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ABSTRACT

Bounds on Codes from Smooth Toric Threefolds with Rank(Pic(X)) = 2.

(August 2008)

James Lee Kimball, B.S., Louisiana College;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Henry Schenck

In 1998, J. P. Hansen introduced the construction of an error-correcting code over a

finite field Fq from a convex integral polytope in R2. Given a polytope P ⊂ R2, there

is an associated toric variety XP , and Hansen used the cohomology and intersection

theory of divisors on XP to determine explicit formulas for the dimension and min-

imum distance of the associated toric code CP . We begin by reviewing the basics

of algebraic coding theory and toric varieties and discuss how these areas intertwine

with discrete geometry. Our first results characterize certain polygons that generate

and do not generate maximum distance separable (MDS) codes and Almost-MDS

codes. In 2006, Little and Schenck gave formulas for the minimum distance of cer-

tain toric codes corresponding to smooth toric surfaces with rank(Pic(X)) = 2 and

rank(Pic(X)) = 3. Additionally, they gave upper and lower bounds on the minimum

distance of an arbitrary toric code CP by finding a subpolygon of P with a maximal,

nontrivial Minkowski sum decomposition. Following this example, we give explicit

formulas for the minimum distance of toric codes associated with two families of

smooth toric threefolds with rank(Pic(X)) = 2, characterized by G. Ewald and A.

Schmeinck in 1993. Lastly, we give explicit formulas for the dimension of a toric code

generated from a Minkowski sum of a finite number of polytopes in R2 and R3 and a

lower bound for the minimum distance.
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CHAPTER I

INTRODUCTION TO CODING THEORY

A. Algebraic Error-Correcting Codes

Error-correcting codes play an important role in transmitting information reliably

and efficiently across communication channels. By encoding our data or message

in a way that allows the decoder to recognize and correct errors, we can greatly

increase the accuracy of the received message. The development of “good” coding and

decoding schemes is the goal of algebraic coding theory, and is studied by computer

scientists, engineers, and mathematicians. One of the key ingredients of this research

is determining the minimum distance between the codewords of a code.

The basic idea is to take a message, break it into pieces of fixed length, and

encode these pieces by adding redundancy or extra structure. The majority of our

notation and terminology follows Chapters 9 and 10 of [1]. Let Fq denote a finite

field with q elements. The elements of this field will comprise the alphabet for our

code. Each “word” of the message will have fixed length k, and the resulting encoded

word will have fixed length n. Necessarily, we have k < n to ensure our redundancy

requirement. Thus our encoding process is a one-to-one function E : F
k
q → F

n
q , and

the image E(Fk
q ) = C is called the set of codewords. Similarly, the decoding process

is a function D : Fn
q → Fk

q , where D ◦ E is the identity on Fk
q .

A linear block code is one whose set of codewords C forms a linear subspace of Fn
q .

We may, therefore, view our encoding function as a linear mapping between vector

spaces whose image is the subspace C. The matrix representation of E with respect

to the standard basis of Fk
q is called the generator matrix G of the code C. We write

This dissertation follows the style of SIAM Journal on Discrete Mathematics.
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G as a k× n matrix, and we encode a word via multiplication on the left. (There are

two conventions for the form of the generator matrix. Some texts write G as an n×k

matrix, and the code it generates is called the dual code to C, denoted C⊥. However,

we lose no information by using the former convention.) As C is a proper subspace

of Fn
q , it is beneficial to have an idea of how much our codewords are “spread out,”

and for this we use the Hamming distance.

Definition I.1. Let x, y ∈ Fn
q . Then the Hamming distance between x and y is

d(x, y) = |{i, 1 ≤ i ≤ n : xi 6= yi}|.

That is, d(x, y) counts the number of terms in which x and y differ. The minimum

distance of a code is the value d = min{d(x, y) : x 6= y ∈ C}. We denote the minimum

distance of a code C by d(C).

Given a fixed n and k, we refer to a linear block code with minimum distance d

as an [n, k, d] code. Over the finite field Fq, this code will have qk distinct codewords.

A “good” coding scheme is one for which the information rate k/n is not too small

and for which the minimum distance d is large. This essentially means that our set

of codewords is very “spread out” inside Fn
q and that we did not have to add an

extraordinary amount of redundancy to obtain this beneficial property. However, one

should not conclude that codes of small block length are better that those with long

block length. Indeed, in 1948, Claude Shannon presented his Noisy Channel Coding

Theorem, which stated the existence of codes with arbitrarily small probabilities of

block error if the block length is large enough [20]. Similar results have also been

shown for Low-Density-Parity-Check codes and the more recently discovered turbo

codes.
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Example I.1. A [7, 4, 3] code with generator matrix G.

G =













1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1













One can quickly compute the 16 codewords of this code and observe that the minimum

distance is 3.

Since Fn
q is a vector space, we can define the weight of the word x as d(x, 0),

where 0 is the zero vector in Fn
q . The weight of a word is just the number of nonzero

entries. Thus, for linear block codes our goal is to find the minimum weight over

all codewords of C. Two important results used in approximating this minimum

distance are the Singleton bound and the Gilbert-Varshamov bound. The idea behind

both results is to consider a code of block length n and minimum distance d and then

find a code C of maximum size that satisfies these parameters. That is, we want to

maximize k for a given q.

Proposition I.1. (Singleton Bound) Let C ⊂ Fn
q be a linear code of maximum

size with block length n and minimum distance d. Then |C| ≤ qn−d+1.

To see the Singleton bound, simply remove any fixed set of d − 1 entries from

every codeword in C. Since the minimum distance of C is d, we still have a set

containing qk unique codewords. That is, qk ≤ qn−d+1. So, we have an upper bound

on the maximum number of codeswords in C. An alternate and commonly used

version of the Singleton bound immediately follows. Namely, d ≤ n − k + 1. Since

we, in general, like codes with large minimum distance, this last inequality provides a

very pleasing upper bound. Codes that attain this upper bound are called maximum

distance separable (MDS) and are used extensively in practice.
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Proposition I.2. (Gilbert-Varshamov Bound) Let C ⊂ Fn
q be a linear code of

maximum size with block length n and minimum distance d, and let b = |Bd−1(x)|,

the number of words in the ball Bd−1(x) centered at an arbitrary codeword x ∈ Fn
q .

Then b =
∑d−1

i=0

(

n

i

)

(q − 1)i and |C| satisfies b · |C| ≥ qn.

This follows from the observation that the union
⋃

x∈C Bd−1(x) must completely

cover Fn
q . If it did not, then we could increase the size of C and maintain the same

minimum distance, contradicting maximality. This is also an alternate form of the

Gilbert-Varshamov (GV) bound [23]. Precisely stated, the GV bound says that for

a given q and 0 ≤ δ ≤ q−1
q

, there exists an infinite sequence of linear [n, k, d] codes

with δ ≡ d/n and R ≡ k/n such that

R ≥ 1− [δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ)] for all n.

Improvements to the GV bound were elusive for many years, and some researchers

believed it to be the best possible bound. In fact, the class of codes known as Goppa

codes was known to only theoretically contain codes that met the GV bound. Then in

1982, Tsfasman, Vladut, and Zink proved the existence of algebraic-geometric codes

that exceed the GV bound if q is sufficiently large [23]. This major contribution led

to the Tsfasman-Vladut-Zink (TVZ) bound for linear codes, which is better than the

GV bound when q ≥ 49 [4]. The result of Tsfasman, Vladut, and Zink, and the very

good parameters associated with algebraic-geometric codes provides motivation for

investigating toric codes.

Before describing algebraic-geometric codes and toric codes, we define Reed-

Solomon (RS) codes. We do this because Reed-Solomon codes appear as a subclass

of algebraic-geometric and toric codes, and it is helpful to understand their properties.

Reed-Solomon codes are extensively used in industry and have very nice properties,
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such as being MDS. It is also possible to generate RS codes of a predefined minimum

distance. Since there are many ways to describe Reed-Solomon codes, we will use the

definition from [1] because it leads us to the observation that Reed-Solomon codes

are 1-dimensional toric codes.

Definition I.2. Given a finite field Fq, let α ∈ Fq be a primitive element and n = q−1.

Fix k − 1 < n, and let Lk−1 = {
∑k−1

i=0 ait
i : ai ∈ Fq}, the set of polynomials of degree

at most k − 1 over Fq. Then the Reed-Solomon code is the set of codewords

C = {(f(1), f(α), . . . , f(αq−2)) ∈ F
n
q : f ∈ Lk−1}.

A convenient way to construct a generator matrix for a Reed-Solomon code of

dimension k is to take a basis {1, t, . . . , tk−1} of Lk−1 and then evaluate each basis

element over the set of points F∗
q. This creates k vectors of length n that generate

the Reed-Solomon code. Thus, our generator matrix looks like

1 α . . . αq−2

G =

1

t
...

tk−1













1 1 . . . 1

1 α . . . αq−2

...
...

...

1 αk−1 . . . α(q−2)(k−1)













To see that Reed-Solomon codes are linear codes, observe that the above gener-

ator matrix is a submatrix of a Vandermonde matrix. So, our linear map is injective

and our code is a vector subspace of Fn
q . This generator matrix also highlights the

fact that Reed-Solomon codes are closed under cyclic permutations. Codes of this

nature are called cyclic codes. That Reed-Solomon codes are MDS follows from the

fact that the polynomial f = (t − α1)(t − α2) · · · (t − αk−1), with all αi ∈ F∗
q dis-

tinct, is an element of Lk−1 that has exactly k − 1 zeros. Thus, the corresponding
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codeword will have exactly n − k + 1 nonzero entries. It is this connection between

codewords and zero sets of polynomials that leads us to Goppa codes, also known as

algebraic-geometric codes.

Goppa presented his construction of algebraic-geometric codes in [7] in 1981,

and there has since been many variations. The idea is to choose a non-singular

projective curve X of genus g defined over a finite field Fq with distinct Fq-rational

points P1, P2, . . . , Pm. Set D = P1 + . . . + Pm, a divisor on X, and choose a divisor

E with support disjoint from D. (We will formally define divisors in Chapter II).

