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ABSTRACT

Multiscale Numerical Methods for Partial Differential Equations

Using Limited Global Information and Their Applications. (August 2008)

Lijian Jiang, B.S., Hunan Normal University;

M.S., Institute of Mathematics, Chinese Academy of Sciences

Chair of Advisory Committee: Dr. Yalchin Efendiev

In this dissertation we develop, analyze and implement effective numerical meth-

ods for multiscale phenomena arising from flows in heterogeneous porous media. The

main purpose is to develop innovative numerical and analytical methods that can

capture the effect of small scales on the large scales without resolving the small scale

details on a coarse computational grid. This research activity is strongly motivated

by many important practical applications arising in contaminant transport in hetero-

geneous porous media, oil reservoir simulations and subsurface characterization.

In the work, we investigate three main multiscale numerical methods, i.e., mul-

tiscale finite element method, partition of unity method and mixed multiscale finite

element method. These methods employ limited single or multiple global informa-

tion. We apply these numerical methods to partial differential equations (elliptic,

parabolic and wave equations) with continuum scales. To compute the solution of

partial differential equations on a coarse grid, we define global fields such that the so-

lution smoothly depends on these fields. The global fields typically contain non-local

information required for achieving a convergence independent of small scales. We

present a rigorous analysis and show that the proposed global multiscale numerical

methods converge independent of small scales. In particular, a global mixed mul-

tiscale finite element method is extensively studied and applied to two-phase flows.
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We present some numerical results for two-phase simulations on coarse grids. The

numerical results demonstrate that the global multiscale numerical methods achieve

high accuracy.
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CHAPTER I

INTRODUCTION

Subsurface flows are often affected by heterogeneities in a wide range of length

scales. It is therefore difficult to resolve numerically all of the scales that impact flow

and transport. Typically, upscaled or multiscale models are employed for such sys-

tems. The main idea of upscaling techniques is to form coarse-scale equations with a

prescribed analytical form that may differ from the underlying fine-scale equations. In

multiscale methods, the fine-scale information is carried throughout the simulation

and the coarse-scale equations are generally not expressed analytically, but rather

formed and solved numerically. In the case of scale separation, one can localize the

computation of effective parameters or basis functions. However, these approaches

do not perform well if there is no scale separation, and some type of limited global

information is needed for representing the distant/non-local effects. In this disser-

tation, we present multiscale numerical methods which incorporate limited global

information stemming from the heterogeneities. We consider the following multiscale

numerical methods: multiscale finite element method (MsFEM), mixed multiscale

finite element method (mixed MsFEM) and partition of unity method (PUM).

A multiscale finite element method and a mixed multiscale finite element method

were first introduced in [38] and [22] respectively. The main idea of multiscale finite

element methods is to incorporate the small scale information into finite element basis

functions and couple them through a global formulation of the problem. The multi-

scale method in [38] shares some similarities with a number of multiscale numerical

methods, such as residual free bubbles [18, 56], variational multiscale method [40],

This dissertation follows the style of the Journal of Computational Physics.
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two-scale finite element methods [48], two-scale conservative subgrid approaches [9],

and multiscale mortar methods [11]. We remark that special basis functions in finite

element methods have been used earlier in [15, 14]. The multiscale finite element

methodology has been modified and successfully applied to two-phase flow simula-

tions in [43, 42, 22, 1] and extended to nonlinear partial differential equations [33, 30].

Arbogast in [9] used a variational multiscale strategy to construct a multiscale method

for two-phase flow simulations.

One of the fundamental issues in multiscale simulations is an accurate capturing

of subgrid effects. It is known (e.g., [38]) that the local methods suffer from the res-

onance error. The resonance errors usually exhibit themselves as the ratio between

the coarse mesh size and the characteristic length scale. If the mesh size is close to

a characteristic length scale, multiscale methods that use only local information do

not converge when the ratio between the mesh size and the characteristic length scale

is kept fixed. To develop multiscale methods which converge without the resonance

error, some type of limited global information is needed in the construction of basis

functions. In a number of recent papers [1, 21, 29, 53, 59], limited global informa-

tion has been successfully used for developing multiscale finite element methods that

converge without the resonance error. These methods are applicable for problems

without scale separation. However, in order to apply these methods to multi-phase

flow simulations (described in Section 2.1), one needs to develop basis functions for

the velocity field which are conservative and can be used throughout two-phase flow

simulation without updating them. Velocity basis functions are used in solving the

transport equations of the phases. For simulations of two-phase flow and transport,

it is important to construct multiscale basis functions for the velocity field that are

conservative.

In this dissertation, we present a framework for incorporating single and mul-
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tiple global information which is represented by a set of functions. These functions

can be thought as auxiliary functions which contain essential information about the

heterogeneities. One can use local auxiliary functions in the case of scale separation,

though our focus in this work is in the use of global information. We would like

to note that the computations of the global fields are performed off-line. The basis

functions constructed employing the global solutions can be used to solve flow equa-

tions with different source terms, boundary conditions or mobility (see Section 2.1 for

definition) on the coarse grid. The latter is similar to upscaling techniques where the

effective parameters are computed based on media properties and they can be used

for different flow scenarios or in two-phase or multi-phase flow simulations. The com-

putation of global fields requires solving single-phase equations, thus the proposed

approaches are effective when flow equations are solved multiple times. One can use

local solutions instead of global solutions in the proposed formulation of the global

multiscale numerical methods. In this respect, the proposed global multiscale numer-

ical methods will be similar to previously introduced multiscale methods in [38, 22]

and the resonance error will appear in the convergence analysis.

