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ABSTRACT 

 

PWR Fuel Assembly Optimization Using Adaptive Simulated Annealing  

Coupled with TransLAT. (August 2008) 

Timothy James Rogers, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Jean C. Ragusa 

 

 Optimization methods have been developed and refined throughout many 

scientific fields of study.  This work utilizes one such developed technique of 

optimization called simulated annealing to produce optimal operation parameters for a 

15x15 fuel assembly to be used in an operating nuclear power reactor.  The two main 

cases of optimization are: one that finds the optimal 235U enrichment layout of the fuel 

pins in the assembly and another that finds both the optimal 235U enrichments where 

gadolinium burnable absorber pins are also inserted.  Both of these optimizations can be 

performed by coupling Adaptive Simulated Annealing to TransLAT which successfully 

searches the optimization space for a fuel assembly layout that produces the minimized 

pin power peaking factor.  Within given time constraints this package produces optimal 

layouts within a given set of assumptions and constraints.  Each layout is forced to 

maintain the fuel assembly average 235U enrichment as a constraint.  Reductions in 

peaking factors that are produced through this method are on the order of 2% to 3% 

when compared to the baseline results.  As with any simulated annealing approach, 

families of optimal layouts are produced that can be used at the engineer’s discretion. 



 iv

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Jean Ragusa, for fostering a very 

productive learning environment as well as being a personal friend throughout my entire 

time of knowing him.  I would also like to thank my committee members, Dr. Charlton, 

Dr. Parlos, and Dr. Adams, for their contributions and guidance during the course of this 

research.   

Thanks also go to my friends and colleagues and the department faculty and staff 

for making my time at Texas A&M University a great experience. I also want to extend 

my gratitude to Duke Energy and, in particular, Dr. Stephen Schultz and Mr. Robert St. 

Clair who have helped tremendously in not only funding the research project but also 

guiding me along the way in developing the method as well as presenting the work in a 

scholarly and professional manner.   

Finally, it is with deep gratitude that I thank my mother and father for their 

undying support, encouragement, and love, without whom none of this work would be 

possible.   



 v

TABLE OF CONTENTS 

              Page 

ABSTRACT ..................................................................................................................... iii 

ACKNOWLEDGEMENTS .............................................................................................. iv 

TABLE OF CONTENTS ................................................................................................... v 

LIST OF FIGURES .......................................................................................................... vii 

LIST OF TABLES ............................................................................................................ ix 

1. INTRODUCTION: LITERATURE REVIEW .............................................................. 1 

1.1 Introduction to Light Water Reactor FA Optimization ............................................ 1 
1.2 Current Fuel Assembly Enrichment Schemes .......................................................... 2 
1.3 Burnable Absorber Options ...................................................................................... 5 
1.4 FA Optimization Methods in Use .......................................................................... 13 

2. BASELINE FUEL ASSEMBLIES .............................................................................. 21 

2.1 Optimization and the Need for Baseline FA Cases ................................................ 21 
2.2 Definition of a Standard/Baseline FA .................................................................... 21 
2.3 Description of the UOX Fuel Assembly (UOX, non Gd-bearing FA)................... 22 
2.4 Description of the UOX-Gd FA (UOX, with Gd-bearing pins) ............................. 27 
2.5 Verification of Expected Outputs ........................................................................... 28 

3. HEURISTIC OPTIMIZATION ................................................................................... 32 

3.1 Introduction to Heuristics ....................................................................................... 32 
3.2 Simple Heuristics ................................................................................................... 32 
3.3 One to One Enrichment Modifications .................................................................. 33 
3.4 Multiple Enrichment Modifications ....................................................................... 35 
3.5 Optimization Techniques Available ....................................................................... 36 
3.6 SA and Adaptive Simulated Annealing ................................................................. 38 
3.7 Objective Function and Global Constraints ........................................................... 39 

4. LINKAGE AND FRAMEWORK ............................................................................... 41 

4.1 Introduction ............................................................................................................ 41 
4.2 Developing the Framework .................................................................................... 41 
4.3 Input Parameters ..................................................................................................... 43 
4.4 Initial Simulations .................................................................................................. 45 



 vi

              Page 

5. CASE STUDIES .......................................................................................................... 49 

5.1 Case Studies ........................................................................................................... 49 
5.2 Developing the Case Studies .................................................................................. 49 
5.3 UOX Cases ............................................................................................................. 50 
5.4 UOX with Gadolinium Cases ................................................................................. 54 
5.5 UOX Detailed Results ............................................................................................ 62 
5.6 UOX with Gadolinium Detailed Results ................................................................ 68 

6. CONCLUSIONS AND FUTURE WORK .................................................................. 73 

6.1 In Conclusion ......................................................................................................... 73 
6.2 Connecting to In-Core Optimization ...................................................................... 73 
6.3 Conclusions ............................................................................................................ 74 
6.4 Future Work ........................................................................................................... 75 

REFERENCES ................................................................................................................. 77 

APPENDIX ...................................................................................................................... 79 

VITA ................................................................................................................................ 85 



 vii

LIST OF FIGURES 

 
                                                                                                                                       Page 
 
Figure 1 -    IFBA™ vs IBA conceptualization with IFBA™ on the left and  

IBA on the right .............................................................................................. 6 

Figure 2 -    Example BA layout for Gd-pins with 8 and 4 w/o Gd  adapted  
from Sanders and Wagner (2002) ................................................................... 7 

Figure 3 -    Example BA layout for Gd-pins with 6 and 2 w/o Gd  adapted from  
Sanders and Wagner (2002) ............................................................................ 8 

Figure 4 -    Percentage of burnable poison burned at the end of each specified  
time period for the naturally occuring elements mixed in outer third  
of the fuel rod volume as given in Grossbeck (2003) ................................... 12 

Figure 5 -    Visual representation of 1/8th of the Fuel Assembly where red  
corresponds  to water, green to fuel, and yellow to cladding ....................... 25 

Figure 6 -    Nominal IBA pin layout for baseline FA analysis with Gd-pins in  
blue and fuel in green .................................................................................... 27 

Figure 7 -    Maximal peaking factor comparison of TransLAT normed and  
unnormed peaking factors to CASMO-4 peaking factors as a  
function of burnup ........................................................................................ 30 

Figure 8 -    Reactivity comparison of CASMO-4 and TransLAT using similar 
 input decks ................................................................................................... 31 

Figure 9 -   Sample modifications made in heuristic approach ........................................ 35 

Figure 10 -  ASA algorithm flowchart ............................................................................. 42 

Figure 11 -  Visualization of the weight vector applied to the constraints ....................... 45 

Figure 12 -  TrASA 3x3 baseline FA layout with one water hole ................................... 46 

Figure 13 -  Layout and Pin Power Results from TrASA-3x3 optimization .................... 47 

Figure 14 -  TrASA-4x4 Enrichment Layout and Pin Power output ............................... 48 

Figure 15 -   Cost estimation for case 1 as ASA perturbs the layouts to minimize  
the PPPF ........................................................................................................ 52 



 viii

                                                                                                                                       Page 
 

Figure 16 -  Cost temperature as a function of each step taken by ASA ......................... 53 

Figure 17 – Gd-pin restrictions as used in cases seven, eight, and nine as adapted  
from Yilmaz et al. (2006) ............................................................................. 58 

Figure 18 -  Optimal Gd-pin locations used for setting restrictions in Case 8  
optimization .................................................................................................. 59 

Figure 19 -  Scatter plot showing peaking factors produced as a function of  
enrichment delta ............................................................................................ 60 

Figure 20 -  Visualization of restrictions used for case 9 where each number  
represents the allowed pin types at each location ......................................... 61 

Figure 21  - FA reactivity compared to baseline FA results for twenty optimal  
layouts produced with the same peaking factor ............................................ 63 

Figure 22 - Reactivity vs Burnup for selected optimal layouts ........................................ 64 

Figure 23 - Optimal layout 15 produced with peaking factor in red ................................ 66 

Figure 24 - Optimal layout 17 produced with peaking factor in red ................................ 67 

Figure 25 - Optimal layout 18 produced with peaking factor in red ................................ 67 

Figure 26 - Optimal Gd-pin layout produced from case 7 ............................................... 68 

Figure 27 - Reactivity performance of both layouts produced from case 9 as  
compared to nominal Gd-pin layout ............................................................. 69 

Figure 28 - Case 9a optimal fuel pin layout with peaking factor marked in red .............. 70 

Figure 29 - Case 9b optimal fuel pin layout with peaking factor marked in red.............. 71 

Figure 30 - Case 9a pin power results at burnup zero with Gd-pin locations in  
green and maximal peaking factor in red ...................................................... 71 

Figure 31 - Case 9b pin power results at burnup zero with Gd-pin locations in  
green and maximal peaking factor in red ...................................................... 72 



 ix

LIST OF TABLES 

                                                                                                                                  Page 

Table 1 - Physical properties of fuel assembly ................................................................ 23 

Table 2 - Physical dimensions of fuel assembly components as given in the ONS 
UFSAR (2005) .............................................................................................. 26 

Table 3 - Input vector of parameters with sample possible values and ranges ................ 44 

Table 4 - Case descriptions for UOX (non-Gd) optimizations ........................................ 50 

Table 5 - Case study descriptions for the UOX with Gd optimizations ........................... 55 

 



 1

1. INTRODUCTION: LITERATURE REVIEW 

1.1 INTRODUCTION TO LIGHT WATER REACTOR FA OPTIMIZATION 

 Many studies for devising optimal operational conditions for Fuel Assemblies 

(FAs) have been previously performed, both at universities and in the nuclear industry.  

Both deterministic and stochastic methods are in use for the FA optimization problem, 

each with their own advantages and disadvantages.  Deterministic optimizations often 

rely heavily on an initial guess, and their solutions can be highly sensitive to system 

perturbations, with stability concerns being omnipresent (Haibach and Feltus 1997; and 

Zavaljevski 1990).  Despite these shortcomings, they generally require short simulation 

times and may provide a reasonable initial guess close to the optimum.  This can provide 

an initial search domain to stochastic methods or serve as a guide to engineers in making 

design decisions.  On the other hand, stochastic methods can better ensure finding a 

global optimum with high fidelity.  The downfall of stochastic methods is the time it 

takes for such methods to complete.  Run time can be reduced in stochastic methods but 

statistical measurements must be inserted to assess the validity of the results and global 

optima are not always ensured.  The work reported in this Thesis is focused on finding 

the close-to optimal stochastic solutions for several specific cases of FA optimization, 

including a FA with radially graded enrichment in 235U and a FA containing gadolinium 

as a burnable absorber.  The first case is a FA where the 235U enrichment of each of the 

fuel pins in the FA is varied to produce the lowest peaking factor attainable within a  

____________ 
This thesis follows the style of Annals of Nuclear Energy. 
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reasonable amount of time.  This case allows a split feed enrichment FA with three 

possible enrichments.  The second case allows an additional fuel pin type that contains 

gadolinium as a burnable absorber.  Only a specified number of fuel pins that contain 

gadolinium are allowed with specific properties. 

 In order to perform these studies, several reviews of current knowledge will be 

summarized to establish the current working knowledge base.  These reviews include 

surveys of available burnable absorbers, FA optimization methods currently in use, and 

heuristic approaches available.  Surveys performed will serve to develop the knowledge 

necessary to properly develop the method proposed here.  

1.2 CURRENT FUEL ASSEMBLY ENRICHMENT SCHEMES 

 Current available literature related to reactor optimization methods is extensive 

in many technical areas.  Studies performed previously cover methods of finding optimal 

operational parameters for both Boiling Water Reactors (BWRs) and Pressurized Water 

Reactors (PWRs), the two main types of power reactors in operation in the United States 

and throughout the world.  For both reactor types, BWR or PWR, a typical classification 

of the optimization paradigms used can be made as follows:  in-core optimization 

techniques and out-of-core optimization techniques.  Examples of out-of-core nuclear 

fuel management decisions include fuel assembly composition and the number of fresh 

fuel assemblies, utilization of burned assemblies, and prediction of performance over 

several campaigns (multi-cycle analysis).  The other branch of the design space consists 

of the in-core nuclear fuel management strategies, such as the placement of the fresh and 

burnt fuel assemblies in the core to maintain safety and criticality constraints.   With 
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mostly two reactor types in operation in the United States and both in-core and out-of-

core optimization methods, this leads to four main areas of study for FA optimization.  

BWR reactor optimization methods are extensive and previous work done includes both 

in-core and out-of-core methods.  Out-of-core methods in place (Martin-del-Campo et al. 

2007) produce optimal enrichment grading of the fuel assembly by modifying 

enrichment of 235U of each of the fuel pins to attain optimal performance characteristics 

desired.  In-core methods (Castillo et al. 2004) shuffle available FAs to produce optimal 

reload designs.  Additionally, burnable absorbers are used in BWR optimizations to 

increase burnup cycles by controlling reactivity excesses present at beginning of cycle 

(BOC).  These methods include both stochastic and deterministic methods and are in use 

currently at several major nuclear industry companies such as General Electric and 

Areva (Sanders and Wagner 2002; Wagner and Parks 2002).  Methods employed on the 

stochastic search branch include genetic algorithms, fuzzy logic, and tabu search 

techniques.  Most deterministic methods in use provide the designer with only a best 

guess of the optimal solution, ultimately leaving the designer with the task of selecting 

how the solution effects changes to implement into the design.  With such extensive 

work in place on BWR designs, natural motivations are present to produce similar 

methods for PWRs.  Through the literature search performed on available methods for 

PWR designs, there seems to be significantly less work available in the out-of-core 

optimization for PWRs.  Most of the PWR studies are related to in-core methods and 

methods developed are currently being utilized at nuclear firms such as Duke Energy, 

Areva, and Westinghouse.  In-core methods for PWRs are similar to those in BWR 
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designs, but most notably include mainly simulated annealing (SA) and genetic 

algorithm (GA) techniques.  Software packages available in this area as listed in 

Turinsky and Parks (1999) include but are not limited to FORMOSA, PANTHER, 

SIMAN, ROSA, and ALPS.  Objectives of such codes include minimization of feed 

enrichments and burnable absorber material needed while maintaining peaking factor 

and temperature coefficient constraints. 

