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ABSTRACT 

 

Modeling and Characterization of Potato Quality  

by Active Thermography. (August 2008) 

Chih-Chen Sun, B.En., National Taiwan University 

Chair of Advisory Committee: Dr. Sheng-Jen (Tony) Hsieh 

 

 This research focuses on characterizing a potato with extra sugar content and 

identifying the location and depth of the extra sugar content using the active 

thermography imaging technique. The extra sugar content of the potato is an important 

problem for potato growers and potato chip manufacturers. Extra sugar content could 

result in diseases or wounds in the potato tuber. In general, potato tubers with low sugar 

content are considered as having a higher quality.  

  The inspection system and general methodologies characterizing extra sugar 

content will be presented in this study. The average heating rate obtained from the 

thermal image analysis is the major factor in characterization procedures. Using 

information on the average heating rate, the probability of achieving a potato with extra 

sugar content may be predicted using the logistic regression model. In addition, neural 

networks are also used to identify the potato with extra sugar contents. The correct rate 

for identifying a potato with extra sugar content in it can reach 85%. The location of 

extra sugar content can also be found using the logistic regression model. Results show 

the overall correct rate predicting the extra sugar content location with a resolution of 
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20 by 20 pixels is 91%. In predicting the extra sugar content depth, amounts exceeds 

2/3 inches are not detectable by analyzing thermal images. The depth of extra sugar 

content can be discriminated in 0.3 inch increments with a high rate of accuracy 

(87.5%).  
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IR                                Infrared Thermography 
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CHAPTER I 

INTRODUCTION 

 

1.1 Motive 

Consumers focus has traditional concentrated on the quality when purchasing food, 

especially for agricultural products. Consequently, the inspection of agricultural products 

has become an important issue in the industry. Therefore, postharvest grading of 

agricultural products is difficult without the aid of modern technologies. Currently, there 

are still many food companies using visual inspection by human to pick out the 

unqualified products based on the product‟s flavor, texture, and color. The results will be 

affected by many factors such as experiences of the operators, physical status of the 

operator, and environmental conditions. This will be costly and unreliable to obtain 

accurate results comparing to machine inspection. Moreover, the defects inside the food 

cannot be found out by human easily. So the development of a new system to 

characterize the quality of agricultural products is in great need.  

The focus of this study is to characterize the potato with excessive sugar using active 

thermography imaging technique. Extra sugar content of potato is an important and 

difficult problem for potato growers and potato chip manufacturers. Russet potato is 

chosen as our experimental material due to the fact that it resembles the potato for most 
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uses. Further, it is easy to obtain and the properties of potato are well known. In addition, 

its shape can be approximate as an ellipsoid, which is found to be more convenient for 

thermal modeling comparing to irregular shapes. Consequently, the potato is a 

representative produce because its usage is very large comparing to other produce. The 

consumption of potato around the world was found to be 218.13 million tons in the year 

of 2006 [1]. Potato can be consumed fresh or as processed food products such as potato 

crisp chips, which are the most popular snack food in many countries. 

The internal quality of a potato is related to its sugar contents. In general, potato 

tubers with low sugar contents are considered as higher quality for most uses [2]. These 

reasons include the idea that potato tuber produces sugar from the starch to survive by 

respiration, and the temperature and pressure control during the potato storage process 

might increase the respiration rate of potato. Excessive sugar accumulation could be a 

result of disease or dead tissue within the tuber. Hence monitoring the sugar 

concentration of potato tuber becomes an important topic for both the grower and 

processor.  

Thermography has been a powerful evaluation method in many fields such as material 

defects characterizing, and electronic fault diagnosis. It is a highly potential tool when 

applying on the food quality inspection because it is non-destructive, easy to operate, 

and safe comparing to other technologies. Moreover, after taking thermal images, the 

food can still be consumed. However, the accuracy and reliability depend on the 

resolution of the infrared camera. The economy of using infrared thermography to 

replace human inspection is needed to be studied.  
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1.2 Nature of the problem 

The potato quality is characterized by its external and internal quality. External qualities 

are related to the size, shape, and defects. The number of the buds on the tuber is also an 

indicator of the potato quality. Buds will start to grow if the potato is mature enough, and 

there will be chemical constituents that affect people‟s health. There might also be holes 

caused by disease or bacterial on the potato. Holes and cracks inside a material will emit 

higher rates of thermal energy than their surrounding surfaces, and the shapes will 

appear on the thermal images [3]. So the thermal images of the potato are examined to 

study these possible phenomena that have adverse effect the potato.  

The internal quality is highly related to the sugar contents inside the potato tuber. 

When there is excessive sugar contents in potato tuber, it might cause by diseases, 

wounding or other unwanted effects occurring in the potato. In this study, the active 

thermography technique will be used to characterize the extra sugar concentration in the 

potato. By applying an external heat source on a potato and recording the surface 

temperature changes, the excessive sugar contents in the potato can be identified. The 

extra sugar contents regions inside the potato will have different thermal properties such 

as thermal conductivity and specific heat, hence might affect the heating rate of the 

potato. Moreover, when the heat propagates through the sugar concentration area, it will 

encounter a subsurface discontinuity and reduce the heat diffusion rate. Such 

discontinuity area causes the surface temperature to be higher than other surrounding 

regions, further alters the cooling rate. 
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1.3 Problem statement  

In this research we focus on identifying potato with extra sugar contents and identifying 

the extra sugar concentration location and depth in potato. The development of a system 

and general methods to characterize the quality of the potato will be presented in this 

research. By using the thermography imaging analysis, the extra sugar contents of potato 

tubers will be identified due to the abnormalities of the thermal behavior of the specific 

surface area.  

 

1.4  Scope and objective of research 

The scope of this work are to understand how the heating and sugar contents may affect 

the heat transfer in a potato and to design and validate the algorithms for detecting potato 

with excessive sugar and finding the excessive sugar location and depth. The properties 

of each potato cannot be the same, so that some of the properties are assume to be the 

same if they only have minor effects to the heating rates such as skin texture, and 

moisture contents of potato. The environmental conditions are significant in the 

experiment. Hence the environment is controlled to be as identical as possible to 

eliminate the noise during the whole experiment. The factors that might affect the 

surface temperature distribution will be considered as a variable, such as the density and 

the surface area of the potato. The potato to be examined is also treated as a healthy and 

fresh one although it cannot be verified.  

In constructing the potato thermal model, some assumptions are also be made. These 

include the shape of potato is assumed to be a perfect ellipsoid without any cavity and 
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irregular surface change on the surface. The physical properties of the potato are 

considered to be uniform inside the potato although they might be varied in different 

areas.  

The research goals are summarized as follows: 

 Construct a semi-automatic prototype system for loading, heating, and 

scanning potato using infrared camera.  

 Design and validate the algorithms to identify potato with excessive sugar, the 

sugar concentration location and depth within the potato 

 Propose a general experimental methodology for potato quality control 

 

1.5  Format of research 

The procedures of this research start from the concept of studying the thermal images of 

potato surface to predict its quality, and follow by constructing experiments and thermal 

modeling. These procedures are described in the following chapters. 

Chapter II includes the literature review on the introduction and application of infrared 

thermography, the food thermal modeling methods, and the current food inspecting 

techniques. 

Chapter III talks about the design concept of the experimental setup and material used, 

and introduces the preliminary experiments and procedures for each experiment.  

Chapter IV consists of the results obtained from experiments and the general 

methodologies of the potato quality characterization.  

Chapter V discusses the validation of the models used in the extra sugar contents 
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prediction.  

The last chapter VI consists of the conclusion, limitation, and future work that can be 

done in this research.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1  Introduction 

The research is associated to the inspection of produce quality by using infrared 

thermography. The target produce to study here is russet potato, but the method can be 

applied to other agricultural products. The internal quality of potato highly relates to its 

sugar contents, especially for chip potatoes. So this chapter starts with the introduction 

of potato quality with possible mechanism of the sugar contents variation in potatoes. 

Next section will introduce the principle and the applications of infrared thermography. 

The last section introduces other techniques currently be applied to the produce 

inspection.  

 

2.2  Quality of potato 

The quality of potato can be characterized by the external quality and the internal quality. 

The external quality relates to the size, shape, appearance, and defects of the potato 

where the internal quality deals with the appearance, nutrition contents, and defects of 

potato. The summary of the potato quality factors are in table 1. The defects of potato 

might due to the physiological disorders, fungus, pest, handling or storage [4]. Common 

defects of potato tubers are crack, scab, greening, and rot. Although appropriate growing 

conditions can reduce the defects of potato, a reliable inspection method is still in 

demand for the potato quality control. 
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Table 1.  Summary of potato quality factors. 

 Factors of potato quality 

External qualities Size and shape 

Color 

Defect: crack, greening, scab,… 

Internal qualities Appearance: color, hardness, skin texture, … 

Nutrition content: starch, vitamin, sugar, … 

Defect: cavity, rotten, sugar end… 

 

The internal quality of potato and the sugar contents are highly related. The lower 

potato sugar contents are recommended in most uses, especially for chip potatoes. After 

harvest, sugar content inside the potato tuber is relative to the respiration effect. Potato 

tuber needs to produce sugar form starch for respiration to survive. In living cells, 

respiration effect can release the energy and produce carbon dioxide and water from 

organic substances such as sugar. The respiration effect and sugar contents of potato can 

be affected by many factors including variety, maturity at harvest, postharvest handling 

stress and the storage environment [5]. The respiration effect can be represented by the 

equation:  

C6H12O6 + 6 O2 = 6 CO2 + H2O + Energy                                (2.1) 

The effect of varying the sugar contents on respiration was found experimentally. As 

the sugar concentration of the medium increases, respiration increases until reaching 

very high concentrations. The addition of carbohydrates increased the amount of carbon 

dioxide comparing to the no sugar added plants [6]. The effect is mainly due to a higher 

rate of respiration. 

Wounding of potato causes an increase in the rate of respiration hence can change the 
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sugar contents in a very short period of time. The result of the experiment done by 

Hopkins shows clearly that an increase in wounding is accompanied by an increase in 

sugar contents [6].  

In general, the low sugar contents of potato in every processing process are 

recommended. The quality of potato products such as chips and french fries is largely 

dependent on the its color, and the color is directly affected by the amounts of sugar 

contents in the potato. To have acceptable process color of chips and fries, the sugar 

contents should not exceed the standard range. After harvest, sucrose in the potato can 

transform into reducing sugar: fructose and glucose. When frying the potato tuber at high 

temperature, reducing sugars and amino acid will react to form the darker color on 

potato called browning effect, which is a serious problem when processing [2]. High 

sucrose contents in potato tuber can lead to reducing sugar accumulation after harvest, 

and increase the possibility of browning effect. The sucrose contents can be an 

identification of the maturity and the quality for frying potatoes. 

One of the defect types of potato is sugar ends, usually happens on the stem end of the 

potato tuber. The accumulation of reducing sugars at the one end of potato will also 

cause dark color after frying the potato. Potato with sugar end will have lower starch and 

specific gravity than healthy potato. The sugar end on the potato appears translucent on 

the flesh, and might lead to tissue breakdown on the region.  

In conclusion, the extra sugar contents or the sugar accumulation in the potato tuber 

has adverse effect to the potato quality. For process potato, it is especially important to 

monitor the sugar contents because the product color is directly related to it.  
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2.3  Principle and applications of infrared thermography  

The study of the surface temperature measurement of potato can help us have the basic 

understanding of the effect of the extra sugar contents on the thermal behavior of potato. 

Temperature measurement is an important factor in many applications, especially for 

agricultural and food industries. Traditional ways to measure the temperature are base on 

the comparison of different mechanical properties such as the electrical voltage using 

thermal couple, resistance using temperature detector, and the expansion using liquid 

thermometers. However, this techniques need to touch the target well to obtain an 

accurate reading. The comparisons of current temperature measuring techniques are in 

table 2. Infrared thermography is considered to be a technique with great potentials to 

measure the surface temperatures of objects due to the fact that you can measure the 

temperature of an entire potato without coming into contacting with it. In addition, it is 

able to cooperates with other electronic devices to analysis the data, and easy to operate 

[7]. The non-contact and non-destructive properties of infrared thermography are 

specially desired in food temperature measuring so that few contamination and injury 

will occur.  
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Table 2.  Comparisons of the temperature sensing techniques. 

 Measuring Principle Advantages Disadvantages 

Resistance 

temperature sensor 

measure temperature by 

correlating the resistance with 

temperature 

stable, reproducible, 

accurate, fast response 

the element is 

fragile 

Thermocouple comparing the voltage between 

dissimilar metals, the difference 

increases with temperature 

interchangeable, low 

cost  

not precise 

enough 

Infrared 

thermography  

detect the radiation in the 

infrared range of 

electromagnetic spectrum 

non-contact, 

non-destructive, large 

measuring area 

expensive, 

only surface 

area 

 

The integrated infrared thermography system can detect the infrared radiation from 

the target object. When the temperature is different between objects, heat energy will 

transfer from the higher temperature one to the lower temperature one until they reach 

the thermal equilibrium. All objects with temperatures higher than absolute zero emit 

energy by radiation. Thermal infrared radiation is one of the electromagnetic energy 

which travels at the speed of light. When viewing a surface, not only the radiation has 

been absorbed may be seen, but also the radiation is being transmitted through the target 

object or reflected by it. However, the transmitted and reflected radiation did not provide 

the information for the surface temperature. The radiosity which is the combined 

radiation reflecting from the surface of the object can be sensed by the detector of the 

infrared camera. The electromagnetic radiation has different traveling wavelengths, and 

the wavelengths of infrared radiation can be detected are between 2 and 15 μm. Once 

sensing the radiation, the detector will submit a signal to the electronic processing 

system to generate a thermal image on the display screen. After calibrating with the 
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background temperature, the surface temperature of the object can be read directly from 

the personal computer.  

A black body is an object that absorbs all the incident radiation, so it is treated as an 

ideal source of thermal radiation. However, the objects are not usually black bodies, 

which mean they will reflect and transmit portions of radiations. The absorptivity (α), 

reflectivity (ρ) and transmissivity (τ) of non-black bodies depend on the wavelength and 

the angle of the radiation. For thermal equilibrium, the absorptivity is equal to the 

emissivity (ε). The relationship between these three factors is  

α + ρ + τ = 1                                                      (2.2) 

When a surface is opaque, the transmissivity equals to zero. All objects emit infrared 

radiation as a function of their temperatures. And only the emitted energy provides the 

information about the surface temperature of the object. This phenomenon allows us to 

see radiant surfaces with infrared sensing cameras. According to Stefan-Boltzmann law 

(equation 2.3), the higher the object‟s temperature is, the more infrared radiation it emits.  