In this dissertation, we consider elliptic, parabolic and wave equations with con-

tinuum spatial scales. Assuming that the solution of the partial differential equation

smoothly depends on a single global field or a number of global fields, we construct ba-

sis functions which span these global fields. We discuss several cases where the global

field/fields can be found and it can be shown that the solution smoothly depends on

these global field/fields. Examples are shown for both deterministic and parameter

dependent flow equations. We present rigorous analysis of the proposed multiscale

numerical methods. We show that these methods are stable and converge without

the resonance error. We present a few preliminary numerical results to demonstrate

the efficiency of the proposed approaches. We also consider a parameter dependent
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permeability field (a simplified case for general stochastic permeability field) where

a limited number of parameter value is used to generate the global fields. Based

on these global fields, we compute multiscale basis functions. Basis functions are

computed using single-phase flow solutions and these basis functions are used for the

simulations of two-phase flow and transport. We consider SPE Comparative Project

(also called SPE 10) [24]. These permeability fields are channelized and difficult to

upscale and, therefore, single-phase flow information (limited global information) is

used. Our numerical results show that one can achieve high accuracy with a few

global fields corresponding to single-phase flow solutions.

The dissertation is organized as follows.

In Chapter II, we recall some preliminary background materials. We introduce

flow equations in porous media, some function space notations and some inequalities

that will be studied throughout the dissertation. First, we present the flow equations

(e.g., two-phase immiscible flow) in porous media which have many applications in

petroleum engineering and subsurface modeling. Second, we present some function

space notations and inequalities, which are often utilized in the analysis of the dis-

sertation.

In Chapter III, we present MsFEM and mixed MsFEM using single global in-

formation for two-phase flow equations. These methods use global information from

an initial state to accurately model two-phase immiscible flow dynamics in heteroge-

neous porous media. We present analysis of both a Galerkin multiscale finite element

method and a mixed multiscale finite element method. The analysis assumes that the

fine-scale features of two-phase flow dynamics strongly depend on the initial state,

or equivalently on the corresponding single-phase flow solution at initial time. The

assumption is relaxed for the case with scale separation. We provide an extension of

MsFEMs to the case where multiple global information is used. We consider Galerkin



5

MsFEM, PUM, harmonic coordinate system method and mixed MsFEM. We note

that PUM using global information is not a trivial extension of MsFEM that employs

limited global information because the construction of basis function in every “patch”

are different from that global MsFEM discussed previously, i.e., basis functions in each

“patch” are the span of multiplication of partial unity functions and global fields. We

apply these multiscale methods to elliptic equations with continuum spatial scales.

The global fields typically contain small scale (local or global) information required for

achieving a convergence with respect to the coarse mesh size. We present a rigorous

analysis for these global multiscale numerical methods and show that the proposed

numerical methods converge. In particular we extensively explore the global mixed

multiscale methods and its application to two-phase flows. Some preliminary nu-

merical results for global mixed MsFEM are shown. As for spatial heterogeneities,

channelized permeability fields (SPE 10) with strong non-local effects are considered.

In Chapter IV, we consider multiscale numerical approaches introduced in Chap-

ter III for solving parabolic equations with heterogeneous coefficients. Our interest

stems from porous media applications and we assume that there is no scale separa-

tion with respect to spatial variables. To compute the solution of these multiscale

problems on a coarse grid, we define global fields such that the solution smoothly

depends on these fields. We present various finite element discretization techniques

and provide analysis of these methods. A few representative numerical examples are

presented using heterogeneous fields with strong non-local features. These numerical

results demonstrate that the solution can be captured more accurately on the coarse

grid when some type of limited global information is used.

In Chapter V, we explore the proposed global multiscale approaches for solving

wave equations with heterogeneous coefficients. Our interest comes from geophysics

applications and we assume that there is no scale separation with respect to spatial
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variables. We present various multiscale finite element discretization techniques and

provide analysis of these methods. A few representative numerical examples are

presented using heterogeneous fields with strong non-local features.

In Chapter VI, we draw some conclusions for the dissertation and come up with

some problems for further research.
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CHAPTER II

BACKGROUND MATERIALS

In this chapter we introduce some background materials. Section 2.1 introduces

flow and transport equations in porous media. Section 2.2 introduces function space

notations and some inequalities.

2.1. Flow Equations in Porous Media

In this section, we present single-phase and two-phase flow equations neglecting

the effects of gravity, compressibility, capillary pressure and dispersion on the fine

scale. Porosity, defined as the volume fraction of the void space, will be taken to be

constant and therefore serves only to rescale time. The two phases will be referred

to as water and oil and designated by the subscripts w and o, respectively. We can

then write Darcy’s law, with all quantities dimensionless, for each phase j as follows:

uj = −λj(S)k∇p, (2.1)

where uj (j = o, w) is phase velocity, S is water saturation (volume fraction), p

is pressure, λj = krj(S)/µj is phase mobility, where krj and µj are the relative

permeability and viscosity of phase j respectively, and k is the permeability tensor.

Combining Darcy’s law with conservation of mass, div(uw + uo)=0, allows us to

write the flow equation in the following form

div(λ(S)k∇p) = f, (2.2)

where the total mobility λ(S) is given by λ(S) = λw(S)+λo(S) and f is a source term.

The saturation dynamics affects the flow equations. One can derive the equation
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describing the dynamics of the saturation

∂S

∂t
+ div(F ) = 0, (2.3)

where F = ufw(S), with fw(S), the fractional flow of water, given by fw = λw/(λw +

λo), and the total velocity u by:

u = uw + uo = −λ(S)k∇p. (2.4)

In the presence of capillary effects, an additional diffusion term is present in (2.3).

If krw = S, kro = 1 − S and µw = µo, then the flow equation reduces to a single

phase flow equation

div(k∇psp) = f.

This equation, the linear advection pollutant transport equation, will be referred to

as the single-phase flow equation associated with (2.2), and psp will be referred to as

the single-phase flow solution.