As noted earlier, studies of out-of-core PWR optimization have not yet generated 

the same interests as in-core PWR methods or BWR methods.  Several PWR works 

found in the literature were based on trial and error approaches, e.g., the master’s thesis 

work of Caprioli (2004) at the Chalmers University of Technology, but these 

optimization techniques are not robust, fully developed methods that can be utilized 

currently by design engineers.  Nevertheless, Caprioli’s (2004) studies have shown the 

potential benefits that can be gained by properly varying the radial enrichment of 235U 

throughout the FA to control performance characteristics and improve fuel utilization.  It 

is also fairly common knowledge that some designs used by the nuclear utilities have 

enrichment modifications within the fuel assembly at specific locations to mitigate 

known issues: for instance, corner pins often have reduced enrichment content.  This 

further strengthens the idea that out-of-core PWR optimization should benefit from more 

exploration than what has been performed to date.  The work presented here aims at 

performing such an analysis for out-of-core PWR optimization in order to better 

understand the gains that can be obtained.   
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1.3 BURNABLE ABSORBER OPTIONS 

Burnable absorbers are commonly used in PWRs and BWRs to control core 

reactivity and to enhance fuel performance.  They capture neutrons during their burnout 

cycle and thus reduce the reactivity of a FA for a certain length of time that is 

proportional to the rate at which the primary absorbing isotopes are transmuted to other 

isotopes through absorption and decay.  This rate is obviously dependent on the cross 

sections of each of the highly absorbing isotopes.  Being able to absorb more neutrons at 

the beginning of cycle allows loading more 235U in a fuel assembly so that the FA’s 

cycle time can be extended.  Another consideration in looking at burnable isotopes is 

decay chains.  The decay chain of certain isotopes may contain very long lived products 

that would be undesirable.  A survey of previously implemented burnable absorbers was 

performed and is discussed below.  

Several burnable absorber implementations have been developed by PWR 

nuclear fuel vendors such as Westinghouse, B&W, Areva, and Combustion Engineering 

(CE) (Sanders and Wagner 2002).  The two categories that burnable absorbers fall into 

are burnable poison rods (BPRs) and integral burnable absorbers (IBAs) as described in 

(Wagner and Parks 2002).  BPRs are rods containing neutron absorbing material that are 

inserted into guide tubes of PWRs.  They are commonly used for reactivity control for 

enhancing fuel utilization.  IBAs refer to burnable poisons that are not removable or are 

an integral part of the fuel assembly.  These also control reactivity for fuel utilization.  

There are four types of IBAs in manufacturing: integral fuel burnable absorber (IFBA™) 

rods, gadolinium (Gd) IBAs, erbium IBAs, and boron based IBAs.  The difference 
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between the IFBA™ and the IBA pins can be visualized as in Figure 1.  Westinghouse’s 

IFBA™ is a rod with a thin coating of zirconium boride on the outer surface of the fuel 

pin.  This burnable coating on the fuel can be varied in thickness to meet specific goals, 

while the number of these pins in a given assembly is varied over a range of 8 to 156 

rods out of 264 fuel rods (Sanders and Wagner 2002).  That represents up to 60% of the 

 

 

Figure 1 - IFBA™ vs IBA conceptualization with IFBA™ on the left and IBA on the right 

 

 rods of the assembly.  Burnable absorber designs must satisfy a whole host of 

constraints and pass many tests before they can be declared useable, where such tests 

also include dry cask storage reactivity results.  Studies performed at Oak Ridge 

National Lab (ORNL) for dry cask storage compared the kinf values of assemblies with 

IBAs to the reference assembly kinf, where a lower kinf for the IBA assembly means that 

burnup credit criticality safety analyses may conservatively neglect the IBA presence.  

Usage of an IFBA™ assembly might produce reactivity higher than the reference 
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assembly in two dimensional results, but when three dimensional calculations were 

performed the axial burnup pulled the assembly reactivity below its reference (Wagner 

and Parks 2002).  The other three types of burnable absorbers (BAs) all produce 

conservative results in the two dimensional cask studies.  Manufactured previously by  
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Figure 2 - Example BA layout for Gd-pins with 8 and 4 w/o Gd  
adapted from Sanders and Wagner (2002) 

CE and Siemens and currently by Areva, Gd IBAs are pins that have a mixture of UO2-

Gd2O3 with the Gd2O3 present in varying w/o (weight percent) enrichments.  Along with 

the enrichment of Gd2O3 in each pin, the number of pins in a FA can also be varied.  
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Some example layouts that have been produced for these types of BA implementations 

can be seen in Figure 2 and Figure 3.  Often times the 235U enrichment is reduced in the 

IBAs to satisfy heat conductivity issues presented by the addition of Gd in the fuel oxide 

as in (Sanders and Wagner 2002).  Similar to the Gd bearing fuel pin is CE’s erbium pin 
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13        6                                   6       

14                       6     6                      
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Figure 3 - Example BA layout for Gd-pins with 6 and 2 w/o Gd  
adapted from Sanders and Wagner (2002) 

with variable enrichment and variable number of pins inserted in available designs.  

These two rare earth metals decrease the heat conductivity of the fuel matrix 

proportionally with the amount of the metal.  Often times discussion goes into separating 

important isotopes of each of the metals as in (Grossbeck et al. 2003) such as 155Gd, 
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157Gd, and 167Er that are both highly absorbing and do not have long decay chains.  The 

strategy being implemented here is that removal of the excess isotopes in either erbium 

or Gd decreases the total volume taken up by the earth metal, leaving volumetric space 

for more fuel and also limiting the reduction in heat conductivity. Although this is a 

good strategy, the enrichment of the earth metals in their respective isotopes introduces 

an additional factor in the optimization and in the financial model.  Introduction of these 

additional factors in subsequent studies could be examined; the present work limits the 

focus to IBA pins with naturally enriched Gd.  Thus, these studies will be limited to 

naturally enriched earth metals to develop the optimization method.  Also previously 

manufactured by CE, the fourth IBA rod is the solid rod containing alumina pellets with 

uniformly dispersed boron carbide particles (Al2O3-B4C) clad in zircaloy.  These rods, in 

contrast with the other IBAs, do not contain fuel.  They do, however, fit into the IBA 

category since they are not removable from the FA.  Variables for these pins include w/o 

of the B4C and number of rods per assembly.  These are pins that are not removable 

from the FA and thus are considered integral.   

The other category of poisoning options is the BPR.  Westinghouse makes two 

assemblies in this category, the Pyrex burnable absorber assemblies (BAAs) and wet 

annular burnable absorber (WABA).  The BAAs contain a borosilicate glass Pyrex tube 

with a void in the center and clad in stainless steel.  WABAs are similar but contain 

alumina boron carbide pins that are filled with water in their central void.  Each 

implementation varies in number of rods from 4 to 24.  Since this category of poisoning 

is limited to the water hole locations, it will not be used in this study.   
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In order to narrow the field for the type of burnable absorbers that can be used in 

this analysis, several available materials can be discussed.  Materials reviews have been 

performed before on the most viable rare earth metals available.  A comprehensive study 

was carried out at the University of Tennessee by Grossbeck et al. (2003) on material 

composition that aids in determining the most useful materials with given constraints.  

Material enrichment concerns encompass how the isotopics of the burnable absorber will 

affect the fuel matrix and the effects it has on the assembly itself when considering 

reactivity and peaking.  Specific isotopics of burnable absorbers to be used can be 

chosen based on material limitations as well as financial goals.  There are varied types of 

pins that have been developed.  These include coating the fuel pin with burnable 

absorber, mixing the burnable absorber with the fuel itself, and inserting burnable 

absorber into the water hole locations.  Each of these has their own advantages and 

disadvantages.   

In order to analyze available materials, the list of available elements is limited to 

a short list of neutron absorbing materials.  Generally mentioned as burnable absorber 

materials are Gd, samarium, erbium, europium and dysprosium.  Each of these is a rare 

earth metal that has little abundance in natural environments, with europium being the 

rarest (Asou and Porta 1997).  Based on single isotope burnable poison studies, each of 

these are viable candidates.  However, not all of these are currently economically 

feasible due to manufacturing costs and handling difficulties.  Samarium is not useable 

because of its reactivity and its low boiling point; europium is not used because of its 

less favorable nuclear properties.  Nuclear properties to consider are primarily the 
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metal’s decay scheme and absorption characteristics of daughter nuclides produced.  

Decay chains of several of these metals contain very highly absorbing daughters that 

loop back to other highly absorbing nuclides leaving a large reactivity residual.  The 

ideal burnable absorber material controls excess reactivity over a specified time range 

and then disappears from the physics picture.  That is to say it soaks up neutrons for a 

period of time, and then it and its daughters stop absorbing neutrons and allow the fuel to 

dominate neutron absorption.  This leads to the lowest reactivity residual effect, which is 

desirable.  Dysprosium has a very long decay chain with several isotopes that are hard to 

burn.  Taking this into account leaves only Gd and erbium in the list of possibilities as 

supported in Asou and Porta (1997).  For this study, Gd is the most suitable since 

peaking factor control is only needed for a short amount of time.  The reasoning behind 

the time period that Gd is needed stems from the fact that the peaking factors in the FA 

only need to be reduced by the Gd for only several burnup steps and then need to go 

away.  Gd burnup rate is optimal for cycle lengths on the order of one to two years 

where natural erbium burns at a linear rate for up to four years.  This can be seen in 

Figure 4.  It can be used in a low number of rods and at high contents.  Gd also exhibits a 

unique behavior in that the number of poisoned rods controls the negative reactivity 

while the content controls the length of the burn-up kinetics almost independently as 

shown in (Sanders and Wagner 2002).  Gd material specifics such as enrichment are the 

next choice to make.  Several Gd enrichments have been used when implementing Gd 

oxide as a burnable absorber material.  Enrichments vary from as low as 2%, which is 
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Figure 4 - Percentage of burnable poison burned at the end of each specified time period for the naturally 
occuring elements mixed in outer third of the fuel rod volume as given in Grossbeck (2003) 

 

what is referred to as natural Gd, to 12%.  The specific isotopes of Gd that are highly 

absorbing are 155Gd and 157Gd.  Each of these isotopes has large capture cross sections 

for neutrons in the fast spectrum.  Since there is such a wide range of successful 

enrichment choices, determining a nominal enrichment becomes either a blind choice of 

fanned cards, or a median value for a starting point, or another parameter to be 

optimized.  The median value chosen is 6% Gd enrichment; subsequent studies could be 

carried out to fine tune this value using the framework developed in this thesis.  This 

parameter can be studied for its own feasibility but the optimization is to find optimal 



 13

layouts with given assumptions, with this enrichment being one of the initial conditions.  

This choice is the IBA pin that will be placed in the FA with a composed layout.  

Although many studies have gone into optimal Gd pin placement, there were not any 

available with the same water hole layout as the specified design.  The nominal IBA 

layout that will be used has twenty burnable poison pins and was selected as the nominal 

layout because it controls the peaking factor to a satisfactorily low initial condition that 

can be correlated with similar pin designs.  It is possible to argue alternatives to these 

decisions but it is important to keep in mind that the optimization method being used 

here treats the simulated system as a black box and thus these assumptions can be 

updated as needed.  The purpose of this work is to demonstrate a PWR fuel assembly 

optimization methodology, with applications to Gd-bearing and non Gd-bearing fuel 

assemblies as validation of the methodology.  It is envisioned that subsequent studies 

may fine tune a number of parameters that are presently fixed. This optimization method 

may be similar in scope to existing applications, but it does differ in both the objectives 

and the implementations used.   