E = ε σ T
4
                                                        (2.3) 

where ε is the emissivity of the object. When the object is assumed to be diffuse, the 

emissivity is equal to its absorptivity. Once the total radiation emitted and the emissivity 

of the object are known, the surface temperature of the object can be determined form 

equation 2.3.  

Infrared thermography systems are made up of several common components, 

including lens, detector, processing electronics, controls, display, data storage, data 

processing and report generation software, and filter. Quantitative infrared thermography 
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involves the use of calibrated instruments. However, calibration is expensive to achieve, 

which is best made for the specific temperature ranges and accuracy required [3]. 

Infrared thermography can be separated into two categories: the passive thermography 

and the active thermography. The passive thermography is when own temperature of the 

investigated object is naturally different from ambient temperature, while in the active 

thermography, an external energy source must be applied to the object and measuring its 

thermal response [8-10]. Furthermore, the way of data collection and analysis is different 

form passive thermography. The use of active thermography has grown rapidly in the 

past few years, especially in the aerospace industry. Fast data collection and improved 

spatial resolution of active thermography can detect the movement of heat transfer in the 

material [3]. From the sequence of thermal images taking by infrared camera, it is 

possible to see the relative size and depth of the flaw. In this study, the active 

thermography is applied. The time and spatial resolution is the key point for the infrared 

camera to be accurate, especially for detecting the defects inside an object. 

The infrared thermography is first used in military applications during World War I. 

Current nonmilitary applications of infrared thermography are in the fields of 

non-destructive evaluations and predictive and preventive maintenance where the 

abnormal temperature behavior can be an early signal of future problems [11]. Some 

examples are the detection of electronic inspections [11-13], the non-destructive testing 

of materials [14-15], and medical applications [16]. In agricultural applications, infrared 

thermography studies have been used in estimating the surface quality of apple [17], and 

predicting the plant diseases [18].  
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2.4  Current methods and limitations for food inspection 

Various methods have been applied to the inspection of the agricultural products. 

Traditional food inspection technologies require labor intensive works such as the 

sample collection and analysis in the laboratory. Moreover, because most of these 

methods are destructive, the sample cannot be consumed after examination. Current food 

inspection technologies have focused on the non destructive and real time methods to 

determine the quality of food based on certain parameters of the food properties. The 

ideal inspection method for food should be reliable, easy to operate, accurate, 

cost-effective and able to process large quantities in a short time.  

In recent years, many inspection methods are based on machine vision to inspect the 

outer defects, and the digital image processing is the most essential part in machine 

vision. Image acquisition including charge coupled device camera, ultrasound, and 

magnetic resonance imaging have been used on the food inspection. For quality 

classification, statistical, fuzzy logic, and neural network are used [19]. Image 

processing technologies can compute the features of the object such as size, shape, and 

color. However, the data for analyze the image might be very large if every pixel is 

considered. Xiuqin Rao and Yibin Ying have used the line-scanned method based image 

description to increase the processing speed in determining the area and contour [20]. 

The image data are compressed with the line-scanned based digit image description 

during processing, so the rate is largely improved. Zhou et.al have developed a machine 

vision system for potato inspection. The system can process 50 images of potato per 

second to determine the weight, diameter, and shape with the accuracy over 80 percent 
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[21].  

In the potato industry, specifications have been set for the size, shape, and quality. The 

total of unqualified potato samples must fewer than 5% by weight in industry. Some 

inspection methods can only sort the potato by its appearance, but not the inner defects 

or diseases. Muir et.al. found that the spectra will be different in defect potatoes. The 

relationship between optical spectral reflectance and potato tuber were studied. And the 

spectral performance of potato will be affected by weather conditions such as 

temperature and humidity [22].  

The sugar contents of fruits and vegetables are usually determined by destructive 

methods such as Brix meter. The Brix meter is widely used in the food industry to 

determine the approximate sugar amounts within the product, especially in liquid food 

products including juices, jams, and wine. The Brix value is the comparison of the 

reflective index of the measuring liquid and the pure water. When sugar dissolves in the 

liquid, the reflective index of the liquid changes. To determine the sugar contents in the 

potato using Brix meter, the liquid of the potato is put on the measuring prism of the 

Brix meter. The refraction of light that go through the liquid and the sugar dissolved in it 

can show the Brix value of the liquid. The advantages of the Brix meter are portable and 

simple to use. However, Brix meter cannot be applied to the large quantities of potatoes 

because it will be time consuming and destructive.  

Near infrared (NIR) spectroscopy has been a popular method for the quality control of 

agricultural products. The researches of NIR used in the internal quality inspection of 

various fruits and vegetables including apples [23-24], guava [25], and potato [26]. Take 
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fruit quality inspection for example, the light is applied on the fruit as it passes the sorter. 

As the near infrared light (700-2500nm) travels through an object, it will be reflected, 

transmitted, or absorbed by the object. Part of the absorbed energy may transfer to 

different forms of radiation. The radiation leaves the fruit surface depends on the fruit‟s 

properties and the incident lights and may include emission, transmittance, and 

reflectance. The properties of the fruit such as carbohydrate, PH value, and moisture 

contents can hence be determined by the transmittance and absorption [27-29]. The 

sugar contents in the potato can also be known using this method. Because the bonds of 

organic molecules such as sugar change their vibration energy when irradiating by NIR, 

it will show the absorption peaks on the spectrum. The high brix potatoes can absorb 

more light than those low brix ones at certain wavelength.  

For sugar contents determination of potato, the NIR spectroscopy can predict the 

sugar level with high accuracy. But for the low sugar level potatoes, the model to predict 

the sugar contents should be modified to have better results. Although the NIR 

spectroscopy is a fast and cost-effective technique, the analysis is limited to few 

compounds of interest, and the effective detection depth is not deep enough to inspect 

the whole fruit. The comparison of the sugar contents detection techniques of fruits and 

vegetables are in the table 3.  
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Table 3.  Comparisons of the different sugar contents detection techniques. 

 Brix Meter NIR IR 

Advantage portable, cost-effective nondestructive, 

quantitive information 

of the major 

component, fast 

response 

nondestructive, larger 

detection depth, safe, 

easy to operate 

Disadvantage destructive, not 

efficient when 

applying to large 

quantities 

only few compound of 

interest, smaller 

detection depth, 

requiring calibration 

must apply heat to the 

agricultural products 

Applicaiton sugar contents 

detection in produce 

agricultural products 

characterization, 

medical application 

electronics, material 

defect detection 

 

2.5  Summary of the literature review 

The quality of potato products such as chips and french fries is largely dependent on the 

its sugar contents in the potato. To have high quality chips and fries, the sugar contents 

should not exceed the standard range. The extra sugar contents of the potato can also 

indicate the defect or wounding on the potato. Hence to identify the extra sugar contents 

of the potato is a significant issue for both the chip manufacturer and growers.  

The current sugar contents detection methods are Brix meter and near infrared 

spectroscopy. The Brix meter can identify the sugar contents accurately. However, it is a 

destructive method and not efficient when applied in large quantities. The near infrared 

is the popular non-destructive method for the food quality inspection. Nevertheless, the 

penetration depth of the near infrared of the potato is about 5 mm only [30]. The extra 

sugar contents exceeded 5 mm is difficult to be identified with the near infrared 
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spectroscopy.  

The infrared thermography has been a widely used tool in characterizing the defects of 

the materials. The advantages of the infrared thermography include non-contact, safe, 

and results are easy to interpret. Hence it has great potential in the sugar contents 

identification. With the appropriate modeling and data analyzing methodologies, 

identifying the extra sugar contents with infrared thermography yields to have high 

accuracy.  
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CHAPTER III   

METHODOLOGY 

 

3.1  Introduction 

This chapter gives the detail description of the materials and the temperature measuring 

system used in this research. The features of the thermography camera and ideas to 

construct the automated positioning system are also presented in this chapter. The 

specific chamber design and the reasons to use some specific components in this 

research are also discussed.  

In this research, the preliminary experiments should be done first to determine the 

parameters used in the following experiments. To obtain a better result and be efficient at 

the same time, the potato heating time and the sugar accumulation simulation need to be 

considered as well. After determining the standard experimental procedures, experiments 

can examine the potato quality. In this study we will establish a procedure that can 

effectively inspect potato quality.  

 

3.2  Materials 

The potato used in the whole experiments is the Russet potato purchased from local 

supermarket. The Russet potato has brown skin and white pulp, and usually been used 

for baking, mashing, and making fries. Detail nutrient information of a medium Russet 

potato is listed in the table 4. From the table, the total sugar contents of the potato are 

about 1 gram and compose from sucrose, glucose, and fructose. The Russet potato is 
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used within 7 days form purchase to maintain its freshness. The potatoes are stored in 

controlled room temperature at 70
o
F and sealed with plastic bags. Because the potatoes 

were purchased for a large quantity at a time, the desired weight and volume can be not 

controlled during the experiments. The weight and volume of the potato samples are 

form 130 to 250 grams and 95 to 185 cm
3
 in this research.  

  The properties of the potato are assumed to be uniform. Examples of the properties 

include the emissivity of the surface, the density, and the thermal conductivity of the 

potato.  

 

Table 4. Nutrition information of the russet potato [31]. 

 

 

 

 

 

 

 

 

 

 

3.3  Experimental set-up 

The section describes the thermal image capturing and analysis system, and operators. 

Russet potato, serving size: 170g 

calories 134 

Total Fat 0 g 

sodium 9 mg 

Total Carbohydrate 30.7 g 

    Dietary Fiber 2.2 g 

    Sugars 1 g 

        Sucrose 221 mg 

        Glucose 425mg 

        Fructose 391mg 

Protein 4 g 

Water 134 g 
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The system has four principal parts: infrared camera, working chamber, control systems, 

and image acquisition and analysis software.  

 

3.3.1   Infrared camera 

A Compix infrared camera model PC2100, including the infrared sensor, connecting 

cables and software, was used to analyze the thermal images. The resolution of this 

product is 244 x 193 pixels. The operation temperature range is from 63 to 300 degree 

Fahrenheit, and the measuring temperature range is from 68 to 95 degree Fahrenheit. 

The infrared camera can detect small temperature changes (0.4 
o 
F) of an object‟s surface. 

Figure 1 shows the camera and figure 2 shows the experimental setup in this study. 

 

 

Figure 1.  The infrared camera used in this study. 
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Figure 2.  The experimental setup of the research. 

 

The scanning area of the camera depends on the distance between the camera and the 

object. The field of view will be larger when the distance between the camera and the 

object is longer. To install the infrared camera, the distance between the camera and the 

object needs to be adjusted according to the size of the object. When the distance is set, 

the focus of the camera can also be fixed to have better image quality and accurate 

temperature readings.  

When in operation, the infrared camera is a very sensitive device. Many variables 

might affect the accuracy of the temperature readings. Since our goal is to compare the 

temperature distribution of the object at different times, the operation conditions should 

be maintained as uniform as possible. The examples of the operation conditions are 

ambient temperatures, the heat sources, and the physical set-up of the system. To reduce 

the external infrared source and vibration during the experiment are also important. The 
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external infrared source can affect the accurate surface temperature reading while 

vibration can have adverse effects of the resolution of infrared camera. 

     

3.3.2  Experiment chamber design and layout 

The experiment chamber includes the heating chamber, scanning chamber, potato 

transfer system, and potato fixture. To provide a stable environment for experimentation, 

the chamber must have special designs to meet the different requirements for both 

heating chamber and scanning chamber. The material to build the whole chamber is 

Acrylic, which has relative low thermal conductivity and easy to process. The dimension 

of the whole chamber is 24 x 34 x 21 inches. Figure 3 shows the chamber design of the 

experiment. 

The heating chamber locates at the front section of the whole chamber. Two 150W 

halogen lamps are mounted to provide the heat source for the potato. The distance 

between the lamps and the potato is about two inches, depends on the height of the 

potato. To prevent the heat source from dissipating form the heating chamber to the 

scanning chamber, all of the chamber walls are cover with Styrofoam and Mylar. The 

thermal conductivity of Styrofoam is very low so it can prevent most of the heat transfer 

from conduction. Mylar is a biaxially-oriented polyethylene terephthalate film used for 

its chemical stability, reflectivity, and electrical insulation capabilities. The Mylar used 

in the chamber is metalized and can reflect more than 90% of light including much of the 

infrared spectrum. When the heating time is 60 seconds, the temperature from the 

scanning chamber only increases 0.1
o
F. This demonstrates that the thermal insulation 
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with Styrofoam and Mylar is effective.  

 

          

Figure 3. The chamber design of the experiment. 

 

The infrared camera is installed in the scanning chamber to take the thermal images of 

the potato. The ambient temperature of the scanning chamber needs to be controlled well 

to eliminate the noise due to ambient temperature increasing. Three Resistive 

Temperature Detector (RTD) sensors are placed in the scanning chamber to monitor the 

ambient temperature inside the chamber.    

In the scanning chamber, the inner wall is covered with Styrofoam because the good 

thermal insulation is also needed. The Styrofoam is painted into black color instead of 

Mylar to reduce the reflection energies which is a potential noise when taking thermal 

images. The fixture of the potato is used to hold the potato steadily for the whole 

experiment. The potato is in the same position when in heating and scanning process. 
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The material of the fixture is also Acrylics cover with Styrofoam and Mylar for their low 

thermal conductivity. To reduce the heat transfer from the potato to the fixture, the 

contact between the potato and the fixture is minimized as four points with the double V 

shape as shown in figure 4. Some holes are drilled on the fixture structure to reduce the 

heat conduction.  

 

 

Figure 4. The fixture design to hold the potato during experiment. 

 

After the potato is heated in the heating chamber, it will be moved to the scanning 

chamber immediately. The potato transfer system is constructed by a linear guide way 

and motors to control the motion. The fixture of the potato is mounted to the guide way 

directly. Two gates are placed in between the heating chamber and the scanning chamber. 

These two gates are closed when heating the potato. After heating, the potato is 

transferred to the fixed position in the scanning chamber, and the motors connected with 

strings will pull the gates closed.  
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3.3.3  Electronic and control systems 

All of the motions are controlled by a programmable logic controller (PLC). The PLC 

programming can be modified to adjust the experiment settings such as the heating time 

and the gate closing times.  

