gas in a

box. In both cases it leads to the parabolic cylinder functions as a basis for the cu-

mulants and other statistical moments. The complications of the present calculations

for an ideal gas in a box compared to the case of the harmonic trap originate from

the degeneracies and symmetries of the boundaries.

In Section C, I compared the obtained in Section B asymptotic formulas for the

different regions of the argument, Eqs. (4.27) - (4.29) with the results calculated

via the FFT method, discussed in Section B. The resulting curves are presented in

Figs. 26-28. These asymptotic formulas extract the natural scale of the distribution

function, which agrees with the conclusion of Chapter III.

In the appendices, I presented the detailed derivation and relations between the

characteristic and distribution function (A.4) and the initial statistical moments of the

ground state occupation number (B.5) via the residue technique. Also I presented

the detailed derivation of the multinomial expansion approach for the condensate
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statistics and the closed form expression for the distribution function of the non-

condensed atoms in Eq. (C.9).

As it was discussed in Section A of the present chapter, the next step in the

analysis of BEC statistics will be the computation of the mesoscopic effects in a weakly

interacting Bose gas by means of the Bogoliubov approximation and by means of the

advanced diagram methods which should also include explicitly the conservation of

the number of particles in a trap. The preliminary analysis indicates the suppression

of the condensate fluctuations at high temperatures and their enhancement at low

temperatures as compared to the case of an ideal gas. The work in this direction is

in process and will be presented elsewhere.

Clearly, the mesoscopic effects in the Bose-Einstein condensate fluctuations con-

stitute an important class of problems in the many-body physics.



83

BIBLIOGRAPHY

[1] A. Einstein, Sitzungsberichte der preussischen Akademie der Wissenschaften,

XXII. Gesamtsitzung 10, 261 (1924).

[2] A. Einstein, Sitzungsberichte der preussischen Akademie der Wissenschaften,

XXII, I. Sitzung der physikalisch-mathematischen Klasse 8, 3 (1925).

[3] S. N. Bose, Z. Phys. 26, 178 (1924).

[4] L. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Pergamon, Oxford,

1969).

[5] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2 (Pergamon, Ox-

ford, 1981).

[6] A. Z. Patashinsky and V. L. Pokrovsky, Sov. Phys. JETP 37, 733 (1974).

[7] P. Pitaevskii and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

[8] H. Shi and A. Griffin, Phys. Rep. 304, 1 (1998).

[9] M. Anderson, J. Ensher, M. Matthews, C. Wieman, and E. Cornell, Science 269,

198 (1995).

[10] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee,

D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

[11] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev. Lett.

75, 1687 (1995).

[12] A. Leggett, Rev. Mod. Phys. 73, 307 (2001).



84

[13] C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N. Price, and M. G.

Raizen, Phys. Rev. Lett. 95, 260403 (2005).

[14] A. M. Dudarev, M. G. Raizen, and Q. Niu, Phys. Rev. Lett. 98, 063001 (2007).

[15] T. P. Meyrath, F. Schreck, J. L. Hanssen, C.-S. Chuu, and M. G. Raizen, Phys.

Rev. A 71, 041604 (2005).

[16] C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson,

B. E. Sauer, and E. A. Hinds, Phys. Rev. A 72, 031603(R) (2005).

[17] Y.-J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto,

M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, Phys. Rev. Lett. 94, 090405

(2005).

[18] G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ketterle, and D. E.

Pritchard, Phys. Rev. Lett. 98, 030407 (2007).

[19] S. Stringari, Phys. Rev. Lett. 86, 4725 (2001).

[20] V. V. Kocharovsky, Vl. V. Kocharovsky, M. Holthaus, C. H. R. Ooi, A. Svidzin-

sky, W. Ketterle, and M. O. Scully, Advances in Atomic, Molecular and Optical

Physics, vol. 53 (Elsevier Inc., Amsterdam, 2006).

[21] V. V. Kocharovsky, Vl. V. Kocharovsky, and M. O. Scully, Phys. Rev. A 61,

053606 (2000).

[22] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum

Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, NJ, 1963).

[23] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems

(McGraw-Hill, San Francisco, 1971).



85

[24] B. C. Crooker, B. Hebral, E. N. Smith, Y. Takano, and J. D. Reppy, Phys. Rev.

Lett. 51, 666 (1983).

[25] M. H. W. Chan, K. I. Blum, S. Q. Murphy, G. K. S. Wong, and J. D. Reppy,

Phys. Rev. Lett. 61, 1950 (1988).

[26] P. A. Crowell, F. W. V. Keuls, and J. D. Reppy, Phys. Rev. Lett. 75, 1106

(1995).

[27] M. Holthaus and E. Kalinowski, Ann. Phys. (N.Y.) 276, 321 (1999).