1.4 FA OPTIMIZATION METHODS IN USE 

Available optimization methods include stochastic methodologies along with 

deterministic solutions.  Due to the highly complex and nonlinear nature of any given 

FA optimization, the methods for optimizing system parameters usually require both 

computationally expensive calculations and simplifying assumptions about system 

behavior.  Stochastic methods currently in use for fuel management optimizations 

include genetic algorithms, tabu search, neural networks, and simulated annealing 
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(Yilmaz et al. 2005; Castillo et al. 2004).  System parameters used in these types of 

optimizations include fuel enrichments, burnable poison locations and enrichments, and 

fuel positioning.  The GA premise is that a gene can correspond to an input string of 

system variables that represent the variables to optimize.  This method is based on 

Darwinian evolution theory and uses a “survival of the fittest” principle where fitness 

assessment is measured by a predefined objective function.  The algorithm breeds new 

genes by using methods that resemble biological breeding.  Other techniques in use 

behave similarly, utilizing the same operational parameters albeit in different ways with 

differing motivations.  Tabu search is a local search method that marks the locations that 

it has visited to effectively remember the solution at that location.  Once the method 

visits a certain point in the space then it does not visit that point again but remembers the 

solutions obtained.  This method can help to reduce run time in global sampling 

methods.  Neural networks (NN) utilize an interpretation of how the human brain stores 

information.  They use networks of nodes to learn how a system transforms input to 

output vectors and try to mimic that behavior.  SA has been coupled to lattice-physics 

codes in order to optimize common system parameters and has physical motivations as 

well.  The search method in simulated annealing randomly generates each proposed 

solution and thus is computationally expensive.  This method uses generating 

distribution functions, acceptance distribution functions, a temperature schedule, and 

both initial and final temperatures to perform its search of the problem domain until it 

finds a global optimum.  If the simulated annealing process is granted an infinite amount 

of time to search the domain, it will find the global optimal results, but this is neither 
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feasible nor interesting.   The algorithm of an SA code produces an input vector 

randomly using its generating distribution and then accepts or rejects the proposed input 

vector based on the acceptance criteria.  Acceptance of an input vector is based on the 

system temperature and the heuristic rules.  This process of generating acceptable input 

vectors is then repeated while the temperature of the system is lowered according to the 

cooling schedule.  Generally exponential functions are used to establish proper cooling 

schedules.  This allows for large variations in the initial phases of the optimization so 

that the algorithm can sample large spaces to find the optimal region.  It is desirable to 

find this optimal region and then search within that region for the optimal solution.  The 

search method can find global optimal values given a certain set of characteristics.  The 

formal heuristic statistical proof of finding the global optimum is given in Adaptive 

Simulated Annealing (ASA) documentation (Ingber 2007) as such:    

 The parameter temperature schedules must suffice to insure that the product of 

individual generating distributions, g for each parameter indexed by i, 

  i

i

g g= ∏   (1) 

 
taken at all annealing times, indexed by k, of not generating a global optimum, given 

infinite time, is such that 

  ( )1 0k
k

g− =∏   (2) 

 
which is equivalent to 

  k
k

g = ∞∑   (3) 

 
For the ASA temperature schedule, with dimension D, this is satisfied as 
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  1/1/ 1/
D

D

k k
k k− = = ∞∑ ∑∏   (4) 

 
Now, if the temperature schedule above with temperature T and initial temperature T0, is 

redefined as 

  ( ) ( )/
0 exp Q D

i i i i iT k T c k= −   (5) 

 
  exp( / )i i ic m n Q D= −   (6) 

 

in terms of the “quenching factor” Q, and the two scaling factors m and n indexed over 

the parameters involved by i, then the above proof fails if Q >1 as 

  /1/ 1/
D

Q D Q

k k
k k− = < ∞∑ ∑∏   (7) 

 

Depending on the system being optimized and the number of parameters, quenching can 

provide a faster way to find optimal solutions but does not guarantee that it is the global 

optimum.  A key element in developing a feasible simulated annealing approach is in 

developing a cost schedule that provides the global optimum in a reasonable amount of 

time as well as adaptively choosing how the problem domain is searched so that the 

proper valleys are explored thoroughly but quickly.   

Before any of these techniques are utilized, however, manual trial and error 

optimizations of the fuel parameters serve to develop the system knowledge necessary to 

assess the success or failure of more robust methods.  Performing these types of 

manipulations is somewhat limited to the foresight and intuition of the designer to think 

of an optimal layout.  This type of work has been performed by Caprioli (2004), where 
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she explores the effects of varying the enrichment of each of the fuel pins in the selected 

FA to obtain flatter internal peaking factor distributions to the fuel assemblies as well as 

to extend cycle lengths.  Although inspiration was drawn from BWR fuel management 

solutions, the PWR axial moderator phase is uniform and thus does not affect the fuel 

heat removal quite like that experienced in the BWR design.  For this reason, it is not 

necessary to vary the axial enrichment through the active fuel length.  There are, 

however, axial blankets like those used in most typical PWR designs.  It is important to 

note that Caprioli’s work suggests that limitations be set on the enrichment change 

values.  The pin power is driven to the pins with the highest differential enrichment in 

the FA, and thus the FA internal peaking factor is driven solely by the highest 

enrichment allowed.  Limitations of her work exist in the “by hand” approach, thus 

limiting the number of cases developed.  In general the study does provide some 

motivation to fully develop a robust optimization method that can confirm her findings 

with the intention to enhance the results. 

GAs have been applied to both PWR and BWR designs to find optimal burnable 

poison placement and loading.  One such BWR GA application (Martin-del-Campo et al. 

2007) uses a code called HELIOS to search for a fuel lattice with the lowest average 

enrichment satisfying target reactivity, local peaking factor, and average gadolinium 

concentration.  Notable components of this work are that it is done in two dimensions, 

half diagonal symmetry is used, and calculations of the peaking factor and reactivity 

results are performed at burnup step zero.  They propose that good reactivity 

performance during lattice exposure can be assured in their FA if the average enrichment 
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change is limited (Martin-del-Campo et al. 2007).  An objective function was developed 

that takes into account each of the gadolinium loading, the reactivity, and the peaking 

factor for the FA.  Each of these components is weighted based on the assumed 

importance of each factor.  In order to limit the search space, they do not allow 

gadolinium to be placed in locations along the edge of the FA and assume that the corner 

positions will contain the lowest enriched fuel pins in the optimal solution.  They find 

that GA methods are suitable to apply to this type of optimization and that if the average 

enrichment reduction is limited then extensive burnup lattice calculations are not 

necessary to assure good reactivity performance.  Another application of GA pertains to 

PWR designs as performed in (Yilmaz et al. 2005).  In it they vary the number of 

gadolinium pins and associated gadolinium concentration with the total amount of 

gadolinium as the objective function.  The main objective of the work is to find a 

burnable poisons loading pattern that minimizes total gadolinium in the core while 

maintaining peaking factors and soluble boron concentrations below established limits.  

This work, however, is performed at the core level and uses specific FAs from a list of 

available FAs to place in locations throughout the core to meet the problem objectives.  

They find that GA is suitably applied at this level of optimization and suggest several 

cost effective designs that could be implemented given that their assumptions are 

satisfied.  These two works show the applicability of GAs as optimization techniques 

and establish several very important assumptions that can be made when performing FA 

optimizations.  As for Tabu search techniques, an application of this search method was 

applied with heuristic rules of Control Cell Core and Low Leakage as in Castillo et al. 
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(2004).  Their objective was to maximize the cycle length while satisfying the 

operational thermal limits.  This work was done at the core level and thus places 

available FAs in an octant of a BWR core.  Assumptions such as not allowing fresh FA 

placement along the periphery as well as not allowing fresh fuel in control rod locations 

are implemented.  The method is able to find a loading pattern of the FAs to satisfy their 

constraints allowing for 34 more days of full power operation.  They suggest that future 

work includes implementing the search of optimized control rod patterns.  This work 

illustrates a successful application of tabu search methods to core level optimization.  

Lastly is the work done by Maldonado et al. (1998) to develop dual-objective simulated 

annealing to apply to lattice loading optimization as well as the penalty-based constraints 

implemented in Maldonado (1998).  This work looks at FORMOSA-L’s ability to 

optimize spatial distributions of enrichment and burnable absorbers within a FA.  

FORMOSA-L is a SA optimization code that can enforce relative power peaking 

constraints as well as reactivity constraints to search for a global optimal solution as 

discussed in Maldonado et al. (1998).  This work suggests that implementation of dual-

objectives or penalty-based constraints can improve upon results of single-objective 

constraints.  They combine both power peaking minimization and FA enrichment into an 

objective function that is stabilized by natural logarithm normalizations so that the log of 

the product of the two objectives is minimized.  Important notes on this work are that a 

three-enrichment split allowance is made and the assembly average k-infinity was 

constrained to ± 200 pcm relative to the reference assembly.    These assumptions 

perform well in their work and contribute to the building of assumptions necessary for 
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the method being applied here.  These methods have been applied in their various 

partitions of the optimization process of designing power reactor cores.  Assumptions 

made and results found indicate their viability and are taken into account when 

developing the method of this work.   
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2. BASELINE FUEL ASSEMBLIES 

2.1 OPTIMIZATION AND THE NEED FOR BASELINE FA CASES 

Analysis of optimization results is the key element in being able to interpret the 

results for real world implementations.  To properly analyze optimization results, a 

reference baseline fuel assembly must be established from which all simulations can be 

compared.  This optimization process aims to produce a FA that has more desirable 

performance characteristics than those of FAs that are being used currently at the 

Oconee Nuclear Station (ONS).  As specified in several publically available documents, 

the FA used at ONS is a 15x15 FA which is used to develop the reference FA design that 

has no integral burnable poison and a spatially constant enrichment.  Since this is what is 

being used, a direct definition of the baseline FA can be derived from this specification.  

Performance of this baseline FA will serve as the initial performance characteristic from 

which the optimization should improve.  Alongside radial enrichment zoning 

optimization is the optimization that introduces Gd-pins to reduce reactivity over the 

initial burnup cycle.  Since there is not a specification of a FA in use that utilizes Gd-

pins, one is developed based on literature and engineering intuition.  These baseline FA 

designs are provided in the following sections.   

2.2 DEFINITION OF A STANDARD/BASELINE FA 

The baseline FAs will be considered here: one baseline FA without Gd-bearing 

pins and another baseline FA with Gd-bearing pins. These baseline or nominal FAs will 

be used as a performance metric for the various optimized FA.  The baseline FAs also 
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serve in defining some of the constraints in the optimization process (e.g., preservation 

of the average enrichment, same number of Gd pins, etc).  The baseline FA used in all of 

the modeling is built from specifications from the UFSAR document (ONS UFSAR 

2005) openly available for the Oconee Nuclear power plant operated by Duke Energy.  

The FA design is referred to as the Mk-B10 FA.  Descriptions and assumptions are made 

through interpretations of the UFSAR document which may differ slightly from the 

actual FA (e.g., operating temperatures, fuel pin specifications, and material properties).  

Where room for interpretation was left to the designer, industry best practices were 

applied as rigorously as possible. 

2.3 DESCRIPTION OF THE UOX FUEL ASSEMBLY (UOX, NON GD-BEARING FA) 

Development of the baseline uranium oxide (UOX) FA consists mostly of 

verifying geometries, operating parameters, and assumptions made.  It is important to 

note that results may vary based on a number of factors including assumptions made, 

neutronics code used, and optimization method followed.  This FA is given an initial flat 

enrichment layout of 4 w/o 235U.  This enrichment will correspond to the average that is 

maintained throughout most optimizations unless otherwise noted.   

Materials specifications are the major component to simulations.  There is a short 

list of materials necessary to consider in the simulations but their specifications are key 

in obtaining correct results.  Materials include cladding, fuel, and moderator.  The 

cladding used is Zircaloy-4 as per the UFSAR.  There is not a standard Zircaloy-4 

material in the TransLAT library so the material used is composed of the major 

components present in Zircaloy-4.  One important assumption to note here is that the 
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Zircaloy-4 material is being smeared over the fuel cladding gap present in the fuel pins 

to simplify calculations.  The way this is done is by diluting the density over the 

combined areas of the clad and the fuel cladding gap with an area based weighting 

factor.  Cladding density is specified to be 6.55 g/cc before smearing and then becomes 

5.84 g/cc after the factor is applied.  Primary elements present in the cladding are 

chromium, iron, and zirconium.  This specification gives the properties of the cladding 

Table 1 - Physical properties of fuel assembly 

ρUO2 (theoretical) 10.96 g/cm3 

ρUO2 (calculated) 10.28 g/cm3 
reactor power 2568 MWt 
core loading 93 MTU 

# FA 177 
power per FA 14.5 MWt/FA 

cells in FA 225 
# of water holes 16 

# IT 1 
# of fuel elements (FE) 208 

height of FE 140.6 
volume of FE 247.7 cm3 
volume of FA 51528 cm3 

mass UO2 in FE 2547 g/FE 
mass UO2 in FA 529732 g/FA 
mass UO2 in FA 0.53 tonne/FA 
power density 27.4 MW/tonne - HM 
Zirconium 4 ρ 6.55 g/cm3 

Zirc-4 calculated ρ 5.84 g/cm3 
 

used in the fuel pins as well as the water hole and instrumentation tube (IT) locations.  

Material and some other necessary properties of the FA are given in Table 1. 
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Fuel materials are very standard input and generally need only a few parameters.  

The theoretical density of the UOX fuel is 10.96 g/cc.  Fuel pins are not, however, 

manufactured to this density nor do they operate at this density due to in-reactor 

indensification.   The density input for TransLAT is reduced to 10.28 g/cc based on 

calculations of these effects.  The change in density is input as a percentage of 

theoretical density of 93.8%.  Then the enrichment for the fuel is given as a nominal 4.00 

w/o 235U.  Various other enrichments will be used over the scope of the optimization.  

The accepted ranges here are as low as 3.50 w/o 235U up to 5.00 w/o 235U.  We wish to 

keep the reactivity of the FA above a certain threshold, so anything below 3.50 w/o will 

be atypical. 

Moderator specifications are the last topic to discuss.  Moderator properties are 

mostly based around the void fractions of the water present and the boron content.  The 

material H3BO3 will be used as the boron material.  Boron concentration varies as a 

function of fuel burnup during the cycle, but, for depletion purposes, an average value is 

typically used.  Note that for core neutronics studies, the cross section libraries generated 

by the lattice code usually consist of the data obtained during the nominal depletion, but 

also contain the data obtained by varying fuel temperature, moderator temperature, and 

boron concentration for each burnup value. Such perturbations are the “branch cases” of 

the nominal depletion steps.  We are not concerned with generating such cross section 

libraries and thus will only run the lattice code for depletion purposes.  The average 

boron concentration is set to be 700 ppm of H3BO3 over all burnup steps.  The FA 

described in the UFSAR document is a Mk-B10 FA that is a lattice of fuel pins 
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measuring 15x15 pins wide and deep.  An assumption of this modeling is that 1/8th 

symmetry will be maintained and is sufficient to capture the behavior of the FA in its 

infinite lattice domain as can be seen in Figure 5.  The FA consists of the lattice with an 

 

Figure 5 - Visual representation of 1/8th of the Fuel Assembly where red corresponds  
to water, green to fuel, and yellow to cladding 

IT in the center and then sixteen water holes in a B&W FA design.  This means there are 

208 fuel pin locations.  Each of the cells used in the lattice have dimensions as specified 

in Table 2.  There is also a water gap present with the reactor at zero power.  This gap 

dependent on the relative thermal expansion of the FA grid material to that of the core 

support structure.  Modeling is done before this expansion occurs, i.e., at room 
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temperature.  This assumption stems from standard practices as available to the 

designers and from literature. 