Remark 2.1.1. The general governing equations for the single phase flow of a fluid

in porous media include the conservation of mass, Darcy’s law and an equation of

state. Denote by φ the porosity of a porous medium, by ρ the density of the fluid per

unit volume, by u the superficial Darcy velocity, and by f the external sources and

sinks. Then the mass conservation equation of the porous medium can be formulated

as

∂(φρ)

∂t
= −div(ρu) + f. (2.5)

We can state the momentum conservation in Darcy’s law, which indicates a linear

relationship between the fluid velocity and the pressure head gradient. The Darcy’s

law is written as

u = −1

µ
k(∇p− ρg∇z), (2.6)
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where k is the absolute permeability tensor of the porous medium, µ is the fluid viscos-

ity, g is the magnitude of the gravitational acceleration, z is the depth. If k = a(x)I,

where a(x) is a scalar function and I is the identity matrix, then the medium is

isotropic; otherwise, it is anisotropic. Let cf denote the fluid compressibility. Then

an equation of state is expressed by

1

ρ

∂ρ

∂p
|T = cf , (2.7)

where T is a fixed temperature. (2.5), (2.6) and (2.7) give rise to a closed system.

Remark 2.1.2. The general equations for two-phase flow include the following four

equations.



































∂(φρjSj)

∂t
= −div(ρjuj) + fj

uj = − 1
µj
kj(∇pj − ρjg∇z)

pc = po − pw

Sw + So = = 1,

(2.8)

where j = o, w and kj is the effective permeability for phase j (w or o). Empiri-

cally, capillary pressure pc = pc(Sw). The relationship among absolute permeability

k, effective permeability kj and relative permeability krj can be described by

kj = krjk, j = o, w.

The function krj shows the tendency of phase j to wet the porous medium.

As for the detailed description of flow and transport equations in porous media,

we refer to [23].



10

2.2. Function Space Notations and Some Inequalities

In this section we review some function space notations and inequalities which

will be frequently used throughout this thesis.

Let D be a domain. Denote by Lp(D), W k,p(D), the usual Lebesgue space and

Sobolev spaces. Let W k,p
0 be the set of functions in W k,p(D) which vanish on ∂D, and

Hk(D) = W k,2(D) and Hk
0 (D) = W k,2

0 (D). We denote Lp(D)-norm with ‖.‖0,p,D and

‖.‖0,D = ‖.‖0,2,D for p = 2. We denote W k,p-norm with ‖.‖k,p,D and ‖.‖k,D = ‖.‖k,2,D

for the norm of Hk(D). Similarly, one can define the corresponding semi-norms by

|.|k,D and |.|k,p,D. We define the vector-valued Sobolev space by

‖f‖W m,p(0,T ;X) := (

∫ T

0

∑

0≤k≤m

‖Dk
t f‖p

Xdt)
1
p

if X is a normed space and

|f |W m,p(0,T ;X) := (

∫ T

0

∑

0≤k≤m

|Dk
t f |Xdt)

1
p

if X is a semi-norm space. If p = 2, we use Hm(0, T ;X) instead. When no ambiguity

happens, we use the notation Wm,p(X) to denote Wm,p(0, T ;X).

When we study the mixed finite element method, we often use the spaceH(div,D),

i.e.,

H(div,D) = {u : ‖u‖H(div,D) := ‖u‖0,D + ‖divu‖0,D ≤ ∞}.

If Γ ⊆ ∂D, we define H0
Γ(div,D) = {u ∈ H(div,D) : u ·nΓ = 0}. When no ambiguity

happens, we set H0(div,D) = H0
∂D(div,D).

Lemma 2.2.1. (Poincaré Inequality)[54] Let 1 ≤ p < ∞ and D be a bounded

domain in Rn. If f ∈ W 1,p(D) and f |Γ = 0, where Γ ⊂ ∂D and measure of Γ, i.e.,
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|Γ| > 0, then

‖f‖0,p,D ≤ Cdiam(D)|f |1,p,D, (2.9)

where C = C(n).

Remark 2.2.1. Poincaré Inequality can be extended a slice domain Ld = {x ∈ Rn :

|xn| ≤ h}. Let D ⊂ Ld. Then for f ∈W 1,p
0 (D), 1 ≤ p ≤ ∞,

‖f‖0,p,D ≤ Ch|f |1,p,D,

where C is independent of n and p [54].

Remark 2.2.2. Poincaré Inequality can be extended to multiplication of functions.

Let D be bounded in Rn. If p, q ≥ 2 such that 1
p

+ 1
q

= 1, then for f ∈ W 1,p
0 (D) and

g ∈W 1,q
0 (D),

‖fg‖0,1,D ≤ Cpdiam(D)p|f |p1,p,D + Cqdiam(D)q|g|q1,q,D,

where Cp = C(p, n), Cq = C(q, n) [54].

Lemma 2.2.2. (Poincaré-Friedrichs Inequality)[35] Let D be a bounded domain

in Rn. Then for all f ∈W 1,p(D), 1 ≤ p <∞,

‖f − 〈f〉D‖0,p,D ≤ Cdiam(D)|f |1,p,D, (2.10)

where 〈f〉D = 1
|D|

∫

D
fdx and C = C(n).

Remark 2.2.3. Poincaré-Friedrichs Inequality can be generalized by using Petree-

Tartar Lemma [34]. Let L be a continuous linear form on W 1,p(D) whose restriction

on constant (nonzero) functions is not zero. If L(1D) = 1, where 1D ≡ 1 on D. Then

for 1 ≤ p <∞,

‖f − L(f)‖1,p,D ≤ C|f |1,p,D,
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where C = C(D, p) [34]. For example, we can take L(f) = 〈f〉D0 for any non-zero

n-measure subset D0 ⊆ D or take L(f) = 〈f〉∂D1 for any non-zero (n − 1)-measure

subboundary ∂D1 ⊆ ∂D.

Lemma 2.2.3. (Trace Inequality)[6] Let Γ ⊆ ∂D. The trace operator γ : W k,p(D) −→

W k− 1
p
,p(Γ) is surjective and further

‖f‖k− 1
p
,p,Γ ≤ C‖f‖k,p,D, (2.11)

where C = C(D, p, k).

