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ABSTRACT

Unconventional Finite Element Models for
Nonlinear Analysis of Beams and Plates. (August 2008)
Wooram Kim, B.S., Korea Military Academy
Chair of Advisory Committee: Dr. J. N. Reddy

In this thesis, mixed finite element models of beams and plates bending are
developed to include other variables (i.e., the membrane forces and shear forces) in
addition to the bending moments and vertical deflection, and to see the effect of it on the
nonlinear analysis. Models were developed based on the weighted residual method.

The effect of inclusion of additional variables is compared with other mixed
models to show the advantage of the one type of model over other models.

For beam problems the Euler-Bernoulli beam theory and the Timoshenko beam
theory are used. And for the plate problems the classical plate theory and the first-order
shear deformation plate theory are used.

Each newly developed model is examined and compared with other models to
verify its performance under various boundary conditions. In the linear convergence
study, solutions are compared with analytical solutions available and solutions of
existing models. For non-linear equation solving direct method and Newton-Raphson
method are used to find non-liner solutions. Then, converged solutions are compared
with available solutions of the displacement models.

Noticeable improvement in accuracy of force-like variables (i.e., shear resultant,
membrane resultant and bending moments) at the boundary of elements can be achieved
by using present mixed models in both linear and nonlinear analysis. Post processed data
of newly developed mixed models show better accuracy than existing displacement
based and mixed models in both of vertical displacement and force-like variables. Also
present beam and plate finite element models allow use of relatively lower level of

interpolation function without causing severe locking problems.
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CHAPTER I

INTRODUCTION

The objective of this study is to investigate the performance of finite element
models based on mixed weighted-residual formulations of beams and plates. In
particular, the study investigates merits and demerits of the newly developed mixed
finite element models of beam and plate bending based on weighted-residual and mixed
formulations. The von Karman nonlinear equations[1, 2] of beams and plates[1, 3] are
used to develop alternative finite element models to the conventional, displacement-
based, finite element models[4]. Once the basic models are developed and critically
evaluated in comparison to the conventional, displacement-based, finite element models,
they can be extended to other beam and plate structures with proper modifications. For
example, the plate bending models can be extended to the laminated composite
structures with proper laminate equations|3, 5].

The mixed finite element models of beams and plates were developed more than
two decades ago by Putcha and Reddy[6, 7] to overcome the drawbacks of the
displacement based models. The basic idea of mixed finite element model is to include
more than two different types of fields in the finite element model as independent
variables. For example, the bending moment of the beam element can be included as
independent variable, in addition to the axial and transverse displacements.

The mixed finite element models[7] developed in past only included bending
moments as independent variables to reduce the differentiability of the transverse
displacement component[7]. This mixed models can provide the same level of accuracy
for the bending moment as that for the displacement fields, whereas in the displacement
based model the bending moment is calculated at points other than nodes in the post
processing step[1, 4]. Thus, the displacement finite element models cannot provide the

same level of accuracy for force-like variables as in the mixed finite element models.

This thesis follows the style of Computational Method in Applied Mechanics and Engineering.



In the present study, mixed finite element models are developed to include other
variables (i.e., the membrane forces and shear forces) in addition to the bending
moments, and to see the effect of them on the nonlinear analysis. The effect of including
other variables will be compared with different mixed models to show the advantage of
the one type of model over other models.

For the nonlinear beam bending problems[1, 8], three different mixed models
based on the Euler-Bernoulli beam theory[4, 9] and one mixed model based on the
Timoshenko beam theory[4, 9] are developed. For the nonlinear plate bending problems,
two different mixed models based on the classical plate theory[l, 3] and two mixed
models based on the first-order shear deformation plate theory [1, 3] are developed.

To verify the performance of the newly developed finite element models,
numerical results of them are compared with those of the existing displacement based
finite element models[1, 7]. For each beam bending model, three types of boundary
conditions (i.e., clamped-clamped (CC), hinged-hinged (HH), and pined-pined (PP)
boundary conditions.) are examined and the results are compared. For plate bending
model, three types of boundary conditions (i.e., the simple support I (SS1), the simple
support III (SS3), and the clamped (CC) boundary conditions.) are examined and the
results are compared with those of the conventional finite element models[1, 7].

For each of the beam models, three different Lagrange type interpolation
functions[4, 10] (i.e. linear, quadratic and cubic) are used for the approximation of the
variables to see the relations between the degree of interpolation functions and the
accuracy of the solutions. For each of the plate bending models, two different Lagrange
type interpolation functions[4, 10] (i.e. 4-nodes and 9 nodes) are considered. Then, the
post-processed data on the stresses and the moments of the equilibrium state in the
various models are compared.

The finite element Models are implemented using Maple 9.5 [11] for the beam
bending models and the Fortran [12] for the plates bending problems. All graphs and
data are obtained by using the MS Excel and the Matlab 7.1[13].



1.1 Review of Euler-Bernoulli Beam Theory

<EBT Beam >

1
'

W

<TBT Beam >

A P > -
wi
[ 2 y

Fig. 1.1 Undeformed and deformed EBT and TBT beams, source from [2].

uy + zdy,

To develop new nonlinear mixed finite element models of beam bending, the
Euler-Bernoulli beam theory and the Timoshenko beam theory are considered. Due to
the assumption of moderate rotation[1] of a beam cross section perpendicular to the x-
axis, a geometric nonlinearity[1] can be considered for the present study. As a
consequence, the nonlinearity only appears as square of the slope (i.e., (dwy/dx)?) in
the formulations. Detailed geometry and characteristics of both beam bending theories

can be found in the Fig. 1.1.



1.1.1 Kinematics of EBT

By taking the horizontal axis (i.e., longitudinal direction of the beam) of the beam
to be located along the x-axis, and the vertical axis (i.e., direction along the height) to be
located along the z-axis, the displacement field[3, 8, 14] of the EBT can be given as
follow (see Reddy[1]):

Uy zuo(x)_z<dw+£x)> ,
U, = 0 ,
uz = wy(x) . (1.1)

The von Karman strain[ 1, 2] associated with the displacement field of the EBT is

given as follow:
— 0 1
Exx = Exx T ZExx - (1.2)
0 1
where &y, and &, are defined as

o _duy 1 <dw0)2

S = T 2ax
d*w,
ga%x =- dxzo ' (13)

1.1.2 Equilibriums of EBT

Here, the equilibrium equations[11] of the EBT are derived by using the force and
the moment equilibrium of the infinitesimal free body diagram[1] given in the Fig. 1.2.
The vertical shear force resultant can be defined only in terms of the bending moment,

and certain portion of the membrane force with the nonlinear assumption.



o BX
[a(x)]
[Vx] E L
[Mxx] : A : |Mxx
H(dMaxx (|K}AXJ
P N ]~
hi - ", [ Naxx
' +(dNxx/dx)AX]
z
s 4
& [Vx
v > X H(dVx/dx)Ax]

Fig. 1.2 A typical infinitesimal beam element with forces and bending
moments.

By Taylor’s expansion[15, 16], each of the resultants on the right hand side of the

free body diagram (see Fig. 1.2) can be expanded to the left hand side by following
equation [15, 17]

ORi(x) 102 Ri(X)
ox (8x) + 21 9x?

1 0™ DR, (x) 1 0™ R;(x)

Ri(x + Ax) = R;(x) + (Ax)? + -

ey Rl GO R e COA R
Ri(x + Ax) = R;(x) + aRaiix) @x) (1.4)

where R;(x) is an arbitrary resultant on the left side of the element, and R;(x + Ax) is
the associated value on the right side of the element. Then, every term multiplied by
(Ax) 2 from the expansion can be omitted by taking the limit of Ax — 0. Then the x-

direction and the z-direction force equilibrium can be obtained as follow:



dN.
- Z E, = =N, + <Nxx + d;x Ax) + f(x)Ax

Nxx

I Ax + f(x)Ax =0,

dv,
TZFZ = Vx—<vx+d—;‘Ax)—q(x)Ax

dv,
d—;Ax +q(x)Ax =0.

(1.5)

By taking the positive y-direction to be the direction of going through the board,
the y-direction moment equilibrium can be written as follow:

dMix dVy
U ZMy =M, — <Mxx + dx Ax) + <Vx +an> Ax

ANy, dw0> (Ax)
(Nxx+ P Ax)(dx Ax + q(x)Ax 3

(1.6)

_ dex dWO dv;c dex dWO Q(x) 2 _
_[ dx +Vx+Nxxdx]Ax dx+ dx dx+ 2 (Ax)"=0.

We can obtain a point equilibrium of the forces and the moment, by dividing

above equations by Ax, and taking the limit of Ax — 0. Finally, following equilibrium
equations of EBT[1] can be obtained.

ANy,

av,
E+q(x)—0 )

dM,., dwy 0
dx Xody T

X

(1.7)

1.1.3 Constitutive Relations and Resultants of EBT

In the present study, the beam is assumed to obey the linear elastic relation, thus

the stress of the EBT can be related to the strain by the relation known as Hooke’s law,
as follow:



Oy = ey (1.8)

The stress and moment resultants[1] can be defined as,

N —f( Ydydz = EA du°+1<dw°)2
xx A Trx)AYQAZ = dx 2\dx !

d?w,
My, = f 2(ox)dydz — El——=, (1.9)
A

where the A is the cross section area of the beam, the I[1] is the second moment inertia
of the cross section(about the y-axis) and the E is the Young’s modulus[18, 19] or elastic

modulus.
1.2 Review of Timoshenko Beam Theory (TBT)

1.2.1 Kinematics of TBT

By taking the horizontal axis (i.e., longitudinal direction) of the beam to be located
along the x-axis and the vertical axis (i.e., direction along the height) along the z-axis,

the displacement field [1, 9, 14] of the TBT can be given as follow:

Uy = up(x) + zg (x) ,
U, = 0 N

us = wy(x) . (1.10)

Note that instead of the slope of the deformed beam axis (i.e., —dw,/dx ), the

shear rotation[14] ¢, was included to account for the shear rotation of the cross section.



The von Karman strain[ 1] associated with the displacement field of TBT can be given as

follow:

— <0
Exz = €xz

Exx = &9 + zeL, (1.11)

where, €2,, €2, and €l are defined as,

o _ Lrdwg
= 3(Gr o)

0 % 1 <dWO>2

S = T2 Udx
Exx =dd"i" : (1.12)

1.2.2 Equilibriums of TBT

By substituting the strains into the virtual work statement[8], the equilibrium
equations of the TBT can be obtained. By the principle of the virtual work[1, 8], it can
be stated, ‘if a body is in equilibrium, the total virtual work done by actual internal as
well as external forces in moving through their respective virtual displacement is

zero[1]. It can be expressed by following equation[§],

SWe =S6WE+8WE=0 , (1.13)

where,

Xb
SWE = f { [05x0Exy + szé‘(stz)]dA} dx ,
X A¢

a

Xp Xb 6
SWE = — U (géwodx)dx +f (féuodx)dx + § Qf(YAf] '
*a Xa i=1



Note that Qf are the generalized nodal forces[1] and A7 are the virtual
generalized nodal displacements[1].
And the virtual strains and the definitions of the resultant forces can be defined as

follow:

déw,
0@ea) = (2484,

5 _(d6u0+dw0d5wo) A8,
S =\ Tgx dx dx “ax

Nyx =f (axx)dydz ,
A

0= [ Guayis
A

My, =f (0 2)dydz . (1.14)
A

By substituting the force resultants, the moment resultants and the virtual strains

given in the (1.14) into the (1.13), the following energy equation can be directly obtained.

0 = SWE + SWgE

B Xp déu, dwydéwy déo, ddw
- '[Ca [Nxx< dx +W dx )+Mxx dx +Qx< dx +5¢x)]dx (115)

6
QS6AS =0 .
.

L

Xp Xp
- f (q6wodx)dx — f (Fougdx)dx —

Then, by collecting the coefficients of the variations of the displacement terms in
the (1.15), following equilibrium equations[1, 8] of the TBT can be obtained(for details
see Reddy[1]).
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Sug : AN =0
Uo P -fx)=0,
o d dw, _
SWO'_E(Qx'l'NxxE)_Q(x)_O’
My,
8 i =24 0= 0. (1.16)

By comparing the equilibrium equations of the EBT given in the (1.7) and the
TBT given in the (1.16), it can be shown that the shear resultant V, of the EBT can be

related to the shear resultant @, of the TBT by the following equation[1].

dw,
*dx

Ve = Qx + Ny (117)

Essentially, the equilibrium equations of the EBT and the TBT are the same, but
the specific variables involved may have different meanings. In this case, V, is the shear
resultant acting on the plane perpendicular to the x axis, while Q, is the shear resultant

acting on the deformed plane (see Reddy[1]).

1.2.3 Constitutive Relations and Resultants of TBT

Since there are two non-zero strain components in the TBT, we have two stress
components from the constitutive relations. By assuming that the beam obeys linear

elastic relation, the stresses can be related to strains as follow:

Oy = 2G&yy ,

Oux = E&yye . (1.18)

The generalized resultant forces can be calculated by the definition given in the

(1.14) as follow:
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0 = K,GA (g + %) ,

dx
N — EA du, 4 1 (dwo)2
o dx 2\dx ’
d¢o
M, = EI dx" ) (1.19)

where A is the cross section area of the beam, I is the second moment inertia of the cross

section, K;(= 5/6) is the shear correction factor[14], G is the shear modulus[19] and E

is the Young’s modulus.

1.3. Review of Classical Plate Theory (CPT)

<CPT Plate > )
_ 9%
B il
ug g
X _ By
o[ o
Woé A = _dﬂ
z S - L
¥
>
<FSDT Plate >

Ug + 2y

g

Fig. 1.3 Undeformed and deformed CPT and FSDT plates, source from [2].
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The major difference between the CPT and FSDT comes from the displacement

field given in the Fig. 1.3.

1.3.1 Kinematics of CPT

The CPT can be considered as an extended 2-D version of the EBT. Thus the
displacement field of the CPT is very similar to that of the EBT. The displacement field
of the CPT with Kirchhoff hypothesis[1, 3] can be given by,

w = ulx,y,2) =u(x,y) —z (awoa(: y)) '
U, = U(x, v, z) — Vo(x, y) _y (awoa(;c, y)) ’
uz =w(x,y,z) = wy(x,y) . (1.20)

And with the assumption[1] of small strain but moderately large rotation, we can
simplify the components of the nonlinear strain tensor[20]. Then the components of the

strain tensor is given by,

_ou 1 (6w>2
o = 5 T2 \ox

_ 1 (au + aW)
Gz = 9\0z T ax)

_ 1 <6u+ ov 4 6w6w>
v =2\ay Toax Taxay)

_ov N 1 <BW)2
v =5y T2\ Gy

_ 1 (617 4 BW)
&2 =7\92 T ay)

ow

=—, 1.21

SZZ aZ ( )

By substituting the displacement field described in the (1.20) into the components
of the strain tensor given in the (1.21), the following specific von Karman nonlinear

strains[ 1] of the CPT can be obtained.
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_duy 1 (6W0>2 0%w,
o = gy T2 Uox oxz
9y, 1 (awo)2 92w,
vy = dy 2\ dy z oyz '
1/0u, 0v, Jw,dw, 0%w,
ey (i B A R . .
Gy =3 ( dy 0dx 0Ox dy Zaxay (1.22)

1.3.2 Equilibriums of CPT

The CPT can be derived by using vector approach[11] with the infinitesimal free
diagram of the Fig. 1.4. Since it is assumed that the plane stress condition is still valid
for the in-plane forces, the X, y and z-direction force equilibriums and x and y-direction
moment equilibriums of the infinitesimal plate element[3] can be stated by using the

generalized force resultants, as described in the (1.23a to e).

[Nyv]

v ) Clatevy ]

Mo ] Ay

/IV\ ‘[[" V(%) \.\_I

3 [Nx +( Noww %) A%

[Mg

L . [Muxx +(€ Max/' Ex)AX]
[Vx] (€ Mxy/ €X)AX]

[\]x_\';*[(. Nx)‘ {A'X}.\XE
Py [Vy+ (&' My f'\] Av]

v s
B s,

7z I v
fmm = - > [Nox Nywdy)y]

gy
[Myy

W | ]
Y AT [MycH(@ Myx2y)Ay]
z HE My o]

¥ [Nyy+(& Ny @v)Av]

Fig. 1.4 A typical 2-D plate element[3] with forces and moments.
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With the Taylor’s expansion given in the (1.4), we can set the equilibriums of the

forces and the moments in the given directions, as follow:

The x-direction force equilibrium:

0N,
S [ (B

aN.
+ [(ny) X Ax — (ny + a—;yAy> X Ax

0Ny, ON
= < + xy

™ 3 >AxAy =0. (1.23a)

The y-direction force equilibrium:

dN.
TZFy = [( y) X Ax — ( vy a—;yAy>xAx]
JdN.
+ [(ny) X Ay — (ny + a—fo) X Ay]

_ (any L My

P 3y >AxAy =0. (1.23b)

The z-direction force equilibrium:

ZF—[(V)xAy ( Ax)xAy]

o
+ (Vy)xAx— ‘/)’—I_WA)’ x Ax| + [q(x,y) X Ax X Ay]

v, v,
_ (a 2 q(x)> axdy =0, (1.230)

In the force equilibriums of the CPT, it is assumed that the plate is in the plane

stress condition[18] for the in-plane forces. So by including some portion of in-plane
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forces only for moment equilibriums, following equations of moment equilibrium can be

obtained.

The y-direction moment equilibrium:

oM
;cx Ax)] x Ay + [(Myx) - (Myx + W”Ay)]

N (R (T

X Ax

v, N, ow,
- {‘ (Vx + a“) + [(Nxx t o Ax) *ox

ONyy owg
+ [(ny + WAX) X W
Ax
- [q(x, y) X AyAx (7)]

oM, OM,, aw, owg
= (- N, =2~ Ny, =2 ) AxA
( 0x dy Tl = Ny > oy X8y
(6]/; ON,, 0w, ON,, 0w,

Ax
ox " Tax ox oy WAy—CI(x,y)7>AxAy=O. (1.234d)

}xAyxAx

The x-direction moment equilibrium:

0 Z M, = [(Myy) - (Myy + azavl;y Ay)] X Ax + [(Mxy) - (Mxy + ?—x%x)]

X Ay
v, ON,,, owy
s« [T ()
ON,, dwy
+ [(Nyx + 3y Ay) X (Wﬂ}AxAy

r—)

oM,,, M, owg owgy
(- =22y N 2N, —2 | AxA
( dy 0x TV = Ny dy gy ) OX

av, N, 0w, 0Ny, 0w, Ax _
<6x X =— WAx ~ WAy — q(x,y)7 AxAy = 0. (1.23¢)
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1.3.3 Constitutive Relations and Resultants of CPT

In the present plate bending problem, it is assumed that every in-plane stress and
strain remain plane stress[18] condition. For the orthotropic plane stress condition, the

constitutive relations of stresses and strains can be given in the matrix form equation as

follow:

Oxx Q11 Q11 0 Exx
[UW} = [Qn Q22 0 ligyy] , (1.24)

Oxy 0 0 Qeel\26xy

where the components of the matrix [Q] are given by,

_ E; o vpE,  vyEy
Qu=—" 12 = = ,
1 —vivy 1—vivpr 1 —vypvp
E,
= — = G, . 1.2
Q22 1= vipvyy Qs6 12 ( 5)

Note E; and E, are the elastic modulus [19] of the x and y-direction respectively,

Vi1, and v,; are the Poisson’s ratio and the G, is the shear modulus.

By dividing the (1.23a to e) by (Ax Ay), and taking the limit of Ax, Ay — 0, the

following equilibrium equations of the CPT can be obtained.

0x dy 0.
ON,, OdN,, _
ox ay
av, dV,
—a—;—a—;—q(x) =0,
oM oM a a
Tt )
aMxy aMyy aWO aWO _
y—( T 3y N’”’W Ny, 3y =0. (1.26)
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By locating the x axis along the mid-plane of the plate element, the resultants of
the CPT can be defined by the following equations.

Mxx % axx
M\ = f h{“yy}zdz. (1.27)
Mxy 7 \Uxy

By using the constitutive relations given in the (1.25) and the definitions of the

resultants given in the (1.26), the following equations of the resultants can be obtained.

Ny = Aqy

duy 1 /0wy\° avo awo
aﬁi(ﬁ)]“ﬂ[ %)

1
2
ou, ow v 1 8W
A“[aOJ’ (axo)]+‘422[ 0 E_O]

duy, Odvy, Jdwydw,
Aﬁﬁ(a tox T ox 6y)
azwo 0%wy,
My, = —=D1q Iz - Dy, o2 )
0%wy, 0%wy,
Myy = —Dlz W —D22 a—:yz )

dxdy (1.28)
The matrix [A] and [D] can be defined by,
/2
(4, Dy) = Qij(1,2) dz. (1.29)
—h/2

where i,j =1,2,6.
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1.4. Review of First Order Shear Deformation Theory (FSDT)

The FSDT can be considered as 2-D version of the TBT, as the CPT can be said to
be the 2-D version of the EBT. In the FSDT the same nonlinearity used in the CPT is
assumed. Thus the components of the strain tensor given in the (1.21) can be used to

obtain the specific strains of the FSDT.

1.4.1 Kinematics of FSDT

The displacement field[3] of the FSDT with Kirchhoff hypothesis can be given by
(see Reddy[1, 3] for details),

u, = ulx,y, z) =ug(x,y) + zo,(x,y) ,
u, = v(x,y,2) =vo(x,y) +z¢,(x,y) ,
uz =wo(x,y) . (1.30)

By substituting the displacement field of the FSDT given in the (1.30) into

components of the strain tensor given in the (1.21), strains[1] of the FSDT can be given

by,
SR L
*ox 0 2\ 0x ox '
vy 1/0we\> 99,
&y =5y 5(@) Ty

1[ou, dv, dwyow, (¢, 0,

gxy_26y+6x+6x6y+z 6y+6x ’
dwg

Exz = W—l' bx

ow,
syzza—yo+¢y . (1.31)
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1.4.2 Equilibriums of FSDT

The equilibrium equations of the FSDT can be derived using the virtual work

statement (see Reddy[1] for details), with strains given in the (1.31). The equilibrium

equations[3] of the FSDT can be given by

N 0Ny _
d0x dy
ON,, 0N,,

0x dy

a(N Wo oy, IWo )+a<N Wo , y, IWo )+ (x)=0

dx \' ¥ ox Y 9y Qx oy\' ™ ox Y 9y Qy)+ax) =0,

oMy, OM,,
G5 * ay )~ 0,

oM. om
0, - (T + ) <o (132)

’

=0,

d0x dy

In the part 1.1, the shear resultant V, of the EBT was related to the shear resultant
Q, of the TBT by the relation given in the (1.17). In similar sense, the shear resultants of
the CPT can be related to that of the FSDT by the following equations by comparing the
equilibrium equations of the CPT and that of the FSDT.

adw, adw,
Ve=0x+ (Nxxﬁ—}' ny@) ,

aw, adw,
Vy:Qy+<nya_xO+Nyya_yo> ' (1.33)

1.4.3 Constitutive Relations and Resultants of FSDT

The FSDT has two more non-zero strains compared with the strains of the CPT.

Additional strains of the FSDT can be related to the corresponding stress components by

E3-1% oJE) 1

O-X 4
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where Q4,4 and Qss are the shear modulus G,5 and G5 respectively.
In addition to the in-plane stresses and strains relations given in the (1.24), we
have the following additional relations between the shear stresses and the shear

resultants of the FSDT, which can be defined by

ST~y

{gi} = L5}z (1.35)

N

By substituting the constitutive relations given in the (1.24) and (1.34) into the
definitions of the resultant forces given in the (1.27) and (1.35), the following equations

of the resultants[3] of the FSDT can be obtained.

duy 1 /0wy\° 0170 6W0
An[ax +5(5%) ]*Au[

duy 1 /0wp\> 6170 awo
Moy = oz | 5243 (T0) | 4|5

N =4 (auo + dv, + adw, awo)
v\ gy T ox - dx dy

0 = Kss (20 1.,
Q) = KAy (%" +9,)
Mz = Dis (aa¢x> * D1z (aad;y)
My = Dra (5 a¢x) * Dz <aad;y>

0¢y 6¢y>

M,y = D¢ (W‘FW (1.36)

h
where, K;(= 5/6) is the shear correction factor[1] and (Al-j,Dij) = f_zﬁ(l, 2)Q, dz (see
2

the (1.25) and (1.34) for the specific values of the Q;;) .
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CHAPTER Il

DEVELOPMENT OF BEAM BENDING MODELS

In this chapter development of various types of the nonlinear mixed finite element
models of the beam bending problem is discussed. In current models, force like physical
variables are included as independent nodal variables with proper weighted residual
statements[4]. Four different nonlinear mixed finite element models of beam bending are
developed for the numerical analysis. The relation between the participation of a typical
variable and the accuracy of the linear and the nonlinear solutions are investigated in the
chapter V. To clarify the developing procedure the governing equations of the EBT and
the TBT were brought from the chapter I.

- Governing equations of the EBT

N, —2=0 . (1.7)

(1.9)

- Governing equations of the TBT

ANy
6“’0 P dx —f(x)=0,
o d dw, _
(SWO'_E<Qx+NxxE)_Q(x)—O’
s, 1 —Mhx o _¢ (1.16)

dx
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— EA du0 dwy\*
N dx ( dx )
dw
Qc = KGA (9 +2) |

d
M,, = EI Px (1.19)
dx

2.1 Model I of Beam Bending

2.1.1 Weighted Residual Statements of Model |

The governing equations of the EBT which were derived in the chapter I are used
to develop the Model I of beam bending. The displacements (i.e., u, and wy) and
generalized forces (i.e., Ny, V, and M, ) are included as independent variables in the
beam bending Model 1. By using the equilibrium equation and the resultant equations of

the EBT, following weighted residual statements can be made.

% NS — W7, f(x)> dx — Wy (xg)Ny — W, ()N,
o
—Zya_ q(x)> dx — Wy (x )Vy — Wy (x,)V,

Xb

||
/_\A

Xa

dx
*b _ “ 8 dWO
= W;i—Ng + EA + = o\ Zx dx
b _ dM“ dwd
= W4 ( xx XX dxo ) dx
Xa
% ( WM dW dw, _ _
o= ( i Dt °)dx—ws(xa)el—ws(xb)92 2.1)

where,
N, = _Nxx(xa)r N, = Nxx(xb):

Vi =—Velxg), Vo= Vilxp),

_ dwy(x,) and 6. = _dWO(xb)
T dx 2 dx '
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Note that variables with superscripted ‘a’ (i.e., ug, wg, N, V,* and MY,) denote
approximated variables, W;(i = 1,...,5) denotes the i" weight function of the i®
weighted residual statement. x, and x;, are the global coordinates of element region. The
boundary terms in the first, the second, and the third equations can be obtained by

conducting the integration by parts[4] of the related terms.

2.1.2 Finite Element Equations of Model |

Next, with the weighted residual statements given in the (2.1), the variables can be
approximated with the proper interpolation functions. Compared with the EBT
displacement based model[1] whose variable (i.e., vertical displacement) should be
approximated with the Hermite interpolation functions[1, 4], the model I allows the use
of the Lagrange interpolation functions for the approximation of all variables of it,
because weighted residual statements do not include any derivative of variable as

primary variable.

~ 1,0 — Uo — .%o
Uy S ug = Yo, wy=vy;° ,
j=1
" w,
~ a — 0 — ./,Wo
WO—WO_ . l»bj WJ' Wz—l,bl ]
Jj=1
a P N. N
~ XX
Nyx = Nyy = ) 1P,- N; W =9, ,
Jj=1
~ ya — Vx . v,
hE=ui= ) v W, =,
Jj=1
r M.
~ a — xx 7 M.
My = My = 'L[)j M, Ws =4, .
j=1

(2.2)

By observing the boundary terms in the (2.1) which are produced by integration
by parts with the chosen weight functions in the (2.2), the primary variables and the

secondary variables can be specified as follow:
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<The secondary variable>

<The primary variable>
W, ~ u, Nyx
W, =~ w, V
_ dw,
Ws ~ My, dx

By substituting the (2.2) into the (2.1), the following nonlinear mixed finite

element equations can be obtained.

2l (fa o - [ (viere)ax—wiecoms ~viecam =0
Zq [ Xb (d:ﬁ)){vo 1/);/95 ) dx] VJ. _ J:‘b (wwoq(x)) dx — Wo(xa)vl _ w;”o(xb)vz -0,

ijl La ( Nxxl/’Nxx> dx|N; +Z} 1“ Nxx dxl u;

1dw}
8 e B )dx]w _o,

+Z, 1U%<2 ax VT
U (- IPV"IPV")dx v, +Z} 1“ < Vi x)dxl
; Z [ f (%w%”m) dx] N =0,

S Iprxllexx x Max g
ZU( )dxM{HU"(dw dx)dxw

" (x)0; — P (x,)0, = 0 .

(2.3)

Note that the boldface letters are used to indicate nonlinear terms. Above mixed
finite element equations can be rewritten as algebraic matrix form by collecting

coefficients of the unknowns in the form of the coefficient matrix [K] and the rest of the

terms as the force vector {F} [4] as follow:
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[Ke{U°DHIU®} = {F°}

k1] (k2 (k2] [k (kes)y (W) (1)
(K?1] [k?22] [k2] [K24] [k?5]| |{w;} {F2}¥

=([K31] [K%%] [K*] [K3**] [K%]]|{{N;}};=1<{F%} (2.4
[K*] [K*?] [K**] [K*] [K*]| [{v}} l{F‘*}J
[K51] [K%%] [K5%] [K%%] [K®®] {F®%}

{™;}

where, the [K¢({U®})] of the equation denotes that the coefficient matrix [K] is the
function of the unknowns {U€}.

The sub-matrices and the specific terms of the force vectors are given as follow:

*b (d Uo X (d Wo
[K13] =.[ ( ;lj; ll)]Nxx>d [K24] :J- ( j}lc 1,0;-/">dx )
W AP o (1dwd . dp)”
[K3'] =La (ll)i d—)}c)dx , [K3?] —La (Eﬁlpi d—JJC)dx
x Naxx 1 Nocx x
e = | b(——wl s >dx , = [ (Gt ax
X X d Mxx
[K**] = L ab(—wlv"w,v")dx [K*5] = fx : <¢j’x lgfx )dx
xp (et % [ duMer dipo
[K55] = f a <_—EI] )dx , e =) (—flx —L )dx :
b u U U,
Fy= [ (0or00) dx + 9 GIN, + BN,
b w W, W,
7 = [ (10 @) dx 4 GV, + UGV,
{F5) = 9™ (x2)0; + P, (x,)0; - (2.5)

All the sub-matrices and the force vectors which are not specified in the (2.5) are

Z€10.
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2.2 Model 11 of Beam Bending

The governing equations of the EBT which were derived in the chapter I can be
also used for the development of the Model II. The Model II includes displacements (i.e.,
Uy, and wy) and the generalized resultants (i.e., N,, and M,, ), while the Model I
included V, in addition to those. Thus total number of the independent variables is 4 in
the Model II. By eliminating the shear resultant V, from the governing equations of the
EBT, following equations can be obtained.