As per the literature review of optimization methods in use (Martin-del-Campo et 

al. 2007), burnup (depletion) calculations are not needed during the optimization process 

and thus simulations are performed only at burnup step zero.  Depletion calculations are 

an important part of analyzing results and thus are performed as a cursory step to display 

the solution behavior.  The burnup steps will extend to 70 GWd/MT-HM under a 

Table 2 - Physical dimensions of fuel assembly components as given in the ONS UFSAR (2005) 

in cm 
Fuel Element Pitch 0.568 1.4427 

Fuel Pellet Diameter 0.37 0.9398 
Inner FE Clad Diameter 0.377 0.9576 
Outer FE Clad Diameter 0.43 1.0922 
Inner IT Clad Diameter 0.441 1.1201 
Outer IT Clad Diameter 0.493 1.2522 

Inner Water Hole Diameter 0.514 1.3056 
Outer Water Hole Diameter 0.53 1.3462 

Inter - Assembly Gap 0.05 0.1270 
 

 

predictor/corrector method.  Since higher accuracy is needed initially in the burnup 

cycle, a finer grid is used early on with the mesh becoming coarser as time goes on.  The 

mesh is as small as 0.25 GWd/MT-HM. 
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2.4 DESCRIPTION OF THE UOX-GD FA (UOX, WITH GD-BEARING PINS) 

The other baseline FA to develop contains Gd-bearing fuel pins.  This baseline is 

a necessary component of the optimization that utilizes the Gd-pins to serve as a result 

from which outputs can be compared.  As per the literature review (Sanders and Wagner 

2002), the Gd-bearing pins that will be used mix the Gd uniformly with the fuel at a 

specified weight percent.  These rods are specified with the same theoretical density as 

normal fuel rods, lowered 235U enrichment content, and a specified weight percent of 

gadolinium.  Gadolinium enrichment can be modified by increasing the w/o of the two 

highly absorbing isotopes of gadolinium, 155Gd and 157Gd.  Natural gadolinium 

enrichment contains 2 w/o 155/157.  This is not to be confused with the Gd enrichment 

 

 
Figure 6 - Nominal IBA pin layout for baseline FA analysis with Gd-pins in blue and fuel in green 



 28

in the fuel pin which can vary up to 12 w/o Gd.  Many studies have been done on how to 

best utilize gadolinium in fuel rods by dispersing the gadolinium into the fuel matrix 

evenly, and what has been found is that the gadolinium reduces the heat conductivity of 

the fuel and thus the enrichment of 235U must be reduced to maintain safety limits.  This 

reduction will be nominally set to 0.25% 235U for all cases, unless specified.  In 

developing the baseline model, Gd-pins that will be used will contain 6 w/o Gd and 

contain uranium fuel enriched to 3.75 w/o 235U to minimize heat conductivity issues.  

These pins are placed in the FA as seen in Figure 6.  This layout of the locations of the 

Gd-pins was developed from literature reviews of similar FAs in use along with design 

knowledge of the FA developed through previous studies. 

2.5 VERIFICATION OF EXPECTED OUTPUTS 

 Calculations performed in the FA optimization must be entirely independent of 

the neutronics codes used.  It is, however, useful to verify that the codes being used have 

expected results by performing code-to-code benchmarking.  The described FA was built 

in TransLAT as well as in CASMO-4.  CASMO-4 input decks have been verified before 

by Duke Energy and thus serve as a good benchmark to establish the validity of the 

TransLAT results obtained.  CASMO-4 is an industry standard code optimized to 

produce results that are viable in the nuclear industry and thus has some simplifications 

and assumptions to guide the engineer towards conservative results that ensure the safe 

operation of reactors.   The main output values that are compared are the peaking factor 

characteristics and the reactivity of the fuel pins both as a function of burnup.  In order 

to get comparable results, all dimension calculations were checked along with 



 29

calculations of system parameters to ensure consistency.  Although seemingly trivial, 

this task does require unit conversions and interpretations of each code’s standard inputs 

so that the modeling is as comparable as possible.  What was found in this analysis was 

that although there was some discrepancy between the results, they can be justified when 

taking into account the differing methodologies employed by each of the codes as well 

as slightly differing nuclear data files.  The differences in results from each of the codes 

stems also from the purpose of each code. 

 Of primary interest to this study is the peaking factor result accuracy.  Resulting 

peaking factors from TransLAT output seem to compare well with CASMO-4 results 

when doing non-Gd simulations.  It has become apparent, however, that either the inputs 

of the two codes are not consistent enough at this time or the normalization schemes 

when introducing Gd-pins are not consistent linear transformations of each other.  

Further benchmarking could be useful in transitioning between the two lattice physics 

engines.  The method produced here, however, is a black box method that is written 

independent of the lattice physics code, and, therefore, it is stressed that these results 

pertain only to TransLAT and that replacing the lattice physics engine may result in 

different solutions.  Despite these drawbacks, when TransLAT peaking factor output is 

normalized to a similar constant to that of CASMO-4, the results are very close to each 

other.  This can be seen in Figure 7.  It is important to note that the general functional 

shape of the peaking factor versus time remains the same for both applications and thus 

only a linear shift in the results is needed to translate the results from one code to another 

for these baseline calculations.  This shows that the codes are consistent in the reference 
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calculations that are being performed but that they are merely displayed differently.  

TransLAT peaking factor results can thus be considered consistent with CASMO-4 

results and will be used in optimization analyses. 

 

 

 

Figure 7 - Maximal peaking factor comparison of TransLAT normed and unnormed peaking factors to 
CASMO-4 peaking factors as a function of burnup 

 Reactivity is another important feature to help benchmark TransLAT to 

CASMO-4.  When comparing reactivity of the two codes, it is useful to monitor the pcm 

difference from one code to the other.  When this analysis was completed it was shown 
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that TransLAT stayed within ± 600 pcm of the results of CASMO-4.  This could 

possibly be explained as the difference between setting the boron concentration as a 

constant versus having a functional change over time.  This reactivity comparison is 

shown in Figure 8. 

 

 
Figure 8 - Reactivity comparison of CASMO-4 and TransLAT using similar input decks 
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3. HEURISTIC OPTIMIZATION 

3.1 INTRODUCTION TO HEURISTICS 

A common definition for the term heuristic (serving as an aid to learning, 

discovery, or problem-solving by experimental and especially trial-and-error methods) 

effectively summarizes the term’s application and implies the notion of repetition and 

learning by trial and error.  A heuristic method will thus involve using repeated 

sequences to figure out a solution, where the number of attempts will be directly related 

to the ability of the engine to make better guesses based on previous knowledge.  Here, 

this optimization process, or method, will attempt to accurately capture the behavior of 

the fuel assembly and explore the parameter space according to physical attributes and 

assumptions being applied.  In order to do that, some initial rudimentary heuristic 

knowledge must be developed in order to properly implement the FA optimization 

process.  Heuristic knowledge can be developed by trial and error variations within the 

variable space to see how the system responds to the variations.  Knowledge developed 

from these variations can then be implemented into more robust optimization 

methodologies that have algorithms for performing the variable manipulations.  The 

following sections describe both manual manipulations of the variable space that have 

been performed as well as robust methodologies available.   

3.2 SIMPLE HEURISTICS  

In order to get a sense of the manipulations an optimization technique might need 

to make, as well as to develop constraints to present to the optimization technique, it is 
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important to perform several heuristic optimizations or “by hand” optimizations.  

Numerous approaches can be taken when modifying a lattice’s enrichment layout 

scheme and numerous end results can be attained.  The engineer may need a FA that 

minimizes the pin power peaking factor (PPPF) while constraining the overall reactivity 

of the FA during some specific lifetime, or may only need to reduce the PPPF to a 

certain value and then maximize the reactivity at the end of life (EOL) of the FA in order 

to prolong its overall cycle lifetime in the core.  Several example schemes that can be 

implemented are, for example, constraining the “by hand” optimization to maintain an 

average enrichment over the FA or possibly varying the average enrichment while 

maintaining some other constraint such as reactivity and PPPF.  Throughout the 

examples explored the simplest constraint to implement and most primary to study is to 

maintain a constant average enrichment while minimizing the maximal PPPF of the FA 

in order to study the reactivity effects at EOL of the FA.  Several schemes were 

developed for the “by hand” optimization.   

3.3 ONE TO ONE ENRICHMENT MODIFICATIONS  

The first scheme developed is the most simplistic case and is called one to one 

enrichment modification.  This is the case where the fuel pin with the highest peaking 

factor has its enrichment reduced by a given delta (eδ), and then the pin with the lowest 

peaking factor has its enrichment increased by the same delta to maintain constant 

average FA enrichment.  Peaking factors for this decision come from the map that is 

produced from the nominal flat enrichment case where all pins are 4.00 w/o 235U.  With 

the first pin pair chosen, a simulation is performed with the highest and lowest powered 
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pins’ enrichments modified to obtain a new power peaking factor map (PPFM).  This 

new PPFM is then used to make the next pin pair selection to reduce and increase 

enrichment as done in the previous step.  The PPPF that is used to make modification 

decisions is the maximum PPPF over all of the burnup steps performed.  It was 

determined that if the average FA enrichment remained constant in these simulations 

then the maximum PPPF at burnup zero can be treated as the maximal PPPF over the 

burnup cycle, and thus all decisions in this scheme can be made on the PPFM obtained at 

zero burnup.  The decision to only utilize zero burnup PPFMs was made because of an 

assumption that was drawn in early tests of FA reactivity with respect to time as changes 

such as these were made.  It was noticed that although the initial reactivity was variable, 

the final reactivity close to 60 GWd/MTU converged for all cases.  With this assumption 

simulation time is drastically reduced.  Two branch cases stemmed from this scheme.  

The differing paths depend on when the enrichment change decisions are made.  Either 

the decisions can all be made a priori or they can be made after each step is chosen so 

that the next step can take into account the previous results.  Both branches had the same 

resulting enrichment changes through almost all of the steps taken.  The branches did 

begin to differ in resulting changes after 4-5 steps depending on the delta in enrichment 

change taken.  This scheme proved to give insight into the optimization problem at hand, 

but several problems arose. 

The simulation that is being performed assumes octant symmetry of the FA.  

This means that if an enrichment of a pin along the diagonal or the interior edge of the 

octant of the FA is changed, then that change is replicated only four times in the whole 
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FA.  This contrasts with interior pin enrichment changes, which are replicated eight 

times.  Thus a change in merely the max PPPF location may not equally correspond to a 

change in the min PPPF location when using constant average enrichment as a 

constraint.   

3.4 MULTIPLE ENRICHMENT MODIFICATIONS 

In order to further develop the heuristic knowledge for the optimization method, 

another plan was devised in which pin modifications are made so that the limitation of 

the one to one method can be removed.  This allows for multiple pin enrichments to be 

modified per step taken.  In the case that the corresponding max and min PPPFs do not 

coincide as interior or exterior pins, an additional pin pair must be modified to conserve 

the average enrichment of the FA.  The development of this method helps reduce the 

limitations imposed by a symmetric design.  Knowledge of how these pins need to be 

 

1  2  3  4  5  6  7  8 
8  4 
7  4.25 4.25 
6  4  4.25 4.25 
5  4  4  4.25 
4  3.75 3.75 3.75 4  4 
3  3.75 3.75 4  4 
2  4  3.75 4  4  4  4.25 4 
1  4  4  4  4  4  4  4 

 

Figure 9 - Sample modifications made in heuristic approach 
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modified to approach an optimal assembly design helps develop optimization constraints 

necessary to determine the effectiveness of designs.  The multiple enrichment 

modification plan shows the designer that it is not necessary to approach the optimal 

from any specific direction.  Decision space variables can be modified freely to find the 

optimal solution.  An alternative version of this scheme would be to shuffle decision 

steps as needed to produce better peaking factor results.  It is possible to take the 

decisions made in the one to one scheme and place them into an arrangement changes 

ordered by the steps taken and then rearrange and combine the steps as necessary to 

produce the minimal PPPF.  An example resulting layout produced from this analysis is 

given in Figure 9.  Beyond these schemes, diminishing amounts of information can be 

obtained about how the optimization method ought to operate and thus the heuristic 

development can be stopped here.  This heuristic knowledge of the optimization method 

must then be implemented. 

3.5 OPTIMIZATION TECHNIQUES AVAILABLE 

Many stochastic optimization techniques have evolved over the last decade to 

solve many “black box” type problems where the underlying governing equations may 

be too complex to solve explicitly.  These can include: tabu search, simulated annealing, 

genetic algorithms, among others.  Many of these techniques can be implemented with 

fairly short development time and can often be very robust when properly adjusted to the 

problem of interest.  Often times these techniques require only a consistent global 

sampling method alongside an objective function to determine the fitness of each 

solution.  The attraction to these techniques often lies in their ability to solve such 
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complex real-world problems without intense manipulations in the underlying data 

collection techniques.  GAs, for example, rely on the computational interpretation of 

how natural selection processes produce the most adapted biological systems for the 

given environment in which it exists.  This technique excels in finding the neighborhood 

of the global optimal solution, but the end task of searching locally relies heavily on the 

mutation operator and thus becomes a randomized unguided approach.  Tabu search is a 

gradient technique in which memory is collected as it performs its operations.  The 

memory is stored in a list to obtain its optimal value.  NNs or artificial neural networks 

(ANN) utilize a network of nodes each with their own properties specified to collect 

information on how the system behaves.  Generally they are presented with an input / 

output pair that corresponds to a transformation operator.  These I/O pairs represent a 

functional operator that acts on the input to produce the output.  When invoking this 

operator is computationally costly, generating an ANN that effectively mimics the 

transformation by learning how the system works comprises the NN technique.  SA is a 

probabilistic algorithm for global optimization problems whose inspiration comes from 

metallurgy where the heating of a material and successive controlled cooling reduces the 

defects of the metal causing it to approach a minimal internal energy.  In the case of 

certain metals, annealing can be performed to soften the metal by reducing its overall 

binding energy.  The analogy to optimization heuristics lay in the overall system 

temperature T that is slowly reduced as the process is performed (Kirkpatrick et al. 