[28] V. V. Kocharovsky, M. O. Scully, S.-Y. Zhu, and S. Zubairy, Phys. Rev. A 61,

23609 (2000).

[29] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover,

New York, 1972).

[30] M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959).

[31] M. D. Girardeau, Phys. Rev. A 58, 775 (1998).

[32] N. L. Balazs and T. Bergeman, Phys. Rev. A 58, 2359 (1998).

[33] V. V. Kocharovsky, Vl. V. Kocharovsky, and M. O. Scully, Phys. Rev. Lett. 84,

11 (2000).

[34] S. Grossmann and M. Holthaus, Optics Express 1, 262 (1997).



86

APPENDIX A

DERIVATION OF THE ANALYTICAL FORMULAS FOR THE DISTRIBUTION

FUNCTION OF THE TOTAL NUMBER OF NONCONDENSED ATOMS IN AN

IDEAL GAS. METHOD OF THE CHARACTERISTIC FUNCTION AND

RESIDUES

I start with the defined in Chapter II distribution function in Eq. (2.8), written

as a Fourier integral from the characteristic function:

ρ (n) =
1

2π

∫ π

−π

e−inuΘn(u) du. (A.1)

Making the transformation of variable z = eiu in Eq. (A.1), one will obtain the

contour integral in the complex plane z, where the contour encircles the origin in the

counterclockwise direction:

ρ(n) =
1

2πi

∮

|z|=1

Θ (z)

zn+1
dz =

1

2πi

∮

|z|=1

1

zn+1

∏

k 6=0

zk − 1

zk − z
dz, (A.2)

where Θ(z) = Θn(u) with z = eiu. The integrand in Eq.(A.2) has an infinite number

of poles at the positions z = zk outside the contour, and the pole of the order of n+1

at the origin z = 0. The order of the each external pole is equal to the degeneracy of

of the k mode, i.e. gk = 6, 8, 12, 24, 48. Therefore, the integration can be performed

in two different ways.

First way is to sum up contributions from the residues in external poles. It is

convenient if the number of particles is sufficiently large (N >> 48). In this case the

highest derivative, to be calculated is of the order of 47 and it does not depend on
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the particle number. The result of this calculation yields:

ρ(n) =
∑

p6=0

res
z=zp

Θ(z)

zn+1
=
∑

p6=0

1

(gp − 1)!

dgp−1

dzgp−1

(

Θ(z)

zn+1
(z − zp)gp

)

∣

∣

∣

z=zp
, (A.3)

where an index p runs over different energy levels ǫk. Another way of calculation is

to compute the n + 1-st order residue at the origin. It looks more complicated in

the sense of calculation higher order derivatives for large enough number of particles,

but nevertheless I will present this result, since it leads to the closed form analytical

expression for the distribution function useful in the analysis. Thus, one can find:

ρ(n) = res
z=0

Θ(z)

zn+1
=

1

n!

dn

dzn
Θ(z)

∣

∣

∣

z=0
, (A.4)

which is exactly the n-th coefficient in the Taylor expansion of the characteristic

function about the point z = 0.
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APPENDIX B

INITIAL (NONCENTERED) MOMENTS

In this section I apply the result in Eq. (A.4) to obtain the closed form expressions

for the noncentered moments of the distribution function following the same path as

was used for the calculation the distribution function itself. The advantage of using

the zero-residue calculation is that one can perform explicitly the summation over n

first, and then calculate the residue. This is true for the moments of any order. To

see that I start with the lowest order moment - the zeroth order which is nothing

but the normalization factor. The general expression for the initial moments is the

following:

αm ≡ 〈nm〉 =

N
∑

n=0

nmρ(n). (B.1)

The integral expression for the normalization yields:

α0 ≡ 〈θ(N − n)〉 =
1

2πi

∮

|z|=1

Θ(z)
N
∑

n=0

1

zn+1
. (B.2)

Performing the summation over n, using the geometric series, one obtains:

N
∑

n=0

1

zn+1
=

1 − zN+1

zN+1(1 − z)
. (B.3)

Next step is to perform the contour integration with the pre-factor in Eq. (B.3) by

evaluating the residue at the origin. The order of residue after the summation over n

is N +1. The point z = 1 in the denominator is a regular point, since there is a finite

limit at z → 1. Therefore, the resulting expression for the zeroth initial moment is:

α0 ≡ 〈θ(N − n)〉 =
1

2πi

∮

|z|=1

Θ(z)
1 − zN+1

zN+1(1 − z)
= res

z=0

1 − zN+1

zN+1(1 − z)
Θ(z) =
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=
1

N !

dN

dzN

(

1 − zN+1

1 − z
Θ(z)

)

∣

∣

∣

z=0
. (B.4)

All the higher moments can be written as a derivatives from the zeroth order nm =
(

−z d
dz

)m
z−n, thus one can express the pre-factor of any moment in terms of the

pre-factor of the zeroth order moment in Eq. (B.3). Therefore, for any noncentered

moment of the distribution function one can write:

αm =
1

N !

dN

dzN

(

Fm(z)zN+1Θ(z)
)

∣

∣

∣

z=0
, (B.5)

where the general form of the pre-factor is:

Fm(z) =

(

−z d
dz

)m
1 − zN+1

zN+1(1 − z)
. (B.6)
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APPENDIX C

THE MULTINOMIAL EXPANSION

Let us go back to the characteristic function of the total number of noncondensed

atoms. It can be written in different ways:

Θ (z) =
∏

k 6=0

zk − 1

zk − z
=
∏

k 6=0

zk − 1

zk

∏

k 6=0

1

1 − z/zk
= Θ0 exp

(

−
∑

k 6=0

ln(1 − z/zk)

)

,

(C.1)

where Θ0 ≡ Θ(z = 0) =
∏

k 6=0
zk−1

zk
- the characteristic function at zero fugacity z.

Now I employ the Taylor expansion of the logarithm under the summation about the

point z = 0, using the fact, that |z| < |zk|, thus:

ln(1 − z/zk) = −(z/zk) − (z/zk)2

2
− (z/zk)3

3
− ... = −

∞
∑

m=1

1

m

(

z

zk

)m

. (C.2)

One can rewrite (C.1), as following:

Θ(z) = Θ0 exp

(

∑

k 6=0

∞
∑

m=1

1

m

(

z

zk

)m
)

. (C.3)

Changing the order of summation and defining fm(z) ≡
∑

k 6=0 (z − zk)
−m and fm(0) ≡

fm, one can obtain:

Θ(z) = Θ0 exp

( ∞
∑

m=1

fmz
m

)

. (C.4)

Comparison of Eq. (C.4) with the distribution function in Eq. (A.4) allows one to

conclude, that ρ(n)is nothing else but the Taylor coefficient of the zn term, since all

the other terms are zero. All terms of the lower orders vanish because of the higher

order of the derivative, and all the higher order terms will be cancelled, because

we have to set z = 0 in the end. Therefore, one can transform the expression for

the characteristic function by replacing the infinite sum in the exponential power by
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the finite, with the upper limit of N . I will leave the infinite sum, instead of the

finite sum for the purpose of the more convenient definition, as will be explained

later. Expanding the exponent in Taylor series with respect to z we are left with the

following expression for the distribution function:

ρ(n) =
Θ0

n!

dn

dzn

( ∞
∑

r=0

1

r!

( ∞
∑

m=1

fmz
m

)r)
∣

∣

∣

z=0
. (C.5)

One can now employ the wonderful properties of the multinomial coefficients which

are defined by the following formula [29]:

( ∞
∑

m=1

fmz
m

)r

≡ r!
∞
∑

n=r

zn

n!

∑

(n; a1, a2, a3..., an)∗fa1
1 fa2

2 fa3
3 ...fan

n , (C.6)

summed over a1 + a2 + a3 + ...+ an = r and a1 + 2a2 + 3a3 + ..+ nan = n, where the

multinomial coefficients have the following closed form expression:

(n; a1, a2, a3..., an)∗ = n!/1a1a1!2
a2a2!3

a3a3!...n
ann! (C.7)

with the same restricted summation a1 + 2a2 + 3a3 + .. + nan = n. The meaning

of these coefficients is the number of permutations of n = a1 + 2a2 + 3a3 + .. + nan

symbols composed of ak cycles of length k for k = 1, 2, 3, ..., n. The useful property of

the multinomial coefficients which connects them to the Stirling numbers of the first

kind is
∑

(n; a1, a2, a3..., an)∗ = (−1)n−mS
(m)
n , summed over a1 +a2 +a3 + ...+an = m

and a1 + 2a2 + 3a3 + ..+ nan = n.

One can apply the expression (C.6) to obtain the distribution function:

ρ(n) =
Θ0

n!

dn

dzn

( ∞
∑

r=0

∞
∑

n=r

zn

n!

∑

(n; a1, a2, ..., an)∗fa1
1 fa2

2 ...fan

n

)

∣

∣

∣

z=0
(C.8)

Now, changing the summation order and employing the discussed above conclusion,

that n-th derivative is non zero only for the n-th term in the expansion, the result
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can be written as:

ρ(n) =
Θ0

n!

n
∑

m=0

∑

0

B

B

B

B

@

a1 + a2 + ... + an = m

a1 + 2a2 + ...+ nan = n

1

C

C

C

C

A

(n, a1, a2, ..., an)∗
n
∏

j=1

f
aj

j . (C.9)

The latter formula does not look very simple from the first sight. Nevertheless,

it is very useful and, in particular, provides a convenient basis for the study of the

limiting cases and asymptotical behavior, which are discussed in details in Section C

of the Chapter II.
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