AN,y

d <dex dw,

dx \ dx * dx

)+q(x)=0 ,
Q| 1 ()’
dx 2\dx
d?w,

dx? '

’

Nyy =EA[

M,, = —EI (26)

2.2.1 Weighted Residual Statements of Model 11

The equations given in the (2.6) are mathematically equivalent to the equations
given in the (1.7) and (1.9), which were used for the Model I, but the effect of the
elimination of the V, can be observed both in the equation solving procedure and in the
result of the numerical analysis, since it affects both the symmetry of the tangent
matrix[1] and the accuracy of the solutions compared with other models. For the Model

I1, the following weighted residual statement can be made.

*b ([ dW, _ _ _
0= f (d—xlN,?x - Wlf(x)> dx — Wy (xg)N; — Wy (xp)N,,
Xa

b [dW.,, {dME dwe _ B ~
0= .La [ dxz ( d;cx + N2 dxo) — qu(x)] dx — Wy (x )V, — Wy (xp)V5

du(‘}+1 dw(‘,l2 d
dx 2\ dx X

o WME AW, dw§ _ _
o= a (- Ly O de)dx—w4(xa)el—w4(xb)ez, (2.7)

Xp _
0=f W, {—N& + EA
Xa




27

where,

Ny = =Ny (xg), Ny = Ny, (xp),

dM,., dw,
= — N..—2 S
Vl [ dx XX dx ]x:xa Vx(xa):
dM,., dwo]
= N.,, —— =
VZ [ dx + xx dx x=xg Vx(xb):
_ dwg(x4) and 6, = — dwq (xp)
! dx 2 dx

Variables with superscripted ‘a’ (i.e. ug, w§, N3, and Mg,) denote approximated
variables, W;(i = 1, ...,4) is the i weight function of the i weighted residual statement.
X4 and x;, are the start and the end global coordinate of the element. The boundary terms
V; and V, were obtained in the different forms compared with those of the Model I but

the physical meaning are the same.

2.2.2 Finite Element Equations of Model 11

All of the variables can be approximated by using the Lagrange type interpolations

and the weigh functions can be chosen to be as

m
~ — u A7
u0=u0a—él wjouuj, W1=1pi”°,
Jj=1
" Wi
~ — A7 W,
Wy = wg = YWy, Wy =19;" ,
j=1
a LY N
~ j— XX A7
Nxx = Nxx = ] 11,[1]- Nj ) W3 — lpi xx ,
]:
r M.
My = My, = IIJ,- M, w, = l/)iMxx . (28)

j=1

The primary and the secondary variables can be specified as follow:
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<The primary variable> <The secondary variable>
W, ~ u, Nicx
dM,., dw,
W, = wy Ve (_ dx N dx )
B dw
W4 = Mxx dx

By substituting the equation (2.8) into the equation (2.7), the following nonlinear

mixed finite element equations of Model (II) can be obtained.

Z 'fxxb <d;/J_50¢]Nxx >dx] Nj _ .be (l[)luof(x)) dx — lpl_uo(xa)Nl _ ¢Zlo(xb)N2 =0 .

a

> (dwg d;”
M+ZU (dx “ax Vi )dx]N]

- " (B0g00) dx =BGV — PGV = 0

a
m xp dl,l)uo
§ N. J
j=

[y

j=1- 74

r

Xp dlpwo dw Myx
Tdx

Xa

-
1l
-

be ~ 1,blexl,b]Nxx o
x EA

_lprxlprx>

Xp dlprx dlpr
El U . ( )dx] " (2.9)

" (20, — ;" (x,)0, = 0 .

The mixed finite element equations of Model II can be rewritten in algebraic
matrix form by collecting the coefficients of the unknowns. Note that the Model II
contains 4 variables as unknowns. Thus, the size of the [K] of the Model II can be

reduced, compared with that of the Model 1.
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[Ke{UeDHU®} = {F°}

[[Kll] [Kiz] [K13] K14] ({[ul]}] ({Fl}\

[K21] [K?22] [K%] [K24] i?{wg%j:iggf (2.10)
o)) )

= [K31] [K%2] [K3?] [K3Y]
The sub-matrices and the specific terms of the force vectors can be given by,

[K41] [K4—2] [K43] K4—4—

x wo oy Max
[K13] = ( Nxx> [K“]:f b%%dx
x Wo x Nxx {Vxx
[K23] = b<d dezx ;Vxx)dx [K33]=f b(—lpl Ej} )dx
x a dw™°
K31 — < Nxx ) [K32]=f b(%d;lxﬂ l{Vxx Id/);c )dx ,
Mxx Myx x Mxxd Wo
L e [
(7= [ (017 00) e + 9Ny + 9N,
b w, w, w,
{F?) = f (a0 dx + P Vs + 9! (Vs
{F5} = 9" (xa) 01 + P (x)6; - (2.11)

The sub-matrices and sub-vectors which are not specified above are zero.

2.3 Model 111 of Beam Bending

In displacement based model of the EBT, the slope (6, = —dwy/dx ) was
included as a primary variable with the use of the Hermite type interpolation for the
vertical deflection w,. Because 8, has a physical meaning, one can include it as an

independent variable. This idea was proposed by Reddy by considering the following



30

equation as one of the governing equation of the EBT. It can be seen that the linear part
of the coefficient matrix of the Model I given in the (2.4) and (2.5) cannot be symmetry,
and the tangent matrix of the Model I, which will be discussed in the chapter III, cannot
be symmetry either. In the computational point of view, the symmetry of the coefficient
matrix of the algebraic equation system is very important because of the computational

cost.
g, = - (2.12)

By replacing every —% in the EBT equations we can obtain the following

differential equations, which can be modified for the Model III.

dN,,
W"‘f(x) =0,

dv,
E+q(x)—0 )

dex
dx

Ve — — Ny, 0,=0,

dug 1
Nex = B[+ 307

do
M,, = Eld—; . (2.13)

2.3.1 Weighted Residual Statements of Model 111

With the equations of the (2.13), the weighted residual statements of the Model III

of beam bending can be written as follow.
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% (dW. _ _ —

0= f <d_xlN2?x - Wlf(x)> dx — Wl(xa)Nl - Wl(xb)Nz ’
Xa
*b (dW. _ — -

0= J. (d_xz xa - qu(x)> dx — Wz(xa)vl - WZ(xb)VZ ’
Xa

0= xb_3< a_dng

o - +9,?N,?x)dx,

% _ dul 1
0 =f w, {—N,?x +EA[ 9 +E(9x)2]}dx )
X

. dx
*b _ dwg
0= W5 9,?' + dx dx )
Xa
% ( W.MZ dW, _ _
0= (— 21’”‘ — d—6 ,?) dx + We(x )0, + We(x,)6, , (2.14)
Xq X
where,

N, = _Nxx(xa) , Np= xx(xb) ’
Vi=-Ve(xa) , Vo= Vp(xp)

91 = _ex(xa) and 92 = gx(xb) .

2.3.2 Finite Element Equations of Model 111

In a sense, the weighted residual statement of the (2.14) can be fully qualified for
the Galerkin method[4], because each of the integral equation represents the work done
in virtual work sense, with the following choice of the weight functions. The

approximations of the variables and the chosen weight functions are as follow:

1
Uy = uf = ._111)}-10&11}-, Wy =6u=19;° ,
}m ) B
wo = wg = '1.¢)j0wj' W, = 6wy =9, ,
]:
T — )
9x597?= ) 11/ij§j ) W3=66x=ll)ix )
j=
eva = NT O Nax - Nix
Nyx = Ny = ) 111)]' N; , W4=6Nxx=lpi ’
J:
~ a 1 Vx T v,
Vez=lt= '11»0]' \Y Ws =6V, =y, ,
j=
-
My, =M%, = WM, W = My, = ;7 . (2.15)
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The primary and the secondary variables can be specified as follow

<The primary variable> <The secondary variable>

W, = u, Nicx
Wz = Wy Ve
WG =~ Mxx 9x

By substituting the equation (2.15) into the (2.14), the following nonlinear mixed

finite element equations can be given by,

-| " (W) dx = PO GON; BN, = 0

ijl f:b (d;p—?ll’;vxx ) dx] N;
ijl LXb (dﬁ—;¢yx ) dx] V;
a [(* o r xp 0 d¢Mxx
Z}‘ jxa (wi ijx)dx Vi +Zj=1 ['[Xa (jbix#) dxl M
X[ ed o

Z;[fj( ¢NXX¢NXX> dx|N; +Z} 1“ N"" dxl u;
+Z,-=1 Uxa (Eeglpi’vxxlpf") dx]sj =0,

- (B9 dx — B GV — )V, = 0

57 [t e300
ZH fb( IPM""‘/’M""> H +Z, 1“ Xb< dexx¢9x> dx] (2.16)

+¢1Mxx(xa)91 + 1!’?4”(?517)92 =0 .
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The mixed finite element equations of the Model III can be rewritten as the
algebraic matrix form by collecting the coefficients of the unknowns. Note that the
Model III contains 6 variables as unknowns. Thus, the size of the [K] is the largest

among three mixed EBT models.

[Ke{U°HIU®} = {F°}

k) e s ke e e (B) gy
(e kK (k] (k) (k)| ) s _ 2.17)
] ke Ke] e ke k| ) )T e |
e kK] e kF el | (9

ko] el k) ko] ) e |gyy)

The sub-matrices and the specific terms of the force vectors are given as follow:

Xp dlpl}lo o Xp dw;”o .
[K4] =La (sz}v )dx, [K?5] =La ( ot )dx
Oy Ve % dip™
[K3%] = L a (Wi i )dx [K3¢] = jx a (-ﬁx - >dx :
e a, 0% Nxx b xx dl)[ﬂf(’
e[t - )
v [ e B
Xp x d Wo
[K53] :j (lpl‘/xlpjgx)dx , [KSZ] =j- b<l/);/x IC/;}C )dx ,
xp lpf"’xxlprx Xp llexx ;
e =La <_ B )dx ’ [ =La <_W’/’f9 )dx '

= Y (B G) dx -+ P GON, + BN, |

a

72y = [ (9900) dx eV + 9

{F&) = =" ()01 — "™ (x,)0, . (2.18)
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2.4 Model 1V of Beam Bending

2.4.1 Weighted Residual Statements of the Model 1V

The governing equations of the TBT are used to develop the Model IV. It can be
shown that the mixed Model IV is equivalent to the Model III regarding the numbers and
the dimensions of nodal variables. By using the governing equations of the TBT, Model
IV includes 6 variables as independent variables (i.e. uy, Wy, ¢ Nyy, Q, and M,.,.). With
the equilibrium equation and the resultants equations of the TBT, following weighted

residual statements can be obtained.

= b <{2—Wl Wlf(x)> dx — W, (x )N, — Wy (x,)N, ,
( N dd 2% qu(x>> dx = Wy (xo)Vs = W)V
0= ( M,‘}x + W3Qx) dx — W3(xa)M1 W3(xb)M2 s
— W4< dﬂ dWO) N,glx> dx
- Ws( Lo Qx>dx ,
fx 7 (E1 52 g, ) ax 2.19)
where,

Ny = =Ny (xg), Ny = Nyy(xp) ,
dw, dw,
- = [Qx + Nxx W]x: a' V2 - [Qx xx dx ]x o ’

My = =My, (xg) and My = My, (xp) -
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Since no derivative of any variable is involved as a nodal unknown, the Lagrange

type interpolation function[4] should be used for the approximations of variables of the

Model IV. The approximations of the variables and the chosen weight functions are

given as follow:

l
~ 2,0 — Uo
Uy = uf = E 1,1)]. w; ,

Jj=1

m
~ 0 — Wo
Wy =Wy = 'Lp] WJ )
j=1
n
~ HQ _ Px
¢x= x—z l,bj pj ’
j=1
p
N zNa — leXXN.
xx = Nxx — . j j o
Jj=1
q
~ Nna _ Qx
= X_Z' lp} Q] ’
Jj=1
r
~ Ma — Myx
Mxx= xx — 1P,- M}' )

j=1

Wy =9,
I/T/2=1pl?”°,
I/T/'3=1/);Px ,
W4:¢fvxx,
W5=1/)1-Qx ,
W, = e (2.20)

The primary and the secondary variables can be specified as follow:

<The primary variable>

W, = u,
W, = w,
W3 zd)x

<The secondary variable>

Ny
dw,
Ve (= Qx + Ny K)
My,

The finite element equations of the Model IV can be obtained by substituting

approximations and the chosen weight functions of the (2.20) into the (2.19).
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[ (o [
—w}“’(xa)Nl — ()N, =0,

? xb dll)wo Qx b dW dl/)WO Nyx
20 Camo)adors 20 (v

Xa

f (80q(0)) dx =9 GedVh = W™ (1, )V, = 0

Z} 1Uxb< dy P Mxx) M, +2,_ U (¢¢x¢0x)dx](@]

P (x )M, — ¢¢X(xb)Mz =0,

DRINGE SEEDMING St SR
Z, 1U (),

YL (g e ot
T oo

S e S e

N]=0 )

From the (2.21), the following matrix form of the algebraic equations can be

obtained.

[KeAU° DU} = {F°}

Kk ke e k] e ()
[K21] [KZZ] [K23] [K24] [KZS] [K26] {W}} {FZ}

I Lo o I T o I T I Sl I ol | DRV G R0 (222)
(K] [K*2) [K*] [K*] [K*] [K*]| | (N} )PSO '
[K°4 (k%2 (K] (K% (K] (K| |(q,})| [FF®)

K K] K K] (K] kel () WP
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where,
Xp [ dip¥o b [ dw® dip™°

[K14] = f (%zp}””)dx, [K24] = f (;O—Zz); zpj-”’“‘)dx
xb [ dh™O b (d $x

[K?°] = f (—Z’; zpf") dx [K3¢] = f b(—l‘f; z/J,M"">d
X x d Uo

[K35] = f b(w;”X¢?X)dx : [K41] = f b(q;i“’xx d; )dx ,
o (lawg A o P

[K*?] =f (EWI’D" o e )dx ) [K44]=J- 7 dx

— b Qx dlp;‘lo 531 — b Qx (Px

[KSZ]—La <¢i W) , [K>°] La(lpl Y, )dx
Xp 1)[}?"1/)035 Xp Mo dlpd’x

[K>] =La (——KSGA )dx , [K63]=La (ll)i —d; dx ,
xp lpf"’xxlijxx

(K] =jxa (——El )dx
Xp u

Fy= [ (0or00) dx + OGN, + BN,
Xp w

F = [ (10 ) dx 4 GV + UGV,

{F3} = )My + 9 o )M, (2.23)

All of the sub-matrices and sub-vectors which are not specified above are zero.

2.5 Lagrange Type Beam Finite Elements

For present study, the mixed formula allows the use of the Lagrange type
interpolation functions[4] for the approximations of every variable. Here, beam elements

that were used for the computer implementation and the numerical analysis are
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mentioned. For the beam problems, the Lagrange types of linear, quadratic and cubic
elements were used. The geometry of the elements and the locations of associated

interpolations are given in the Fig. 2.1.

2 1 1 . 2/3 . 2/3 2/3
© 5 e O o © @ - o
1 | 2 1 + 2 3 1 2 | 3 a
t . t
0 ¢ o ¢ © %
(a) linear element (b) a quadratic element (c) a cubic element

Fig. 2.1 Node number and local coordinate of the line elements of the Lagrange

family.

Very well Known interpolation property [2] is known as partition of unity, which

can be written as

ll)i(x,-) = {(; ll]]i ll : ]]},

> w1

So by considering the interpolation properties, we can derive interpolation
functions which are associated with the nodal points with given set of polynomials. And,

the specific interpolation functions associated with the nodal points are as follow:

- Linear interpolation functions

Yi=3-0 =548 | (2.24)
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- Quadratic interpolation functions

1 1
$1=58C€ =1, b =1 +HA =8, hs =581+, (2.25)
- Cubic interpolation functions
9 1 1
Yy —E(f‘l‘g) (f—g) 1-5)
Y=+ (6-3)a-9
2716 3/
. X (2.26)
b= A+0(s43)a-0),
9 1 1
Yy = E(l'i'f)(f‘l'g)(f—g)-
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CHAPTER Il

DEVELOPMENT OF PLATE BENDING MODELS

The 1-D beam bending problems which were discussed in the chapter II can be
extended to the 2-D plate bending problems with simple modifications. Two CPT
models and two FSDT models are developed. To clarify the developing procedure, the
governing equations of the CPT and the FSDT are brought from the chapter 1.

<The governing equations of the CPT>

ON,, ON

—_ _xy =
dx dy 0
_% — aNJ =0
0x dy

v, dv,

“ox gy 90 =0
OM,, O0M,, adwg dwy

- Nye—2+ N =

* ( 0x dy ** 9x > oy 0.
M,y  OM,, dwo dwo (1.26)
Y (ax dy N’”’W Nyyay =0,
and

. . duy 1 /0wy\°
A+ Aoy = |54 5(50) |

. . vy 1 /0wgy\°
AloNyy +A22Nyy = W*’E(E) ’

. _(Ouy | Ovy | 0wy Owy
AcsNay = <6y tox T ox ay)

i . 0%w,
Di1 My + D12Myy = - Ox2 ,

X . 0%w,
DioMyy + D22Myy = - ayz_ ,

. 9*w 1.28
DgeMy, = —2 (0366)01) . (1.28)



<The governing equations of the FSDT>

and

dx
oN.

ox

0 (N dw,
ox \ " 9x

oM
Qx_< xx+

ox

oM
Qy _ <_"y+

Ox

Al1Nyx + AIZNyy = [

ANy + AZZNyy = [

AZGny = <

Di1M,, + szMyy = <_

3]
Di;Myx + D3, My, = <

o,
2

DgﬁMxy = (

ONy, 0N,
- 77 = 0
ay

Ny _ 0Ny _

ady

+ N,

Ju,
—_— + _ —_—
dy 0x 0Ox dy

(Gt )

0y
dy

)

)’

adw,
Y 3y

OM,,
dy

dy

dv,

+Qx)+
=0,

aMm
yy) -0,

Ju, 1 (awo
Jx 2

Ovo | 1(
dy 2

0

ox

aw,
dy

dw, 0W0>

ay

N.

aw,
( <arra

it
it

’

+N

dw,
vy W

+0y)+at =0,

41

(1.33)

(1.36)
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3.1 Model I of Plate Bending

3.1.1 Weighted Residual Statements of Model |

The governing equations of the CPT which were derived in the chapter I are
modified to develop the plate bending Model 1. Total eleven variables, i.e., ug, vo, Wy,

Nyx> Nyy, Ny, Vi, Vg, Myy, Mgy and My, are treated as independent variable in the plate

yy> 2 Xy» Xy

Model I. The Green-Gauss theorem[15] can be used to obtain the boundary terms when
the integration by parts are conducted. The weighed residual statements of the Model I

can be written as follow:

1

+8y

N,?y> dxdy — jg Wi {n,Nyyx + Ny, tds =0,
I,

e

ow, _
+ WNJ‘}y dxdy — § Wz{anxy + nyNyy}ds =0,
T

e

3

Va
x+ay

o ~ )
L ( ax3 v — W3Q(X)> dxdy —ﬁ Wg{nxVx + lel/;,}ds =0,
e

e

W,
e

Ws
Qe

W
Qe

_AilN;gx - AIZN;}y +

_A;ZN)(clx - A;zN;y +

a
oug

dy

'aug
dx

dy

av§
+_
dx 2 dx 0y

[1.)a
avg

1
2

1
2

[

(

owg
dx

a
owg

dy

>2

1ow§ owg

I
'}

}dxdy =0,

dxdy =0 ,

1ow§ owg

2 ox dy

)] dxdy =0 ,

a
2 WG
XX ax

oMy | OMs,

+ N Owg
dx dy

+ Gy

f i, (—V;‘
n

e

[o(s
0]

e

)dxdy=0 ,

oMZ owg
= + +Ng, ay”

ox

oM, L Na owg
dy

+ Y ox

>dxdy=0 ,
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f D}, WoM&, — D, WM& +6W96W€ dxd jg vT/( aw")d =0
R 11 WoMxyx 12 WolMyy ox Ox xay g 9| Ny ax s=vU,

e

f Dy WioMS, — D3 Wyohs, + 0108 g 'zf o ( aw")d =0
B 12 W10Mxx 22 W10My)y, dy dy xay . 10 | 1y dy s=U,

e

f DY M& +6W116W61+6W110W61 dxd
; 66/V11Mxy ox dy dy ox y

e

_ ow, ow, 3.1)
_ﬁe Wll <nxw+nyﬁ>ds =0 .

where, [, is the boundary of the element region (), and variables with superscripted
letter ‘a’ denote the approximated variables. The n; denotes the unit normal vector of the

i-direction, where 1=x, y.

3.1.2 Finite Element Equations of Model |

With the weighted residual statements given in the (3.1), we can develop the finite
element the Model I of the plate bending by approximating variables with known
interpolation functions and unknown nodal values. But the choice of the known
interpolation functions is not arbitrary. By the same reason that we discussed while
developing the EBT models in the chapter II, the Lagrange type of the interpolation
functions should be used for the approximations of the all variables of the Model I,
because no derivative of the variable is involved as nodal unknown. To develop the
finite element model based on the displacement model[1], one should approximate the
vertical displacement w, with the conforming [1, 4] or the nonconforming[1, 4] type of
the Hermite interpolation functions, because displacement based model includes the
derivatives of the w, as nodal values[1]. But for the current Model I, only C° continuity
of the variables is required. Thus, it allows use of linear interpolation functions as the

minimum.
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Uy = uj = 2;1/;}“’ (), Wy =9 (xy) ,
wEvg= ) WPy, W, = 9 )
w=wg= Y B w W, =9 (03) |
Nyx = N§ = Z;wj’“ (N} Wy =9 (x,y) ,
Nyy = Ny, = j=1 l/);vyy (YN, Ws = ¢l-Nyy(x, y)
Noy = Ny = jzllp;]'vxy (N, We = 1P1-ny(x; y)
V=V = jzlr/)fx V! W, =yl y) |
V=V = jzlw;/y (x, V7, Wy = w?(x, ),
Moz ME = D" W oM Wy = 9" () |
M,y = My, = Z:zl lp;wyy(x’ M7, Wy = ‘/J;wyy(x, y)
Ty — Mgy
Moy 2Miy = ) ;7 oM Win =17 () . (3.2)

The primary variables and the secondary variable of the Model I can be specified

as follow:
<The primary variable> <The secondary variable>
U Ny Ny, + nnyy
Yo Ny Ny, +ny,N,,
Wq n,V, +n,V,
dw,
M, " g%
dw,
n —
Myy Y
aw, dw,

Mxy T ay +le 0x
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By substituting the equation (3.2) into the (3.1) the finite element Model I of the

plate bending can be obtained as follow:

p [oPre Y 1T/
f [Z < % w;_m) Nj + Z < : ny) ]dxdy _f ¥ {MeNyx + 1y Ny Jds = 0,
a, j=1\ Ox j=1 I,
9 Vo 9 Vo
f [Z ( ll) ny) N3 + Z < w Nyy) Nz] dxdy - f le”{anxy + nyNyy}dS =0,
j=1 Jj=1 Ie

Wo

f [Z] 1(61!)% vx>v1 +Z] 1( a; zp]VY>w2 t/JW°CI(x)] dxdy

Wb+ Yds =0
f {_A* Zp (waxlexx) Nl — A Zp (lexxleyJ’) NZ
1 : i j J 12 . i b '
Q¢ =1 Jj=1
Ug Wo
™o N O 10w5 Zn v 0¥ _
Z,-Zl (’l’i ox )Yt 2ex L\ P o M|y =0
* P N. xx * p N. N.
{_Alz ijl (Iljl yylp]I_V ) le - AZZ Zj=1 (lpL yylpj }’}’) N]Z
m GI 19w e
Nyy Z7j 0 Z Nyy “¥J ] _
Z;:1<¢i oy )W T2y (w" ay )W =0
P Nxy  Nxy\ N3
ey (00N
]:
m alpl.io m 61[11.]0 10w? n aw‘.”o
Nxy Z7J . Z Nyy 77 . Oz Nyy Z 7 .
’ (Zf=1 (lpi 9y )MJ * 1‘=1<w" ax ) 2 L\ oy )
1owg " Ny alp;vo
+§ ay Z'=1<lpi ox ) W dxdy =0,
Mxy
J [ Z V"I/JV" W1+Z ( Vx )M1+Z ( )M]?
j=1

a

+ al;/xg ZjZI (l/)LVxl/)]NXX) N]l + 66“;0 ZjZI (l/)LVxlp]NXY) N]3
Myy
Vy Vy
LFE e 2 () (4 e

a

ows P Vy  Nxy\ N3 owo P Vy 1 Nyy) N2
+ ijl(wi V)N ijl(wi PN

+

),

+

).

dxdy =0 ,

dxdy =0 ,




),

),

n Myy alpwo
* Z - dy
— D6 Z () Z}l (

M, BWO dw,
)wj]dxdy 3€ Y, y( Ny oy +nyW)d5=O

),

e

Mxy

> (

—Daz (') DHZ (v
n a Mxx al,lJWO
+Z] 1\ Ox Ox

(5
—szz (ww) DZZZT_ (g w2
(%

Mxxlp;vly}’) M2

0
)wj]dxdy f 1,[1M""( Ty a‘/:co)d5=0
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]

0
)w,]dxdy 3§ zp”’”( n, av;")ds=o

away alpwo w
dy

(3.3)

Above equations given in the (3.3) can be rewritten in the algebraic matrix

equation in the following form,

[Ke{U°DI{Ue} = {F°}

[KOD] .. [K(DO)]
- [K(e:xl)] [K(G:)(6)]
[K(lzl)(l)] [K(ﬁ)(e)]

where,

_ alpuo Nyxx
[KH]_Le{ oV }dxdy

_ aw{?o Nyy
[K?5] = f{ayw %d%

_ W v,
[K37] = Le {thj }dxdy ,

[K(n(n)]
[K(e)(u)]

[K(ll)(ll) M3}

F(l)}
{N3} I!{F(‘@}ll : (3.4)
\ )

(ro)

— alpuo Ny
[Klé]—fn {Oy ¥ Y}d xdy

e

M
[K?€] =L {thj y}dxdy,

we | (2]
ey = [ {20 faxay

e



K+ ] = f

K44] f{A11¢Nxx¢Nxx}dxdy’

oyp;°
o 22

e

KSZ]_

1/)L } dxdy ,

[K54] _f { A12¢Nyy1/)Nxx} dxdy
[K61] = [

} dxdy ,

et = [ (e ey

a
owg

47

_ 1 6W0 Ny 61/)}”
-] L
= [ (2o

K™71= {—y/ v }dxdy ,

M.
0y, i
[x70D] = fn {w?x 55 }dxdy

a a
1 (oo

k1= | (ol faxdy

e

M.
oy,
V,
[[(78(11)]=f!2 {d)iy ajx }dxdy,

_ [ (awr=ovr
(K] _Le{ ox Ox }d Xy,

[o00] = [ {=prutteey)>} axdy

Qe

My Wo
[K102] = f {—alpi i }dxdy,
2,

dy 0dy

[K55] = f (- Azzw””w’””}dxdy
[K6%] = [ }dxdy
oy
ny J
Ep ]}dxdy ,

a a
o= [ (52wt fasay

M

alp‘y}’
Ko00] = | Jyr =L —tdxdy,
[K*e21= {lla % y

(K% = f {=Dipp ) dxdy |
2

ko] = [ (=D} dxdy

e
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[K000] =f {_Dzzll’;wyylpyw]dmy ’

e

My w My w
[K(11)3] _ f {allli y 01/)]' 0 61/) Y0 1,0] 0
2

ax ay ' 9y ox }dx‘iy ’

[K(ll)(ll)] =f {_Dgfjlpfl"ylpj.w"y} dxdy .

Qe

1N — u
(P = § Ve Emlolds s f gt s
Ie

Te

(F) = | ooy +§ prads oy ¢Mxx(vinx)ds,

2
{F(lo)} jg 1/)Myy aWO )ds,

3.5)
{F(ll)} jg Mxy 6w0 +%ny)} ds .

The rest of sub coefficient matrices and force vectors which are not specified in

the (3. 5) are zero.

3.2 Model 11 of Plate Bending

The shear resultant V, and Vj, can be eliminated by substituting the forth and the
fifth equilibrium equations into the third equilibrium equation of the CPT. By doing this
the symmetry of the linear portion of the coefficient matrix can be achieved and the
symmetry of the tangent matrix[1], which will be discussed in the chapter IV, can be

also archived.