1983).  Such a reduction is often exponential.  Each step of the algorithm is a random 

permutation of the given parameters with the permutation step size reducing with system 
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temperature.  One analogy of this technique is a bouncy ball bouncing in a mountain 

range.  It at first has the opportunity to bounce all over the mountain range or problem 

domain, thus searching out the relative structure of the domain.  As it bounces it loses 

some energy or the effective temperature of the bouncing ball reduces with each step till 

it finally rests in the lowest valley available to it.  SA is a global optimization technique 

that is preferred to other techniques in specific cases.  Each of these techniques can be 

utilized as possible optimization methods to be developed for any given problem each 

with their own benefits and drawbacks.  The key is finding the technique that most 

closely finds the global optimum for the lattice with minimal time expenditure.   

3.6 SA AND ADAPTIVE SIMULATED ANNEALING  

Simulated annealing works by choosing system variables in the given domain, 

estimating the performance or “cost” of those variables, and then based on that cost and 

the temperature at the specified step, chooses another set of variables.  System variables 

are generated based on predefined distributions of possible states to explore.  There is 

also an acceptance distribution that depends on the difference between the cost value of 

the presently generated subspace to be explored and the last lowest subspace.  Each of 

these distributions depends on the temperature, and thus it is crucial that the SA 

temperature be properly controlled.  In general, an exponential decrease of the 

temperature is used and is called the temperature schedule.  This process of calculating 

system variables, if repeated infinitely many times, can guarantee a global optimal 

solution to the given problem.  The key phrase is “infinitely many times,” which is not 

plausible.  Thus the temperature schedule, along with the initial and final temperatures, 
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must be employed properly to approach global optima within reasonable time frames.  

The cost evaluation method introduced to the SA process can be thought of entirely as a 

“black box” process, where the SA has no knowledge of the system it is utilizing and 

thus must choose its system variables based solely on the input and output pairs it 

produces. 

In order to properly implement SA, several key points are developed that govern 

the operation of the method.  A robust SA algorithm could be built from the ground up, 

but there are many freely available algorithms which can be implemented with ease such 

as ASA.  ASA is a code written by Lester Ingber that performs a simulated annealing 

process that is standard amongst all SA codes and is very robust and powerful.  The key 

component of ASA that makes it such a useful tool is the ASA options available to adapt 

the SA algorithm to almost any global sampling application.  These options allow for 

precise control of how the algorithm searches the domain space throughout the 

temperature cycle.  The list of options is quite exhaustive and is available in the ASA 

documentation (Ingber 2007).   Several of the options have been adjusted in order to take 

into account the large parameter space inherent in FA optimization of this nature.  These 

will be discussed in more detail, as necessary. 

3.7 OBJECTIVE FUNCTION AND GLOBAL CONSTRAINTS 

  With the algorithm in place, the cost function must be developed along with the 

constraints that determine acceptability of proposed input parameter vectors.  The cost 

function for this work is the maximum PPPF of the FA layout that is proposed by ASA.  

The primary objective of this work is to minimize this PPPF.  In order to obtain the 
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PPPF an input vector produced by ASA is transformed into a lattice physics input deck, 

which produces the cost estimation.  This estimation is then fed back into ASA, which 

then decides how to produce the next layout based on these results.  When choosing 

layouts, it is important that the layout satisfy the constraint.  The constraint being applied 

for this work is that the average FA 235U enrichment be equal to the average enrichment 

of the reference assembly.  This should help maintain reactivity results over the FA 

lifetime as well as promote usage of this method in full core design.  For cases that allow 

the Gd-pins to be inserted, an additional constraint is set in place such that the number of 

Gd-pins along with their Gd2O3 enrichment is the same.  These constraints serve to 

develop FA layouts that are comparable to their reference designs.  Additional or 

alternate constraints can be developed and implemented, but these are the necessary 

constraints for the desired solution.  The constraints and cost functions are coded into the 

ASA algorithm so that the framework of the algorithm can be constructed.   
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4. LINKAGE AND FRAMEWORK 

4.1 INTRODUCTION 

 In order to perform the optimization process, a proper framework must be 

developed alongside representative simulations.  To build the framework of the coupling 

of TransLAT and ASA (TrASA), the flowchart was first developed to establish the logic 

that the algorithm would follow in order to properly sample the parameter domain and 

approach an optimal peaking value.  With this flowchart in place, each of the 

components is coded so that data is passed properly to each task within the chart.  This 

can be seen in Figure 10.  Once established, the method can then be populated with the 

real FA model, and the optimization can be performed.  This linkage and framework will 

be described further in the following sections.  In general practice, it is standard to start 

with a reduced version of the simulation domain where the problem solution is overly 

obvious and then extend those initial simulations until the full system is represented.   

4.2 DEVELOPING THE FRAMEWORK 

Developing the flowchart starts with ASA producing an initial guess for the input 

vector, this vector contains integers corresponding to each of the modifications to be 

made.  Established as a convention for this input vector, -1, 0, 1, and 2 each correspond 

to a Gd pin, a nominal pin, a reduced enrichment pin, and an increased enrichment pin, 

respectively.  The nominal pin has a 235U enrichment of 4.00 w/o or more generally eaveU 

w/o if the nominal enrichment is chosen either by the user or the optimization process.  

Then each of the pins has enrichments reduced or increased by a specific amount eδ that 
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is either specified in the ASA options or can be varied over any feasible range.  Thus the 

input vector contains integers corresponding to a specific pin type being chosen by ASA. 

The input vector then must be translated into an input deck for the lattice neutronics code 

TransLAT, but it first needs to be checked against the constraints imposed.  Since the 

constraint for this optimization is that average enrichment is conserved, a generating 

script is used that checks for average enrichment conservation.  If the input deck does 

not meet the constraint requirements, then a negative cost flag is returned to ASA, the 

proposed layout is recorded as invalid, no neutronics calculations are performed, and a 

new layout is suggested.  If the layout suggested by ASA passes the constraints test, an  

 

Figure 10 - ASA algorithm flowchart 

input deck is generated for TransLAT by changing the lattice and geometry blocks of a 

nominal input deck to reflect the locations of enrichment modifications as well as 

ASA proposes layout 
for TransLAT 
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Satisfies 
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deck and execute 
TransLAT 

Violates 
constraints Return negative 

cost flag to ASA

Extract maximum peaking 
factor from output file
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End 

ASA terminal conditions not met
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possible Gd-pin locations.  This generated input deck of the acceptable layout is then run 

by TransLAT, which computes results such as the k-infinite, peaking factors, exposure, 

isotopics of the fuel, etc.  The optimization cost function is then extracted from the 

output file and returned to ASA.  When the last step is completed, ASA then performs 

calculations based on the previous results, random numbers, the parameter temperatures, 

and acceptance probabilities to generate a new layout and start the process over again.  

This logic is repeated until ASA approaches its optimal result.  This describes the 

flowchart of the algorithm and is shown in Figure 10.   

4.3 INPUT PARAMETERS 

Most of the data needed to compute the neutronics behavior of the FA are 

unchanged by the optimization.  These are: the geometry, material compositions (other 

than 235U enrichment and Gd locations), system pressure and temperatures, power 

density, and boron concentration.  For this study, the parameters that are varied pertain 

to the various enrichment modifications and Gd-pin placement.  The user can specify: 

gadolinium enrichment of a Gd-pin, number of Gd-pins per FA, reduction of 235U 

enrichment for Gd-pins, average FA 235U enrichment eaveU, the change in enrichment of 

modified fuel pins eδ, and the possible pin types available for each location in the FA.   

Hence, a skeleton input deck is used throughout the optimization process, where only the 

instructions specific to 235U enrichment and Gd-pin location are to be generated at each 

trial.  This list of parameters is referred to as the input vector, which is an ordered vector 

of integers with each component corresponding to each of the specific parameters used 

in the optimization process.  Parameters of the input vector are as listed in Table 3.  
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Across the top row are the components of the input vector, and the second row contains 

typical values or ranges of values that each component may take.  While most of the 

parameters remain as they are, a few are translated into their true meaning.  Most notable 

Table 3 - Input vector of parameters with sample possible values and ranges 

eGd  eGdU  nGd  eaveU  eδ 
32 pin 

locations 

(0,6)  (0,3.75)  (0,20)  [4,4.5]  [0,40]  (‐1,0,1,2) 

pin types  0=std pin  1=eaveU‐eδ  2=eaveU+eδ   ‐1=Gd pin   
 

 

of these is the eδ parameter, which is an integer in the input vector.  Values for this 

parameter are allowed to vary from zero to any specified value less than 90.  This integer 

is then transformed by division by one hundred so that the decimal point moves two 

places to the left.  For instance a value of eδ of 25 would correspond to 0.25 w/o 235U 

enrichment change.  Another such parameter that is transformed is the eaveU.  This is 

another integer parameter that is transformed into decimal form by division of one 

hundred.  This value is then added to four to give the average FA enrichment desired.  

This parameter is not always varied as described in the case studies but can be if desired 

by the user.  The last parameter that is modified in the code is the number of Gd-pins, 

nGd.  Since simulations are being performed in 1/8th symmetry and nGd is  the number of 

Gd-pins in the whole fuel assembly, a system of verifying that the number of Gd-pins 

suggested by ASA corresponds to nGd number of Gd-pins.  A weighting vector is applied 

as seen in Figure 11, where the weighting factor of pins along the diagonal edge as well 
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as the bottom edge are replicated only four times when expanding to the full FA, while 

the rest of the pins are replicated eight times.  TrASA uses this weighting vector to check 

 

1  2  3  4  5  6  7  8 
8  4 
7  4  8 
6  4  8  8 
5  8  8  8 
4  4  8  8  8  8 
3  8  8  8  8 
2  4  8  8  8  8  8  8 
1  4  4  4  4  4  4  4 

 

Figure 11 - Visualization of the weight vector applied to the constraints 

that the nGd parameter is satisfied as well as to check that the average enrichment 

constraints are maintained.  This input vector allows for the generation of the necessary 

input decks used to perform simulations to subsequently obtain the peaking factor for the 

FA.   

4.4 INITIAL SIMULATIONS 

With the framework of the method in place, some initial simulations were 

performed to test the framework and establish that it produces intuitive results.  The 

smallest feasible system that maintains relevance to the baseline is a 4x4 FA with one 

water hole in one of the four interior locations.  This FA can be thought of as a portion 

of the full 15x15 FA where the fuel pin to water hole ratio is similar.  With this 4x4 
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model in place, the algorithm’s logic was tested.  A version of TrASA was built for this 

system with ASA generating the enrichment values for the fifteen fuel pins and then 

evaluating the resulting peaking factor of the 4x4 system.  This optimization runs in a 

very short amount of time since the number of parameters to vary is very limited.  

Although the link to the actual fuel assembly is weakened somewhat, a 3x3 system was 

built for the purpose of experimenting with the options available in the ASA code.  

Selection of the water hole locations in each of these systems can be freely chosen since 

their correlation to real sections of the FA is almost completely lost.  The one correlation 

that does remain is the behavior of how a fuel pin interacts with neighboring water holes, 

making the results useful in adapting ASA to the solution space.  This behavior is the 

essence of the optimizations, since the water holes contribute the most to perturbations 

experienced in the FA flux.  If the FA were only made of fuel pins, the peaking factor 

map would be completely flat with an infinite lattice assumption in place. 

 

1  2  3 
1 
2 
3 

 

Figure 12 - TrASA 3x3 baseline FA layout with one water hole 

Although the 3x3 system is not intuitively connected to the real FA, its results are 

interesting in that the proposed best layout from ASA reflects what an engineer would 
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arrive at when trying to achieve the same goal intuitively.  The water hole location was 

selected merely as convention because the solution to the minimal peaking factor 

problem can be intuitively found.  The baseline FA for TrASA-3x3 is as shown in Figure 

12, where the water hole is in row two and column one.  Resulting modifications as well 

as peaking factor data produced by TrASA-3x3 are given in Figure 13.  The enrichment  

 

Enrichment 
Layout  Pin Power Values 

1  2  3  1  2  3 
1  3.65  4.00  4.35  1 1.130  1.120  1.126 
2     3.65  4.35  2    1.076  1.131 
3  3.65  4.00  4.35  3 1.130  1.120  1.126 

 

Figure 13 - Layout and Pin Power Results from TrASA-3x3 optimization 

delta range was set to [10,35] for this simulation.  It is not necessary to analyze this 

system further due to its disconnection with the real FA and since the model is 

developed to confirm that TrASA produces results as expected on a simple system.  As 

for the 4x4 system, it too produces a layout that seems fairly intuitive.  The layout and 

resulting peaking factor are shown in Figure 14.  It is not intuitively obvious why in row 

two column one there is a reduction in 235U enrichment, but all of the cells that are face 

adjacent to the water hole are reduced which is intuitive.  This illustrates how one step 

away from the simplest model introduces the need for a method like ASA.  Multiple  
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Enrichment 
Layout 

Pin Power 
Values 

1  2  3 4 1 2  3  4
1  4.25  4.25  4.25  4.25  1 1.061  1.069  1.081  1.080 
2  3.75  4.00  4.00  4.00  2 0.988  1.054  1.089  1.072 
3  4.00  3.75     3.75  3 1.046  1.046     1.074 
4  4.25  4.00  3.75  3.75  4 1.087  1.077  1.076  1.059 

 

Figure 14 - TrASA-4x4 Enrichment Layout and Pin Power output 

layouts can be produced at this level to give the optimal minimum peaking factor, 

allowing for selection of the “best” layout to satisfy other possible needs the designer 

might have.  With these illustrations in place, it is then possible to expand simulations to 

the full 15x15 FA model and begin analysis of those results. 