The PLC used in this research is MicroLogix 1000 from Allen-Bradley company. PLC 

plays an important role in the automated control system. With the program stored in it, 

PLC can monitor the status of the system. Input devices give signals to the PLC, and the 

PLC sends a signal to the output devices for system operation. Examples of the input 

devices and output devices are motors and sensors. The design concept of the control 

system for this experiment is in figure 5.  
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No

No
Yes

Yes

Turn on

switch

Turn on lamp

Start scanning

Potato is in the

scanning

position

Gates are

closed

After appropriate heating time

Move the fiture and the potato

to the scanning chamber

Turn off

lamps

Close the gates between the

heating and scanning chamber

Yes

 

Figure 5.  Design concepts of the PLC program. 
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3.3.4  Image processing and analysis software 

To display the thermal images on the screen and to process the data are essential 

functions in the application of infrared thermogarphy. The softwares to analyze the 

thermal images are WinTES and ThermalView in this study.  

The Windows Thermal Evaluation Software (WinTES) is software to control the 

infrared camera and show the temperature profile of the object. The variables including 

ambient temperature, focus, emissivity of the object, and scanning interval are set before 

scanning. In WinTES, the thermal images are display as gray scale as shown in figure 6. 

WinTES can show the real time thermal images while scanning, and save each image to 

the personal computer. It can also show the maximum, minimum, and average 

temperatures of the chosen area of the thermal image. By viewing the thermal images, 

we can have the basic understanding of the temperature distribution of the potato. The 

shape and the contour of the potato can be clearly shown in the thermal images. 

However, to record every temperature reading of the thermal images needs a lot of time. 

There are also difficulties to choose the same area of interest for every thermal image.  
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Figure 6.  The WinTES program to display the thermal images. 

 

To simplify the analyzing procedure, the software Thermal View is used in this 

research. The basic function of Thermal View includes showing the thermal images, 

drawing and saving the area interested on the thermal image, getting the temperature 

data from the saved area, and calculating the heating rate or cooling rate of the object. 

The area of interest on the potato is saved for each sample to maintain the consistency. 

For each area of interest, it can be divided into many columns and rows depends on the 

resolution needed. To know the thermal behavior of potato, the heating rate and average 

heating rate are calculated instead of surface temperatures [32]. The heating rate over 

time is calculated based on the temperature difference between each the thermal images 

for the area of interest. The unit of heating rate is 
Fo

∆𝑡
, where 

o
F and t represent degree 

Fahrenheit and time respectively. The average heating rate is defined as the summation 
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of heating rates divide by the number of thermal images captured. The equations of 

heating rate and average heating rate are:  

Heating Rate H=  
Ti−Ti−1

n

n
i=1                                          (3.1) 

Average Heating Rate Havg=  
H i

n

n
i=1                                     (3.2) 

where i is the number of the current thermal image, ranges from 1 to n, and n is the 

number of images captured for each experiment. The advantage to use heating rate and 

average heating rate is the signal can be easy to interpret. The noise due to the ambient 

temperature fluctuation can be eliminated as well.  

To obtain the accurate results, the environmental data is needed when taking the 

images. Without this data, the results might be misinterpreted due to the large changes of 

the environment. The example of the environmental data includes ambient temperature 

and distances form camera to the object.  

 

3.4  Design of experiments 

3.4.1  Preliminary experiments 

3.4.1.1  Determine the appropriate method to simulate the extra sugar contents area 

Extra sugar contents in the potato is a serious problem in the potato industry. However, 

there are difficulties related to obtaining the potato with extra sugar contents before 

analyzing it. In this experiment, the appropriate method to simulate the extra sugar 

contents will be decided. 

Sucrose accumulation in the potato is a serious problem in the potato industry. Sucrose 

can also transform into fructose and glucose that can cause dark coloration after frying 
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the potato. In this experiment, we use cane sugar as the material to simulate extra sugar 

contents accumulation. In this research, we assume the excessive sugar contents is 

concentrated in a small region.  

The sugar accumulation areas inside the potato need to be appropriately simulated in 

order to meet the real situation. The first method is to cut a corner of the potato and soak 

it in the sugar solution. After soaking, the potato corner will be put back in the original 

position. However, the sugar solution will not diffuse into the potato. The potato corner 

shrinks because the water contents balances the osmotic pressure. 

Since over 80% of the inside of the potato is water, the sugar solution will be used 

directly to simulate the sugar accumulation area inside the potato as possible. The 

simulation occurs by injecting the sugar solution inside the potato tuber after drilling a 

hole at specific locations. The location of the sugar accumulation is set as 45 degrees 

from the centerline as shown in figure 7. After marking the center of the potato and 

measuring the depth of the potato, it is easy to drill a hole of 45 degrees. The size of the 

drill bit is 1/8 inch. The volume of the sugar solution can be calculated as 

π(
1

16
)2 x  2 x 

1

2
 potato height. This configuration can let us study the depth and area of 

sugar concentration by analyzing the thermal images taking from the top of the potato. 

The disadvantage is that the sugar solution will not be inside the potato; instead, it will 

extend to the potato‟s surface. The sugar solution area on the thermal image will be 

0.012 inch
2
.  

The concentration of the sugar solution is set as 37.5% (20 ml water with 12 grams of 

cane sugar). When injecting the sugar solution into the potato, we should make sure that 
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there is no air in the solution. Because the thermal properties of air are greatly different 

from the potato and the sugar solution, the appearance of air will affect the result.  

 

 

Figure 7.  The sugar solution injection position. 

 

3.4.1.2  Determine the appropriate heating and cooling time 

Different heating times for the potato are applied in this experiment with the best time to 

be selected. The appropriate heating time should not be too short so that the heat cannot 

propagate to the center of the potato, and it should not be too long, or it may affect the 

potato quality. In real application, the shorter heating time is preferred considering the 

efficiency. The infrared camera scanning time must be long enough to record the surface 

temperature change of the potato. However, it is not efficient to keep scanning until the 

surface temperature of the potato decreases to the original temperature. So the 

appropriate heating and scanning time should be determined in this preliminary 

experiment.  

Considering 30, 60, and 90 seconds of heating time, the temperature is measured from 

the RTD sensors first. After heating, the potato is put in room temperature for 300 

seconds, and the temperature changes of the potato‟s  subsurface are recorded to 
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determine the proper heating and cooling time.  

 

 

Figure 8.  Temperature difference of 30, 60, and 90 seconds heating time and the RTD sensor 

positions. 

 

From the above figures, we can see that as the cooling time increases, the temperature 

also increases. The reason for this may be that the heat propagates from the potato 

surface into the inner potato and dissipates from the inner potato to the surface when the 

potato‟s temperature is higher than the ambient temperature. The figure 8 shows that 

when heating for 30 seconds, the heat propagates to the middle of the potato is very 

small, and the signal is not large enough to discriminate the potato quality. For heating 

60 and 90 seconds, the trends are similar except that the curves in for heating for 90 

seconds are smoother than for 60 seconds. In this preliminary experiment, we can 

exclude the 30 seconds of heating time in order to have more apparent results. Each data 
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point is an average of 3 samples.  

  In another experiment to determine the appropriate heating time, the RTD sensor is 

used to measure the center temperature of the potato. A hole is drilled in the potato with 

the depth half of the potato height. And the RTD sensors are inserted into the hole to 

measure the center temperature of the potato. The center temperature of the potato is 

recorded from the time the potato is heated until it returns to the initial value. This 

experiment‟s intent is to determine the cooling time needed between the first experiment 

and the second experiment of the same potato with sugar. Here, the ambient temperature 

is assumed to be constant. The time needed to cool for the 30, 60, and 90 seconds of 

heating are 140, 160, and 180 minutes, respectively.  

  In this experiment, the heating time of 60 seconds is applied. Extending the heating 

time might affect the quality of the potato, even if it has a larger signal in thermal images. 

After taking the thermal images, the potato is placed in room temperature for at least 3 

hours to reach its original temperature. Then the potato is injected with the sugar 

solution immediately before taking the thermal images for the second time. If the shorter 

heating time is needed, the lamps can be replaced with higher watts ones. But the watts 

of the lamps should not be too high that might affect the properties of the potato.  

 

3.4.1.3  Determine the appropriate scanning time 

In the grayscale thermal images, the darker colors indicate lower temperatures. We can 

observe and compare the temperature of each thermal image taken to determine the 

appropriate scanning time. The scanning time must be long enough to record the heat 
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transfer behavior of the potato. However, it is not efficient if the scanning time is too 

long for real application. The surface temperature of the potato after heating decreases 

until it equals the original temperature. From the thermal images of the potato before 

heating, the surface temperature of the potato is lower than the background. Figure 9 

shows the thermal images taken every 60 seconds beginning from A. In the figure 9 (F), 

after cooling for 300 seconds, the thermal image becomes very blurry. Figure 10 shows 

the average heating rates within 300 seconds. The slope is very small in the end of the 

curve, which means the average heating rate does not change greatly after scanning for 

300 seconds. The slope of the curve will be even smaller after scanning for 300 seconds. 

So in this research, the scanning for 300 seconds is enough for the heat transfer analysis. 

The thermal images are taken every 20 seconds for a total of 300 seconds. For each 

potato there will be 16 images in each experiment, including the first snapshot taken 

after heating immediately.  

 

 

Figure 9.  Thermal images of the potato taken every 60 seconds. 
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Figure 10.  The average heating rates within 300 seconds. 

 

3.4.1.4  Effect of ambient temperature change 

The ambient temperature can vary greatly during the whole experiment hence affect the 

accuracy of the result. In this research, the ambient temperature is controlled between 70 

and 74 degree Fahrenheit. To make sure the ambient within this range will not affect the 

result significantly, the summation of the average heating rate of the same potato is 

examined at different temperature levels. Three samples are selected and take the 

average values for the statistical test. Havg values of the same potato obtained from 

different ambient temperature are shown in table 5.  

 

Table 5. Havg values of the same potato sample obtained from different ambient temperature. 

Temperature 

Range (F) 
70-71 71-72 72-73 73-74 

Sample Number 3 3 3 3 

Havg -4.406 -4.303 -4.454 -4.443 

Standard 

deviation  
0.124 0.140 0.156 0.161 
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The procedures to test the means of these four groups are: 

1. Ho: x1 = x2   = x3   = x4    

Ha: At least one of the sample means differ from the rest.  

α =0.05 

2. Total sample number nT = 12, n1 = n2 = n3 = n4 =3 

The overall mean = (3(-4.406)+3(-4.303)+3(-4.454)+3(-4.443))/12 

               = - 4.402 

Sum of squares between samples = 

3(-4.406+4.402)
2
+3(-4.303+4.402)

2
+3(-4.454+4.402)

2
 +3(-4.443+4.402)

2
 =0.043 

Sum of squares within samples = 

(3-1)(0.124)+(3-1)(0.140)+(3-1)(0.156)+(3-1)(0.161) = 1.162 

Total sum of squares = 0.043+1.162=1.205 

3. The AOV table can be generated in table 6. 

 

Table 6.  The ANOVA table of the experiments done with different ambient temperatures. 

Souce SS df Mean Square F 

Between 

samples 

0.043 3 0.0143 0.0143/0.145 

= 0.984 

Within 

samples 

1.162 8 0.145  

Totals 3.434 11   

 

The critical value of F is obtained from the percentage points of the F distribution 

table. For α=0.05, df1=3, and df2=8, the value is 4.07.  
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4. Because the computed F value is 0.984, which is smaller than the critical value, we 

fail to reject the null hypothesis of equality of the means of the Havg obtained from 

different ambient temperatures. So the ambient temperature varies in this research 

does not affect the Havg significantly.  

 

3.4.2  Experiments to identify if there is extra sugar contents in the potato 

After the standard experimental procedures are developed, potato samples are selected to 

compare the thermal behavior with and without the extra sugar contents within the same 

potato. The heating rates and average heating rates of potatoes with and without the extra 

sugar contents will be discussed. The prediction of the extra sugar contents in the potato 

is accomplished by using artificial neural networks and the statistic model. The correct 

rates of the prediction by these two methods will be discussed.  

To determine whether the potato has extra sugar contents, 60 potato samples are 

selected to compare the thermal behavior before and after injecting sugar solution. 

Before doing the experiment, the weight and dimension of the potato is recorded. The 

experiment procedures are as follows:  

1.  Place the potato on the fixture, mark the position of the potato, and fully close the 

chamber to ensure stable environmental conditions.  

2.  Start heating the potato for 60 seconds by 2 halogen lamps. After heating, the potato 

will move automatically to a predetermined position for taking the thermal images. 

All of the gates are closed to prevent the heat transfer from the heating chamber to 

the scanning chamber.  



39 
 

3.  Take one thermal image every 20 seconds, for a total of total of 300 seconds per 

potato.  

4.  Cool the potato at room temperature for 3 hours. Inject a sugar solution into the 

potato to simulate a area of sugar concentration. After injection, scan the potato again 

following steps 1 to 3 above. 

5.  Analyze and compare the thermal images of the potato with and without excessive 

sugar contents.  

 

3.4.3  Experiments to characterize the extra sugar contents locations 

The experimental procedures are similar to the procedures in 4.3. The analysis 

procedures are divided into two steps. First, the average heating rate differences of 

different areas on the same potato are compared. One of the selected areas on the potato 

is the predetermined sugar injection region, and the other is the region far from the sugar 

injection region. Because the properties of each potato are not identical and the 

properties of the same potato are not uniform, the average heating rates of the same 

potato needs to be compared first. The average heating rate difference is calculated by 

subtracting the average heating rate of the potato with extra sugar contents from the 

average heating rate of the normal potato, illustrated as follows:  

ΔHavg = Havg, normal – Havg, extra sugar contents                              (3.3) 

After studying the average heating rate difference of the potato with and without the 

extra sugar contents, the next step is to find the location of the sugar contents without 

comparing the original data. The whole thermal image of the potato is divided into small 
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squares (20 x 20 pixels), and the average heating rates of these small squares are 

calculated. The area of interest on the potato is set to the center of the potato as shown in 

figure 11 to eliminate the noise due to the edges‟ uneven cooling rates. The length and 

width are 160 and 100 pixels, so there will be a total of 40 small squares on the area of 

interest. The average heating rate of each small area is plotted into two dimensional 

figures. Statistical models will be applied in this procedure and the correct rate of 

identification of the extra sugar contents location is discussed.  

 

 

Figure 11.  The whole area of interest of the extra sugar contents location prediction. 

 

3.4.4  Experiments to characterize the extra sugar contents depth 

When the location of the extra sugar contents is identified, the next goal is to predict the 

depth of the extra sugar content. In this experiment, the average heating rate difference 

of different depths of the extra sugar content will be compared. For the extra sugar 
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content potatoes, the relationship between the average heating rate and the depth of the 

extra sugar content will be predicted using a statistical model. The correct rate of the 

depth of the extra sugar content prediction will be discussed. Table 7 summarizes the 

experiments done in this research.  

 

Table 7.  Summarized of the experiments needed to be done. 