3.2.1 Weighted Residual Statements of Model 11

With the equations of the Model II of the plate bending, the following weighted

residual statements can be obtained.
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ow, ow, _
f ——Ng& +—=—Ng, |dxdy — f Wl{anxx + nnyy}ds =0,
0, \ 0% oy I

oW, oW, _
f —Ng&, +——Ng, | dxdy — f Wo{n Ny, +n,Ny }ds =0 ,
0, \ 0% dy -

e

oW; (OME,  OMg, owé owé
fne{ax<ax * dy T N 5o T Ny dy

OVT/3 aM,‘}y an‘}y awg awéz _
NZ N& —
ay ( ox + ay + xy dx + yy ay W3q(x) dxdy

—§ Ws{nVy + n,V,}ds =0 ,
r.

e

W, 11Ng *Na+aug+1 awgz dxdy =0
o 4 11Vxx 12Vyy ox 2\ ox xay = ,
a a 2
W | AL, NS, — 43NS, + aﬂ#(‘”‘)) dxdy = 0
o 5 120V 220Vyy ay 2\ Tay ,
W [ . N & 6u0“+8vg 10w owd 1owd owgd dedy = 0
oo 0L Y \dy ox 20x 9y 2 dx dy Xy ==

f DaTT, M8, — DM, + 28 g jg
R 11 W7 Mxx 12 W7 Myy 9x Ox xay

e

dy dy

e

— — OWB aWOa — OWO
f —Di, WMy, — D;2W8M3‘;1y +—— dxdy — f We <ny W) ds=0,
n Ie

f < DETTME. + oWy Owé N oW, awg) dxd f . < ow, N 6W0> ds = 0
- X — —_+n, — S =
o 6679 T 9x  ay dy 0x y s o y

e

3.2.2 Finite Element Equations of Model 11

All variables can be approximated with the Lagrange type interpolation functions

for the same reason which was discussed with the Model 1.
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m
Uy = uf = Z 1‘/’;‘10(%3’)[1111' : Wy =)
j=
m
vy = v = Z 1¢;'7°(XJY)W1' : Wy =9;°(xy)
J:
n
woEwi= ), WtGeyw Ws =9 ()
j=
~ Na — P Noex 1 1/ N,
Nyyx = N5y = . 1¢j (x'y)Nj ’ W4=lpi AN
j=
= Ng, b Nyy 2 7 Nyy
Nyy = N i 11/)] (x;}’) N] ) W5 =1pi (x:y) ’
j=
~ Na P Ny 3 17 Ny
ny=ny= ) 11/J} (xJY)N] ’ W6=lpi y(x'y) )
]:
-
My, = My, = . 11/’1-\4”(96,3’) Ml ’ W7 =1piMxx(x’y) ’
j=
My, = Mg, = Z ¥, )Mz W=, " ()
_ M
Mo =My =Y U M Wo =970y 3.7)

By substituting the (3.7) into the (3.6), the finite element model of the Model II

can be obtained as follow:

f [Z 1 (61!)“” NXX> N} + E ) (alpuo ny) \E ]dxdy f P; (M Nyx + 1y Nyy }Jds =0,
j= j=
f [Z 1< :] ny> N3 + E ) <a 0 NyJ’> dxdy — {anxy + nyNyJ/}dS =0,
j= j=

Moy My
J Z alpwo 31/) M 4 zr oy 0Y; Y M+ awgzp oy, e | N2
j=1 J j=1\ Ox dy J ax j=1\ O0x "J J
w, w, Myy w Myy
N awd Zp <a¢ 0 ny> N + Z 61/; 0 all) p + zr dpo 0P, w2
oy Luj=q j=1 j=1\ 0y 0y

owg p oo ows P oo
+ axo Z L ( ltbz lp]ny> N]3 0 Z L ( 1pl w?yy) N]Z _ lp;’Voq(x)] dxdy
J= j=

dy ay ay

¥ + Y lds =0,
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{_ A z; (wizvxxlp;vxx) N} - A7, Z;’:l (lp?/xxlp;vyy) N?
5 (Yo 4 22 (g2
{_ A z; (w2 — Z; (w2 ) w2
Z;(”’?’w a;/’;’)w +;0;;oz (wl{vyyaz’_}livo)wj]}dxdy=o :
iy ()
755 2, (5 5 ()
+;6‘;;oz (1/;;"” a:;;; ) ])] dxdy =0 ,
“Diay, (Wl M- Y (ule))
(S, v )=
—DIZZ (w?”w, ) — D3, Zr_ (lpMywayy)
3 (5 e, e

* Xy Xy n alpMXyalpWD
oY w weyure Y (P

M"ya s 9 9
< id] ) w]] dxdy — 3€ 1,[)Mxy a";o +n, %) ds=0

)

e

+

+} dxdy =0 ,

)

e

+

]

e

),

e

)

e

(3.8)

dx

Above equation (3. 8) can be rewritten as the matrix form of the algebraic equation as

follow:

[Ke({ueh{ue} = {Fe}
[K(l)(l)] [K(l)(‘*)] [K(l)(")] {uﬂj} {F(V}
= [K(i?(l)] [K(ix’)@)] - [K<6:)(9)] {N;} _ {F(:zn} . (3.9)

[K((;)(n] [K(;)@] [K((;)(9)] {M:If} {FE")}



where,
oo
1= [ (vl asar.
Qe
Vo
K] = f _a;p; wf'”}dxdy,
-Qe
Wo
-Qe

aP;°
[K41 f { Nxx j }dxdy,
2,

[K4-4- .f { Alllexxlexx}dxdy

[K5%] f {1/)1 } dxdy ,
2
K54— f { Alzleyylexx} dXdy
P
Ny
(K6 ] Le { % }dxdy

[K°°] = Aeslexy‘Pny} dxdy ,
2

63 l[<0w0> Ny ZFJ oy}’
o fn {2 v dy
1] (oo

Qe

K77 j { lpVxlpVX}dXdy

}dxdy
Qe

[K79

\a

[K®5] =f {<3Wo ) Vylpj{"yy}dxdy,
2

[K88] =f dxdy

ﬂe

Nyxy 1/)]

+ (G

52

Uo
_ilp;vxl’} dxdy ,

W o

Wo
aWOa Nyy alp}
—_ . dxdy ,
( )wl ay | 9xX

N
A3, fdxdy |

oy°

o
—— r-"-—«

o

ow,” vy
15 o

M
oY,
[K7(11)] ZL {l’b‘yx_ajy }dxdy,

[K®¢] = f e {(% )wfwa”}dxdy :
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M M
al/J yy 61/) Xy
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e
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I Ie
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Qe Te
d d
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I ox
d a
(FOD} = jﬁ (S +%ny>}ds . (3.10)

The rest of the sub coefficient matrices and the force vectors which are not

specified in the (3.10) are equal to zero.

3.3 Model 111 of Plate Bending

3.3.1 Weighted Residual Statements of Model 111

To develop the Model III of the plate bending, the governing equations of the
FSDT are modified. The Model III will include the shear rotations ¢, and ¢,, to account
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for the shear deformations. The weighed residual statements of this model can be made

as follow:

fne [0W3

oW, o _
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where 2,and I, denote the element region and the boundary of the element respectively.

3.3.2 Finite Element Equations of Model 111

For the Model III, the Lagrange type of interpolation functions can be used to
approximate the variables. The weight functions and the approximations of the variables

can be chosen as follow:

1
wEug= ) PGy W, =yl
j=
! 4 A7 v,
wEvE= ) Y W, =9 (x,y)
j=
m w _
woZwi= ) U eyw; W =" ()
]:
" ) 1 T
O = PF = Z 1l/ij(xxY)]P)j ’ W4=1,bi¢x(x,Y) ’
j=
n ® "
y = ¢y = Zi=1¢jy €72) 7 Ws =, (x,y) ,
~ a P Nxx 1 7 N.
Nyx = Ny = Z 11/)]' (x'y)Nj ’ W6:¢i xx(x’y) ’
j=
~ Na P Nyy 2 — N
Nyy = Ny, = Z 11/’;' (x, N}, W, =9, (x,y) ,
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~ Na b Nxy 3 7 Ny
ny = ny = ) 11111 (xry)N] ] W8 = 1)01: y(xly) )
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G:z0i= ) YN Wy = ¥ (xy) |
j=
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T
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~ \a " Myy 2 — M
Myszyy= Z 11!’] (X,Y)M] ) W12=l/)l' yy(x:J’) )
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T — My
Moy = ME = ) W7 @M Wiy =" @) (.12)



The primary variables and the secondary variable of the Model III can be specified as

follow :

<The primary variable> <The secondary variable>
" Ny Ny + 1y Ny,
Yo Ny Ny, + 1y N,
W, Vene +Vyn,
¢ My, + Myyn,
X
o, Myyn, + M, n,
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The finite element equations can be obtained by substituting the approximations

and the weight functions of the (3.12) into the (3.11).
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Above equations of the (3.14) can be rewritten as the algebraic matrix equation in

the form of,

[Ke(UeHI{U®} = {F°}

[[Ku)(n] [K(l:)m]

l[K( N

[KaDO] § [K(lsxe)]

[Kua:)(ia)]

KO (o)) (7))

[K¢ 7 19)]

i{l\if}i = i{F{”}T : (3.14)
s)) (o)

The specific sub coefficient matrices can be obtained from the (3.13) as follow:
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{F'} = jgr Ul {ngNyx + 0Ny ds {F?} = g U {n Ny + 1y Ny Hds
e

e

)= [ {wreacalasay + § wre[om, + (Vnyds |
Qe Te

¢
)= § i Mgnas, S g, H honsct M s (3.15)

The rest of sub coefficient matrices and force vectors which are not specified in

the (3.15) are equal to zero.

3.4 Model 1V of Plate Bending

The membrane resultants ( i.e. Ny,, Nyyand N,,,,) can be eliminated by substituting
the resultant equations of the membrane resultants into the equilibrium equations. By
eliminating the in plane force resultants(Ny,, Nyyand N,,,), the size of the coefficient can

be reduced while the effect of it will be discussed in the numerical analysis parts of the

plate bending.

3.4.1 Weighted Residual Statements of Model IV

The weighted residual statements of the Model IV of the plate bending are given

as follow:
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The primary variables and the secondary variable of the Model IV can be

specified as follow:

<The primary variable> <The secondary variable>
" Ny Ny + 1, Ny,
Yo Ny Ny, + 1y Ny,
W, Ven, +Vyn,
¢ Myny, + Myyn,,
X
b, Myyn, + M,,n,

3.4.2 Finite Element Equations of Model 1V

Ten weigh functions and the approximations of ten independent variables can be

chosen as the Lagrange type interpolation functions as follow:
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By substituting the (3.17) into
Model IV can be obtained as follow:
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— Q
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the (3.16), the finite element equations of the
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- Px
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Above equations of the (3.18) can be rewritten in the algebraic matrix equation by

the form of,

[Ke({uehH{U®} = {F¢}
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¢
P my, O
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The rest of the sub coefficient matrices and the force vectors which are not

specified above are equal to zero.

3.5 Lagrange Type Plate Finite Elements

For present study, the mixed formula allows a use of the Lagrange type of
interpolation functions[4]. The elements that were used for the computer implementation
and the numerical analysis are discussed. For the plate problems, 4-node and 9-node
Lagrange type of elements were used. The geometry of the elements and the locations of

associated interpolations are given in the Fig. 3.1.
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Fig. 3.1 Node number and local coordinate of the rectangular elements of the
Lagrange family.

And, the associated interpolation functions are as follow:

- 4-node linear element
1

Yr=7-H0-n ,
1
Yo =7A+OA-M
1 (3.21)
Yy =10 +m
1
Y=g AHOA+D)
-9-node quadratic element
1 1 1
1 =7C =00 =), Y= 1= —m), 3 =7E +O0* —m),
1 1 1
Yo =5 E+HA =17, Y5 =7+ DM +n), e =50 -0 +m), (3.22)

1 1
Py =3 G2 =D+, v =5 - —1?), Py = (1 -§)(A-72).
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CHAPTER IV

NONLINEAR EQUATION SOLVING PROCEDURES

We obtained matrix form of nonlinear finite element model equations in the
previous chapters II and III. In this chapter the non-linear equation solving procedures of
equation (2.4), (2.10), (2.18), (2.22), (3.4), (3.9), (3.14) and (3.19) were discussed. These
equation solving procedures of the nonlinear mixed finite element models can be
generally applied for the developed nonlinear finite element models. The Picard Iteration
method[1, 21] and the Newton-Raphson method[1, 22, 23] were used for the present
numerical analysis. The solutions obtained from the two different methods can be
compared to insure the obtained solutions are well converged one, because the
converging characteristic may vary from one method to the other, but the obtained

solutions should essentially be the same.

4.1 Direct Iterative Method

The direct method is one of the simplest methods available, because this method
only requires update of the coefficient matrix with obtained solutions from the previous
iteration at each iteration step. After updating the coefficient matrix the equation solving
procedure, which is related to the obtaining of new iterative solutions is just the same as
solving linear algebraic equations. The flow chart[1] of the direct iteration method is

given in the Fig. 4.1. (for details see Reddy[1]).
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ITER =0

é

b
[GLK]=0 and {GLF}=0,
Set the initial guess solution .

\
Evaluate the [K] and{F}
&

Assemble the [GLK] and {GLF} .

L
Impose the B.C’s ,
Solve the equations,
Evaluate the error.

X5 | printth
Check the Error. . .> N
solutions.

NO
YES NO .
message.

Fig. 4.1 Aflow chart[1] of the direct iteration method.

0

4.1.1 Algorithm of Direct Iterative Method

The element wise matrix form of non-linear finite element equations that we
obtained in chapters Il and III, i.e., (2.4), (2.10), (2.18), (2.22), (3.4), (3.9), (3.14) and

(3.19) can be assembled as global equations [1] which can be written as

[K{UuD)I{U} = {F} 4.1

where, the {U} denotes the global unknowns of the assembled equations.
Because the coefficient matrix [K] is the function of the unknown {U}, we need to
evaluate the [K] by using initial guess solutions or the previous iterative solutions[1]. To

imply this concept, the equation (4.1) can be rewritten as,
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[K({U}r=—D)]{u}® = {F},
or

(KO3 = (7} 4.2)

where, {U}" is the solution obtained from the r™ iteration, K ({U }r-1) ) is the updated

coefficient matrix using the previous solutions {U}"~1 and {F} is the force vector.
Now, with the equation (4.2), the simple algorithm can be used to solve the nonlinear

finite element equations with the direct method, which can be stated as,

Wy = [k 5} 4.3)

Above procedure should be repeated until the solutions of r'™ iteration and the (r-1)"

iteration satisfy the following criterion [1]:

LMWMWY< 4. 4)
v (U,(r))z €,

where, € is the tolerance[1].

In this study, values of tolerance[1], € = 0.01 ~0.001 were chosen for the most of
the problems. In many cases, with small values of tolerance (say, € = 1.0 x 10719), the

iterative solutions may not satisfy the criterion regardless of the iteration numbers.
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4.2 Newton-Raphson Iterative Method

Usually the Newton-Raphson iterative method[1, 22] shows faster convergence,
compared with the direct method[1, 21]. Also in many cases, the tangent matrix can be
symmetry even though the coefficient matrix is not. And with the Newton method, only
the tangent matrix is inverted to get the incremental solutions, thus only the symmetry
solver can be used, still the calculations of the tangent matrix and implement of the
equation solving procedure are substantial. The flow chart[1] of the Newton iteration

method is given in the Fig. 3.2.

‘ ITER=10

[GLK]=0 , [GLT]=0 and {GLF}=0
Set the initial guess solution .

b
Evaluate the [K], [T] and{F}
&

Assemble the [GLK] . [GLT] and {GLF} .

&
Impose the B.C’s ,
Calculate the residual ,
Solve the equations ,

Get the incremental solution ,
Evaluate the error.

YES

Check the Error. _ .| (Printthe i
NO solutions .
YES

NO

Printthe
message .

IF IR= MAX

0

Fig. 4.2 A flow chart[1] of the Newton iteration method.
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4.2.1 Algorithm of Newton-Raphson Iterative Method

In the Newton-Raphson iterative method, the residual[1] or the imbalance force

vector[1] of the (4.1) can be written as,

{R{UN} = [KAUDI{U} - {F} . (4.5)

With Taylor’s expansion, the residual {R} can be expanded to the known solution

(i.e. the solution of the previous iteration).

(-1
RAUDY = (R{WYD)} + (W (W} - {u}<r1>)>

+1<w (4.6)

r—1)2
2\ owp W) >+ e

By omitting all the terms after the third term of the right hand side of the (4.6),
and by taking the residual to be zero, i.e. {R({u})} = 0, we can obtain the following

relation.

olR())

oW {auy=o0, 4.7)

{R({Y)} +

where,

{au} = {U} - U3¢V .

Here we define the tangent stiffness matrix[1] as follow:
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(r-1)
[T({w3e—D)] = %ﬁ}})}, (4.8)

By the substitution of (4.8) into the (4.7), and the inversion of the tangent stiffness

matrix, we can obtain the increment of the solution ( {AU} ), which can be written as,

(a0} = ~[r({wye-)] " ({R(tLY)}), (4.9)

where the residual can be computed from the previous iterative solution as follow:

{R(wYe)} = {[k (W} ) {ue 2} - (73} (4.10)

If we can calculate the tangent matrix from the equation (4.8), the solutions can be

updated as,

W = W3 + {av} . (4.10)

For the check of the convergence criterion, it can be computed by using the

increment of the solutions vector, i.e., {AU}, as follow:

N
Zl:l(AUI)Z2 < €. (412)
L (u?)
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4.2.2 Calculation of Tangent Stiffness Matrices

In the Newton-Raphson iterative method, it is required to compute tangent
coefficient matrices to get the incremental solution described in the (4.9). The original

form of the equation (4.9) can be rewritten as the matrix form of the equation as follow:

[r({v-2}Hav} = {r({w}2))}

IR ) B s (CR))
[ (el - ey

{{“’f ”}} _ {{Rl“"fr—””}} @.13)
oy requeopy)

The component form of this tangent coefficient stiffness matrix and the residual

vector can be given as (see Reddy [1]),

af aR?

ij W ) (4.14)
j

and

M N
RE= ) N KU FE 4.15)

y=1 k=1

By substituting the equation (4.15) into the equation (4.14), the following equation
can be obtained (see Reddy[1]).

P 3 N
B

J \y=1 k=1
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Sh el 4.16
(s »

Note that the a denotes the equation number which can be matched to the sub
matrix of the a™ row in the (4.13), the B denotes B column in the (4.13), M denotes the
total numbers of unknown variables and N is the number of degree of freedom related to

the variable. Repeated indices mean summation.

4.2.3 Tangent Stiffness Matrices

The symmetry of the tangent stiffness matrix in Newton iterative method is very
important because most of the computational efforts to find the converged solution after
obtaining the linear solution(i.e. solutions obtained with zero initial guess solution[1])
are related with the inversion of tangent matrix. By the equation (4.9) and (4.10), the
increment of solution can be obtained by inverting the tangent matrix. The inverse of the
coefficient matrix is only needed to get the linear solution. Thus the invert of the
coefficient matrix does not required after very first step of the iteration. It can be shown
that the first linear solution also can be obtained by using the symmetry solver with the
choice of a zero initial guess solution. To discuss the symmetry of the tangent matrix, the
tangent matrices of the newly developed models were calculated by using the equation

given in (4.16). For example the [T3?] of the EBT Model I can be calculated with the

coefficient matrices Kig}y (y = 1,2, ... ,5) which can be given by

wo
K = f SR PN
v \2 dx "t dx

Xp lexxll)Nxx
K3 = f <_;>dx,
o) EA



K'=KP=0.
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If the degree of the freedom for each variable is N, we can calculate the T; jz by

using the equation (4.16) as

N
9 [* dip,°
= 3 L[ (g
Y +k_16wj[ e i dx dx

b (1dw dye
()

dx "' dx

Xp lp_Nxxlpllcvxx
————)dx|N 0+0
) La ( EA ) X k + 0+

b (1 dw dy;°
— 32 _ a . Nxx J .
= K+ fxa (2 dx Y; )dx

where the variables are given by

U, = w, w, Ny, V, and M; for y =1,2,...,M(=5), respectively.

(4.17)

Likewise, every specific term of the tangent stiffness matrices of newly developed

nonlinear beam and plate bending models can be calculated. From the equation (4.15),

we can notice that each of the tangent coefficient matrices is consist of the sum of

coefficient matrix Kl-‘;ﬁ and the additional terms. So we can express every tangent matrix

as the form of, Tgﬁ = Ki‘j.ﬁ + additional terms. The results of the calculations of the

tangent matrix of the each model can be given as follow:



- Model I of the beam bending

T32 K32 j <
T4—2 K4—2 f

1ldw,
2 dx

- Model II of the beam bending

[17] = [K*] + j (

[T%?] = [K*?] j [(N

1dw,
2 dx

- Model III of the beam bending

N
wi xx

Nxx
i

]

dy

>dx,
x

d

Wd-(!)

WO
J'

dx,
dx

dx.

R

Xp 1
(7] = ]+ [ (Gomuleu)ax
) = )+ [ (ompt) ax

a

- Model IV of the beam bending

(1= k7] + | ( .

1dwg N d’l’
dx

)=+ [

Na

2 dx

- Model I of the plate bending

dx

L

dyyo dip
dx

)

ax
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(4.18)

(4.19)

(4.20)

(4.21)



53 53 1 a_wS Nyy II);VO
[°] = [k ]+fﬂe {2(0}7)1'01 5, | X4
631 _ [1763 1 B_WS Ny o owg o
[T%%] [K]Jrfﬂe{z(ax) l 6y+<0y>¢L | dxdy,
s oy
[T7%] = [K*] + f {N;‘:wax — + N& Yl — }dxdy,
a, toox Loy
Y

83 83 a Vv 9 ;VO a Uy P
[T%°] = [K®] + 5 Ny, =t Ny, % dxdy .
- Model II of the plate bending

[T%] = [k*]
Yo ay’° Yoy’ gyo oy
_l_.[ {N;‘?x ll)l ¢J +N§§y( wl l'b] + wl l'b] )
0]

. Jx 0Ox dx dy dy 0Ox
Wo gypo
+ Ny, lé/;l 6)]/ }dxdy,
1
[T%] = [K*] f {—( ) }dxdy,
2 x
1 /owg
[T%%] = [K*%] f {E( %), 2 }dxdy,
1[/owd PO awd gy
[T%%] = [K®3] + - 0)1/)N +< O)wl.v"y L_|tdxdy.
rz 2 L ay/ 't Ox

- Model III of the plate bending

7] =[]
w w w
+ fn {Nf:x W s, (all’iw RAJ RN °>

. Jx 0Ox dx dy dy 0Ox
+ N;ylg—;%alg}]‘fo}dxdy.
[T63] = [K%%] + f {% (:‘f) }dxdy,
)= €7+ | T }dxdy.
R T N P
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(4.22)

(4.23)

(4.24)
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- Model 1V of the plate bending

[T%] = [*]

1 j apr P awga¢f°+A awg oY;”
2o, L ox "M ax ox 12 9y oy
awuo ] aalp awgalp}”o
+Ae 5y <6x oy Yoy ox )J Y

[7%] = (K]

1 f LI p owg oY} B awg 0P
- +
2J, Loy \"* ay oy 12 9x  ox

Y’ (gwe a0 gwa oYP°
+ Age— 0o J -0 dxdy,
dx \ ox 0y ady 0x

4, (2o 2+A awg\*| oy o9}
1\ ax 6\ ay ox Ox

.. (2o 2+A awg\*| oy, oy}
66 ax 22 ay

dy Oy
awa aws (9 aw""’ a0 oy
+ (A2 +A66) i ay0< L + l/J o > dxdy
out 1 /owt g al/JWO o)’
+L6{A11 E—}_E((”X)l—l—lq ay £ ddy
aug 1 [/oawd\’ ovg a¢W° ar/J,W"
A |=—=+= A
+Le{12 6x+ (ax> +22a dxdy
awg awd (a0 oP;° azpl.wf’ aw,‘”"
+Le (A + Age) ax dy ( ox dy + 3y ox dxdy .
(4.25)

Rest components of the tangent matrix which are not specified above is the same

as the components of the coefficient matrix, which can be written as

af _ -ap
Ty =K +1[0]. (4.26)

As mentioned, the symmetry of the tangent matrix can be obtained in every Model

except for the beam Model I and the plate Model 1. Because of shear terms (i.e., V, and
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V) included we cannot expect the symmetry of the tangent matrix in the beam Model I
and the plate Model 1. Then these two models should be solved by asymmetry solver[1],
which is based on the Gauss Eliminations[24] to invert a matrix. The numerical results

will be discussed in the chapter V.

4.3 Load Increment Vector

In the applications of the direct iterative method in nonlinear finite element
analysis of the structural problems, the load increment is very critical to get converged
nonlinear solution under a large applied distributed load (q,). Without proper increment
load, the solution may not converge with the direct iterative method. But the Newton
iterative method can be applied at the more general range of applied distributed load (q,)
without load increment to get the converged solutions, while more iterative time is
substantial. The details of the load increment will be discussed in chapter V with the

numerical results of the examples.
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CHAPTER V

NUMERICAL RESULTS

In this chapter we will discuss the numerical results of the nonlinear finite element
models of the beam and plates bending problems. Comparisons of various models are

presented with linear analysis and non linear analysis.

5.1. Numerical Analysis of Nonlinear Beam Bending

5.1.1 Description of Problem[1]
A beam made of steel (E = 30 X 10° psi) whose geometry is given in the Fig.

5.1, was chosen for the study of the 1D nonlinear analysis. Three different boundary

conditions, i.e. HH, PP and CC, were considered to see the performance of the beam.

L=100in a=1lin

Fig. 5.1 Description of the beam geometry.

Three types of boundary conditions under the distributed load g, are considered
with 4 nonlinear beam bending models developed in the chapter II. The descriptions of
three boundary conditions are given in the Fig. 5.2. Under evenly distributed load g, and
the given boundary conditions, we can use the symmetry part of the beam as a
computational domain of the finite element analysis. To use the symmetry part of the

beam as the computational domain, the mathematical boundary conditions at the middle
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point (i.e., x=L/2) of the beam should be specified. By the geometry of the beam bending
under the given boundary conditions and evenly distributed load, the mathematical
boundary conditions of the middle point can be specified in addition to the boundary
conditions of the one edge of the beam as shown in the Fig. 5.2. It can be seen that the
current EBT mixed nonlinear Model I and II do not includes the slope, i.e., —dw,/dx, as
a primary variable. It is important to specify either primary or secondary variable as a
boundary condition. In the same sense we should specify only the moment, M, (0) = 0,
as a primary variable at the edge of the beam because the slope, —dw,/dx, is not known
there. Thus it is clear that if any specified boundary condition exists, one should specify
either the primary or the secondary variable at the typical nodal point. This can be
clarified by using the pairs of the primary and secondary variables that we classified in
the chapter III. With the beam Model IV, the shear rotation of the beam cross section ¢,

was included, so it can be specified as shown in the Fig. 5.2.

I L/2=501m 1
we(0) =0 | ; Jdd4a> u (L/2) =0
M, (0)=0 1 J S e Do (L/2) = O(EBT only)
Nyx(0) = 0 o ’ j' ¢, (L/2) = O(TBT only)
A hinged-hinged(H-H) beam
:' """" L2=30im
wo(0) =0 : : JJ44=- > U (L/2) =0
ue(0) =0 E [ —— et — %(L/Z) = O(EBT only)
M(0) =0 S ' A ¢, (L/2) = O(TBT only)
A pined-pined(P-P) beam
wo@ =0 | - L2=5%0m )

————— > uy (L/2) =0

I :
u@ =0 g IIIIITTIITITETITITIT433T] o
¢y (0) = O(TBT only) :I == l @ (L/2) = O(EBT only)
PR ¢. (L/2) = O(TBT only)

dwg _
o (0) =0 (EBT only) A clamped- clamped(C-C) beam

Fig. 5.2. Symmetry boundary conditions of beams.
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First, the results of the mixed models and the displacement based models[1] are

compared to see the validness of the solutions. The center deflections of the mixed

Model I and IV, using eight linear elements (8xL) mesh are presented in the Table 5.1,

along with the results of the displacement based Models of the EBT and the TBT using

eight linear-Hermite(8xLH) and eight linear elements(8xL) respectively. Every

converged solution was obtained by using the Newton-Raphson iterative method.

The graph of the mixed models and the displacement based models, which are

given in the Fig. 5.3, shows almost the same results for the two different boundary

conditions. With the same eight linear elements mesh, the difference of the converged

solutions is not considerable. And the difference of the solutions between the TBT and

the EBT beams is also negligible.

Table 5.1
Comparison of mixed models and displacement based models.

The The center deflection w (in)
load Mixed nonlinear Models Displacement based nonlinear Models[1]

qo The Model (1) - 8xL The Model (1V) - 8xL EBT - 8xLH TBT - 8xL

(psi/in) cc PP cc PP cc PP cc PP

0.0 0.000000 0.000000 0.000000 0.000000 0.0000 0.0000 0.0000 0.0000
1.0 0.103380(3) | 0.368892(5) | 0.103492(3) | 0.368715(5) | 0.1034(3) | 0.3685(5) | 0.1019(3) | 0.3677(5)
2.0 0.202427(3) | 0.546221(4) | 0.202587(3) | 0.545838(4) | 0.2023(3) | 0.5457(4) | 0.1997(3) | 0.5451(4)
3.0 0.294349(3) | 0.665046(4) | 0.294469(3) | 0.664527(4) | 0.2939(3) | 0.6645(4) | 0.2906(3) | 0.6639(4)
40 | 0.378187(3) | 0.756797(4) | 0.378194(3) | 0.756180(4) | 0.3774(3) | 0.7564(4) | 0.3737(3) | 0.7557(4)
5.0 0.454206(3) | 0.832666(4) | 0.454054(3) | 0.831972(4) | 0.4530(3) | 0.8324(4) | 0.4492(3) | 0.8316(4)
6.0 | 0.523212(3) | 0.897967(4) | 0.522877(3) | 0.897212(4) | 0.5216(3) | 0.8979(4) | 0.5179(3) | 0.8969(4)
7.0 0.586135(3) | 0.955668(4) | 0.585607(3) | 0.954862(4) | 0.5841(3) | 0.9558(4) | 0.5805(3) | 0.9546(4)
8.0 0.643848(3) | 1.007606(4) | 0.643129(3) | 1.006757(4) | 0.6414(3) | 1.0080(4) | 0.6380(3) | 1.0066(4)
9.0 | 0.697107(3) | 1.055004(4) | 0.696202(3) | 1.054117(4) | 0.6943(3) | 1.0557(4) | 0.6910(3) | 1.0540(4)
10.0 | 0.746547(3) | 1.098719(4) | 0.745463(3) | 1.097800(4) | 0.7433(3) | 1.0997(4) | 0.7403(3) | 1.0977(4)
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(a) Comparison of the Model I with EBT displacement based Model.
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(b) Comparison of the Model IV with the TBT displacement Model.