There is a finite dimensional Fq-vector space of rational functions associated with E,

denoted L(E). The algebraic-geometric code associated with E will have dimension

dim(L(E)) and is the image of the evaluation map

ev : L(E) −→ F
m
q

f 7−→ (f(P1), . . . , f(Pm))

While this construction seems to introduce unnecessary complexity, the Riemann-

Roch Theorem makes the determination of the code parameters very accessible. No-

tice that the points Pi do not all necessarily lie in (F∗
q)

2. So, this construction is not

identical to the previous one. However, we can still generate a Reed-Solomon code.

Example I.2. [6, Exercise 4.2] Given affine coordinates X, Y , and Z, consider the

projective curve Y = 0 in P
2 over F11. Then D = (0 : 0 : 1) + (1 : 0 : 1) + (2 :

0 : 1) + . . . + (9 : 0 : 1) is a divisor on our curve and E = 7(1 : 0 : 0) is a divisor

with support disjoint from D. So our code has block length 10. A consequence of

the Riemann-Roch Theorem is dim(L(E)) = deg(E)− g + 1 when deg(E) > 2g − 2.

Since the genus g of our curve is 0, the dimension of L(E) is 8. It can be shown that

d ≥ n− k + 1− g, provided deg(E) < n. Thus, d ≥ 3 and, by the Singleton Bound,
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d ≤ 10− 8 + 1 = 3. So, we have a [10, 8, 3] Reed-Solomon Code.

B. Codes from Integral Convex Polytopes

In 1998, J. P. Hansen introduced the notion of constructing error-correcting codes

from integral convex polygons associated with certain toric surfaces [9]. These codes

not only use the cohomology and intersection theory of surfaces to determine param-

eters, but also the geometry of integral convex polygons. In this section, we present

the code construction and postpone the connection with toric surfaces until Chapter

III. Begin by fixing an integral convex polytope P ⊂ Rm, m ≥ 1, and a finite field

Fq such that, up to translation, P is properly contained in [0, q − 1]m. By evaluating

monomials with integer exponents from P ∩ Zm at every point of (F∗
q)

m, we obtain

#(P ∩ Zm) linearly independent vectors of length n = (q − 1)m that generate the

corresponding toric code.

Definition I.3. Let P ⊂ Rm, be an integral convex polytope with P ⊂ [0, q − 1]m,

and let Fq be a finite field. Let χa = xa1
1 x

a2
2 · · ·x

am
m denote monomials with exponents

a = (a1, a2, . . . , am) ∈ (P ∩ Zm). Then form the codewords

{(χa(ξ1), χ
a(ξ2), . . . , χ

a(ξn) ) : a ∈ (P ∩ Z
2) and ξi ∈ (F∗

q)
m },

where n = (q − 1)m. This set of codewords is linearly independent and generates a

linear block code of block length n and dimension #(P ∩ Zm). We denote this code

as CP .

Example I.3. Let α ∈ F4 be a primitive element. Then the integral convex polygon

in Figure 1 corresponds to the generator matrix G. The monomials associated with

the lattice points are {1, xy, x2y, xy2} and evaluating these over all points in (F∗
4)

2

yields the rows of G. This is a [9,4,3] linear code.
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Fig. 1. Integral convex polygon.

G =













1 1 1 1 1 1 1 1 1

1 α α2 α α2 1 α2 1 α

1 α α2 α2 1 α α α2 1

1 α2 α α 1 α2 α2 α 1













One easily sees that Reed-Solomon codes of dimension k are toric codes defined

by integral line segments with k lattice points. Codes defined by 2-dimensional poly-

topes are called toric surface codes because of the connection between convex integral

polygons and toric surfaces.
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CHAPTER II

INTRODUCTION TO TORIC VARIETIES

A. Toric Varieties from Polyhedral Cones

Toric varieties are very rich and interesting objects that highlight links between dis-

crete geometry and algebraic geometry. The notation here follows that of Fulton [5].

Although our setting is primarily a finite field with q elements, we will introduce these

varieties over the field C and later restrict to the finite field Fq. The word “toric”

refers to the m-dimensional algebraic torus.

Definition II.1. The set of points (C∗)m := (C \ {0})m is called the complex m-

dimensional algebraic torus. If F is any field, then (F∗)m is just the m-dimensional

algebraic torus. We will refer to this set as, simply, the algebraic torus.

Definition II.2. A toric variety is a normal variety X that contains the algebraic

torus (C∗)m as a Zariski open subset, and for which the action of (C∗)m on itself

extends to an action on X.

Begin with an integer lattice N ≃ Zm, for some m ≥ 1. A strongly convex

polyhedral cone σ inside the vector space NR = N ⊗Z R is a cone which has its apex

at the origin, is generated by a finite number of vectors in the lattice, and does not

contain a line through the origin. We will hereafter simply refer to these as cones. The

dimension of a cone σ, denoted dim(σ), is the dimension of the linear space spanned

by σ. A face τ of σ is the intersection of σ with any supporting hyperplane and can

be of dimension zero through dim(σ) − 1. Faces of codimension 1 are called facets.

A cone σ is called a simplex cone if its defining vectors are linearly independent. If

every proper face of σ is a simplex cone, then σ is called simplicial. We generally
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denote the facets of a cone by τi. We denote the vector in N defined by the first

integral point of τi by v(τi), or just vi when the context is clear.

Example II.1. Consider the 3-dimensional cone σ in Figure 2. Then dim(σ) = 3.

The origin is a zero dimensional face, and the one dimensional faces are τ1, τ2, τ3, and

τ4. The facets are the subspaces determined by 〈τ1, τ2〉, 〈τ2, τ3〉, 〈τ3, τ4〉, and 〈τ4, τ1〉.

τ 4τ 3

2τ

τ 1
z

y

x

Fig. 2. Three dimensional polyhedral cone.

Let M = Hom(N,Z) be the dual lattice of N with dual pairing 〈 , 〉 : M×N →

Z defined by 〈u, v〉 7→ u(v). Similarly, we have the vector space MR = M ⊗Z R dual

to NR with dual pairing 〈 , 〉 : MR×NR → Z defined by 〈u, v〉 7→ u(v). Thus, given

a cone σ, we define its dual cone as σ∨ = {u ∈ MR : 〈u, v〉 ≥ 0, ∀ v ∈ σ}. Inside the

dual lattice, this defines a finitely generated commutative semigroup

Sσ = σ∨ ∩M = {u ∈M : 〈u, v〉 ≥ 0, ∀ v ∈ σ}.

This semigroup has an associated C-algebra, denote C[Sσ], that is also finitely gen-

erated and commutative, with generators denoted by χu. Thus, it is convenient to

consider the elements of this C-algebra as Laurent polynomials in C[Sσ]. Setting

Uσ = Spec(C[Sσ]), we obtain the affine toric variety corresponding to σ. For the

following examples, e1, . . . , em represent the basis vectors for NR, and e∗
1, . . . , e

∗
m rep-



11

resent the basis vectors for MR. Thus, we may represent the generators of C[MR] by

χα1e
∗

1+···+αme
∗

m = xα1
1 · · ·x

αm
m .

Example II.2. Let m = 2 and consider the cone σ generated by e2 and 2e1−e2 and

its dual σ∨ in Figure 3.

σ σ

Fig. 3. Polyhedral cone and dual cone corresponding to the quadric cone.

The generators for the dual cone semigroup are e∗
1, e∗

1 + e∗
2, and e∗

1 + 2e∗
2. Thus,

C[Sσ] = C[x1, x1x2, x1x
2
2] = C[X, Y, Z]/〈Y 2 −XZ〉, and the affine toric variety Uσ is

the quadric cone.

Since each face of a cone is also a cone, it is important note the relation between

the corresponding semigroups, C-algebras, and affine varieties. If τ is a face of σ,

then Sσ ⊂ Sτ , and C[Sσ] is a subalgebra of C[Sτ ]. Consequently, Uτ embeds into Uσ

as a principal open subset [5, p. 18]. In particular, every toric variety contains the

algebraic torus (C∗)m as an open subset since the origin {0} corresponds to

U{0} = Spec(C[x1, x
−1
1 , . . . , xm, x

−1
m ])

This property leads us to the construction of a toric variety from a fan. A fan ∆ is

a collection of cones in NR such that every face of a cone in ∆ is also a cone and
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the intersection to two cones in ∆ is a face common to both. Thus, we obtain the

toric variety associated with a fan ∆, denoted X∆, by gluing together the affine toric

varieties Uσ for each m-dimensional cone σ of ∆. If the union of all cones σ in a fan

generate the entire space NR, then we call the fan (and its associated toric variety)

complete.

Example II.3. Let m = 2 and consider the fan and dual cones in Figure 4.

σ 0

σ 2

σ 1

σ 0

σ 1

σ 2

Fig. 4. Fan and dual cones corresponding to P2.

Uσ0 = Spec(C[x, y]), Uσ1 = Spec(C[x−1, x−1y]), Uσ2 = Spec(C[y−1, xy−1]).

Each of these affine varieties is isomorphic to C
2 and gluing them together in the

usual way yields the projective plane P2.

Notice that Example II.2 is singular and that Example II.3 is smooth. In general,

we can use the following proposition to determine whether a given cone generates a

singular or nonsingular affine toric variety.

Proposition II.1. [5, p. 29] An affine toric variety Uσ is nonsingular (or smooth)

if and only if σ is generated by part of a basis for the lattice N .

A cone with the above property is often called regular. By this, we see that

Example II.2 is singular since the vector e1 is not in the span of the facets of σ. Thus,
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a toric variety defined by a fan ∆ is nonsingular if every cone σ ∈ ∆ is generated by a

subset of a basis for N . However, toric varieties with singularities are not completely

troublesome. If we have a singular toric variety defined by ∆, then we may resolve the

singularity by considering a refinement of ∆. A fan ∆′ is a refinement of ∆ if every

cone of ∆ is a union of cones in ∆′. So, given a singular Uσ, we refine σ by adding

vectors that are not contained in the span of the facets of σ. This will subdivide

σ into a finite number of cones whose interiors are generated by their facets. More

importantly, the morphism between the associated toric varieties is birational and

proper [5, p. 45].