Experiment Purpose 

Sugar contents 

simulation 

To determine the appropriate sugar simulation 

method 

Heating time To determine the appropriate heating time for potato 

Scanning time To determine the appropriate scanning time for 

potato 

Ambient temperature 

effect 

To see how different ambient temperature may 

affect the surface temperature distribution of potato 

Extra sugar contents  

identification 

Use different analysis approaches to identity if the 

extra sugar contents is in the potato 

Extra sugar contents 

location identification 

Use different analysis approaches to identify the 

extra sugar content location 

Extra sugar content  

depth identification 

Use different analysis approaches to identify the 

extra sugar content depth  
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CHAPTER IV 

RESULTS 

 

4.1  Introduction 

This chapter presents the results of the extra sugar contents detection, the location of the 

sugar concentration prediction, and the depth of the sugar concentration prediction. For 

the extra sugar contents detection, a statistical model and Neural Network model are 

applied. For the location and depth of the extra sugar concentration prediction, statistical 

model is applied. The correct rate of each experiment is discussed in this chapter. The 

general methodologies for characterizing the extra sugar contents potato and identifying 

the location and depth of the extra sugar contents are proposed.  

 

4.2  Experimental results of the extra sugar contents detection 

4.2.1  Comparison of the heating rate (H) and average heating rate (Havg) of potato 

with and without the extra sugar contents 

The first objective is to determine if there is an average heating rate difference between a 

normal potato and a potato with extra sugar contents. Sixty potato samples are used in 

this experiment. The specific potato sample is scanned for the first time without adding 

any sugar solution. After the appropriate cooling time, the same potato is injected with 

the sugar solution for the second scan. The scanned surface of the potato is maintained in 

both of the scanning processes. The summation of heating rate (H) and average heating 

rate (Havg) of the 60 potato samples are listed in Appendix A. The values are calculated 
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from the summation of the heating rate and average heating rate of each snapshot for 

each potato sample. The area of interest on the thermal image is the largest available area 

of the potato. Since the shape of the potato is approximately an ellipse viewed from the 

top; and the area of interest is a rectangle, the edges will not be included in the heating 

rate analysis.  

  As Appendix A demonstrates, most the H and Havg of normal potatoes appear higher 

than those with extra sugar contents. We can then conclude that a potato with extra sugar 

contents cools faster than a normal one. The average value of H and Havg of each 

snapshot for each potato is listed in table 8. Figure 12 and 13 are generated from these 

values for comparing H and Havg easily. The heating rates and average heating rates 

decrease with time. The curves of H and Havg fit well into second-order polynomial 

equations, which means the H and Havg decrease faster in the preceding snapshots. In 

addition, the average values of H overlap except in the first few snapshots, while the 

average values of Havg always separate. Although the relationships of the H and Havg 

between potato with and without extra sugar contents can be seen from the figures, 

conclusions cannot be made before examining the statistical procedures. Figure 14 

shows the boxplots of the Havg for each snapshot.  

 

Table 8.  The average value of H and Havg of each snapshot for each potato. 

 H of normal 

potatoes 

H of extra sugar 

contents potates 

Havg of normal 

potatoes 

Havg of extra sugar 

contents potatoes 

snapshot 1 -0.47133 -0.53043 -0.47285 -0.53039 

snapshot 2 -0.32791 -0.36105 -0.40134 -0.44554 

snapshot 3 -0.23796 -0.2371 -0.34638 -0.37588 
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Table 8. Continued. 

 H of normal 

potatoes 

H of extra sugar 

contents potates 

Havg of normal 

potatoes 

Havg of extra sugar 

contents potatoes 

snapshot 4 -0.18668 -0.18704 -0.30634 -0.32865 

snapshot 5 -0.14648 -0.15014 -0.2743 -0.29335 

snapshot 6 -0.12019 -0.12927 -0.24874 -0.26572 

snapshot 7 -0.09582 -0.1059 -0.22699 -0.24298 

snapshot 8 -0.09513 -0.09289 -0.21046 -0.22422 

snapshot 9 -0.07722 -0.08526 -0.19571 -0.20873 

snapshot 10 -0.07171 -0.06578 -0.18314 -0.19437 

snapshot 11 -0.0532 -0.06818 -0.17157 -0.18302 

snapshot 12 -0.04632 -0.05913 -0.16105 -0.17272 

snapshot 13 -0.05793 -0.0502 -0.15299 -0.16328 

snapshot 14 -0.0448 -0.03387 -0.14529 -0.15404 

 

 

 

Figure 12.  The average value of heating rate of 60 samples. 
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Figure 13.  The average value of average heating rate of 60 samples. 

 

Figure 14.  Boxplots of Havg of normal and extra sugar contents potatoes. 

 

Table 9.  Comparison of the H and Havg of the normal and the extra sugar contents potatoes. 

 H, normal H, sugar Difference of H Havg, normal Havg, sugar Difference of Havg 

average -2.033 -2.156 0.123 -3.497 -3.787 0.289 

standard 

deviation 

0.356  0.337  0.146  0.607  0.607  0.263  
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summations of average heating rates. The paired t-test can be used to compare two 

population means when each measurement in one sample is paired with a particular 

measurement in the other sample [33]. In our experiment, the data generated before and 

after the sugar injection are from the same potato for each test. Thus, the paired t-test 

was applied in this study with the data in table 9.  

The procedures of paried t-test to compare the summation of the heating rates are: 

1. Ho: μd =μ1-μ2 ≦ 0 

Ha: μd > 0 

α = 0.05 

2. T.S: t = 
d 

Sd / n
=  

0.123

0.146/ 10
= 2.66  

3. R.R: For degree of freedom (df)=n-1= , reject Ho if  t ≧ tα  

From the table of the t distribution, tα, 9 = 1.833 

4. Because t > tα, 9, we reject the null hypothesis that the mean of the two group is the 

same. There is a difference of heating rates of potato with and without extra sugar 

contents.  

 

The procedures of paired t-test to compare the summation of the average heating rates 

are: 

1. Ho: μd =μ1-μ2 ≦ 0 

Ha: μd > 0 

α = 0.05 

2. T.S: t = 
d 

Sd / n
 = 

0.289

0.263/ 10
 = 3.475 
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3. R.R: For degree of freedom (df)=n-1= , reject Ho if  t ≧ tα 

From the table of the t distribution, tα, 9 = 1.833 

4. Because t > tα, 9, we reject the null hypothesis that the mean of the two group is the 

same. There is a difference of average heating rates of potato with and without extra 

sugar contents. 

 

From the hypothesis testing, we conclude that there is difference of H and Havg 

between potato with and without extra sugar contents. However, the difference is larger 

for the Havg, so the following discussions focus on the Havg exclusively.   

 

 

4.2.2  Introduction of the logistic regression model  

After examining the difference of H and Havg, the next step is to use the statistical model 

to predict the probability of the appearance of extra sugar contents in the potato. Because 

the outcome of the prediction of extra sugar contents appearance is simply “yes” or “no”, 

the logistic regression model is applied here.  

Logistic regression is a model used to predict the probability of an event occurrences, 

especially when the dependent variable is binary. The independent variables can be 

continuous or categorical. For binary outcomes, if the independent variables are 

continuous, the ordinary linear regression model might not fit the data very well [34]. To 

largely improve the fit, using the logistic model is possible, as shown in figure 15. The 

outcomes are set to 0 and 1in the logistic regression model, and the mean of the binary 
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distribution is the proportion of 1s, as shown in figure 16. 

 

 

Figure 15.  The comparison of fitting in linear and logistic regression model. 

 

 

Figure 16.  The general figure of the logistic function. 
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The logistic equation is in the following form: 

P =  
ex

1+ex                                                          (4.1) 

By this equation, the estimate value of P can only be in the range of 0 to 1for any 

input x, as shown in the figure x. Here P represents the probability of the outcome. The 

variable x is the factor affecting the outcome, can be in the form   

x = β0 + β1x1 + β2x2 + ⋯+ βnxn                                     (4.2) 

In equation (4.2), β0 is the intercept which will be P when x equals zero, and β1to 

βn  are the regression coefficients of x1 to xn, respectively. Each of the regression 

coefficients can show the influence of the specific factor. 

From equation 

P

1-P
= 

ex/(1+e
x
)

1/(1+e
x
)

= ex                                                   (4.3) 

In statistics, odds is defined as the likelihood of a given event occurring compared to 

the likelihood of the same event not occurring, which can be represented as 
P

1−P
. The 

logit of P is the natural logarithm of the odds, which can be obtained from  

ln  
P

1−P
 = x                                                      (4.4) 

Hence, to model P with the logistic function is equivalent to fitting the logit into the 

linear regression model. The logistic regression model is to calculate changes in the 

natural logarithm of odds of the dependents, not changes of the dependents as in the 

ordinary linear regression models. Thus, the relationship between x and P is nonlinear, 

and the regression coefficient does not have direct interpretation as in the ordinary linear 

regression.  
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The assumptions of logistic regression model are not as restrictive as in the ordinary 

linear regression model. For example, the dependent variable does not need to have the 

same variance for each level of the independents. In addition, the logistic regression 

model does not require that the independents to be intervals or unbounded. However, 

when using logistic regression, the following basic assumptions should be met: 

1. The model is specified correctly. The dichotomous dependent variable is assumed for 

binary logistic regression.  

2. The logistic regression model should include all relevant variables and exclude all 

irrelevant variables. The independent variables should not be linear functions of the 

other independent variables, or the standard error of the regression coefficient will be 

too high.  

3. No outliers. Outliers can affect the results substantially, hence should be removed 

from the model. The values exceed more than 2 standard deviation are considered as 

outliers.  

 

4.2.3  Extra sugar contents identification results from a logistic regression model  

The dependent variable in this model is set to be 0 or 1, which represents the normal or 

the potato with extra sugar contents, respectively. The possible independent variables are 

Havg, density of the potato, weight of the potato, and the ambient temperature. The 

density and weight of these two data in the same potato will not change, while the Havg 

and ambient temperature might vary. The Havg of all potato samples are obtained after 

analyzing the thermal images. The summation of Havg in the previous section is applied. 
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Other factors that might affect the outcome, such as density and weight are also consider 

as variables. Density can affect the thermal diffusivity of the potato and weight is the 

most convenient property to measure when sorting the potato. Although the ambient 

temperature is controlled within 4 degree of Fahrenheit when doing experiment, it is still 

considered as a potential factor that could affect the results.  

The independent variables are selected from the likelihood ratio test of the model. The 

likelihood ratio is the probability of the observed results of the dependent be predicted 

form the independents, varies from 0 to 1. It is customary to use -2 times the log of the 

likelihood (-2LL) to test the significance of the logistic regression model because it is 

approximately a chi-square distribution. A good logistic regression model will have high 

likelihood and results in very low -2LL. Analogous to the chi-square test in the linear 

regression model, the likelihood ratio test is applied to test the null hypothesis that all the 

coefficient of the independent variables are zero. The test is done by comparing the 

difference in -2LL of the whole model with a nested model, which drop one of the 

independents.  

A nonsignificant likelihood ratio test means there is no difference between the full and 

the nested model, hence the coefficient of the dropped independent variable can be 

considered as 0. The likelihood ratio test to select the appropriate independent variables 

can be done by the software SPSS as shown in the table 10 below. From the table we can 

see only the Havg is significant with the 0.05 significance, which means we can reject the 

null hypothesis that the coefficient of Havg is 0. However, models without the other 

independent variables are not significantly different from the full model. Hence the only 
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variable to be considered in predicting the occurrence of extra sugar contents in the 

potato is Havg.  

 

Table 10.  Statistical results focus on selecting the independent variables. 

Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

 -2 Log Likelihood of Reduced Model Chi-Square df Sig. 

Intercept 106.546 .201 1 .654 

weight 106.349 .003 1 .954 

amb_temp 106.505 .160 1 .689 

density 106.926 .581 1 .446 

Havg 110.432 4.087 1 .043 

 

After deciding the variable to be used in the logistic regression model, the model is 

established and the accuracy of prediction is discussed. There are total sixty samples and 

the samples are separated into modeling and testing groups. Forty samples are randomly 

selected for the modeling group, there are two data sets in each sample, one form the 

normal potato and another from the potato with the sugar solution injection. The other 

twenty samples formed the testing group. For each sample in the testing group, data 

from normal and potato with extra sugar contents cannot be used at the same time since 

when an unknown potato is to inspected, there will not be data of the normal and the 

potato with extra sugar contents available simultaneously. As a result, there are 80 data 

sets and 20 data sets to be used in the modeling and testing group, respectively.  

  The logistic regression model is constructed by SPSS using the data from the 

modeling group. The raw data used to build the logistic regression model in the 
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modeling group and the testing group appear in the Appendix B. The coefficient of the 

Havg and the constant are listed in the following table 11:  

 

Table 11.  Coefficients of the logistic model in extra sugar contents prediction. 

 Variables in the Equation 

  B S.E. Wald df Sig. Exp(B) 

Step 

1(a) 

Havg -.776 .414 3.511 1 .061 .460 

Constant -2.814 1.522 3.417 1 .065 .060 

     

The equation of the logistic regression model is now:  

P =  
e−2.814−0.776∗Havg

1+e−2.814−0.776∗Havg                                               (4.5) 

The next step requires using this model to fit the data of the testing group to determine 

the accuracy of classification. It is an accurate prediction if the predicted probability of 

the potato being an extra sugar one is higher than 0.5 and the inputs are from the potato 

with extra sugar contents, or the predicted probability of potato being an extra sugar one 

is lower than 0.5 and the inputs are from the normal potato. The mathematical 

interpretation to calculate the correct rate of the prediction is list as follows: 

 

Actual value A(x):   

       A(x) = 0      potato without extra sugar contents  

             1      potato with extra sugar contents  

Predicted value: P(x): the probability of having the extra sugar contents 

       x=1~m       m: total sample number  



54 
 

If A(x) =0 and P(x)<0.5  , C(x)=1  

If A(x) =1 and P(x)≧0.5, C(x)=1  

Else   C(x)=0 

Correct rate= ( ∑ C(x)) / m 

For the twenty data in the testing group, the classification table of the correct and 

incorrect estimates is in table 12. From the table we can also have the information about 

the hit rate, sensitivity, and specificity, which are concluded in the table 13.  

 

Table 12.  The classification table in extra sugar contents prediction, the cut value is 0.5. 

Observed (Actual) Predicted 

Has extra sugar contents Percentage 

correct Yes No 

Has extra sugar contents 

 

Yes 9 1 90 

No 2 8 80 

Overall Percentage    85 

 

Table 13.  The hit rate, sensitivity, and specificity of the extra sugar contents prediction. 

