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ABSTRACT 

 

Design and Optimization of  6Li Neutron-Capture Pulse Mode Ion Chamber.  

(August 2008) 

Kiwhan Chung, B.A., Berea College; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Leslie A. Braby 

 

The purpose of this research is to design and optimize the performance of a unique, 

inexpensive 6Li neutron-capture pulse-mode ion chamber (LiPMIC) for neutron 

detection that overcomes the fill-gas contamination stemming from outgas of detector 

components. This research also provides a demonstration of performance of LiPMICs. 

Simulations performed with GARFIELD, a drift-chamber simulation package for ion 

transport in an electrostatic field, have shown that argon-methane mixtures of fill-gas 

allow maintenance of electron drift velocity through a surprisingly wide range of fill-gas 

content.  

 

During the design stage of LiPMIC development, the thicknesses of lithium 

metallization layer, the neutron energy conversion site of the detector, and the thickness 

of neutron moderator, the high-density polyethylene body, are optimized through 

analytical and MCNPX calculations. Also, a methodology of obtaining the suitable 

combination of electric field strength, electron drift velocity, and fill-gas mixtures has 
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been tested and simulated using argon-methane gas mixtures. The LiPMIC is shown to 

have comparable efficiency to 3He proportional counters at a fraction of cost. Six-month 

long baseline measurements of overall detector performance shows there is a 3% 

reduction in total counts for 252Cf sources, which provides a good indicator for the 

longevity of the detector.  
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1. INTRODUCTION* 

 

Ionization chambers have been in use for many decades. They were one of the first types 

of electrical counting devices used in nuclear physics experiments. While there have 

been advances in materials and design improvements for many types of radiation 

detection instruments, ionization chamber designs have more or less remained constant. 

Despite their historical and stable design, the ionization chambers are seldom used in 

pulse mode outside the laboratory setting because the output pulse height and resolution 

are sensitive to changes in gas composition. This research designs and optimizes the 

performance of a unique, inexpensive 6Li neutron-capture, pulse-mode ion chamber 

(LiPMIC) for neutron detection that can overcome the fill-gas contamination stemming 

from outgas of detector parts. This research also provides a demonstration of 

performance of LiPMICs. Simulations performed with GARFIELD (Veenhof, 2005), a 

drift-chamber simulation package for ion transport in an electrostatic field, developed in 

CERN (European Organization for Nuclear Research), have shown that certain mixtures 

of fill-gas allow maintaining similar electron drift velocity through a surprisingly wide 

range of fill-gas compositions. This novel pulse-mode ion chamber is specifically 

                                                 
This dissertation follows the style of Radiation Measurements. 
 
* Part of this section is reprinted with permission from 1) “Homeland security instrumentation 
for radiation detection at seaports.” by Richard Kouzes, 2003. Pacific Northwest National 
Laboratory Report PNNL-SA-43032, Copyright [2003] by Richard Kouzes; 2) “Mitigation of 
outgas effects in the neutron-capture 6Li pulse-mode ionization chamber operation.” by 
Kiwhan Chung, Kiril Inakiev, Martyn Swinhoe, Mark Makela, 2005. IEEE Nuclear 
Science Symposium Conference Record. 3, 1255-1257, Copyright [2005] by IEEE. 
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designed as one of several cost-effective instruments that have the potential to fulfill the 

needs for large-scale deployment in a distributed network of remote sensors.  

 

 

1.1 Motivation and application 

The currently available detectors do not allow a large-scale detection capability even at a 

minimal number of ports of entry for both personnel and goods due to economic 

constraints imposed by the very high initial procurement and operational costs associated 

with the detectors. Even a small deployment scale in the order of tens of radiation 

detectors in traditional deployments can mount very high initial procurement costs. The 

LiPMIC is expected to allow neutron detection capability for deployment for homeland 

security and nuclear material control and accountability applications at a performance 

level comparable to the currently available neutron detectors, such as 3He gas 

proportional counters (HeGPC), while reducing the initial procurement cost by an order 

of magnitude (Ianakiev and Swinhoe, 2002). The detector is expected to provide non-

invasive interrogation of goods and personnel at borders, ports, strategic landmarks, and 

buildings for detecting nuclear materials such as plutonium. Fig. 1 shows the porosity of 

the physical border for the flow of people and goods into the US. The US border has 307 

ports of entry where 330,000 cars, 60,000 commercial trucks and containers, 2500 

aircraft, and 600 vessels transit daily. The porous US-Canada and US-Mexico borders 

are targeted for clandestine and illicit activities, and are a major concern in a complex 

equation of homeland security and counterterrorism (National Commission on Terrorist 
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Attacks, 2004). The general framework for developing such a detector is repeatedly 

described in the Objectives 2.1 and 2.3 of the Department of Homeland Security (DHS, 

2004a). The objectives state, “Provide operational end users with the technology and 

capabilities to detect and prevent terrorist attacks, means of terrorism….” The 

implementation statement in the mission of Office of Defense Nuclear Nonproliferation 

of the National Nuclear Security Administration (NNSA, 2004) states, “Detects nuclear 

proliferation and illicit nuclear and radiological trafficking by conducting cutting-edge 

research and development….” More specifically, the need for a neutron detector 

platform that is economically feasible for a very large-scale deployment has been stated 

by a strategic objective of the Office of Science and Technology in the Department of 

Homeland Security (DHS, 2004b): 

Develop and deploy state-of-the art, high-performance, low-operating-
cost systems to prevent, detect, and mitigate the consequences of chemical, 
biological, radiological, nuclear, and explosive attacks…. 
 
 

Detecting illicit nuclear materials before they reach the US soil is considered the primary 

task for the LiPMICs, but a huge potential exists in domestic safeguard applications. An 

array of LiPMICs can be installed permanently around the perimeter of and at the site of 

strategic landmarks, federal buildings, nuclear power plants, and US military bases 

worldwide. If there is a special event, temporary installation around the site can be 

maintained for the duration of the event to provide a non-invasive surveillance of the 

surroundings. 
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Fig. 1. Various entry points for goods and people to the United States. Copyright [2003] 
by Richard Kouzes. 
 
 
 
1.2 General description of the detector 

Fig. 2 is a diagram of a single-cell ion chamber prototype. The high-density polyethylene 

(HDPE) body is put together as two machined parts and moderates source neutrons to 

thermal energy range via elastic collisions with hydrogen and carbon nuclei. Ion 

chambers detect radiation by collecting ion-electron pairs produced from the interactions 

between radiation and fill-gas atoms. For most neutron detectors there is an intermediate 

conversion process where the incident neutron energy is converted to charged particles. 

For LiPMICs incident neutrons are thermalized in the HDPE and interact with 6Li atoms 

in the metal (depicted with green line in Fig. 2) applied on a nickel-copper substrate 

Mail/ECCF 
Land Border
Maritime 
Air Cargo 
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surface (depicted with red line in Fig. 2) which also acts as cathode, and produce the 

primary charged particles, in a back-to-back geometry, from the 6Li(n,α)3H interactions. 

The resultant primary charged particles, tritons and alpha particles, interact with argon 

gas atoms and produce electrons and argon ions, the electronic signal carriers. The metal 

substrate is applied to the bare HDPE walls by proven technologies such as physical 

vacuum deposition and is less than 10 μm thick. The two HDPE pieces are bolted 

together with metal rods and are sealed with a gasket at the interface of the HDPE 

pieces. The chamber contains an argon gas mixture at 1 standard pressure (atm). The 

prototype chamber is equipped with two gas pipes so that the gas can be changed for 

measurements with different fill-gas combinations.  

 
 

 
Fig. 2.  Design of a single cell prototype. Copyright [2005] by IEEE. 
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The objective of lowering the initial procurement cost is reflected in the ion chamber 

design as it relies on readily available mass-production technology as well as utilizing 

some cost-saving design features in the manufacturing processes. This design of the ion 

chamber uses HDPE, which serves multiple purposes as the moderator, electrical 

insulator, and airtight physical shell, as its body, with metallized layer to provide a 

molecular barrier against possible outgas from the HDPE. A 6Li layer overlaid inside the 

metallized layer serves as the production site of primary charged particles from thermal 

neutron interactions. Detailed design work within this context has brought up the issue 

of mitigating the gasses released from HDPE and other parts inside the active volume of 

the chamber. 

 

Some of desirable design characteristics are high interaction probability with thermal 

neutrons to maximize detection efficiency, low gamma sensitivity to disregard 

environmental and intentional interference from gamma sources, compact size for rapid 

deployment and easy setup, and continuous operability for several years. Portability and 

ease of setup are important aspects of the ion chamber because it is intended for quick 

deployment as needs arise at remote locations. For some deployments, the detectors are 

expected to be left for long-term remote monitoring, and the lifetime of the ion chambers 

have been estimated as 10 years because of a limitation imposed upon the detector 

design by the outgas characteristics of HDPE.  
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The suppression of gamma signals and increasing neutron detection efficiency are 

sometimes two opposing goals and detector developers have to find a common ground 

where the design and operational specifications are mutually satisfied. To maximize the 

neutron detection efficiency the total neutron counting method, counting both energetic 

source and thermal neutrons, is used instead of a neutron spectroscopic method. The 

main difference between the two methods is that a neutron spectrometer has the source 

neutron interacting directly in the detector volume and can have a direct measurement of 

the neutron energy spectrum. While this method obtains the energy information of the 

source neutron, the interaction probability is orders of magnitude low than the thermal 

neutron interaction probability for most neutron-sensitive materials that it is not always 

feasible to use this method for concealed nuclear materials. For example, 1 MeV neutron 

has the total absorption cross section of 0.23 barn, whereas a thermal neutron has 937 

barn (Kinsey, 1979). The reduction in the number of thermal neutrons from a shielded 

source can be compensated by deploying more detectors, which is possible due to the 

low initial procurement cost of LiPMICs, covering more area where stray thermal 

neutrons are detected. The total neutron counting method is applied when the neutron 

energy information is not necessary, or neutron source activity is so low that it can be 

masked in the natural radiation background. The information for source neutron energy 

is lost due to repeated interactions in moderator volume, but this method can indicate the 

presence of nuclear material other than the natural background by detecting larger than 

normal number of thermal neutrons. The LiPMICs are designed as the first method of 
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interrogation and rapid, reliable detection of thermal neutron levels above a set threshold 

can facilitate the flow of commerce and people with minimal interruption.  

 

For LiPMICs additional suppression of gamma signal is not necessary because the 

atomic composition of LiPMIC is mostly hydrogen, carbon, and lithium so that the 

interaction probability of gamma rays is considerably lower than any other neutron 

detector. Other conventional thermal neutron detectors such as 3He proportional counters 

have considerable metal components such as counter chamber walls and the heavier Z 

materials have higher interaction probability with gamma rays. The energetic gamma 

rays expend little energy in the low-pressure argon, and what little energy is expended in 

the gas is registered in the lower energy portion of the spectrum. This portion of the 

energy spectrum partially overlaps with electronic noise and will be discarded, before 

summing up the counts, by using a low energy threshold that minimizes discarding 

valuable neutron counts. The exothermic interaction with thermal neutron and 6Li nuclei 

produces 4.8 MeV of combined energy in the detector volume for every neutron 

conversion. Because of the back-to-back geometry of the primary charged particle 

production, the entire energy will not be deposited in the detector volume and on the 

average, close to a half, 2.4 MeV, will be transferred to signal carriers for full-energy 

deposition episode. The difference in the energy deposition level is enough that the 

separation of gamma-ray-induced signal from neutron-induced signal is achieved with 

95% of the region of interest.   
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1.3 Competing technologies 

Currently, several detector types compete to fulfill the large-scale deployment needs; 

however, none combines the economic feasibility, performance expectation, and 

operational continuity better than LiPMICs. The comparable neutron counting systems 

to LiPMICs are largely divided into two groups: proportional counters and scintillators. 

For gas proportional counters, there are 3He proportional counters, high-pressure 

hydrogen recoil proportional counters, and BF3 proportional counters. For scintillators, 

there are neutron-converter loaded organic scintillators. Other types of neutron detectors 

such as 6Li fiber scintillators are yet to be deployed in the field due to various limiting 

factors; for the fiber scintillator, it’s the long decay time of the pulse that requires an 

unusual pulse processing technique (Specter et al., 1993). 

 

In general, proportional counters achieve their greater sensitivity by amplifying the 

signal carriers via gas multiplication in the order of 103 to 106. So far, this additional 

performance gain has not offset the cost of fabrication, complexity, and sensitivity 

toward the pressure and composition of the fill-gas. These factors become considerable 

disadvantages when the detectors are intended for unattended, large-scale deployment. 

To keep the pressure and composition of the fill-gas in the optimal operational 

conditions, the fill-gas is usually purged or reconditioned through filters to keep the 

contaminant concentration within the design specification. This method is achievable in 

a laboratory, but performing this type of maintenance and operational support in a large-

scale field deployment would be prohibitively costly. Another approach to prevent fill-
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gas contamination is to fabricate a detector body that is completely sealed off from the 

contaminants and environment. A conventional fabrication process of 3He proportional 

counters takes this approach. It takes a series of high vacuum pumping and baking of the 

detector interior, high voltage insulation at the endcaps, and anode and cathode are 

assembled and attached in the manufacturing processes to ensure the longevity of the 

detector operation. This design concept has been proven in many years of operation, and 

3He proportional counters have become the de-facto standard of the thermal neutron 

counting. However, the engineering tasks mentioned to prevent fill-gas contamination, 

leakage current, uneven static electric field strength, and the restrictive supply of 3He 

gases worldwide as raw material all contribute to keeping the overall cost of 3He 

proportional counters prohibitively expensive for large-scale deployment. 

 

The high-pressure hydrogen proportional counters are a type of gas recoil proportional 

counters that is designed to increase fast neutron interaction probability with the 

hydrogen-rich fill-gas. Because of the similarity of the mass of incident neutrons and 

protons, a neutron can transfer its entire energy to the hydrogen nucleus, a proton. The 

recoil protons can be relatively easy to detect with less consideration for gamma-ray 

discrimination. However, considerably lower cross-sections for fast neutrons, the low 

gas density, and low stopping power for recoil protons result in overall efficiency of less 

than 1% (Knoll, 2000, p. 566) and are limiting factors in using the high-pressure recoil 

proportional counters. Heavier methane gas can be used as an alternative to hydrogen 

gas. Because the energy transfer ratio is different between hydrogen and carbon target 
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nuclei, the maximum energy transfer to the recoil carbon nucleus is approximately 21% 

of the recoil proton (Bennett and Yule, 1972). Other than the fill-gas composition, gas 

recoil proportional counters share similarities with the gas proportional counters and 

have the same sensitivity toward the composition of the fill-gas. Due to its low 

efficiency and sensitive operation, high-pressure recoil proportional counters are not 

considered suitable for the large-scale deployment.  

 

Boron Trifloride (BF3) proportional counters use BF3 gas at equal or less than the 

atmospheric pressure. In this gas, the neutron conversion occurs at B-10 atoms through 

(n, α) reactions. The thermal neutron interaction cross-section for 10B is about 4 times 

larger than that of the 6Li(n, α)3H reaction and the potential to have higher efficiency 

than LiPMICs exists. While BF3 is chosen for its high neutron interaction probability of 

10B, and overall quality as the proportional counter gas, the molecular makeup of the gas 

poses problems in the end. The breakdown of BF3 molecules liberates three fluorine 

atoms, which have high electron affinity. Free fluorine atoms in the fill-gas volume 

recombine with electrons and effectively reduce the pulse height amplitude of the signal. 

 

Organic, liquid, and plastic scintillators are other types of detectors that can be used to 

detect fast neutrons. These scintillating materials are derivatives of pure organic crystals 

such as anthracene and stilbene. Anthracene has the distinction of having the highest 

scintillation yield among organic scintillators. However, due to fragility and difficulty in 

obtaining large sizes, these crystals are not used effectively in pure form. Because the 
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light photons, the initial signal carriers from radiation interactions, are produced as 

results of transitions in the energy states in the atoms and not in the lattices, the crystals 

can be dissolved in a chemical solvent and still maintain their scintillation properties in 

interacting with ionizing radiation. This development solved the limitation on the crystal 

size and the varying scintillation yield resulted from incident radiation’s orientation with 

respect to crystal axis. In pure crystal, the scintillation yield can vary by 20-30% 

depending on the orientation of incident radiation (Knoll, 2000 p. 223). For a liquid 

scintillator, a unique method of covering all angles of incident radiation is possible: it 

can submerge samples in its volume during the analysis, capable of reaching 100% 

counting efficiency. This is particularly useful in counting low-energy beta emitters 

often found in environmental samples. The liquid scintillators are packaged in a sealed 

container purged of oxygen because the oxygen present in liquid volume can work as a 

quenching agent and reduce the photon yield. 

 

Plastic scintillators are developed to allow more stability in material and easier handling 

of the scintillators while maintaining the scintillation properties unchanged. The plastic 

scintillators can be considered as organic crystals dissolved in solvent that can be 

polymerized. Popular solvents used for the polymerization process are styrene, 

polyvinyltoluene or polymethyl-methacrylate. Plastic scintillators can be fabricated into 

large, different shapes inexpensively. As the size becomes increasingly large, photon 

loss within the scintillators needs to be addressed. The use of these scintillators for fast 

neutron detection is possible, throughout the changes in their physical forms, due to their 



 
 

13 

 

hydrogen rich compounds and subsequent prolific production of photons after the 

neutron-hydrogen interactions. The densely populated hydrogen atoms in liquid or 

plastic scintillators interact with incident neutrons and the recoil protons expend all their 

energy in the material within a small radius of interaction sites. The proton recoil 

scintillators, usually liquid or plastic scintillators, have fast response and are relatively 

inexpensive.  