Remark 2.2.4. Let D be bounded in Rn and of class Ck. If f ∈ W k,p(Ω) (kp < n),

then trace operator γ : W k,p(D) −→ Lr(∂D) is surjective and

‖f‖0,r,∂D ≤ C‖f‖k,p,D,

where r = (n−1)p
n−kp

and C = C(D, k, p).

Lemma 2.2.4. (Sobolev Embedding Theorem)[6] Let D ⊂ Rn be Lipschitz

smooth and Γk be a k-dimensional domain obtained by intersecting D with a k-

dimensional hyperplane in Rn, 1 ≤ k ≤ n. Let j,m ∈ {0} ∪ {Z
+}. Then

(1) If 0 < n−mp < k ≤ n and p ≤ q ≤ kp
n−mp

, then

Wm+j,p(D) →֒ W j,q(Γk)

is continuously embedded. Furthermore if 1 ≤ p <∞, then

Wm+j,p(D) →֒ W j,q(Γk)

is compactly embedded.

(2) If mp = n, 1 ≤ k ≤ n and p ≤ q <∞, then

Wm+j,p(D) →֒ W j,q(Γk)
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is continuously embedded. Furthermore if 1 ≤ p <∞, then

Wm+j,p(D) →֒ W j,q(Γk)

is compactly embedded.

(3) If mp > n, then

Wm+j,p(D) →֒ C̄j(D) ≡ {f ∈ Cj(D) : |Dαf | <∞, ∀ |α| ≤ j}

is continuously embedded. Furthermore if 1 ≤ p <∞, then

Wm+j,p(D) →֒ C̄j(D)

is compactly embedded.

Remark 2.2.5. Let ν = [n
p
] + 1 − n

p
if n

p
is not an integer and ν be any positive

number less than 1 if n
p

is an integer. For kp > n, then

W k,p(D) →֒ Ck−[ n
p
]−1,ν(D̄)

is continuously embedded, i.e.,

‖f‖
C

k−[ n
p ]−1,ν

(D̄)
≤ C‖f‖k,p,D, (2.12)

where C = C(D, k, p, n) [35].

We will also frequently use the following elementary inequalities.

Lemma 2.2.5. (Young’s Inequality) [54]. For a, b ≥ 0 and ε > 0 and p, q > 1

with 1
p

+ 1
q

= 1, then

ab ≤ 1

p
(εa)p +

1

q
(
b

ε
)q. (2.13)

Lemma 2.2.6. (Jensen’s Inequality) [54] Let (D,A, µ) be a probability measure

space and ϕ be a real-valued convex function. If f is a real-valued µ-measurable
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function, then

ϕ(

∫

D

fdµ) ≤
∫

D

ϕ(f)dµ. (2.14)

Remark 2.2.6. In numerical analysis, we often use the following version of Jensen’s

inequality: Let ϕ be a convex function and function f : D −→ (0,∞) and function

g : D −→ [0,∞). Then

ϕ(

∫

D
fgdx

∫

D
fdx

) ≤
∫

D
fϕ(g)dx
∫

D
fdx

.

When we study evolution equation, we often use Gronwall’s inequality.

Lemma 2.2.7. (Gronwall’s Inequality) [36] Let f, g and h be piecewise continuous

nonnegative functions defined on an interval a ≤ t ≤ b, g being non-decreasing. If,

for each t ∈ [a, b],

f(t) + h(t) ≤ g(t) +

∫ t

a

f(s)ds,

then f(t) + h(t) ≤ et−ag(t).

Remark 2.2.7. When we study discretization of evolution equation, we also need to

use discrete analogue of Gronwall’s Inequality:

Let f, g and h be piecewise continuous nonnegative functions defined on

T∆ = {t ∈ [0, T ], t = j∆t, j = 0, 1, · · · , m, m∆t = T},

g being non-decreasing. If

f(t) + h(t) ≤ g(t) + C∆t
t−∆t
∑

s=0

f(s),

where C is a positive constant. Then f(t) + h(t) ≤ eCtg(t) [36].

Throughout the dissertation, if we do not make explicit explanation, we will use

Einstein summation convention, i.e., repeated indices are implicitly summed over.
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This simplifies and shortens equations. For example,

ai + bi =
∑

i

(ai + bi), aibi =
∑

i

(aibi)

and

aikbij =
∑

i

(aikbij).
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CHAPTER III

MULTISCALE NUMERICAL METHODS FOR ELLIPTIC EQUATIONS USING

GLOBAL INFORMATION AND APPLICATIONS TO TWO-PHASE FLOWS

In this chapter, we propose some multiscale numerical methods and apply them

to elliptic equations. These multiscale numerical methods employ limited global infor-

mation. We present some multiscale numerical methods using one global or multiple

global fields. The main results in the chapter are that the proposed multiscale nu-

merical methods converge without assuming the scale separation and the convergence

rate does not contain resonance errors. As an example in two-phase flow simulations,

these methods use global information from an initial single-phase flow to accurately

model two-phase immiscible flow dynamics in heterogeneous porous media. The anal-

ysis assumes that the fine-scale features of two-phase flow dynamics strongly depend

on the initial state, or equivalently on the corresponding single-phase flow solution

at initial time. The assumption is relaxed for the case with scale separation. These

results can been found in our papers [4, 5, 3].

The chapter is organized as follows.

In Section 3.1, we provide the motivation of multiscale finite element methods

using global information.

In Section 3.2, we introduce Galerkin MsFEM and mixed MsFEM using a single

phase flow information. These multiscale techniques have advantages if the fine-scale

features of two-phase flow dynamics strongly depend on the initial single-phase flow.

In particular, we assume that two-phase flow pressure solution strongly depends on the

initial single-phase pressure. The validity of this assumption is shown for channelized

permeability in [29]. If there is a scale separation, then it is sufficient to assume that

the direction of the average of the coarse-scale pressure gradient is unchanged during



17

the course of a two-phase flow simulation (i.e., the coarse-scale streamlines does not

change significantly during a simulation).