B. Divisors on Toric Varieties

In general, we can define a divisor on a variety in more than one way, depending on

the nature of our variety. However, for complete, nonsingular toric varieties, these

notions will coincide in a very nice way. For a more thorough treatment on divisors,

see [12, Section II.6] and [21, Section III.1].

Definition II.3. Let X be a variety and V1, . . . , Vr be irreducible closed subvarieties

of codimension one; ie. prime divisors. Then a finite formal sum of the form D =

∑r

i=1 aiVi with ai ∈ Z is called a (Weil) divisor. If ai ≥ 0 for i = 1, . . . , r, then D is

called effective and denoted by D ≥ 0.

Given a nonzero rational function f on a normal variety X, we have the notion

of the divisor of f , denoted div(f). Namely,

div(f) =
r

∑

i=1

vVi
(f)Vi,

where the Vi are prime divisors of X and vVi
(f) is the order of vanishing of f over

Vi. For vVi
(f) > 0 (or vVi

(f) < 0), we say f has a zero (or pole) along Vi. Thus, for



14

div(f) =
∑

aiVi, we can write

div0(f) =
∑

ai>0

aiVi and div∞(f) =
∑

ai<0

aiVi,

for the divisors of zeros and divisors of poles of f , respectively. Divisors of the form

D = div(f) are called principal divisors and, under addition, form a group, denoted

DivP (X). Two divisors D and D′ are called linearly equivalent if D−D′ is principal.

Given an open cover and a compatible system of functions on X, we can, additionally,

define a Cartier divisor .

Definition II.4. For a variety X, a Cartier divisor is given by an open cover {Ui} of

X and a corresponding system of nonzero rational functions {fi}, such that (1) the

fi are not identically zero and (2) fi/fj and fj/fi are regular on Ui ∩Uj . This is also

called a locally principal divisor.

Essentially, a divisor D is a Cartier divisor if at every point x ∈ X, there exists a

Zariski open subset U ⊂ X such that x ∈ U and D is principal on U [2, p. 264]. The

Cartier divisors also form a group under addition, denoted DivCX, and it follows

from the definitions that DivP (X) is a subgroup of DivC(X). The quotient group

DivC(X) \DivP (X) is called the Picard group and is denoted Pic(X).

Since toric varieties come equipped with an action by the algebraic torus, we

are interested in divisors that are unchanged by this mapping. Such objects are

called T-invariant. From [5], we learn that T-invariant, irreducible, codimension one

subvarieties of X∆ correspond directly with the 1-dimensional rays τ1, τ2, . . . , τr ⊂

∆(1) with a given ordering. The corresponding divisors are defined as the orbit

closures Di = V (τi) [5, Section 3.1]. Thus, T-invariant Weil divisors are of the form

∑

aiDi, ai ∈ Z. We also learn that a T-invariant Cartier divisor on an affine open

set Uσ has the form div(χu) for some unique u ∈M . If our defining fan ∆ is regular
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(equivalently, X∆ is smooth), then a T-invariant Weil divisor D is also a T-invariant

Cartier divisor and Pic(X) ≃ Zr−m [5, p. 65]. We denote the group of T-invariant

Cartier divisors as DivT
C(X).

Now we make the connection between divisors and sheaves. Roughly speaking, a

sheaf allows us to systematically keep track of and “glue together” algebraic objects

related to the open subsets of a topological space. Given a topological space X, a

presheaf F is a collection of open subsets U ⊆ X, algebraic objects F(U) (vector

spaces, Abelian groups, rings, etc.), and mappings U → F(U), such that for every

inclusion U ⊆ V of open sets, there is a morphism ρV U : F(V ) → F(U). These

morphisms must also satisfy (i) F(∅) = 0, (ii) ρUU = idF(U), and (iii) if U ⊆ V ⊆W

as open sets, then ρWV = ρV U ◦ ρWV .

Definition II.5. Let F be a presheaf on a X. Then F is a sheaf on X if it satisfies

the following for any open set U ⊆ X with {Vi} an open cover of U :

1. if s ∈ F(U) and s|Vi
= 0 for all i, then s = 0 in F(U);

2. if si ∈ F(Vi) and sj ∈ F(Vj) and si|Vi∩Vj
= sj|Vi∩Vj

, then there exists s ∈

F(Vi ∪ Vj) such that s|Vi
= si and s|Vj

= sj.

As the definition of a Cartier divisor implies, we are concerned with the rational

functions on the open sets of our toric variety. For every open subset U on a toric

variety X∆, denote the ring of regular functions on U as O(U). Taken over all open

subsets, we can form a sheaf of rational functions of X∆, denoted OX∆
. When the

variety we are working over is clear, we will denote this sheaf simply as O. Since we

can assign an O-module of rational functions to the affine pieces of X∆, toric varieties

come equipped with a sheaf of OX∆
-modules.
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Additionally, each Cartier divisor D on X∆ determines a sheaf by

OX∆
(D)(U) = {f ∈ K(X∆) | div(f) +D ≥ 0 on U ⊆ X∆ },

where K(X∆) denotes the quotient field of X∆. We denote this sheaf by O(D). For

each open subset U ⊂ X∆, it can be shown that O(D)(U) is isomorphic to OX∆
(U)

[2, p. 268]. That is, O(D) is invertible and, hence, also called a line bundle.

Definition II.6. Let U ⊂ X∆ be an open subset, and let OX∆
be a sheaf of O-

modules on X∆. Then f ∈ O(U) is called a section of OX∆
. If f ∈ OX∆

, then f is

called a global section.

We are particularly interest in when O(D) is generated by its global sections.

That is, there exists global sections of O(D) such that at every point of X at least

one is nonzero. In [5, Section 3.4], Fulton shows that O(D) is generated by global

sections when a particular piecewise linear function defined on the support of ∆ is

convex. However, this condition is satisfied when our toric variety is defined from a

polytope. While we do this construction formally in the next section, we can still

state the following lemma.

Lemma II.1. [5, p. 66] Let D =
∑

aiDi be a T-invariant Cartier divisor on X∆,

and let vi denote the primitive element of the cone τi ∈ ∆(1) associated with Di.

Define a rational convex polyhedron by

PD = {u ∈MR | < u, vi > ≥ −ai for all i }.

Then the global sections of O(D) are linear combinations of χu as u varies over

PD ∩M . If the cones in ∆ span NR as a cone, then the space of global sections is

finite dimensional. That is, PD is a rational convex polytope.

Given a T-invariant Cartier divisor D on X∆, we will hereafter denote the space
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of global sections by the zeroth cohomology group H0(X∆,O(D)). This is because

we can define a Čech cohomology on an open cover of X∆ such that the elements of

H0 are the globally defined sections [18, p. 130].

C. Toric Varieties from Polytopes

Recall that the toric codes we wish to study are generated by m-dimensional poly-

topes. As Lemma II.1 suggests, these polytopes contain all the necessary information

to describe the toric varieties described above. Formally, a rational convex polytope

P in MR is the convex hull of a finite set of points in M . (Anytime we refer to a

polytope in this or subsequent sections, it is understood that the polytope is integral

and convex.) If H is any supporting hyperplane of P , then we call F = P ∩ H a

face of P. Similar to cones, if P is m-dimensional, then faces of dimension m− 1 are

called facets. In addition to being the convex hull of a finite set of points, we may

also describe P as the intersection of a finite number of halfspaces in MR. Namely,

for each facet F of P , there exists a primitive inward normal vector vF ∈ N and an

integer dF such that

P =
⋂

F a facet of P

{u ∈M : 〈u, vF 〉 ≥ −dF}.

The one dimensional cones τF generated by the vectors vF join together at the origin

of N to create the fan associated with P , denoted ∆P . Thus, there is a toric variety

X∆P
, denoted XP , associated to P that is complete when P is nontrivial.

Example II.4. Let P be the rectangle defined by conv{(0, 0), (2, 0), (0, 3), (2, 3)}.

Then the facets of P are the four edges, the primitive inward normals are v1 = e1, v2 =

e2, v3 = −e1, v4 = −e2, and the integers are d1 = 0, d2 = 0, d3 = 2, d4 = 3. Thus,

P = {(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, x ≤ 2, y ≤ 3}.
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The τi generated by the vi join together to form the fan corresponding to the complete

and nonsingular toric variety P1 × P1.

Notice that the polytope P corresponding to the above toric variety is not unique.

We could have also used the rectangle conv{(0, 0), (17, 0), (0, 1), (17, 1)}; however,

the di would change accordingly. Recall from the previous section that the facets

of our defining fan ∆ correspond to T-invariant divisors on the toric variety X∆.

Specifically, we defined the divisors Di as the orbit closures V (τi) of the 1-dimensional

cones τi. Thus, given a polytope P with inward normals v1, . . . , vs and integers

d1, . . . , ds, we have a complete fan ∆P defining a toric variety XP and a divisor

DP = d1D1 + · · · + dsDs on XP corresponding to P . So, the divisor corresponding

to the polygon in Example II.4 is 2D3 + 3D4. It is not difficult to see that increasing

or decreasing a particular di will translate the associated hyperplane away from or

toward the origin.

Example II.5. Consider the polytopes P1 = conv{(0, 0), (1, 0), (0, 1)} and Pa =

conv{(0, 0), (a, 0), (0, a)}, a ≥ 1. The inward normals for both P1 and Pa generate

one dimensional cones that define the fan of Example II.3. That is, XP1 = XPa
= P

2.

However, letting the divisors D1, D2, and D3 correspond to the rays generated by e1,

e2, and −e1 − e2, respectively, we have that DP1 = D3 and DP2 = aD3.

Returning to the issue of when a line bundle is generated by global sections, we

now have the necessary convex function. That is, given a nontrivial polytope P , we

have a complete toric variety XP and a T-invariant Cartier divisor DP such that the

function

ψD(v) = min
u∈P
〈u, v〉 = min

u∈P∩M
〈u, v〉 = min〈ui, v〉,

where the ui are the vertices of P , is convex [5, p. 72]. Thus, O(DP ) is generated

by global sections and H0(XP ,O(DP )) is finite dimensional with generators {χu|u ∈
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P ∩M}.