 

Unfortunately, extracting pulses of interest may not be straightforward in scintillators 

because of an intrinsic property of organic scintillators in general. The prompt 

fluorescence accounts for the vast majority of the signals; however, the delayed 

fluorescence, is also present. While the delayed fluorescence is a small proportion of the 

yield, the delayed fluorescence cannot be ignored because its fraction in overall 

scintillation yield depends on the type of incident radiation (Knoll, 2000 p. 230). For 

example, the contribution from delayed fluorescence in the scintillation pulses induced 

from gamma particles as opposed to alpha particles is markedly different. Fortunately, 

this distinction is useful in eliminating pulses from a certain type of incident radiation 

entirely using pulse height discrimination. Because of this property of the material, pulse 

shape discrimination is used to differentiate the origin of pulses and eliminate unwanted 

pulses. 

 

Employing the advantages of organic, liquid, and plastic scintillators for detection of 

thermal neutrons, however, would require additional factor. As with other thermal 
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neutron detectors, the performance of the scintillators can be maximized by adding an 

element with high thermal neutron cross section such as boron, lithium, and gadolinium. 

For detection of thermal neutrons, boron is added to plastic scintillators to enhance the 

thermal neutron interaction probability. While the high density relative to BF3 is a 

definite advantage, it has its own share of shortcomings. The optical quality of the 

plastic scintillators loaded with boron is opaque, and the rate of light yield increase 

decreases as the scintillator increases in size and as boron concentration increases. Some 

organic scintillators have much higher scintillation yield per unit energy from prompt 

fluorescence by secondary electrons of gamma rays than that by recoil protons (Knoll, 

2000 p. 565). This behavior is compounded by the density difference between 

scintillators and gases such as BF3 used for thermal neutron detection. The dense 

scintillators allow full energy deposition from secondary electrons produced by gamma 

rays, whereas in gas detectors the secondary electrons easily escaped the active volume 

of detectors. The clear pulse height difference between gamma-ray induced pulses and 

neutron-induced pulses is no longer observed and pulse shape discrimination must be 

employed to distinguish pulses. 

 

Lithium iodide (LiI) is a type of inorganic scintillator for detecting thermal neutrons. 

When europium is added as an activator, the scintillation yield can reach one third of 

that of sodium iodide. As with boron loaded plastic scintillators, the dense material 

characteristics of lithium iodide allows secondary electrons from gamma-rays to deposit 

their full energy, and this makes differentiating pulses induced by gamma rays more 
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difficult. Another inorganic scintillator is zinc sulfide activated with silver (ZnS(Ag)). In 

this compound, lithium fluoride is added to zinc sulfide and mixed in to thin planes. The 

thickness of 0.6mm for the material allows escapement of secondary electrons from 

gamma rays and reject pulses that derived from gamma rays easier. 

 

 Increased efficiency and inexpensive, robust material to withstand the environmental 

conditions are some of the advantages of scintillators. While each scintillator unit can 

increase its active volume, the unit must be connected to a PMT to process the signal. 

The cost associated with increasing the number of PMTs is comparable to the initial 

procurement cost of 3He proportional counters. Not only are the PMTs expensive, they 

also require well-regulated electricity for their operations. PMTs are designed to 

multiply the original photons into a large number of electrons in well-controlled stages 

through many dynodes. The dynodes must maintain their electric properties such as 

voltage and current to amplify the number of electrons. Having this requirement in the 

remote sites where regulated power sources may not be available could seriously halt the 

detector operation. As for the proportional counters, a similar demand of high quality 

power sources exists because their gas multiplication also relies on maintaining specific 

electric field strength throughout their operation. Also, a rather high initial procurement 

cost prevents large-scale deployments of proportional counters.  

 

The LiPMICs avoid the crippling fill-gas contamination issues by operating in less 

sensitive ion chamber mode, and increase its scalability potential by using simple and 
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inexpensive electronic amplification as opposed to adding expensive photomultiplier 

tubes for individual detectors. The combination of a robust design, inexpensive material, 

and fabrication process allows large-scale deployment of LiPMICs. 

 

 

1.4 Contribution to the scientific body of knowledge 

While the driving force behind this research is the cost-effective application potential, 

the underlying scientific verification of the ion chamber’s performance stability with 

varying fill-gas composition enables such applications.  Previous studies of ion 

chambers and proportional counters recognized outgas from polymers and its effect on 

the operation of the detectors, and separated sources of outgas from the active volume of 

the detectors as much as possible. However, motivated by deployment conditions where 

it is not economically or operationally feasible to maintain the high purity of the fill gas, 

this research is intended to develop a new detector design that incorporates outgas as a 

tolerable component of fill-gas so that the ion chamber can operate without interruption 

of service for an extended period. While it is expected that the majority of outgas for this 

detector design may come from the HDPE body, other sources such as embedded 

electronics and gaskets may also contribute to this phenomenon inside the active volume 

of the ion chamber. 

 

A unique component of the final detector design will be the application of highly 

reactive 6Li metal. The 95% enriched 6Li metal is a crucial component in this detector as 
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the thermal neutron capture and primary charged particle production site. Lithium has 

never been used in its metallic form in radiation detection instruments. Because of its 

high reactivity when in contact with moisture, it is necessary to maintain the 6Li metal in 

a moisture-free environment at all times. The specified thickness of 95% 6Li metal is 

calculated to balance the production rate and escape probability of the primary charged 

particles after the neutron-6Li interaction. These unique design features are expected to 

enable the ion chamber to function without maintenance for an extended period. Due to 

strict safety regulations at the Los Alamos National Laboratory (LANL), where 

measurements took place, it was not feasible to routinely refill the 6Li metal lined 

chambers with flammable gases. Most of the proposed experimental measurements are 

performed with prototypes with non-reactive 6LiF inside. The primary charged particle 

production rate may be lower in 6LiF than in 95% 6Li metal, but in other areas 6LiF is a 

safe and adequate replacement material for most activities in this research. 
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2. ANALYSIS OF POLYETHYLENE 

 

Building a radiation detector requires knowledge of many different academic disciplines. 

Because one of the main focus of this research is mitigating the outgas effect and 

optimizing the overall particle detection processes of the ion chamber, understanding the 

source of outgas from the primary detector constituents, HDPE, and outgas effect on the 

operation of the ion chambers are crucial. The analysis of the detector is divided into 

sections following the sequence of interactions leading to neutron detection. The first 

stage of particle interaction is the energy moderation of source neutrons within HDPE 

and transport to the interaction sites in 6Li. General and neutronics properties of HDPE 

are discussed in this section.  The second and third stages, the production of primary 

charged particles resulting from 6Li(n, α)3H reactions, the reaction of secondary charged 

particles in the gas and the effect of outgas in the process, respectively, will be discussed 

in the next section.  

 

 

2.1 Overview of the properties of HDPE 

Plastics are ubiquitous today because of ease of processing and their tremendous range 

in properties such as molecular weight, molecular weight distribution, flexibility, 

crystallinity, etc. One can conceive a set of properties and can create plastic with a set of 

properties very similar to the initial requirements. In the beginning, plastics were 

considered as colloids, which meant that the material was seen as aggregates of 
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molecules with a particle size of 10-1000 nm diameter. In 1920, H. Staudinger showed 

that polymers, including plastics, are made up of macromolecules, very long strains of 

molecules bundled together (Elias, 2003, p. 5).  

 

There are two major types of plastics: thermoplastics and thermosets. Thermoplastics are 

light molecule-weight polymer whose molecules are not cross-linked. This configuration 

allows heating of thermoplastics to form liquids, which can be made into different 

shapes. Thermosets, on the other hand, begin as liquids and are converted to solids by 

polymerization to form large molecules. Once polymerization has occurred, the material 

can not be liquefied. If the structure of the molecular chains is random, the polymer is 

considered amorphous; if the structure of the molecular chains is a regular and ordered, 

the polymer is considered crystalline. In practice, a polymer can only be semi-crystalline 

as its limited molecular structure becomes disorderly after extending for a short 

dimension. Polyethylene (PE) is a type of semicrystalline polymer. 

 

Polyethylene is an industry name for a group of thermoplastics made up of ethylene 

polymers. Its high-strength, ductility, excellent chemical resistance, low water vapor 

permeability, low water absorption, and ease of processing contribute to it being the 

highest volume polymer in the world (Harper, 2000, p. 1.40). PE is used in creating 

bottles, house wares, toys, food containers, and garbage and grocery bags. The variation 

in the density of PE, such as very low-density PE (VLDPE), low-density PE (LDPE), 

linear low-density PE (LLDPE), and high-density PE (HDPE) in this group is caused by 
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the structure of molecular chains. If the backbone of the chains has a small number of 

side branches, then the PE will have high-density characteristics. If the backbone of the 

chains branches out in many directions, then there will be well-developed side branches 

and the PE will have low-density characteristics (Harper, 2000, p. 1.42). Many additives 

are incorporated to produce desired characteristics in polymers. Typical additives 

include are plasticizers, lubricants, anti-aging additives, colorants, flame-retardants, 

blowing agents, cross-linking agents, and UV protectants. Considering how many 

different types of additives are used in making of the polymers, even though they are 

engineered as a stable compound, breakdown of molecules and chains and the eventual 

release of material components is inevitable. It is fundamental to the operation of 

LiPMIC to ascertain the types and concentrations of outgas molecules because the 

outgassing occurs in the active volume of the detector where the signal collection is 

taking place.  

 

Table 1 is a partial list of general material properties relevant to the research scope. 

Vicat softening point is the temperature at which a steel rod of 1 mm2 of cross section 

moves 1 mm into the material when the steel rod was pushed with 10 N while being 

heated at a rate of 50 K/hr (Elias, 2003, p. 108). This test would indicate the temperature 

at which the LiPMIC body would begin to structurally give away. The steel rods 

aligning the three HDPE body pieces to form an airtight volume can put this type of 

force to the body. The thermal deflection temperature is the temperature at which the 

polymer being heated with 120 K/hr bends 0.33 mm under pressure of 66 pounds per 
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square inch (PSI) (Elias, 2003, p. 109). The dielectric strength of the material indicates 

the maximum electric field strength the material can operate as an insulator. A higher 

dielectric strength indicates the material is more electrically insulating. The optimal 

operating voltage of the detector matrix is approximately 200V and the insulating 

property of the HDPE will be more than adequate for electrical safety purposes. For the 

measurement of water absorption property, the samples are submerged in the water for 

24 hours and their weight difference was measured. The linear coefficient of thermal 

expansion shows that the material expands approximately 0.01% of the length. The 

linear thermal expansion coefficients for aluminum, concrete, and steel all range in 10-

20x10-6 in/in/C (Incropera and DeWitt, 2001 p. 537) and are about 5-10 times smaller 

than that of the HDPE linear thermal expansion coefficient. While the scale of expansion 

is negligible in most laboratory settings, for large-scale deployment in remote operation 

may become an important factor to consider. The tensile strength of HDPE shows how 

much tension the material can withstand when pulled apart axially. Compared to metals 

used in construction, HDPE is approximately ten times weaker (Avallone and 

Baumeister, 1996, table 6.2.16); however, given the large bulk of HDPE used per 

detector matrix, HDPE should be able to withstand years of stress from daily operation 

when treated with average care.  
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Table 1 
Comparison of general material properties of polyethylene (Harper, 2000) 

 
Test 

Method 
(ASTM) 

LDPE 
(Low 

Density PE) 

LLDPE 
(Linear Low 
Density PE) 

HDPE 

UHMWPE 
(Ultra High 

Molecular Weight 
PE) 

Density (g/cm3) D792 0.917-0.932 0.918-0.940 0.952-
0.965 0.94 

Vicat Softening 
Point (F) D1525 90-102* 80-94* 126-133+ 176-277 

Thermal Deflection 
Temp. @ 66 PSI (F) D648 104-112 NA 175-196 155-180 

Melting Point (F) D3418 208-239 252-255 266-279 257-280 
Dielectric Strength 
(0.125 in thickness, 

MV/m) 
D149 0.45-1.0 NA 0.45-0.50 0.71 

H2O Absorption  
(% weight) 
(24hours) 

D570 <0.01 <0.01 <0.01 <0.01 

Linear Coefficient 
Thermal Expansion 

(in/in/C) 
D696 100-220 E-6 NA 59-110 E-

6 130-200 E-6 

Tensile Strength 
(PSI) D638 1200-4550 1900-4000 3200-

4500 5600-7000 

* denotes data from Polymer Data Handbook (Mark, 1999). 
+ denotes Kirk-Othmer Encyclopedia of Chemical Technology (Kirk and Othmer, 2001). 
 

 

2.2 Thermalization of source neutrons in HDPE 

The characteristics of HDPE, -[CH2CH2]-n, are well exploited in the nuclear industries 

for its neutron moderating capability. For LiPMIC, HDPE serves a crucial role as a cost-

effective bulk material that can withstand long-term use while thermalizing as many 

source neutrons as possible to facilitate nuclear interaction with lithium-6 atoms on the 

surface of the metallized HDPE. Neutrons can generally have either absorption or 

scattering interactions with atoms in material. When a neutron is absorbed in a nucleus, 

the nucleus cannot contain the excess mass energy of the neutron and eventually releases 

the energy in various schemes such as emitting gamma ray, charged particles, neutrons, 
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and fission fragments. From scattering interactions, the nucleus may be left excited, 

giving off excess energy, and the scattered neutron may change its velocity as a result. In 

elastic scattering interactions, the total kinetic energy of both neutron and nucleus is 

conserved; however, neutron will lose its kinetic energy as a function of mass of the 

nucleus and scattering angle. In each interaction mechanism, the probability of 

occurrence is measured empirically and is defined as microscopic cross section. This 

fundamental concept in neutron interaction is discussed in detail in most nuclear 

engineering textbooks such as Lamarsh and Baratta (2001) and Duderstadt and Hamilton 

(1976). 

 

In HDPE, source neutrons have mostly elastic scattering interactions with hydrogen 

nucleus, and the average transfer of energy is about a half of the kinetic energy due to 

the close mass ratio between a hydrogen nucleus and a neutron.  This average transfer of 

energy is calculated by starting from the conservations laws of kinetic energy and 

momentum in a two-particle collision. A full derivation of steps shown in this section, 

which provides the average logarithmic decreasement of energy in a collision, is 

available in Kaplan (1962).  

 

Using the law of cosines and a relation of momentum and kinetic energy in classic 

mechanics, an equation for the scattered particle can be obtained as: 
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Where E denotes the kinetic energy of the scattered neutron, Eo the energy of incident 

neutron, A ratio of target nucleus mass to incident neutron mass and is approximated as 

accurately as the atomic mass number, φ is the angle between the target nucleus and 

incident neutron in the center of mass system. In Eq. (1), when φ=0, the scattered 

neutron is assuming the same direction of flight as the incident neutron, the energy of the 

scattered neutron is E=Eo, and there is total transfer of energy. When the scattered angle 

is φ=π, the scattered neutron is bouncing back 180 degree to the original direction of the 

incident neutron and its energy is zero. Using the relation between the scattering angle φ 

in the center of mass system and the scattering angle in the laboratory setting θ, the 

following expression can be established (Kaplan 1962): 
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Then, the average scattering angle can be obtained by integrating the Eq. (2) over the 

possible range for φ, which is from 0 to π. In Eq. (3), a substitution x= cos φ was made 

to make the integration easier. 
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Then, the average scattering angle is used to obtain the average energy loss per collision 

in the logarithm of the neutron energy. The probability of having an incident neutron of 
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Energy Eo having an energy between E and E+dE, after one collision, can be expressed 

as (Kaplan, 1962):  
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The denominator of the Eq. (4) indicates the range E can have after a collision (Kaplan 

1962). Also, by definition, the average decrease per collision in the logarithm of the 

neutron energy is:  

E
E

EE o
o lnlnln =−=ξ .         (5) 

Then, ξ is the product of the difference in logarithmic energy and the probability PdE 

integrated in full energy range: 
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When A=1 or A approaches infinity, the right side of Eq. (7) becomes indeterminate. By 

taking the limits of the function, the function reaches 1 when A=1 and 0 when A 

approaches infinity. As a result, the energy of the source neutron is continuously halved 

as it goes through elastic interactions with hydrogen in HDPE. For carbon atoms, the 

average loss of energy per elastic interaction is approximately 16% and requires 

approximately six times (Kaplan, 1962) more collisions to thermalize source neutrons. In 

inelastic scattering interactions, a portion of kinetic energy of neutron is spent on 
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exciting nucleus and consequently the kinetic energy of outgoing neutron is reduced. For 

hydrogen atoms, the inelastic scattering interactions do not occur because the hydrogen 

nucleus does not have excited states. For carbon atoms, the inelastic scattering 

interactions only occur above the threshold energy of 4.44 MeV for the first excited 

nucleus state (Firestone and Shirley, 1996).  

 

The modes of interaction source neutrons can take at the atomic level have been 

described so far. However, the scale of interaction involves many moles of material and 

one needs to discuss the bulk property of material, building on the concept of 

microscopic and macroscopic cross sections. While the discussion of macroscopic cross 

section is just as fundamental as the discussion of microscopic cross section, the 

discussion will be limited to the discussion pertaining to the comparison of bulk property 

of materials. The bulk property of a material for neutron moderation can be described in 

terms of two factors, moderating power and ratio, and are built upon the description on 

the atomic scale. The moderating power is defined as ξΣs, a product of macroscopic 

scattering cross section and the average logarithmic decrease in the energy of a scattered 

neutron in an interaction (Reilly et al., 1992). The moderating power indicates how 

effective the material is at reducing the neutron energy. 