In Section 3.3, we develop partition of unity method using global information,

numerical harmonic coordinate method and mixed MsFEM using multiple global

information. These multiscale methods using multiple global information are not

trivial extensions of the multiscale methods introduced in Section 3.2 where single

global information is used because the construction of basis functions are different

and the multiscale methods using multiple global fields have wider applications.

In Section 3.4, we use the global multiscale methods for simulation of two-phase

flows and present the numerical results. We show that MsFEMs using global infor-

mation are more accurate compared to MsFEMs which only use local information.

3.1. Motivation of MsFEM Using Limited Global Information

We study MsFEMs for elliptic equation

−div(λ(x)k(x)∇p) = f, (3.1)

where k(x) is a heterogeneous field and λ(x) is assumed to be a smooth field. This

equation is derived from two-phase flow equations when gravity and capillary effects

are neglected (see (2.2)). Here p denotes the pressure. Our goal is to construct mul-

tiscale basis functions on the coarse grid (with grid size larger than the characteristic

length scale of the problem) such that these basis functions can be used for various

source terms f(x), boundary conditions and mobilities λ(x). For this reason, one

typically looks for functions (local or global) which contain the essential information

about the heterogeneities. For problems without scale separation, these functions are

often the solutions of global problems, and thus, these methods are effective when
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(3.1) is solved multiple times. For problems with scale separation, one can use the

solutions of the local problem in constructing multiscale basis functions. The un-

derlying assumption for these global fields used in the paper is the following. There

exists N global fields p1,..., pN , such that

|p−G(p1, ..., pN)|1,Ω ≤ Cδ, (3.2)

where δ is sufficiently small, G is sufficiently smooth function, and p1,.., pN are solu-

tions of div(k(x)∇p) = 0 with some prescribed boundary conditions. We note that δ

refers to a physical parameters that shows how well the solution can be represented

using some functions p1,..., pN . For example, in homogenization setting, δ is related

to the smallest scales representing the heterogeneities. In some cases, the solution

can be represented exactly with the global fields (see below) and in this case δ = 0.

Also, we note that the assumption (3.2) can be formulated for each coarse patch,

where p1, ..., pN are different for each patch. In this case, p1, ..., pN are defined on

coarse patches and the resulting multiscale method (introduced later) is similar to

multiscale methods introduced earlier in [22]. Next, we briefly discuss the assumption

(3.2).

In [29], it was shown that for channelized permeability fields, p is a smooth func-

tion of single-phase flow pressure (i.e., N = 1), where single-phase pressure equation

is described by div(k(x)∇p) = 0 with boundary conditions as those corresponding

to two-phase flow. In a general setting, it was shown by Owhadi and Zhang [53]

that for an arbitrary smooth λ(x), the solution is a smooth function of d linearly

independent solutions of single-phase flow equations (N = d), where d is the space

dimension. When considering random permeability fields, the permeability field is

typically parameterized with a parameter that represents the uncertainties. In this

case, we deal with a family of rough permeability fields such as k = k(x, θ), where θ
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is in high dimensional space. For example, log-Gaussian permeability fields can be

characterized using Karhunen-Loéve expansion [31] as

k(x, θ1, ..., θM ) = exp(θiφi(x)),

where φi(x) are pre-computed spatial fields which depend on covariance matrix. In

many of these parameterized cases, k(x, θ) is a smooth functions of θ = (θ1, ..., θM),

and thus one can use sparse approximation techniques to represent the solution on

the coarse grid via the basis functions computed for a selected number of single-phase

flow solutions (see [20, 27]).

If there is scale separation, one can use homogenization theory. In this case, pi

are given by the solutions of the local problems in a period (cf. [8]). More precisely,

if kǫ(x) = k(x/ǫ), where k(y) is a periodic function in a unit cube Y , then pi are

solutions of

div(k(x)∇pi) = 0, i = 1, ..., d,

such that pi = xi + Pi with Pi is being a periodic function. In general, one can also

use the solutions of local problems in coarse grid blocks in the construction of basis

functions. In this case, the proposed method is similar to mixed MsFEM proposed

in [22].

In the above assumption (3.2), pi are solutions of flow equations. We denote

the corresponding velocity field by ui, i.e., ui = k∇pi. Then, the above assumption

can be written in the following way. There exist sufficiently smooth scalar functions

A1(x), ..., AN (x), such that the velocity corresponding to (3.1) can be written as

‖u−A1(x)u1 − ...− AN(x)uN‖0,Ω ≤ Cδ. (3.3)

We note that in the case of homogenization problems ui = k(x)∇pi, and one can
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easily show that Ai(x) = λ(x)∂p0

∂xi
and δ =

√
ǫ ([46]). Here p0 is the solution of the

homogenized equation and thus Ai are smooth functions. In general case, Ai(x) =

λ(x) ∂G
∂pi

. In the analysis, we will use a stronger version of (3.3).

3.2. MsFEM Using Single Global Information

In this section, we discuss Galerkin MsFEM and mixed MsFEM using single-

phase flow information and their applications to two-phase immiscible flow.

3.2.1. Galerkin MsFEM Using Single Global Information

Construction of MsFEM Basis Functions . The key idea of Galerkin

MsFEM is the construction of basis functions on coarse grids that capture small-scale

information. The basis functions are constructed from the solution of the leading order

homogeneous elliptic equation on each coarse element with some specified boundary

conditions. For further analysis, K denotes a generic coarse element and τh is a quasi-

uniform family of coarse elements. Thus, if we consider a coarse element K that has

d vertices xj , the local basis functions φi, i = 1, · · · , d are set to satisfy the following

elliptic problem























div(k(x)∇φK
i ) = 0 in K

φK
i = dK

i on ∂K,

φK
i (xj) = δij ,

(3.4)

where δij = 1 if i = j and δij = 0 if i 6= j.