 49

5. CASE STUDIES 

5.1 CASE STUDIES 

Obtaining meaningful results from TrASA requires developing representative 

case studies to be performed and then tuning the ASA options to that problem so that 

ASA is truly “adapted” to the lattice physics code.  Several iterations in developing 

cases, analyzing those cases, and then modifying the cases to best represent the 

methodology is an integral part of the optimization process.  Two classes of cases are 

presented here: the optimization of a 15x15 UOX FA without any Gd poison and the 

optimization of a 15x15 UOX FA with gadolinium pins.  Although these are two 

separate optimizations to perform, TrASA is a package that can run these cases 

indifferently, based on the general input parameter vector developed in this work.  For 

instance, to run a non Gd-bearing case, all the Gd parameters are set to zero and thus 

limit TrASA to compute a UOX case.  Each of these classes was studied and is analyzed 

here.  

5.2 DEVELOPING THE CASE STUDIES 

Stochastic methods like ASA require development of a set of cases to be run and 

analyzed in order to verify that the optimization process runs as expected as well as to 

determine the optimum set of parameters.  In general, the procedure for developing cases 

begins with fixing many of the parameters and allowing the optimization to search a 

small subspace of the whole domain.  Although this might not give the best results, it 

allows the user to verify that the process is running as expected.  With satisfactory 
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results found additional parameters can be varied allowing the code more and more 

freedom to search the domain.  Each additional parameter variation that is allowed 

introduces both flexibility and difficulty.  The addition of parameter variations makes it 

sometimes more difficult to compare to the baseline reference case.  Despite this, the 

added flexibility allows for more results to be produced and possibly a better optimal 

solution.  This methodology helps build new intuition on how the various parameters 

should be arranged and chosen such that the optimal solution is found. 

5.3 UOX CASES 

The optimization cases with only uranium dioxide fuel are a subset of the larger 

optimization class of UOX fuels with some pins bearing gadolinium poison.  It is thus a 

simpler problem to solve for sampling algorithms such as ASA since it requires less 

sampling of the space.  The initial case that was run sets all of the values in the input 

Table 4 - Case descriptions for UOX (non-Gd) optimizations 

 
eGd  eGdU  nGd  eaveU  eδ 

pins 
used 

description 
resulting 
pppf 

types 

Case 
1 

0  0  0  4  0.17  (0,1,2) 
initial 

optimization 
1.092  0=std pin 

Case 
2 

0  0  0  4  [0,0.40]  (0,1,2) 
variation in  

eδ 
1.092  1=eaveU‐eδ 

Case 
3 

0  0  0  [4,4.5]  0.17  (0,1,2) 
variation in  

eaveU 
1.092  2=eaveU+eδ 

Case 
4 

0  0  0  [4,4.5]  [0,0.40]  (0,1,2) 
variation in 

both 
N/A 
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vector to constants and only manipulates the enrichment map of the fuel pins.  It 

maintains a constant average enrichment and uranium enrichment delta, and searches 

that space.  This input vector can be seen in Table 3 where all of the UOX cases are 

listed with their respective variable ranges and descriptions.  The four cases listed are the 

UOX representative cases.  The variation ranges allowed on each of the parameters have 

been selected as per assumptions made from literature and industry standards.  The first 

case, case 1, is the initial optimization which can also serve as a baseline from which the 

rest of the cases can be compared.  Case 1 produces a PPPF of 1.092 which is a 2.5% 

reduction of the PPPF from the baseline results.  A visualization of the peaking factors 

that ASA finds as it progresses through the optimization can be seen in Figure 15.  The 

cost temperature of this case can be seen in Figure 16.  These two plots show how ASA 

samples the space and approaches its minimum PPPF.  Each peak that can be seen in 

Figure 15 represent ASA trying to bounce out of any local optimal values that have been 

found.  The temperature schedule is somewhat aggressive but the method must run in a 

decent amount of time and thus the cost temperature is reduced as shown.  The next 

case, case 2, allows for variation of the uranium enrichment delta parameter, eδ.  In this 

case the average enrichment remains constant and the parameter range as given in Table 

4 allow enrichments as low as 3.60 w/o 235U and as high as 4.40 w/o 235U.  The resulting 

PPPF of this simulation was also 1.092.  This is because the enrichment delta chosen for 

case one was chosen in the optimal range of that parameter.  This result confirms that the 

two cases converge to the same parameter domain showing the variation in uranium 

enrichment deltas produces accurate results. 
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Figure 15 - Cost estimation for case 1 as ASA perturbs the layouts to minimize the PPPF 

The next case, case 3, studies how the average uranium enrichment affects the 

PPPF of the FA.  This case may be a bit contrived and requires that baseline references 

be produced at the conclusion of the optimization.  That is to say if the optimization 

finds that an average FA 235U enrichment is 4.2 w/o then baseline results should be taken 

from a flat enrichment FA with all pins at 4.2 w/o 235U.  The resulting PPPF from this 

case is again 1.092 with an average enrichment of 4.01 w/o.  The trend produced in 
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Figure 16 - Cost temperature as a function of each step taken by ASA 

this optimization agrees with the intuition that minimizing the total average 235U 

enrichment will result in the lowest peaking factor of the FA.  Despite this, case 3 

verifies that the optimization produces the correct trend.  In order for this case to really 

make sense or be of some value the objective function would need to be modified so that 

the positive effects of higher average enrichment were rewarded.  The last case, case 4, 

in this class of cases performs all UOX variations.  This can be an interesting case but it 

will not be performed or analyzed in this study.  Since the parameter space for these 

optimizations is already very large, allowing TrASA to perform this optimization does 
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not yield as good of results as the previous cases in any reasonable amount of time.  It is 

best as will be shown in later sections to guide TrASA into the optimal space with 

knowledge of the system thus reducing erroneous solutions.  Additionally, each of the 

parameters have been studied independently each trending towards the same optimal 

region invalidating the necessity of this case.   Results from these cases as well as further 

analysis will follow in later sections. 

5.4 UOX WITH GADOLINIUM CASES 

 The other class of optimization contains the gadolinium cases which are in a 

wider space than that of the UOX cases.  Allowing Gd-pins to be inserted into the FA 

increases the levels of complexity, which in turn makes the solution more difficult to 

find, and requires more simulations.  Although three more parameters must be used to 

specify these cases, number of Gd-pins nGd, uranium enrichment in the Gd-pins eGdU, 

and natural Gd enrichment in Gd-pins eGd, most of the time these additional parameters 

will be fixed so that they can be more easily related back to the baseline design.  If these 

parameters were varied, a new baseline would need to be defined for those cases, e.g., 

the baseline FA, as described in section 2, considered here contains 20 Gd-pins with a 6 

w/o enrichment in Gd2O3 and a slightly reduced 235U enrichment (3.75 w/o) producing a 

peaking factor of 1.173.  Our framework can allow these to be also changed in TrASA 

but there would be no grounds to compare these results with the selected baseline 

(industry standard) FA with Gd-pin.  Hence, our constraints are that the number of Gd-

pins is fixed, their enrichment in Gd is not varied, and their enrichment in uranium is not 

varied. 
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The first case that was built can be considered the first step away from the 

baseline FA with Gd-bearing pins.  This case is case 5 of Table 5 where the Gd-pin 

Table 5 - Case study descriptions for the UOX with Gd optimizations 

 
eGd  eGdu  nGd  eaveU  eδ 

pins 
available 

description 
resulting 
pppf 

types 

Case 
5 

6  3.75  20  4  [0,0.35]  (0,1,2) 
gd loc fixed per 

baseline 
1.151  0=std pin 

Case 
6 

6  3.75  20  4  [0,0.35]  (‐1,0,1,2)  all variations  1.162  1=eaveU‐eδ 

Case 
7 

6  3.75  20  4  0  (‐1,0)  opt gd locs  1.170  2=eaveU+eδ 

Case 
8 

6  3.75  20  4  [.10,.25]  (‐1,0,1,2)  restrict gd locs  1.149  ‐1=Gd pin 

Case 
9 

6  3.75  20  4  [.10,.25]  (‐1,0,1,2) 
restrict gd and 

UOX locs 
1.147 

 
 

 

locations of the baseline layout are fixed and the remaining fuel pin locations have their 

235U content modified with a variable delta.  The range for the change in enrichment is 

from -0.35 to 0.35 w/o 235U.  The peaking factor produced for this case is 1.151 which 

compares to the 1.170 PPPF of the baseline FA.  With this initial case developed and 

analyzed further cases can be developed to test the variations of the parameters to try to 

obtain even lower peaking factors. 

The next case is case 6 as in Table 5 where the eδ is varied over the same range 

and all locations can be changed.  This parameter could be varied over any range but for 

consistency will remain the same range as the previous case.  The main alteration in this 

case is to allow movement of the Gd-pins and examine the effects this has on the output.  

The PPPF produced here is 1.162 which is worse than the previous case.  The layout 
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produced here would most certainly not be practical since it would increase the cost of 

fabrication of the FA with little returned value.  These results do not follow the intuition 

of the researchers since increasing the parameter space in most methods still allows for 

the optimal solution to be found.  Due to the size of the parameter space in this case and 

the nature of the SA algorithm being used, and probably of all SA algorithms, it is 

actually best to try to introduce as much a priori knowledge into the system and try to 

help along the SA code as much as possible.  Introduction of beforehand knowledge of 

the system must be applied with caution however, since too many restrictions may be 

introduced, disallowing the optimization from sampling the optimal space and possibly 

restricting the search to a too narrow domain.  The following cases, 7 through 9, attempt 

to guide TrASA towards an optimal solution by imposing additional constraints. 

One way to guide TrASA properly to the optimal search space is to find the 

optimal set of Gd-pin locations and then only allow those locations in subsequent cases.  

The next case that follows, which is case 7 as given in Table 5, searches for the optimal 

Gd-pin locations.  In this case only the Gd-pins are allowed to be inserted making the 

need for uranium enrichment variations unnecessary.  This is a comparatively small 

variational space to search and thus the case runs very quickly as compared to the other 

cases.  It is important to note here that it is sometimes best to penalize usage of certain 

locations for Gd-pins.  There are several phenomena that contribute to making this 

decision and ultimately decisions of this nature are at the behest of the designer and 

depend on the specific implementation.  Locations of fuel pins along the outside edge of 

the FA as well as the locations that are both face and corner adjacent to the IT are often 



 57

times either not allowed or penalized when Gd-pins are inserted there.  Usage of Gd-pins 

in the locations along the periphery of the FA greatly disturb the flux on the edge of the 

FA which is adjacent to, in general, at least once burned FAs in power reactors.  Since 

simulations are performed here under infinite lattice assumptions, they may not exhibit 

the issues relevant to core level peaking factors, thus it is often preferred not to place Gd 

pins at the FA periphery.  As for the locations around the IT, usage of Gd-pins in these 

locations may disturb the readings produced by the IT, a situation to be avoided for the 

purpose of flux mapping.  For these reasons, the aforementioned locations can be 

disallowed or penalized depending on the approach taken in the code.  The restriction 

applied to case 7 is that none of the periphery locations are allowed to contain Gd-pins 

and the locations that are face adjacent to the IT are not allowed.  The corner adjacent 

location can be allowed as per these assumptions since such a high PPPF has occurred 

there in previous simulations.  Allowance of this location can be argued either way but 

for this analysis it will be allowed for the reasons stated above.  This constraint can be 

seen in Figure 17.  With this knowledge about the FA implemented into the case 

parameters, the optimization was performed.  Since the location in the (8,8) position is 

not allowed and the peaking factor often resides in that location, information that the 

code gains from manipulating the Gd-pin locations is limited.  Despite this, case 7 
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1  2  3  4  5  6  7  8 
8                             Guide  
7                          Tubes 
6                             Possible U/Gd 
5                          locations 
4                             Non‐Gd Locations 
3                         
2                         
1                         

 

Figure 17 – Gd-pin restrictions as used in cases seven, eight, and nine as adapted from Yilmaz et al. (2006) 

produces a layout with a PPPF of 1.170 which is not much of an improvement over the 

baseline result of 1.173.  As an inherent limitation, TrASA produces families of optimal 

results due to both truncation error within TransLAT and the limitation in TrASA of 

using only three specified enrichment values.  A full spectrum of enrichments could be 

allowed but would be unrealistic and costly to manufacture.  If all parameters were 

treated as continuous it would be more likely that one solution would be found but that is 

not the case.  These results however prove beneficial in developing the cases that follow. 

 An optimization like case 8 can be used to produce optimal layouts that place 

Gd-pins in a set of optimal Gd-pin locations.  Combined with results from case 7, this set 

of locations can be used to constrain the optimization so that Gd-pins are only inserted in 

these locations as given in Figure 18.  That is to say that, in any of the specified 

locations, it is possible to insert a pin of any type including Gd-pins while in the rest of 

the locations only nominal, reduced or increased enrichment pins will be available.  This 
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keeps the code from suggesting layouts that have Gd-pins in the “wrong” locations.  

Case 8 optimizes with this restriction in place.  The PPPF of this simulation is 1.149.   