 

On the other hand, a material is not suitable as a moderator if the material only absorbs 

neutrons and act as a neutron poison. While this may be desirable for radiation 

protection and shielding purposes, it is not desirable for radiation detection purposes.  To 
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quantify the tendency of a material being a good moderator as opposed to an absorber, a 

moderating ratio is conceived. The ratio of thermalized neutrons – neutrons that 

“survive” the thermalization processes – to the absorbed neutrons is ξΣs/Σa, where Σa is 

the macroscopic cross section for absorption interaction. Glasstone and Sesonske (1967) 

compared several widely used neutron moderators. Water has moderating power (1 eV 

to 100 keV) of 1.28, heavy water has 0.18, and PE has 3.26, almost three times that of 

water. For moderating ratio, water has 58, heavy water 21000, and PE 122. Other 

materials such as helium, beryllium and graphite were examined, also, but in all 

practicality, PE has a good balance of average logarithmic decrement energy and low 

macroscopic absorption cross section while keeping the cost of moderation low.    

  

 

2.3 What is outgas? 

An outgas is the “migration of molecules of a chemical from a material into its 

surroundings” (Fang et al., 1991). Some sources of outgas are intended as additives in or 

as integral parts of the materials, or left trapped during the production processes; 

however, as the materials break down through aging processes, such as weathering by 

ultraviolet radiation and chemical reactions within the bulk material, or through 

structural failure, components start to come apart and are released molecularly.  Other 

sources such as water vapor, carbon dioxide, and nitrogen, which are abundant in the 

atmosphere, enter the polymer from the outside, permeate through the structure, and 

desorb from other surfaces. Outgassing is mostly a slow process that does not provide 
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visible evidence readily, but its cumulative effects are sometimes obvious. Whether 

sources of outgas originate within the polymer structure or outside, their migratory 

processes can be explained in terms of gas dynamics such as the diffusion coefficient, 

the permeability coefficient, and solubility.  

 

As some chemicals make contact with an exterior surface of polymer, their components 

are dissolved in the polymer. The dissolution of penetrants, as they are called in the field 

of polymer science, depends on many variables such as interaction between outgas 

components and the polymer, concentration, temperature, pressure, particle size of the 

components, and the morphology of the polymer structure, i.e., the distribution of shapes 

and sizes of open spaces, which are determined by presence and degree of cross links 

(Neogi, 1996). The dissolution process reaches a critical point, when the vapor pressures 

of the penetrant inside the polymer and outside are equalized, and diffusion takes place 

in the bulk material. Diffusion is defined as a manner of transport of material through 

random molecular motions (Crank, 1975). As outgas molecules are diffusing through the 

structure, they may be absorbed back into the structure as sorption process predominates, 

or slow down by the friction force present in the polymer structure. In general, the 

diffusion coefficient is a complex function of particle morphology, structure of polymer 

chains such as composition, crystallinity, and level of cross-linking, and the temperature 

(Kiparissides et al., 2002). A large-diameter molecule of penetrant would experience 

high friction as it tries to move its way among the polymer chains. In a semicrystalline 

polymer, an amorphous part is considered more tolerant for diffusion than the crystalline 
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part, as the crystalline structure becomes a barrier for the penetrants (Kiparissides et al., 

2002). The third parameter, permeability, is considered a product of diffusion and 

solubility. The diffusion coefficient is a kinetic factor, representing the dynamic process 

in penetrants and polymer system, while solubility represents the thermodynamic factor 

in the interaction among penetrants and polymer. 

   

Outgas phenomena are quite common in every day life and their effect on people are 

sometimes benign or even positive. When a new car is purchased, the car smells like a 

new car and it is one form of validation for money well spent. What people smell are 

outgases from volatile organic compounds (VCO) in the interior parts of the car. One 

informal investigation revealed presence of 75 VCOs in the air inside new cars, with the 

sources of the outgas varying widely from leather seats and carpet to headliners. Outgas 

is usually an unintended, undesirable property, which product designers and end users 

would like to see minimized as much as possible. For electronic parts and materials used 

in satellites, National Aeronautics and Space Administration (NASA), takes great care to 

test them for outgas properties in extreme temperatures and in vacuum so that the 

electrical contacts and parts function as they are meant. Outgas in printed-circuit boards 

can lead to unstable electrical contacts and make instruments malfunction. If epoxy used 

to hold parts together outgases and loses its adhesiveness, the result can be irrecoverable 

in space. For manned missions, outgas characteristics take additional importance 

because even a trace amount of outgas can accumulate in a closed-air system in a space 

shuttle or space station and build up to an unhealthy level. To uniformly test electronics 
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parts, a standardized method of testing for outgassing was introduced as American 

Society for Testing and Materials (ASTM) E595-84. It has been a widely accepted 

method, and in its current form as E595-07, revised in 2007, E595 reports the total mass 

loss (TML) and the mass of collected volatile condensable materials (CVCM) (ASTM, 

2007).  

 

For high-energy physics communities, outgassing from the detector interior and the 

breakdown of fill-gas in gas detectors under intense radiation and electric fields have 

been identified as a part of aging and have been noted many times (Titov, 2004). With 

the development of Large Hadron Collider (LHC), gas detectors used in the experiments 

are exposed to great “hadron fluences up to 1015 – 1016 cm-2” (Titov, 2004). This concern 

is not limited to European Organization for Nuclear Research (CERN), where the LHC 

is being built. Particle accelerator energy outputs and luminosity are becoming greater 

and radiation detectors have to be able to handle the amount of radiation physically and 

electronically. It has been noted by Charpak et al. (1972), Va’vra (2003) and others that 

the formation of deposits on electrode surfaces, caused by the breakdown of fill-gas 

molecules, resulted in abnormal electric field strength near the anode and subsequent 

degradation of wire chamber performance. Attempts to use different fill-gases such as 

Ar(Xe)-CF4-CO2 and Ar-CO2-O2 have been somewhat successful in minimizing the 

polymerization of electrode surfaces, but brought on other problems such as chemically 

damaging gold-plated anode wires (Romaniouk et al., 2003; Krivchitch et al., 2003) and 
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becoming more sensitive to trace amount of silicone compound often found in high 

vacuum lubricants (Ferguson et al., 2002; Romaniouk et al., 2003; Capeans, 2003). 

 

Another example of outgas comes from liquid. The carbonated beverages, including 

beer, are packaged in carefully engineered, multi-layer bottles and cans to maintain 

optimal carbonation and product freshness. For soft drinks, the diffusion and permeation 

rates of carbon dioxide through the usual packaging of polyethylene terephthalate (PET) 

are carefully measured to ensure that the consumers do not received bottles of beverages 

that are depleted of carbonation. For beer, the additional factor of oxygen migration from 

the outside, which would make beer oxidized and spoiled, requires that they continue to 

use either aluminum cans or glass bottles. For this reason, the permeation coefficient for 

oxygen required for beer packaging is 20 times smaller than that of the soft drink (Elias, 

2003, p. 90). In this case, the carbonation was under pressure and maintaining the 

carbonation dissolved in the liquid as long as possible was a deciding factor in choosing 

the length of shelf life for the products.  

 

 

2.4 Previous research on gas dynamics in polymers 

The diffusion model of gases has been studied for more than two centuries, but the gas 

dynamics in polymers has been studied for about 60 years. In this time, the 

advancements in both material science and polymer studies allowed the prolific use of 

polymers in every day life and at the leading edge of technology. Due to increasing use 
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of polymers from food packaging to state-of-the-art satellites, the gas dynamics in 

polymers has been documented very well for the most part. Michaels and Parker (1959) 

investigated small molecules’ dependence on polymer structure using environmental, 

noncondensable penetrants such as nitrogen, oxygen, and carbon dioxide. The 

morphology of the polymer samples used in Michaels and Parker’s research varied in 

crystallinity from 43 to 82 per cent. The authors stated that the solubilities obeyed 

Henry’s Law, within the limit proposed by the law. Henry’s Law correlates directly the 

solubility of a penetrant in liquid to the partial pressure of the penetrant in gas. This 

finding justified and allowed the application of the unsteady-state diffusion equation to 

isotropic crystalline polymers (Michaels and Parker, 1959). Michaels and Bixler (1961) 

expanded Michaels and Parker’s idea further by testing light hydrocarbon gases such as 

methane, ethane, propane, etc. For these penetrants, the solubility remained proportional 

to the ratio of amorphous material present in the bulk material, if the bulk material was 

considered as having two-phase volume consisting of amorphous and crystalline 

polymers. In a different journal article, Michaels and Bixler (1961) showed that the 

diffusion coefficients for carbon dioxide, nitrogen, oxygen, and methane are a function 

of temperature and crystallinity of the polymer. To incorporate the effect of crystallinity 

of the polymer, they introduced a geometric impedance factor and a chain 

immobilization factor. In 1960, Rogers et al. conducted an extensive investigation of gas 

dynamic properties of 19 organic gases in polyethylene. They concluded that the 

solubility was an exponential function of sorbed vapor concentration of penetrants and 
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that the polymer swelling was a factor in increasing the diffusion coefficients for heavy 

organic gases such n-hexane and n-heptane.  

 

Interesting study with hydrocarbon gases showed that certain hydrocarbon species seems 

to have little effect on the gas dynamics of another hydrocarbon specie (Robeson and 

Smith, 1968). This idea was utilized in finding the right mixture of fill-gas so that 

contamination of fill-gas would be mitigated as much as possible. Robeson and Smith 

provided an explanation for this phenomenon. Robeson and Smith found that the 

permeability and diffusion coefficients of ethane-butane mixtures are exponential and 

linear functions of butane concentration. They attributed this to butane “plasticizing” 

(Robeson and Smith, 1968) the polymer material preemptively because butane’s 

solubility is an order of magnitude higher than that of ethane. Li and Long (1969) 

expanded testing of hydrocarbons and tested for both solubility and permeability of 

nitrogen and light hydrocarbon gases. They showed that the permeability of liquid and 

gases in polymer material is dependent on penetrant concentration. Li and Henley (1964) 

have shown that the permeability is dependent of pressure as long as Henry’s law 

constant is independent of pressure. The pressure at which Henry’s law constant 

becomes dependent on pressure was found to be above 120 PSI-absolute (Li and Henley, 

1964). Kulkarni and Stern (1983) obtained diffusion and solubility coefficients for 

carbon dioxide, methane, ethylene, and propane and confirmed that the solubility 

remained constant, independent of pressure up to 40 atm, and within the Henry’s law 

limit.  
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However, some studies have been in disagreement with current established laws, and 

with previous research. Castro et al. (1987) investigated the solubility of n-butane, n-

pentane, n-hexane, and n-heptane vapors in PE as a function of temperature, between 

258 and 318 K and up to a relative pressure of 0.95, normalized with the vapor pressure 

of pure hydrocarbon compounds. In the study, Castro et al. (1987) showed that the 

solubility is not just dependent on temperature, but also on pressure. To characterize the 

discrepancy, the authors incorporated molecular weight, temperature, and pressure, into 

an expression for solubility and the experimental results confirmed the derivation. 

Perhaps, it is previous investigations such as one performed by Castro et al. (1987) that 

gave impetus for Mattozzi et al. (2005) to investigate the effect of polymer structure on 

the diffusion of n-hexane in polyethylene. Mattozzi et al. argued that the low diffusion 

coefficients of small molecule penetrants in a low-crystalline polymer sample are the 

result of a different aspect ratio than the one used to characterize the crystal shape used 

in the Fircke model, which assumes crystals to be oblate spheroids (Mattozzi et al., 

2005).  

 

Not all research on gas dynamics has concentrated on the free-volume theory. While 

free-volume theory has had success in explaining diffusion coefficients of small 

molecules in amorphous polymers in terms of temperature and the penetrant 

concentration, Pace and Datyner proposed that the free-volume theory grossly ignored 

the molecular structure of the polymer-penetrant system. They tried to explain diffusion 

as physico-chemical properties of polymer-penetrant system. Pace and Datyner 



 
 

35 

 

published three articles (1979a, 1979b, and 1979c) in 1979 to establish a statistical 

mechanical model for diffusion. Lastly, Doong and Ho (1992) sought to combine the 

best properties of free-volume theory and Pace-Datyner’s molecular theory into their 

own diffusion model. For a comprehensive survey of gas dynamics in polyethylene, 

Kiparissides et al. (2002), Fang et al. (1991), and Flaconneche and Klopffer (2001) 

provide a good starting point. 
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3. ANALYSES OF DETECTOR PHYSICS COMPONENTS* 

 

For the next step in the multiple stages of particle interactions, components of neutron 

detector physics, including detector-specific variables, are investigated to provide an 

initial framework on which simulation and experimental work begin. Previously, 

general, neutronics, and outgas properties of the bulk material of the detector, HDPE, 

have been described. These findings are largely applicable to the thermalization of 

source neutrons, and it is appropriate to understand in depth how interactions after the 

thermalization processes occur in the lithium metallization layer and in the fill-gas. 

Choosing appropriate designs and components based upon these findings is essential in 

expediting the detector development process and in optimizing the performance of the 

detector. Some of the findings discussed in this section are neutron conversion process, 

heavy charged particle interaction, detector geometry, and fill-gas. The results are then 

used in creating simulation models for better understanding of the ion chamber 

performance and are verified with experimental measurements.  

 

 

 

 

                                                 
* Part of this section is reprinted with permission from “Large area neutron detector based on 
6Li ionization chamber with integrated body-moderator of high density polyethylene.” 
by Kiril Ianakiev, Martyn Swinhoe, Kiwhan Chung, Ed McKigney, 2004. IEEE Nuclear 
Science Symposium. Conference Record. 1, 456-460, Copyright [2004] by IEEE. 
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3.1 Neutron conversion process and total cross-section 

If source neutrons successfully survive elastic collisions with mostly hydrogen and 

carbon atoms and avoid capture in the HDPE moderator, their energy is reduced to the 

thermal energy range, which is at the thermal equilibrium with surrounding atoms and 

molecules. Neutrons are said to be at thermal equilibrium when their energy is calculated 

to be 0.025 eV at the standard temperature and pressure (STP). At the STP, 1 atm and 

273 K, they have the highest probability to interact with elements that can facilitate 

thermal neutron interactions. Some of the widely used thermal neutron reactions are 

10B(n, α)7Li, 6Li(n, α)3H, and 3He(n, p)3H. Thermal neutron interactions are exothermic 

reactions, and a 6Li(n, α)3H reaction produces the highest energy output of the three. The 

total energy output, Q-value, of 4.8 MeV, 2.1 Mev for α-particle and 2.7 MeV for 3H, 

allows easier discrimination against gamma emitters such as 137Cs and 57Co. The other 

two reaction types, 10B(n, α)7Li, and 3He(n, p)3H have the Q-value of 2.8 MeV and 0.76 

MeV, respectively. On the other hand, the thermal neutron cross section for 6Li is lowest 

of the three at 940 barns while 10B and 3He have thermal neutron cross sections at 3840 

barns and 5330 barns, respectively. A comparison of thermal neutron cross sections and 

Q-values associated with the three neutron conversion reactions would seem there is no 

clear winner among the three; after all, 6Li, having the highest Q-value, has the least 

probability of interaction at 940 barns. However, if one seeks signs for the presence of 

neutron emitters, then using a conversion reaction of lower Q-value could allow the 

neutron-induced pulses to be overwhelmed in a sea of gamma ray pulses. Therefore, one 

would prefer to have higher Q-value interactions so that even a fewer number of pulses 
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distinguished from gamma ray pulses in the energy spectrum will indicate unmistakably 

the presence of neutron emitters. 

 

When thermal neutrons interact with 6Li atoms, they form compound nuclei for a brief 

moment. Neil Bohr proposed the concept of compound nucleus in 1936 and explained a 

compound nucleus as a stage in nuclear reactions. Bohr stated that a nuclear reaction 

occurs in two steps. In the first step, an incident particle is absorbed by the target nucleus 

and forms a compound nucleus. The incident particle penetrates through the Coulombic 

barrier of the target nucleus and collides into the surface of the nucleus. In the second 

step, the compound nucleus is fragmented by ejecting a particle such as proton or 

neutron and the remaining nucleus. The compound nucleus may exist as long as 10-15 to 

10-14 seconds (Kaplan, 1962 p. 453), and it randomly distributes the kinetic energy of the 

incident neutron and the binding energies of the constituents of the compound nucleus. 

This additional energy can be considered as excitation energy and is calculated as the 

difference between the sum of individual masses of incident neutron and target nucleus 

and the mass of compound nucleus and the kinetic energy of the incident neutron. For 

thermal neutron interactions, the kinetic energy of a thermal neutron is negligible. The 

excitation energy, however, cannot be retained indefinitely, and the compound nucleus 

breaks into fragments. One interesting note is the range of lifetime of compound nuclei 

is between 10-15 and 10-14 seconds. It takes a thermal neutron to cross a radius of a 

nucleus in approximately 2x10-18 sec. While the lifetime of the compound nuclei and the 

thermal neutron crossing of an atomic radius are incredibly short durations, the 
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compound nucleus stays in existence three orders of magnitude longer after the 

‘integration’ of a thermal neutron into a compound nucleus – the thermal neutron 

crossing the radius of the target nucleus. In this relatively long existence, the compound 

nucleus shuffles the excitation energy around and stays in the elevated energy state 

where the excitation energy is withheld for the duration. The virtual state or level of the 

compound nucleus is the elevated energy state where the compound nucleus is 

withholding the excitation energy. A virtual level is dissolved when a compound nucleus 

is broken up by ejecting a nucleon. While the excitation energy is the sum of kinetic 

energy of the incident neutron and mass excess, the reaction probability depends on the 

excitation energy matching a virtual level of the compound nucleus. This is because the 

incident neutron has to penetrate through the Coulombic barrier of the target nucleus, 

and there are certain values of incident particle energies where the penetration of 

Coulombic barrier, hence, the formation of a compound nucleus, is more probable than 

other energy values due to excitation energy resonating with an energy level inside the 

nucleus. 