The function dK
i for each i has been defined in various ways. e.g., in [43] it is

chosen to vary linearly along ∂K, or to be the solution of a local one-dimensional

problems. A solution of the problem in a slightly larger domain has also been used

to define boundary conditions [38]. It can be shown that if dK
i varies linearly along
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∂K, then the multiscale finite element method has a resonance error [38].

We would like to note that an approximate solution of (3.4) can be used. For

example, in the case of periodic or scale separation cases, the basis functions can be

approximated using homogenization expansion [29]. This type of simplification is not

applicable for problems considered in this thesis.

Next, we briefly describe multiscale finite element method using information

from a single-phase flow solution. For simplicity, we restrict ourselves to the two

dimensional case. For this method, dK
i is the linear interpolation of psp using the

values of psp(xj) (j = 1, · · · , d). In particular, for each element K (see Figure 3.1)

with vertices xi (i = 1, ..., d) denote by φK
i (x) a restriction of the nodal basis on

K, such that φK
i (xj) = δij . At the edges where φK

i (x) = 0 at both vertices, we

take boundary condition for φK
i (x) to be zero. Consequently, the basis functions

are localized. We only need to determine the boundary condition at two edges that

have the common vertex xi (φK
i (xi) = 1). Denote these two edges by [xi−1, xi] and

[xi, xi+1]. We only need to describe the boundary condition, dK
i , for the basis function

φK
i , along the edges [xi, xi+1] and [xi, xi−1]. If psp(xi) 6= psp(xi+1), then

dK
i (x)|[xi,xi+1] =

psp(x) − psp(xi+1)

psp(xi) − psp(xi+1)
, dK

i (x)|[xi,xi−1] =
psp(x) − psp(xi−1)

psp(xi) − psp(xi−1)
.

The case psp(xi) = psp(xi+1) 6= 0 and others can also be described (see [29]).

We define the Galerkin finite element space by

Vh = span{φK
i : 1, · · · , d;K ∈ τh}. (3.5)

The weak formulation of (2.2) is to seek ph ∈ Vh such that

(λkǫ∇ph,∇qh) = (f, qh) for any qh ∈ Vh, (3.6)
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Fig. 3.1. Schematic description of basis function

where (·, ·) denotes inner product in L2. In this case, we have the Cea’s estimate [25]

|p− ph|1,Ω ≤ C inf
qh∈Vh

|p− qh|1,Ω, (3.7)

where p is the solution of two-phase flow (2.2) and ph is the numerical solution defined

in (3.6). Throughout C denotes a generic constant independent of mesh size. Using

(3.7), one can show psp
h = psp in each coarse block K (see [29]) for the case with zero

source term and non-zero boundary conditions. If the source term is not zero and in

L2(Ω), it can be easily shown that |psp
h − psp|1,Ω ≤ Ch‖f‖0,Ω.

Convergence Analysis of MsFEM for Continuum Scale . We discuss the

convergence for the case of continuum scale. We will use the following assumption

for the case of continuum scale.

Assumption G. There exists a sufficiently smooth scalar valued function G(η)

(G ∈ W 3, 2s
s−2 , s > 2 ), such that

|p−G(psp)|1,Ω ≤ Cδ, (3.8)
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where δ is sufficiently small.

Note that G is defined on a bounded interval because psp is a bounded function.

Following standard practice of finite element estimation, we seek qh = ciφ
K
i ,

where φK
i are single-phase flow based multiscale finite element basis functions. Then

from (3.7), we have

|p− ph|1,Ω ≤ |p−G(psp)|1,Ω + |G(psp) − ciφ
K
i |1,Ω. (3.9)

Next, we present an estimate for the second term. We choose ci = G(psp(xi)), where

xi are vertices of K. Furthermore, using Taylor expansion of G around pK , which is

the average of psp over K,

G(psp(xi)) = G(pK) +G′(pK)(psp(xi) − pK)

+ (psp(xi) − pK)2

∫ 1

0

sD′′(psp(xi) + s(pK − psp(xi)))ds.
(3.10)

We have in each K

ciφ
K
i = G(pK)

∑

i

φK
i +G′(pK)(psp(xi) − pK)φK

i

+ (psp(xi) − pK)2φK
i

∫ 1

0

sD′′(psp(xi) + s(pK − psp(xi)))ds

= G(pK) +G′(pK)(psp(xi)φ
K
i − pK)

+ (psp(xi) − pK)2φK
i

∫ 1

0

sD′′(psp(xi) + s(pK − psp(xi)))ds.

(3.11)

In the last step, we have used
∑

i φ
K
i = 1. Similarly, in each K,

G(psp(x)) = G(pK) +G′(pK)(psp(x) − pK)

+ (psp(x) − pK)2

∫ 1

0

sD′′(psp(x) + s(pK − psp(x)))ds.
(3.12)
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Using (4.11) and (4.12), we get

|G(psp) − ciφ
K
i |1,K

≤ |G′(pK)(psp(x) − psp(xi)φ
K
i )|1,K

+ |(psp(xi) − pK)2φK
i

∫ 1

0

sD′′(psp(xi) + s(pK − psp(xi)))ds|1,K

+ |(psp(x) − pK)2

∫ 1

0

sD′′(psp(x) + s(pK − psp(x)))ds|1,K.

(3.13)

Since |psp(x) − psp(xi)φ
K
i |1,K ≤ Ch‖f‖0,K , the estimate of the first term is the

following

|G′(pK)(psp(x) − psp(xi)φ
K
i )|1,K ≤ Ch‖f‖0,K .

For the second term on the right hand side of (3.13), assuming psp(x) ∈W 1,s(Ω),

we have

|(psp(xi) − pK)2φK
i

∫ 1

0

sD′′(psp(xi) + s(pK − psp(xi)))ds|1,K

≤ Ch2−4/s|psp|2W 1,s(K)|φK
i |1,K

≤ Ch1−2/s|psp|W 1,s(Ω)|psp|W 1,s(K)

≤ Ch1−2/s|psp|W 1,s(K).