Fig. 5.3. A comparison of the non-linear solutions of beams.
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But under the hinged-hinged boundary condition, current mixed models showed
much better results compared with displacement based models. The displacement Model
showed the membrane locking[14]. The membrane locking occurs because of the
inconsistent presence the polynomial degree in the approximations. To examine it, we
consider a hinged-hinged boundary condition with the Model I, II and IV. For the
hinged-hinged boundary condition, total applied load should contribute for the bending
of the beam element, because there is no horizontal constrain to cause membrane strain,
i.e., &x,. In the finite element models, the strain &, can be expressed as follow: (see

Reddy [1])

_du (dWo)z_ (5. 1)

B =g T Vax

To satisfy the physics under the given boundary conditions, strain &,, should be
zero. But because of the use of polynomial approximations, there can be inconsistency[1]
of the degree of terms in the strain. Especially, in the displacement based model, u, was
approximated with linear interpolation function, and w, was approximated by using
cubic interpolations functions. For this typical pair of approximations, the degree of the

each term in the strain &,, can be given by

IR

gxx

duo dWO 2
=220 = =0 5.2
0 =" [= constant] + < 5 ) [4th order]. (5.2)
Thus it is not easy for du,/dx to make whole strain term to be zero, because it is

presented as constant. This phenomenon is very well known drawback of the nonlinear

EBT and TBT finite element model.
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And for the TBT models, another locking can be observed from the shear strain

relations[ 1] which can be given as,

Vxz E¢x+ dx

To fix these defect,

dwy,

[= constant ] .

the reduced integrations[1, 7],

(5.3)

use of consistent

approximations and use of higher order interpolations can be used. The effects of the

locking with full integration in different models are given in the Table 5.2.

Table 5.2

Membrane locking in mixed models and misplacement models.

The center deflection (in) -HH

The load
(do) TBT(Model IV) TBT(DSPL) EBT(I)(Model I) EBT(DSPL)
4xL 4xL 4xL 4xLH
0.0 0.0000 0.0000 0.0000 0.0000
1.0 0.5181 0.1223 0.5208 0.5108
2.0 1.0361 0.2446 1.0417 1.0213
3.0 1.5542 0.3669 1.5625 1.4986
4.0 2.0723 0.4892 2.0833 1.9453
5.0 2.5904 0.6115 2.6042 2.3607
6.0 3.1084 0.7338 3.1250 2.7467
7.0 3.6265 0.8561 3.6458 3.1074
8.0 4.1446 0.9784 4.1667 3.4422
9.0 4.6626 1.1007 4.6875 3.7564
10.0 5.1807 1.2230 5.2083 4.0523

The results presented in the Table 5.2 are showing that the membrane locking can

be eliminated by using the mixed nonlinear model in both of the TBT and the EBT

beams. Usually the locking can be mitigated by using a more refined mesh, but the

mixed Model I and IV didn’t showed any locking even with 2 linear elements mesh as

shown in the Table 5.2.
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But, among current mixed models, the membrane locking appeared in different
levels. For example, the comparison of the Model I and the Model II shows that the
Model I is showing better performance compared with the Model II. But the Model II is
still showing better result compared with the displacement based model. The result of
the hinged-hinged(HH) boundary condition of the Model I and II with 2 linear elements
mesh is given in the Table 5.3.

The graph (a) given in the Fig. 5.4, shows that the locking can be eliminated with
the mixed Model I and IV. While the graph (b) shows that the Model II still has
membrane locking. Even though the Model II has the membrane locking, the effect of it

is not significant compared to the displacement based model.

Table 5. 3
Effect of the membrane locking in the mode I and I1.
The center deflection (in)-HH
The load
(o) EBT(I) EBT(I) EBT(I) EBT(II)
2xL 2xL 4xL 8xL
0.0 0.0000 0.0000 0.0000 0.0000
1.0 0.5208 0.4948 0.5143 0.5192
2.0 1.0417 0.9896 1.0286 1.0384
3.0 1.5625 1.4844 1.5430 1.5576
4.0 2.0833 1.9792 2.0573 2.0768
5.0 2.6042 2.4740 25716 2.5960
6.0 3.1250 2.9688 3.0859 3.1152
7.0 3.6458 3.4635 3.6003 3.6344
8.0 4.1667 3.9583 4.1146 4.1536
9.0 4.6875 4.4531 4.6289 4.6729
10.0 5.2083 4.9479 5.1432 5.1921
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Fig. 5.4 A comparison of the membrane locking in various models.
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Next the effect of the length-to-thickness ratio on the deflections is presented in
the Tables 5.4 and 5.5. The data in the Table 5.4 is showing that as the beam becomes

thicker, it acts almost linearly, while thin beam shows nonlinearity more strongly.

Table 5.4

Effect of the length-to-thickness ratio on the deflections in TBT beam.

Th(fli‘;ad TBT(L/H=100) TBT(L/H=50) TBT(L/H=25)
0.0 0.000000 0.000000 0.000000
1.0 0.103530 0.064961 0.008169
2.0 0.202854 0.128734 0.016338
3.0 0.295229 0.190329 0.024505
4.0 0.379677 0.249076 0.032671
5.0 0.456414 0.304625 0.040834
6.0 0.526203 0.356888 0.048994
7.0 0.589944 0.405950 0.057150
8.0 0.648490 0.451996 0.065302
9.0 0.702587 0.495260 0.073449
10.0 0.752860 0.535983 0.081591

It can be shown that the differences of the solutions between the TBT and the EBT

are negligible when the beam is thin, but it is not when the beam is thick.

Table 5.5
gomparison of the effect of the length-to-thickness ratio in the EBT and the TBT
eams.

The load L/H=10 L/H=100

(do) EBT(I) EBT(II) TBT EBT(I) EBT(I) TBT

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.0 0.0313 0.0313 0.0350 0.0310 0.0310 0.0311
2.0 0.0625 0.0625 0.0700 0.0608 0.0608 0.0609
3.0 0.0937 0.0938 0.1050 0.0886 0.0886 0.0886
4.0 0.1250 0.1250 0.1400 0.1141 0.1141 0.1139
5.0 0.1562 0.1562 0.1750 0.1373 0.1373 0.1369
6.0 0.1875 0.1875 0.2100 0.1584 0.1584 0.1579
7.0 0.2187 0.2187 0.2450 0.1777 0.1777 0.1770
8.0 0.2500 0.2500 0.2800 0.1954 0.1955 0.1945
9.0 0.2812 0.2812 0.3150 0.2118 0.2118 0.2108
10.0 0.3125 0.3125 0.3500 0.2271 0.2271 0.2259
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Fig. 5.5 Comparison of effect of the length-to-thickness ratio on the beam.
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The model IIT showed poor performance compared with other newly developed
models, but with cubic element it showed good accuracy and convergence. Some results

of the model III presented in the Table 5. 6.

Table 5.6

Comparison of Model 111 with other mixed models.
The The center deflection w, (in)
load The Model (I1I) - 2xC The Model (III) - 4xC The Model (I) - 2xC | The Model (II) - 2xC

(psqi7in) cc PP cc PP cC PP cc PP
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 | 0.0000
1.0 0.1034 0.3685 0.1034 0.3685 0.1034 0.3685 | 0.1034 | 0.3685
2.0 0.2023 0.5454 0.2023 0.5454 0.2023 0.5454 | 0.2023 | 0.5454
3.0 0.2939 0.6639 0.2939 0.6639 0.2939 0.6639 | 0.2939 | 0.6639
4.0 0.3774 0.7554 0.3774 0.7555 0.3774 0.7555 | 0.3774 | 0.7555
5.0 0.4529 0.8311 0.4530 0.8312 0.4530 0.8312 | 04530 | 0.8312
6.0 0.5213 0.8963 0.5215 0.8963 0.5215 0.8963 | 05215 | 0.8963
7.0 0.5836 0.9539 0.5839 0.9539 0.5839 0.9539 | 05839 | 0.9539
8.0 0.6407 1.0057 0.6411 1.0057 0.6412 1.0057 | 0.6412 | 1.0057
9.0 0.6933 1.0530 0.6939 1.0531 0.6939 1.0530 | 0.6939 | 1.0530
10.0 0.7421 1.0966 0.7429 1.0967 0.7429 1.0967 | 07429 | 1.0967

The poor performance of Model III can be explained by the (2.12).

6, - _ . (5.5)

As discussed with the membrane locking and the shear locking, this typical
relation created other kind of locking, because of the inconsistent approximation for the
0, and wy. Since we included this relation only in the Model III, only Model III showed
new kind of locking. But this locking was not fixed with reduced integration when lower
order interpolation functions (i.e., linear and quadratic) are used. Only higher order

interpolation function with reduced integration showed good results.
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5.2. Numerical analysis of Nonlinear Plate Bending

5.2.1 Description of Problem][1]

Next, we consider a non-linear plate bending problems using the newly developed
mixed models in the chapter III. A square plate with the following material properties

was considered.

a=b=10in, h=1in, E =78 x 10°psi,
(5.4)

v = 0.3(or 0.25 for linear analysis),

The origin of the coordinate was chosen to be located at the center of the plated.

The geometry and the coordinate of the plate are described in the Fig. 5.6.

a=10imn h=1m
Symmetry lines
0,0 {(5.0
b=10in| . ©9 -~ 0.0, >
i k z
|
|
|
Computational I
Domain( Q) |
|
|
|
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 _|_!
(0,3) (3,3)
L
¥ y

Fig. 5.6. A description of the plate bending problem.

As it was discussed in the beam bending problem, due to the given boundary

conditions and the geometry of the plate and the applied load, the boundary conditions of
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the rectangular plate with biaxial symmetry were considered. Here three symmetry
boundary conditions were considered with common mathematical boundary condition
along the symmetry lines of the quadrant of the plate. The specific boundary conditions
are given in the Fig. 5.7. Note that for the SS1, at the singular points, i.e. point (5, 5),

both boundary conditions of y =5 and x =5, were specified.

Symmetry lines
0=vo=Py=Mwy=Ny

B (5,0)
1 ; x
<SS1>
0=vo=wo= Dy
| f:f_’]\'lrxx = ;\'Tvx
0=10= P« . ‘ <85853>
=My=Ny - Computational Domain ( Q) 0=10 =vo =wo
= j‘i{xx = ;'?‘rlrn' = ﬂli{_\rx
<CC>
0 =10=vo=mwo
=y =Dy
(0,35) <s81> (5.5)
0 = tto = wo= Px= My = Ny
v <S883>
y 0=10 =vo =wo=Mx=My=Mx
<CC>
0=1w=vo=wo= Dy =Dy

Fig. 5.7. Symmetry boundary conditions[1, 25] of a quadrant of the square plate.

5.2.2 Non-dimensional Analysis of Linear Solutions

To check the accuracy of the newly developed plate bending models, solutions of

the new models were compared with those of the existing models [3, 26, 27] and analytic
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solutions. First, the linear solutions of the mixed CPT models will be discussed by
comparing the data obtained with displacement based model[1, 7].

It can be clearly shown, that the linear solution of the Model II is the same as that
of the mixed model developed by Reddy[7], because both models includes the same
variables(i.e. vertical displacement, and bending moments) which are related to the
bending of the plate, while the Model I includes shear resultants also in addition to those.
The comparison of the results of the various models under the simple support I (SS1)
and clamped (CC) boundary conditions are given in the Tables 5.7 and 5.8.

For the simple support (SS1) boundary condition, the Model II showed best
accuracy for the center vertical deflection, while the Model I provided better accuracy

for the center bending moment as shown in the Table 5.7.

Table 5.7
Comparison of the linear solution of various CPT Models, isotropic (v =10.3)
square plate, simple supported (SS1).

Current Models Mixed Compatible
Mixed Hybrid cubic
Mesh size (Reddy
MODEL I Model 1T (Herrmann[26]) ( Allman[27]) displacement
7 Model[1]
Liner Center deflection (* equivalent quadratic),
(4-node) w=w X Dy; X 102/(qe X a*) ( Exact solution, 0.4062 [7])
1x1 0.4613(* - ) 0.4613( - ) 0.4613 0.9018 0.347 0.220
2x2 0.4383(0.4154) 0.4237(0.4154) 0.4237 0.5127 0.392 0.371
4x4 0.4135(0.4067) 0.4106(0.4067) 0.4106 0.4316 0.403 0.392
6x6 0.4094(0.4063) | 0.4082(0.4063) |  0.4082 0.4172
8x8 0.4079(0.4063) | 0.4073(0.4063)
Liner Center bending moment(equivalent quadratic),
(4-node) M =M x 10/(qy x a?) ( Exact solution, 0.479 [7])
1x1 0.7196( - ) 0.7196( - ) 0.7196 0.328 0.604
2x2 0.5029(0.4906) 0.5246(0.4096) 0.5246 0.446 0.515
4x4 0.4850(0.4797) 0.4892(0.4796) 0.4892 0.471 0.487
6x6 0.4816(0.4790) 0.4834(0.4790) 0.4834 0.476
8x8 0.4804(0.4788) 0.4814(0.4789)
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Comparison of the linear solution of various CPT Models, isotropic (v = 0. 3)
square plate, clamped (CC).

Current Models Mixed Compatible
Mixed Hybrid cubic
Mesh size (Reddy )
Model I Model II 7] (Herrmann[26]) | ( Allman[27]) | displacement
Model[1]
Liner Center deflection(*equivalent quadratic),
(4-node) W =w X Dy; X 102/(q X a*) ( Exact 0.1265 [7])
1x1 0.1576(* - ) | 1.6644( - ) 1.6644 0.7440 0.087 0.026
2x2 0.1502(0.1512) | 0.1528(0.1512) 0.1528 0.2854 0.132 0.120
4x4 0.1310(0.1279) 0.1339(0.1278) 0.1339 0.1696 0.129 0.121
6x6 0.1284(0.1268) | 0.1299(0.1268) 0.1299 0.1463 -
8x8 0.1265(0.1265) | 0.1270(0.1266) -
Liner Center bending moment(equivalent quadratic),
(4-node) M =M x 10/(qy x a?) ( Exact 0.230 [7])
1x1 0.4918( - ) 0.5193( - ) 0.5193 0.208 0.344 -
2x2 0.2627(0.2552) 0.3165(0.2552) 0.3165 0.242 0.314 -
4x4 0.2354(0.2312) 0.2478(0.2310) 0.2478 0.235 0.250 -
6x6 0.2318(0.2295) 0.2374(0.2295) 0.2374 0.232 -
8x8 0.2286(0.2290) | 0.2310(0.2291) -

For the clamped (CC) boundary condition, the Model I showed best accuracy both
for the center vertical deflection and the center bending moment as shown in the Table
5.8. The difference of the solution between Model I and Model II was caused by the
presence or absence of the shear resultant in the finite element models. Thus, by
including the shear resultants (i.e., V; and V7)) as nodal values in the CPT mixed finite
element model, more accurate center bending moment and center vertical deflection
were obtained.

Next, current CPT mixed models were compared with the displacement based
model. For the CPT displacement based model, non-conforming [4] and the
conforming[4] elements should be used because of the continuity requirement of the
weak formulation[1]. Current mixed models provided better accuracy when the

compatible nine-node quadratic element was used. But the four-node liner element also
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provided acceptable accuracy compared with the non-conforming displacement based
model. And, for the SS1 boundary condition with the Poisson’s ratio, v = 0.25, the
Model II also showed better accuracy as it did with v = 0.3. In both cases, stresses
obtained from the current mixed model showed better accuracy, because the stresses can
be directly computed by using bending moment or shear resultant obtained at the node,
not including any derivative. Stresses in the Table 5.9, were obtained by the following
equations. See equation (1.25) of the chapter I for specific terms of the matrix Q (i.e.

Qij, i,j =1,2,6), while Qy is the vertical shear resultant of the FSDT. And D/} is the

component of the invert of matrix [D] given in the (1.24) and (1.29).

Oxx = Qu16xx + Q128yy = Q1180 + Q1289 + [Qn(ZEa%x) + Q12(25311y)]
o o 9%w, %w,
= Quiix + Qragyy +2|Qu | — 55 |+ Quz| — 3y? (5.6)
_ Nxx * * * *
==+ 2[00 (D1 My + DizMyy ) + Qu2(D31 My + D3 My )|

Oxy = Q66ny = Q66y)?y + Q66(ZV9?y)

a%w,
= QesVay T 2 [Qse (‘2 WJ)] (5.7)

N.
= ==+ 2Qs6[Dis My

Q .
Oxs = QssVxz = Qss¥y = (h—;) (Only for the FSDT, with K, =5/6.) . (5.8)
N

Not only vertical deflection but also stresses showed better accuracy under simple
supported I (SS1) boundary condition, when they were compared with those of the
displacement based model. In most of the cases results obtained with 9-node quadratic
element presented better accuracy. Results of isotropic plate, under SS1 boundary

condition are given in the Table 5.9.
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Comparison of the CPT linear solution with that of the displacement model,
isotropic (v = 0.25) square plate, simple supported (SS1). w = wE,, x 10%/(goa®),
o= a.hZ/(qan)’ axx(ot 0' h/Z), O-xy(a/zt b/2, h/Z)

Linear (4-node)

Quadratic (9-node)

Mesh type Exact[1]
2x2 4x4 8x8 1x1 2x2 4x4
w 4.9407 4.6534 4.5903 4.6753 45752 45704 4.5701
Model 1 Oxx 0.2912 0.2800 0.2772 0.2835 0.2859 0.2762 0.2762
Oxy 0.2132 0.2114 0.2097 0.2498 0.2288 0.2162 0.2085
w 4.7801 4.6221 4.5831 4.6753 4.5749 45704 4.5701
Model II Oxx 0.3035 0.2823 0.2864 0.2835 0.2767 0.2762 0.2762
Oy 0.1987 0.2054 0.2078 0.2498 0.2283 0.2160 0.2085
Linear(4-node) and Linear (4-node) and
Mesh type Non-conforming (12 - node) Conforming (16 - node) Exact[1]
2x2 4x4 8x8 2x2 4x4 8x8
w 4.8571 4.6425 4.5883 4.7619 4.5952 45739 4.5701
DSPL. [1] Oxx 0.2405 0.2673 0.2740 0.2637 0.2637 0.2731 0.2762
Oy 0.1713 0.1964 0.2050 0.1688 0.1935 0.2040 0.2085
Table 5.10
Comparison of the CPT linear solution with that of the displacement Model,
isotropic (v = 0.25) square plate, clamped(CC). w = wE,, x 10%/(qoa*), & =
oh?/(qoa®), 0,:(0,0,h/2), o, (a/2,b/2,h/2)
Linear (4-node) Quadratic (9-node)
Mesh type Exact
2%2 4x4 8x8 1x1 2x2 4x4
w 1.6933 1.4746 1.4220 1.7043 1.4386 1.4234 1.4231
Model 1 Oxx 0.1528 0.1360 0.1318 0.1486 0.1335 0.1321 -
Oy 0.0433 0.0144 0.0062 0.0318 0.0067 0.0071 -
w 1.7239 1.5080 1.4278 1.7043 1.4381 1.4248 1.4231
Model II Oxx 0.1839 0.1431 0.1331 0.1486 0.1333 0.1321 -
Oxy 0.0378 0.0127 0.0068 0.0318 0.0065 0.0071 -
Linear(4-node) and Linear (4-node) and
Mesh type Non-conforming (12 - node) Conforming (16 - node) Exact
2x2 4x4 8x8 2x2 4x4 8x8
w 15731 1.4653 1.4342 1.4778 1.4370 1.4249 1.4231
DSPL. [1] Ox 0.0987 0.1238 0.1301 0.0861 0.1197 0.1288 -
Oyy 0.0497 0.0222 0.0067 0.0489 0.0224 0.0068 -
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Improvement was noticed with clamped boundary condition. The comparison of
the results with isotropic plate (v = 0.25), under CC boundary condition are given in the
Table 5.10.

Next, the numerical results of the Model III and IV are compared with the results
of the Reddy’s mixed model[1]. The mixed model developed by Reddy included
bending moments as independent nodal value in the finite element model, while current
Model III and IV included vertical shear resultants (i.e., @, and @,), as independent
nodal value. Note that the difference between Model 111 and VI comes from the presence
or absence of membrane forces (i.€., Nyy, Ny, and Ny,,) in the finite element models.

Thus, the solution of the linear bending of each model is essentially the same as shown

in the Table 5.11.

Table 5.11

Comparison of the current mixed FSDT linear solution with that of the other mixed
model (Reddy[7]), with isotropic (v = 0.25, K, = 5/6 ) square plate, simple supported
(SS1).

Current Models Mixed Current Models Mixed
Mesh size
Model(IIT) ‘ Model(IV) (Reddy[7]) Model(IIT) ‘ Model(IV) (Reddy[7])
Center deflection, Center bending moment
Liner _
W =wD;; X 10%/(goa®), M =M x 10/(gqoa?),
(4-node)
(Exact 0.427[8]) (Exact 0.479[8])
1x1 0.4174(* - ) | 0.4174( - ) 0.4264 0.6094( - ) | 0.6094( - ) 0.6094
2%2 0.4293(0.4345) | 0.4293(0.4345) 0.4321 0.5060(0.4779) 0.5060(0.4779) 0.5070
4x4 0.4280(0.4277) | 0.4280(0.4277) 0.4285 0.4849(0.4779) | 0.4849(0.4779) 0.4850
8x8 0.4275(0.4273) | 0.4275(0.4273) 0.4803(0.4785) | 0.4803(0.4785)

Also the comparison of the center deflection and stresses of current models with
those of the displacement based model is presented in the Table 5.12. In most of cases,
current models showed better accuracy for both of the center vertical displacement and

stresses.
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Table 5.12

Comparison of the linear solution of the FSDT with isotropic (v = 0.25,K; = 5/6)
square plate, simple supported (SS1). w = wE,, x 10%/(qea*), @ = oh?/(q.a?),
0,.(0,0,h/2), o,,(a/2,b/2,h/2), o,,(a/2,0,h/2)

Model Linear (4-node) Quadratic (9-node)
Mesh type Exact[1]
type 2x2 4x4 8x8 1x1 2x2 4x4
w 4.8139 4.7987 4.7931 4.8727 4.7950 4.7913 47914
Oyxx 0.2920 0.2797 0.2771 0.2756 0.2755 0.2762 0.2762
Model (IIT)
Oxy 0.2093 0.2098 0.2097 0.2399 0.2216 0.2135 0.2085
Oxz 0.3962 0.4025 0.4047 0.3576 0.3907 0.4002 0.3927
w 4.8139 4.7987 4.7931 4.8727 4.7950 4.7913 4.7914
Oxx 0.2920 0.2797 0.2771 0.2756 0.2755 0.2762 0.2762
Model (IV) o
Oxy 0.2093 0.2098 0.2097 0.2399 0.2216 0.2135 0.2085
Oxz 0.3962 0.4025 0.4047 0.3576 0.3907 0.4002 0.3927
w 4.8887 4.8137 4.7866 49711 4.8005 4.7917 47914
Oxx 0.2441 0.2684 0.2737 0.2645 0.2716 0.2750 0.2762
DSPL.[1] o
Oxy 0.1504 0.1869 0.2737 0.1652 0.1943 0.2044 0.2085
Oxz 0.2750 0.3356 0.2008 0.2886 0.3425 0.3735 0.3927

5.2.3 Non-linear Analysis

Total 12 load step was used to see the significance of the non-linearity with the

following incremental load parameter vector [1], P = goa* / (E,, h%) .

P ={6.25 125, 25.0, 250, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0, 25.0} (5.9)

A tolerance € = 0.01 was used for convergence in the Newton — Raphson
iteration scheme. Model I and IT was compared with the CPT displacement base model
to see its non-linear behavior. In non-linear analysis of the CPT, center deflection,
normal stress and membrane stress were compared with the results of the non-

conforming and conforming displacement based models.
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First, the center defection, wy, of the newly developed models are presented in the
Table 5.13. In every load step, converged solution was obtained within 4 iterations. To
investigate the effect of reduced integration, results of full integration and the reduced
integration were presented in the Table 5.13. In both of the model, the locking was not

severe and the effect of reduced integration was not significant.

Table 5.13
Effect of reduced integration in Model | and I1.

Center deflection, w, CPT-(SS1)
_ geat MODEL I MODEL II

- ExhY 4x4-Linear 2x2-Quadratic 4x4-Linear 2x2-Quadratic

FI RI FI RI FI RI FI RI
6.25 0.2736 0.2737 0.2691 0.2691 0.2718 0.2719 0.2691 0.2691
12.50 0.5090 0.5096 0.5005 0.5007 0.5059 0.5064 0.5005 0.5007
25.00 0.8608 0.8629 0.8468 0.8475 0.8565 0.8579 0.8470 0.8476
50.00 1.3119 1.3163 1.2923 1.2943 1.3061 1.3093 1.2932 1.2947
75.00 1.6185 1.6244 1.5960 1.5997 1.6114 1.6157 1.5977 1.6004
100.00 1.8572 1.8641 1.8328 1.8383 1.8488 1.8539 1.8357 1.8394
125.00 2.0559 2.0637 2.0302 2.0377 2.0462 2.0521 2.0339 2.0391
150.00 2.2280 2.2365 2.2011 2.2107 2.2171 2.2235 2.2059 2.2125
175.00 2.3811 2.3900 2.3529 2.3649 2.3689 2.3757 2.3588 2.3669
200.00 2.5196 2.5289 2.4901 2.5045 2.5062 2.5133 2.4971 2.5068
225.00 2.6465 2.6562 2.6158 2.6327 2.6320 2.6394 2.6240 2.6352
250.00 2.7641 2.7741 2.7321 2.7515 2.7484 2.7561 2.7414 2.7541

Then, using 8 x 8 linear and 4 x 4 quadratic elements, non-linear normal stresses
and center deflection of the Model I were compared with those of the non-conforming
and the conforming displacement based models. The results of vertical deflection ans the

normal stress is presented in the Table 5.14
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Comparison of the center deflection and normal stress of Model I and Il with the

CPT displacement model.

qoa*

Center deflection, w, CPT-(SS3)

= o MODEL I MODEL II DSPL DSPL
8x8-L 4x4-Q 8x8-L 4x4-Q 8X8-CF 8x8-UCF
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
25.00 0.6836 0.6774 0.6966 06771 0.6690 0.6700
50.00 0.9581 0.9501 0.9743 0.9497 0.9450 0.9460
75.00 1.1388 1.1296 1.1572 1.1293 1.1270 1.1280
100.00 1.2775 1.2675 1.2977 1.2672 1.2670 1.2680
125.00 1.3919 1.3813 1.4137 1.3809 1.3830 1.3830
150.00 1.4902 1.4791 15134 1.4787 1.4830 1.4830
175.00 15770 1.5654 1.6015 1.5650 15710 15710
200.00 1.6552 1.6432 1.6809 1.6428 1.6510 1.6510
225.00 1.7265 1.7142 1.7533 1.7138 1.7240 1.7240
250.00 1.7923 1.779% 1.8201 1.7793 1.7910 1.7910
Normal stresses, a:0"7™%(0,0,0.5h) x a®/E;;, CPT-(SS3)
P= (E"z“z“;) MODEL I MODEL II DSPL DSPL
8x8-L 4x4-Q 8x8-L 4x4-Q 8X8-CF 8x8-UCF

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
25.00 5.5195 5.5008 5.3402 5.4980 5.4260 5.4230
50.00 8.2751 8.2782 8.0297 8.2741 8.2470 8.2270
75.00 10.2633 10.2937 9.9885 10.2901 10.3090 10.2710
100.00 11.8988 11.9589 11.6072 11.9541 12.0170 11.9610
125.00 13.2682 13.4106 13.0238 13.4098 13.5130 13.4400
150.00 14.6077 14.7273 14.3036 14.7196 14.8670 14.7770
175.00 15.8033 15.9322 15.4838 15.9311 16.1170 16.0090
200.00 16.8734 17.0628 16.5872 17.0613 17.2870 17.1620
225.00 17.8924 18.1308 17.6290 18.1271 18.3930 18.2510
250.00 18.9188 19.1385 18.6199 19.1411 19.4460 19.2870

The non linear load versus deflection and load versus stress graphs are given in

the Fig.5.8. Under the SS3 boundary condition, both of the vertical deflection and

stresses of the Model I and II showed very close value when they are compared with the

displacement based model. The normal stresses and the membrane stresses were

computed at the (0,0,0.5h) and (0,0,0) respectively. 9-nodel quadratic element showed

closer solutions to that of the displacement based FSDT model.



103
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(a) Load verses center deflection
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(b) Load verses center normal stress

Fig. 5.8. Plots of the membrane and normal stress of Model I, Il and CPT
displacement model under SS3 boundary condition.

To see the convergence of the various models, center deflections of previously

developed models with 2x2 quadratic and 4x4 linear meshes under SS1 and SS3



104

boundary conditions were compared. Every model showed good convergence with a
tolerance, € = 0.01, except for the Model IV. The Model IV showed acceptable
convergence with SS3 boundary condition, but with SS1 it took more iteration times to
converge than other models. The iterative times taken to get converged solutions of the

various models are presented in the table 5.15.

Table 5.15
Comparison of the convergence of Model I, Il , 111 and IV under the SS1 and
SS3 boundary conditions.

Center deflection, w (*iteration times to converge), SS1 various models
- (E"Z“z“;) Model (IIT) Model (IV) Model 1) | Model (IT)
4x4-L 2x2-Q 4x4-L 2x2-Q 2x2-Q 2x2-Q
0.00 0.0000(3) 0.0000(3) 0.0000(3) 0.0000(3) 0.0000(3) 0.0000(3)
6.25 0.2821(3) 0.2816(3) 0.2877(3) 0.2847(3) 0.2691(3) 0.2691(3)
12.50 0.5213(3) 0.5195(3) 0.5281(5) 0.5233(5) 0.5007(3) 0.5007(4)
25.00 0.8730(3) 0.8695(3) 0.8801(6) 0.8736(6) 0.8475(3) 0.8476(4)
50.00 1.3195(3) 1.3187(3) 1.3237(7) 1.3169(7) 1.2943(3) 1.2947(3)
75.00 1.6228(3) 1.6282(3) 1.6302(7) 1.6256(7) 1.5997(3) 1.6004(3)
100.00 1.8589(3) 1.8720(3) 1.8684(7) 1.8663(7) 1.8383(3) 1.8394(3)
125.00 2.0553(3) 2.0769(2) 2.0682(7) 2.0688(7) 2.0377(3) 2.0391(3)
150.00 2.2251(3) 2.2552(2) 2.2420(6) 2.2456(6) 2.2107(3) 2.2125(3)
175.00 2.3757(3) 2.4141(2) 2.3914(6) 2.3973(6) 2.3649(3) 2.3669(2)
200.00 2.5116(3) 2.5580(2) 2.5308(6) 2.5392(6) 2.5045(2) 2.5068(2)
225.00 2.6376(2) 2.6898(2) 2.6592(6) 2.6704(6) 2.6327(2) 2.6352(2)
250.00 2.7521(2) 2.8117(2) 2.7717(5) 2.7850(5) 2.7515(2) 2.7541(2)
Center deflection, w (*iteration times to converge), SS3 various models
p= (E"z"z";) Model (1) Model (IV) Model () | Model (IT)
4x4-L 2x2-Q 4x4-L 2x2-Q 2x2-Q 2x2-Q
0.00 0.0000 0.0000 0.0000 0.0000 0.000 0.000
6.25 0.2911(4) 0.2865(4) 0.2912(4) 0.2866(4) 0.2718(4) 0.2713(4)
1250 0.4779(3) 0.4709(3) 0.4784(3) 0.4716(3) 0.4561(3) 0.4552(3)
25.00 0.7076(3) 0.6978(3) 0.7080(3) 0.6982(3) 0.6872(3) 0.6860(3)
50.00 0.9763(3) 0.9626(3) 0.9760(4) 0.9622(4) 0.9578(3) 0.9563(4)
75.00 1.1542(3) 1.1375(3) 1.1535(4) 1.1367(4) 1.1360(3) 1.1345(4)
100.00 1.2914(3) 1.2724(3) 1.2908(4) 1.2715(4) 1.2730(3) 1.2714(4)
125.00 1.4050(2) 1.3841(2) 1.4046(4) 1.3832(4) 1.3861(3) 1.3845(4)
150.00 1.5030(2) 1.4803(2) 1.5015(3) 1.4783(3) 1.4834(2) 1.4818(3)
175.00 1.5897(2) 1.5655(2) 1.5885(3) 1.5636(3) 1.5693(2) 1.5678(3)
200.00 1.6679(2) 1.6422(2) 1.6669(3) 1.6405(3) 1.6467(2) 1.6452(3)
225.00 1.7393(2) 1.7124(2) 1.7385(3) 1.7107(3) 1.7173(2) 1.7159(3)
250.00 1.8054(2) 1.7773(2) 1.8047(3) 1.7757(3) 1.7825(2) 1.7811(3)
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In the nonlinear analysis of the FSDT, the non-linear center deflection, normal
stress and membrane stress of the Model III were compared with the results of
displacement based models. The results are presented in the Table 5.16. A 4x4 quadratic
mesh showed the closest result to the displacement FSDT model’s result as shown in the

Fig. 5.9.