 

If a nuclear reaction occurs and a compound nucleus is formed, then the total energy and 

momentum of the two moving fragments are conserved before and after the 

fragmentation. Because of the conservation of kinetic energy and momentum, a 

compound nucleus is broken up into reaction products, the primary charged particles, 3H 

and α particles, in a 180°, back-to-back geometry where one is likely embedded in the 

6Li metallization layer. In this geometry, it is only possible to obtain pulses derived from 



 
 

40 

 

one of the two reaction products at a time. Even the surviving primary charged particle 

may expend some energy escaping from the 6Li metallization layer.  

 

The resonance theory provides an explanation for the physical phenomenon of nuclear 

interactions, but the concept of cross-section provides an expectation value of the 

interaction probability. While the individual cross-section can be obtained 

experimentally, the collective cross section of the detector as a unit, the total cross 

section, can be obtained from atomic cross section. Based upon MCNPX (Hendricks and 

McKinney, 2005)  simulation and analytical calculation the optimal thickness is found to 

be approximately 30 μm (The calculation and discussion of the optimal thickness is 

deferred until SIMULATION section where it is integrated better with the MCNPX 

(Monte Carlo N-Particle eXtended)optimization process of HDPE thickness). At this 

thickness, there is only 60% total escape probability for the primary charged particles 

per incident neutron.  This factor is taken into consideration when total cross section is 

calculated for LiPMIC.  The total cross section can be thought of as the collective cross 

section the detector is presenting to an incident neutron.  Total cross section is derived as 

the following: 
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The relationship between total cross section and macroscopic cross section can be 

established with the following derivation: 
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The total cross section is the product of macroscopic cross section and volume of the 

interaction site.  The similar total cross section values shown in Table 2 between HeGPC 

and LiPMIC indicate that two detectors are not much different from each other on the 

theoretical limit of interaction probability when a thermal neutron reaches the interaction 

site.  The calculation of total cross section is a little different for HeGPC where the total 

number of He atoms is derived by the effective volume of the He gas at 4 ATM inside 

the tube.   

 
 
Table 2 
Interaction parameters for thermal neutron interactions 

 
3He gas prop. Counter 

(HeGPC) 
6Li neutron-capture pulse 

mode ion chambers (LiPMIC) 
Interaction Site 3He Gas @ 4 ATM @ 30 cm 6Li metal @ 30μm 

Interaction mode 3He(n,p)3H 6Li(n,t)4He 
Q-value 0.765 MeV 4.8 (t:2.7; α:2.1 MeV) 

Thermal neutron 
cross section 5330 barns 940 barns 

Active Area/Vol. 150 cm3 700 cm2 

Areal density 0.54 mg/cm2 (thickness =r) 1.38 mg/cm2 

Total reaction cross 
section 86 cm2 63* cm2 

*Effective total reaction cross section is the product of total reaction cross section and 
escape probability (60% @ 30 um of 6Li). 
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3.2 Charged particle interaction in gas 

Because the primary charged particles, 3H and α particles, are emanating from a plane of 

6Li metallization layer, and the conservation of momentum and kinetic energy dictates 

the ejection of the fragments in a 180°, back-to-back geometry, it is inevitable to have 

one of the particles embedded in the 6Li metallization layer. In addition, depending on 

the depth of formation of the compound nucleus within the metallization layer, the 

amount of energy the surviving particle will carry to the active volume of the detector 

will vary. Swinhoe calculated in an unpublished report in 2003 the ranges of α and 3H 

particles from 6Li(n, α)3H reaction in 6Li metal to be 128 μm and 22 μm, respectively. 

Contrary to neutrons, the primary charged particles interact with matter mostly through 

Coulomb forces between the positive charge and the negative charges of the orbital 

electrons of the surrounding atoms. Heavy charged particles with 100 MeV or higher 

energy can have inelastic collisions with target nucleus, but the charged particles with 

such high energy are not encountered through 6Li(n, α)3H reactions. Cosmic rays may 

have protons and subsequently muons that are energetic above 100 MeV, but the 

background radiation, including the contribution from the cosmic rays, for experiments 

has been recorded at 2 counts per second, which is statistically insignificant. Hence, it is 

reasonable to assume that the majority of the energy expenditure of the primary charged 

particles is with orbital electrons. 

 

As the primary charged particles pass through the active volume, the orbital electrons in 

the vicinity feel the Coulombic attraction. Varying level of attraction, which is indicated 
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by the proximity of the interaction between the primary charged particles and the orbital 

electrons, will effect whether the electron will be stripped away from the atom or just 

excited to a higher energy level, only to be de-energized to the original energy state later.  

These interactions influence the primary charged particles to lose velocity in the process. 

The great mass difference between the primary charged particles and electrons dictates 

that even the maximum energy transfer to an electron is quite small. However, the 

primary charged particles interact with numerous electrons simultaneously and the net 

effect of the simultaneous interactions continuously slows down the particle. Eventually 

this process ends and the primary charged particles come to a stop. In a detector with a 

finite dimension, this means some primary charged particles do not expend their full 

energy in the volume. While collection of full electronic pulses is not usually practiced, 

designing the thermal neutron detector dimensions to be much smaller than the full range 

of the primary charged particles increases wall effect to limit full energy deposition and 

decreases the scale of pulse-height spectrum. This decrease will in fact reduce the 

efficiency of LiPMICs because pulses registering below a lower energy threshold are 

discarded as a way to eliminate the contribution from gamma rays and electronic noise.  

 

The charged particle interactions can be classified as soft collisions, hard collisions, and 

Coulomb force interactions with nucleus. The soft collision occurs when the impact 

parameter, b, the distance between an incident, charged particle and the center of target 

atom, is much larger than the atomic radius, a. In this type of interactions, the incident 

particle interacts with the target atom as a whole, and transfer small amount of energy to 
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excite or ionize the target atom. This is the most prevalent type of the three, and it 

accounts for about a half of the energy expended by the charged particles (Attix, 1986, p. 

161). The hard collision is a type of interaction where impact parameter is similar to the 

atomic radius, creating a collision where the incident particle collides with an orbital 

electron of the target atom. In this collision, the ejected electron absorbs the energy of 

the incident particle the most and becomes energetic enough to cause additional 

Coulomb force interactions. This type of electrons is called delta rays and has a short 

range near the track of the original charged particle. While the delta ray may have a short 

range, the resultant products from interactions with delta ray may travel some distance. 

If a delta ray knocks off an inner-shell electron, a characteristic x-ray or Auger electron 

is produced, and there is no distinction whether they are produced through photon 

interactions (Attix, 1986, p. 163). Energy expenditure wise, the amount of energy spent 

in hard collisions is comparable to that of the soft collisions. The third type of interaction 

is the Coulomb force interactions with nucleus. This occurs when the impact parameter 

is smaller than the atomic radius. This type of interactions does not happen in significant 

quantity for the α and 3H particles produced from 6Li(n, α)3H interactions because the 

energies of these particles are not sufficient enough to break through the Coulomb force 

of the nucleus. This type of interaction is significant for electrons, though. The electrons 

in close proximity to the nucleus when they interact are deflected elastically for most of 

the time, and this is the reason for electrons’ particularly tortuous path in high-Z 

materials (Attix, 1986, p. 164). 
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The modes of interaction for the primary charged particles described previously can now 

be applied to understand the range and energy loss characteristics of the tritons, the main 

contributor of the signal pulses. Swinhoe calculated that the pulse contribution from 

surviving α particles is approximately 25% in the optimized 6Li metallization thickness 

of 30 μm. If one assumes that a triton emanates from the 6Li metallization without 

expending its energy, then a 2.7 MeV triton creates on the average 105,000 ion pairs in 

argon gas at STP. The W value – the average energy expended to create an ion pair – of 

argon gas at STP has been observed to be 26.3 eV (ICRU, 1979). The triton creates the 

ion pairs in its range continuously as described by the continuous modes of interaction 

through Coulomb force. A mean range is the distance where an initial particle count is 

reduced by one-half in a medium. The mean range of a 2.7 MeV triton is derived to be 

6.39+-0.05 cm, based upon an experimental range value of 11.40 +-0.09 mg/cm2 (Wolke 

et al., 1963). These values are used in GARFIELD to simulate the gas dynamics in 

detector models. The distribution of ion pairs along the track of a triton is not uniform. 

This is related to the stopping power of the argon gas for the triton particles because the 

stopping power is defined as the differential energy loss for the particle per pathlength 

traveled. Pathlength is the actual distance a particle travels, and range is the effective 

penetration depth a particle reaches as it meanders in the medium through various tracks.  

The mass collision stopping power for a heavy charged particle is defined as the 

following: 
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As shown in Eq. (10), the mass collision stopping power is dependent on many 

variables. Constant C is the number of electrons per gram of the medium (Attix, 1986, p. 

167).  Z is the atomic number of the medium, z is the charge of the incident particle, A is 

the atomic mass unit of the target atom whose electron the incident particle interacts 

with, and NA is the Avogadro’s number. β is the velocity in fraction of the speed of light 

and ro is the classical electron radius. I is the average excitation potential of the target 

atom. The influence of medium on the stopping power is present with variables I and Z. 

As the atomic number A increases the stopping power decreases. Also, as the average 

excitation potential increases, the stopping power decreases also. The influence of 

particle charge is addressed with variable z. While the variables are useful in calculating 

the stopping power of a particle that is traversing through media of different 

composition, when the particle stays in a medium, then these variables become constant. 

However, the particle velocity expressed as a fraction of the speed of light changes 

constantly as it interacts with numerous electrons simultaneously, and the stopping 

power changes with the changing velocity. The change in stopping power for a 2.7 MeV 

triton traveling in argon is plotted in Fig. 3 and corresponding ion pair production is 

plotted in Fig. 4. If one assumes a triton is emanating from the 6Li metallization layer 

such that it collides with a detector wall without expending its full energy, then one can 
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assume the accumulation of ion pairs will be lower, also. Hence, the electronic pulses 

derived from the triton will register in the lower scale than the full energy pulses. This is 

called wall effect. Another process that prevents full energy deposition is the self-

absorption of the primary charge particle as it tries to emanate from the 6Li metallization 

layer. Because these two processes and the angle at which the primary charged particles 

emanate, it is not trivial to ascertain which process is responsible for less than full 

energy deposition. Although it is not necessary to analyze the shape of the spectrum for 

LiPMICs since they detect total counts of thermal neutrons, one needs to understand the 

behavior of the detectors and the information being conveyed in a pulse height spectrum.   
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Fig. 3. The stopping power of a 2.7 MeV triton in argon. 
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Fig. 4. Accumulative ion pair production for a 2.7 MeV triton in argon. 

    

 

3.3 Detector geometry and electrode shape 

The three main criteria that influence the detector geometry and electrode shape are 

production and survivability of the α and 3H particles from 6Li(n, α)3H interactions,  and 

uniform electric field strength in the active volume of the detector for efficient ionization 

chamber operation. Ultimately, the detector geometry and the electrode shape are 

designed to keep the production and survivability of the ion pairs high as much as 

possible. Unfortunately, there are other issues such as ease and lower cost of fabrication 

that have to be considered. To provide maximum area of neutron conversion for the 

detector, several shapes are discussed, but a cuboid shape with rounded corners became 
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a clear winner for its ease of fabrication and by providing surface area of over 700 cm2 

per cell.  The rounded corners were implemented to provide higher survivability of the 

primary charged particles as they emanate from the corner surface.  

 

Initially, the shape of the anode was a small ball, and the shape of cathode was a deep 

cuboid vessel. However, this setup was providing electric field strength better suited for 

the proportional counter mode of operation than ion chamber operation where uniform 

electric field strength was required. As can be seen in Fig. 5, the quasi-spherical 

geometry and the shape of electrodes are markedly different from the final single-cell 

design depicted in Fig. 2. The design in Fig. 2 is a cuboid vessel with a plate suspended 

in the middle of the volume as the anode. The design (Fig. 5) in the second iteration has 

electric field strength increasing 1/r2 around the anode, and this intensity of the field can 

match that of a proportional counter. On the other hand, the final detector geometry 

design shows that all surfaces, with an exception of rounded corners, have a parallel 

surface at a constant distance so that the electric field strength is uniform in that volume 

of the detector. It is sufficient to state at this point that keeping the electric field strength 

uniform so that the electrons drifting toward anode with a minimal, specified velocity is 

a necessary condition to keep the detector operating within the design specification. 

Further discussion is deferred to the next section. 
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Fig. 5. Second iteration of single-cell prototype. Copyright [2004] by IEEE. 

 

 

3.4 Choice of fill-gas 

There are numerous criteria in choosing the composition of fill-gas, which directly 

influence the ionization and transport phenomena of signal carriers. The first criterion to 

consider is the W-value, the average energy expended to create an ion pair. As described 

for different modes of interaction in gas, the W-value is the average energy spent to 

create an ion pair. In the process, energy spent in creating excitation and delta rays, 

which trigger additional ionizations on their own, are factored in to increase the W-

value. This initial number of conversions from primary charged particles to signal 
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carriers becomes the foundation of the detector response regardless of how the number 

of signal carriers is amplified later. Choosing a stable gas medium with a lower W-value 

is particularly important in spectroscopy because the detector resolution is intrinsically 

dependent on the average number of ion pairs created by the incident particle. If one 

operates a proportional counter, then the criteria for fill-gas are longer. Proportional 

counters often require fill-gas that can operate in low voltage, provide high gas 

multiplication, proportionality, and withstand high count-rate. Fortunately, LiPMICs do 

not have to meet these requirements for continuous operation. Because LiPMICs have 

highly reactive 6Li metallization inside, a noble gas such as argon is a good candidate. 

Although it is not just argon’s unique characteristic, the W-value for argon does not 

differentiate the type of incident particle. For example, the number of ion pairs created 

by a 0.51 MeV electron and a proton is nearly the same. This feature is particularly 

useful for LiPMICs because their pulses are contributed by tritons and alpha particles. 

The slight disadvantage in using pure argon is that it is somewhat slow, the longer drift 

time of electrons leads to a longer shaping time, which makes the detector more 

vulnerable to microphonic interference. Adding other type of gas to speed up the 

electron drift velocity has other consequences such as increasing the effective W-value 

of the fill-gas. The W-values of methane are approximately 29 eV for alpha particles and 

27 eV for gamma rays, which shows that methane behaves differently with different 

types of particles. 
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Choosing a fill-gas often is a balancing act to keep desirable characteristics while 

reducing other characteristics of a detector. For LiPMICs, the outgas species migrating 

into the active volume and changing the fill-gas composition is seen as the major 

obstacle in achieving life expectancy of the detectors.  
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4. SIMULATIONS* 

 

Having defined and calculated various design components for a single cell detector 

prototype, simulations are performed using MCNPX, GARFIELD, and OPERA (Vector 

Fields, 1999). Electrostatic field configuration, neutron interaction rates, and charged 

particle transport in gas are the three areas where simulation and modeling are necessary 

for establishing baseline of research and for comparison with the experimental results. 

Currently, there is no single simulation package that encompasses the several stages of 

energy conversion from source neutrons to primary signal carriers, electrons. To cover 

the wide span of the interaction modes, the three major simulation packages are selected 

for their accuracy and ready adaptability for the research needs.  

 

Performing simulations is an inexpensive and time-efficient way to investigate a wide 

range of detector responses. The specific tasks for simulations are to evaluate the 

thicknesses of HDPE in different locations of the detector matrix for optimal 

thermalization process, to evaluate optimal thickness of 6Li metallization layer for the 

maximum production of the primary charged particles, and to obtain gas dynamic 

                                                 
* Part of this section is reprinted with permission from 1) “Large area neutron detector based 
on 6Li ionization chamber with integrated body-moderator of high density 
polyethylene.” by Kiril Ianakiev, Martyn Swinhoe, Kiwhan Chung, Ed McKigney, 2004. 
IEEE Nuclear Science Symposium. Conference Record. 1, 456-460, Copyright [2004] 
by IEEE; 2) “Mitigation of outgas effects in the neutron-capture 6Li pulse-mode 
ionization chamber operation.” by Kiwhan Chung, Kiril Inakiev, Martyn Swinhoe, Mark 
Makela, 2005. IEEE Nuclear Science Symposium Conference Record. 3, 1255-1257, 
Copyright [2005] by IEEE. 
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conditions and electric field strength mapping that support maintaining of a range of 

stable drift velocity throughout changes in the fill-gas composition. The range of 

simulations duplicates the entire range of transport interactions in reality even though 

there are disjoints in the chain of simulations. These disjoints are solved by applying 

analytical calculations. The combination of MCNPX, GARFIELD, and OPERA 

represents an ensemble of capable simulation packages in their respective fields. 

MCNPX has been developed by the Los Alamos National Laboratory, and heralded as 

the de-facto standard in simulating neutron interactions in many different systems such 

as nuclear reactor fuel rods and radiation therapy using radionuclides. MCNPX has been 

steadily increasing capabilities by extending applicable energy range, by improving the 

accuracy of the results by updating to the most recent confirmed nuclear data, and by 

adding relevant interaction mechanisms such as photonuclear reactions and multiplicity 

counting of fission neutrons.  

 

The limitation of MCNPX is that its domain of interest mostly lies with neutron 

interactions. One example of such limitation is that MCNPX does not have the 

knowledge of what primary charged particles are produced after neutron-6Li interactions. 

The scope of application for MCNPX terminates with interaction probability in the 

neutron-6Li reactions; after thermalized neutrons interact with 6Li atoms, the MCNPX 

does not recognize the products of the interactions and can not simulate the interaction 

of the primary charged particles with fill-gas atoms. This disconnect is bridged by 
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performing analytical calculations as McGregor suggested in his detailed analysis 

published in 2003.  