(3.14)

where s > 2 and the fact that φK
i ≤ C 1

h
. Here, we have used the inequality (2.12)

|u(x) − u(y)| ≤ C|x− y|1−2/s|u|W 1,s,

for s > 2, where C depends only on s.

For the third term on the right hand side of (3.13), A straightforward calculation
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gives

|(psp(x) − pK)2

∫ 1

0

sD′′(psp(x) + s(pK − psp(x)))ds|1,K

≤ ‖(psp(x) − pK)2∇psp(x)

∫ 1

0

(1 − s)sD′′′(psp(x) + s(pK − psp(x)))ds‖0,K

+ ‖2(psp(x) − pK)∇psp(x)

∫ 1

0

sD′′(psp(x) + s(pK − psp(x)))ds‖0,K

≤ Ch2− 4
s |psp|1,s,K(|psp|s1,s,Ω + |G|

2s
s−2

3, 2s
s−2

)
1
2

+ Ch1− 2
s |psp|1,s,K(|psp|s1,s,Ω + |G|

2s
s−2

3, 2s
s−2

)
1
2

≤ Ch2− 4
s |psp|1,s,K + Ch1− 2

s |psp|1,s,K

≤ Ch1− 2
s |psp|1,s,K,

(3.15)

where we used Young’s inequality (2.13) in the second step.

Combining the above estimates, we have for (3.13),

|G(psp) − ciφ
K
i |1,K ≤ Ch1−2/s|psp|W 1,s(K) + Ch‖f‖0,K. (3.16)

Summing (3.16) over all K and taking into account Assumption G, we have

|p− ph|1,Ω ≤ Cδ + Ch1−2/s|psp|W 1,s(Ω) + Ch‖f‖0,Ω ≤ Cδ + Ch1−2/s. (3.17)

Consequently, if s > 2, single-phase flow based multiscale finite element method

converges and we have the following theorem.

Theorem 3.2.1. Under Assumption G and psp ∈ W 1,s(Ω) (s > 2), multiscale finite

element method converges with the rate given by (3.17).

Remark 3.2.1. We can relax the assumption on G. In particular, it is sufficient to

assume G ∈ W 2,m (m ≥ 1). In this case, the proof can be carried out using Taylor

polynomials in Sobolev spaces and will be given in later chapter. Also, if we assume

∇psp ∈ L∞(Ω), then the convergence rate in (3.17) is Cδ + Ch.
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Convergence Analysis of MsFEM for Scale Separation Case . Now we

discuss the scale separation case. For the analysis of the case with scale separation,

it is sufficient to assume Assumption G for homogenized part of the pressure. Next,

we briefly review homogenization. We consider a two-phase flow model problem in a

scale-separation form

−div(λ(x)kǫ(x)∇pǫ) = f(x) in Ω

pǫ = 0 on ∂Ω,

(3.18)

where λ(x) is a positive smooth function and kǫ(x) = k(x/ǫ) is a symmetric, positive

definite matrix and k(y) is a periodic function, y = x/ǫ. The corresponding single

phase flow problem is

−div(kǫ(x)∇psp
ǫ ) = f(x) in Ω

psp
ǫ = 0 on ∂Ω.

(3.19)

Using a formal multiscale expansion pǫ(x) = p0(x) + ǫp1(x,
x
ǫ
) + · · · , one can obtain

the homogenized equation associated with (3.18)

−div(λ(x)k∗∇p0) = f(x) in Ω

p0 = 0 on ∂Ω,

(3.20)

where matrix k∗ = {k∗ij} and k∗ij = 〈kij + kim
∂χj

∂ym
〉Y , in which χj is Y-periodic and

solves the auxiliary equation

div(k(y)∇χj) = −div(k(y)ej) in Y, (3.21)

where ej is the unit vector with 1 in j-th component. Similarly, one can derive the
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homogenized equation associated with (3.19),

−div(k∗∇psp
0 ) = f(x) in Ω

psp
0 = 0 on ∂Ω.

(3.22)

Let us recall the standard MsFEM [38], for which dK
i is chosen to vary linearly

along ∂K authors in [39] obtained the following theorem.

Theorem 3.2.2. Let pǫ and ph solve the equation (3.18) and (3.6) respectively, then

for h > ǫ,

(1) ‖pǫ − ph‖1 ≤ Ch‖f‖0 + C
√

ǫ
h
;

(2) ‖pǫ − ph‖0 ≤ Ch2‖f‖0 + Cǫ+ C ǫ
h
.

Employing over-sampling technique to reduce resonance error, authors in [32]

obtained that

‖pǫ − ph‖1,h ≤ C(h+
√
ǫ+

ǫ

h
).

Let us come back the MsFEM using limited global information for the scale

separation problem. The Assumption G, for the case with scale separation, can be

replaced by

Assumption G-S. There exists a sufficiently smooth scalar valued function G(η)

(G ∈ W 3, 2s
s−2 , s > 2) such that

|p0 −G(psp
0 )|1,Ω ≤ Cδ0, (3.23)

where δ0 is sufficiently small.

The convergence estimate can be easily derived repeating the steps of no-scale

separation case, if we estimate |pǫ −G(psp
ǫ )|1,Ω.