 Implicaiton Value 

Hit Rate Number of correct prediction divided by total sample 

size 

85% 

Sensitivity Fraction of correct predictions in the having extra sugar 

contents potato case 

90% 

Specificity Fraction of correct predictions in the normal potato case 80% 

   

The results show that the logistic regression model can predict if there is extra sugar 

contents in the potato at an overall 85% correct rate. The false positive might due to the 
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uneven surface roughness or sprouts on the potato. And the false negative might due to 

the close Havg values to the normal potatoes. While the probability of the extra sugar 

contents occurrence does not match the target, the value is not very far from the correct 

range.  

 

4.2.4  Development of the neural network 

The neural network model is used to obtain the correct rate of the sugar concentration 

prediction. Neural network is a useful tool for research and industry in many applications, 

such as electronics, financial, and manufacturing. Neural networks are composed of 

interconnecting neurons inspired by the biological nervous systems. Neural networks are 

trained to perform a specific target output when entering particular input and bias 

parameters. The values of the weights between the elements are adjusted based on the 

comparison of the output and the target until they are match. Neural networks can be 

used to solve complex functions, and have been used successfully for applications such 

as data processing, identification, classification, and function approximation [35]. 

In this research, backpropagation networks were constructed to detect if the potato has 

extra sugar contents. The gradient in backpropagation is computed for nonlinear 

multilayer networks, and the weights moved along the negative of the gradient of the 

performance function. The inputs and the targets are used to train the network until it can 

associate the inputs with specific outputs. The advantage of a backpropagation network 

is that it can approximate any function with some discontinuities. With a properly trained 

backpropagation networks, a new input leads to an output similar to the correct output 
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for input in training. So there is no need to train all possible input and output pairs to 

obtain good results.  

The steps of using backpropagation functions to train neural networks to predict the 

sugar contents are as follows: 

1.  Assemble the training data.  

All of the inputs and targets are normalized and arranged. The target is set to be 0 

and 1 for potato without and with extra sugar contents, respectively. The original data 

of possible inputs such as H, Havg, and density are normalized to a value between 0 

and 1. 

2.  Create a network.  

A feedforward network is created in Matlab program. The variables of the network 

structure including the number of inputs, the number of hidden nodes, the number of 

hidden layers, and the transfer and training functions are decided in this step.  

3.  Train the Simulate the network.  

The weights and biases of the network are initialized before training the network. 

The network is trained for classification in this research. When training, the inputs 

and the target outputs are entered in the neural network model. The weights and 

biases are changing iteratively to minimize the performance function – mean square 

error, which is the average squared error between the target outputs and the network 

output. The gradient of the performance function is determined by the 

backpropagation algorithm.  

4. Testing the network with new inputs when the training of the network is finished. 



57 
 

New inputs and target outputs are entered to test the feasibility of the network. The 

correct rate is computed as the target output and the network output matches.  

5. Modify the network function if necessary.  

If the correct rate of the network design is not high enough, the parameters or the 

functions in network are modified to have a higher correct rate.  

 

4.2.5  Results of neural network model using MATLAB 

The same data used in the logistic model are applied in the inputs of the neural network 

model. There are also 80 data sets and 20 data sets in the modeling and testing group, 

respectively. The data are randomly selected in the testing group as in the logistic 

regression modeling. Before entering the raw data as inputs, they are adjusted to the 

values between zero to one. There are four input nodes and one output node in the neural 

network model. The neural network structure used in this research is plotted in figure 17. 

 

 

Figure 17.  The neural network structure used in extra sugar contents prediction. 
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There are 4 input nodes: weight, ambient temperature, density, and Havg. There are 2 

hidden layers with 3 and 4 nodes in each layer. The transfer functions of the hidden 

layers are tansig, which can calculate the layer‟s output between -1 and 1. The transfer 

function in the output is logsig, which can calculate the layer‟s output between 0 and 1 

since our targets are between 0 and 1. 

Various training functions of the neural network can be used under backpropagation 

algorithm. The correct rates of the extra sugar contents identification are listed in the 

table 14.  

 

Table 14. Backpropagation training functions with the correct rates. 

Training 

functions 

Learning Algorithm Correct Rate(%) 

Trainrp Resilient back propagation  80 

Trainoss One step secant method 55 

Trainscg Scaled conjugate gradient algorithm 60 

Traingda Gradient descent with adaptive learning rate 55 

Trainlm Levenberg-Marquardt algorithm 70 

Traingd Basic gradient decent 50 

Traingdm Gradient descent with momentum 55 

Traincgb Powell-Beale conjugate gradient algorithm 55 

Traincgp Polak-Ribiere conjugate gradient algorithm 50 

Traincgf Fletcher-Reeves conjugate gradient algorithm 60 

Traingdx Adaptive learning rate algorithm 65 

 

The highest correct rate of neural network model is 80% using Trainrp to predict the 

extra sugar contents. The cut value is set to 0.5 as well. Figure 18. shows the actual and 
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predicted values for the 20 testing samples. Circles stand for the targets and stars stand 

for the predicted values. 

 

 

Figure 18.  Results of the extra sugar contents prediction using neural network model. 

 

4.2.6  General methodology for the extra sugar contents detection 

  The general methodology to identify the extra sugar contents potato is summarized as 

follows:  

1. Heat the potato sample with appropriate time and heat flux. 

2. Use infrared camera to take thermal images of the potato sample. 

3. From the sequences of thermal images, obtain the average heating rate of the sample 

area.  

4. Randomly select the data to be in the training group or the testing group.  
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5.  Use data in the training group to construct the logistic regression model 

    P =  
ex

1+ex . Select variables that is significant to the model.  

6.  With the existing logistic regression model, the probability of the extra sugar 

contents potato can be calculated by the average heating rate.  

7.  If the probability of extra sugar contents potato exceeds 0.5, the specific potato 

sample is characterized as the extra sugar contents one.  

If P≧0.5 , the potato has extra sugar contents.  

If P < 0.5, the potato is a normal one.  

 

4.3  Experimental results of identifying the extra sugar contents locations 

4.3.1  Comparison of the Havg of locations with and without the extra sugar contents 

First, we want to know if there is a Havg difference between extra sugar contents area 

and normal area on the same potato. The areas where sugar solution was injected were 

compared with areas without injecting sugar solution on the same potato. Area 1 is 

where the sugar solution injected, and area 2 is the symmetric area that far from the 

sugar injection, as shown in figure 19. The area 2 should be far from the sugar injection 

region because the average heating rate will not be affect by the sugar solution easily. 

Table 15 shows ΔHavg of the areas with and without the extra sugar contents for each 

snapshot. The average of ΔHavg of the sixty potatoes from area 1 and area 2 are in the 

table 16. The ΔHavg is calculated by taking the Havg of normal potato subtracting the Havg 

of extra sugar contents potato for each area. The reason to apply the ΔHavg in comparing 

the Havg in different areas is due to the non-uniform thermal properties of the potato in 
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reality. In other words, each potato might have different skin texture and non flat surface 

hence has non-uniform emissivity. So it is needed to take into consideration of the 

natural of the potato properties.  

 

 

Figure 19.  ΔHavg comparison of the locations with and without the extra sugar contents. 

 

 

Figure 20.  ΔHavg comparison of the areas with and without the extra sugar contents for each  
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Table 15. ΔHavg of the areas with and without the extra sugar contents for each snapshot. 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 16.  Average ΔHavg values of area 1 and area 2. 

 

The average value of ΔHavg on different areas of each snapshot is plot in figure 20. 

From the figure we can assume that Area1- the sugar solution area- induces larger ΔHavg 

than Area 2. ΔHavg of area 2 is very close to zero, hence the t-test is used to see if ΔHavg 

is significant different from zero.  

 ΔHavg of Area 1 ΔHavg of Area 2  

snapshot 1 0.085719 0.001077 

snapshot 2 0.074766 0.015584 

snapshot 3 0.040469 0.00722 

snapshot 4 0.048692 0.008715 

snapshot 5 0.032021 0.007448 

snapshot 6 0.035524 0.009002 

snapshot 7 0.03221 0.005594 

snapshot 8 0.023532 0.005952 

snapshot 9 0.025364 0.006879 

snapshot 10 0.022053 0.003044 

snapshot 11 0.023742 0.00337 

snapshot 12 0.020509 0.005235 

snapshot 13 0.017612 0.004097 

snapshot 14 0.018982 0.005056 

Sample Summation of ΔHavg, Area l Summation of ΔHavg, Area 2 Difference of summation of 

ΔHavg  

average 0.501 0.088 0.413 

standard 

deviation 

0.647 0.586 0.101 
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1. Ho: x  = 0 

Ha: x  ≠ 0 

α = 0.05 

2. T.S: t = 
y 

S/ n
 = 

0.088

0.586/ 60
 = 1.163 

3. R.R: For degree of freedom (df)=n-1= , reject Ho if  t  ≧ tα

2
 

From the table of the t distribution, t∝
2

, 59 = 2.001 

4. Because t < t∝
2

, 59, we fail to reject the null hypothesis that the mean of ΔHavg is equal 

to zero. The ΔHavg of area 2 is not significant different from zero.  

 

To see if there is significant difference of ΔHavg of area 1 and area 2, paired t-test is 

used here. The procedures of paired t-test to compare the summation of the average 

heating rates are: 

1. Ho: μd =μ1-μ2 ≦0 

Ha: μd > 0 

α = 0.05 

2. T.S: t = 
d 

Sd / n
 = 

0.412

0.101/ 60
 = 31.692 

3. R.R: For degree of freedom (df)=n-1= , reject Ho if  t ≧ tα 

From the table of the t distribution, tα, 59 = 1.671 

4. Because t > tα, 59, we reject the null hypothesis that the mean of the two group is the 

same. There is a significance difference of the ΔHavg between area 1 and 2. The ΔHavg 

of area 1 is larger than the ΔHavg of area 2.  
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From the results of the hypothesis testing, we can also verify that the extra sugar 

contents location on the potato cools faster than the normal areas on the same potato.  

 

4.3.2  Results of identifying the extra sugar contents location using the logistic 

regression model 

After understanding how the ΔHavg behave on the extra sugar contents location, the next 

objective is to identify the extra sugar contents location of the potato without comparing 

to the original one. Data of potatoes with extra sugar contents only are used here because 

we cannot have the identical potato without extra sugar contents in a real situation. The 

whole area of interest on the thermal image is limited in the rectangular inside the potato. 

And the thermal images of each potato are divided into 40 small squares with 20 x 20 

pixels of each square. The Havg of each square and the whole area of interest are 

calculated for each potato. With the logistic regression introduced in the previous section, 

the location of the extra sugar contents could be predicted.  

  First, the independent variables are selected in the logistic regression model. In 

addition to the independent variables in the previous section, the Havg of the whole area 

of interest on the specific potato is considered as a variable. The Havg might vary due to 

different properties of each potato, such as surface roughness and skin color. The 

likelihood ratio test is used to select the appropriate independent variables. In table 17, 

Havg means the average heating rate of the small square and Havg_whole means the average 

heating rate of the whole potato.  
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Table 17.  Statistical results of selecting the independent variables. 

 Likelihood Ratio Tests 

Effect Model Fitting Criteria Likelihood Ratio Tests 

  

-2 Log Likelihood of 

Reduced Model Chi-Square df Sig. 

Intercept 1851.358 173.961 1 .000 

Havg_whole 1764.187 86.790 1 .000 

Havg 2546.983 869.586 1 .000 

 

 

Figure 21.  The target settings of the potato with sugar injection region. 

 

Since other factors such as density of potato and ambient temperature are tested in the 

last section, we only consider the Havg and Havg_whole for this discussion. From the table 

17, it is apparent that Havg and Havg_whole are significant with the significance level 0.05, 

which means we can reject the null hypothesis that the coefficient of Havg and Havg_whole 

are 0. Hence Havg and Havg_whole are the independent variables used in the logistic 

regression model to predict the extra sugar contents locations.  
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In constructing the logistic regression model, the dependent variables are set to 0 or 1. 

For each potato with extra sugar contents, there are 6 squares close to the extra sugar 

contents location, which are set to be 1. Other squares far from the extra sugar contents 

are set to be 0. An example to set the targets is shown in figure 21.  

 The total potato samples are randomly separate as modeling and testing group, which 

contains 40 and 20 samples, respectively. There are 40 squares on each potato, so the 

total data sets of the modeling and testing group will be 1600 and 800 in each group. The 

data sets in the modeling group are used to construct the logistic regression model. The 

coefficients of the independent variables are calculated from SPSS as shown in the table 

18. 

 

Table 18.  The coefficients of the logistic regression model in the extra sugar contents location  

prediction. 

 Variables in the Equation 

  B S.E. Wald df Sig. Exp(B) 

Step 

1(a) 

Havg 
-2.055 .092 493.546 1 .000 .128 

  Havg_whole 1.484 .148 100.013 1 .000 4.411 

  Constant -5.451 .521 109.569 1 .000 .004 

 

The equation of the logistic regression model is now: 

P =  
e−5.451−2.055∗Havg +1.484∗Havg _whole

1+e−5.451−2.055∗Havg +1.484∗Havg _whole                                   (4.5) 

The next step is using this model to fit the data of the testing group to see the accuracy 

of classification, as in the previous section. The cut line is set to 0.5 as well. For the 800 

data sets in the testing group, the classification table of the correct and incorrect 
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estimates appears in table 19. From the table we can also have the information about the 

hit rate, sensitivity, and specificity, which are included in the table 20.  

 

Table 19.  The classification table in extra sugar contents prediction, the cut value is 0.5. 

Observed (Actual) Predicted 

Has extra sugar contents 

on the square area 

Percentage 

correct 

Yes No 

Extra sugar contents 

on the square area 

Yes 70 50 58.33% 

No 22 658 96.76% 

Overall Percentage    91.00% 

 

Table 20.  The hit rate, sensitivity, and specificity of the extra sugar contents location prediction. 

 Implication Value 

Hit Rate Number of correct prediction divided by total 

sample size 

91.00% 

Sensitivity Fraction of correct predictions in the location 

with extra sugar contents potato case 

58.33% 

Specificity Fraction of correct predictions in the location 

without extra sugar contents potato case 

96.76% 

 

  The result shows that the logistic regression model can predict if the specific small 

square is the location of extra sugar contents on the potato as an overall 91 % correct rate. 

The false positive might due to the uneven skin texture in the location. And the false 

negative might due to the depth of the extra sugar contents is too deep that are not 

detectable. While the probability of false negative location prediction of the extra sugar 

contents doesn‟t reach 0.5, the values are higher than other normal locations.  
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In addition, the correct rate is also calculated for each potato sample, listed in table 21. 