 

After the thermalization of source neutrons and conversion of thermal neutrons to 

primary charged particles, the creation of secondary charged particles, namely, the argon 

ions and electrons are simulated using GARFIELD with analytical assumptions 

establishing certain parameters. The purposes of using GARFIELD are to find the fill-

gas composition at which the electron drift velocity is stabilized and to obtain the time-

arrival distribution of signal carriers and their subsequent induced charges. The 

parameters that influence the electron drift velocity include fill-gas composition, 

temperature and pressure of fill-gas, and electric field strength. All the conditions can be 

readily simulated using GARFIELD; however, the electric field strength must be 

simulated with OPERA, a dedicated electric field simulation program, to make sure the 

electric field strength present in the complex geometry of the prototype would be 

accurately characterized. Then, the equivalent field strength is applied in the analytical 

geometry using the built-in function of GARFIELD. The complexity in the geometry 

arises in the rounded corners of the cathode and anode and the electric field strength and 

the finite-element discretization is the mostly widely available method to map the active 

volume of the detector. 

 

While it would be desirable to have a simulation package that can provide seamless 

modeling capability for the entire process, taking the strength of each simulation 
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program, employing it where it is intended for use, and judiciously applying known 

boundary conditions and analytical calculations produce in accurate and adequate 

modeling results. These results are verified in experiments. 

 

 

4.1 6Li metallization thickness optimization 

In order to evaluate the thickness of the 6Li metallization layer for optimal production of 

the primary charged particles, calculation of optimal HDPE thickness is put aside for 

later. For 6Li metallization thickness optimization, thermal neutrons are simulated to 

stream directly to a bare 6Li metallization layer of varying thickness without a HDPE 

moderator so that source neutrons at thermal energy are arriving at the 6Li metallization 

layer unimpeded for the maximum interaction probability. This approach may seem 

unrealistic, but this takes into consideration the purpose of optimization: finding the 6Li 

thickness that maximizes the production of primary charged particles after interacting 

with the 6Li atoms. By optimizing the thickness of the 6Li metallization layer first, the 

result is independent of the effectiveness of the thermalization process in HDPE. This 

result is then used to evaluate the thicknesses of HDPE in the next step that would bring 

about similar, if not better, production of the primary charged particles through the 

efficient thermalization processes within HDPE. 

 

In this series of MCNPX simulations, the thickness of the 6Li metallization layer is 

varied from 10 to 100 μm to obtain the thickness value that would give the highest 
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reaction rate. The MCNPX simulations give results in terms of reaction rate per thermal 

neutron incident upon the 6Li metallization layer. It is understandable to see that the 

reaction rate increases proportionally with the 6Li metallization layer thickness. As the 

thickness is increased to 100 μm the reaction rate increases to approximately 28%. This 

pattern is depicted in blue reaction rate plot in Fig. 6. However, this behavior paints only 

a half of the picture; one also needs to understand the escape probability of the product 

particles after the reaction.  

 

After having successfully calculated which thermal neutron interacts in the 6Li 

metallization, MCNPX doe not have the information about what interaction particles are 

produced and whether these resultant particles escape through the 6Li layer, which is the 

value one ultimately desires from these simulations. Hence, the escape probability is 

calculated analytically. This calculation is performed by Swinhoe in an unpublished 

report in 2003 and is based upon a study published by McGregor in 2003. The total 

escape probability (red plot in Fig. 6) – the escape probability of both triton and alpha 

particles – is inversely proportional to the 6Li metallization layer thickness. Fig. 6 shows 

the total escape probability is sharply decreased from 90% to less than 50% between 10 

to 40 μm, and it does not deteriorate as drastically as the initial reduction to additional 

thickness of the 6Li metallization layer beyond 50-μm thickness.  
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Fig. 6. Reaction rate, total escape probability, and efficiency. Copyright [2004] by IEEE. 

 
 
 

According to an unpublished report by Swinhoe in 2003, the individual escape 

probability of α and 3H particles, shown in Fig. 7, is “the fraction of area of a sphere of 

radius r that is outside” the 6Li metallization layer. If the interaction site is deeper into 

the 6Li metallization layer than the range of the triton, for example, then the triton may 

not escape the 6Li metallization layer regardless of its angle of trajectory. On the other 

hand, if the neutron interaction site is exactly on the surface of 6Li metallization layer 

(t=0), then there is one-half probability that the tritons would escape to the active volume. 

The range of a triton in 6Li is calculated to be 128 μm, and alpha’s range is calculated to 

be 22 μm. The total escape probability has the unit of primary charged particle per 

reaction. The product (green plot in Fig. 6) of the two values, reaction rate and total 

escape probability, then, become primary charged particle per incident source neutron, 

which is effectively the efficiency value. The 10-μm 6Li metallization layer has the 

highest total escape probability at 90%, but the reaction rate is the lowest at 

approximately 12%. On the other hand, the 100-μm 6Li metallization layer has the 
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lowest total escape probability at 30%, but the highest reaction rate at 28%. The product 

of the two contradicting behaviors come to a maximum value between 20 and 30 μm, 

where the balance between reaction rate and total escape probability results in the 

highest efficiency.  The 6Li metallization layer thickness between 20 and 30 μm is found 

to be the optimal thickness for the combination of primary charged particle production 

rate and its survivability. 

 
 

   
Fig. 7. Simplified diagram of neutron interaction in 6Li and escape of reaction products. 
 

 

4.2 HDPE thickness optimization 

Having optimized the 6Li metallization layer for optimal production of the primary 

charged particles, HDPE thickness is optimized. It is noted that this series of simulations 

is performed with a matrix detector of 18 cells (2 layers of 3x3 cells), depicted in Figs. 8 

and 9. Other simulations are conducted on a single cell platform; however, because of 

the thermalization in HDPE influences all detector cells, it is necessary to conduct 

simulations using a detector array as a basic unit of deployment. Fig. 8 shows different 
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thickness of HDPE within its structure. There are 5 different locations in HDPE where 

thickness is be varied. The different parts of HDPE are named as the following: 

 Front: The closest piece of HDPE facing source neutrons 
 Interlayer: The piece of HDPE between layers of individual detector cells 
 Back: The piece of HDPE below the second layer of detector cells 
 Intercell: The piece of HDPE between individual detector cells in the same layer 
 Edge: The piece of HDPE around the perimeter of the matrix detector 
 

252Cf is used to provide fission neutrons streaming orthogonally toward the front surface 

of the detector matrix. The volume outside the detector matrix is defined as vacuum and 

any source neutrons that scatter out of the detector volume are considered to be lost. 

 
 

 

Fig. 8. Diagram of HDPE thickness optimization setup. The source neutrons are 
streaming down toward the front surface of the detector array orthogonally. 
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Fig. 9. Top view of detector matrix for simulation setup. 

 

To obtain the change in efficiency as a function of a thickness variable in each series of 

MCNPX calculation shown in Fig. 10, a thickness variable is varied from 1 cm to 10 cm; 

for example, the plot labeled ‘Intercell HDPE variation’ in Fig. 10 is obtained by varying 

the thickness of ‘intercell’ HDPE from 1 to 10 cm, while keeping the rest of the 

thickness of different parts constant at 1 cm. By applying the same methodology to other 

variables, the initial optimized set is obtained as 5 cm for front, 10 cm for back, 8 cm for 

interlayer, and 4 cm for intercell. The first optimized set is tested again by varying the 

front HDPE thickness. Even though the optimized set of HDPE thickness is obtained, 

one would not apply the values directly in the detector body fabrication due to 

engineering constraints that may arise during the installation of detector electronics and 

wiring, fill-gas valves, and exterior casing. It is decided to reduce the HDPE thickness 

marginally without reducing the efficiency greatly. The final dimensions of the HDPE 

matrix thickness are 2 cm front, 8 cm back, 4 cm interlayer, 2 cm of intercell, and 4 cm 
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of edge HDPE thickness. Overall, the efficiency of the matrix detector in this 

configuration of HDPE thicknesses is obtained at 12.5%. This efficiency is comparable 

to the efficiency of 4-atm 3He proportional counters with a similar cross-sectional area of 

HDPE.  
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Fig. 10. HDPE thickness optimization. The optimized thicknesses are front: 2cm; back: 
8cm; interlayer: 4cm; intercell: 2cm, and edge: 4cm. 
 

 

After having established the thickness of HDPE and 6Li layers are optimized for the 

production of primary charged particles, a series of simulation, shown in Fig. 11, is 

performed to observe how efficiency would change with moderated neutron sources. 

The optimized dimensions of the matrix detector, including the optimal thickness of 6Li, 
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are used with moderated neutron sources of 1 keV, 10 keV, 100 keV, and unshielded 

252Cf. Having 2 cm front HDPE thickness resulted in efficiency values of 16%, 15%, and 

14.5% for the 1 keV, 10 keV, and 100 keV monoenergetic neutron sources, respectively. 

This is indicative of the optimal front HDPE thickness that allows enough low energy 

neutrons to survive, but also allows fission neutrons to be sufficiently thermalized for 

interactions. The energy range between 1 keV and 252Cf neutrons span 4 orders of 

magnitude; however, the efficiency does not differ by more than 4%. This is due to the 

large bulk of HDPE built as the body of the detector matrix serves as sufficient 

moderator for a wide range of neutron energy.  
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Fig. 11. Performance of matrix detector with neutron sources of varying energy levels. 
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4.3 Analytical calculation 

Before GARFIELD could be employed, certain assumptions are made to bridge the gap 

between MCNPX and GARFIELD. MCNPX does not recognize the creation of tritons 

and alpha particles; MCNPX stops after calculating the interaction between thermal 

neutrons and 6Li atoms and has no idea what particles are produced in the interactions. 

On the other hand, GARFIELD only creates electrons and does not have primary 

charged particles creating electrons in a gas medium. This gap can be bridged by using 2 

assumptions; First, tritons are born with full 2.7 MeV and second, they expend all of 

their energy in the gas. Based upon the two assumptions, GARFIELD can now be 

programmed to produce approximately, on the average, 100000 ion pairs per triton track.  

 

 

4.4 Triton track, time arrival distribution of electrons, and induced charge 

After 6Li(n,α)3H interactions occur in the 6Li metallization layer and primary charged 

particles are ejected in the fill-gas mixture, the interactions between either triton or alpha 

particle and fill gas atoms are simulated with GARFIELD (Veenhof, 2005). GARFIELD 

is used to simulate the transport properties of electrons such as mobility, diffusion 

coefficient, Townsend number, etc. The accuracy of GARFIELD was verified with the 

data accumulated at CERN (Peisert and Sauli, 1984). Magboltz in GARFIELD is the 

specific module used for this calculation, and it solves the Boltzmann transport equation 

by backward prolongation and Gauss-Seidel iteration (Biagi, 1995). GARFIELD has the 

capability to solve simple electric field configurations by analytical methods, and it is 
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used initially with a parallel plate geometry, which GARFIELD can simulate in its 

entirety. In this manner, GARFIELD can produce a set of data that can be verified with 

experimental results. 

 

Fig. 12 depicts drifting of electrons randomly selected from one triton moving at 5° 

inclination with respect to the electrodes. The triton is emanating from the cathode plane 

positioned at (x=-3, y=0) and makes a track at 5° inclination. Because triton’s speed is 

approximately 300 times faster than the electron drift velocity, it can be assumed that the 

electrons are created almost instantaneously along the tracks. This occurs regardless of 

the orientation of the triton tracks. For electrons that are born from a triton track parallel 

to the electrodes, they drift similar distances to reach the anode, and this tight arrival 

distribution is shown in Fig. 13. Fig. 13 shows less than a 2 micro-second width of time 

arrival distribution of electrons as they drift similar distances. Figs. 14 shows the 

simulated induced charge from the triton track simulated in Figs. 12. As expected, the 

induced charge in Fig. 14 has a steep rise time where almost all electrons drift in a 

tighter time period. 
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Fig. 12. An arbitrary triton track set at 5° inclination from the plane of cathode and the 
drift of free electrons created from interactions with the triton. The cathode is the lower 
horizontal line and the anode is the upper horizontal line.  
 
 
 
 

 
Fig. 13. Time arrival distribution of electrons for a triton track at 5° inclination. 
Electrons arrive from approximately 2.5 μsec to 3.2 μsec in a rather tight distribution. 
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Fig. 14. Induced charges from a triton track at 5° inclination. The induced charges start 
to accumulate from 2.2 μsec and reach the full pulse plateau at 2.6 μsec. 
 
 
 
 
Contrary to a triton track that is almost parallel to an electrode, Fig. 15 depicts a triton 

moving orthogonal to the electrode planes. A triton track is starting from the cathode 

(x=-3, y=0) and makes a rather straight path toward the anode serendipitously.  During 

the process, there are electrons created near the track and because of the triton’s speed, 

the electrons are seemingly created all at the same time. However, due to their location 

of creation, Fig. 16 shows electrons have much varied distances to drift and 

consequently have a wider distribution of the arrival. The plot in Fig. 17 shows a wider 

distribution of electrons, signal carriers, and hence, has a slower rise time. 
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Fig. 15. An arbitrary triton track set normal from the plane of cathode and drift of free 
electrons created from interactions with the triton. The cathode is the lower horizontal 
line and the anode is the upper horizontal line. 
 
 
 

 

 
Fig. 16. Time arrival distribution of electrons for a triton track at 90° inclination. 
Electrons arrive from 0.2 μsec to 3.2 μsec in a much broader distribution than Fig. 14. 
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Fig. 17. Induced charges from a triton track at 90° inclination. The induced charges start 
to accumulate from 0.2 μsec and reach the full pulse plateau at 2.4 μsec. 
 
 
 
 
Overall, one can assume that the electrons will drift in approximately 3 μsec, regardless 

of the orientation of the primary charged particle track, and that the induced charge will 

be collected fully in 2.8 μsec. These finding can benefit the designing of detector 

electronics to suit the need for charge collection efficiency. 

 

Fig. 18 is a summary of electron drift velocity calculated with GARFIELD in argon-

methane gas mixtures. The interesting feature in this plot is the convergence of electron 

drift velocity for different concentrations of methane between 0.06 and 0.09 V/cm/Torr. 

The information in Fig. 18 can be rearranged to show the direct correlation between the 

electron drift velocity and methane concentration in Fig. 19. The electron drift velocity 
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remains relatively constant for the field strength range between 4% and 15% of methane 

concentration. This indicates that electron drift velocity is affected minimally by the 

accumulation of methane in fill-gas. The electronics can maintain the same shaping time 

when the drift velocity is stable. The significance of this finding is that an ion chamber, 

when properly designed, can operate with accumulation of additional contamination in 

the fillgas. By obtaining the outgassing composition and rate, the ion chamber can be 

designed so that the appropriate drift velocity is maintained for the maximum detector 

lifetime.  
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Fig. 18. Stability of electron drift velocity through a range of field strengths and methane 
concentrations. Copyright [2004] by IEEE. 
 
 
 



 
 

71 

 

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

Methane Concentration [%]

D
r
if
t
 
V
e
l
o
c
i
t
y
 
[c
m
/
u
s
e
c
] 0.029 [V/cm/Torr]

0.044 [V/cm/Torr]
0.065 [V/cm/Torr]
0.097 [V/cm/Torr]
0.145 [V/cm/Torr]

 
Fig. 19. A better plot of electron drift velocity as a function of methane concentration. 
Copyright [2004] by IEEE. 
 

 

While Ar-CH4 mixtures exhibit the convergence of electron drift velocity rather nicely, 

the outgas phenomenon of HDPE is complex, and the outgas can consist of multiple 

species of hydrocarbon fragments. Fig. 20 is a contour plot of electron drift velocity as a 

function of ethane and methane concentration at 0.09 V/cm/Torr. In this plot, if the fill-

gas is preloaded with 1% methane, then the addition of ethane in the fill-gas greatly 

changes the electron drift velocity from 1.5 to 3.5 cm/μsec. The detector electronics 

would not be able to adjust to this much change in the velocity, and the detector would 

be operating at less than optimal condition. However, if the fill-gas is preloaded with 3% 

of methane, then the addition of ethane does not affect the electron drift velocity and the 

detector electronics can accommodate the change of velocity. This methodology of 

preloading the fill-gas with hydrocarbon species may be able to mitigate the deleterious 

effect of other species.  
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Fig. 20. Electron drift velocity in the presence of methane and ethane. Copyright [2005] 
by IEEE. 

 

 
 

4.5 Finding a suitable combination of electric field strength and fill-gas mixtures 

GARFIELD has limited ability to obtain the ion transport properties in the fill-gas due to 

its inability to calculate complex electric field configurations. The electric field mapping 

of the active volume of the LiPMIC, which GARFIELD can not handle due to the lack 

of conversion code to 3-dimensional field map values, is tasked to an electrostatic 

simulation package called OPERA. Fig. 21 is the 3-dimensional inside view of a single-

cell showing the rounded corners and edges of both cathode and anode surfaces and 
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ceramic stand-offs supporting the anode. Fig. 22 shows the voltage applied in the plane 

of z=0. The optimal voltage to maintain the stability of drift velocity for electrons is 

calculated to be 160V. In comparison with proportional counters, which routinely use 

2000-3000V for their operation, 160V allows much smaller energy foot-print and 

extends the possibility of deploying LiPMICs in remote monitoring. 

 
 
 

 
 

Fig. 21. Three-dimension cutaway view of detector volume. 
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Fig. 22. Contour map of applied voltage at Z=0 plane.  

 
 
 
 

It is fundamental for the detector operation to ensure that the majority of the active 

volume of the detector cells has the minimal electric field strength to maintain the 

desired electron drift velocity. Unfortunately, it is not possible to have completely 

uniform electric field strength as corners of anodes show intense concentration of 

electric field lines. Figs. 23 and 24 show the electric field strength calculated using 

finite-element mapping. Both figures show that the majority of the plane is at uniform 

electric field strength, indicating that there exists an electric field conducive to ion 
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chamber mode of operation. Table 3 shows the field strength at majority of the detector 

volume surpasses the minimal field strength required for stable electron drift velocity. 