Table 5.16
Comparison of the center deflection and normal stress of Model 111 with the
FSDT displacement model under SS1 and SS3 boundary conditions.

Center deflection, w, FSDT-Model (III)

= (qu‘;a;) SS1 SS3 DSPL(SS1) DSPL(SS3)
8x8-L 4x4-Q 8x8-L 4x4-Q 4x4-Q 4x4-Q
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6.25 0.2815 0.2813 0.2823 0.2804 0.2813 0.2790
12.50 0.5192 0.5187 0.4671 0.4645 0.5186 0.4630
25.00 0.8678 0.8677 0.6956 0.6922 0.8673 0.6911
50.00 1.3117 1.3159 0.9626 0.9582 1.3149 0.9575
75.00 1.6148 1.6254 1.1389 1.1339 1.6241 1.1333
100.00 1.8522 1.8702 1.2748 1.2693 1.8687 1.2688
125.00 2.0509 2.0769 1.3872 1.3812 2.0758 1.3809
150.00 2.2241 2.2583 1.4840 1.4777 2.2567 1.4774
175.00 2.3786 24213 1.5697 1.5631 2.4194 1.5628
200.00 2.5191 2.5702 1.6470 1.6401 2.5681 1.6398
225.00 2.6480 2.7080 1.7176 1.7104 2.7056 1.7102
250.00 2.7684 2.8366 1.7828 1.7754 2.8338 1.7752

. Normal stresses, 0,,(0,0,0.5h) X a?/E;;, FSDT-Model(III), 4x4Q
P= (E"z‘;“m) SS1 SS3 DSPL(SS1) | DSPL(SS3)
O.%Cembrane o.)lc\gcormal O.)IC\;ICembrane o.)lc\gcormal o.)lc\gcormal o.)lc\gcormal

0.00 0.0000 0.0000 0.0000 0.0000 0.000 0.000
6.25 0.1228 1.8382 0.2415 1.8836 1.780 1.856
12.50 0.4124 3.5098 0.6646 3.3424 3.398 3.300
25.00 1.1211 6.0584 1.4838 5.3620 5.885 5.137
50.00 2.4550 9.3685 2.8656 8.0544 9.165 8.001
75.00 3.6076 11.6627 4.0327 10.0497 11.465 9.983
100.00 4.6341 13.4941 5.0765 11.7036 13.308 11.634
125.00 5.5698 15.0596 6.0326 13.1587 14.889 13.085
150.00 6.4411 16.4546 6.9241 14.4891 16.290 14.398
175.00 7.2587 17.7226 7.7666 15.7033 17.567 15.610
200.00 8.0353 18.8989 8.5692 16.8457 18.748 16.743
225.00 8.7770 20.0025 9.3372 17.9294 19.854 17.812
250.00 9.4916 21.0468 10.0764 18.9536 20.898 18.829
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Fig. 5.9 Plots of the center deflection, normal and membrane stress of Model 111
with that of the FSDT displacement model under SS1 and SS3 boundary
conditions.

To see distributions of the variables other than displacements, images of the
distribution of each variable are presented in the Fig. 5.10 and 5.11. The data was post
processed inside of each element using 10 gauss points ranging from -0.975 to 0.975, in

both newly developed models (i.e., Model I and III) and FSDT displacement based
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model. Converged solutions of SS3 at the load parameter, P = 250.0, were used for the

post processing

Displacement based FSDT Model III (FSDT) -4 x4 Q ‘ Model I (CPT) -4 x4 Q

L)

el

Fig. 5.10 Post processed quadrant images of the variables in various models, SS3,
with converged solution at load parameter P = 250.
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Fig. 5.12. Plots of the non-linear bending moments of Model 11l and FSDT
displacement model along the x = 2.5.
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Even though all of them are showing similar patterns for each variable as shown
in the Fig. 5.10, one can easily notice that the images obtained from the current mixed
models offer better picture at the boundaries of the elements, while the images obtained
from the displacement based model shows discontinuous states. And more obviously, the
graphs of the Fig. 5.11 and 5.12 are showing that the distribution of stresses and bending
moments of Model III is better than the displacement FSDT, even though bending
moments of Model III have some oscillations at the element boundary. This is the merit
of the current mixed models which cannot be achieved without including force like

variables as independent nodal value.
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CHAPTER VI

CONCLUSION

In this study, advantages and disadvantages of newly developed nonlinear finite
element models of beams and plates bending were discussed with numerical simulations
under various boundary conditions.

As an advantage, the locking of the beam element was eliminated or attenuated
with newly developed beam models, depending on the inclusion of variables and also
choice of the interpolation functions. Especially with the model III, the effect of
including some variable was shown, and to fix new locking, use of high order
interpolation function (i.e., cubic interpolation function) was adopted.

For almost every case, newly developed plate bending models provided better
accuracy for linear solutions of the vertical deflection and force like variables. When it
was compared with the analytic solutions, both new models and traditional models
showed good accuracy for the displacement (i.e., vertical deflection wy), but new mixed
models presented much better accuracy for the stress fields. The 9-node quadratic
element performed better than 4-node linear element in most of cases, while linear
element still provided acceptable accuracy compared with existing traditional models.

In non linear analysis, most of the newly developed mixed models showed good
convergence of non-linear solutions, when it was compared with the displacement based
non-linear models. But inclusion of the some variable affected convergence of non-
linear solution in the FSDT models. The Model IV showed poor convergence compared
with other models, because of the absence of typical variable in the mixed formula.

The post processed data of newly developed plate bending models presented better
continuity at the element boundary, while displacement based FSDT model showed
noticeable discontinuity at the element boundary. Even if these defects of displacement

based model can be overcome by more refined mesh or other post processing techniques,
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the essentially the level of accuracy for force like variables cannot be the same as that of
current mixed models.

We can conclude that two main advantages of the mixed model are the reduction
of the continuity requirements for the vertical displacement, and the increase of the
accuracy for the resultants included in the finite element models. The disadvantages of
current models are the sacrificed computational cost caused by the increased numbers of

degrees of freedoms included in the finite element models.



[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

113

REFERENCES

J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis, Oxford
University Press, Oxford, 2004.

J. N. Reddy, An Introduction to Continuum Mechanics : With Applications,
Cambridge University Press, New York, 2008.

J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd ed., CRC,
Boca Raton, FL, 2007.

J. N. Reddy, An Introduction to the Finite Element Method, 3rd ed., McGraw-
Hill, New York, 2006.

J. N. Reddy, Mechanics of Laminated Composite Plates and Shells : Theory and
Analysis, 2nd ed., CRC Press, Boca Raton, FL, 2004.

N. S. Putcha, A Refined Mixed Shear Flexible Finite Element for the Nonlinear
Analysis of Laminated Plates, Comput. Struct. 22(1986), 529 — 538.

J. N. Reddy, Mixed Finite Element Models for Laminated Composite Plate, J.
Engrg. Indus. 109(1987), 39 — 45.

J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, J.
Wiley, New York, 2002.

C. M. Wang, J. N. Reddy, and K. H. Lee, Shear deformable beams and plates :
relationships with classical solutions, Elsevier, New York, 2000.

H. V. Smith, Numerical Methods of Integration, Studentlitteratur, Chartwell-
Bratt, England, 1993.

J. H. Davis, Differential Equations with Maple : An Interactive Appraoch,
Birkhduser, Boston , 2001.

L. R. Nyhoff, and S. Leestma, Introduction to Fortran 90 for Engineers and
Scientists, Prentice Hall, Upper Saddle River, NJ, 1997.

W. J. Palm, MATLAB for Engineering Applications, WCB/McGraw-Hill,
Boston , 1998.



[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

114

J. N. Reddy, On Locking-free Shear Deformable Beam Finite Elements, Comput.
Methods Appl. Mech. Engrg. 149(1997) 113-132.

S. J. Colley, Vector Calculus, Prentice Hall, Upper Saddle River, NJ, 1997.

W. M. Lai, D. Rubin, and E. Krempl, Introduction to Continuum Mechanics,
Oxford ; Pergamon Press, New York, 1993.

R. L. Panton, Incompressible Flow, J. Wiley, Hoboken, NJ, 2005.

S. Timoshenko, and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New
York , 1970.

W. D. Callister, Materials Science and Engineering : An Introduction, John
Wiley & Sons, New York, 2007.

S. J. Lee, and J. N. Reddy, Nonlinear Finite Element Anaysis of Laminated
Composite Shell with Actuating Layers, Finite Elements in Analysis and Design
43(2006) 1-21.

J. L. Batoz, G. Dhatt, Incremental Displacement Algorithms for Non-linear
Problems, Int. J. Numer. Methods Engrg. 14(1979) 1262-1267.

E. Riks, The Application of Newton's Method to Problem of Elastic Stability, J.
Appl. Mech. 39(1972) 1060-1066.

F. Cajori, Historical Note on the Newton-Raphson Method of Approximations,
American Mathematical Monthly 18(1911) 29-32.

S.J. Leon, Linear Algebra with Applications, Prentice Hall, Upper Saddle River,
NJ, 2002.

F. Moleiro, C. M. Mota Soares, C. A. Mota Soares, Mixed Least-squares Finite
Element Model for the Static Analysis of Laminated Composite Plates, Comput.
Struct 86 (2008) 826-838.

L. R. Herrmann, Mixed Finite Element Method for Bending of Plates, Int. J.
Numerical Method, 9 (1975) 3-5.

D. J. Allman, Triangular Finite Element for Plate Bending with Constant and
Linearly Varying Bending Moments, High Speed Computing of Elastic Struct. 1
(1971) 106-136.



115

VITA

Wooram Kim was born in Uijeongbu, Republic of Korea. He received his B.S. in
weapons engineering from the Korea Military Academy in 2004, and he was
commissioned as an Armor officer in the same year. He served in the ROK Army from
2004 to 2005 as a tank platoon leader of the 59" tank battalion. He entered the
Mechanical Engineering Department at Texas A&M University in 2006 as a graduate
student and received his M.S. in August 2008.

Permanent Address: Department of Mechanical Engineering, 3123, TAMU,
College Station, Texas, 77843-3123, USA.

Chair of Committee: Dr. J.N. Reddy

E-mail Address: c14445@kma.ac.kr



	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I
	1.1 Review of Euler-Bernoulli Beam Theory
	1.1.1 Kinematics of EBT
	1.1.2 Equilibriums of EBT
	1.1.3 Constitutive Relations and Resultants of EBT

	1.2 Review of Timoshenko Beam Theory (TBT)
	1.2.1 Kinematics of TBT
	1.2.2 Equilibriums of TBT
	1.2.3 Constitutive Relations and Resultants of TBT

	1.3. Review of Classical Plate Theory (CPT)
	1.3.1 Kinematics of CPT
	1.3.2 Equilibriums of CPT
	1.3.3 Constitutive Relations and Resultants of CPT

	1.4. Review of First Order Shear Deformation Theory (FSDT)
	1.4.1 Kinematics of FSDT
	1.4.2 Equilibriums of FSDT
	1.4.3 Constitutive Relations and Resultants of FSDT


	CHAPTER II
	2.1 Model I of Beam Bending
	2.1.1 Weighted Residual Statements of Model I
	2.1.2 Finite Element Equations of Model I

	2.2 Model II of Beam Bending
	2.2.1 Weighted Residual Statements of Model II
	2.2.2 Finite Element Equations of Model II

	2.3 Model III of Beam Bending
	2.3.1 Weighted Residual Statements of Model III
	2.3.2 Finite Element Equations of Model III

	2.4 Model IV of Beam Bending
	2.4.1 Weighted Residual Statements of the Model IV
	2.4.2 Finite Element Equations of Model IV

	2.5 Lagrange Type Beam Finite Elements

	CHAPTER III
	3.1 Model I of Plate Bending
	3.1.1 Weighted Residual Statements of Model I
	3.1.2 Finite Element Equations of Model I

	3.2 Model II of Plate Bending
	3.2.1 Weighted Residual Statements of Model II
	3.2.2 Finite Element Equations of Model II

	3.3 Model III of Plate Bending
	3.3.1 Weighted Residual Statements of Model III
	3.3.2 Finite Element Equations of Model III

	3.4 Model IV of Plate Bending
	3.4.1 Weighted Residual Statements of Model IV
	3.4.2 Finite Element Equations of Model IV

	3.5 Lagrange Type Plate Finite Elements

	CHAPTER IV
	4.1 Direct Iterative Method
	4.1.1 Algorithm of Direct Iterative Method

	4.2 Newton-Raphson Iterative Method
	4.2.1 Algorithm of Newton-Raphson Iterative Method
	4.2.2 Calculation of Tangent Stiffness Matrices
	4.2.3 Tangent Stiffness Matrices

	4.3 Load Increment Vector

	CHAPTER V
	5.1. Numerical Analysis of Nonlinear Beam Bending
	5.1.1 Description of Problem[1]
	5.1.2 Numerical Results

	5.2. Numerical analysis of Nonlinear Plate Bending
	5.2.1 Description of Problem[1]
	5.2.2 Non-dimensional Analysis of Linear Solutions
	5.2.3 Non-linear Analysis


	CHAPTER VI
	REFERENCES
	VITA






UNCONVENTIONAL FINITE ELEMENT MODELS FOR

NONLINEAR ANALYSIS OF BEAMS AND PLATES





A Thesis

by

WOORAM KIM





Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of



MASTER OF SCIENCE







August 2008







Major Subject: Mechanical Engineering







UNCONVENTIONAL FINITE ELEMENT MODELS FOR

NONLINEAR ANALYSIS OF BEAMS AND PLATES





A Thesis

by

WOORAM KIM



Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of



MASTER OF SCIENCE



Approved by:

		Chair of Committee,

		J. N. Reddy



		Committee Members,

		Xinlin Gao  



		

		Zoran Sunik



		Head of Department,

		Dennis O’Neal









August 2008



Major Subject: Mechanical Engineering

ABSTRACT



Unconventional Finite Element Models for

Nonlinear Analysis of Beams and Plates. (August 2008)

Wooram Kim, B.S., Korea Military Academy

Chair of Advisory Committee: Dr. J. N. Reddy



In this thesis, mixed finite element models of beams and plates bending are developed to include other variables (i.e., the membrane forces and shear forces) in addition to the bending moments and vertical deflection, and to see the effect of it on the nonlinear analysis. Models were developed based on the weighted residual method.

The effect of inclusion of additional variables is compared with other mixed models to show the advantage of the one type of model over other models.

For beam problems the Euler-Bernoulli beam theory and the Timoshenko beam theory are used. And for the plate problems the classical plate theory and the first-order shear deformation plate theory are used.

Each newly developed model is examined and compared with other models to verify its performance under various boundary conditions. In the linear convergence study, solutions are compared with analytical solutions available and solutions of existing models. For non-linear equation solving direct method and Newton-Raphson method are used to find non-liner solutions. Then, converged solutions are compared with available solutions of the displacement models.

Noticeable improvement in accuracy of force-like variables (i.e., shear resultant, membrane resultant and bending moments) at the boundary of elements can be achieved by using present mixed models in both linear and nonlinear analysis. Post processed data of newly developed mixed models show better accuracy than existing displacement based and mixed models in both of vertical displacement and force-like variables. Also present beam and plate finite element models allow use of relatively lower level of interpolation function without causing severe locking problems.
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CHAPTER I



INTRODUCTION



The objective of this study is to investigate the performance of finite element models based on mixed weighted-residual formulations of beams and plates.  In particular, the study investigates merits and demerits of the newly developed mixed finite element models of beam and plate bending based on weighted-residual and mixed formulations. The von Karman nonlinear equations[1, 2] of beams and plates[1, 3] are used to develop alternative finite element models to the conventional, displacement-based, finite element models[4]. Once the basic models are developed and critically evaluated in comparison to the conventional, displacement-based, finite element models, they can be extended to other beam and plate structures with proper modifications. For example, the plate bending models can be extended to the laminated composite structures with proper laminate equations[3, 5].

The mixed finite element models of beams and plates were developed more than two decades ago by Putcha and Reddy[6, 7] to overcome the drawbacks of the displacement based models. The basic idea of mixed finite element model is to include more than two different types of fields in the finite element model as independent variables. For example, the bending moment of the beam element can be included as independent variable, in addition to the axial and transverse displacements. 

 (
________________
This thesis follows the style of
 Computational Method in Applied Mechanics and Engineering.
)The mixed finite element models[7] developed in past only included bending moments as independent variables to reduce the differentiability of the transverse displacement component[7]. This mixed models can provide the same level of accuracy for the bending moment as that for the displacement fields, whereas in the displacement based model the bending moment is calculated at points other than nodes in the post processing step[1, 4]. Thus, the displacement finite element models cannot provide the same level of accuracy for force-like variables as in the mixed finite element models.

In the present study, mixed finite element models are developed to include other variables (i.e., the membrane forces and shear forces) in addition to the bending moments, and to see the effect of them on the nonlinear analysis. The effect of including other variables will be compared with different mixed models to show the advantage of the one type of model over other models.

For the nonlinear beam bending problems[1, 8], three different mixed models based on the Euler-Bernoulli beam theory[4, 9] and one mixed model based on the Timoshenko beam theory[4, 9] are developed. For the nonlinear plate bending problems, two different mixed models based on the classical plate theory[1, 3] and two mixed models based on the first-order shear deformation plate theory [1, 3] are developed.

To verify the performance of the newly developed finite element models, numerical results of them are compared with those of the existing displacement based finite element models[1, 7]. For each beam bending model, three types of boundary conditions (i.e., clamped-clamped (CC), hinged-hinged (HH), and pined-pined (PP) boundary conditions.) are examined and the results are compared. For plate bending model, three types of boundary conditions (i.e., the simple support I (SS1), the simple support III (SS3), and the clamped (CC) boundary conditions.) are examined and the results are compared with those of the conventional finite element models[1, 7].

For each of the beam models, three different Lagrange type interpolation functions[4, 10] (i.e. linear, quadratic and cubic) are used for the approximation of the variables to see the relations between the degree of interpolation functions and the accuracy of the solutions. For each of the plate bending models, two different Lagrange type interpolation functions[4, 10] (i.e. 4-nodes and 9 nodes) are considered. Then, the post-processed data on the stresses and the moments of the equilibrium state in the various models are compared.

The finite element Models are implemented using Maple 9.5 [11] for the beam bending models and the Fortran [12]  for the plates bending problems. All graphs and data are obtained by using the MS Excel and the Matlab 7.1[13].




1.1 Review of Euler-Bernoulli Beam Theory





		[image: C:\Documents and Settings\ramspig\My Documents\My Pictures\beam.bmp]



		Fig. 1.1 Undeformed and deformed EBT and TBT beams, source from [2].







To develop new nonlinear mixed finite element models of beam bending, the Euler-Bernoulli beam theory and the Timoshenko beam theory are considered. Due to the assumption of moderate rotation[1] of a beam cross section perpendicular to the x-axis, a geometric nonlinearity[1] can be considered for the present study. As a consequence, the nonlinearity only appears as square of the slope (i.e.,  ) in the formulations. Detailed geometry and characteristics of both beam bending theories can be found in the Fig. 1.1.





1.1.1 Kinematics of EBT



By taking the horizontal axis (i.e., longitudinal direction of the beam) of the beam to be located along the x-axis, and the vertical axis (i.e., direction along the height) to be located along the z-axis, the displacement field[3, 8, 14] of the EBT can be given as follow (see Reddy[1]):



		

		



		

		



		

		(1.1)







The von Karman strain[1, 2] associated with the displacement field of the EBT is given as follow:



		

		(1.2)







where  and  are defined as



		

		



		

		(1.3)







1.1.2 Equilibriums of EBT



Here, the equilibrium equations[11] of the EBT are derived by using the force and the moment equilibrium of the infinitesimal free body diagram[1] given in the Fig. 1.2.  The vertical shear force resultant can be defined only in terms of the bending moment, and certain portion of the membrane force with the nonlinear assumption.



		[image: C:\Documents and Settings\ramspig\My Documents\My Pictures\freebody2.bmp]



		Fig. 1.2 A typical infinitesimal beam element with forces and bending moments.









By Taylor’s expansion[15, 16], each of the resultants on the right hand side of the free body diagram (see Fig. 1.2) can be expanded to the left hand side by following equation [15, 17]



		



		



		

		(1.4)







where  is an arbitrary resultant on the left side of the element, and  is the associated value on the right side of the element. Then, every term multiplied by  from the expansion can be omitted by taking the limit of . Then the x-direction and the z-direction force equilibrium can be obtained as follow:





		

		



		

		



		

		



		

		(1.5)







By taking the positive y-direction to be the direction of going through the board, the y-direction moment equilibrium can be written as follow:



		





		(1.6)







We can obtain a point equilibrium of the forces and the moment, by dividing above equations by , and taking the limit of . Finally, following equilibrium equations of EBT[1] can be obtained.



		

		



		

		



		

		(1.7)







1.1.3 Constitutive Relations and Resultants of EBT



In the present study, the beam is assumed to obey the linear elastic relation, thus the stress of the EBT can be related to the strain by the relation known as Hooke’s law, as follow:



		

		(1.8)







The stress and moment resultants[1] can be defined as,



		

		



		

		(1.9)







where the  is the cross section area of the beam, the [1] is the second moment inertia of the cross section(about the y-axis) and the  is the Young’s modulus[18, 19] or elastic modulus.



1.2 Review of Timoshenko Beam Theory (TBT)



1.2.1 Kinematics of TBT



By taking the horizontal axis (i.e., longitudinal direction) of the beam to be located along the x-axis and the vertical axis (i.e., direction along the height) along the z-axis, the displacement field [1, 9, 14] of the TBT can be given as follow:



		

		



		

		



		

		(1.10)







Note that instead of the slope of the deformed beam axis (i.e.,   ), the shear rotation[14]   was included to account for the shear rotation of the cross section. The von Karman strain[1] associated with the displacement field of TBT can be given as follow:



		

		



		

		(1.11)







where, ,  and  are defined as,



		

		



		

		



		

		(1.12)







1.2.2 Equilibriums of TBT



By substituting the strains into the virtual work statement[8], the equilibrium equations of the TBT can be obtained. By the principle of the virtual work[1, 8], it can be stated, ‘if a body is in equilibrium, the total virtual work done by actual internal as well as external forces in moving through their respective virtual displacement is zero’[1]. It can be expressed by following equation[8],



		

		(1.13)





where,



		

		



		

		







Note that  are the generalized nodal forces[1] and  are the virtual generalized nodal displacements[1].

And the virtual strains and the definitions of the resultant forces can be defined as follow:



		

		



		

		



		

		



		

		



		

		(1.14)







By substituting the force resultants, the moment resultants and the virtual strains given in the (1.14) into the (1.13), the following energy equation can be directly obtained.



		







		(1.15)









Then, by collecting the coefficients of the variations of the displacement terms in the (1.15), following equilibrium equations[1, 8] of the TBT can be obtained(for details see Reddy[1]).







		

		



		

		



		

		(1.16)







By comparing the equilibrium equations of the EBT given in the (1.7) and the TBT given in the (1.16), it can be shown that the shear resultant  of the EBT can be related to the shear resultant  of the TBT by the following equation[1].



		

		(1.17)







Essentially, the equilibrium equations of the EBT and the TBT are the same, but the specific variables involved may have different meanings. In this case,  is the shear resultant acting on the plane perpendicular to the x axis, while  is the shear resultant acting on the deformed plane (see Reddy[1]).



1.2.3 Constitutive Relations and Resultants of TBT



Since there are two non-zero strain components in the TBT, we have two stress components from the constitutive relations. By assuming that the beam obeys linear elastic relation, the stresses can be related to strains as follow:



		

		



		

		(1.18)







The generalized resultant forces can be calculated by the definition given in the (1.14) as follow:



		

		



		

		



		

		(1.19)







where  is the cross section area of the beam,  is the second moment inertia of the cross section,  is the shear correction factor[14],  is the shear modulus[19] and  is the Young’s modulus.



1.3. Review of Classical Plate Theory (CPT)

		

[image: C:\Documents and Settings\ramspig\My Documents\My Pictures\plate.bmp]



		Fig. 1.3 Undeformed and deformed CPT and FSDT plates, source from [2].







The major difference between the CPT and FSDT comes from the displacement field given in the Fig. 1.3. 



1.3.1 Kinematics of CPT



The CPT can be considered as an extended 2-D version of the EBT. Thus the displacement field of the CPT is very similar to that of the EBT. The displacement field of the CPT with Kirchhoff  hypothesis[1, 3] can be given by,

		

		



		

		



		

		(1.20)







And with the assumption[1] of small strain but moderately large rotation, we can simplify the components of the nonlinear strain tensor[20]. Then the components of the strain tensor is given by,



		

		



		

		



		

		



		

		



		

		



		

		(1.21)







By substituting the displacement field described in the (1.20) into the components of the strain tensor given in the (1.21), the following specific von Karman nonlinear strains[1] of the CPT can be obtained.



		

		



		

		



		

		(1.22)







1.3.2 Equilibriums of CPT



The CPT can be derived by using vector approach[11] with the infinitesimal free diagram of the Fig. 1.4. Since it is assumed that the plane stress condition is still valid for the in-plane forces, the x, y and z-direction force equilibriums and x and y-direction moment equilibriums of the infinitesimal plate element[3] can be stated by using the generalized force resultants, as described in the (1.23a to e).



		[image: C:\Documents and Settings\rams\바탕 화면\4.14\plate(free body).bmp]



		

Fig. 1.4 A typical 2-D plate element[3] with forces and moments.







With the Taylor’s expansion given in the (1.4), we can set the equilibriums of the forces and the moments in the given directions, as follow:



The x-direction force equilibrium:



		

		



		

		



		

		(1.23a)







The y-direction force equilibrium:



		

		



		

		



		

		(1.23b)







The z-direction force equilibrium:



		

		



		

		



		

		(1.23c)







In the force equilibriums of the CPT, it is assumed that the plate is in the plane stress condition[18] for the in-plane forces. So by including some portion of in-plane forces only for moment equilibriums, following equations of moment equilibrium can be obtained.



The y-direction moment equilibrium:



		

		



		

		



		

		



		

		



		

		(1.23d)







The x-direction moment equilibrium:



		

		



		

		



		

		



		

		



		

		(1.23e)







1.3.3 Constitutive Relations and Resultants of CPT



In the present plate bending problem, it is assumed that every in-plane stress and strain remain plane stress[18] condition. For the orthotropic plane stress condition, the constitutive relations of stresses and strains can be given in the matrix form equation as follow:



		

		(1.24)







where the components of the matrix  are given by,



		

		

		



		

		

		(1.25)









Note   and  are the elastic modulus [19] of the x and y-direction respectively,   and  are the Poisson’s ratio and the  is the shear modulus.



By dividing the (1.23a to e) by , and taking the limit of , the following equilibrium equations of the CPT can be obtained.



		

		



		

		



		

		



		

		



		

		(1.26)







By locating the x axis along the mid-plane of the plate element, the resultants of the CPT can be defined by the following equations.



		

		



		

		(1.27)







By using the constitutive relations given in the (1.25) and the definitions of the resultants given in the (1.26), the following equations of the resultants can be obtained.



		

		



		

		



		

		



		

		



		

		



		

		(1.28)







The matrix  and  can be defined by,



		

		(1.29)







where  .



1.4. Review of First Order Shear Deformation Theory (FSDT)



The FSDT can be considered as 2-D version of the TBT, as the CPT can be said to be the 2-D version of the EBT. In the FSDT the same nonlinearity used in the CPT is assumed. Thus the components of the strain tensor given in the (1.21) can be used to obtain the specific strains of the FSDT.



1.4.1 Kinematics of FSDT



The displacement field[3] of the FSDT with Kirchhoff hypothesis can be given by (see Reddy[1, 3] for details),



		

		



		

		



		

		(1.30)







By substituting the displacement field of the FSDT given in the (1.30) into components of the strain tensor given in the (1.21), strains[1] of the FSDT can be given by,



		

		



		

		



		

		



		

		



		

		(1.31)







1.4.2 Equilibriums of FSDT



The equilibrium equations of the FSDT can be derived using the virtual work statement (see Reddy[1] for details), with strains given in the (1.31). The equilibrium equations[3] of the FSDT can be given by



		

		



		

		



		

		



		

		



		

		(1.32)







In the part 1.1, the shear resultant  of the EBT was related to the shear resultant  of the TBT by the relation given in the (1.17). In similar sense, the shear resultants of the CPT can be related to that of the FSDT by the following equations by comparing the equilibrium equations of the CPT and that of the FSDT.



		

		



		

		(1.33)







1.4.3 Constitutive Relations and Resultants of FSDT



The FSDT has two more non-zero strains compared with the strains of the CPT. Additional strains of the FSDT can be related to the corresponding stress components by



		

		(1.34)







where  and  are the shear modulus  and  respectively.