While ∆P will be complete when P is nontrivial, the corresponding toric variety

XP may be singular. However, we may remove singularities by refining ∆P as de-

scribed in the previous section to obtain ∆′
P . Consequently, we obtain a divisor DP

that lies on a complete and nonsingular toric variety.

Example II.6. Take the polytope Td = conv{(0, 0), (d, d), (0, 2d)}, and the associ-

ated refined fan ∆′
Td

in Figure 5.

2v
v1v3 1τ

τ 4

τ 3

τ 2

v4

2d

d

Fig. 5. Polygon Td and corresponding refined normal fan ∆′
Td

.

The 1-dimensional cones τ1, τ2, and τ4 correspond to the inward normals of Td.

Although these define a complete fan, we must add τ3 to make it nonsingular. Thus,

DTd
= dD3 + 2dD4.

Finally, we are able to state the key to our construction of toric codes from

rational convex polytopes.

Lemma II.2. [16, Lemma 2.1] Let XP be the toric variety associated to a rational

convex polytope P , and let O(DP ) be the line bundle on XP associated with DP , the

divisor corresponding to P . Then the set H0(XP ,O(DP )) of global sections of O(DP )

is a finite dimensional vector space with {χu : u ∈ P ∩M} as a basis.
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Using this, we can define a set of codewords CP of block length n = (q − 1)m as

the image of the evaluation map

ev : H0(XP ,O(DP ))→ (Fq)
n

f 7→ ( f(ξ1) , . . . , f(ξn) ), ξi ∈ (F∗
q)

m

The set of codewords generated by {χu : u ∈ P ∩M} forms a basis for the code CP

provided the evaluation map ev is injective. The criteria for injectivity is to require

that, up to translation, P be properly contained in [0, q − 1]m [16, Lemma 3.2].

D. Intersection Numbers and Mixed Volume

The interpretation of the codewords of a toric code CP as the evaluation of sections

of a line bundle leads us to a brief discussion of intersection numbers of divisors.

In general, if we are given a finite number of hypersurfaces that intersect at a finite

number of points, we would like to count these points with multiplicity. For curves on

a surface, the notion of an intersection number is the natural one; however, the proof

is nontrivial and follows from a “moving lemma” and Bertini’s Theorem. Simply

stated, given curves C and D on a surface X, their intersection number C.D is

C.D =
∑

p∈C∩D

(C.D)p,

where (C.D)p is the intersection multiplicity at the point p.

For a complete, nonsingular m-dimensional toric variety X∆, the intersection

number of the divisors relates very nicely to the defining fan ∆. Before giving the

definition, we make the following observations. Let X∆ be a complete, nonsingular

m-dimensional toric variety. Let τ1, τ1, . . . , τm ∈ ∆(1) be one dimensional cones of

∆ with corresponding divisors D1, D2, . . . , Dm. If the span σ = τ1 + · · · + τm is an
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m-dimensional cone of ∆, then the Di correspond to the closures of the coordinate

hyperplanes of the subvariety defined by σ∨. Thus, their intersection number is 1. If

dim(σ) is less thanm, theDi have empty intersection, and their intersection number is

0 [2, p. 290]. For complete smooth toric surfaces, this translates into Di.Dj equalling

1 or 0 when i 6= j and τi and τj are adjacent or not adjacent, respectively. When

i = j, there is a convenient formula for calculating this self-intersection [2, p. 291].

Definition II.7. [2, p. 291] Let X∆ be a complete, nonsingular m-dimensional toric

variety. Then intersection number is a mapping

DivT
C × · · · × DivT

C → Z

D1.D2. · · · .Dm 7→ a

such that the following are satisfied:

1. (D1. · · · .Dm) = (Dπ(1). · · · .Dπ(m)) for any permutation π of 1, . . . , m.

2. (D1 +D′
1.D2. · · · .Dm) = (D1. · · · .Dm) + (D′

1. · · · .Dm).

3. (D1. · · · .Dm) = (D′
1. · · · .Dm), if D1 and D′

1 are linearly equivalent.

4. For τ1, . . . , τm ∈ ∆(1),

(Dτ1 . · · · .Dτm
) =

{

1 if τ1 + . . .+ τm ∈ ∆(n)

0 if τ1 + . . .+ τm /∈ ∆(n)

When our toric variety XP is generated from a polytope P , we have an additional

connection between the intersection number of the global sections of T-invariant divi-

sors and the geometry of P . Recall from Lemma II.1 that T-invariant Cartier divisors

on XP will correspond to bounded integral convex polytopes. Then we may interpret

the intersection number of divisors as the mixed volume of their associated polytopes

(with some dimension considerations).
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Definition II.8. Let P and Q be polytopes in Rn. The Minkowski sum of P and Q

is

P +Q = {x+ y : x ∈ P and y ∈ Q}.

Example II.7. The Minkowski sum of P = conv{(1, 0), (0, 1), (2, 2)} and Q =

conv{(0, 0), (0, 2), (2, 2)}; see Figure 6.

Fig. 6. Minkowski sum of polygons.

Notice that the inward normal fan ∆P+Q is a refinement of both ∆P and ∆Q. So,

there are divisors DP , DQ, and DP+Q on XP+Q that correspond to P, Q, and P +Q,

respectively. Let O(DP ), O(DP ), and O(DP+Q) be line bundles corresponding to P ,

Q, and P + Q, respectively. In [5, p. 69], we learn in an exercise that, since O(DP )

and O(DQ) are generated by global sections, the divisor DP +DQ corresponds exactly

to the Minkowski sum P +Q. That is, DP +DQ = DP+Q. Consequently, we obtain

the equality

H0(XP+Q,O(DP ))⊗H0(XP+Q,O(DQ)) = H0(XP+Q,O(DP +DQ)).

So, given sections s1 ∈ H
0(XP+Q,O(DP )) and s2 ∈ H

0(XP+Q,O(DQ)), we have that

s1s2 ∈ H
0(XP+Q,O(DP ))⊗H0(XP+Q,O(DQ)) = H0(XP+Q,O(DP +DQ)).
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Thus, knowing the zero sets of sections in H0(XP+Q,O(DP )) and H0(XP+Q,O(DQ))

means we know the zero sets of certain sections in H0(XP+Q,O(DP + DQ)). (Re-

member H0(XP+Q,O(DP +DQ)) will also contain sections that are not of the form

s1s2.)

Suppose we have polytopes P1, . . . , Pm and integers k1, . . . , km ∈ Z. By a theorem

of Minkowski, we know that the m-dimensional volume of the Minkowski sum k1P1 +

· · ·+ kmPm is a homogeneous polynomial of degree m in the variables k1, . . . , km. We

denote this polynomial by Volm(k1P1 + · · ·+ kmPm).

Definition II.9. The mixed volume of the polytopes P1, . . . , Pm is the coefficient of

the k1 · k2 · . . . · km term in the polynomial Volm(k1P1 + · · ·+ kmPm). We denote this

value by MVm(P1, P2, . . . , Pm).

Using the above correlation between divisors and polytopes, we have the following

proposition, whose details are given in [5, Section 5.4].

Proposition II.2. Let ∆ be the refined normal m-dimensional fan of the Minkowski

sum P1 +P2 + · · ·+Pm. Let X be the corresponding smooth toric variety with divisors

Di corresponding to Pi. Then

1. Volm(P1 + · · ·+ Pm) = 1
m!

(D1 + · · ·+Dm)m, and

2. MVm(P1, . . . , Pm) = 1
m!

(D1.D2. · · · .Dm).

We may also express the mixed volume of m polytopes by the alternating sum

m!MVm(P1, . . . , Pm) =

m
∑

i=1

(−1)m−j
∑

1≤i1<···<ij≤m

Volm(Pi1 + · · ·+ Pij).
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CHAPTER III

TORIC ERROR-CORRECTING CODES

A. Toric Surface Codes

J. P. Hansen introduced the connection between toric surfaces and error-correcting

codes in 1998 [9]. Since that time, these codes and their m-dimensional counterparts

have been studied in [10, 11, 13, 14, 15, 16, 17] and many others. In this section, we

present the results from the works that developed much of the interest in toric codes

and motivated the analysis of the toric threefolds in Chapter IV.

As stated in Chapter I, constructing an error-correcting code via an evaluation

map over a finite set of points was known since Goppa. In [9], Hansen used the

connection between convex bodies and toric varieties to construct the error-correcting

codes, as well as formulae for their dimension and minimum distance, for the following

three families of convex polygons:

1. Td = conv{(0, 0), (d, d), (0, 2d)}

2. Pd = conv{(0, 0), (0, d), (d, 0)}

3. �d,e = conv{(0, 0), (d, 0), (0, e), (d, e)}, e ≤ d

We will briefly explain Hansen’s method for the polygon Pd and its associated

toric variety X = XPd
. First, we consider the Fq-rational points of the algebraic torus

(F∗
q)

2 as q−1 “lines” of points defined by Cαi
= Z({x1−αi}), for all αi ∈ F∗

q . Suppose

H0(X,OX(DPd
)) contains a nonzero section f that is zero in exactly a lines of the

torus. Since the divisors of zeros div0(x1−α) and div0(x1) are linearly equivalent, we

also have that div(f) + (DPd
− adiv0(x1)) ≥ 0; ie. f ∈ H0(X,OX(DPd

− adiv0(x1))).

Then by Lemma II.2, we must have a ≤ d. As for the number of zeros of f on the
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remaining q−1−a lines of the torus, this number is bounded above by the intersection

number (DPd
− adiv0(x1)) · (div0(x1)) = d − a [11]. Therefore, the Fq-rational zeros

are bounded above by

a(q − 1) + ((q − 1)− a)(d− a) ≤ d(q − 1).

Provided Pd ⊂ �q−1, the evaluation map ev from Chapter II is injective, and the

minimum distance is d(CPd
) = (q − 1)2 − d(q − 1).

D. Ruano used these same arguments in [16] for polytopes of dimension m ≥ 2.

To do this, he noted that all of the Fq-rational points of (F∗
q)

m lie on the (q − 1)m−1

lines defined by

Cξ1,...,ξm−1 = Z({χui − ξi | i = 1, . . . , m− 1}), for all ξi ∈ F
∗
q,

where Z(·) denotes the common zero set and ui = ei. Thus, given a nonzero section

f ∈ H0(XP ,O(DP )) that is zero along exactly a of these lines, we can bound the zeros

of f along the other (q − 1)m−1 − a lines by the intersection number DP .Cξ1,...,ξm−1 .