 
 

  

Fig. 23. Normalized contour map of electric field strength at Z=0 plane. 
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Fig. 24. Normalized contour map of a diagonal plane. The closest corner is shown in the 
middle of the figure. 
 

 

Table 3  
Reduced electric field strength with bias voltage of -130V at various points in the 
detector volume  

x,y=(0,0) 
z -1.25  -1.00  -0.75 -0.50 -0.25 0 0.25 0.50 0.75  1.00 1.25 

V/cm/Torr 0.0662  0.0666  0.0673 0.0682 0.0001 0.0000 0.0001 0.0714 0.0671  0.0633 0.0616 
x,y=(0.65, 0.65) 

z -1.25  -1.00  -0.75 -0.50 -0.25 0 0.25 0.50 0.75  1.00 1.25 
V/cm/Torr 0.0629  0.0643  0.0671 0.0706 0.0722 0.0075 0.0086 0.1029 0.0693  0.0466 0.0371 

x,y=(0,1.0) 
z -1.25  -1.00  -0.75 -0.50 -0.25 0 0.25 0.50 0.75  1.00 1.25 

V/cm/Torr 0.0608  0.0626  0.0667 0.0726 0.0761 0.0000 0.0004 0.0797 0.0656  0.0554 0.0514 
x,y=(1.4, 1.4) 

z -1.25  -1.00  -0.75 -0.50 -0.25 0 0.25 0.50 0.75  1.00 1.25 
V/cm/Torr 0.0378  0.0415  0.0531 0.0826 0.2774 0.0045 0.3346 0.0849 0.0404  0.0248 0.0196 

x,y=(2.2, 2.2) 
z -1.25  -1.00  -0.75 -0.50 -0.25 0 0.25 0.50 0.75  1.00 1.25 

V/cm/Torr  0.0036  0.0047  0.0080 0.0108 0.0129 0.0138 0.0126 0.0102 0.0072  0.0042 0.0023 
x,y=(2.0, 2.5) 

z -1.25  -1.00  -0.75 -0.50 -0.25 0 0.25 0.50 0.75  1.00 1.25 
V/cm/Torr  NA NA 0.0063 0.0102 0.0124 0.0130 0.0119 0.0096 0.0065  0.0031 0.0000 

x,y=(2.5, 0) 
z -1.25  -1.00  -0.75 -0.50 -0.25 0 0.25 0.50 0.75  1.00 1.25 

V/cm/Torr NA NA 0.0217 0.0336 0.0413 0.0441 0.0407 0.0327 0.0222  0.0109 0.0001 
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The different simulation tools assembled for this portion of the research should provide 

an independent set of estimates for the performance of the ion chamber. Starting from 

the source neutrons, the HDPE thickness is optimized for efficient moderation of source 

neutrons to thermal energy range at the position of 6Li. The thickness of the 6Li 

metallization layer is tested to balance the primary charged particle production rate and 

escape probability of the particles from 6Li metallization layer. To simulate the 

interactions among charged particles and fill-gas atoms, GARFIELD is used. 

GARFIELD is also used to find a range of fill-gas concentration and electric field 

strength that provide a stable electron drift velocity. Then, having found the range, 

electric field strength was mapped and tested using OPERA. 
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5. EXPERIMENTS* 

 

The experiments conducted in this research are largely divided into three categories: 

characterization of outgas, fabrication and testing of detector body, and nuclear 

measurements. Characterization of outgas involves composition analyses and 

quantification of outgas rate. The characterization took 8 months of data collection and 

an analysis performed by Evans Laboratory in Sunnyvale, CA. During this time, HDPE 

shell for a detector matrix was machined and tested for vacuum integrity. This required 

maintaining a high vacuum state, and testing with 4He leak detectors. The shell was 

fitted with custom-made gaskets and other components to ensure the structural and 

vacuum integrity were maintained during nuclear experiments. Having obtained the 

outgas rate and composition, and a detector matrix capable of holding vacuum for an 

extended period, 6Li metallization was applied at Sion Power, Inc., in Tucson, AZ. The 

detector matrix was then ready for nuclear measurements. The detector matrix was tested 

for gamma sensitivity, for vulnerability against microphonic noise, for the effect of 

shaping time on count rate and pulse height spectrum, baseline measurement, and 

comparison with MCNPX calculations.  

 

 

                                                 
* Part of this section is reprinted with permission from “Mitigation of outgas effects in the 
neutron-capture 6Li pulse-mode ionization chamber operation.” by Kiwhan Chung, Kiril 
Inakiev, Martyn Swinhoe, Mark Makela, 2005. IEEE Nuclear Science Symposium 
Conference Record. 3, 1255-1257, Copyright [2005] by IEEE. 
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5.1 Outgas rate and composition analyses 

One of the novel design aspects of the detector array is the use of HDPE bodies as an 

integral part of the detector. Conventional gaseous thermal neutron detector designs 

would have a clear separation of the moderating part and the wall of the gas volume of 

the detector where thermalized neutrons interact with fill-gas atoms. However, in this 

detector design, the separation of energy-moderating volume and the active volume of 

the detector where charge collection occurs is established by 8-μm thick metallization 

layer. The advantage of this design is that the use of an integral polyethylene body 

allows employing widely available manufacturing methods to mass-produce inexpensive 

polymer bodies. Unfortunately, it also brings on contamination of fill-gas by outgas from 

the body. The outgas can cripple the detector operation, even with detector being air-

tight, by altering the fill-gas composition from within and by forming negative ions and 

disrupting the processes in creating secondary electrons, which are the main signal 

carriers. Therefore, ascertaining the outgas composition and rate to establish a window 

of tolerance are fundamental in designing operational specification. 

 

First, outgas rate measurements were performed under vacuum, using the pressure 

gradient to accelerate the process; without the use of vacuum, it would have required 

prohibitively long experiments to collect measurable amount of outgas. The inside 

dimensions of the outgas chamber (Fig. 25), which was a section of a cylindrical pipe 

capped with two metallized polyethylene pieces, were  9.73 cm and 10.16 cm in length. 

The total surface area subject to outgas, which is the interior surface area of the chamber, 
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was calculated as 270.91 cm2 and the volume of the chamber was calculated as 755.18 

cm3. This chamber was evacuated by a turbo vacuum pump attached to a residual gas 

analyzer (Stanford Research Systems, RGA-100).  

 
 

 

Fig. 25. A cylindrical chamber with HDPE ends used to obtain outgas data. 

 
The chamber was pumped out to 10-8 torr of vacuum over 24 hours and the inside 

pressure was recorded with a Mensor Digital Pressure Gauge Series 2101 to obtain the 

outgas accumulation. The outgas would come mainly from the two walls of metallized 

polyethylene end pieces and the stainless steel wall. During 238 days of monitoring, 

there was 3.9 torr of pressure accumulation inside (Ianakiev et al., 2004). Fig. 26 shows 

that there are two outgas rates for this configuration. Most published results of outgas of 
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HDPE indicate one outgas rate, while many polymers exhibit two outgas rates, the initial 

rate being much larger of the two. For this sample, the first outgas rate was 0.052 torr 

per day during the first 34 days. Then the outgas rate was reduced to 0.011 torr per day 

for the next 204 days, the remainder of the measurement period. The combined outgas 

rate for the entire observation period was calculated as 0.016 torr per day. This total 

accumulated outgas rate can be converted into a standard outgas rate by considering the 

surface area of outgas and the volume of the outgas chamber. Then, the overall outgas 

rate of 9.6x10-10 torr-liter/(cm2-sec) was obtained. It is approximately 2 orders of 

magnitude lower than a published outgas rate data, 2.6x10-7 torr-liter/(cm2-sec), of bare 

polyethylene. When the overall outgas rate takes outgas contribution from the cylinder 

wall into consideration, which is made out of stainless steel, then the outgas rate drops 

further to 5.3x10-10 torr-liter/(cm2-sec). This reduced rate clearly shows outgas of the 

polyethylene is reduced in this configuration.  
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Fig. 26. Pressure accumulation inside the outgas chamber. Copyright [2005] by IEEE. 
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A partial explanation of the reduced outgas rate can be attributed to the metallization 

layer, whose scanning electron microscope image is depicted in Fig. 27. Fig. 27 shows 

complete coverage of metallization layer on the surface of polymer, however, one can 

see dark lines that indicate cracking of the metallization surface. The 8-micron thick 

metal film may act as an atomic barrier and hinder the migration of outgas from the 

polymer lattice to the vapor phase, thereby reducing the outgas. 

 

Unfortunately, this explanation cannot fully explain the 2 orders of magnitude reduction 

in the outgas rate. It is conceivable that the metallization aided in reducing the flow of 

outgas, but a bulk of credit can be given to the partial pressure of outgas molecules 

inside the polymer matching the low partial vapor pressure in the vacuum to slow down 

the diffusion of the outgas components (de Segovia, 1999). The long-term outgas rate, 

which reflects the second, stable outgas rate of approximately 0.3 torr/month would 

allow approximately 10 years of continuous operation when electron dynamics were 

simulated using GARFIELD (Chung et al., 2005). However, this outgas estimate is 

considered to be a grossly conservative estimate due to the condition in which the long-

term outgas rate is derived. As stated previously, this outgas measurement had to be 

performed under vacuum. Having such a drastic pressure gradient across a piece of 4.5 

cm thick piece of polyethylene for over 200 days became a great driving condition for 

the penetrants. The magnitude of this factor would be unlikely to be encountered in real 

detector operation, and the ensuing outgas rate should be considered as the upper limit of 

outgas rate for the polymer.   
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Fig. 27. A scanning electron microscope image of improved nickel-stainless steel 
metallization on polymer surface. 
 
 
 
With the upper limit of outgas rate quantified, the components of the outgas were 

identified using two different methods. The first method was performed using a residual 

gas analyzer (RGA). The advantage of this method is that the setup of the system is 

rather compact and simple so that analyses can be performed on site, attached to the 

outgas chamber, with minimal calibration as shown in Fig. 28. There is no need to take a 

sample and send it to an off-site laboratory for results. The analyses using a Stanford 

Research Systems RGA-100 indicated the outgas was mostly made up of environmental 

components (Fig. 29) such as water (43.92%), carbon dioxide (6.239%), nitrogen 

(39.37%), argon (1.081%), and oxygen (9.389%). Fig. 26 may seem a classical plot of a 
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leaky chamber, but the chamber was tested for leaks with a helium leak detector 

extensively.  

 

 
 

Fig. 28. Residual gas analyzer setup with a laptop front end. 
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Fig. 29. Accumulation of mass fragments in the outgas chamber. 
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The other method of outgas identification employed was gas chromatography/mass 

spectrometry (GC/MS) using dynamic head space analysis (HSA). The dynamic head-

space analysis combined with routine GC/MS analysis allows analyses of volatile 

compounds that could not be directly injected into a gas chromatograph. In HSA, a 

sample is heated in inert gas as in regular GC/MS analyses. The difference is the method 

in which outgas is handled. In HSA, outgas is trapped to a filter and then the components 

trapped in the filter are released by heating the filter material and by using reverse flow 

to flush the outgas to GC. Then, a routine GC/MS analysis is performed. GC/MS is one 

of the most widely used measurement techniques to identify the volatile organics, but the 

accuracy requires stable measurement environment where routine calibration and cross 

contamination between different sample runs is eliminated. Hence, GC/MS equipment is 

located in an analytical chemistry lab where the system can be maintained by qualified 

support staff. For the particular analyses, a Hewlett-Packard 6890 Gas Chromatograph 

and Hewlett-Packard 5973 Mass Spectrometer were used.   

 

For obtaining the outgas components released at near room temperature, the GC/MS 

may not be suitable because the sample is heated to high temperature to increase the rate 

of outgas. If the sample is heated to temperatures above those where real application 

may not occur, the analysis results may not be relevant to the use of the polymer in the 

detector. At the same time, there are no readily available, accurate chemical analysis that 

can be done with samples at room temperature because the samples do not readily give 

off detectable quantities of outgas products at room temperature. However, for this 
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research, outgas composition obtained at high temperatures, at which detectors would 

not likely operate due to polyethylene failure, can serve as the boundary condition. Table 

4 shows the components of outgas that are very different from the components identified 

with an RGA. This is partially due to the nature of GC/MS emphasizing the outgas 

occurring at high temperature and due to the analysis using an external standard to 

calibrate the analysis. The GC/MS HSA report indicated that the chamber that contained 

the sample was heated from 35 to 150 Celcius at a rate of 10 Celcius per minute and 

from 150 to 300 Celcius at 15 Celcius per minute. Methylene chloride was used as an 

external standard, and unfortunately, its signature peaks masked those of water. 

Consequently, water is not accounted for in this result as it tends to be given off in the 

early period of sample heating. The majority of the outgas components from the sample 

is in a class of hydrocarbons called alkane and are listed in Table 4. Alkane includes 

methane, ethane, and many others, including the ones identified by GC/MS HSA. 

Microscopic concentrations of heavy alkanes such decane and octadecane indicate that 

the breakdown of polymer structure that can release additives or polymer chains as 

fragments of heavy alkane hydrocarbon at high temperatures. 

 

 

 

 

 

 



 
 

87 

 

Table 4 
Outgas composition from GC/MS dynamic head-space analysis 

 Decane Dodecane Dimethyl-
cyclohexane Tetradecane 

1,4-
bezenedi-
carboxylic 

acid 

Hexadecane Octadecane 

Metalized 
HDPE 
sample 

4.34 μg 
30.46 
ppb 

12.27 μg 
72.03 ppb 

2.11 μg 
18.80 ppb 

15.77 μg 
79.49 ppb 

8.73 μg  
44.95 ppb 

<7.91 μg 
< 34.93 ppb 

2.10 μg 
8.25 ppb 

Bare 
HDPE 
sample 

19.34 
μg 

135.9 
ppb 

18.66 μg 
109.6 ppb NONE 10.18 μg 

51.31 ppb NONE 2.72 μg 
12.01 ppb 

0.36 μg 
1.41 ppb 

 
 
 
 
Fig. 30 is a chromatograph of volatile organics outgassed from a metallized polyethylene 

sample. This plot is the summary of all outgas peaks detected during the gas 

chromatography analysis. Using the mass spectrometry and comparing the peaks to the 

standard library such as one from National Institute of Standards and Technology, 

different compounds are identified. Fig. 31 is an example of such identification for 

decane, whose total mass per mole is 142.29 g. The small peak at 142 indicates that
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decane, being a long chain of hydrocarbon molecules, seldom retains its complete 

molecular form. Instead, the molecule is either broken up in the polymer or during the 

MS analysis such that the compound’s mass to charge ratio is distributed into different 

mass numbers in Fig. 31. The peaks are identified through comparison with standards 

and their concentration is derived.  

 

In summary, the outgas rate of more than 2 orders of magnitude lower than the published 

outgas rate of HDPE is obtained, and the outgas composition made up of mostly either 

environmental components or heavy alkane series were found. The results from the 

GC/MS HSA are inconclusive about the presence of environmental outgases such as 

water vapor, nitrogen, etc., since the naturally occurring light elements and compounds 

were ignored in order to obtain more accurate analyses of heavy, volatile organic 

compounds. It is believed that the trace amount of volatile organic compounds in the 

range of 10 ppb does not effect the performance of the detectors. 
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 Fig. 30. A gas chromatograph of volatile organics from a metallized polyethylene 
sample. The bottom graph is the plot of n-hexadecane used as an external standard. 
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Fig. 31. A gas chromatograph of decane. A standard gas chromatograph of decane in 
NIST 2002 library is depicted in the middle plot. The bottom plot indicates the skeletal 
chemical diagram of decane. 



 
 

91 

 

The fabrication and testing of a prototype detector array shown in Fig. 32 posed 

significantly more issues than single-cell prototype detectors due to the size of 

polyethylene blocks and the complexity of the inner volume of the detector array. The 8-

fold increase in the inner surface area and interface increases the overall outgas rate and 

possibility of microscopic leaks occurring at the interface, risking the long-term fill-gas 

integrity. While the increased outgas rate may be small, the accumulated and combined 

effect may shorten detector’s continuous operation, requiring more frequent servicing 

and longer service time for the detectors. 

 

  

Fig. 32. Machined, bare polyethylene body; 2 lids and 1 middle piece (center). 

 

 

5.2 Testing of the seal integrity 

After polyethylene pieces were machined, as shown in Fig. 32, and their surfaces were 

metallized (Fig. 33), different types of gaskets were used to test the seal integrity. The 

total length of seal interface for the polyethylene bodies is approximately 220 cm and the 
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use of commercial off the shelf (COTS) viton gasket or silicone sheet gaskets resulted in 

measurable leaks. In the end, custom-made viton o-rings of 55 durometer, 0.53 cm of 

cross section, and 109.47 cm of developed length prior to the forming of o-ring, were 

used. Durometer is a unit to measure hardness and follows ASTM D2240 testing method. 

‘Developed length’ is a rubber manufacturing term used to define the length of a rubber 

cord before it is made into an o-ring.  The dimensions of the perimeter groove are 6.1 

mm wide and 3.8 mm deep. The o-ring would fill the groove approximately 90% at full 

compression and would allow small movement in the channel to minimize rubbing, 

which is necessary to ensure the longevity of the o-ring. The center o-ring was fabricated 

out of a silicone sheet of similar hardness of 60 durometer. The use of customized, 

stamped silicone o-rings in the center of the HDPE pieces was necessary because 1.3 cm 

outer radius for the center groove would not allow gluing of viton cord into an o-ring 

shape. The heavy use of glue to adhere the viton piece into an o-ring shape cracked 

under the compression of the HDPE bodies, or inadequate amount of glue left the o-ring 

in the groove deformed. When a custom seal manufacturing firm, ElastoSeal, Inc., was 

contacted to make the viton o-rings for the detector array, the company would not 

guarantee the performance of the o-ring made out of viton for the center groove; instead, 

the company suggested fabricating a silicone o-ring made out of a silicone sheet. The 

center o-ring made out of silicone was fabricated in-house using rubber stamping tools. 
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 Fig. 33. Polyethylene body with 8-micro thick nickel and stainless steel metallization. 