In addition to the in-plane stresses and strains relations given in the (1.24), we have the following additional relations between the shear stresses and the shear resultants of the FSDT, which can be defined by



		

		(1.35)







By substituting the constitutive relations given in the (1.24) and (1.34) into the definitions of the resultant forces given in the (1.27) and (1.35), the following equations of the resultants[3] of the FSDT can be obtained.



		

		



		

		



		

		



		

		



		

		



		

		



		

		



		

		(1.36)







where, is the shear correction factor[1] and  (see the (1.25) and (1.34) for the specific values of the ) .




CHAPTER II



DEVELOPMENT OF BEAM BENDING MODELS



 In this chapter development of various types of the nonlinear mixed finite element models of the beam bending problem is discussed. In current models, force like physical variables are included as independent nodal variables with proper weighted residual statements[4]. Four different nonlinear mixed finite element models of beam bending are developed for the numerical analysis. The relation between the participation of a typical variable and the accuracy of the linear and the nonlinear solutions are investigated in the chapter V. To clarify the developing procedure the governing equations of the EBT and the TBT were brought from the chapter I.



- Governing equations of the EBT



		

		



		

		



		

		(1.7)



		

		



		

		(1.9)







- Governing equations of the TBT
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2.1 Model I of Beam Bending



2.1.1 Weighted Residual Statements of Model I



The governing equations of the EBT which were derived in the chapter I are used to develop the Model I of beam bending. The displacements (i.e.,  and ) and  generalized forces (i.e., ,  and ) are included as independent variables in the beam bending Model I. By using the equilibrium equation and the resultant equations of the EBT, following weighted residual statements can be made.
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		where,

		



		

		



		

		



		

		







Note that variables with superscripted ‘a’ (i.e., , , ,  and ) denote approximated variables,  denotes the ith weight function of the ith weighted residual statement.  and  are the global coordinates of element region. The boundary terms in the first, the second, and the third equations can be obtained by conducting the integration by parts[4] of the related terms. 



2.1.2 Finite Element Equations of Model I



Next, with the weighted residual statements given in the (2.1), the variables can be approximated with the proper interpolation functions. Compared with the EBT displacement based model[1] whose variable (i.e., vertical displacement) should be approximated with the Hermite interpolation functions[1, 4], the model I allows the use of the Lagrange interpolation functions for the approximation of all variables of it, because weighted residual statements do not include any derivative of variable as primary variable.
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By observing the boundary terms in the (2.1) which are produced by integration by parts with the chosen weight functions in the (2.2), the primary variables and the secondary variables can be specified as follow:



		<The primary variable>

		<The secondary variable>

		



		

		

		



		

		

		



		

		

		





	

By substituting the (2.2) into the (2.1), the following nonlinear mixed finite element equations can be obtained.



		

		



		

		



		

		



		

		



		



		(2.3)







Note that the boldface letters are used to indicate nonlinear terms. Above mixed finite element equations can be rewritten as algebraic matrix form by collecting coefficients of the unknowns in the form of the coefficient matrix  and the rest of the terms as the force vector [4] as follow:



		

		



		

		(2.4)







where, the  of the equation denotes that the coefficient matrix  is the function of the unknowns .



The sub-matrices and the specific terms of the force vectors are given as follow:
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All the sub-matrices and the force vectors which are not specified in the (2.5) are zero.



2.2 Model II of Beam Bending



The governing equations of the EBT which were derived in the chapter I can be also used for the development of the Model II. The Model II includes displacements (i.e.,  and ) and the generalized resultants (i.e.,  and ), while the Model I included  in addition to those. Thus total number of the independent variables is 4 in the Model II. By eliminating the shear resultant  from the governing equations of the EBT, following equations can be obtained. 
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2.2.1 Weighted Residual Statements of Model II



The equations given in the (2.6) are mathematically equivalent to the equations given in the (1.7) and (1.9), which were used for the Model I, but the effect of the elimination of the  can be observed both in the equation solving procedure and in the result of the numerical analysis, since it affects both the symmetry of the tangent matrix[1] and the accuracy of the solutions compared with other models. For the Model II, the following weighted residual statement can be made.

		

		



		

		



		

		



		

		(2.7)



		where,

		



		

		



		



		



		

		







Variables with superscripted ‘a’ (i.e. , ,  and ) denote approximated variables,  is the ith weight function of the ith weighted residual statement.  and  are the start and the end global coordinate of the element. The boundary terms  and  were obtained in the different forms compared with those of the Model I but the physical meaning are the same.



2.2.2 Finite Element Equations of Model II



All of the variables can be approximated by using the Lagrange type interpolations and the weigh functions can be chosen to be as
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The primary and the secondary variables can be specified as follow:



		<The primary variable>

		<The secondary variable>

		



		

		

		



		

		

		



		

		

		







By substituting the equation (2.8) into the equation (2.7), the following nonlinear mixed finite element equations of Model (II) can be obtained.
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The mixed finite element equations of Model II can be rewritten in algebraic matrix form by collecting the coefficients of the unknowns. Note that the Model II contains 4 variables as unknowns. Thus, the size of the  of the Model II can be reduced, compared with that of the Model I. 
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The sub-matrices and the specific terms of the force vectors can be given by,
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The sub-matrices and sub-vectors which are not specified above are zero.



2.3 Model III of Beam Bending



In displacement based model of the EBT, the slope (/ ) was included as a primary variable with the use of the Hermite type interpolation for the vertical deflection . Because  has a physical meaning, one can include it as an independent variable. This idea was proposed by Reddy by considering the following equation as one of the governing equation of the EBT. It can be seen that the linear part of the coefficient matrix of the Model I given in the (2.4) and (2.5) cannot be symmetry, and the tangent matrix of the Model I, which will be discussed in the chapter III, cannot be symmetry either. In the computational point of view, the symmetry of the coefficient matrix of the algebraic equation system is very important because of the computational cost.
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By replacing every  in the EBT equations we can obtain the following differential equations, which can be modified for the Model III.
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2.3.1 Weighted Residual Statements of Model III



With the equations of the (2.13), the weighted residual statements of the Model III of beam bending can be written as follow.
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		where,

		



		

		



		

		



		

		







2.3.2 Finite Element Equations of Model III



In a sense, the weighted residual statement of the (2.14) can be fully qualified for the Galerkin method[4], because each of the integral equation represents the work done in virtual work sense, with the following choice of the weight functions. The approximations of the variables and the chosen weight functions are as follow:
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The primary and the secondary variables can be specified as follow:



		<The primary variable>

		<The secondary variable>

		



		

		

		



		

		

		



		

		

		







By substituting the equation (2.15) into the (2.14), the following nonlinear mixed finite element equations can be given by,
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The mixed finite element equations of the Model III can be rewritten as the algebraic matrix form by collecting the coefficients of the unknowns. Note that the Model III contains 6 variables as unknowns. Thus, the size of the  is the largest among three mixed EBT models. 
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The sub-matrices and the specific terms of the force vectors are given as follow:
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2.4 Model IV of Beam Bending



2.4.1 Weighted Residual Statements of the Model IV



The governing equations of the TBT are used to develop the Model IV. It can be shown that the mixed Model IV is equivalent to the Model III regarding the numbers and the dimensions of nodal variables. By using the governing equations of the TBT, Model IV includes 6 variables as independent variables (i.e. , ,  ,  and ). With the equilibrium equation and the resultants equations of the TBT, following weighted residual statements can be obtained.
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		where,

		



		

		



		

		



		

		







2.4.2 Finite Element Equations of Model IV



Since no derivative of any variable is involved as a nodal unknown, the Lagrange type interpolation function[4] should be used for the approximations of variables of the Model IV. The approximations of the variables and the chosen weight functions are given as follow:
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The primary and the secondary variables can be specified as follow:



		<The primary variable>

		<The secondary variable>

		



		

		

		



		

		

		



		

		

		







The finite element equations of the Model IV can be obtained by substituting approximations and the chosen weight functions of the (2.20) into the (2.19). 
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From the (2.21), the following matrix form of the algebraic equations can be obtained.
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where,
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All of the sub-matrices and sub-vectors which are not specified above are zero.





2.5 Lagrange Type Beam Finite Elements



For present study, the mixed formula allows the use of the Lagrange type interpolation functions[4] for the approximations of every variable. Here, beam elements that were used for the computer implementation and the numerical analysis are mentioned. For the beam problems, the Lagrange types of linear, quadratic and cubic elements were used. The geometry of the elements and the locations of associated interpolations are given in the Fig. 2.1.



		[image: C:\Documents and Settings\ramspig\Desktop\4.27\beam elemnt.bmp]



		(a) linear element

		(b) a quadratic element

		(c) a cubic element



		Fig. 2.1 Node number and local coordinate of the line elements of the Lagrange family.







Very well Known interpolation property [2] is known as partition of unity, which can be written as



		

		



		

		







So by considering the interpolation properties, we can derive interpolation functions which are associated with the nodal points with given set of polynomials. And, the specific interpolation functions associated with the nodal points are as follow:



- Linear interpolation functions 



		

		(2.24)











- Quadratic interpolation functions 



		

		(2.25)







- Cubic interpolation functions 



		







		(2.26)










CHAPTER III



DEVELOPMENT OF PLATE BENDING MODELS



The 1-D beam bending problems which were discussed in the chapter II can be extended to the 2-D plate bending problems with simple modifications. Two CPT models and two FSDT models are developed. To clarify the developing procedure, the governing equations of the CPT and the FSDT are brought from the chapter I.



<The governing equations of the CPT>
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and
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<The governing equations of the FSDT>
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3.1 Model I of Plate Bending



3.1.1 Weighted Residual Statements of Model I



The governing equations of the CPT which were derived in the chapter I are modified to develop the plate bending Model I. Total eleven variables, i.e., , , , , , , , , ,  and , are treated as independent variable in the plate Model I. The Green-Gauss theorem[15] can be used to obtain the boundary terms when the integration by parts are conducted. The weighed residual statements of the Model I can be written as follow:



		

		



		

		



		

		



		

		



		

		



		

		



		

		



		

		



		

		



		

		



		



		(3.1)







where,  is the boundary of the element region  and variables with superscripted letter ‘a’ denote the approximated variables. The  denotes the unit normal vector of the i-direction, where  i = x,  y.



3.1.2 Finite Element Equations of Model I



With the weighted residual statements given in the (3.1), we can develop the finite element the Model I of the plate bending by approximating variables with known interpolation functions and unknown nodal values. But the choice of the known interpolation functions is not arbitrary. By the same reason that we discussed while developing the EBT models in the chapter II, the Lagrange type of the interpolation functions should be used for the approximations of the all variables of the Model I, because no derivative of the variable is involved as nodal unknown. To develop the finite element model based on the displacement model[1], one should approximate the vertical displacement  with the conforming [1, 4] or the nonconforming[1, 4] type of the Hermite interpolation functions, because displacement based model includes the derivatives of the  as nodal values[1]. But for the current Model I, only  continuity of the variables is required. Thus, it allows use of linear interpolation functions as the minimum.
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The primary variables and the secondary variable of the Model I can be specified as follow:

		<The primary variable>

		<The secondary variable>

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		







By substituting the equation (3.2) into the (3.1) the finite element Model I of the plate bending can be obtained as follow:
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Above equations given in the (3.3) can be rewritten in the algebraic matrix equation in the following form,
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where,



		

		



		

		



		

		



		

		



		

		



		

		



		

		



		

		



		

		

		



		

		



		

		



		

		



		

		

		



		

		



		

		



		

		

		



		

		



		

		

		



		

		



		

		



		

		



		

		

		



		

		



		

		



		



		(3. 5)







The rest of sub coefficient matrices and force vectors which are not specified in the (3. 5) are zero.



3.2 Model II of Plate Bending



The shear resultant  and  can be eliminated by substituting the forth and the fifth equilibrium equations into the third equilibrium equation of the CPT. By doing this the symmetry of the linear portion of the coefficient matrix can be achieved and the symmetry of the tangent matrix[1], which will be discussed in the chapter IV, can be also archived. 

3.2.1 Weighted Residual Statements of Model II



With the equations of the Model II of the plate bending, the following weighted residual statements can be obtained.
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3.2.2 Finite Element Equations of Model II



All variables can be approximated with the Lagrange type interpolation functions for the same reason which was discussed with the Model I.
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By substituting the (3.7) into the (3.6), the finite element model of the Model II can be obtained as follow:
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Above equation (3. 8) can be rewritten as the matrix form of the algebraic equation as follow:
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where,



		

		



		

		



		

		



		

		



		

		



		

		



		

		



		

		



		

		

		



		

		



		

		



		

		

		



		

		



		

		



		

		

		



		

		



		

		



		

		

		



		

		



		

		



		

		



		

		

		



		

		

		



		

		

		



		

		

		(3.10)







The rest of the sub coefficient matrices and the force vectors which are not specified in the (3.10) are equal to zero.



3.3 Model III of Plate Bending



3.3.1 Weighted Residual Statements of Model III



To develop the Model III of the plate bending, the governing equations of the FSDT are modified. The Model III will include the shear rotations  and  to account for the shear deformations. The weighed residual statements of this model can be made as follow:
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where and  denote the element region and the boundary of the element respectively.



3.3.2 Finite Element Equations of Model III



For the Model III, the Lagrange type of interpolation functions can be used to approximate the variables. The weight functions and the approximations of the variables can be chosen as follow:
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The primary variables and the secondary variable of the Model III can be specified as follow :



		<The primary variable>

		<The secondary variable>

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		









The finite element equations can be obtained by substituting the approximations and the weight functions of the (3.12) into the (3.11).
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Above equations of the (3.14) can be rewritten as the algebraic matrix equation in the form of,



		

		



		

		(3.14)







The specific sub coefficient matrices can be obtained from the (3.13) as follow:





		

		

		



		

		

		



		

		

		



		

		

		



		

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		



		

		

		



		

		

		



		

		

		



		

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		



		

		

		(3.15)







The rest of sub coefficient matrices and force vectors which are not specified in the (3.15) are equal to zero.



3.4 Model IV of Plate Bending



The membrane resultants ( i.e. , and ) can be eliminated by substituting the resultant equations of the membrane resultants into the equilibrium equations. By eliminating the in plane force resultants(, and ), the size of the coefficient can be reduced while the effect of it will be discussed in the numerical analysis parts of the plate bending. 



3.4.1 Weighted Residual Statements of Model IV



The weighted residual statements of the Model IV of the plate bending are given as follow:
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The primary variables and the secondary variable of the Model IV can be specified as follow:





		<The primary variable>

		<The secondary variable>

		



		

		

		



		

		

		



		

		

		



		

		

		



		

		

		







3.4.2 Finite Element Equations of Model IV



Ten weigh functions and the approximations of ten independent variables can be chosen as the Lagrange type interpolation functions as follow:
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By substituting the (3.17) into the (3.16), the finite element equations of the Model IV can be obtained as follow:
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Above equations of the (3.18) can be rewritten in the algebraic matrix equation by the form of,
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where,
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The rest of the sub coefficient matrices and the force vectors which are not specified above are equal to zero.



3.5 Lagrange Type Plate Finite Elements



For present study, the mixed formula allows a use of the Lagrange type of interpolation functions[4]. The elements that were used for the computer implementation and the numerical analysis are discussed. For the plate problems, 4-node and 9-node Lagrange type of elements were used. The geometry of the elements and the locations of associated interpolations are given in the Fig. 3.1.
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		(a) 4-node linear element

		(b) 9-node quadratic element



		Fig. 3.1  Node number and local coordinate of the rectangular elements of the

Lagrange family.







And, the associated interpolation functions are as follow:

- 4-node linear element 

		







		(3.21)







-9-node quadratic element 

		





		(3.22)










CHAPTER IV



NONLINEAR EQUATION SOLVING PROCEDURES 





We obtained matrix form of nonlinear finite element model equations in the previous chapters II and III. In this chapter the non-linear equation solving procedures of equation (2.4), (2.10), (2.18), (2.22), (3.4), (3.9), (3.14) and (3.19) were discussed. These equation solving procedures of the nonlinear mixed finite element models can be generally applied for the developed nonlinear finite element models. The Picard Iteration method[1, 21] and the Newton-Raphson method[1, 22, 23] were used for the present numerical analysis. The solutions obtained from the two different methods can be compared to insure the obtained solutions are well converged one, because the converging characteristic may vary from one method to the other, but the obtained solutions should essentially be the same. 



4.1 Direct Iterative Method



The direct method is one of the simplest methods available, because this method only requires update of the coefficient matrix with obtained solutions from the previous iteration at each iteration step. After updating the coefficient matrix the equation solving procedure, which is related to the obtaining of new iterative solutions is just the same as solving linear algebraic equations. The flow chart[1] of the direct iteration method is given in the Fig. 4.1. (for details see Reddy[1]).

		[image: flow-picard]



		Fig. 4.1 A flow chart[1] of the direct iteration method.







4.1.1 Algorithm of Direct Iterative Method



The element wise matrix form of non-linear finite element equations that we obtained in chapters II and III, i.e., (2.4), (2.10), (2.18), (2.22), (3.4), (3.9), (3.14) and (3.19)  can be assembled as global equations [1] which can be written as



		

		(4. 1)







where, the  denotes the global unknowns of the assembled equations.

Because the coefficient matrix  is the function of the unknown , we need to evaluate the  by using initial guess solutions or the previous iterative solutions[1]. To imply this concept, the equation (4.1) can be rewritten as,
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where,  is the solution obtained from the rth iteration,   is the updated coefficient matrix using the previous solutions  and  is the force vector. 

Now, with the equation (4.2), the simple algorithm can be used to solve the nonlinear finite element equations with the direct method, which can be stated as,



		

		(4. 3)







Above procedure should be repeated until the solutions of rth iteration and the (r-1)th iteration satisfy the following criterion [1]:



		

		(4. 4)







where,  is the tolerance[1]. 



In this study, values of tolerance[1],  were chosen for the most of the problems. In many cases, with small values of tolerance (say, ), the iterative solutions may not satisfy the criterion regardless of the iteration numbers.



4.2 Newton-Raphson Iterative Method



Usually the Newton-Raphson iterative method[1, 22] shows faster convergence, compared with the direct method[1, 21]. Also in many cases, the tangent matrix can be symmetry even though the coefficient matrix is not. And with the Newton method, only the tangent matrix is inverted to get the incremental solutions, thus only the symmetry solver can be used, still the calculations of the tangent matrix and implement of the equation solving procedure are substantial. The flow chart[1] of the Newton iteration method is given in the Fig. 3.2. 

		

[image: flow newton]



		Fig. 4.2 A flow chart[1] of the Newton iteration method.







4.2.1 Algorithm of Newton-Raphson Iterative Method

	

In the Newton-Raphson iterative method, the residual[1] or the imbalance force vector[1] of the (4.1) can be written as,



		

		(4.5)







With Taylor’s expansion, the residual  can be expanded to the known solution (i.e. the solution of the previous iteration). 
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By omitting all the terms after the third term of the right hand side of the (4.6), and by taking the residual to be zero, i.e. , we can obtain the following relation.



		

		(4.7)



		where,

 

		







Here we define the tangent stiffness matrix[1] as follow:



		

		(4.8)









By the substitution of (4.8) into the (4.7), and the inversion of the tangent stiffness matrix, we can obtain the increment of the solution ( , which can be written as,



		

		(4.9)







where the residual can be computed from the previous iterative solution as follow:





		

		(4.10)







If we can calculate the tangent matrix from the equation (4.8), the solutions can be updated as,
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For the check of the convergence criterion, it can be computed by using the increment of the solutions vector, i.e., , as follow:
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4.2.2 Calculation of Tangent Stiffness Matrices



In the Newton-Raphson iterative method, it is required to compute tangent coefficient matrices to get the incremental solution described in the (4.9). The original form of the equation (4.9) can be rewritten as the matrix form of the equation as follow:
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The component form of this tangent coefficient stiffness matrix and the residual vector can be given as (see Reddy [1]), 

		

		(4.14)





and



		

		(4.15)







By substituting the equation (4.15) into the equation (4.14), the following equation can be obtained (see Reddy[1]).
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Note that the  denotes the equation number which can be matched to the sub matrix of the th row in the (4.13), the  denotes th column in the (4.13),  denotes the total numbers of unknown variables and  is the number of degree of freedom related to the variable. Repeated indices mean summation.



4.2.3 Tangent Stiffness Matrices



The symmetry of the tangent stiffness matrix in Newton iterative method is very important because most of the computational efforts to find the converged solution after obtaining the linear solution(i.e. solutions obtained with zero initial guess solution[1]) are related with the inversion of tangent matrix. By the equation (4.9) and (4.10), the increment of solution can be obtained by inverting the tangent matrix. The inverse of the coefficient matrix is only needed to get the linear solution. Thus the invert of the coefficient matrix does not required after very first step of the iteration. It can be shown that the first linear solution also can be obtained by using the symmetry solver with the choice of a zero initial guess solution. To discuss the symmetry of the tangent matrix, the tangent matrices of the newly developed models were calculated by using the equation given in (4.16). For example the  of the EBT Model I can be calculated with the coefficient matrices  which can be given by

 

		

		



		

		



		

		



		

		 





If the degree of the freedom for each variable is, we can calculate the  by using the equation (4.16) as
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where the variables are given by



		 for  



		





Likewise, every specific term of the tangent stiffness matrices of newly developed nonlinear beam and plate bending models can be calculated. From the equation (4.15), we can notice that each of the tangent coefficient matrices is consist of the sum of coefficient matrix  and the additional terms. So we can express every tangent matrix as the form of, + additional terms. The results of the calculations of the tangent matrix of the each model can be given as follow:



- Model I of the beam bending
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- Model II of the beam bending
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- Model III of the beam bending
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- Model IV of the beam bending
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- Model I of the plate bending
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- Model II of the plate bending
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- Model III of the plate bending
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- Model IV of the plate bending
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Rest components of the tangent matrix which are not specified above is the same as the components of the coefficient matrix, which can be written as



		

		(4.26)







As mentioned, the symmetry of the tangent matrix can be obtained in every Model except for the beam Model I and the plate Model I. Because of shear terms (and ) included we cannot expect the symmetry of the tangent matrix in the beam Model I and the plate Model I. Then these two models should be solved by asymmetry solver[1], which is based on the Gauss Eliminations[24] to invert a matrix. The numerical results will be discussed in the chapter V.



4.3 Load Increment Vector



In the applications of the direct iterative method in nonlinear finite element analysis of the structural problems, the load increment is very critical to get converged nonlinear solution under a large applied distributed load (). Without proper increment load, the solution may not converge with the direct iterative method. But the Newton iterative method can be applied at the more general range of applied distributed load () without load increment to get the converged solutions, while more iterative time is substantial. The details of the load increment will be discussed in chapter V with the numerical results of the examples.






CHAPTER V



NUMERICAL RESULTS



In this chapter we will discuss the numerical results of the nonlinear finite element models of the beam and plates bending problems. Comparisons of various models are presented with linear analysis and non linear analysis.



5.1. Numerical Analysis of Nonlinear Beam Bending



5.1.1 Description of Problem[1]



A beam made of steel () whose geometry is given in the Fig. 5.1, was chosen for the study of the 1D nonlinear analysis. Three different boundary conditions, i.e. HH, PP and CC, were considered to see the performance of the beam.



		[image: C:\Documents and Settings\ramspig\Desktop\4.4(working)\demensions of the beam.bmp]



		Fig. 5.1 Description of the beam geometry.







Three types of boundary conditions under the distributed load  are considered with 4 nonlinear beam bending models developed in the chapter II. The descriptions of three boundary conditions are given in the Fig. 5.2. Under evenly distributed load  and the given boundary conditions, we can use the symmetry part of the beam as a computational domain of the finite element analysis. To use the symmetry part of the beam as the computational domain, the mathematical boundary conditions at the middle point (i.e., x=L/2) of the beam should be specified. By the geometry of the beam bending under the given boundary conditions and evenly distributed load, the mathematical boundary conditions of the middle point can be specified in addition to the boundary conditions of the one edge of the beam as shown in the Fig. 5.2. It can be seen that the current EBT mixed nonlinear Model I and II do not includes the slope, i.e., , as a primary variable. It is important to specify either primary or secondary variable as a boundary condition. In the same sense we should specify only the moment, , as a primary variable at the edge of the beam because the slope, , is not known there. Thus it is clear that if any specified boundary condition exists, one should specify either the primary or the secondary variable at the typical nodal point. This can be clarified by using the pairs of the primary and secondary variables that we classified in the chapter III. With the beam Model IV, the shear rotation of the beam cross section  was included, so it can be specified as shown in the Fig. 5.2. 
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A hinged-hinged(H-H) beam

		

(EBT only)

(TBT only)
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A pined-pined(P-P) beam

		

(EBT only)

(TBT only)



		



		



(TBT only)

 (EBT only)
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A clamped- clamped(C-C) beam

		

(EBT only)

(TBT only)



		Fig. 5.2. Symmetry boundary conditions of beams.









5.1.2 Numerical Results



First, the results of the mixed models and the displacement based models[1] are compared to see the validness of the solutions. The center deflections of the mixed Model I and IV, using eight linear elements (8×L) mesh are presented in the Table 5.1, along with the results of the displacement based Models of the EBT and the TBT using eight linear-Hermite(8×LH) and eight linear elements(8×L) respectively. Every converged solution was obtained by using the Newton-Raphson iterative method.

The graph of the mixed models and the displacement based models, which are given in the Fig. 5.3, shows almost the same results for the two different boundary conditions. With the same eight linear elements mesh, the difference of the converged solutions is not considerable. And the difference of the solutions between the TBT and the EBT beams is also negligible. 



		Table 5.1 

Comparison of mixed models and displacement based models.



		The load


(psi/in)

		The center deflection w0 (in)



		

		Mixed nonlinear Models

		Displacement based nonlinear Models[1]



		

		The Model (I) - 8×L

		The Model (IV) - 8×L

		EBT - 8×LH

		TBT - 8×L



		

		CC

		PP

		CC

		PP

		CC

		PP

		CC

		PP



		0.0

		0.000000 

		0.000000 

		0.000000 

		0.000000 

		0.0000

		0.0000

		0.0000 

		0.0000 



		1.0

		0.103380(3)

		0.368892(5)

		0.103492(3)

		0.368715(5)

		0.1034(3)

		0.3685(5)

		0.1019(3) 

		0.3677(5)



		2.0

		0.202427(3)

		0.546221(4)

		0.202587(3)

		0.545838(4)

		0.2023(3)

		0.5457(4)

		0.1997(3)

		0.5451(4)



		3.0

		0.294349(3)

		0.665046(4)

		0.294469(3)

		0.664527(4)

		0.2939(3)

		0.6645(4)

		0.2906(3)

		0.6639(4)



		4.0

		0.378187(3)

		0.756797(4)

		0.378194(3)

		0.756180(4)

		0.3774(3)

		0.7564(4)

		0.3737(3)

		0.7557(4)



		5.0

		0.454206(3)

		0.832666(4)

		0.454054(3)

		0.831972(4)

		0.4530(3)

		0.8324(4)

		0.4492(3)

		0.8316(4)



		6.0

		0.523212(3)

		0.897967(4)

		0.522877(3)

		0.897212(4)

		0.5216(3)

		0.8979(4)

		0.5179(3)

		0.8969(4)



		7.0

		0.586135(3)

		0.955668(4)

		0.585607(3)

		0.954862(4)

		0.5841(3)

		0.9558(4)

		0.5805(3)

		0.9546(4)



		8.0

		0.643848(3)

		1.007606(4)

		0.643129(3)

		1.006757(4)

		0.6414(3)

		1.0080(4)

		0.6380(3)

		1.0066(4)



		9.0

		0.697107(3)

		1.055004(4)

		0.696202(3)

		1.054117(4)

		0.6943(3)

		1.0557(4)

		0.6910(3)

		1.0540(4)



		10.0

		0.746547(3)

		1.098719(4)

		0.745463(3)

		1.097800(4)

		0.7433(3)

		1.0997(4)

		0.7403(3)

		1.0977(4)



		







		

(a) Comparison of the Model I with EBT displacement based Model.



		

(b) Comparison of the Model IV with the TBT displacement Model.



		

Fig. 5.3. A comparison of the non-linear solutions of beams.









But under the hinged-hinged boundary condition, current mixed models showed much better results compared with displacement based models. The displacement Model showed the membrane locking[14]. The membrane locking occurs because of the inconsistent presence the polynomial degree in the approximations. To examine it, we consider a hinged-hinged boundary condition with the Model I, II and IV. For the hinged-hinged boundary condition, total applied load should contribute for the bending of the beam element, because there is no horizontal constrain to cause membrane strain, i.e., . In the finite element models, the strain  can be expressed as follow: (see Reddy [1])



		

		(5. 1)







To satisfy the physics under the given boundary conditions, strain  should be zero. But because of the use of polynomial approximations, there can be inconsistency[1] of the degree of terms in the strain. Especially, in the displacement based model,  was approximated with linear interpolation function, and  was approximated by using cubic interpolations functions. For this typical pair of approximations, the degree of the each term in the strain  can be given by



		

		(5. 2)







Thus it is not easy for  to make whole strain term to be zero, because it is presented as constant. This phenomenon is very well known drawback of the nonlinear EBT and TBT finite element model. 





And for the TBT models, another locking can be observed from the shear strain relations[1] which can be given as,



		

		(5. 3)







To fix these defect, the reduced integrations[1, 7], use of consistent approximations and use of higher order interpolations can be used. The effects of the locking with full integration in different models are given in the Table 5.2.



		Table 5.2 

Membrane locking in mixed models and misplacement models.



		The load
()

		The center deflection (in) -HH



		

		TBT(Model IV)

4ⅹL

		TBT(DSPL)

4ⅹL

		EBT(I)(Model I)

4ⅹL

		EBT(DSPL)

4ⅹLH



		0.0 

		0.0000

		0.0000

		0.0000

		0.0000



		1.0 

		0.5181

		0.1223

		0.5208

		0.5108



		2.0 

		1.0361

		0.2446

		1.0417

		1.0213



		3.0 

		1.5542

		0.3669

		1.5625

		1.4986



		4.0 

		2.0723

		0.4892

		2.0833

		1.9453



		5.0 

		2.5904

		0.6115

		2.6042

		2.3607



		6.0 

		3.1084

		0.7338

		3.1250

		2.7467



		7.0 

		3.6265

		0.8561

		3.6458

		3.1074



		8.0 

		4.1446

		0.9784

		4.1667

		3.4422



		9.0 

		4.6626

		1.1007

		4.6875

		3.7564



		10.0 

		5.1807

		1.2230

		5.2083

		4.0523







The results presented in the Table 5.2 are showing that the membrane locking can be eliminated by using the mixed nonlinear model in both of the TBT and the EBT beams. Usually the locking can be mitigated by using a more refined mesh, but the mixed Model I and IV didn’t showed any locking even with 2 linear elements mesh as shown in the Table 5.2.