Since all of these lines are linearly equivalent, the number of zeros of f over (F∗
q)

m is

bounded by

a(q − 1) + ((q − 1)m−1 − a)(DP .C),

where C is any of the lines Cξ1,...,ξm−1 . Thus, we obtain a lower bound on the minimum

distance of CP .

In [10], J. P. Hansen considered the polygon Q = conv{(0, 0), (d, 0), (o, e), (d, e+

rd)}, with d, e < q − 1 and r a positive integer, and used the above technique to

prove d(CQ) = min{(q− 1− d)(q− 1− e), (q− 1)(q− 1− (e+ rd))}. Polygons of this

form are associated with Hirzebruch surfaces, denoted Hr, and, up to isomorphism,

account for all smooth toric surfaces that satisfy rank(Pic(Hr)) = 2. Thus, it was
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possible to calculate the dimension and minimum distance for a large class of toric

surface codes. In this paper, Hansen also refers to extensive computations done by

D. Joyner in [13] and their help in modifying a preliminary version of [10].

D. Joyner calculated the minimum distance of an extensive list of toric codes in

[13] using both the MAGMA and GAP programs. However, rather than beginning

with a particular polygon of arbitrary size, such as Td, Pd, or �d,e, he considered divi-

sors on a particular refined normal fan. In this way, Joyner was able to calculate the

parameters for polygons of, potentially, different size and shape in a very systematic

fashion. More importantly, he described a [49, 11, 28] code whose minimum distance

was larger that any other known code at the time for that particular block length

and dimension. This code is given below.

Example III.1. [13, Example 3.2] Consider the toric surface code generated from

the polytope P = conv{(0, 0), (1, 5), (5, 1)} over F8. The dimension is k = #P = 11,

and the inward pointing normals are v1 = 5e1−e2, v2 = −e1+5e2, and v3 = −e1−e2.

This code has parameters [49, 11, 28], which was better than the previous [49, 11, 27].

The results of [14] and [15] provide some very helpful tools for the analysis of

the toric threefold codes described in Chapter IV. In [15], Little and Schwarz begin

with the observation that certain submatrices of a k × n generator matrix G for a

toric code C are “examples of a multivariate generalization of the familiar univariate

Vandermonde matrices” [15]. They use this to prove the following results for the

minimum distance of toric codes defined by m-dimensional rectangles and simplices.

Theorem III.1. Let Pk1,k2,...,km
denote the k1× k2× · · · km rectangular polytope, and

suppose Pk1,k2,...,km
⊂ [0, q−1]m for some prime power q. Then the minimum distance
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of the m-dimensional toric code CPk1,k2,...,km
is

d(CPk1,k2,...,km
) =

m
∏

i=1

((q − 1)− ki).

Theorem III.2. Let Pℓ1,ℓ2,...,ℓm
denote the general simplex conv{0, ℓ1e1, . . . , ℓmem},

with ℓi ≥ 1, and suppose Pℓ1,ℓ2,...,ℓm
⊂ [0, q − 1]m for some prime power q. If ℓ =

maxi{ℓi}, then the minimum distance of the m-dimensional toric code CPℓ1,ℓ2,...,ℓm
is

d(CPℓ1,ℓ2,...,ℓm
) = (q − 1)m − ℓ(q − 1)m−1.

Additionally, Little and Schwarz prove a very useful connection between lattice

equivalent polytopes and monomial equivalent toric codes. Two polytopes P and Q

are said to be lattice equivalent if there exists a unimodular integer affine transfor-

mation T such that T (P ) = Q. Two toric codes C1 and C2 are said to be monomial

equivalent if their exists an invertible n× n diagonal matrix M and an n× n permu-

tation matrix N , such that the corresponding generator matrices G1 and G2 satisfy

G2 = G1MN . Consequently, monomial equivalent codes will have the same dimen-

sion and the same minimum distance. From [15, Theorem 3.3], we have that if two

polytopes P1 and P2 are lattice equivalent, then the two toric codes CP1 and CP2 are

monomially equivalent.

In [14], Little and Schenck take a polygon P and find a subpolygon with a

maximal Minkowski sum decomposition to find sections of H0(XP ,O(DP )) with the

most zeros. As we know, these correspond to minimum weight codeswords. Recall

from Section D of Chapter II that the Minkowski sum of polygons P and Q has

an associated refined normal fan ∆P+Q and complete smooth toric variety XP+Q.

Consequently, the global sections of the divisors DP and DQ are related by

H0(XP+Q,O(DP ))⊗H0(XP+Q,O(DP )) = H0(XP+Q,O(DP +DP )).
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Using the above notions in reverse, Little and Schenck noticed that the irreducible

factors of a section in H0(XP ,O(DP )) correspond to subpolygons whose Minkowski

sum is contained in P . Thus, they obtained a nice upper bound for the minimum

distance of the corresponding toric code in terms of the these subpolygons [14, Propo-

sition 2.3]. The following is a generalization of Proposition 2.3 to toric codes corre-

sponding to polytopes P ⊂ Rm.

Proposition III.1. Let
∑k

i=1 Pi ⊆ P , with P ⊂ Rm, and let XP be the toric variety

corresponding to P . Let mi be the maximum number of zeros in (F∗
q)

m of a section

of the line bundle on XP corresponding to Pi, and assume there exits sections si with

sets of mi zeros that are pairwise disjoint in (F∗
q)

m. Then

d(CP ) ≤
k

∑

i=1

d(CPi
)− (k − 1)(q − 1)m.

Proof. For each Pi, the minimum distance of the corresponding toric code is d(CPi
) =

(q − 1)m −mi. As stated above, the product s = s1s2 . . . sk is a section of the line

bundle corresponding to
∑k

i=1 Pi ⊆ P . Since the sets of mi zeros are pairwise disjoint,

the section s has exactly m1 + m2 + . . . + mk zeros in (F∗
q)

n. Thus, there is a code

word of CP with weight

w = (q − 1)m − (m1 +m2 + . . .+mk) =

k
∑

i=1

d(CPi
)− (k − 1)(q − 1)m,

which shows

d(CP ) ≤

k
∑

i=1

d(CPi
)− (k − 1)(q − 1)m.

For cases where sections with maximum zeros have overlapping zero sets, we can

extend this result by using the inclusion-exclusion principle.
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The key ingredient for the main result of [14] comes from [14, Proposition 5.2].

In it, Little and Schenck prove that for a line bundle O(DP ) on a smooth toric

surface XP , the sections with the most zeros over (F∗
q)

2 will be the ones with the

most irreducible factors as long as q is sufficiently large. They specifically showed

sufficiency when q ≥ (4I(P )+3)2, where I(P ) is the number of interior lattice points

of P . This result allows for an lower bound on the minimum distance of the toric

surface code CP by finding a maximal Minkowski sum decomposition within P .

Theorem III.3. Let Fq be a finite field and let P ⊂ R2 be an integral convex polygon

strictly contained in �q−1. Assume that q ≥ (4I(P ) + 3)2, where I(P ) is the number

of interior lattice points of P . Let ℓ be the largest positive integer such that there is

some P ′ ⊆ P that decomposes as a Minkowski sum P ′ = P1 + P2 + · · · + Pℓ with

nontrivial Pi. Then there exists some P ′ ⊆ P of this form such that

d(CP ) ≥

ℓ
∑

i=1

d(CPi
)− (ℓ− 1)(q − 1)2.

B. MDS Polygons

As we mentioned in Chapter I, Reed-Solomon codes are MDS. That is, given an

integral line segment with one endpoint at the origin and length k − 1, there is an

associated Reed-Solomon code with minimum distance d = (q − 1)− k + 1, provided

k < q− 1. The natural question that follows is whether there exists specific polygons

in R2 that also generate maximum distance separable codes. Little and Schwarz posed

a variation of this question in [15].

A linear code is MDS when d = n− k + 1, or, equivalently, when the maximum

number of zeros, m, of any codeword equals k − 1. For toric codes, this becomes

m = #(P )− 1, where #(P ) is the number of lattice points in the polytope P . Thus,

this becomes an exercise in algebra when we know the number of lattice points and
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the minimum distance for a particular polytope.

Example III.2. Fix q and consider the toric code C�a
generated by the square

�a = conv{(0, 0), (0, a), (a, 0), (a, a)}, with a < q−1. By Theorem III.1, we know the

maximum number of zeros in any codeword is 2a(q − 1) − a2. Since the number of

lattice points in �a is (a+ 1)2, we have

2a(q − 1)− a2 = (a+ 1)2 − 1

q − 2 = a.

So, for fixed q, the square polygon �q−2 is MDS. (Notice that we could have fixed our

square and let q vary to obtain the same result.) It is important to note that while

these toric codes are MDS, the minimum distance in not very good. Indeed,

d = n− k + 1

= (q − 1)2 − (a+ 1)2 + 1

= (q − 1)2 − ((q − 2) + 1)2 + 1

= 1.

The fact that d = 1 means that we completely cover (Fq)
2. But this makes sense

because the corresponding generator matrix is a full rank (q−1)2×(q−1)2 matrix. For

rectangles of the form �a,b = conv{(0, 0), (a, 0), (0, b), (a, b)}, with 0 < b < a < q− 1,

the analysis is similar, but more tedious.

Proposition III.2. For the rectangle �a,b = conv{(0, 0), (a, 0), (0, b), (a, b)}, with

0 < b < a < q − 1, the toric surface code C�a,b
is not maximum distance separable.

Proof. We know q must satisfy q ≥ a + 2. When q = a + 2, we have

d(C�a,b
) = (q − 1− a)(q − 1− b) = (1)(a− b+ 1).
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and

n− k + 1 = (q − 1)2 − (a+ 1)(b+ 1) + 1

= (a+ 1)2 − (a+ 1)(b+ 1) + 1

= a2 − ab+ a− b+ 1.

Equality above only occurs for a = 0 or a = b, which are not allowed. Thus we always

have d(C�a,b
) < n− k + 1, and C�a,b

is not MDS.