 

1  2  3  4  5  6  7  8 

8                       4 

7                    Gd  4 

6                 Gd  4  4 

5                 4  Gd  4 

4           Gd  4  Gd  4  4 

3           4  4     Gd  4 

2     Gd  4  4  4  4  4  4 

1     4  Gd  4  Gd  4  Gd  4 
 

Figure 18 - Optimal Gd-pin locations used for setting restrictions in Case 8 optimization 

This is an improvement over the previous cases and is a reduction that should be 

expected.  The goal here is that the parameter variations are properly tuned to produce 

the best result possible within a reasonable amount of time.  For this reason a simulation 

of TrASA was performed similar to case 6 where the enrichment delta parameter is 

varied.  The corresponding peaking factor as a function of the enrichment delta 

parameter is generated from a simulation like case 6 and is plotted in Figure 19.   
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Figure 19 - Scatter plot showing peaking factors produced as a function of enrichment delta 

This plot shows a scatter plot of the data and is sorted by peaking factor produced to 

show how the code converges to the optimal delta.  This leads to narrowing this 

parameter’s range to the optimal range.  It is feasible that with an infinite amount of time 

all cases could converge to the same solution.  The only thing that makes this case better 

is that the options were tuned more accurately to the problem domain and was able to 

find a more optimal solution in the reasonable time frame.   In order to implement more 

knowledge into the system, one further step can be taken in constraining the 
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optimization space.  This next step is similar to the constraints applied in case 8 but 

pertains to the uranium enrichment modifications of the fuel pin locations.  The same 

method can be applied as before where the fuel pin modifications that have high 

frequency in previous studies can be used.  This is illustrated in Figure 20 where each 

cell contains the best pin types to be inserted in each location.  To develop these  

 

1  2  3  4  5  6  7  8 
8                       1 
7                     ‐1,0  0,1 
6                  ‐1,0,1,2  1,2  0,1,2 
5                 1,2  0,1,2  0,1,2 
4           ‐1  0,1  1  1,2  1,2 
3           0,1  0,1     ‐1  2 
2      ‐1,0,1  0,1  0,1,2  0,1  0,1  0,1,2  0,1 
1     1,2  0,1  0,1,2  0,1,2 0,1,2  1,2  0,1,2 

 

Figure 20 - Visualization of restrictions used for case 9 where each number represents the allowed pin types 
at each location 

constraints, the best layouts from previously run case studies were listed in a 

spreadsheet.  Then for each location the pins that are usually inserted for each of the 

‘optimal’ layouts were allowed.  That is to say that for a specific location if the 

optimization generally selected either a nominally enriched fuel pin or a decreased 

enrichment fuel pin then it is not necessary to allow any other pin types since they will 

lead to higher peaking factors.  This was done for each of the locations in the FA which 

designates case nine.  Case 9 produces a peaking factor of 1.147 which is a further 

improvement over case 8.  These cases serve to develop the method of applying the 



 62

simulated annealing approach to FA optimization.  Several iterations of this 

methodology should be expected to properly guide TrASA into the optimal search space.   

5.5 UOX DETAILED RESULTS 

Each of the cases above produces resulting layouts that should be analyzed 

further.  The optimizations of this class often find multiple FA layouts that all produce 

the same ‘optimal’ peaking factor result.  These layouts require analysis to determine the 

layout that is best to use in a given application.  All three of the cases run give the same 

optimal peaking factor of 1.092 but produce numerous layouts that give this value.  Case 

2 gives a few layouts with uranium enrichment deltas of 0.17 w/o and 0.18 w/o as 

optimal values for this parameter, while the third case gives average uranium enrichment 

values from 4.00 w/o 235U to 4.4 w/o 235U.  To pick the best layout to use one could use 

several metrics.  Depending on engineering needs the designer could choose the layout 

with the most or least number of enrichment changes to have the most or least modified 

layout.  These two fringes of the family of layouts can be expected to reduce cost, 

specification error, and manufacturing error.  Cost could be reduced by limiting the 

number of differently enriched pins.  Specification and manufacturing error can be 

reduced because the layouts are somewhat simpler reducing the possibility of human 

error.  Alternatively the layout with the best kinf performance could be chosen.  Yet still 

another method could be to look at the changes that have been made to each location 

over all the optimal layouts and see if those locations are preferable to other locations.   
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Figure 21  - FA reactivity compared to baseline FA results for twenty optimal layouts produced with the same 
peaking factor 

 

This is motivated by the fact that many of the layouts produced fall into classes where 

one location has the same change made.  That is to say a class of these layouts would all 

have possibly the reduced enrichment uranium pin inserted in the same location where 

the other class might have just the nominally enriched pin inserted in that same location.   

 



 64

 

Figure 22 - Reactivity vs Burnup for selected optimal layouts 

All together there are 169 different layouts produced with the same peaking factor.  In 

order to narrow the field for possible candidates some filter must be applied to choose 

the best layout.  Appropriate filters for these layouts are not fully developed as of this 

project and thus the aforementioned strategies are employed for selecting the most 

desirable layouts.  Of the layouts produced, a group of them were chosen based on the 

number of pin cell alterations.  This subset of layouts contains those that had both the 

highest number of fuel pin changes as well as the lowest number of changes.  Another 

way of expressing this would be to count the number of fuel pins in each layout that are 

the average 235U enrichment and use the layouts with the highest and lowest number of 
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these pins.  There are several layouts with as many as fifteen nominally enriched fuel 

pins and then quite a few with as few as six.  These numbers are counting only the 

number of these fuel pins contained in the 1/8th assembly layout specification.  To count 

them in the full FA the weighting factors must be taken into account as it applies to 

where the fuel pins are located.  With the field of candidate layouts reduced, several of 

the other methods of looking for the most desirable layout can be employed.  Since FA 

reactivity is a major indicator of FA performance, those results will be analyzed.  Each 

of the layouts is numbered in no particular order but merely for convention.  Figure 21 

shows a plot of the reactivity with respect to burnup for each of the twenty optimal 

layouts produced.  Reactivity in each case is calculated as the difference between k-

infinite of the FA layout and the k-infinite of the baseline FA times a scaling factor to 

cast the values into a familiar unit of measure.  Most of the twenty cases have very 

similar reactivity plots with respect to burnup. FA’s that have the least negative 

reactivity would be preferable in any design and thus the list of optimal layouts can then 

be reduced further to possibly three layouts that all have the least reactivity over the time 

period of interest.  Those layouts are 15, 17, and 18 and their reactivities are shown in 

Figure 22.  Selection of the best of these three then is left to the designer to pick which 
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1  2  3  4  5  6  7  8 
8  4.00 
7  3.83 3.83 
6  3.83 4.00 4.00 
5  4.00 4.17 4.00 
4  3.83 3.83 3.83 4.17 4.00 
3  3.83 3.83 4.00 4.00 
2  4.00 4.00 4.17 4.00 4.00 4.17 4.17 
1  4.00 4.17 4.17 4.00 4.17 4.17 3.83 

 

Figure 23 - Optimal layout 15 produced with peaking factor in red 

layout should be used.  It is interesting to note that the layouts chosen based on reactivity 

are all in the lowest number of changes.  The optimal layouts can be visualized as in 

Figure 23, Figure 24, and Figure 25.  Looking at the layouts produced yields some 

assurances that relate to engineering intuition and some surprises.  TrASA has found a 

central core of fuel pins that are always reduced in uranium enrichment.  It also suggests 

that no locations that are face adjacent to water holes have increased enrichment.  Both 

of these findings follow with standard physical intuition.  The locations that seem to go 

against intuition are the corner adjacent to water hole locations.  Several times an 

increased enrichment pin can be inserted in these locations to obtain the minimal 

peaking factor observed.  If one were to base an enrichment grading strategy on these 

results, the first need would be to establish the core locations that have reduced 

enrichment and then spread out the increased enrichment pins throughout the lowest 

peaking factor locations.  These results could be analyzed further but that analysis might 
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not yield anything beneficial to the study here due to the infinite lattice assumptions 

inherent in these simulations. 

 

1  2  3  4  5  6  7  8 
8  3.83 
7  3.83 3.83 
6  4.00 4.00 4.00 
5  4.00 4.17 4.17 
4  3.83 3.83 3.83 4.00 3.83 
3  3.83 3.83 4.00 4.17 
2  4.00 4.00 4.17 4.17 4.00 4.17 4.17 
1  4.00 4.17 4.00 4.17 4.00 4.00 3.83 

 

Figure 24 - Optimal layout 17 produced with peaking factor in red 

 

1  2  3  4  5  6  7  8 
8                       3.83 
7  3.83 3.83 
6  4.00 4.00 4.00 
5  4.00 4.17 3.83 
4  3.83 3.83 3.83 4.00 4.17 
3  3.83 3.83 4.00 4.17 
2  4.00 4.00 4.17 4.17 4.00 4.17 4.17 
1  4.00 4.17 4.00 4.17 4.00 4.00 3.83 

 

Figure 25 - Optimal layout 18 produced with peaking factor in red 
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5.6 UOX WITH GADOLINIUM DETAILED RESULTS 

Cases of this class produce fewer layouts with the same peaking factor and often 

times produce only one or two layouts with the lowest peaking factor found.  Therefore 

it is less of an arduous task to analyze these results as there is less decision making 

involved in finding the best suited layout.  As an effect of the normalization method used 

in TransLAT peaking factors produced from this class generally are not quite as low as 

the previous class that does not include Gd-pins.  Despite this, the method does produce 

peaking factor reductions that compare well to these cases’ baseline fuel assembly 

results.  Due to the gadolinium pin restraints imposed, where several of the locations are 

less than favorable for Gd-pins to be inserted, peaking factors are not the lowest that 

have been experienced but the constraint is a necessary addition to exemplify how this 

method can be modified to reflect real world FA design constraints.  Since the various  

 

1  2  3  4  5  6  7  8 
8                       4 
7                    Gd  4 
6                 4  4  4 
5                 4  4  4 
4           Gd  4  4  4  4 
3           4  4     Gd  4 
2     Gd  4  4  4  4  4  4 
1     4  4  4  4  4  4  4 

 

Figure 26 - Optimal Gd-pin layout produced from case 7 
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cases are more steps along a path towards the best implementation of TrASA than they 

are independent stand alone solutions, case 9 and case 7 are the two cases that best 

exemplify the true results of TrASA.  For case seven, there are two layouts that are 

produced based on whether or not the location corner adjacent to the IT location is 

allowed to TrASA.  As stated before, this location was allowed in later cases merely as a 

convention.  The optimal Gd-pin locations with this location allowed are given in Figure 

26.  These optimal locations were then implemented into later cases, as described in  

 

 

Figure 27 - Reactivity performance of both layouts produced from case 9 as compared to nominal Gd-pin 
layout 
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the previous sections, which lead to case 9.  For case 9, there were two layouts produced 

with the same peaking factor which were very similar.  Case nine layouts have reactivity 

performances as shown in Figure 27.  The reactivity for the burnup period is almost 

 

1  2  3  4  5  6  7  8 
8                       3.87 
7                    Gd  4.00 
6                 3.87 4.13 3.87 
5                 3.87 4.00 4.13 
4           Gd  4.00 3.87 4.13 3.87 
3           4.00 3.87    Gd  4.13 
2     Gd  3.87 4.13 4.00 4.00 4.13 4.00 
1     4.13 4.00 4.13 4.00 4.00 4.13 3.87 

 

Figure 28 - Case 9a optimal fuel pin layout with peaking factor marked in red 

identical for both layouts and shows the gadolinium burnup period where the two main 

isotopes 155Gd and 157Gd burn out allowing the fresh fuel in the Gd-pins to contribute to 

the reactivity of the FA.  Layouts for this case are as shown in Figure 28 and Figure 29, 

with the peaking factor maps of these optimal layouts shown in Figure 30 and Figure 31.  

Although these layouts do produce a negative reactivity when compared to the baseline 

FA for a period of time in the burnup period, careful examination of Figure 27 will show 

that the negative reactivity produced is for a short period of time.  The reactivity then 

becomes positive as the gadolinium is burned out and then stabilizes.  This layout should 

be implementable in a modern PWR if the boron concentrations are adjusted to match 

the negative reactivity introduced so that sustained power operation could be maintained. 
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1  2  3  4  5  6  7  8 
8                       3.87 
7                    Gd  4.00 
6                 3.87 4.13 4.13 
5                 3.87 4.00 4.00 
4           Gd  4.00 3.87 4.13 3.87 
3           4.00 3.87    Gd  4.13 
2     Gd  4.00 4.13 4.00 4.00 4.13 3.87 
1     4.13 4.00 4.13 4.00 4.00 3.87 3.87 

Figure 29 - Case 9b optimal fuel pin layout with peaking factor marked in red 

 

 

1  2  3  4  5  6  7  8 
8                       1.071 
7                    0.447  1.052 
6                 1.091 1.080  1.066 
5                 1.146 1.110  1.144 
4           0.454 1.147 1.136 1.104  1.075 
3           1.115 1.134    0.452  1.085 
2     0.442 1.061 1.141 1.139 1.144 1.098  1.098 
1     1.022 1.067 1.133 1.125 1.124 1.128  1.091 

 

Figure 30 - Case 9a pin power results at burnup zero with Gd-pin locations in green and maximal peaking 
factor in red 
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1  2  3  4  5  6  7  8 
8  1.068 
7  0.446  1.049 
6  1.090 1.078  1.112 
5  1.146 1.110  1.119 
4  0.454 1.147 1.136 1.104  1.076 
3  1.114 1.134 0.452  1.087 
2  0.442 1.084 1.140 1.139 1.146 1.101  1.077 
1  1.021 1.065 1.131 1.125 1.127 1.083  1.096 

 

Figure 31 - Case 9b pin power results at burnup zero with Gd-pin locations in green and maximal peaking 
factor in red 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 IN CONCLUSION 

The implementation of ASA to FA optimization has been completed with 

favorable results.  The purpose of this work is to develop a simulated annealing approach 

to FA optimization that can produce optimal FA layouts for the types of FA, with and 

without burnable poisons.  This method successfully reduces the peaking factors with 

respect to the baseline FA references.  Reductions in peaking factors, however small, are 

useful for investigating ways to produce better performance characteristics.  Each of the 

cases produced in this work examine the steps necessary to develop a feasible method 

that produces optimal results within reasonable time constraints.  This work, of course, is 

part of a bigger whole aimed at operating commercial nuclear power plants with their 

fullest potential maximized.  The larger body of work that this fits into takes into 

account core level optimization as well as multi cycle analysis.  Connection of this 

method to the larger body of work is necessary to produce more feasible results. 