But, among current mixed models, the membrane locking appeared in different levels. For example, the comparison of the Model I and the Model II shows that the Model I is showing better performance compared with the Model II. But the Model II is still showing better result compared with the displacement based model. The result of the hinged-hinged(HH) boundary condition of the Model I and II with 2 linear elements mesh is given in the Table 5.3.

The graph (a) given in the Fig. 5.4, shows that the locking can be eliminated with the mixed Model I and IV. While the graph (b) shows that the Model II still has membrane locking. Even though the Model II has the membrane locking, the effect of it is not significant compared to the displacement based model.



		Table 5. 3 

Effect of the membrane locking in the mode I and II.



		The load
()

		The center deflection (in)-HH



		

		EBT(I)

2ⅹL

		EBT(II)

2ⅹL

		EBT(II)

4ⅹL

		EBT(II)

8ⅹL



		0.0

		0.0000

		0.0000

		0.0000

		0.0000



		1.0

		0.5208

		0.4948

		0.5143

		0.5192



		2.0

		1.0417

		0.9896

		1.0286

		1.0384



		3.0

		1.5625

		1.4844

		1.5430

		1.5576



		4.0

		2.0833

		1.9792

		2.0573

		2.0768



		5.0

		2.6042

		2.4740

		2.5716

		2.5960



		6.0

		3.1250

		2.9688

		3.0859

		3.1152



		7.0

		3.6458

		3.4635

		3.6003

		3.6344



		8.0

		4.1667

		3.9583

		4.1146

		4.1536



		9.0

		4.6875

		4.4531

		4.6289

		4.6729



		10.0

		5.2083

		4.9479

		5.1432

		5.1921







		

(a) Comparison of the membrane locking of various Models.





		

(b) Comparison of the membrane locking in the EBT Model I and Model II



		Fig. 5.4 A comparison of the membrane locking in various models.







Next the effect of the length-to-thickness ratio on the deflections is presented in the Tables 5.4 and 5.5. The data in the Table 5.4 is showing that as the beam becomes thicker, it acts almost linearly, while thin beam shows nonlinearity more strongly.



		Table 5.4 

Effect of the length-to-thickness ratio on the deflections in TBT beam.



		The load
()

		TBT(L/H=100)

		TBT(L/H=50)

		TBT(L/H=25)



		0.0

		0.000000

		0.000000

		0.000000



		1.0

		0.103530

		0.064961

		0.008169



		2.0

		0.202854

		0.128734

		0.016338



		3.0

		0.295229

		0.190329

		0.024505



		4.0

		0.379677

		0.249076

		0.032671



		5.0

		0.456414

		0.304625

		0.040834



		6.0

		0.526203

		0.356888

		0.048994



		7.0

		0.589944

		0.405950

		0.057150



		8.0

		0.648490

		0.451996

		0.065302



		9.0

		0.702587

		0.495260

		0.073449



		10.0

		0.752860

		0.535983

		0.081591







It can be shown that the differences of the solutions between the TBT and the EBT are negligible when the beam is thin, but it is not when the beam is thick.

		Table 5.5   

Comparison of the effect of the length-to-thickness ratio in the EBT and the TBT beams.



		The load
()

		L/H=10

		L/H=100



		

		EBT(I)

		EBT(II)

		TBT

		EBT(I)

		EBT(II)

		TBT



		0.0

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000



		1.0

		0.0313

		0.0313

		0.0350

		0.0310

		0.0310

		0.0311



		2.0

		0.0625

		0.0625

		0.0700

		0.0608

		0.0608

		0.0609



		3.0

		0.0937

		0.0938

		0.1050

		0.0886

		0.0886

		0.0886



		4.0

		0.1250

		0.1250

		0.1400

		0.1141

		0.1141

		0.1139



		5.0

		0.1562

		0.1562

		0.1750

		0.1373

		0.1373

		0.1369



		6.0

		0.1875

		0.1875

		0.2100

		0.1584

		0.1584

		0.1579



		7.0

		0.2187

		0.2187

		0.2450

		0.1777

		0.1777

		0.1770



		8.0

		0.2500

		0.2500

		0.2800

		0.1954

		0.1955

		0.1945



		9.0

		0.2812

		0.2812

		0.3150

		0.2118

		0.2118

		0.2108



		10.0

		0.3125

		0.3125

		0.3500

		0.2271

		0.2271

		0.2259



		







		

(a) Effect  of the length-to-thickness ratio on deflections in the TBT beam



		

(b) Comparison of the effect of length-to-thickness ratio on deflections in the EBT and the TBT beams.



		Fig. 5.5 Comparison of effect of the length-to-thickness ratio on the beam.







The model III showed poor performance compared with other newly developed models, but with cubic element it showed good accuracy and convergence. Some results of the model III presented in the Table 5. 6.



		Table 5.6 

Comparison of Model III with other mixed models.



		The load


(psi/in)

		The center deflection w0 (in)



		

		The Model (III) - 2×C

		The Model (III) - 4×C

		The Model (I) - 2×C

		The Model (II) - 2×C



		

		CC

		PP

		CC

		PP

		CC

		PP

		CC

		PP



		0.0

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000



		1.0

		0.1034

		0.3685

		0.1034

		0.3685

		0.1034

		0.3685

		0.1034

		0.3685



		2.0

		0.2023

		0.5454

		0.2023

		0.5454

		0.2023

		0.5454

		0.2023

		0.5454



		3.0

		0.2939

		0.6639

		0.2939

		0.6639

		0.2939

		0.6639

		0.2939

		0.6639



		4.0

		0.3774

		0.7554

		0.3774

		0.7555

		0.3774

		0.7555

		0.3774

		0.7555



		5.0

		0.4529

		0.8311

		0.4530

		0.8312

		0.4530

		0.8312

		0.4530

		0.8312



		6.0

		0.5213

		0.8963

		0.5215

		0.8963

		0.5215

		0.8963

		0.5215

		0.8963



		7.0

		0.5836

		0.9539

		0.5839

		0.9539

		0.5839

		0.9539

		0.5839

		0.9539



		8.0

		0.6407

		1.0057

		0.6411

		1.0057

		0.6412

		1.0057

		0.6412

		1.0057



		9.0

		0.6933

		1.0530

		0.6939

		1.0531

		0.6939

		1.0530

		0.6939

		1.0530



		10.0

		0.7421

		1.0966

		0.7429

		1.0967

		0.7429

		1.0967

		0.7429

		1.0967







The poor performance of Model III can be explained by the (2.12).



		

		(5.5)







As discussed with the membrane locking and the shear locking, this typical relation created other kind of locking, because of the inconsistent approximation for the  and . Since we included this relation only in the Model III, only Model III showed new kind of locking. But this locking was not fixed with reduced integration when lower order interpolation functions (i.e., linear and quadratic) are used. Only higher order interpolation function with reduced integration showed good results.




5.2. Numerical analysis of Nonlinear Plate Bending



5.2.1 Description of Problem[1]



Next, we consider a non-linear plate bending problems using the newly developed mixed models in the chapter III. A square plate with the following material properties was considered.



		



		(5.4)







The origin of the coordinate was chosen to be located at the center of the plated. The geometry and the coordinate of the plate are described in the Fig. 5.6.



		[image: ]



		Fig. 5.6. A description of the plate bending problem.







As it was discussed in the beam bending problem, due to the given boundary conditions and the geometry of the plate and the applied load, the boundary conditions of the rectangular plate with biaxial symmetry were considered. Here three symmetry boundary conditions were considered with common mathematical boundary condition along the symmetry lines of the quadrant of the plate. The specific boundary conditions are given in the Fig. 5.7. Note that for the SS1, at the singular points, i.e. point (5, 5), both boundary conditions of  y = 5 and x = 5 , were specified.
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		Fig. 5.7. Symmetry boundary conditions[1, 25] of a quadrant of the square plate.







5.2.2 Non-dimensional Analysis of Linear Solutions



To check the accuracy of the newly developed plate bending models, solutions of the new models were compared with those of the existing models [3, 26, 27] and analytic solutions. First, the linear solutions of the mixed CPT models will be discussed by comparing the data obtained with displacement based model[1, 7].

It can be clearly shown, that the linear solution of the Model II is the same as that of the mixed model developed by Reddy[7], because both models includes the same variables(i.e. vertical displacement, and bending moments) which are related to the bending of the plate, while the Model I includes shear resultants also in addition to those. The comparison of the results of the various models under the simple support I (SS1) and clamped (CC) boundary conditions are given in the Tables 5.7 and 5.8.

For the simple support (SS1) boundary condition, the Model II showed best accuracy for the center vertical deflection, while the Model I provided better accuracy for the center bending moment as shown in the Table 5.7.



		Table 5.7   

Comparison of the linear solution of various CPT Models, isotropic ( ) square plate, simple supported (SS1).



		Mesh size

		Current Models

		Mixed 
(Reddy [7])

		Mixed
(Herrmann[26])

		Hybrid
( Allman[27] )

		Compatible cubic
displacement Model[1]



		

		MODEL I

		Model II

		

		

		

		



		Liner

(4-node)

		Center deflection (* equivalent quadratic),

 ( Exact solution, 0.4062 [7] )



		1×1

		0.4613( *   -    )

		0.4613(    -     )

		0.4613

		0.9018

		0.347

		0.220



		2×2

		0.4383(0.4154)

		0.4237(0.4154)

		0.4237

		0.5127

		0.392

		0.371



		4×4

		0.4135(0.4067)

		0.4106(0.4067)

		0.4106

		0.4316

		0.403

		0.392



		6×6

		0.4094(0.4063)

		0.4082(0.4063)

		0.4082

		0.4172

		-

		-



		8×8

		0.4079(0.4063)

		0.4073(0.4063)

		-

		-

		-

		-



		Liner

(4-node)

		Center bending moment(equivalent quadratic),

 ( Exact solution, 0.479 [7])



		1×1

		0.7196(    -     )

		0.7196(    -     )

		0.7196

		0.328

		0.604

		-



		2×2

		0.5029(0.4906)

		0.5246(0.4096)

		0.5246

		0.446

		0.515

		-



		4×4

		0.4850(0.4797)

		0.4892(0.4796)

		0.4892

		0.471

		0.487

		-



		6×6

		0.4816(0.4790)

		0.4834(0.4790)

		0.4834

		0.476

		-

		-



		8×8

		0.4804(0.4788)

		0.4814(0.4789)

		-

		-

		-

		-



		









		Table 5.8  

Comparison of the linear solution of various CPT Models, isotropic ( 3) square plate, clamped (CC).



		Mesh size

		Current Models

		Mixed 
(Reddy [7])

		Mixed
(Herrmann[26])

		Hybrid
( Allman[27] )

		Compatible cubic
displacement Model[1]



		

		Model I

		Model II

		

		

		

		



		Liner

(4-node)

		Center deflection(*equivalent quadratic),

  ( Exact 0.1265 [7] )



		1×1

		0.1576(*    -   )

		1.6644(    -     )

		1.6644

		0.7440

		0.087

		0.026



		2×2

		0.1502(0.1512)

		0.1528(0.1512)

		0.1528

		0.2854

		0.132

		0.120



		4×4

		0.1310(0.1279)

		0.1339(0.1278)

		0.1339

		0.1696

		0.129

		0.121



		6×6

		0.1284(0.1268)

		0.1299(0.1268)

		0.1299

		0.1463

		-

		-



		8×8

		0.1265(0.1265)

		0.1270(0.1266)

		-

		-

		-

		-



		Liner

(4-node)

		Center bending moment(equivalent quadratic),

  ( Exact 0.230 [7])



		1×1

		0.4918(    -     )

		0.5193(    -     )

		0.5193

		0.208

		0.344

		-



		2×2

		0.2627(0.2552)

		0.3165(0.2552)

		0.3165

		0.242

		0.314

		-



		4×4

		0.2354(0.2312)

		0.2478(0.2310)

		0.2478

		0.235

		0.250

		-



		6×6

		0.2318(0.2295)

		0.2374(0.2295)

		0.2374

		0.232

		-

		-



		8×8

		0.2286(0.2290)

		0.2310(0.2291)

		-

		-

		-

		-







For the clamped (CC) boundary condition, the Model I showed best accuracy both for the center vertical deflection and the center bending moment as shown in the Table 5.8. The difference of the solution between Model I and Model II was caused by the presence or absence of the shear resultant in the finite element models. Thus, by including the shear resultants (i.e.,  and ) as nodal values in the CPT mixed finite element model, more accurate center bending moment and center vertical deflection were obtained.

Next, current CPT mixed models were compared with the displacement based model. For the CPT displacement based model, non-conforming [4] and the conforming[4] elements should be used because of the continuity requirement of the weak formulation[1]. Current mixed models provided better accuracy when the compatible nine-node quadratic element was used. But the four-node liner element also provided acceptable accuracy compared with the non-conforming displacement based model. And, for the SS1 boundary condition with the Poisson’s ratio, , the Model II also showed better accuracy as it did with . In both cases, stresses obtained from the current mixed model showed better accuracy, because the stresses can be directly computed by using bending moment or shear resultant obtained at the node, not including any derivative. Stresses in the Table 5.9, were obtained by the following equations. See equation (1.25) of the chapter I for specific terms of the matrix Q (i.e.  ), while  is the vertical shear resultant of the FSDT. And  is the component of the invert of matrix [D] given in the (1.24) and (1.29).





		





		(5.6)



		





		(5.7)



		

		(5.8)









Not only vertical deflection but also stresses showed better accuracy under simple supported I (SS1) boundary condition, when they were compared with those of the displacement based model. In most of the cases results obtained with 9-node quadratic element presented better accuracy. Results of isotropic plate, under SS1 boundary condition are given in the Table 5.9.



		Table 5.9   

Comparison of the CPT linear solution with that of the displacement model, isotropic ( ) square plate, simple supported (SS1). ,   ,      



		Mesh type

		Linear (4-node)

		Quadratic (9-node)

		Exact[1]



		

		2×2

		4×4

		8×8

		1×1

		2×2

		4×4

		



		Model  I

		

		4.9407

		4.6534

		4.5903

		4.6753

		4.5752

		4.5704

		4.5701



		

		

		0.2912

		0.2800

		0.2772

		0.2835

		0.2859

		0.2762

		0.2762



		

		

		0.2132

		0.2114

		0.2097

		0.2498

		0.2288

		0.2162

		0.2085



		Model II

		

		4.7801

		4.6221

		4.5831

		4.6753

		4.5749

		4.5704

		4.5701



		

		

		0.3035

		0.2823

		0.2864

		0.2835

		0.2767

		0.2762

		0.2762



		

		

		0.1987

		0.2054

		0.2078

		0.2498

		0.2283

		0.2160

		0.2085



		Mesh type

		Linear(4-node) and
Non-conforming (12 - node)

		Linear (4-node) and
Conforming (16 - node)

		Exact[1]



		

		2×2

		4×4

		8×8

		2×2

		4×4

		8×8

		



		DSPL. [1]

		

		4.8571

		4.6425

		4.5883

		4.7619

		4.5952

		4.5739

		4.5701



		

		

		0.2405

		0.2673

		0.2740

		0.2637

		0.2637

		0.2731

		0.2762



		

		

		0.1713

		0.1964

		0.2050

		0.1688

		0.1935

		0.2040

		0.2085







		Table 5.10   

Comparison of the CPT linear solution with that of the displacement Model, isotropic ( ) square plate, clamped(CC).,   ,      



		Mesh type

		Linear (4-node)

		Quadratic (9-node)

		Exact



		

		2×2

		4×4

		8×8

		1×1

		2×2

		4×4

		



		Model  I

		

		1.6933

		1.4746

		1.4220

		1.7043

		1.4386

		1.4234

		1.4231



		

		

		0.1528

		0.1360

		0.1318

		0.1486

		0.1335

		0.1321

		-



		

		

		0.0433

		0.0144

		0.0062

		0.0318

		0.0067

		0.0071

		-



		Model II

		

		1.7239

		1.5080

		1.4278

		1.7043

		1.4381

		1.4248

		1.4231



		

		

		0.1839

		0.1431

		0.1331

		0.1486

		0.1333

		0.1321

		-



		

		

		0.0378

		0.0127

		0.0068

		0.0318

		0.0065

		0.0071

		-



		Mesh type

		Linear(4-node) and
Non-conforming (12 - node)

		Linear (4-node) and
Conforming (16 - node)

		Exact



		

		2×2

		4×4

		8×8

		2×2

		4×4

		8×8

		



		DSPL. [1]

		

		1.5731

		1.4653

		1.4342

		1.4778

		1.4370

		1.4249

		1.4231



		

		

		0.0987

		0.1238

		0.1301

		0.0861

		0.1197

		0.1288

		-



		

		

		0.0497

		0.0222

		0.0067

		0.0489

		0.0224

		0.0068

		-







Improvement was noticed with clamped boundary condition. The comparison of the results with isotropic plate (), under CC boundary condition are given in the Table 5.10.

Next, the numerical results of the Model III and IV are compared with the results of the Reddy’s mixed model[1]. The mixed model developed by Reddy included bending moments as independent nodal value in the finite element model, while current Model III and IV included vertical shear resultants (i.e.,  and ), as independent nodal value. Note that the difference between Model III and VI comes from the presence or absence of membrane forces (i.e., ,  and ) in the finite element models. Thus, the solution of the linear bending of each model is essentially the same as shown in the Table 5.11.



		Table 5.11    

Comparison of the current mixed FSDT linear solution with that of the other mixed model (Reddy[7]), with isotropic ( ) square plate, simple supported (SS1).



		Mesh size

		Current Models

		Mixed

(Reddy[7])

		Current Models

		Mixed

(Reddy[7])



		

		Model(III)

		Model(IV)

		

		Model(III)

		Model(IV)

		



		Liner

(4-node)

		Center deflection,

,

 (Exact 0.427[8])

		Center bending moment

, 

(Exact 0.479[8])



		1×1

		0.4174(*  -     )

		0.4174(    -     )

		0.4264

		0.6094(    -     )

		0.6094(    -     )

		0.6094



		2×2

		0.4293(0.4345)

		0.4293(0.4345)

		0.4321

		0.5060(0.4779)

		0.5060(0.4779)

		0.5070



		4×4

		0.4280(0.4277)

		0.4280(0.4277)

		0.4285

		0.4849(0.4779)

		0.4849(0.4779)

		0.4850



		8×8

		0.4275(0.4273)

		0.4275(0.4273)

		-

		0.4803(0.4785)

		0.4803(0.4785)

		-









Also the comparison of the center deflection and stresses of current models with those of the displacement based model is presented in the Table 5.12. In most of cases, current models showed better accuracy for both of the center vertical displacement and stresses.





		Table 5.12 

Comparison of the linear solution of the FSDT with isotropic ( ) square plate, simple supported (SS1).  ,   ,     ,   



		Model 

type

		Mesh type

		Linear (4-node)

		Quadratic (9-node)

		Exact[1]



		

		

		2×2

		4×4

		8×8

		1×1

		2×2

		4×4

		



		Model (III)

		

		4.8139

		4.7987

		4.7931

		4.8727

		4.7950

		4.7913

		4.7914



		

		

		0.2920

		0.2797

		0.2771

		0.2756

		0.2755

		0.2762

		0.2762



		

		

		0.2093

		0.2098

		0.2097

		0.2399

		0.2216

		0.2135

		0.2085



		

		

		0.3962

		0.4025

		0.4047

		0.3576

		0.3907

		0.4002

		0.3927



		Model (IV)

		

		4.8139

		4.7987

		4.7931

		4.8727

		4.7950

		4.7913

		4.7914



		

		

		0.2920

		0.2797

		0.2771

		0.2756

		0.2755

		0.2762

		0.2762



		

		

		0.2093

		0.2098

		0.2097

		0.2399

		0.2216

		0.2135

		0.2085



		

		

		0.3962

		0.4025

		0.4047

		0.3576

		0.3907

		0.4002

		0.3927



		DSPL.[1]

		

		4.8887

		4.8137

		4.7866

		4.9711

		4.8005

		4.7917

		4.7914



		

		

		0.2441

		0.2684

		0.2737

		0.2645

		0.2716

		0.2750

		0.2762



		

		

		0.1504

		0.1869

		0.2737

		0.1652

		0.1943

		0.2044

		0.2085



		

		

		0.2750

		0.3356

		0.2008

		0.2886

		0.3425

		0.3735

		0.3927







5.2.3 Non-linear Analysis



Total 12 load step was used to see the significance of the non-linearity with the following incremental load parameter vector [1] ,  .



		

		(5.9)







A tolerance  was used for convergence in the Newton – Raphson iteration scheme. Model I and II was compared with the CPT displacement base model to see its non-linear behavior. In non-linear analysis of the CPT, center deflection, normal stress and membrane stress were compared with the results of the non-conforming and conforming displacement based models. 

First, the center defection, , of the newly developed models are presented in the Table 5.13. In every load step, converged solution was obtained within 4 iterations. To investigate the effect of reduced integration, results of full integration and the reduced integration were presented in the Table 5.13. In both of the model, the locking was not severe and the effect of reduced integration was not significant. 



		Table 5.13 

Effect of reduced integration in Model I and II.



		P 

		Center deflection, w, CPT-(SS1)



		

		MODEL I 

		MODEL II



		

		4x4-Linear

		2x2-Quadratic

		4x4-Linear

		2x2-Quadratic



		

		FI

		RI

		FI

		RI

		FI

		RI

		FI

		RI



		[bookmark: RANGE!C4:D15]6.25

		0.2736

		0.2737

		[bookmark: RANGE!E4:E15]0.2691

		0.2691

		0.2718

		0.2719

		0.2691

		0.2691



		12.50

		0.5090

		0.5096

		0.5005

		0.5007

		0.5059

		0.5064

		0.5005

		0.5007



		25.00

		0.8608

		0.8629

		0.8468

		0.8475

		0.8565

		0.8579

		0.8470

		0.8476



		50.00

		1.3119

		1.3163

		1.2923

		1.2943

		1.3061

		1.3093

		1.2932

		1.2947



		75.00

		1.6185

		1.6244

		1.5960

		1.5997

		1.6114

		1.6157

		1.5977

		1.6004



		100.00

		1.8572

		1.8641

		1.8328

		1.8383

		1.8488

		1.8539

		1.8357

		1.8394



		125.00

		2.0559

		2.0637

		2.0302

		2.0377

		2.0462

		2.0521

		2.0339

		2.0391



		150.00

		2.2280

		2.2365

		2.2011

		2.2107

		2.2171

		2.2235

		2.2059

		2.2125



		175.00

		2.3811

		2.3900

		2.3529

		2.3649

		2.3689

		2.3757

		2.3588

		2.3669



		200.00

		2.5196

		2.5289

		2.4901

		2.5045

		2.5062

		2.5133

		2.4971

		2.5068



		225.00

		2.6465

		2.6562

		2.6158

		2.6327

		2.6320

		2.6394

		2.6240

		2.6352



		250.00

		2.7641

		2.7741

		2.7321

		2.7515

		2.7484

		2.7561

		2.7414

		2.7541







Then, using 8 × 8 linear and 4 × 4 quadratic elements, non-linear normal stresses and center deflection of the Model I were compared with those of the non-conforming and the conforming displacement based models. The results of vertical deflection ans the normal stress is presented in the Table 5.14 







		Table 5.14 

Comparison of the center deflection and normal stress of Model I and II with the CPT displacement model.



		P 

		Center deflection, w, CPT-(SS3)



		

		MODEL I

		MODEL II

		DSPL

		DSPL



		

		8x8-L

		4x4-Q

		8x8-L

		4x4-Q

		8X8-CF

		8x8-UCF



		0.00

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000



		25.00

		0.6836

		0.6774

		0.6966

		0.6771

		0.6690

		0.6700



		50.00

		0.9581

		0.9501

		0.9743

		0.9497

		0.9450

		0.9460



		75.00

		1.1388

		1.1296

		1.1572

		1.1293

		1.1270

		1.1280



		100.00

		1.2775

		1.2675

		1.2977

		1.2672

		1.2670

		1.2680



		125.00

		1.3919

		1.3813

		1.4137

		1.3809

		1.3830

		1.3830



		150.00

		1.4902

		1.4791

		1.5134

		1.4787

		1.4830

		1.4830



		175.00

		1.5770

		1.5654

		1.6015

		1.5650

		1.5710

		1.5710



		200.00

		1.6552

		1.6432

		1.6809

		1.6428

		1.6510

		1.6510



		225.00

		1.7265

		1.7142

		1.7533

		1.7138

		1.7240

		1.7240



		250.00

		1.7923

		1.7796

		1.8201

		1.7793

		1.7910

		1.7910



		P 

		Normal stresses,  ,   CPT-(SS3)



		

		MODEL I

		MODEL II

		DSPL

		DSPL



		

		8x8-L

		4x4-Q

		8x8-L

		4x4-Q

		8X8-CF

		8x8-UCF



		0.00

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000



		25.00

		5.5195

		5.5008

		5.3402

		5.4980

		5.4260

		5.4230



		50.00

		8.2751

		8.2782

		8.0297

		8.2741

		8.2470

		8.2270



		75.00

		10.2633

		10.2937

		9.9885

		10.2901

		10.3090

		10.2710



		100.00

		11.8988

		11.9589

		11.6072

		11.9541

		12.0170

		11.9610



		125.00

		13.2682

		13.4106

		13.0238

		13.4098

		13.5130

		13.4400



		150.00

		14.6077

		14.7273

		14.3036

		14.7196

		14.8670

		14.7770



		175.00

		15.8033

		15.9322

		15.4838

		15.9311

		16.1170

		16.0090



		200.00

		16.8734

		17.0628

		16.5872

		17.0613

		17.2870

		17.1620



		225.00

		17.8924

		18.1308

		17.6290

		18.1271

		18.3930

		18.2510



		250.00

		18.9188

		19.1385

		18.6199

		19.1411

		19.4460

		19.2870







The non linear load versus deflection and load versus stress graphs are given in the Fig.5.8. Under the SS3 boundary condition, both of the vertical deflection and stresses of the Model I and II showed very close value when they are compared with the displacement based model. The normal stresses and the membrane stresses were computed at the  and  respectively. 9-nodel quadratic element showed closer solutions to that of the displacement based FSDT model.



		

(a) Load verses center deflection



		

(b) Load verses center normal stress



		Fig. 5.8. Plots of the membrane and normal stress of Model I, II and CPT   displacement model under SS3 boundary condition.







To see the convergence of the various models, center deflections of previously developed models with 2×2 quadratic and 4×4 linear meshes under SS1 and SS3 boundary conditions were compared. Every model showed good convergence with a tolerance, , except for the Model IV. The Model IV showed acceptable convergence with SS3 boundary condition, but with SS1 it took more iteration times to converge than other models. The iterative times taken to get converged solutions of the various models are presented in the table 5.15.



		Table 5.15 

Comparison of the convergence of Model I, II , III and IV under the SS1 and SS3 boundary conditions.



		P 

		Center deflection, w (*iteration times to converge), SS1 various models



		

		Model (III)

		Model (IV)

		Model (I)

		Model (II)



		

		4x4-L

		2x2-Q

		4x4-L

		2x2-Q

		2x2-Q

		2x2-Q



		0.00

		0.0000(3)

		0.0000(3)

		0.0000(3)

		0.0000(3)

		0.0000(3)

		0.0000(3)



		6.25

		0.2821(3)

		0.2816(3)

		0.2877(3)

		0.2847(3)

		0.2691(3)

		0.2691(3)



		12.50

		0.5213(3)

		0.5195(3)

		0.5281(5)

		0.5233(5)

		0.5007(3)

		0.5007(4)



		25.00

		0.8730(3)

		0.8695(3)

		0.8801(6)

		0.8736(6)

		0.8475(3)

		0.8476(4)



		50.00

		1.3195(3)

		1.3187(3)

		1.3237(7)

		1.3169(7)

		1.2943(3)

		1.2947(3)



		75.00

		1.6228(3)

		1.6282(3)

		1.6302(7)

		1.6256(7)

		1.5997(3)

		1.6004(3)



		100.00

		1.8589(3)

		1.8720(3)

		1.8684(7)

		1.8663(7)

		1.8383(3)

		1.8394(3)



		125.00

		2.0553(3)

		2.0769(2)

		2.0682(7)

		2.0688(7)

		2.0377(3)

		2.0391(3)



		150.00

		2.2251(3)

		2.2552(2)

		2.2420(6)

		2.2456(6)

		2.2107(3)

		2.2125(3)



		175.00

		2.3757(3)

		2.4141(2)

		2.3914(6)

		2.3973(6)

		2.3649(3)

		2.3669(2)



		200.00

		2.5116(3)

		2.5580(2)

		2.5308(6)

		2.5392(6)

		2.5045(2)

		2.5068(2)



		225.00

		2.6376(2)

		2.6898(2)

		2.6592(6)

		2.6704(6)

		2.6327(2)

		2.6352(2)



		250.00

		2.7521(2)

		2.8117(2)

		2.7717(5)

		2.7850(5)

		2.7515(2)

		2.7541(2)



		P 

		Center deflection, w (*iteration times to converge), SS3 various models



		

		Model (III)

		Model (IV)

		Model (I)

		Model (II)



		

		4x4-L

		2x2-Q

		4x4-L

		2x2-Q

		2x2-Q

		2x2-Q



		0.00

		0.0000

		0.0000

		0.0000

		0.0000

		0.000

		0.000



		6.25

		0.2911(4)

		0.2865(4)

		0.2912(4)

		0.2866(4)

		0.2718(4)

		0.2713(4)



		12.50

		0.4779(3)

		0.4709(3)

		0.4784(3)

		0.4716(3)

		0.4561(3)

		0.4552(3)



		25.00

		0.7076(3)

		0.6978(3)

		0.7080(3)

		0.6982(3)

		0.6872(3)

		0.6860(3)



		50.00

		0.9763(3)

		0.9626(3)

		0.9760(4)

		0.9622(4)

		0.9578(3)

		0.9563(4)



		75.00

		1.1542(3)

		1.1375(3)

		1.1535(4)

		1.1367(4)

		1.1360(3)

		1.1345(4)



		100.00

		1.2914(3)

		1.2724(3)

		1.2908(4)

		1.2715(4)

		1.2730(3)

		1.2714(4)



		125.00

		1.4050(2)

		1.3841(2)

		1.4046(4)

		1.3832(4)

		1.3861(3)

		1.3845(4)



		150.00

		1.5030(2)

		1.4803(2)

		1.5015(3)

		1.4783(3)

		1.4834(2)

		1.4818(3)



		175.00

		1.5897(2)

		1.5655(2)

		1.5885(3)

		1.5636(3)

		1.5693(2)

		1.5678(3)



		200.00

		1.6679(2)

		1.6422(2)

		1.6669(3)

		1.6405(3)

		1.6467(2)

		1.6452(3)



		225.00

		1.7393(2)

		1.7124(2)

		1.7385(3)

		1.7107(3)

		1.7173(2)

		1.7159(3)



		250.00

		1.8054(2)

		1.7773(2)

		1.8047(3)

		1.7757(3)

		1.7825(2)

		1.7811(3)







In the nonlinear analysis of the FSDT, the non-linear center deflection, normal stress and membrane stress of the Model III were compared with the results of displacement based models. The results are presented in the Table 5.16. A 4x4 quadratic mesh showed the closest result to the displacement FSDT model’s result as shown in the Fig. 5.9.