Suppose we increase q to q1. Direct computation shows that d(C�a,b
) will increase

by a factor of q2
1 − q2 − 2(q1 − q) − (a + b)(q1 − q) while n − k + 1 increases by

q2
1 − q

2 − 2(q1 − q). So, our inequality remains strict as q increases, and C�a,b
cannot

become MDS.

We do one more example with a polygon from Hansen [9].

Example III.3. Fix q and consider the triangle Pa = conv{(0, 0), (0, a), (a, 0)}, with

a < q−1. By Theorem III.2, d(CPa
) = (q−1)2−a(q−1), and #Pa = 1

2
(a+1)(a+2).

Thus,

2a(q − 1) = (a2 + 3a+ 2)− 2

2aq = a2 + 5a

2q − 5 = a

While this seems convenient, it eliminates most triangles from being MDS. When

a = 1 and q = 3, we obtain a [4, 3, 2] MDS code. However, when a = 3, we must have

q = 4, which violates our requirement. In fact, by graphing the equations q = 1
2
(a+5)

and q ≥ a + 2, one sees that there is only a very small feasible region that includes

the point (a, q) = (1, 3). Similar to Proposition III.2, we have the following result for

a large class of subcodes contained in CPa
.
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Proposition III.3. For the triangle P = conv{(0, 0), (a, 0), (b, c)}, with b + c ≤ a,

in Figure 7, the toric surface code CP is not maximum distance separable.

b

c

a

Fig. 7. Subpolygons of the triangle Pa.

Proof. First note that d(CPa
) = d(CP ) by [14, Proposition 3.2]. Since #P ≤ #Pa,

we may conclude that P is not MDS when q > 3. Indeed, when q > 3 we must have

d(C△a
) < n− k + 1 and our previous statements imply that d will remain the same

while n− k + 1 will, at least, not decrease.

The above results seem to indicate that MDS toric surface codes only come from

squares with side length equal to q − 1. However, direct computation and some

examples from [13] show that this is not the case. Consider the polygon in Figure 8,

and let a = 2. Setting q = 4 and using the GAP program, we see that this corresponds

to a [9,8,2] toric code that is MDS. We would like to extend this result for all values

of a, but first we need the following proposition.

Proposition III.4. Let P = conv{(0, 0), (a, 0), (0, a), (a, a−1), (a−1, a)}, the square

�a with one corner lattice point removed. If q is sufficiently large, then

d(CP ) = (q − 1)2 − (2a− 1)(q − 1) + a(a− 1).
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a

Fig. 8. Polygon �a with one corner lattice point removed.

Proof. Since �a,a−1 ⊂ P , C�a,a−1 is a subcode of CP and d(C�a,a−1) ≥ d(CP ). Thus,

d(CP ) ≤ (q − 1− a)(q − 1− (a− 1)) = (q − 1)2 − (2a− 1)(q − 1) + a(a− 1).

We see that �a,a−1 is also a subpolygon of CP with a maximal number of Minkowski

summands. Note that we can also take the decomposition �a−1 + P1 = P , but this

has the same number of summands. A section of H0(XP ,O(DP )) with a maximum

number of zeros will be of the form (x−α1)(x−α2) · · · (x−αa)(y−β1) . . . (y−βa−1),

with αi ∈ F∗
q distinct and βi ∈ F∗

q distinct. If we take q sufficiently large and account

for overlapping zeros, Theorem III.3 yields

d(CP ) ≥

2a−1
∑

i=1

[(q − 1)2 − (q − 1)] + a(a− 1)− (2a− 1− 1)(q − 1)2

= (q − 1)2 − (2a− 1)(q − 1) + a(a− 1).

Now we use the process of Example III.3 to see that CP is MDS exactly when

(2a− 1)(q − 1)− a(a− 1) = (a+ 1)2 − 1− 1

(2a− 1)(q − 1) = 2a2 + a− 1

(2a− 1)(q − 1) = (2a− 1)(a+ 1)

q = a + 2
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So, if we did not require q to be sufficiently large, then the polygons of Figure 8 would

correspond to MDS codes with minimum distance d = (a+1)2− [(a+1)2−1]+1 = 2.
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CHAPTER IV

CODES FROM SMOOTH TORIC THREEFOLDS WITH RANK(PIC(X)) = 2

A. Minimum Distance of Codes

There are two families of polytopes corresponding to smooth toric threefolds with

rank(Pic(X)) = 2 [3]. We begin with the simplest members, those with no interior

lattice points; see Figure 9.

P1(a) = conv{0, e1, e2, e3, e1 + (a + 1)e3, e1 + (a + 1)e2}

P2(a, b) = conv{0, e1, e2, e3, e1 + (a + 1)e3, e2 + (b + 1)e3}

x

y

z

(1,0,a+1)

(1,a+1,0)

(a) Polytope P1(a).

x

y

z (0,1,b+1)

(1,0,a+1)

(b) Polytope P2(a, b).

Fig. 9. Polytopes with no interior lattice points corresponding to the two families of

smooth toric threefolds with rank(Pic(X))=2.

In this section, we prove formulas for the minimum distance of the toric codes

CP1(a) and CP2(a,b) followed by tables of minimum distance values for different values

of a and b. Recall that an integer affine transformation of a polytope creates a

monomially equivalent toric code. Thus, it is helpful to consider unimodular integer

affine transformations of P1(a) and P2(a, b). For both polytopes, there are specific
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cases when particular integer values for a and b yield subpolytopes of a simplex.

Thus, we use Theorem III.2 for these cases. The remaining cases yield polytopes with

a Minkowski sum decomposition, and we apply Proposition III.1 and the following

lemma.

Lemma IV.1. Let Pa be the triangle in Chapter III and Q = conv{(0, 0, 0), (0, 0, b)}.

Fix a prime power q such that Pa +Q ⊂ [0, q − 1]3. Then

d(CPa+Q) = (q − 1)3 − (a + b)(q − 1)2 + ab(q − 1).

x

y

z

(a,0,b)
(0,a,b)

(a) Polytope Pa +Q.

τ1

τ4

τ5

τ2

τ3 x

z

y

<−1,−1,0>

(b) Fan ∆Pa+Q.

Fig. 10. Polytope Pa + conv{(0, 0, 0), (0, 0, b)} and corresponding normal fan.

Proof. The proof uses arguments similar to those in [16, Section 4]. The normal

fan corresponding to Pa +Q has one dimensional rays τ1, . . . , τ5 with corresponding

primitive vectors v1 = e1, v2 = e2, v3 = −e1 − e2, v4 = e3, and v5 = −e3; see Figure

10. Since ∆Pa+Q is regular, the divisor corresponding to Pa+Q is DPa+Q = aD3+bD5,

where Di = V (τi), as usual.

Recall that the Fq-rational points of (F∗
q)

3 lie on (q − 1)2 lines defined by the

zero set Cξ1,ξ2 = Z({χe1 − ξ1, χ
e2 − ξ2}). Let f ∈ H0(XPa+Q,O(DPa+Q)) be a nonzero

section with a maximum number of zeros over (F∗
q)

3. From Chapter III, we know this
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number is bounded above by

c(q − 1) + ((q − 1)2 − c)(DPa+Q.C),

where C is any line defined above and c is the maximum number of zeros of a section

defined by a projection of Pa +Q onto the xy-plane. Thus, c ≤ a(q− 1) by Theorem

III.2.

Next, we compute div0(χ
u1) = D1 and div0(χ

u2) = D2, and the intersection

number

DPa+Q.C = (aD3 + bD5).D1.D2 = b.

This easily follows from Definition II.7 or by calculating mixed volumes as in [16].

So, the maximum number of zeros of our section f is bounded above by

a(q − 1)(q − 1− b) + b(q − 1)2 = (a+ b)(q − 1)2 − ab(q − 1),

and d(CPa+Q) ≥ (q − 1)3 − (a + b)(q − 1)2 + ab(q − 1). Since Pa + Q contains the

square �a,b in the xz-plane, we know

d(CPa+Q) ≤ d(C�a,b) = (q − 1− a)(q − 1− b)(q − 1),

and we have equality.

Theorem IV.1. Let a ∈ Z≥0 and q be a prime power such that q − 1 > a + 1, and

consider P1(a) defined above. Then the minimum distance of the toric code CP1(a)

over the finite field Fq is

d(CP1(a)) =

{

(q − 1)3 − 2(q − 1)2 + (q − 1) if a = 0

(q − 1)3 − (a+ 1)(q − 1)2 if a > 0
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z

y

x

(0,a+1,0)

(a+1,0,0)

Fig. 11. Polytope P̂1(a).

z

x

y(0,1,0)

(0,0,1)

(1,0,0)

Fig. 12. Polytope P̂1(0).

Proof. We first perform a translation and a rotation of P1(a) to obtain Figure 11.

The case with a = 0 corresponds to Figure 12. So, this is a direct consequence

of Lemma IV.1.

When a > 0, we see that Figure 11 is contained in the tetrahedron Pa+1,a+1,2 =

conv{0, (a+ 1)e1, (a+ 1)e2, 2e3}. Thus, CP̂1(a) is a subcode of CPa+1,a+1,2. Combining

this with Theorem III.2 yields

d(CP1(a)) ≥ d(CPa+1,a+1,2)

= (q − 1)3 − (a+ 1)(q − 1)2

But CP1(a) contains codewords of weight (q − 1)3 − (a + 1)(q − 1)2 obtained from

irreducible sections in O(DP1(a)) of the form x(y − α1) . . . (y − αa+1), with αi ∈ F∗
q

distinct. Therefore, d(CP1(a)) = (q − 1)3 − (a + 1)(q − 1)2.

Theorem IV.2. Let a, b ∈ Z≥0 and q be a prime power such that q − 1 > max{a +

1, b+1}, and consider P2(a, b) defined above. Then the minimum distance of the toric

code CP2(a,b) over the finite field Fq is

d(CP2(a,b)) =











(q − 1)3 − 2(q − 1)2 + (q − 1) if a = b = 0

(q − 1)3 − (b+ 2)(q − 1)2 + (b+ 1)(q − 1) if a = b > 0

(q − 1)3 − (b+ 1)(q − 1)2 if w.l.o.g. b > a
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Proof. First, we apply a unimodular integer affine transformation to obtain P̂2(a, b),

as this makes calculations easier and the visualization more natural; see Figure 13.