 
 
The o-rings were then lubricated with Dow-Corning High Vacuum Grease (Fig. 34), and 

the HDPE bodies were assembled together with bolts using a torque wrench set at 1.13 

N-m. Seventeen bolts were tightened with a torque wrench in a diagonal order to ensure 

uniform distribution of pressure across the polyethylene bodies. Using a Pfeiffer 

Vacuums QualyTest Dry HLT 270 leak detector, the detector array was tested for 

vacuum integrity. The leak detector can detect trace amount of helium with a sensitivity 

of 10-10 mbar*liter/sec of flow rate, which is more than adequate for detecting leak rates 

of the detector array. Using a helium spray probe, seal integrity was checked and the 

entire interface was confirmed to be vacuum-tight. The background flow rate of helium 
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was recorded as 1.6x10-8 mBar*liter/sec, which became the practical limit of detection 

for the experiment conditions. The leak tests were performed on all sides, including 

valves and signal wire connections, and showed there is no detectable penetration of 

helium atoms.  

 
 

 

Fig. 34. Close-up of o-ring placement. 

 
 
This is a significant step in detector development since maintaining gas purity within the 

design specification is a crucial factor in deciding the lifespan of the detector. Even 

though helium will not be used in fill-gas and the detector will not operate in vacuum, 

the leak tests were performed with helium in vacuum condition because of the helium 
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atoms’ small size, low background concentration, ready availability and low reaction 

rate with surrounding atoms. For example, the atomic radius of a helium atom is 31 

picometer, whereas an argon atom’s is 71 picometer, effectively giving a helium atom 

less than a quarter cross section than that of an argon atom. The diffusion coefficients of 

helium, argon and methane in polyethylene are 57x10-7, 4.5x10-7, and 1.9x10-7 cm2/sec, 

respectively (Flaconneche and Klopffer, 2001). The difference in diffusion coefficients 

shows that the helium atoms are more than 10 times more mobile than argon atoms in 

polyethylene. This conservative test emphasizes the robustness of the seal of the detector 

and thereby assures the longevity of the detector operation.  

 

The long-term leak tests saturating the entire detector array in a helium medium were not 

performed because the mobility and size of the helium atoms would allow penetration 

eventually through the polyethylene body. The leakage through structural failures at the 

seal interface would readily show up with short-term helium leak tests. Permeability rate 

would be analogous to longer-term leak tests because permeation may be considered a 

long-term, three-stage process that includes absorption, diffusion and desorption. The 

helium permeability rates through polyethylene and viton are comparable at 2x10-7 and 

1.2x10-7 cc/sec/cm2/cm at 1 atmospheric pressure at 25 Celsius (1cc of helium per 

second per cm2 of surface area per cm of thickness at 1 atm), respectively. The 

permeability rate through silicone is 23.8x10-7 cc/sec/cm2/cm at 1 atmospheric pressure 

at 25 Celsius (Varian Associates, 1980). A comparison study of permeability rate 

showed argon atoms, the main constituent in the fill-gas, at 0.76x10-7 cc/sec/cm2/cm at 1 
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atmospheric pressure at 61 Celsius, while the same study showed 2.1x10-7 cc/sec/cm2/cm 

at 1 atmospheric pressure at 59 Celsius (Flaconneche and Klopffer, 2001). The 

permeability rate of methane, which is the other constituent in the fill-gas, was observed 

at 1.2x10-7 cc/sec/cm2/cm at 1 atmospheric pressure at 60 Celsius (Flaconneche and 

Klopffer, 2001).  

 

 

5.3 Gamma sensitivity measurements 

Using a single cell detector, gamma sensitivity was measured with a 137Cs source and a 

252Cf source. Often neutron sources accompany significant gamma-ray activities. Also, a 

strong gamma source can be employed to overwhelm a detector to render its response 

inaccurate or useless. Therefore, it is important to understand how LiPMICs would 

respond with gamma sources. For the neutron-induced pulse height spectrum depicted in 

Fig. 35, a 252Cf source was measured for 600 seconds. The sharp peak on the right side 

of the spectrum is an electronic pulser put in as a cursor for overall electronic health of 

the system. If the pulser peak broadens it is an indication that electronic noise is being 

introduced to the system. The effect of the electronic noise is that the baseline of 

electronic pulses becomes unstable and prone to register false signals. This phenomenon 

can sometimes happen overwhelmingly so that the detector is unresponsive to real 

signals. The right side of the pulse height spectrum highlighted in blue is the first 5% of 

the scale that will be discarded as gamma-induced pulses and electronic noises.  
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Fig. 35. Neutron induced spectrum using a Cf-252 source. 

 
 
Under the same measurement conditions, a 137Cs source was measured and the 

comparison of the two spectra is made in Fig. 36. As stated above, the gamma 

contribution in the spectrum fall in the first 5% of the scale (less than 2 fC), and can be 

effectively eliminated in the pulse height spectrum. 
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Fig. 36. Overlap of a Cf-252 spectrum with a Cs-137 spectrum. The gamma peak 
registered 90000 counts. The two measurements were conducted right after the other in 
identical measurement setup. 
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5.4 The effects of shaping time and susceptibility to microphonics 

Initially, pulses are collected as induced charges on the anode surface. The charges are 

collected and integrated through a parameter called shaping time constant. Depending on 

the length of a shaping time constant, pulse height spectrum can take a vastly different 

shape as shown in Fig. 37. Ideally, one would want to collect full charges; however, this 

is not practical and necessary. Choosing a shaping time constant is a compromise 

between charge collection efficiency and reliability since longer shaping time constant 

can make the detector electronics more susceptible to the microphonic noises. When a 

longer shaping time constant is chosen, then the induced charge is given longer time to 

deposit its full charge before the remnant charges are thrown out. The deposition of full 

charge is indicated by the pulses registering in the higher charge scale in Fig. 37. A pulse 

height spectrum collected with 10 μsec shaping time constant shows pulses extending to 

the pulser peak set at 25 fC, whereas a pulse height spectrum collected with 3 μsec 

shaping time constant is approximately at 13 fC. As the maximum point in the scale 

shrinks, the more pulses are accumulated in the first 5% in the charge scale where they 

will be discarded as electronic noises and gamma-induced pulses. Therefore, choosing a 

short timing constant can significantly reduce the counts and make the detector less 

efficient. 
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Fig. 37. The effect of shaping time on the shape of pulse height spectrum. 

 

Fig. 38 shows the effect of shaping time in a measurement of a 252 Cf sources. Using the 

same P-10 gas as the fill-gas, three measurements using different shaping time were 

performed one after the other. From previous study on electric field strength analysis, it 

has been established that the methane concentration between 4 and 15% percent all 

electron drift velocity to maintain above the minimal drift velocity. For shaping time 

constants of 2 and 6 μsec, methane concentration has little effect, as shown in Fig. 38. 

However, for shaping time constant of 1 μsec, the short shaping time constant requires 

significant increase of high voltage bias to compensate for the slow drift velocity of the 

electrons. Only after 400V, 1 μsec shaping time constant can be approximately 87% of 

the scale normalized to the count rate taken at 800 HV with 6 μsec. On the hand, the 

effect of change in shaping time constant is minimized in Fig. 39. The spectra taken with 

various shaping time constants all registered 90% in the scale normalized to a count rate 
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taken with 800V at 6 μsec. This confirms the simulation results where the electric field 

strength of 0.065 V/cm/Torr maintains stable electron drift velocity. Fig 39 shows the 

largest divergence of count rates at 100V quickly diminishes near 200V, which is in 

close agreement with the simulation results. 
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Fig. 38.  Effect of shaping time on total counts with 2.5% methane concentration in 
argon. 
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Fig. 39. Effect of shaping time on total counts with 5% methane concentration in argon. 
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5.5 Additional pulses from anode as a conversion reaction site 

An experiment is conducted to obtain additional pulses by painting the anode surface 

with 6LiF. As one can see in Fig. 40, despite some differences, there are several 

similarities between the two spectra. Both spectra share a prominent peak in the middle 

of the spectra. The pulses contributing to the peak are from the tritons and alpha particles 

that emanate from flat surface of cathode and anodes. These particles travel the similar 

distance, and deposit same amount of energy before hitting the cathode or anode. This 

phenomenon is related charged particle spectroscopy where the energy deposition by 

charged particle is proportional to the range it travels. Anode surface can provide 

approximately 20% additional pulses when painted with 6LiF or laminated with 6Li. 

 

 

Fig. 40. Additional pulses obtained from anode surface by painting it with 6LiF. The 
count rate is comparable to the painted surface area. 
 

 

5.6 Comparison of MCNP results and experiments 

MCNP results obtained from simulations performed with single cell detector models are 

compared (Table 5). Because MCNP does not have energy threshold, the 10% threshold 

Spectrum from cathode surface
3660 cps 

Spectrum from anode surface
680 cps 
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set for the actual measurements is compensated to the MCNP results by increasing their 

tallies by 5%. When this correction is made, the difference between MCNP results and 

measurements is less than 10%. The detector cell painted with LiF has approximately 

over 20% of relative difference, and this large difference could be attributed to the hand 

painting of LiF after mixing it with colloidal graphite. The uneven paint thickness could 

alter the detector response significantly. Overall, the agreement between MCNP results 

and experiments is reassuring and is a confirmation that the simulations were performed 

accurately.  

 

Table 5 
Comparison of MCNP simulations and measurements 

MCNP

Calculated  
[cps]

95% ROI 
[cps]

Corrected to 
100% [cps]

95% ROI 
[cps]

Corrected 
to 100% 

[cps]

95% 
ROI 
[cps]

Corrected 
to 100% 

[cps]
30 μm Li-6 1820
40 μm Li-6 1520 1368 1436.4
60 μm Li-6 1430 1296 1360.8
7.8 μm LiF 910 687 722

Det.#1 (40μm Li-6) Det.#2 (60μm Li-6)

Absorber  
Thickness 

TD.#2 (7.8μm LiF)

 

 

 

5.7 Lithium foil lamination and detector matrix assembly 

Having quantified the outgas rate and composition, a series of initial measurements were 

performed to establish the performance of individual detector cells, prior to obtaining the 

detector matrix performance as a whole. Because the 95% enriched 6Li used in the 

detector matrix is highly reactive with moisture in the air and was assembled by hand in 
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a dry room in a lithium battery fabrication facility, the material can not be readily 

repaired at LANL. Since there was little chance that the chambers would be repaired at 

LANL, a need was recognized to establish a baseline measurement for each cell so that 

the individual performance over a period of time can be compared. Side B of the 

detector array was prepared first with detector electronics and was available for the 

baseline measurement. Figure 41 shows a can of 95% enriched 6Li foil manufactured in 

2003. The can was sealed with argon gas, and was in storage for the past three years.  

 
 

 

Fig. 41. Ninety-five percent enriched lithium-6 metallization material. 
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Fig. 42 shows the interior surface of the detector matrix after lithium foil is manually 

laid out. The difference in the gleam of the surface when compared to Fig. 42 is not due 

to difference in lighting. Fig. 43 is the close up of the surface and patchwork of small 

strips of 6Li foil can be seen. After 6Li lamination work is finished, the detector array is 

assembled in a dry room (Fig. 44), and prepared for shipping to LANL. Upon arrival at 

LANL, the exterior of the detector array is visually inspected and was retested with 

helium leak detector for seal integrity. The detector array passed the test and was 

prepared with electronics for initial measurements.    

 

 

  

Fig. 42. Lithium metallization is applied on the interior surface. 
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Fig. 43. Close-up of the lithium metallization. 

 
 

  
Fig. 44. Fully assembled detector array with detector electronics. 
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5.8 Baseline measurements with detector matrix 

The baseline measurements were conducted in March 2007, when the detector array 

arrived at LANL. First, the individual gain of the electronic boards and detector cells has 

been equalized using a potentiometer on the boards. Having verified that the individual 

detectors have the same gain, initial measurements began. An electronic pulser peak was 

established at 25 fC as an indicator of electronic noise level. A 252Cf source was placed 

at the center of detector cells for 20 minutes and the spectra were recorded. Figs. 45 and 

46 indicated that the there is some decrease in the charge collection between the spectra 

taken in March and September of 2007. While the decrease is approximately 3% of the 

total counts, it is a source of concern because 6 months is only 5% of the projected 

lifetime of the detector. Further measurements will be needed to assess the progress of 

contamination. 
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Fig. 45. Six-month comparison of cell B3 spectra. 
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Fig. 46. Six-month comparison of cell B4 spectra. 

 

 

5.9 Comparison of detector array measurement and MCNPX simulations 

In order to compare the simulation results to experiments, a series of measurements were 

performed. Table 6 lists the data for the 7 measurements and their comparison to the 

simulation data. For measurements 1 through 4, the same 252Cf point source was placed 

at the center of cell B1, B2, B3, and B4. In the MCNPX simulation, a point source of 

equal activity to the physical source used at the time of measurement was placed at the 

center of individual cells. The measurements 1 through 4 indicated close agreement with 

their respective simulation counterparts. The 252Cf source was placed at the center of the 

side B for measurement 5 and for measurement 6 and 7, the source was moved out from 

the center of side B by 10 cm, and 50 cm, respectively. As the distance between the 
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source and the detector array became longer, the difference between the simulation 

results and measurement became more apparent. 

 

Table 6 
Comparison of MCNPX simulation and experimental results for detector matrix 

No. Measurement 
condition 

Reaction 
Rate 
[/sec] 

MCNPX) 

Relati-
ve 

Error 
[%] 

MCNPX 
Pulse 

Counts 
90% ROI 

Measured 
pulses 

background 
subtracted 

Differen-
ce [%] 

1 Center of B1 0.081513 0.0005 25510684 23922817 6.63 
2 Center of B2 0.072087 0.0006 22560657 22378119 0.81 
3 Center of B3 0.072124 0.0006 22572131 23654360 -4.34 
4 Center of B4 0.072189 0.0006 22592473 23757490 -4.90 

5 Center of Side B, 
on the surface 0.072206 0.0006 22597941 22734459 -0.60 

6 
Center of Side B, 

10 cm from 
surface 

0.035765 0.0008 11193156 12506548 -10.50 

7 
Center of Side B, 

50 cm from 
surface 

0.004712 0.0023 1474809.3 1643931 -10.29 

 

 

The detector array, which posed more complex problems from machining to ensuring 

seal integrity was put through machining, metallization, leak test, and 6Li lamination. In 

the process, the outgas volume and component analyses were performed to ensure 

continuous operation would be viable. It has been determined that the detector array can 

operate continuously for 6 months with the outgas volume and the composition. The 

initial measurements with a 252Cf source revealed that the individual cells had different 

overall gain, which was equalized with adjustable potentiometers.  
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Six-month comparison of the individual cells showed that there were some loss in charge 

collection efficiency in two of 4 cells, and it would be necessary to conduct further test 

to see if the degradation of the charge collection efficiency will level out in the future. 

Overall, the verification of MCNPX calculation has been positive, showing good 

agreement in all of the measurements.  
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6. CONCLUSIONS 

 

A novel 6Li neutron-capture pulse-mode ionization chamber was designed and optimized 

to replace 3He proportional counters as more economical neutron detection 

instrumentation for the homeland security and counter-terrorism application. The novel 

design incorporated neutron moderator as a physical shell and electrical insulator and 

removed the clear separation between a neutron moderator and active volume of 

detectors that exists in the conventional designs of thermal neutron detectors. The 

separation exists in LiPMICs as an 8-μm metallization layer that serves multi-purposes 

as an electrode, atomic barrier against the outgas migration, and foundation for the 

neutron conversion site. Consequently, this brought on a fundamental disadvantage of 

possibly exposing the ionization chamber to outgas effects from plastic detector 

components. The design of LiPMIC sought to reduce the outgas effects by relying on the 

robust design and operating principles. The choice of HDPE as the physical shell is an 

obvious one because of its outstanding neutronics properties, but HDPE is also one of 

the most stable polymers with one of the lowest outgas rates. The outgas rate of 9.6x10-

10 torr-liter/(cm2-sec) was obtained during an 8-month long data collection experiment. It 

is approximately 2 orders of magnitude lower than published outgas rate data, 2.6x10-7 

torr-liter/(cm2-sec), of bare polyethylene. It is conceivable that the metallization aided in 

reducing the flow of outgas, but a bulk of credit can be given to the partial pressure of 

outgas molecules inside the polymer matching the low partial vapor pressure in the 

vacuum to slow down the diffusion of the outgas components (de Segovia, 1999). The 
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long-term outgas rate, which reflects the second, stable outgas rate of approximately 0.3 

torr/month would allow approximately 10 years of continuous operation when electron 

dynamics were simulated using GARFIELD (Chung et al., 2005). 

 

The composition of outgas identified with an RGA was mostly environmental species 

such as oxygen, water, carbon dioxide and nitrogen. The GC/MS analysis indicated there 

was a 10s ppb level of heavy alkanes present in the outgas. However, due to the high 

temperature in which the outgas was taken from the solid sample, it is expected that the 

LiPMIC will not operate in such high temperature nearing the melting point of HDPE. 