The overall correct rate is 91% used this method. The results of the prediction of the 

extra sugar contents location for the 20 samples is in figure 22. The best correct rate is 

100% and the worst is 85% for individual potato (6 errors out of 40 squares).  

 

Table 21.  The correct rate of each sample of the extra sugar contents location prediction. 

Sample T1 T2 T3 T4 T5 T6 T7 T8 T9 T10  

Correct 

Rate(%) 

97.5 85 100 87.5 95 90 87.5 87.5 90 90 

Sample T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 Overall 

Correct 

Rate(%) 

92.5 90 90 87.5 90 100 90 100 85 85 91.0 
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Figure 22.  The visualization results of the extra sugar contents location prediction. 

 

4.3.3 General methodology for identifying extra sugar contents location 

The general methodology to identify the location of the extra sugar contents on the 

potato is summarized as follows:  

1. Heat the potato sample with appropriate time and heat flux. 

2. Use infrared camera to take thermal images of the potato sample. 

3. From the sequences of thermal images, obtain the average heating rate of the sample 
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area.  

4. Randomly select the data to be in the training group or the testing group.  

5. Identify the potato with extra sugar contents by the methodology in the previous 

section. 

6. For potatoes with extra sugar contents, divide the thermal image into small squares. 

Calculate the average heating rate of each small square.  

7. Use data in the training group to construct the logistic regression model 

P =  
ex

1+ex . Select variables that is significant to the model.  

8. With the existing logistic regression model, the probability of the specific location 

with the extra sugar contents can be calculated by its average heating rate and the 

average heating of the whole potato.  

If P≧0.5 , the location on the potato has extra sugar contents.  

If P < 0.5, the location on the potato does not have extra sugar contents.  

 

4.4  Experimental results of identifying the extra sugar contents depth 

4.4.1  Comparison of Havg of different extra sugar contents depths 

In section 4.3 we determine that the location of the extra sugar contents could be 

predicted with high accuracy. However, if the depth of the extra sugar contents is too 

deep, it might not easily be identified form that procedure. The objective here is to focus 

on the relationships between the depth of the extra sugar contents and the Havg of the 

potato. Only the location of the sugar solution injection is selected on the thermal image. 

To simplify the analysis, the area of interest is set to 60 x 20 pixels for each potato on the 
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extra sugar contents location with different depth. The depth of the extra sugar contents 

is from 0 to 1 inch for larger potatoes, and 0 to 0.875 inch for smaller potatoes. The area 

of interest is divided into 3 columns, so the area for each column is 20 x 20 pixels, as 

shown in the figure 23. 

 

 

 

Figure 23.  The extra sugar contents location is divided into 3 columns. 

 

Table 22.  Values ofΔHavg of the different extra sugar contents depths of each snapshot. 

 ΔHavg of Column 1 ΔHavg of Column 2  ΔHavg of Column 3 

snapshot 1 0.109844 0.035828 -0.00495 

snapshot 2 0.097396 0.010018 0.002033 

snapshot 3 0.078867 0.014094 -0.00152 

snapshot 4 0.072162 0.022084 -0.00518 

snapshot 5 0.054371 0.009428 -0.00661 

snapshot 6 0.051177 0.020478 -0.00178 

snapshot 7 0.046261 0.014533 -0.00292 
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Table 23.  The summation of ΔHavg of different extra sugar contents depths. 

Sample Summation of ΔHavg, 

Column l 

Summation of ΔHavg, 

Column 2 

Summation of ΔHavg, 

Column 3 

Difference of 

ΔHavg, column1-2 

average 0.729 0.198 -0.016 0.053 

standard 

deviation 

0.843 0.663 0.609 0.029 

 

  The relationship between ΔHavg and depth is studied first. The ΔHavg is calculated for 

the three columns of different sugar injection depths as shown in figure 23. The total 

sample number is sixty. Column 1 to column 3 represents the sugar solution injection 

region form shallow to deep, relative to potato surface. Table 22 shows the values of 

ΔHavg of the different extra sugar contents depths of each snapshot. And table 23 lists the 

summation of ΔHavg of different extra sugar contents depths. Figure 24 is plotted from 

the data in table 22, and shows that the deeper the extra sugar contents in the potato, the 

smaller the ΔHavg on the selected area. The ΔHavg are very close to zero in column 3, 

where the depth of the extra sugar contents is form 
2

3
 to 1 inch.  

Table 22. Continued. 

 ΔHavg of Column 1 ΔHavg of Column 2  ΔHavg of Column 3 

snapshot 8 0.036767 0.010122 -0.00259 

snapshot 9 0.036499 0.010779 0.002199 

snapshot 10 0.031802 0.008343 9.25E-05 

snapshot 11 0.031269 0.014199 0.00302 

snapshot 12 0.030162 0.009023 0.00034 

snapshot 13 0.026368 0.008799 -0.00196 

snapshot 14 0.026138 0.010492 0.003567 
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Figure 24.  ΔHavg comparison of the different extra sugar contents depths. 

 

To test if the ΔHavg in column 2 are significance different from zero, the t-test is used.  

1. Ho: μ= 0 

Ha: μ≠ 0 

α = 0.05 

2. T.S: t = 
y 

S/ n
 = 

−0.016

0.609/ 60
 = -0.204 

3. R.R: For degree of freedom (df)=n-1= , reject Ho if  t  ≧ tα

2
 

From the table of the t distribution, t∝
2

, 59 = 2.001 

4.  Because t < t∝
2

, 59, we cannot reject the null hypothesis that the mean of ΔHavg is 

equal to zero. The ΔHavg of column 3 is not significant different from zero. Since the 

ΔHavg of column 3 can be considered as zero, we may assume that the depth of the 
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extra sugar contents larger than 
2

3
 inch is not detectable in this research.  

 

  The paired t-test is also used here to test if there is significant difference of ΔHavg 

between column 1 and column 2.  

1. Ho: μd =μ1-μ2 ≦0 

Ha: μd > 0 

α = 0.05 

2. T.S: t = 
d 

Sd / n
 = 

0.053

0.082/ 60
 = 5.006 

3. R.R: For degree of freedom (df)=n-1= , reject Ho if  t ≧ tα 

From the table of the t distribution, tα, 59 = 1.671 

4. Because t > tα, 59, we reject the null hypothesis that the mean of the two group is the 

same. There is a significance difference of the ΔHavg between column 1 and 2. The 

ΔHavg of column 1 is larger than the ΔHavg of column 2.  

 

4.4.2  Results of identifying the extra sugar contents depth using linear regression 

model 

Since the ΔHavg of different depths of extra sugar contents varies, we may predict the 

depth of the extra sugar contents by the value of Havg. The potatoes with extra sugar 

contents are used without comparing the originals. The Havg of the different depth of 

extra sugar contents region are calculated for the areas of interest. The area of interest is 

now reset to 40 x 20 pixels neglecting the column 3, which the Havg is no significant 

difference comparing to the normal potatoes. 
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Unlike the prediction of the extra sugar contents occurrence and the location of the 

extra sugar contents, the linear regression model is used to predict the depth of the extra 

sugar contents. The dependent variable is now the depth of the extra sugar contents, and 

the independent variables are Havg and Havg_whole. The potato samples are also randomly 

separated as modeling and testing group with 40 and 20 samples in each group.  

For consistency, the total area of interest is divided into 2 columns, so the area of each 

column will be 20 x 20 pixels. The value of depth is set according to the middle value of 

each column, as shown in Figure 25. For example, for large potatoes with the maximum 

detectable depth of 
2

3
 inch, if the area of interest is divided into 2 columns, the value of 

depth used in the modeling group will be 
1

6
 and 

1

2
 inch.  

 

 

Figure 25.  The setting of target depths in the linear regression model. 

 

The linear regression model used to predict the depth of the extra sugar contents is 

calculated using SPSS in table 24.  
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Table 24. Coefficients of the linear regression model. 

 Coefficients(a) 

Model   

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta B Std. Error 

1 (Constant) .537 .108   4.969 .000 

Havg .125 .019 .701 6.469 .000 

Havg_whole -.107 .033 -.354 -3.270 .002 

 

From the coefficient table we can see that the coefficients of Havg and Havg_whole 

are both significant. So these two independent variables can be used to predict the depth 

of extra sugar contents. The linear regression model will now be  

Predicted depth = 0.125*Havg – 0.107*Havg_whole + 0.537                (4.6) 

for the forty data sets in the modeling group. Use equation this to fit the data sets in the 

testing group we can have the predicted depth of the extra sugar contents. The predicted 

depth and the actual depth of the 20 samples in the testing group are listed in the Table 

25. The cut value is set to 0.3 inch, which means the predicted depth in column 1 and 

column 2 should be 0- 0.3 and 0.3-0.66 inch, respectively. It is recorded as an error 

prediction if the values are not in the predicted ranges. There are 5 errors out of the 40 

data, so the correct rate of the extra sugar contents depth prediction is 87.5% if we set 

the resolution to 0.3 inch.  
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Table 25.  The predicted depth and the error prediction of the testing samples. 

Sample Column Actual 

depth 

Havg Havg_whole Predicted 

depth 

Error  

prediction 

T1 column 1 0.165 -6.411  -4.4 0.21   

T1 column 2 0.495 -5.615  -4.4 0.31   

T2 column 1 0.165 -6.827  -4.62 0.18   

T2 column 2 0.495 -5.870  -4.62 0.30   

T3 column 1 0.165 -7.046  -4.25 0.11   

T3 column 2 0.495 -5.963  -4.25 0.25  x 

T4 column 1 0.165 -5.95462 -3.72 0.19   

T4 column 2 0.495 -4.35632 -3.72 0.39   

T5 column 1 0.165 -5.944  -4.67 0.29   

T5 column 2 0.495 -5.619  -4.67 0.33   

T6 column 1 0.165 -6.116  -3.88 0.19   

T6 column 2 0.495 -5.663  -3.88 0.24  x 

T7 column 1 0.165 -5.14568 -3.66 0.29   

T7 column 2 0.495 -4.9422 -3.66 0.31   

T8 column 1 0.165 -5.359  -3.33 0.22   

T8 column 2 0.495 -3.958  -3.33 0.40   

T9 column 1 0.165 -5.753  -3.58 0.20   

T9 column 2 0.495 -4.261  -3.58 0.39   

T10 column 1 0.145 -5.092  -3.68 0.29   

T10 column 2 0.438 -4.502  -3.68 0.37   

T11 column 1 0.165 -5.818  -3.46 0.18   

T11 column 2 0.495 -4.150  -3.46 0.39   

T12 column 1 0.145 -5.557  -3.2 0.18   

T12 column 2 0.438 -3.595  -3.2 0.43   

T13 column 1 0.145 -4.666  -3.69 0.35  x 

T13 column 2 0.438 -3.704  -3.69 0.47   

T14 column 1 0.165 -4.349  -2.91 0.30   

T14 column 2 0.495 -3.992  -2.91 0.35   

T15 column 1 0.165 -4.377  -3.05 0.32  x 
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Table 25. Continued 

Sample Column Actual 

depth 

Havg Havg_whole Predicted 

depth 

Error  

prediction 

T15 column 2 0.495 -3.215  -3.05 0.46   

T16 column 1 0.165 -4.835  -2.85 0.24   

T16 column 2 0.495 -3.007  -2.85 0.47   

T17 column 1 0.165 -6.617  -4.3 0.17   

T17 column 2 0.495 -5.591  -4.3 0.30   

T18 column 1 0.145 -5.964  -4.29 0.25   

T18 column 2 0.438 -5.539  -4.29 0.30   

T19 column 1 0.145 -5.278  -3.86 0.29   

T19 column 2 0.438 -4.434  -3.86 0.40   

T20 column 1 0.145 -4.93467 -3.69 0.31  x 

T20 column 2 0.438 -3.62901 -3.69 0.48   

 

4.4.3  General methodology for identifying extra sugar contents depth 

The general methodology to identify the depth of the extra sugar contents on the potato 

is summarized as follows:  

1. Heat the potato sample with appropriate time and heat flux. 

2. Use infrared camera to take thermal images of the potato sample. 

3. From the sequences of thermal images, obtain the average heating rate of the whole 

sample area.  

4. Randomly select the data to be in the training group or the testing group.  

5. Identify the potato with extra sugar contents and locate the extra sugar contents area 

by the methodology in the previous section. 

6. Focus on the thermal image of the extra sugar contents location and divided the 

location into small squares. Calculate the average heating rates of the small squares 
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on the extra sugar contents location.  

7. Use data in the training group to construct the linear regression model. Select 

variables that is significant to the model.  

8. With the existing linear regression model, the extra sugar contents depth can be 

predicted with a 0.3 inch resolution. 

 

4.5  Summary of the experimental results 

Table 26 shows the experimental results of this research with the correct rate of each 

experiment. From the table we can see that the logistic regression model predicts the 

occurrence of the extra sugar contents and the location of the extra sugar contents with 

high accuracy. The depth of the extra sugar contents can be predicted with the linear 

regression model, but the resolution is 0.3 inch with the current experimental settings.   

For the neural network model in the extra sugar contents occurrence prediction, the 

reasons of the lower correct rate than the logistic regression model might due to the 

small sample numbers and inadequate parameter settings.  
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Table 26.  Summary of the experimental results. 

Experiment Identify if the potato has 

extra sugar contents 

Identify the location of 

the extra sugar contents 

on the potato 

Identify the depth of 

the extra sugar 

contents on the potato 

Analysis 

Methods 

Logistic 

regression 

model 

Neural 

network 

model 

Logistic regression 

model 

Linear regression 

model 

Variables Havg Havg, weight, 

ambient temp., 

density 

Havg, Havg of the 

whole area 

Havg, Havg of the 

whole area 

Correct rate (%) 85 80 91 87.5 (0.3in resolution) 
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CHAPTER V 

MODEL VALIDATION 

 

5.1  Introduction 

The models constructed in the previous chapters can predicted the occurrence, location, 

and depth of the extra sugar contents of the potato in considerably high accuracy. 

However, how the model fit into the data was not discussed. Moreover, the models might 

be misleading if the correct rate varies greatly using data from different modeling/testing 

combinations. To validate the models used to predict the occurrence, location, and depth 

of the extra sugar contents in the potato, the goodness of fit test is discussed in this 

chapter. In addition, the correct rates of the predictions are recalculated using different 

data sets form the original one.  

 

5.2  Effects of the experiments done in different seasons 

The whole experiment is conducted within 12 months. However, for different seasons, 

the potato samples might have different properties that can affect the Havg. In this section, 

the mean and the variance of the Havg for two batches of samples in different seasons are 

compared. The normal samples and the samples with extra sugar contents are compared 

respectively. Ten potato samples of similar weight are selected in each batch.  
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 For normal potato samples 

 

Table 27. Data of the normal potatoes generated from different seasons. 