The transformation is a combination of a rotation in the xy-plane by π
2
, a shear of

the x coordinate by a factor of -1, and a translation by [1, 0, 0].

x

y

z

(0,0,b+1)

(0,1,a+1)

(1,0,1)

Fig. 13. Polytope P̂2(a, b).

x

y

(1,0,1)

z

(0,0,b+1) (0,1,b+1)

Fig. 14. Polytope P̂2(b, b).

For the case with a = b = 0, we obtain P̂1(0). So the conclusion follows from

Lemma IV.1.

When a = b > 0, we obtain Figure 14. As we have seen many times before,

P̂2(b, b) is contained in the polytope P = conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, b +

1), (1, 0, b+ 1), (0, 1, b+ 1)} and its corresponding toric code contains codewords that

attain the maximum number of zeros of codewords from CP . Thus, the result follows

from Lemma IV.1.

For the last case, we see from Figure 13 that P̂2(a, b) ⊂ P2,b+1,b+1 and d(CP2(a,b)) =

(q − 1)3 − (b+ 1)(q − 1)2 using the usual subcode arguments.

Table 1 and Table 2 show minimum distance values for the toric codes CP1(a)

and CP2(a,b), respectively. The dimensions of these codes come from the formulas

#P1(a) = a2+5a+12
2

and #P2(a, b) = a+ b+ 6 found in [19]. The rightmost column of
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both tables gives the upper and lower bound from [8] for unknown minimum distance

values of linear q-ary codes with the same block length n and dimension k. So, codes

with minimum distance values within this range would be new codes.

Table 1. Codes corresponding to P1(a).

a q n k d(CP1(a)) unknown d range [8]

0 3 8 6 2 2 < d < 2

0 4 27 6 12 16 < d < 16

0 5 64 6 36 45 < d ≤ 48

0 7 216 6 150 no bounds

1 4 27 9 9 13 < d ≤ 14

1 5 64 9 32 40 < d ≤ 45

1 7 216 9 144 no bounds

1 8 343 9 245 no bounds

2 5 64 13 16 35 < d ≤ 41

2 7 216 13 108 no bounds

2 8 343 13 196 no bounds

3 7 216 18 72 no bounds

3 8 343 18 147 no bounds

So far, we have only looked at polytopes containing no interior lattice points. In

order to state the minimum distance of all smooth toric threefolds with rank(Pic(X))

= 2, we need to understand all associated polytopes. Consider the fans ∆P̂1(a)

and ∆P̂2(a,b) associated with P̂1(a) and P̂2(a, b), respectively; see Figures 15 and 16.

Since we know both varieties are smooth, a general divisor on each will look like

d1D1 + · · · + d5D5 with Di = V (τi) and di ∈ Z. Using the fact that both X∆
P̂1(a)

and X∆
P̂2(a,b)

satisfy rank(Pic(X∆
P̂1(a)

)) = rank(Pic(X∆
P̂2(a,b)

)) = 2, we can find all

associated polytopes by finding the generators of the associated Picard groups.

Recall that the Picard group of a variety X is defined as Pic(X) = DivC(X) \
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Table 2. Codes corresponding to P2(a, b).

a b q n k d(CP2(a,b)) unknown d range [8]

0 1 4 27 7 9 15 < d ≤ 16

0 1 5 64 7 32 44 < d ≤ 47

0 1 7 216 7 144 no bounds

1 1 4 27 8 6 14 < d ≤ 15

1 1 5 64 8 24 41 < d ≤ 46

1 1 7 216 8 120 no bounds

0 2 5 64 8 16 41 < d ≤ 46

0 2 7 216 8 108 no bounds

0 2 8 343 8 196 no bounds

1 2 5 64 9 16 40 < d ≤ 45

1 2 7 216 9 108 no bounds

1 2 8 343 9 196 no bounds

DivP (X) and that two divisors are linearly equivalent if their difference is principal.

For X∆
P̂1(a)

, we know D1, . . . , D5 are generators for DivT
C . For the group of principal

divisors, we must calculate div(χei) =
∑

j < ei, vj > Dj , where vj is the primitive

element of τj . These calculations yield div(χe1) = D1−D5, div(χe2) = D2−D5, and

div(χe3) = D3 −D4 − aD5. Thus, linear combinations of the form d4D4 + d5D5 with

d4, d5 ∈ Z and a ∈ Z≥0 will generate all divisors on X∆
P̂1(a)

. Similar calculations for

X∆
P̂2(a,b)

show that linear combinations of the form d3D3+d5D5 generated all divisors

on this variety. In Tables 3 and 4, we set d3, d4, and d5 so that we only generate

3-dimensional polytopes. We also omit di values that generate code parameters listed

in Table 1 or Table 2.
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τ1

τ3

τ4

τ2

τ5

y

<−1,−1,−a>

x

z

Fig. 15. Fan ∆P̂1(a).

τ1

τ2τ3

τ5

τ4

y

<−b,a−b,−1>

z

x

Fig. 16. Fan ∆P̂2(a,b).

Table 3. Codes corresponding to divisors on X∆
P̂1(a)

.

a d4 d5 q n k d(CP ) unknown d range [8]

0 2 2 4 27 18 3 6 < d ≤ 7

0 2 2 5 64 18 16 28 < d ≤ 37

0 2 2 7 216 18 96 no bounds

1 2 2 4 27 10 9 12 < d ≤ 13

1 2 2 5 64 10 32 38 < d ≤ 44

1 2 2 7 216 10 144 no bounds

1 1 3 5 64 16 16 30 < d ≤ 39

1 2 3 5 64 19 16 28 < d ≤ 37

1 3 3 5 64 20 16 27 < d ≤ 36

2 2 4 7 216 22 72 no bounds

Table 4. Codes corresponding to divisors on X∆
P̂2(a,b)

.

a b d3 d5 q n k d(CP ) unknown d range [8]

1 1 1 1 3 8 5 2 3 < d < 3

1 1 1 1 4 27 5 12 17 < d < 17

1 1 1 1 5 64 5 36 48 < d ≤ 49

1 1 1 2 4 27 8 6 14 < d ≤ 15

1 1 1 2 5 64 8 24 41 < d ≤ 46

1 2 1 1 4 27 6 9 16 < d < 16

1 2 1 2 7 216 12 72 no bounds
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B. Code Parameters and Minkowski Sums of Polytopes

In this section, we consider the parameters of toric codes whose underlying polytope

is a Minkowski sum. Specifically, we want to express the dimension and minimum

distance in terms of the summands. For the dimension calculations, we need the

notion of a Chern class and a Todd class.

Definition IV.1. Let X∆ be the m-dimensional toric variety defined by the fan ∆,

and let U1, U2, . . . , Us be the variables of the Chow ring of X∆. Then the pth Chern

class of X∆ is

cp :=
∑

i1<i2<···<ip

Ui1 · · ·Uip, {i1, . . . , ip} ⊂ {1, . . . , s}.

By convention, we set c0 = 1.

The variables of the Chow ring uniquely correspond to the 1-dimensional cones

τ1, τ2, . . . , τs ∈ ∆(1) and the corresponding T-invariant Weil divisors D1, . . . , Ds.

More importantly, we have the following correspondence between the product of these

variables and intersection numbers [2, p. 325],

Ui1 · · ·Uip ←→ Di1 . · · · .Dip .

So, for example, c1(X∆) corresponds to the anticanonical divisor −K = D1+· · ·+Ds.

The pth Todd class of X∆ is formally defined as the term of order p in a particular

formal Taylor expansion involving the Chern roots. However, for our purposes, we

simply state the following initial terms of the series:

Td0 = 1, Td1 =
1

2
c1, Td2 =

1

12
(c21 + c2), Td3 =

1

24
c1c2.

Now we are ready to state the Hirzebruch-Riemann-Roch Theorem (HRR) [2, p.
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325].

Theorem IV.3. Let X∆ be a smooth, projective toric variety of dimension n and let

D be the Cartier divisor on X∆ corresponding to the convex polytope P . Then

χ(X∆,O(D)) = #(P ) =
n

∑

j=0

1

j!
Dj . Tdn−j.

So, in dimension m = 2, we have

χ(X∆,O(D)) = Td2 +D.Td1 +
1

2
D2,

and in dimension m = 3, we have

χ(X∆,O(D)) = Td3 +D.Td2 +
1

2
D2.Td1 +

1

3!
D3.

Theorem IV.4. Let P1 and P2 be convex lattice polygons, and let ∆ = ∆P1+P2 be the

refined normal fan associated with the Minkowski sum P1 + P2. Let X = X∆ be the

corresponding smooth toric variety with divisors D1 and D2 corresponding to P1 and

P2, respectively. Then

#(P1 + P2) = #(P1) + #(P2) + 2MV (P1, P2)− 1.

Proof. From Fulton, the divisor corresponding to P1 + P2 is D1 + D2, since O(D1)

and O(D2) are both globally generated. So, by HRR, the number of lattice points in

P1 + P2 equals

χ(X,O(D1 +D2)) = Td2 + (D1 +D2).Td1 +
1

2
(D1 +D2)

2

= Td2 +D1.Td1 +D2.Td1 +
1

2
D2

1 +
1

2
D2

1 +D1.D2.
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To simplify Td2, we notice that when D = 0 for surfaces

χ(X,OX) = Td2.

A calculation in [5, p. 75] shows that χ(X,OX) = 1 when X is complete and O(D)

is generated by global sections. Thus, we have

χ(X,O(D1 +D2)) = 1 +D1.Td1 +D2.Td1 +
1

2
D2

1 +
1

2
D2

1 +D1.D2

= χ(X,O(D1)) + χ(X,O(D2))− 1 + 2MV (P1, P2)

= #(P1) + #(P2) + 2MV (P1, P2)− 1.