 

Simulations were performed using MCNPX, GARFIELD, and OPERA. Electrostatic 

field configuration, neutron interaction rates, and charged particle transport in gas were 

the three areas where simulation and modeling were necessary for establishing baseline 

of research and for comparison with the experimental results. Using MCNPX, the 

optimized thickness of 6Li metallization layer was found to be 30 μm. After several 

iterations, the final dimensions of the HDPE matrix thickness were 2 cm front, 8 cm 

back, 4 cm interlayer, 2 cm of intercell, and 4 cm of edge HDPE thickness. The 

effectiveness of this set of thicknesses was verified using different neutron energies 

ranging from 1 keV to 252Cf fission neutrons. The simulation showed that the LiPMIC is 

equally capable of detecting 1 keV neutrons and 252Cf neutrons. Using GARFIELD, the 

ion pair production along a triton track, time arrival distribution of electrons, and the 
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induced charge plots were obtained. These values were applied in setting up the 

operating parameters for detector electronics. GARFIELD provided critical information 

to mitigate the outgas effect by setting a combination of operating conditions where 

detector is less sensitive to the change in fill-gas composition. GARFIELD simulations 

of electron transport properties inside LiPMIC indicated a convergence of electron drift 

velocity for different concentration of methane between 0.06 and 0.09 V/cm/Torr. The 

electron drift velocity between 4% and 15% of methane concentration remains within 

20% of 3.5 cm/μsec in the said field strength range. Having found the electric field 

strength where the electron dynamics were stable despite changing fill-gas composition, 

OPERA was used to calculate the three-dimensional electric field strength in the non-

analytic geometry of LiPMIC. It was calculated that at least 160V of bias voltage would 

be required to keep the electric field strength above 0.06V/cm/Torr. 

 

As designing and simulation portions of the research were completed, the detector 

matrix was assembled and prepared for 6Li lamination. First, the machined and 

metallized HDPE bodies were assembled and tested for leak using 4He leak testers. The 

detector matrix was cycled through a number of evacuation processes to remove 

impurities. It was then shipped to a commercial lithium battery factory and was 

laminated with a 50-μm 6Li metallization layer. The detector matrix was tested for 

gamma-ray sensitivity and was found to be minimally insensitive to gamma ray sources. 

The influence of the gamma rays was removed by applying an energy threshold in the 
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detector electronics that would discard all gamma-ray induced pulses and electronic 

noises below the energy threshold. The shaping time constants obtain from the 

GARFIELD simulation results were verified with experiments and found to be in close 

agreement with the experiment results. With 2.5% of methane concentration in argon, it 

was clear that the shaping time constant of 1 μsec was not long enough to collect 

sufficient portion of the charges. For 5% methane concentration in argon, spectra taken 

with all shaping time constants, ranging from 1 to 6 μsec, had above 90% count rate of 

the normalized count rate. Additional count rate upto 25% could be incorporated by 

painting or laminating the anode surface with either 6LiF or 6Li metallization.  

 

A series of long term measurements was attempted with 2 cells in the detector matrix. 

Cell B3 and B4 showed approximately 3% reduction in total counts over 6-month 

measurement period. Finally, both MCNP and MCNPX simulations of single-cell and 

detector matrix, respectively, were compared with measurements. For the single cell 

simulations, the results were about 5% different from the measurements. For simulations 

with detector matrix, the discrepancy between the simulations and measurements ranged 

from 7% to -11%. It is noted that the complexity of the detector matrix having 8 cells 

within a shell does give much more variation, and overall, the verification of MCNPX 

calculations for detector matrix has been positive, showing good agreement in all of the 

measurements.  
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APPENDIX A.  GARFIELD INPUT FILE 
 
 
*==========================================================* 
* GARFIELD input file for parallel plate geometry 6LiF pulse-mode ion  
* chamber Kiwhan Chung 
*---------------------------------------------------------------------* 
* Gas Composition 
Global ar=95 
Global ch4=5 
Global gas_file `Ar`/string(ar)/`-methane`/string(ch4) 
 
*---------------------------------------------------------------------* 
* Primary electron-ion pair creation 
Global xori=-3.000 
Global yori=0.001 
Global tri=300 
 
*---------------------------------------------------------------------* 
*Description of the ion chamber 
&Cell 
plane y  7.0  v    0.0 label S 
plane y  0.0  v -250.0 label a 
cell-id "Parallel Plate Ion Chamber" 
 
*---------------------------------------------------------------------* 
* Compute drift-velocity, diffusion coefficients, etc. 
&Gas 
opt gas-plot 
plot-opt drift-velocity log-x 
Call inquire_file(gas_file, exist) 
If exist then 
 get {gas_file} 
Else 
 pressure 760 torr 
 temperature 300 K 
 magboltz argon {ar} methane {ch4} e-range 1 10000 n-e 30  
 write {gas_file} 
Endif 
 
add ion-mobility 1.5e-6 
heed argon {ar} methane {ch4} 
 
*---------------------------------------------------------------------* 
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* Plots the field lines 
&Drift 
int-par max-step 0.1 mc-dist-int 0.1     // integration parameter 
Global ne=103053                             // total # of e produced 
Global l =6.400                              // Pathlength of triton 
Global phi=90.0*pi/180                        // angle of incline  
Call book_histogram(ht1,100,0,6)             // tally for hitting anode 
Call book_histogram(ht2,100,0,6)             // tally for all others 
Call book_histogram(ht3,100,0,6) 
Call book_histogram(ht4,100,0,6) 
Call book_histogram(ht5,100,0,6) 
area -7.5 -1. -7.5 7.5 8. 7.5                // define area of drift 
Global plot=true 
If plot then call plot_drift_area 
For i from 1 to ne Do 
    Global j=i*1000 
    Global d=l*rnd_uniform 
    Global x=xori+d*cos(phi) 
    Global y=yori+d*sin(phi) 
    call drift_electron_mc(x,y,0)  
    If j<=ne then Call plot_drift_line 
    Call drift_information(`time`,t,`status-code`,status) 
    If status=-4 | status=-14 Then  
       Call fill_histogram(ht1,t) 
    elseif status=-1 Then 
       Call fill_histogram(ht2,t) 
    elseif status=-2 Then 
       Call fill_histogram(ht3,t) 
    elseif status=-3 Then 
       Call fill_histogram(ht4,t) 
    else 
       call fill_histogram(ht5,t) 
    endif 
Enddo 
Global plot=false 
Call plot_histogram(ht1,`Time [microsec]`,`Drift time spectrum`) 
Call plot_histogram(ht2, `left area`,`leftarea`) 
Call plot_histogram(ht3, `too many steps`,`too many steps`) 
Call plot_histogram(ht4, `abandoned`,`abandoned`) 
Call plot_histogram(ht5, `Time [microsec]`,`other`) 
Call plot_end 
Call write_histogram(ht1,`5deg-pulse.txt`) 
Call fit_gaussian(ht1,a,b,c,ea,eb,ec,`plot`) 
&Field 
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* plot cont v 
&SIGNAL 
reset signals 
int-par max-step 0.1 mc-dist-int 0.2     // integration parameter 
area -7.5 -1. -7.5   7.5 8. 7.5                // define area of drift 
select S 
resolution 0 5e-3 
Global plot=False 
If plot then call plot_drift_area 
Global l =6.400                              // Pathlength of triton 
Global phi=90.0*pi/180                        // angle of incline 
For i from 1 to tri Do                  // number of tritons 
Global d=l*rnd_uniform 
Global x=xori+d*cos(phi) 
Global y=yori+d*sin(phi) 
Global ipn=16.911*d^5-347.03*d^4+2779.8*d^3-11413*d^2+37904*d-853.78 
say "ipn: {ipn}" 
Global ipnum=entier(ipn) 
For ipgen from 1 to ipn do            // number of electrons simulated  
call drift_electron_mc(x,y,0)           // for each triton    
Call drift_information(`time`, t) 
* Say "Drift time: {t} microsec" 
If plot Then Call plot_drift_line 
Call add_signals 
* say "ipgen: {ipgen}" 
Enddo 
say "iteration: {i} ; {ipnum}; {ipn}"  
Enddo 
If plot Then Call plot_end 
plot-signals 
write-signal dataset "better-90deg-signal.txt" wr-if 'time>0.0&time<3.5' 
&Main 
&Quit 
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APPENDIX B.  MCNPX INPUT FILE 
 
c matrix simulation 
c case 0: front 0.8" back 0.8" intercell 0.8" interlayer 0.77" edge 1.4" 
c reference file 
c aluminum plates are added 
c source at center of cell #1 
c 
c === Definition of cells 
c cell 1:  argon volume 
1 1001 -0.0017824 (300 -301 310 -311 320 -321) 
     #((310 -311 300 -303 320 -322 331):(310 -311 300 -303 323 -321 332): 
     (310 -311 302 -301 320 -322 333):(310 -311 302 -301 323 -321 334): 
     (300 -303 310 -312 320 -321 335):(300 -303 313 -311 320 -321 336): 
     (302 -301 310 -312 320 -321 337):(302 -301 313 -311 320 -321 338): 
     (300 -301 310 -312 320 -322 341):(300 -301 313 -311 320 -322 343): 
     (300 -301 310 -312 323 -321 342):(300 -301 313 -311 323 -321 344): 
     (300 -303 310 -312 320 -322 350):(300 -303 313 -311 320 -322 351): 
     (300 -303 310 -312 323 -321 353):(300 -303 313 -311 323 -321 352): 
     (302 -301 310 -312 320 -322 354):(302 -301 313 -311 320 -322 355): 
     (302 -301 310 -312 323 -321 357):(302 -301 313 -311 323 -321 356)) 
c cell 2:  lithium layer 
2 1002 -0.4592 (200 -201 210 -211 220 -221) 
     #((210 -211 200 -203 220 -222 231):(210 -211 200 -203 223 -221 232): 
     (210 -211 202 -201 220 -222 233):(210 -211 202 -201 223 -221 234): 
     (200 -203 210 -212 220 -221 235):(200 -203 213 -211 220 -221 236): 
     (202 -201 210 -212 220 -221 237):(202 -201 213 -211 220 -221 238): 
     (200 -201 210 -212 220 -222 241):(200 -201 213 -211 220 -222 243): 
     (200 -201 210 -212 223 -221 242):(200 -201 213 -211 223 -221 244): 
     (200 -203 210 -212 220 -222 250):(200 -203 213 -211 220 -222 251): 
     (200 -203 210 -212 223 -221 253):(200 -203 213 -211 223 -221 252): 
     (202 -201 210 -212 220 -222 254):(202 -201 213 -211 220 -222 255): 
     (202 -201 210 -212 223 -221 257):(202 -201 213 -211 223 -221 256)) 
     #((300 -301 310 -311 320 -321) 
     #((310 -311 300 -303 320 -322 331):(310 -311 300 -303 323 -321 332): 
     (310 -311 302 -301 320 -322 333):(310 -311 302 -301 323 -321 334): 
     (300 -303 310 -312 320 -321 335):(300 -303 313 -311 320 -321 336): 
     (302 -301 310 -312 320 -321 337):(302 -301 313 -311 320 -321 338): 
     (300 -301 310 -312 320 -322 341):(300 -301 313 -311 320 -322 343): 
     (300 -301 310 -312 323 -321 342):(300 -301 313 -311 323 -321 344): 
     (300 -303 310 -312 320 -322 350):(300 -303 313 -311 320 -322 351): 
     (300 -303 310 -312 323 -321 353):(300 -303 313 -311 323 -321 352): 
     (302 -301 310 -312 320 -322 354):(302 -301 313 -311 320 -322 355): 
     (302 -301 310 -312 323 -321 357):(302 -301 313 -311 323 -321 356))) 
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3 like 1 but trcl=2 
4 like 2 but trcl=2 
5 like 1 but trcl=3 
6 like 2 but trcl=3 
7 like 1 but trcl=4 
8 like 2 but trcl=4 
9 like 1 but trcl=5 
10 like 2 but trcl=5 
11 like 1 but trcl=6 
12 like 2 but trcl=6 
13 like 1 but trcl=7 
14 like 2 but trcl=7 
15 like 1 but trcl=8 
16 like 2 but trcl=8 
c poly block 1-6 
c poly block was disected into 6 different pieces for reaching 
c cell definition limitation 
40 1004 -0.940 (130 -101 110 -111 120 -122) #1 #2 #3 #4 
41 1004 -0.940 (130 -101 110 -111 122 -121) #5 #6 #7 #8 
42 1004 -0.940 (100 -130 110 -111 120 -122) #9 #10 #11 #12 
43 1004 -0.940 (100 -130 110 -111 122 -121) #13 #14 #15 #16 
c air volume (volume that contains source, external to the detector volume) 
47 0 (-131 132 110 -111 120 -121) 
c aluminum plates 
48 1005 -2.700 (101 -132 110 -111 120 -121) 
49 1005 -2.700 (133 -100 110 -111 120 -121) 
c outer universe (void) 
50 0 (-133:131:-110:111:-120:121) 
 
c === Surface cards 
c =outer HDPE box 
100 pz -15.41780    $ bottom-most PS (poly surface) 
101 pz 5.8420     $ top-most PS 
110 px -9.9060     $ outer-most PS in -x direction 
111 px 24.6380    $ outer-most PS in +x direction 
120 py -9.9060     $ outer-most PS in -y direction 
121 py 24.6380     $ outer-most PS in +y direction 
122 py 7.36600      $ boundary CELL surface in y direction 
123 py 24.6380     $ redundant outer-post PS 
130 pz -4.7879     $ boundary CELL surface in z direction 
131 pz 7.152        $ top surface including the source 
132 pz 7.1420      $ Al surface closest to the source 
133 pz -16.71780    $ surface of bottom al plate piece 
c 
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c =surface between HDPE and lithium layer 1 
200 pz -3.810 
201 pz 3.810 
202 pz 2.540 $corner 
203 pz -2.540 $corner 
210 px -6.350 
211 px 6.350 
212 px -5.080 $corner 
213 px 5.080 $corner 
220 py -6.350 
221 py 6.350 
222 py -5.080 $corner 
223 py 5.080 $corner 
c cylinder surfaces parallel to x-axis  
231 c/x -5.080 -2.540 1.270 
232 c/x 5.080 -2.540 1.270 
233 c/x -5.080 2.540 1.270 
234 c/x 5.080 2.540 1.270 
c cylinder surfaces parallel to y-axis 
235 c/y -5.080 -2.540 1.270 
236 c/y 5.080 -2.540 1.270 
237 c/y -5.080 2.540 1.270 
238 c/y 5.080 2.540 1.270 
c cylinder surfaces parallel to z-axis 
241 c/z -5.080 -5.080 1.270 
242 c/z -5.080 5.080 1.270 
243 c/z 5.080 -5.080 1.270 
244 c/z 5.080 5.080 1.270 
c spheres 
250 s -5.080 -5.080 -2.540 1.270 
251 s 5.080 -5.080 -2.540 1.270 
252 s 5.080 5.080 -2.540 1.270 
253 s -5.080 5.080 -2.540 1.270 
254 s -5.080 -5.080 2.540 1.270 
255 s 5.080 -5.080 2.540 1.270 
256 s 5.080 5.080 2.540 1.270 
257 s -5.080 5.080 2.540 1.270 
c 
c surface between lithium and argon 1 
300 pz -3.805 
301 pz 3.805 
302 pz 2.535 $corner 
303 pz -2.535 $corner 
310 px -6.345 
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311 px 6.345 
312 px -5.075 $corner 
313 px 5.075 $corner 
320 py -6.345 
321 py 6.345 
322 py -5.075 $corner 
323 py 5.075 $corner 
c cylinder surfaces parallel to x-axis  
331 c/x -5.075 -2.535 1.270 
332 c/x 5.075 -2.535 1.270 
333 c/x -5.075 2.535 1.270 
334 c/x 5.075 2.535 1.270 
c cylinder surfaces parallel to y-axis 
335 c/y -5.075 -2.535 1.270 
336 c/y 5.075 -2.535 1.270 
337 c/y -5.075 2.535 1.270 
338 c/y 5.075 2.535 1.270 
c cylinder surfaces parallel to z-axis 
341 c/z -5.075 -5.075 1.270 
342 c/z -5.075 5.075 1.270 
343 c/z 5.075 -5.075 1.270 
344 c/z 5.075 5.075 1.270 
c spheres 
350 s -5.075 -5.075 -2.535 1.270 
351 s 5.075 -5.075 -2.535 1.270 
352 s 5.075 5.075 -2.535 1.270 
353 s -5.075 5.075 -2.535 1.270 
354 s -5.075 -5.075 2.535 1.270 
355 s 5.075 -5.075 2.535 1.270 
356 s 5.075 5.075 2.535 1.270 
357 s -5.075 5.075 2.535 1.270 
c 
 
c === transformation 
c 'intercell' spacing change requires x and y transformation change 
c interlayer spacing change requires z transformation change 
c first layer transformation 
tr2 14.732 0 0 
tr3 0 14.732 0 
tr4 14.732 14.732 0  
c 
c second layer transformation 
tr5 0 0 -9.5758 
tr6 14.732 0 -9.5758 
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tr7 0 14.732 -9.5758 
tr8 14.732 14.732 -9.5758 
c 
c === material === 
M1001 18000 1 
M1002 03006 1 
c M1003 07000 0.78084 
c      08000 0.20946 
c     18000 0.00934 
M1004 01001 0.66667 
     06000 0.33333 
M1005 13000 1 
c 
IMP:n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
SDEF pos=0 0 7.1421 ERG=d1 $  vec 0 0 -1 dir 1 
SP1 -3 1.18 1.03419 
c si2 -7.353 34.765 
c sp2  0 1 
c si3 -7.353 34.765 
c sp3  0 1  
F4:N 2 4 6 8 10 12 14 16 T 
FM4 -1 1002 105 
sd4 1 1 1 1 1 1 1 1 1 
E0 0.1 28I 3.0 100. 
c ctme 10 
print 
NPS 50000000 
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