Experiment done in April 2008 

 
weight(g) temp(F) density(g/cm3) Havg 

average 159.7 70.797 1.333 -3.728 

std 16.261 0.417 0.088 0.345 

Experiment done in December 2007 

 
weight(g) temp density(g/cm3) Havg 

average 161.2 71.623 1.371 -3.896 

std 18.371 0.896 0.162 0.487 

 

Compare the mean of Havg of experiments done in spring and winter using a 95% 

confidence interval. The data in table 27 is used. 

1. Ho: 𝑦1   − 𝑦2    = 0 

H1: 𝑦1   − 𝑦2    ≠ 0 

2. T.S: t = 
𝑦 1−𝑦2    

Sp / 
1

n 1
+

1

n 2

 = 
−3.723+3.896

0.422/ 
1

10
+

1

10

 = 0.183 

Sp = Sp =   
 n1−1 s1

2+(n2−1)s2
2

n1+n2−2
=   

 10−1 0.3452 +(10−1)0.4872

10+10−2
= 0.422  

3. R.R: For degree of freedom df = n1+n2-2= 18, reject Ho if  t  ≧ tα
2
 

From the t table, t0.025, 18 = 2.101 

4. Because t < tα/2, 9, we fail to reject the null hypothesis that the mean of the two group 

is the same. There is no difference of Havg of experiment done in different season 

for normal potatoes.  

Comparing the variance of Havg of experiments done in spring and winter using a 
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95% confidence interval. 

1. Ho: σ1
2 = σ2

2 

H1: σ1
2 ≠ σ2

2 

2. T.S: F = 
s1

2

s2
2 = 0.503 

3. R.R: For α = 0.05 and df1 =n1-1, df2=n2-1, reject Ho if F≦F1-α /2, df1, df2 or  

F≧Fα /2, df1, df2 

From the F distribution table, F0.025, 9, 9 = 4.03, F0.975, 9, 9 = 0.248 

4. Because F is not in the rejection region, we fail to reject the null hypothesis that the 

variances of the two groups are the same. There is no significant difference of 

variance of Havg of experiment done in different season for normal potatoes.  

 

 For extra sugar contents potato samples 

 

Table 28. Data of the extra sugar contents potatoes generated from different seasons. 

Experiment done in April 2007 

potato weight(g) temp(F) density(g/cm3) Havg 

average 160.8889 70.75922 1.337 -3.95665 

std 16.72287 0.423908 0.089 0.259787 

Experiment done in December 2008 

potato weight(g) temp(F) density(g/cm3) Havg 

average 164.2222 71.63704 1.379 -4.11368 

std 16.64165 0.68383 0.170 0.486039 

 

Compare the Havg of experiments done in spring and winter using a 95% confidence 

interval. The data in table 28 is used.  
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1. Ho: 𝑦1   − 𝑦2    = 0 

H1: 𝑦1   − 𝑦2    ≠ 0 

2. T.S: t = 
y 1−y2    

Sp / 
1

n 1
+

1

n 2

 = 
−3.957+4.114

0.390/ 
1

10
+

1

10

 = 0.180 

Sp = Sp =   
 n1−1 s1

2+(n2−1)s2
2

n1+n2−2
=   

 10−1 0.2602 +(10−1)0.4862

10+10−2
= 0.390  

3. R.R: For degree of freedom df = n1+n2-2= 18, reject Ho if  t  ≧ tα
2
 

From the t table, t0.025, 18 = 2.101 

4. Because t < tα/2, 9, we fail to reject the null hypothesis that the mean of the two group 

is the same. There is no difference of Havg of experiment done in different season 

for extra sugar contents potatoes.  

 

Comparing the variance of Havg of experiments done in spring and winter using a 

95% confidence interval. 

1. Ho: σ1
2 = σ2

2 

H1: σ1
2 ≠ σ2

2 

2. T.S: F = 
s1

2

s2
2 = 0.286 

3. R.R: For α = 0.05 and df1 =n1-1, df2=n2-1, reject Ho if F≦F1-α /2, df1, df2 or  

F≧Fα /2, df1, df2 

From the F distribution table, F0.025, 9, 9 = 4.03, F0.975, 9, 9 = 0.248 

4. Because F is not in the rejection region, we fail to reject the null hypothesis that the 

variances of the two groups are the same. There is no significant difference of 

variance of Havg of experiment done in different season for the extra sugar contents 
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potatoes.  

 

5.3  Model validation of the extra sugar contents occurrence prediction 

5.3.1  Goodness of fit of the model 

The recommended test of the overall fit of the logistic model is the Hosmer and 

Lemeshow test [36]. This test is more robust than the traditional chi-square test 

especially for small size samples. The Hosmer and Lemeshow‟s goodness of fit test 

divides the observations into 10 groups based on the predicted probabilities, and 

calculates the chi-square form the observed and expected values. Where a significance is 

larger than α (0.05 in this research), we fail to reject the null hypothesis that there is no 

difference between the actual and predicted values. Thus, the model prediction is not 

significantly different from the actual values, indicating a well-fit model [37].  

The Hosmer and Lemeshow test is completed using SPSS. From table 29, the 

significance is 0.941, which is very large comparing to 0.05. We can conclude that the 

logistic regression model fits the data well in the extra sugar contents prediction.  
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Table 29.  Results of the Hosmer and Lemeshow goodness of fit test of the extra sugar contents  

occurrence predictions. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 2.886 8 .941 

  

Contingency Table for Hosmer and Lemeshow Test 

  

Target = .00 Target = 1.00 Total 

Observed Expected Observed Expected Observed 

Step 1 1 5 5.647 3 2.353 8 

2 5 4.903 3 3.097 8 

3 5 4.611 3 3.389 8 

4 5 4.352 3 3.648 8 

5 3 3.969 5 4.031 8 

6 4 3.715 4 4.285 8 

7 5 3.573 3 4.427 8 

8 3 3.445 5 4.555 8 

9 2 3.104 6 4.896 8 

10 3 2.681 5 5.319 8 

 

5.3.2  Correct rates discussion using different data sets 

The original logistic regression model is generated from the randomly selected 40 

samples. And the other 20 samples in the testing group are used to examine the correct 

rate of the prediction. The correct rate of the original model is 85% with 10 normal and 

10 extra sugar contents samples. To test the validity of the model, 20% to 100% of the 

samples in the testing group are exchanged with the samples in the modeling group. 

When exchanging the data, the ratio of the normal and extra sugar contents sample are 

remained the same to reduce the noise from selecting larger sample numbers than the 
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other.  

When the data in modeling group is moved to testing group, only one data as extra 

sugar contents or normal sample can be used. The data being replaced from the testing 

group to the testing group should retrieve the original data for both extra sugar contents 

and normal ones. The sensitivity, specificity, and overall correct rates of the replaced 

data are listed in table 30. 

 

Table 30.  Correct rates comparison of the different data sets of the extra sugar contents occurrence  

predictions. 

Replaced sample 

percent 

0% 20% 40% 60% 80% 100% Overall SD 

Sensitivity (%) 90 90 100 100 90 90 93.333 5.164 

Specificity (%) 80 70 70 80 90 90 80.000 8.944 

Correct rate (%) 85 80 85 90 90 90 86.667 4.082 

     

Table 30 shows that the overall sensitivity is higher than the overall specificity. It 

might due to the outliers are not removed or the potatoes might have potential extra 

sugar contents. The overall correct rate 86.667% is fairly high for the prediction of the 

occurrence of extra sugar contents. The logistic regression model is valid in predicting 

the occurrence of extra sugar contents in the potato.  

 

5.4  Model validation of the extra sugar contents location prediction 

5.4.1  Goodness of fit of the model 

The prediction of the extra sugar contents location is also done by the regression model. 

To test the goodness of fit, the Hosmer and Lemeshow test is applied as well. The 
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Hosmer and Lemeshow test is done by SPSS as shown in table 31. From table 31, the 

significance is 0.206, which is larger than 0.05. We can conclude that the logistic 

regression model fits the data well in the extra sugar contents prediction.  

Comparing to the significance in the last section which is 0.941, the significance in 

extra sugar contents location prediction is closer to the α. This might due to the relative 

smaller samples of extra sugar contents areas.  

 

Table 31.  Results of the Hosmer and Lemeshow goodness of fit test of the extra sugar contents  

location predictions. 

 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 10.919 8 .206 

 

Contingency Table for Hosmer and Lemeshow Test 

  Target = .00 Target = 1.00 Total 

  Observed Expected Observed Expected Observed 

Step 1 1 160 159.817 0 .183 160 

2 160 159.424 0 .576 160 

  3 160 158.925 0 1.075 160 

  4 160 158.135 0 1.865 160 

  5 158 156.665 2 3.335 160 

  6 155 153.728 5 6.272 160 

 7 151 148.511 9 11.489 160 

  8 127 135.883 33 24.117 160 

  9 95 100.240 65 59.760 160 

  10 34 28.672 126 131.328 160 
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5.4.2  Correct rates discussion using different data sets 

The original logistic regression model is generated from the randomly selected 40 

samples with extra sugar contents only. And the other 20 samples in the testing group are 

used to examine the correct rate of the prediction. There are 40 squares for each sample, 

so the number of the total data sets is 800 in the testing group. To test the validity of the 

model, 20% to 100% of the data in the testing group are exchanged with the data in the 

modeling group. The exchanged data are based on different samples but not number of 

data only.  

The sensitivity, specificity, and overall correct rates of the replaced data are listed in 

table 32. Table 32. shows when the data in the modeling and testing groups are swapped, 

the overall correct rate only varies within 2%. The prediction of the extra sugar contents 

location is considerably reliable. The sensitivity is always lower than the specificity. This 

might due to the signal of the deeper extra sugar contents is not detectable. However, for 

relative shallow extra sugar contents, the location of the extra sugar contents can be 

predicted with high accuracy. So the logistic regression model is valid in predicting the 

location of extra sugar contents in the potato.  

 

 

Table 32.  Correct rates comparison of the different data sets of the extra sugar contents location  

predictions. 

Replaced sample 

percent 

0% 20% 40% 60% 80% 100% Overall SD 

Sensitivity (%) 58.33 59.17 60.00 58.33 66.67 63.33 60.97 3.060 

Specificity (%) 96.76 95.00 95.00 95.29 94.67 94.56 95.05 0.734 

Correct rate (%) 91 89.63 89.75 89.75 89.63 89.88 89.94 0.482 
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5.5  Model validation of the extra sugar contents depth prediction 

5.5.1  Goodness of fit of the model 

The linear regression model is applied in this research to predict the extra sugar contents 

depth. The linear regression model is obtained base on the ordinary least squares method 

that the sum of the residuals is minimized. From the model summary generated from 

SPSS, as shown in table 33, the significance of the whole model can be tested by the F 

test. The R square is 0.486 in this model, meaning that 48.6% of the variance in depth 

can be predicted from the independent variables. In the ANOVA table, the F value can 

indicate the significance of the model. F is the ratio of the mean square for the model 

divided by the mean square for the error, and the mean squares are the sums of squares 

divided by the df. The probability of F in the table is 0.000, which is smaller than α 

(0.05). We can reject the null hypothesis that there is no linear relationship of the 

dependent and the independent variables. We can say the linear regression model with 

independent variables Havg and Havg_whole is significant.  

 

Table 33.  Results of the goodness of fit test of the extra sugar contents depth prediction model. 

Model Summary 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .697(a) .486 .480 .40209 

 

ANOVA 

Model   Sum of Squares df Mean Square F Sig. 

1 Regression .836 2 .418 20.943 .000(a) 

Residual 1.537 77 .020     

Total 2.373 79       
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5.5.2 Correct rates discussion using different data sets 

The original linear regression model is generated from the randomly selected 40 samples 

with extra sugar contents only. And the other 20 samples in the testing group are used to 

examine the correct rate of the prediction. For each sample, the area of interest is divided 

into 2 squares. So the numbers of the data sets are 80 and 40 in the modeling and testing 

group, respectively. To test the validity of the model, 20% to 100% of the data in the 

testing group are exchanged with the data in the modeling group. The cut value is set to 

0.3 inch as well.  

The correct rates of the replaced data are listed in table 34. Table 34 shows when the 

data in the modeling and testing groups are swapped, the correct rates are between 85 to 

90%. The prediction of the extra sugar contents depth using linear regression model is 

considerably reliable.  

 

Table 34.  Correct rate comparison of the different data sets of the extra sugar contents depth  

predictions. 

Replaced 

sample percent 

0% 20% 40% 60% 80% 100% Overall SD 

Correct rate (%) 87.5 85 87.5 85 85 85 85.83 1.29 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

 

6.1  Introduction 

In this study, the quality of a potato relating to its sugar contents is successfully 

characterized using infrared thermal images. Instead of the surface temperature, the 

average heating rates of potatoes with and without extra sugar contents are studied. 

Based on the different properties of extra sugar contents regions, abnormal heating rates 

can vary between normal and extra sugar contents potatoes. Statistical models and neural 

networks models are used in this study to identify the occurrence, location, and depth of 

the extra sugar contents region of a potato. After selecting appropriate variables and 

testing the validity of the model, general methodologies for potato quality 

characterization are suggested.  

  Detailed conclusions for experiments and statistical models are presented in this 

chapter. Current limitations of using infrared thermography to identify potato quality are 

also discussed. The last section proposes future works for improving the results of this 

research.  

 

6.2  Conclusions 

This research outlines using infrared thermography to take thermal images of potatoes 

with further analysis can determine the quality of a potato. Here, the quality of the potato 

is associated with its sugar contents. By simulating extra sugar contents in the potato and 
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comparing the average heating rates to the normal one, the quality of the potato can be 

predicted.  

To identify extra sugar contents in potatoes, the logistic regression model is 

recommended. The logistic regression model can predict the probability of whether or 

not the potato has extra sugar contents. By implementing the Hosmer and Lemeshow 

goodness of fit test, the model provides a good fit for the data. The correct rate for 

identifying extra sugar contents in a potato is 85% for this study. Although there are 

some false predictions, the values of probabilities are not far from the range designate as 

correct. For the neural networks model, the highest correct rate is only 80%.  

The area of interest is the largest available area of the potato image. However, the 

signal is not strong enough because normal areas are included. If potential extra sugar 

contents areas can be located in advance, the correct rate might be higher due to stronger 

signals.  

In addition to identifying potatoes with extra sugar contents, the location can be found 

though analyzing thermal images. By comparing the average heating rate differences of 

the sugar injection location and locations far from the sugar injection position of the 

same potato, one can conclude that the extra sugar contents location will have a larger 

average heating rate difference. To find the exact extra sugar contents location, the entire 

thermal image is divided into small squares, for whichthe average heating rates are 

calculated. The logistic regression model is also applied to predict the probability of 

having extra sugar contents in a specific area. The sensitivity of this model is not very 

high (58.33%), due to extra sugar contents being too deep to detect. However, the overall 
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correct rate (91%) is still high enough for real applications.  