		Table 5.16    

Comparison of the center deflection and normal stress of Model III with the FSDT displacement model under SS1 and SS3 boundary conditions.



		P 

		Center deflection, w, FSDT-Model (III)



		

		SS1

		SS3

		DSPL(SS1)

		DSPL(SS3)



		

		8x8-L

		4x4-Q

		8x8-L

		4x4-Q

		4x4-Q

		4x4-Q



		0.00

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000

		0.0000



		6.25

		0.2815

		0.2813

		0.2823

		0.2804

		0.2813

		0.2790



		12.50

		0.5192

		0.5187

		0.4671

		0.4645

		0.5186

		0.4630



		25.00

		0.8678

		0.8677

		0.6956

		0.6922

		0.8673

		0.6911



		50.00

		1.3117

		1.3159

		0.9626

		0.9582

		1.3149

		0.9575



		75.00

		1.6148

		1.6254

		1.1389

		1.1339

		1.6241

		1.1333



		100.00

		1.8522

		1.8702

		1.2748

		1.2693

		1.8687

		1.2688



		125.00

		2.0509

		2.0769

		1.3872

		1.3812

		2.0758

		1.3809



		150.00

		2.2241

		2.2583

		1.4840

		1.4777

		2.2567

		1.4774



		175.00

		2.3786

		2.4213

		1.5697

		1.5631

		2.4194

		1.5628



		200.00

		2.5191

		2.5702

		1.6470

		1.6401

		2.5681

		1.6398



		225.00

		2.6480

		2.7080

		1.7176

		1.7104

		2.7056

		1.7102



		250.00

		2.7684

		2.8366

		1.7828

		1.7754

		2.8338

		1.7752



		P 

		Normal stresses,  , FSDT-Model(III), 4x4Q



		

		SS1

		SS3

		DSPL(SS1)

		DSPL(SS3)



		

		

		

		

		

		

		



		0.00

		0.0000

		0.0000

		0.0000

		0.0000

		0.000

		0.000



		6.25

		0.1228

		1.8382

		0.2415

		1.8836

		1.780

		1.856



		12.50

		0.4124

		3.5098

		0.6646

		3.3424

		3.398

		3.300



		25.00

		1.1211

		6.0584

		1.4838

		5.3620

		5.885

		5.137



		50.00

		2.4550

		9.3685

		2.8656

		8.0544

		9.165

		8.001



		75.00

		3.6076

		11.6627

		4.0327

		10.0497

		11.465

		9.983



		100.00

		4.6341

		13.4941

		5.0765

		11.7036

		13.308

		11.634



		125.00

		5.5698

		15.0596

		6.0326

		13.1587

		14.889

		13.085



		150.00

		6.4411

		16.4546

		6.9241

		14.4891

		16.290

		14.398



		175.00

		7.2587

		17.7226

		7.7666

		15.7033

		17.567

		15.610



		200.00

		8.0353

		18.8989

		8.5692

		16.8457

		18.748

		16.743



		225.00

		8.7770

		20.0025

		9.3372

		17.9294

		19.854

		17.812



		250.00

		9.4916

		21.0468

		10.0764

		18.9536

		20.898

		18.829







		

(a) Load verses center deflection



		

(b) Load verses center normal and membrane stress



		Fig. 5.9 Plots of the center deflection, normal and membrane stress of Model III with that of the FSDT displacement model under SS1 and SS3 boundary conditions.







To see distributions of the variables other than displacements, images of the distribution of each variable are presented in the Fig. 5.10 and 5.11. The data was post processed inside of each element using 10 gauss points ranging from -0.975 to 0.975, in both newly developed models (i.e., Model I and III) and FSDT displacement based model. Converged solutions of SS3 at the load parameter, P = 250.0, were used for the post processing
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		Fig. 5.10 Post processed quadrant images of the variables in various models, SS3, with converged solution at load parameter 







		

(a) Model III





		

(b) FSDT displacement model 



		Fig. 5.11. Plots of the non-linear membrane stresses of Model III and FSDT displacement model along the x = 2.5.







		

(a) Model III





		

(a) FSDT displacement model 



		Fig. 5.12. Plots of the non-linear bending moments of Model III and FSDT displacement model along the x = 2.5.









Even though all of them are showing similar patterns for each variable as shown in the Fig. 5.10, one can easily notice that the images obtained from the current mixed models offer better picture at the boundaries of the elements, while the images obtained from the displacement based model shows discontinuous states. And more obviously, the graphs of the Fig. 5.11 and 5.12 are showing that the distribution of stresses and bending moments of Model III is better than the displacement FSDT, even though bending moments of Model III have some oscillations at the element boundary. This is the merit of the current mixed models which cannot be achieved without including force like variables as independent nodal value.






CHAPTER VI



CONCLUSION



In this study, advantages and disadvantages of newly developed nonlinear finite element models of beams and plates bending were discussed with numerical simulations under various boundary conditions. 

As an advantage, the locking of the beam element was eliminated or attenuated with newly developed beam models, depending on the inclusion of variables and also choice of the interpolation functions. Especially with the model III, the effect of including some variable was shown, and to fix new locking, use of high order interpolation function (i.e., cubic interpolation function) was adopted.

For almost every case, newly developed plate bending models provided better accuracy for linear solutions of the vertical deflection and force like variables. When it was compared with the analytic solutions, both new models and traditional models showed good accuracy for the displacement (i.e., vertical deflection w0), but new mixed models presented much better accuracy for the stress fields. The 9-node quadratic element performed better than 4-node linear element in most of cases, while linear element still provided acceptable accuracy compared with existing traditional models. 

In non linear analysis, most of the newly developed mixed models showed good convergence of non-linear solutions, when it was compared with the displacement based non-linear models. But inclusion of the some variable affected convergence of non-linear solution in the FSDT models. The Model IV showed poor convergence compared with other models, because of the absence of typical variable in the mixed formula.

The post processed data of newly developed plate bending models presented better continuity at the element boundary, while displacement based FSDT model showed noticeable discontinuity at the element boundary. Even if these defects of displacement based model can be overcome by more refined mesh or other post processing techniques, the essentially the level of accuracy for force like variables cannot be the same as that of current mixed models.

We can conclude that two main advantages of the mixed model are the reduction of the continuity requirements for the vertical displacement, and the increase of the accuracy for the resultants included in the finite element models. The disadvantages of current models are the sacrificed computational cost caused by the increased numbers of degrees of freedoms included in the finite element models.
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EBT(II)(MIXED)-PP-8XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.36819140480000001	0.54541698219999957	0.66419214300000062	0.75591116660001978	0.83175685500000063	0.89704086330002275	0.95472867510002191	1.00665637	1.0540457130000001	1.0977540690000001	EBT(DSPL)-PP-8XLH	

0	1	2	3	4	5	6	7	8	9	10	0	0.36850000000000038	0.54570000000000063	0.66450000000000065	0.75640000000000063	0.83240000000000003	0.89790000000001025	0.95580000000000065	1.008	1.0556999999999572	1.099699999999961	EBT(II)(MIXED)-CC-8XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.1033797483	0.20242713320000041	0.29434857890001526	0.37818677140001855	0.45420637619999998	0.52321208199997371	0.58613488379999956	0.64384816100000064	0.69710800040001997	0.74654739179999996	EBT(DSPL)-CC-8XLH	

0	1	2	3	4	5	6	7	8	9	10	0	0.10340000000000002	0.20230000000000001	0.29390000000000038	0.37740000000000989	0.45300000000000001	0.52159999999999951	0.58409999999999951	0.64140000000000064	0.69430000000001024	0.74330000000000063	Load, q0 (psi.)



Deflection,  w0  (in.)





TBT((MIXED)-PP-4XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.36871524839999997	0.54583774750000003	0.6645271894	0.75617993470001565	0.83197229440000064	0.89721192859999999	0.95486191520000063	1.006756776	1.0541172300000001	1.0977998969999476	TBT(DSPL)-PP-8XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.36770000000000008	0.54510000000000003	0.66390000000002292	0.75570000000002269	0.83609999999999995	0.89690000000000003	0.95460000000001843	1.0065999999999644	1.054	1.0976999999999604	TBT((MIXED)-CC-4XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.10349200640000022	0.20258703040000511	0.29446863560001202	0.37819407390001386	0.45405433470000001	0.52287673630000064	0.58560739589999256	0.64312883170001989	0.69620217179998956	0.74546293379999951	TBT(DSPL)-CC-8XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.1019	0.19969999999999999	0.29060000000000002	0.37370000000000031	0.44920000000000004	0.51790000000000003	0.58499999999999996	0.63800000000001944	0.69099999999999995	0.74030000000000062	Load, q0 (psi.)



Deflection,  w0  (in.)





HH-TBT(MIXED)-4XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.51807174260000854	1.036143485	1.5542152279999999	2.0722869699999977	2.5903587139999997	3.1084304560000002	3.6265021989999999	4.1445739409999645	4.6626456840000001	5.1807174259999975	HH-TBT(DSPL)-4XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.12230000000000002	0.24460000000000001	0.36690000000000444	0.48920000000000002	0.61150000000000004	0.73380000000000956	0.85610000000000064	0.97840000000000005	1.1007	1.2229999999999785	HH-EBT(I)(MIXED)-4XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.52083333469999993	1.0416666679999678	1.562500011	2.0833333330000001	2.6041666500000002	3.1250000139999998	3.6458333130000002	4.1666666789999756	4.6875000359999746	5.2083332870000003	HH-EBT(DSPL)-4XLH	

0	1	2	3	4	5	6	7	8	9	10	0	0.51080000000000003	1.0212999999999797	1.4985999999999828	1.9453	2.3607	2.7467000000000001	3.1074000000000002	3.4421999999999997	3.7563999999999997	4.0522999999999998	Load, q0 (psi.)



Deflection,  w0  (in.)







HH- EBT(I)-2XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.52083333399999998	1.0416666669999552	1.5625	2.0833333340000002	2.6041666680000612	3.1250000030000002	3.6458333339999998	4.1666666659999985	4.6875000049999755	5.2083333329999997	HH- EBT(II)-2XL	

0	1	2	3	4	5	6	7	8	9	10	0	0.49479166700000032	0.98958333399997933	1.484375	1.9791666669999999	2.4739583339999967	2.9687500010000001	3.4635416680000612	3.9583333329999997	4.4531250020000002	4.9479166669998245	HH- EBT(II)-4XL	0	1	2	3	4	5	6	7	8	9	10	0	0.51432299999997844	1.0286459999999999	1.5429689999999998	2.0572919999999999	2.5716149999999987	3.0859380000000001	3.60026	4.1145829999998655	4.6289059999998745	5.1432289999999998	HH- EBT(II)-8XL	0	1	2	3	4	5	6	7	8	9	10	0	0.5192059999999995	1.038411	1.557617	2.0768229999998882	2.5960289999999167	3.1152340000000001	3.6344399999999997	4.1536460000000002	4.6728519999999945	5.1920569999999655	Load, q0 (psi.)



Deflection,  w0  (in.)





CC- TBT(L/H=100)	

0	1	2	3	4	5	6	7	8	9	10	0	0.10352954400000022	0.202853905	0.29522941490000032	0.37967706970001386	0.45641436640000038	0.52620305899999997	0.58994369589999951	0.64849021650004157	0.70258711439999999	0.75286035770000004	CC- TBT(L/H=50)	

0	1	2	3	4	5	6	7	8	9	10	0	6.4961132529999993E-2	0.1287336278	0.19032935149999999	0.24907607039999999	0.30462509480000038	0.35688764610001039	0.40594959580000983	0.45199648860000002	0.49525986210000933	0.53598338509998456	CC- TBT(L/H=25)	

0	1	2	3	4	5	6	7	8	9	10	0	8.1691682730000246E-3	1.633772155E-2	2.4505045180000212E-2	3.2670525630000002E-2	4.0833550390000001E-2	4.8993509019999999E-2	5.7149794029999999E-2	6.5301798359999996E-2	7.3448920969999998E-2	8.1590564230000065E-2	Load, q0 (psi.)



Deflection,  w0  (in.)





CC- EBT(I)-(L/H=10)	0	1	2	3	4	5	6	7	8	9	10	0	3.1250000010000001E-2	6.2499999960000933E-2	9.3749999970001247E-2	0.12499999992000002	0.15624999981001036	0.18749999982001045	0.21874999929000802	0.24999999912001009	0.28124999835000031	0.31249999770001302	CC- EBT(II)-(L/H=10)	

0	1	2	3	4	5	6	7	8	9	10	0	3.1250000010000001E-2	6.2499999990002691E-2	9.3750000090005683E-2	0.12499999988999999	0.15624999996000799	0.18749999940000953	0.21874999932000844	0.24999999888001115	0.28124999840999976	0.31249999800000638	CC- TBT-(L/H=10)	

0	1	2	3	4	5	6	7	8	9	10	0	3.4999999980000002E-2	6.9999999960000114E-2	0.10499999991	0.13999999983000844	0.17499999948000869	0.20999999928000657	0.24499999881000975	0.27999999825000038	0.31499999730001726	0.34999999650000002	CC- EBT(I)-(L/H=100)	0	1	2	3	4	5	6	7	8	9	10	0	3.1031006100001052E-2	6.0849197699999955E-2	8.8647707220000024E-2	0.11411962514999999	0.13730771079000001	0.15842152413000021	0.17771879232000612	0.19544866590000001	0.21183096710999999	0.22705217237999997	CC- EBT(II)-(L/H=100)	0	1	2	3	4	5	6	7	8	9	10	0	3.1031041800001227E-2	6.0849461310000012E-2	8.8648500630000043E-2	0.114121272870004	0.13731051296999988	0.15842574474000612	0.17772466176000004	0.19545638667000559	0.21184072119000041	0.22706412465	CC- TBT-(L/H=100)	

0	1	2	3	4	5	6	7	8	9	10	0	3.1058863200000002E-2	6.0856171500000014E-2	8.85688244700049E-2	0.11390312091000022	0.13692430992000001	0.15786091769999999	0.17698310877000548	0.19454706495000001	0.21077613432000294	0.22585810731000003	Load, q0 (psi.)



Deflection,  w0  (in.)





CPT-(SS3) DSPL 8X8-CF	0	25	50	75	100	125	150	175	200	225	250	0	0.66900000000002613	0.94499999999999995	1.127	1.2669999999999553	1.383	1.4829999999999521	1.571	1.651	1.7240000000000006	1.7909999999999588	CPT-(SS3) DSPL 8x8-UCF	0	25	50	75	100	125	150	175	200	225	250	0	0.67000000000002624	0.94599999999999995	1.1279999999999535	1.268	1.383	1.4829999999999521	1.571	1.651	1.7240000000000006	1.7909999999999588	CPT-(SS3) MODEL(I) 8x8L	0	25	50	75	100	125	150	175	200	225	250	0	0.68364070000000265	0.9581326999999995	1.1388039999999999	1.2774899999999998	1.391947	1.4901789999999999	1.577007	1.6551830000000001	1.7264609999999998	1.7923410000000006	CPT-(SS3) MODEL(I) 4x4Q	0	25	50	75	100	125	150	175	200	225	250	0	0.6773514000000268	0.95007190000000064	1.1296439999999999	1.2675349999999492	1.3812659999999999	1.4790829999999999	1.5654219999999512	1.643173	1.7141510000000006	1.7796479999999999	CPT-(SS3) MODEL(II) 8x8L	0	25	50	75	100	125	150	175	200	225	250	0	0.6966286000000268	0.97426639999997733	1.1571849999999999	1.2977099999999573	1.4136859999999998	1.5134029999999998	1.601515	1.6808510000000001	1.7532880000000006	1.820139	CPT-(SS3) MODEL(II) 4x4Q	0	25	50	75	100	125	150	175	200	225	250	0	0.67705580000003518	0.94972920000002681	1.1292850000000001	1.2671589999999999	1.3808870000000419	1.478688	1.565042	1.6427959999999999	1.7137769999999544	1.7792709999999998	load parameter,  P = q0 x a4 / (E22 x h4) 



center vertical deflection,  w (in)





CPT- DSPL-SS3 8X8-CF-Normal	0	25	50	75	100	125	150	175	200	225	250	0	5.4260000000000002	8.2470000000000017	10.309000000000006	12.017000000000001	13.513	14.867000000000004	16.117000000000235	17.286999999999889	18.393000000000001	19.446000000000002	CPT- DSPL-SS3 8X8-UCF-Normal	0	25	50	75	100	125	150	175	200	225	250	0	5.423	8.2269999999999985	10.271000000000001	11.961	13.44	14.777000000000001	16.009	17.161999999999999	18.251000000000001	19.286999999999889	CPT- MODEL(I) -SS3 4X4-Q-Normal	0	25	50	75	100	125	150	175	200	225	250	0	5.5008220000000003	8.2781599999999997	10.29374	11.958870000000001	13.41061	14.727319999999999	15.93215	17.062819999999789	18.130839999999999	19.13851	CPT- MODEL(I) -SS3 4X4-Q-Membrane	0	25	50	75	100	125	150	175	200	225	250	0	1.4129959999999568	2.7983929999999999	3.9764519999998811	5.0267759999999955	5.989185	6.8873980000000001	7.733994	8.5402139999999989	9.3113509999999984	10.053650000000006	CPT- MODEL(II) -SS3 4X4-Q-Normal	0	25	50	75	100	125	150	175	200	225	250	0	5.49796	8.2740669999999987	10.29008	11.95412	13.409840000000004	14.719570000000001	15.931119999999998	17.061330000000002	18.127050000000231	19.141089999999988	CPT- MODEL(II) -SS3 4X4-Q-Membrane	0	25	50	75	100	125	150	175	200	225	250	0	1.4122259999999998	2.7974389999999998	3.974593	5.0251059999999645	5.9884560000000002	6.886406	7.7315860000000001	8.5381069999999983	9.3079440000000027	10.05081	load parameter,  P = q0 x a4 / (E22 x h4)



Stresses, σxx





FSDT-(SS1) DSPL 4x4Q	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	0.28127540000000001	0.5185748	0.86730050000000003	1.3149389999999999	1.6241190000000001	1.8686880000000001	2.0757840000000001	2.25671	2.4194019999999967	2.5680839999999998	2.7055790000000002	2.8338379999999987	FSDT-(SS3) DSPL 4x4Q	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	0.27900230000000031	0.46299190000000001	0.69107660000000004	0.95746639999997263	1.133278	1.2687550000000001	1.380871	1.4773789999999998	1.5627959999999999	1.6398079999999999	1.7101949999999559	1.7752129999999999	FSDT-(SS1) MODEL(III) 8x8L	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	0.28147490000001391	0.51916089999999959	0.86784870000002445	1.3117089999999998	1.6147870000000415	1.852206	2.0509300000000001	2.2241130000000973	2.3786239999999967	2.5191489999998771	2.6480000000000001	2.7684389999999999	FSDT-(SS1) MODEL(III) 4x4Q	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	0.28129509999999996	0.51870939999999999	0.86774550000002726	1.3158759999999998	1.6253679999999999	1.870161	2.0769289999999967	2.2582810000000002	2.4212689999998918	2.5702229999999977	2.7080109999999999	2.8366059999997919	FSDT-(SS3) MODEL(III) 8x8L	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	0.28226060000000008	0.46707590000000032	0.69562580000002983	0.96257320000000002	1.1388989999999999	1.2747629999999999	1.387151	1.484002	1.5696989999999778	1.6469739999999999	1.7175849999999571	1.7828170000000001	FSDT-(SS3) MODEL(III) 4x4Q	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	0.28040230000000038	0.46446460000001072	0.69223100000000004	0.95822180000002255	1.1339229999999998	1.269252	1.381216	1.4776919999999356	1.5630709999999999	1.6400580000000466	1.7104139999999999	1.7754049999999546	load parameter,  P = q0 x a4 / (E22 x h4) 



center vertical deflection,  w0 (in)





FSDT- DSPL-SS1 4X4-Q-Normal	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	1.78	3.3979999999999997	5.8849999999999945	9.1650000000000027	11.465000000000074	13.308	14.889000000000006	16.29	17.567	18.747999999999987	19.853999999999999	20.898	FSDT- DSPL-SS3 4X4-Q-Normal	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	1.8560000000000001	3.3	5.1369999999999996	8.0010000000000012	9.9830000000000005	11.633999999999999	13.085000000000004	14.398	15.61	16.742999999999789	17.812000000000001	18.829000000000001	FSDT- MODEL(III) -SS1 4X4-Q-Normal	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	1.838195	3.509798	6.0584109999999765	9.3685180000000035	11.66267	13.49414	15.059590000000076	16.454630000000002	17.722569999999589	18.89894	20.002490000000002	21.046800000000001	FSDT- MODEL(III) -SS1 4X4-Q-Membrane	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	0.12280910256410256	0.41240397435898762	1.1211070512820513	2.4549833333333333	3.6076487179487176	4.6341384615384245	5.5697923076923104	6.4411205128205129	7.2587000000000002	8.0353474358974353	8.7769794871794389	9.4915512820512813	FSDT- MODEL(III) -SS3 4X4-Q-Normal	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	1.883572	3.3423579999999977	5.3620079999999755	8.0544320000000766	10.04965	11.70355	13.158710000000001	14.489100000000002	15.703340000000001	16.845689999999689	17.929439999998973	18.953600000000002	FSDT- MODEL(III) -SS3 4X4-Q-Membrane	0	6.25	12.5	25	50	75	100	125	150	175	200	225	250	0	0.24148050000000001	0.66457550000000065	1.483774999999947	2.8655779999999997	4.0327159999999855	5.0764990000000134	6.0325930000000003	6.9241129999999655	7.7665569999999855	8.5691920000000028	9.3371840000000006	10.07639	load parameter,  P = q0 x a4 / (E22 x h4)



Stresses, σxx





σxx	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5625E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	768860.4	782804.1	796349.6	807845.2	817291	824686.8	830032.7	833328.9	834542.6	576284.4	603398.80000000005	631908.19999997888	658714.9	683819	707220.4	728919.1	748915.19999997888	765455.9	319220	348030.2	380078.5	412165.8	444292.1	476457.2	508661.4	540904.6	569956.80000000005	182645.5	185403.2	192218.2	202981.4	217692.79999999999	236352.4	258960.3	285516.40000000002	312792.7	σyy	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5625E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	565605.6	564795.69999997888	564035.19999997888	563421.6	562954.80000000005	562634.80000000005	562461.69999997888	562435.19999997888	562537.19999997888	576285.30000000005	574501.30000000005	572693.5	571069.4	569628.80000000005	568371.9	567298.6	566408.9	565765.19999997888	596289.9	593634.4	590804.6	588101.80000000005	585525.9	583077.19999997888	580755.30000000005	578560.5	576693.9	607781.80000000005	607727.19999997888	607298.4	606482.6	605279	603688.19999997888	601709.9	599344.30000000005	596883.9	σxy	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5625E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	-42779	-37266.9	-31393.5	-25784.51	-20439.900000000001	-15359.68	-10543.859999999546	-5992.4360000000006	-2122.2039999999997	-72456.81	-69040.14	-65276.07	-61545.98	-57849.82	-54187.61	-50559.350000000013	-46965.04	-43759.19	-65301.87	-67373.3	-69309.09	-70859.850000000006	-72025.58	-72806.27	-73201.939999999988	-73212.55	-72892.899999999994	2977.8760000000002	-5659.24	-14988.58	-24036.39	-32802.660000000003	-41287.410000000003	-49490.62	-57412.310000000012	-64301.11	Coordinate, P = (0.25, y)



Membrane stress,  σxx X 10000 





σxx	1.234375	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5599999999999998E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	739352.3	785469.2	799646.6	813638.5	825670.6	835656.7	843521.6	849215.5	852696.4	853923.9	587426.6	613673.30000000005	642131.19999997888	669621.19999997888	695930.5	720857.59999999637	744224.6	765863.9	783743.8	326092.7	351363.1	381274.5	412878	445938.7	480230.3	515536.2	551649.1	584676.4	188436.6	187371.2	191245.7	200429.5	214909	234669.9	259698.9	289981	321714.7	σyy	1.234375	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5599999999999998E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	813185.2	573377.5	570359.69999997888	567902.6	566356.4	565695.4	565897.1	566946.6	568831.30000000005	571237.5	587426	580109.1	574047.1	570091.9	568180.4	568252.4	570254.19999997888	574135.9	579200.80000000005	615501.9	600395.4	587813.6	579581.4	575630.1	575891.1	580299.80000000005	588794.69999997888	599882.9	627454.5	612052.9	599491.69999997888	591713.6	588715.9	590493.80000000005	597044.6	608363.6	622623.19999997888	σxy	1.234375	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5599999999999998E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	-1143.499	-44275.880000000012	-38500.269999999997	-32546.920000000009	-26984.1	-21709.32	-16620.39	-11614.69	-6590.2930000000006	-1968.1389999999999	-78460.959999999992	-72705.320000000007	-67254.909999999989	-62675.21	-58836.74	-55611.17	-52869.48	-50483.09	-48532.62	-73980.53	-71229.52	-69516.55	-69101.55	-69864.45	-71684.989999999991	-74442.92	-78017.27	-81833.73	-3308.1979999999999	-7424.9	-13066.43	-19826.169999999896	-27696.91	-36673.410000000003	-46748.340000000011	-57917.5	-68899.27	Coordinate, P = (0.25, y)



Membrane stress,  σxx X 10000 





Myy	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5625E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	98753.02	97711.19	96667.79	95744.6	94941.61	94258.83	93696.26	93253.88	92958.54	110131.8	109254.3	108157.1	106931.5	105577.2	104094.5	102483.1	100743.2	99067.42	103878.6	107307.8	110301.8	112436.6	113712.2	114128.7	113685.9	112384	110477.6	2851.9079999999999	26743.34	49540.53	68391.570000000007	83296.479999999996	94255.22	101267.8	104334.3	103720.1	Mxy	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5625E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	-16204.02	-14654.2	-12842.84	-10937.46	-8938.0319999999811	-6844.576	-4657.0839999999998	-2375.56	-241.78730000000004	-31855.47	-31448.43	-30586.920000000009	-29294.629999999896	-27571.56	-25417.72	-22833.1	-19817.7	-16735.52	-40538.050000000003	-42754.94	-44252.05	-44732.24	-44195.49	-42641.810000000012	-40071.19	-36483.64	-32385.37	-1994.963	-18249.960000000021	-32722.809999999896	-43418.57	-50337.229999999996	-53478.79	-52843.25	-48430.62	-41229.83	Mxx	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5625E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	123601.3	123845	124104.2	124351.2	124585.9	124808.4	125018.6	125216.7	125384.4	110132.3	111803.8	113618.7	115389.1	117115	118796.4	120433.3	122025.7	123420.8	68314.880000000005	76093.8	83821.31	90584.95	96384.640000000014	101220.5	105092.3	108000.3	109793.4	2493.8580000000002	23057.34	41934.090000000004	56630.27	67145.86	73480.86	75635.27	73609.119999999995	68211.16	Coordinates, P = ( 2.5, y)



Bending Moments X 10000







Myy	1.234375	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5599999999999998E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	119821.6	99738.409999999989	99189.19	98532.83	97827.98	97074.620000000024	96272.8	95422.439999999988	94523.6	93673.180000000022	112934.8	111775.3	110423.4	109004.7	107519.3	105967.1	104348.2	102662.5	101088.3	109247.4	110246	111306	112313.9	113269.7	114173.3	115024.8	115824.1	116498.9	20740.22	31212.99	43258.05	55733.340000000011	68638.880000000005	81974.64	95740.55	109936.7	123081.2	Mxy	1.234375	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5599999999999998E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	-156.6592	-18103.060000000001	-16037.46	-13744.4	-11453.44	-9164.596999999625	-6877.8910000000014	-4593.3100000000004	-2310.84	-258.45829999999899	-36224.129999999997	-34252.380000000012	-32048.47	-29830.75	-27599.200000000001	-25353.89	-23094.760000000009	-20821.849999999897	-18764.419999999896	-47730.98	-46817.61	-45738.57	-44591.83	-43377.54	-42095.59	-40746.050000000003	-39328.880000000012	-37995.629999999997	-16498.07	-22045.040000000001	-28148.329999999896	-34188.550000000003	-40165.64	-46079.57	-51930.39	-57718.11	-62873.07	Mxx	1.234375	1.234375	1.09375	0.9375	0.78125	0.62500000000001454	0.46875	0.31250000000000488	0.15625000000000044	1.5599999999999998E-2	2.484375	2.34375	2.1875000000000679	2.0312499999999147	1.875	1.71875	1.5625	1.40625	1.2656249999999534	3.734375	3.59375	3.4375	3.28125	3.125	2.96875	2.8124999999999147	2.6562499999999147	2.5156249999999987	4.984375	4.84375	4.6874999999999956	4.5312500000000124	4.375	4.21875	4.0624999999999956	3.9062499999999147	3.765625	109958.8	124794.5	125606.3	126354.6	126941.3	127366.39999999999	127629.8	127731.4	127671.5	127479.3	112935	115014	117112.6	118988.5	120641.9	122072.8	123281.2	124266.9	124963.8	81604.97	85814.09	90325.81	94663.7	98827.77	102818.1	106634.6	110277.2	113407.1	31229.25	32924.04	36169.47	40848.97	46962.53	54510.17	63491.8	73907.55	84507.9	Coordinates, P = ( 2.5, y)



Bending Moments X 10000
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