6.2 CONNECTING TO IN-CORE OPTIMIZATION 

It is important to note that this work is limited mostly by the necessary infinite 

lattice assumption.  In order to remove this assumption, some knowledge of where the 

FA might be placed in the core is necessary.  A complete optimization process would 

include multi cycle analysis, core level optimization, and this FA optimization work.  

Connecting this work to the core level optimization requires prior knowledge of the 

neighboring FA burnup characteristics, which are not available at this time.  For this 
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reason the infinite lattice assumption was allowed to persist through all the simulations 

performed.  This artificial separation of the FA level optimization from core level 

optimization must be removed at some point for this work to move forward. 

6.3 CONCLUSIONS 

The developed method TrASA successfully implements the connection between 

ASA and TransLAT to minimize the peaking factor for the referenced FA design.  The 

simpler branch of UOX cases have been adjusted so that each one converges to the same 

final peaking factor solution indicating stability of the method and convergence to a very 

good optimal solution.  This optimal peaking factor solution corresponds to a family of 

layouts each with their own advantages and disadvantages.  Performance characteristics 

beyond peaking factor results such as reactivity agree with engineering intuition present 

in literature as well as of the designers of this method.  The type of manipulations that 

are made by the code will typically reduce the reactivity initially given the constraints 

used in the method.  Although this could be viewed as a detractor from using this type of 

radial enrichment map, it is not necessarily a drawback.  Power reactors are often loaded 

initially with extra reactivity, which is then controlled by adding soluble boron to the 

moderator material.  The lower reactivity produced from these cases indicates that less 

boron would be necessary to control reactivity.  As for the UOX cases that allow Gd-pin 

insertions, the resulting layouts and outputs also reduce the peaking factor of the FA but 

do not produce such a large family of solutions.  This is to be expected, however, due to 

the nature of the restrictions necessary to perform the optimization as well as the 

introduction of the Gd-pins themselves.  These restrictions that are put in place limit the 
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number of pin types that can be inserted in each region, thus reducing the number of 

permutations of layouts possible.  Introducing the Gd-pins and their restrictions further 

limits the space available for the optimization.  These restrictions are, however, not 

limitations of the code but rather limitations of the physical phenomena and thus lead the 

optimization process to the optimal domains rather than away from them.  Optimal 

solutions to this sort of analysis are intrinsically bound by the physical phenomena and 

requirements of the FA itself and thus must be found within the bounds of necessary 

restrictions on the domain space.  For these reasons, the optimal solutions found from 

the UOX with gadolinium seem feasible solutions given the TransLAT setup and 

assumptions made.  Within the given framework and using the assumptions made, 

TrASA is a successful implementation of a single objective simulated annealing 

approach to FA optimization for both branches proposed here.   

6.4 FUTURE WORK 

TrASA is a continuing work in progress, and it is assumed that it will take many 

different forms before a useable product can be introduced into the nuclear industry.  

Several of the shortcomings of the code could be mitigated through further study and 

research.  The most time consuming element of the optimization method, the physics 

engine that produces the peaking factor, could be replaced by several other heuristic 

approaches like a properly trained neural network such as those discussed in Souza and 

Moreira (2006), Jang et al. (2001), Gozalvez (2006), and Ergezinger (1995) or by a 

streamlined method that calculates only the necessary properties of proposed FA layouts.  

Integration with these alternatives to using TransLAT as the physics engine is seen as 
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future work possible for this method.  As for the SA side of the methodology, 

improvements could be made in further adapting ASA to the FA optimization.  This 

might require a keener sense of SA methods and possibly a more streamlined approach 

to implementing SA. 
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APPENDIX 

 All TransLAT runs were generated using a simple template input deck.  This 

template is then modified to reflect the proposed ASA layout through Perl scripts and 

then executed with TransLAT.  Several assumptions and calculations went into 

generating this input deck and thus it will be presented here in its entirety.  All results 

presented are generated from this input deck and are relative to the assumptions 

contained herein.  For interpretation of the input deck, refer to the TransLAT 

documentation. 

TransLAT Advanced Particle Transport Software Using Three-Dimensional Deterministic Methods in 
Arbitrary Geometry, User’s Manual, TransWare Enterprises, Inc., San Jose, CA, (Oct. 2000). 

 
TTL TransLAT B&W Mk‐B10 Fuel / Enr=4.00 / LBP=0 / Case=mkb10‐4‐4‐4 
! 
!   Integration Parameters 
CON:0 
TRP:N MOCS2D 
TRP:G OFF 
!   Operating State Conditions 
SYS PD=31.08 TF=811.0 TC=605.0 TM=577.0 PR=2200.0 
! 
DOP On 
!   Fixed Buckling Option 
FUM 1,2 
!   Material Data (in number densities) 
FUE:FUEL  ‐93.8    4.00                / Fuel‐ 4.00 w/o U‐235 
FUE:FUE1  ‐93.8    4.00                / Fuel‐ 4.00 w/o U‐235 
FUE:FUE2  ‐93.8    4.00                / Fuel‐ 4.00 w/o U‐235 
FUE:FUE3  ‐93.8    3.75    6.00        / Fuel‐ 3.75 w/o U‐235 6.00 w/o Gd 
MAT:CLAD  5.84  24000=0.10 26000=0.21 40000=98.24   TAVE=TC / 
MAT:CLA2  6.55  24000=0.10 26000=0.21 40000=98.24   TAVE=TC / 
PPM  H3BO3  5000 / 
         0.0=700./ Initial Concentration of 700 PPM 
MOD 1=0.00 / 
! 
GEO:1 
'PC0',3,0,1,1,1,0 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUEL',1,1,0.4699/ 
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'PC1',3,0,1,1,1,2 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUEL',1,1,0.4699/ 
'PC2',3,0,1,1,1,1 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUEL',1,1,0.4699/ 
'PC10',3,0,1,1,1,0 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUE1',1,1,0.4699/ 
'PC11',3,0,1,1,1,2 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUE1',1,1,0.4699/ 
'PC12',3,0,1,1,1,1 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUE1',1,1,0.4699/ 
'PC20',3,0,1,1,1,0 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUE2',1,1,0.4699/ 
'PC21',3,0,1,1,1,2 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUE2',1,1,0.4699/ 
'PC22',3,0,1,1,1,1 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUE2',1,1,0.4699/ 
'PC30',3,0,1,1,1,0 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUE3',1,1,0.4699/ 
'PC31',3,0,1,1,1,2 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUE3',1,1,0.4699/ 
'PC32',3,0,1,1,1,1 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLAD',1,1,0.5461/ 
  'RCC','FUE3',1,1,0.4699/ 
'WH',3,0,1,0,0,0 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLA2',1,1,0.6731/ 
  'RCC','MOD',1,1,0.65278/ 
'WH1',3,0,1,0,0,1 / 
  'RPP','MOD',1,1,0.72136/ 
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  'RCC','CLA2',1,1,0.6731/ 
  'RCC','MOD',1,1,0.65278/ 
'IT',3,0,1,0,0,4 / 
  'RPP','MOD',1,1,0.72136/ 
  'RCC','CLA2',1,1,0.62611/ 
  'RCC','MOD',1,1,0.56007/ 
'WG1',1,0,1,0,0,1 / 
  'RPP','MOD',1,1,0.042545/ 
/ 
GEO:2 
'WG2',1,0,1,0,0,0 / 
  'RPP','MOD',1,1,0.72136,0.72136,2*0.042545/ 
'WG3',1,0,1,0,0,2 / 
  'RPP','MOD',1,1,0.72136,0.72136,2*0.042545/ 
/ 
LAT 
+IT:1 
0,0,0,270 / 
+PC1:2 
1.44272,0,0,270 / 
+PC1:3 
2.88544,0,0,270 / 
+PC1:4 
4.32816,0,0,270 / 
+PC1:5 
5.77088,0,0,270 / 
+PC1:6 
7.2136,0,0,270 / 
+PC1:7 
8.65632,0,0,270 / 
+PC1:8 
10.09904,0,0,270 / 
+PC2:9 
1.44272,1.44272,0,270 / 
+PC0:10 
2.88544,1.44272,0,0 / 
+PC0:11 
4.32816,1.44272,0,0 / 
+PC0:12 
5.77088,1.44272,0,0 / 
+PC0:13 
7.2136,1.44272,0,0 / 
+PC0:14 
8.65632,1.44272,0,0 / 
+PC0:15 
10.09904,1.44272,0,0 / 
+WH1:16 
2.88544,2.88544,0,270 / 
+PC0:17 
4.32816,2.88544,0,0 / 
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+PC0:18 
5.77088,2.88544,0,0 / 
+WH:19 
7.2136,2.88544,0,0 / 
+PC0:20 
8.65632,2.88544,0,0 / 
+PC0:21 
10.09904,2.88544,0,0 / 
+PC2:22 
4.32816,4.32816,0,270 / 
+PC0:23 
5.77088,4.32816,0,0 / 
+PC0:24 
7.2136,4.32816,0,0 / 
+PC0:25 
8.65632,4.32816,0,0 / 
+PC0:26 
10.09904,4.32816,0,0 / 
+WH1:27 
5.77088,5.77088,0,270 / 
+PC0:28 
7.2136,5.77088,0,0 / 
+PC0:29 
8.65632,5.77088,0,0 / 
+PC0:30 
10.09904,5.77088,0,0 / 
+PC2:31 
7.2136,7.2136,0,270 / 
+PC0:32 
8.65632,7.2136,0,0 / 
+PC0:33 
10.09904,7.2136,0,0 / 
+PC2:34 
8.65632,8.65632,0,270 / 
+PC0:35 
10.09904,8.65632,0,0 / 
+PC2:36 
10.09904,10.09904,0,270 / 
+WG1:37 
10.862945,10.862945,0,270 / 
+WG3:38 
10.862945,0,0,270 / 
+WG2:39 
10.862945,1.44272,0,270 / 
+WG2:40 
10.862945,2.88544,0,270 / 
+WG2:41 
10.862945,4.32816,0,270 / 
+WG2:42 
10.862945,5.77088,0,270 / 
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+WG2:43 
10.862945,7.2136,0,270 / 
+WG2:44 
10.862945,8.65632,0,270 / 
+WG2:45 
10.862945,10.09904,0,270 / 
/ 
! TRA 
!  1, 1, 400, 50, 200, 1.5, 'mkb10fa', '/home/translat/tfx/tramcnp_vi.dat'/ 
! 
!   Power Distribution Maps 
MAP 
'MAPS',1,3,3,0,  0,0,0,0,0,0,0/ 
8,8,1 / 
1,1,'IT:1'/ 
1,2,'PC1:2'/ 
1,3,'PC1:3'/ 
1,4,'PC1:4'/ 
1,5,'PC1:5'/ 
1,6,'PC1:6'/ 
1,7,'PC1:7'/ 
1,8,'PC1:8'/ 
2,1,'PC1:2'/ 
2,2,'PC2:9'/ 
2,3,'PC0:10'/ 
2,4,'PC0:11'/ 
2,5,'PC0:12'/ 
2,6,'PC0:13'/ 
2,7,'PC0:14'/ 
2,8,'PC0:15'/ 
3,1,'PC1:3'/ 
3,2,'PC0:10'/ 
3,3,'WH1:16'/ 
3,4,'PC0:17'/ 
3,5,'PC0:18'/ 
3,6,'WH:19'/ 
3,7,'PC0:20'/ 
3,8,'PC0:21'/ 
4,1,'PC1:4'/ 
4,2,'PC0:11'/ 
4,3,'PC0:17'/ 
4,4,'PC2:22'/ 
4,5,'PC0:23'/ 
4,6,'PC0:24'/ 
4,7,'PC0:25'/ 
4,8,'PC0:26'/ 
5,1,'PC1:5'/ 
5,2,'PC0:12'/ 
5,3,'PC0:18'/ 
5,4,'PC0:23'/ 
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5,5,'WH1:27'/ 
5,6,'PC0:28'/ 
5,7,'PC0:29'/ 
5,8,'PC0:30'/ 
6,1,'PC1:6'/ 
6,2,'PC0:13'/ 
6,3,'WH:19'/ 
6,4,'PC0:24'/ 
6,5,'PC0:28'/ 
6,6,'PC2:31'/ 
6,7,'PC0:32'/ 
6,8,'PC0:33'/ 
7,1,'PC1:7'/ 
7,2,'PC0:14'/ 
7,3,'PC0:20'/ 
7,4,'PC0:25'/ 
7,5,'PC0:29'/ 
7,6,'PC0:32'/ 
7,7,'PC2:34'/ 
7,8,'PC0:35'/ 
8,1,'PC1:8'/ 
8,2,'PC0:15'/ 
8,3,'PC0:21'/ 
8,4,'PC0:26'/ 
8,5,'PC0:30'/ 
8,6,'PC0:33'/ 
8,7,'PC0:35'/ 
8,8,'PC2:36'/ 
/ 
!   Print Options 
PRI 
 1/ 
 80,1,3,1,0/ 
/ 
EDT 
 'Assembly','CELL',4,0,1,1,0,0/ 
/ 
! Burnup Calculations 
!BUR bumax=70 modebu=1 BAMAX=10 BADE1=.25 BADE2=.50/ 
! 
STA 
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