The depth of extra sugar contents is researched in this research as well. The average 

heating rate difference of different depths is compared using statistical testing. Results 

show the maximum detectable depth of extra sugar contents is 
2

3
 inches in this research. 

The deeper the extra sugar contents, the smaller the average heating rate difference. To 

predict the depth of the extra sugar contents, linear regression model is used. This area of 

interest is limited to the sugar injection location. Results show the increment of 0.3 

inches of the extra sugar contents depth can be identified with 87.5% correct rate.  

  By analyzing infrared thermal images, the extra sugar contents in a potato is 

characterized with a high level of accuracy. Developed methodologies can apply to other 

agricultural products as well.  

 

6.3  Limitations 

Potato quality characterization using infrared thermal images and statistical models has 

the following limitations: 

1.  The scanning rate of the infrared camera is 20 second per frame in this research. If 

the scanning rate of the infrared camera was higher, the more detailed thermal 

behavior of the potato could be studied. The time needed to inspect the potato is 

expected to be shorter.  

2.  The experimental setting can only be applied to potatoes of certain sizes. The 

approximate volume ranges of the potato are 5.5 to 11 inch
3
 in this research. For 

extra large potatoes, the whole potato might exceed the imaging area. The area of 
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the smallest potato viewed from top should be larger than the fixture.  

 

6.4  Future Work 

The work done in this research can be further extended to improve the characterization 

procedures. Recommend future works are summarized as follows:  

1.  Develop the statistical model for different breeds of potatoes. The variables in the 

statistical model must be reconsidered.  

2.  Use alternative heating methods, such as a high power flash lamp, to improve 

efficiency.  

3.  Build the thermal model of the potato using a finite element analysis. Use the Finite 

Element Model (FEA) to validate the findings from statistical and neural network 

models.  

4.  Increase the sample sizes of potato samples for more accurate and reliable results.  

5.  Use an infrared thermal camera with a higher speed for better results in determining 

the location and depth of the extra sugar contents predictions.  

6.  Cooperate with optical inspection techniques to inspect the external quality of the 

potato.  

7.  Compare the results with other produce inspection methods.  
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APPENDIX A 

Sample H, normal H, sugar Difference of H Havg, normal Havg, sugar Difference of Havg 

P1 -2.347 -2.405 0.058 -3.929 -4.251 0.322 

P2 -2.376 -2.39 0.014 -4.321 -4.201 -0.12 

P3 -2.504 -2.486 -0.018 -4.284 -4.626 0.342 

P4 -2.499 -2.627 0.128 -4.137 -4.469 0.332 

P5 -2.627 -2.555 -0.072 -4.509 -4.671 0.162 

P6 -2.652 -2.752 0.1 -4.559 -4.597 0.038 

P7 -2.16 -2.358 0.198 -3.601 -3.955 0.354 

P8 -2.392 -2.463 0.071 -4.235 -4.355 0.12 

P9 -2.358 -2.406 0.048 -3.99 -4.214 0.224 

P10 -2.06 -2.211 0.151 -3.458 -3.966 0.508 

P11 -2.322 -2.61 0.288 -3.789 -4.251 0.462 

P12 -2.174 -2.186 0.012 -3.693 -3.811 0.118 

P13 -1.852 -2.102 0.25 -3.117 -3.636 0.519 

P14 -2.21 -2.251 0.041 -3.847 -4.017 0.17 

P15 -1.937 -2.276 0.339 -3.413 -4.218 0.805 

P16 -2.572 -2.577 0.005 -4.357 -4.734 0.377 

P17 -2.616 -2.645 0.029 -4.388 -4.738 0.35 

P18 -2.166 -2.311 0.145 -3.887 -3.992 0.105 

P19 -2.19 -2.284 0.094 -3.81 -3.879 0.069 

P20 -2.293 -2.277 -0.016 -3.866 -3.954 0.088 

P21 -2.26 -2.282 0.022 -3.9 -4.267 0.367 

P22 -2.273 -2.768 0.495 -3.927 -4.692 0.765 

P23 -2.308 -2.298 -0.01 -3.976 -3.847 -0.129 

P24 -1.798 -2.21 0.412 -3.134 -3.672 0.538 

P25 -2.266 -2.408 0.142 -3.757 -4.242 0.485 

P26 -1.642 -2.025 0.383 -2.785 -3.731 0.946 

P27 -1.448 -1.94 0.492 -2.227 -3.37 1.143 

P28 -1.968 -1.921 -0.047 -3.286 -3.273 -0.013 

P29 -1.354 -1.39 0.036 -2.241 -2.442 0.201 
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Continued. 

Sample H, normal H, sugar Difference of H Havg, normal Havg, sugar Difference of Havg 

P30 -1.942 -2.061 0.119 -3.528 -3.722 0.194 

P31 -1.896 -1.824 -0.072 -3.142 -3.251 0.109 

P32 -1.766 -1.959 0.193 -3.173 -3.41 0.237 

P33 -2.076 -2.092 0.016 -3.504 -3.749 0.245 

P34 -1.679 -1.706 0.027 -2.967 -2.918 -0.049 

P35 -1.997 -2.04 0.043 -3.491 -3.897 0.406 

P36 -1.916 -1.957 0.041 -3.306 -3.633 0.327 

P37 -2.162 -2.353 0.191 -3.83 -4.085 0.255 

P38 -1.769 -1.957 0.188 -3.255 -3.462 0.207 

P39 -1.812 -1.864 0.052 -3.073 -3.197 0.124 

P40 -2.235 -2.209 -0.026 -3.839 -4.024 0.185 

P41 -1.957 -1.94 -0.017 -3.462 -3.453 -0.009 

P42 -1.788 -1.924 0.136 -3.245 -3.394 0.149 

P43 -1.36 -1.556 0.196 -2.394 -2.703 0.309 

P44 -1.774 -1.898 0.124 -3.182 -3.354 0.172 

P45 -1.678 -1.695 0.017 -2.973 -2.964 -0.009 

P46 -1.594 -1.717 0.123 -2.862 -2.919 0.057 

P47 -1.498 -1.778 0.28 -2.461 -3.057 0.596 

P48 -1.317 -1.498 0.181 -2.274 -2.403 0.129 

P49 -1.805 -1.808 0.003 -3.013 -3.118 0.105 

P50 -1.437 -1.55 0.113 -2.615 -2.839 0.224 

P51 -2.281 -2.674 0.393 -3.857 -4.544 0.687 

P52 -2.027 -2.131 0.104 -3.484 -3.61 0.126 

P53 -2.422 -2.538 0.116 -4.213 -4.408 0.195 

P54 -2.378 -2.404 0.026 -4.039 -4.287 0.248 

P55 -2.111 -2.293 0.182 -3.572 -4.211 0.639 

P56 -2.554 -2.757 0.203 -4.483 -4.995 0.512 

P57 -1.797 -1.848 0.051 -2.988 -3.211 0.223 

P58 -1.996 -2.013 0.017 -3.367 -3.459 0.092 

P59 -1.998 -1.979 -0.019 -3.411 -3.553 0.142 
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Continued. 

Sample H, normal H, sugar Difference of H Havg, normal Havg, sugar Difference of Havg 

P60 -1.351 -1.922 0.571 -2.395 -3.289 0.894 

average -2.033  -2.156  0.123  -3.497  -3.787  0.289  

standard 

deviation 

0.356  0.337  0.146  0.607  0.607  0.263  
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APPENDIX B 

Modeling Group 
     

potato weight(g) temp(F) density(g/cm3) Havg Target 

P1 219 71.43333 1.418705 -3.92864 0 

P1s 219 71.73333 1.418705 -4.25103 1 

P5 175 71.8 1.457574 -4.50951 0 

P5s 175 71.83333 1.457574 -4.67089 1 

P6 154 71.76667 1.381331 -4.55935 0 

P6s 154 71.96667 1.381331 -4.59765 1 

P7 223 71.46667 1.529595 -3.60123 0 

P7s 223 72 1.529595 -3.95509 1 

P8 147 71.73333 1.52365 -4.23526 0 

P8s 147 72.06667 1.52365 -4.35524 1 

P10 137 71.5 1.331251 -3.45756 0 

P10s 137 72.63333 1.331251 -3.96583 1 

P11 186 72.26667 1.37706 -3.78877 0 

P11s 186 73.43333 1.37706 -4.25132 1 

P12 199 73.23333 1.160228 -3.69368 0 

P12s 199 73.03333 1.160228 -3.81119 1 

P13 213 72.33333 1.379836 -3.11749 0 

P13s 213 73.66667 1.379836 -3.63609 1 

P15 167 72.23333 1.153966 -3.41324 0 

P15s 167 72.33333 1.153966 -4.21772 1 

P16 194 72.13333 1.175145 -4.35723 0 

P16s 194 72.76667 1.175145 -4.73431 1 

P18 251 72.33333 1.463404 -3.88675 0 

P18s 251 72.63333 1.463404 -3.992 1 

P20 247 72.76667 1.355372 -3.8663 0 

P20s 247 73.03333 1.355372 -3.95351 1 

P21 183 72.66667 1.264526 -3.90021 0 

P21s 183 72.8 1.264526 -4.26691 1 

P23 162 73.13333 1.476154 -3.9761 0 
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Continued. 

potato weight(g) temp(F) density(g/cm3) Havg Target 

P23s 162 73.4 1.476154 -3.8468 1 

P24 168 73.03333 1.339473 -3.13413 0 

P24s 168 73.16667 1.339473 -3.67177 1 

P27 175 71.56667 1.133668 -2.22677 0 

P27s 175 71.6 1.133668 -3.36953 1 

P28 194 71.7 1.256752 -3.28592 0 

P28s 194 71.5 1.256752 -3.2728 1 

P29 204 71.46667 1.243796 -2.24122 0 

P29s 204 71.66667 1.243796 -2.44168 1 

P31 134 71.9 1.302099 -3.14241 0 

P31s 134 71.63333 1.302099 -3.25074 1 

P33 188 71.56667 1.217884 -3.50391 0 

P33s 188 71.7 1.217884 -3.74865 1 

P34 211 71.53333 1.157828 -2.96718 0 

P34s 211 71.53333 1.157828 -2.91794 1 

P35 128 71.53333 1.263539 -3.49099 0 

P35s 128 71.33333 1.263539 -3.89698 1 

P37 129 71.36667 1.227931 -3.83042 0 

P37s 129 70.6 1.227931 -4.08482 1 

P38 208 71.1 1.347446 -3.25497 0 

P38s 208 71.83333 1.347446 -3.46211 1 

P39 168 70.96667 1.492555 -3.0733 0 

P39s 168 70.83333 1.492555 -3.19716 1 

P40 143 70.3 1.361195 -3.83851 0 

P40s 143 70.5 1.361195 -4.03297 1 

P44 135 71.5 1.199375 -3.18247 0 

P44s 135 71.53333 1.199375 -3.35405 1 

P46 150 71.66667 1.110532 -2.8618 0 

P46s 150 71.63333 1.110532 -2.91927 1 

p48 183 71.8 1.264526 -2.27494 0 

P48s 183 71.33333 1.264526 -2.403 1 
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Continued. 

potato weight(g) temp(F) density(g/cm3) Havg Target 

P49 152 71.96667 1.266007 -3.01328 0 

P49s 152 71.33333 1.266007 -3.11829 1 

P50 173 71.86667 1.260801 -2.61487 0 

P50s 173 71.33333 1.260801 -2.83871 1 

P51 181 70.8 1.172537 -4.10334 0 

P51s 181 70.8 1.172537 -4.30094 1 

P52 148 70.867 1.232698 -3.2896 0 

P52s 148 70.867 1.232698 -3.61639 1 

P53 159 70.933 1.412597 -3.95844 0 

P53s 159 70.933 1.412597 -3.76034 1 

P54 165 70.633 1.465903 -3.84636 0 

P54s 165 70.633 1.465903 -4.28787 1 

P55 158 70.3 1.403713 -3.91839 0 

P55s 158 70.3 1.403713 -3.85829 1 

P56 182 70.2 1.326385 -3.96901 0 

P56s 182 70.2 1.326385 -4.03053 1 

P57 135 70.3 1.285036 -3.34062 0 

P57s 135 70.3 1.285036 -3.68931 1 

P58 149 71.133 1.323754 -3.23625 0 

P58s 149 71.133 1.323754 -3.74549 1 

      
 

      
 

Testing Group 
     

 

potato weight(g) temp density(g/cm3) Havg Target 
Predicted 

probability 

P2s 182 71.76667 1.515877 -4.20072 1 0.609629 

P3s 203 71.8 1.352628 -4.626 1 0.684768 

P4s 172 72.1 1.337081 -4.46905 1 0.657907 

P9s 191 71.9 1.391983 -4.21398 1 0.612075 

P14s 172 70.46667 1.637242 -4.01659 1 0.575144 
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Continued. 

potato weight(g) temp density(g/cm3) Havg Target 
Predicted 

probability 

P17s 246 73.13333 1.434252 -4.73824 1 0.70326 

P19 195 72.36667 1.299322 -3.80969 0 0.53552 

P22s 216 72.8 1.43925 -4.69238 1 0.69578 

P25 134 73.43333 1.302099 -3.75682 0 0.525301 

P26 183 71.6 1.33368 -2.78463 0 0.342284 

P30s 168 71.6 1.160876 -3.72233 1 0.518622 

P32 196 71.56667 1.354356 -3.17346 0 0.413044 

P36 179 71.4 1.49089 -3.30614 0 0.438208 

P41s 179 70.43333 1.40319 -3.45341 1 0.466511 

P42 172 70.4 1.337081 -3.2453 0 0.426621 

P43 192 71.7 1.243796 -2.39398 0 0.277625 

P45 132 71.66667 1.256488 -2.9739 0 0.376071 

p47 177 71.8 1.146624 -2.46103 0 0.28818 

P59s 180 71.367 1.399271 -4.28465 1 0.625015 

P60 140 71.433 1.33263 -3.42524 0 0.461075 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



108 
 

VITA 

 

Name: Chih-Chen Sun 

 

Address: Department of Mechanical Engineering, Texas A&M University,  

 College Station, Texas 77843-3123 

 

Email Address: smallmo@gmail.com 

 

Education: B.En., Mechanical Engineering, National Taiwan University, 2006 

 M.S., Mechanical Engineering, Texas A&M University, 2008 


	title_pages
	thesis 09