Example IV.1. Recall Example II.7, the Minkowski sum of the polygons P =

conv{(1, 0), (0, 1), (2, 2)} and Q = conv{(0, 0), (0, 2), (2, 2)}. Using Theorem IV.2,

we have

#(P +Q) = #(P ) + #(Q) + 2MV (P,Q)− 1

= 4 + 6 + 6− 1

= 15,

which we can verify manually.

Corollary IV.1. Let Pi i = 1, . . . , n be convex lattice polygons with Minkowski sum

P =
∑

i Pi, and let ∆ = ∆P be the associated refined normal fan. Let X = X∆ be the

corresponding smooth toric variety with divisors Ei corresponding to Pi. Then

#(P ) =
n

∑

i

#(Pi) +
∑

i<j

2MV (Pi, Pj)− (n− 1).

Proof. From the above proof it is easy to see that the (
∑

iDi).Td1 term distributes
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and

1

2
(
∑

i

Di)
2 =

1

2

∑

i

(Di)
2 +

∑

i<j

Di.Dj .

Thus, after accounting for the n− 1 missing ones, we obtain our result.

Theorem IV.5. Let P1 and P2 be convex lattice polytopes in R3, and let ∆ = ∆P1+P2

be the refined normal fan associated with the Minkowski sum P1 + P2. Let X = X∆

be the corresponding smooth toric variety with divisors D1 and D2 corresponding to

P1 and P2, respectively. Lastly, let Q be the 3-dimensional polytope corresponding to

the anticanonical divisor −K. Then

#(P1+P2) = #(P1)+#(P2)+3!MV (P1, P2, Q)+V ol3(P1+P2)−V ol3(P1)−V ol3(P2)−1

Proof.

χ(X,O(D1 +D2)) = Td3 + (D1 +D2).Td2 +
1

2
(D1 +D2)

2.Td1 +
1

3!
(D1 +D2)

3

= χ(X,O(D1)) + χ(X,O(D2))− 1 +D1.D2.Td1 · · ·

· · ·+
1

3!
(3D2

1.E2 + 3D1.D
2
2)

= #(P1) + #(P2) + 3!MV (P1, P2, Q) + V ol3(P1 + P2) · · ·

· · · − V ol3(P1)− V ol3(P2)− 1.

First, note that Td3 = 1 by the same reasoning as Theorem IV.4. The last line follows

from the Steiner decomposition,

V oln(P1 + P2) =
n

∑

i=0

(

n

i

)

MV (P1, i;P2, n− i),

where MV (P1, i;P2, n − i) represents the mixed volume of i copies of P1 and n − i

copies of P2 and from the fact that MVn(P, . . . , P ) = Voln(P ).

We now move to the question of finding formulas for the minimum distance of
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toric codes arising from the Minkowski sum of polytopes. First, we have the following

generalization of Lemma IV.1.

Theorem IV.6. Let Q = conv{(0, 0, 0), (0, 0, b)}, and let P be an integral convex

polytope in R
2. Fix a prime power q such that P +Q ⊂ [0, q − 1]3, and let d(CP ) be

the minimum distance of the toric surface code CP over F2
q. Then

d(CP+Q) = d(CP )(q − 1− b).

Proof. The proof is similar to that of Lemma IV.1. Set X = XP+Q, and let f ∈

H0(X,O(DP+Q)) be a section with a maximum number of zeros over (F∗
q)

3. As before,

the maximum number of zeros of f is bounded above by

c(q − 1) + ((q − 1)2 − c)(DP+Q.C),

where C = Z({χu1 , χu2}) and c is the maximum number of zeros of a section defined by

a projection of P+Q. Since this projection is just P , we must have c ≤ (q−1)2−d(CP ).

Now, label the one dimensional cones τi, i = 1, . . . , r of the refined normal fan ∆P+Q

such that Dr = V (τr), where τr is generated by the vector −e3.

Then we can compute the intersection number

DP+Q.C = (DP +DQ).C

= DP .C + bDr.C

= b.

We see that DP .C = 0 because their associated polygons lie in the same plane and,

thus, have zero 3-volume. To see that Dr.C = 1, we notice that this is the nontrivial

intersection of a hyperplane and a line. So, the maximum number of zeros of f is
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bounded above by

c(q − 1) + ((q − 1)2 − c)(DP+Q.C) = c((q − 1)−DP+Q.C) +DP+Q.C(q − 1)2

≤ ((q − 1)2 − d(CP ))((q − 1)− b) + b(q − 1)2

= (q − 1)3 − d(CP )(q − 1− b).

Therefore, d(CP+Q) ≥ d(CP )(q − 1− b).

To obtain the reverse inequality, take g ∈ H0(X,O(DP )) to be a section with a

maximum number of zeros, m, in F2
q. Then there exists a section in H0(X,O(DP+Q))

of the form

g(z − α1) · · · (z − αb), with distinct αi ∈ F
∗
q.

This section has m(q − 1) + b(q − 1)2 − bm zeros in F3
q . Since m = (q − 1)2 − d(CP ),

we have

d(CP+Q) ≤ (q − 1)3 − [m(q − 1) + b(q − 1)2 − bm]

= (q − 1)3 −m(q − 1− b)− b(q − 1)2

= (q − 1)3 − ((q − 1)2 − d(CP ))(q − 1− b)− b(q − 1)2

= d(CP )(q − 1− b).

Lastly, we give an upper bound for a toric surface code whose corresponding

polygon is the Minkowski sum of two polygons. This follows immediately from the

fact that our line bundles are generated by global sections.

Proposition IV.1. Let P and Q be convex polygons and consider the toric surface

code CP+Q generated by their Minkowski sum P +Q over F2
q. Then

d(CP+Q) ≤ d(CP ) + d(CQ)− (q − 1)2 + 2!MV (P1, P2),
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where P1 is the polygon corresponding to a section s1 ∈ H0(X,O(DP )) with a maxi-

mum number of zeros in the algebraic torus, and P2 is similar for DQ.

Proof. Let ∆ = ∆P+Q be the refined normal fan of P + Q, and X = X∆ the cor-

responding toric surface. Let DP , DQ, and DP+Q be divisors on X corresponding

to P , Q, and P + Q, respectively. Let s1 ∈ H0(X,O(DP )), s2 ∈ H0(X,O(DQ)),

and s3 ∈ H0(X,O(DP+Q)) be sections with the maximum number of zeros m1, m2,

and m3, respectively. Let D1 and D2 be divisors on X corresponding to s1 and s2,

respectively. By Proposition II.2, the intersection of s1 and s2 inside the algebraic

torus is less than or equal to D1.D2 = 2!MV2(PD1 , PD2), where PDi
is the polygon

corresponding to Di. Since s1s2 ∈ H0(X,DP +DQ), we have

m3 ≥m1 +m2 − 2!MV2(P1, P2)

(q − 1)2 −m3 ≤ (q − 1)2 −m1 + (q − 1)2 −m2 − (q − 1)2 + 2!MV (P1, P2)

d(CP+Q) ≤ d(CP ) + d(CQ)− (q − 1)2 + 2!MV (P1, P2)

Direct computation shows that this bound is very good for certain polytopes.

Specifically, when the Minkowski sum P +Q does not contain a maximal decompo-

sition that is larger than the sum of maximal decompositions contained in P and Q.

However, this will not guarantee equality because the maximum number of zeros of

a section will depend on the field Fq.

Example IV.2. Consider the toric code over F5 and F7 generated from the Minkowski

sum in Figure 17. Let P = conv{(0, 0), (2, 0), (1, 1)} and Q = �1. Over F5,
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Fig. 17. Minkowski sum that gives equality in Proposition IV.1.

we know d(CP ) = 8 and d(CQ) = 9, and the polygons associated with sections in

O(DP ) and O(DQ) having the maximum number of zeros are P1 = conv{(0, 0), (2, 0)}

and Q, respectively. Then 2MV2(P1, Q) = 2 and, by Proposition IV.1, d(CP+Q) ≤

8 + 9 − 16 + 2 = 3. Using the GAP program, we know this minimum distance

value to be exact. Similarly, over F7 we have d(CP ) = 24 and d(CQ) = 25 and

d(CP+Q) ≤ 24+25−36+2 = 15, which is also exact according to the GAP program.

Example IV.3. Consider the toric code over generated from the Minkowski sum in

Figure 18. Let P = conv{(1, 0), (0, 1), (2, 2)} and Q = conv{(0, 0), (1, 0), (1, 1)}.

Fig. 18. Minkowski sum that does not give equality in Proposition IV.1.

Over F11, we know d(CP ) = 85 and d(CQ) = 90. Since polygons corresponding to

sections with maximum zeros are subpolygons of either P or Q, respectively, we can
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use 2MV2(P,Q) = 3 as upper bound for the mixed volume calculation. Thus,

d(CP+Q) ≤ 85 + 90− 100 + 3 = 78.

However, Soprunov and Soprunova show in [22] that d(CP+Q) = (q−1)2−3(q−1)+2

for q ≥ 11. Thus, d(CP+Q) = 72.
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CHAPTER V

SUMMARY AND CONCLUSIONS

We gave explicit formulas for the minimum distance of toric codes arising from smooth

toric threefolds with rank(Pic(X)) = 2. All such threefolds arise from one of two

families of 3-dimensional polytopes. For the families of polytopes with no interior

lattice points, we chose specific polytopes and calculated the dimension and minimum

distance of the corresponding toric codes. We then calculated the code parameters

for families of polytopes that do contain interior lattice points. Based on our tables

of values, these codes do not appear to be “better” than other known codes. That

is, they do not yield higher minimum distance values for specific block length and

dimension. However, based on their long block length and relatively small dimension,

it would be beneficial to find constructive ways to restrict the zero set over which the

codes are evaluated. This will effectively shorten the block length.

Lastly, we gave an explicit formula for the minimum distance of a toric code

whose corresponding polytope is the Minkowski sum of an arbitrary polygon P in the

xy-plane of R3 and an integral line segment in the direction of the z-axis. Of particular

interest is the fact that this formula relies solely on d(CP ) and the characteristic of

the field. We also gave a simple upper bound on the minimum distance of a toric

code whose corresponding polytope is the Minkowski sum of two arbitrary polytopes

P and Q. We suspect this bound to be very close to the actual minimum distance,

but not exact, when we place certain restrictions on P and Q.
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