Let χ = {χ1, · · · , χn}. We introduce

p̃ǫ = p0 + ǫχ∇p0, p̃sp
ǫ = psp

0 + ǫχ∇psp
0 .
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Next, we write

|pǫ −G(psp
ǫ )|1,Ω ≤ |pǫ − p̃ǫ|1,Ω + |p̃ǫ −G(p̃sp

ǫ )|1,Ω + |G(p̃sp
ǫ ) −G(psp

ǫ )|1,Ω. (3.24)

The first term on the right hand side of (3.24) can be estimated using (e.g., [46])

|pǫ − p̃ǫ|1,Ω ≤ C
√
ǫ|p0|2,Ω. (3.25)

For the estimation of the second term on the right hand side of (3.24), we have

|p̃ǫ −G(p̃sp
ǫ )|1,Ω ≤ ‖(I + ∇yχ)∇p0 −G′(p̃sp

ǫ )(I + ∇yχ)∇psp
0 ‖0,Ω

+ ‖ǫχ∇2p0‖0,Ω + ‖G′(p̃sp
ǫ )ǫχ∇2psp

0 ‖0,Ω

≤ ‖(I + ∇yχ)(∇p0 −G′(p̃sp
ǫ )∇psp

0 )‖0,Ω + Cǫ|p0|2,Ω + Cǫ|psp
0 |2,Ω

≤ C‖∇p0 −G′(p̃sp
ǫ )∇psp

0 ‖0,Ω + Cǫ|p0|2,Ω + Cǫ|psp
0 |2,Ω

≤ C‖∇p0 −G′(psp
0 )∇psp

0 ‖0,Ω + C‖(G′(psp
0 ) −G′(p̃sp

ǫ ))∇psp
0 )‖0,Ω + Cǫ|p0|2,Ω + Cǫ|psp

0 |2,Ω

≤ C‖∇p0 −G′(psp
0 )∇psp

0 ‖0,Ω + C‖psp
0 − p̃sp

ǫ ‖L∞(Ω)‖∇psp
0 ‖0,Ω + Cǫ|p0|2,Ω + Cǫ|psp

0 |2,Ω

≤ C‖∇p0 −G′(psp
0 )∇psp

0 ‖0,Ω + Cǫ‖∇psp
0 ‖0,Ω + Cǫ|p0|2,Ω + Cǫ|psp

0 |2,Ω.

(3.26)

For the third term on the right hand side of (3.24), we have

|G(p̃sp
ǫ ) −G(psp

ǫ )|1,Ω ≤ ‖(G′(psp
ǫ ) −G′(p̃sp

ǫ ))∇psp
ǫ ‖0,Ω + ‖G′(p̃sp

ǫ )(∇psp
ǫ −∇p̃sp

ǫ )‖0,Ω

≤ C‖psp
ǫ − p̃sp

ǫ ‖∞,Ω|∇psp
ǫ |1,Ω + C|psp

ǫ − p̃sp
ǫ |1,Ω ≤ Cǫ|psp

ǫ |1,Ω + C
√
ǫ|psp

0 |2,Ω.

(3.27)

Combining the above estimates, we have

|pǫ −G(psp
ǫ )|1,Ω ≤ C

√
ǫ|p0|2,Ω + ‖∇p0 −G′(psp

0 )∇psp
0 ‖0,Ω+

Cǫ(|psp
ǫ |1,Ω + |psp

0 |1,Ω) + C
√
ǫ|psp

0 |2,Ω.

(3.28)

Following the error estimate derived for no-scale separation case we can obtain the
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estimate for |G(psp
ǫ ) − ciφ

K
i |. Thus, using Assumption G-S, we have

|pǫ − ciφ
K
i |1,Ω ≤ C

√
ǫ|p0|2,Ω + Cδ0 + Cǫ(|psp

ǫ |1,Ω + |psp
0 |1,Ω)+

C
√
ǫ|psp

0 |2,Ω + Ch1−2/s ≤ Cδ0 + C
√
ǫ+ Ch1−2/s.

(3.29)

Thus, we have the following theorem.

Theorem 3.2.3. Under Assumption G-S and the fact that psp
ǫ ∈ W 1,s(Ω) (s > 2)

and |p0|2,Ω + |psp
0 |2,Ω is bounded, multiscale finite element method converges with the

rate given by (3.29).

3.2.2. Mixed MsFEM Using Single Global Information

Mixed FEM . For simplicity, we assume Neumann boundary conditions. First,

we review the mixed multiscale finite element formulation following [22] (see also

[1, 10, 9]). We can rewrite two-phase flow equation as























(λk)−1u−∇p = 0 in Ω

div(u) = 0 in Ω

λ(x)k(x)∇p · n = g(x) on ∂Ω,

(3.30)

where λ(x) ≥ c > 0 for some constant c and k is uniformly positive , symmetric

and bounded. The variational problem associated with (3.30) is to seek (u, p) ∈

H(div,Ω) × L2(Ω)/R such that u · n = g on ∂Ω and

((λk)−1u, v) + (divv, p) = 0 ∀v ∈ H0(div,Ω)

(divu, q) = 0 ∀q ∈ L2(Ω)/R.

(3.31)

By defining

a(u, v) = ((λk)−1u, v), b(v, q) = (divv, q), (3.32)
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we can rewrite the weak formulation as

a(u, v) + b(v, p) = 0 ∀v ∈ H0(div,Ω),

b(u, q) = 0 ∀q ∈ L2(Ω)/R.

Let Vh ⊂ H(div,Ω) and Qh ⊂ L2(Ω)/R be finite dimensional spaces and V 0
h =

Vh ∩ H0(div,Ω). The numerical approximation problem associated with (3.31) is to

find (uh, ph) ∈ vh × Qh such that uh · n = gh on ∂Ω, where gh = g0,h · n on ∂Ω and

g0,h =
∑

e∈{∂K
T

∂Ω,K∈τh}
(
∫

e
gds)Ne, Ne ∈ Vh, is corresponding basis function to edge

e, and

((λk)−1uh, vh) + (divvh, ph) = 0 ∀vh ∈ V 0
h

(divuh, qh) = 0 ∀qh ∈ Qh.

(3.33)

One can define a linear operator Bh : V 0
h → Q′

h by (Bhuh, qh) = b(uh, qh).

Suppose that the following conditions are satisfied

a(uh, uh) is kerBh − coercive (3.34)

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖H(div,Ω)‖qh‖L2(Ω)

≥ C. (3.35)

Then the following approximation property follows (see e.g., [19]).

Lemma 3.2.4. If (u, p) and (uh, ph) respectively solve the problem (3.31) and (3.33)

and the conditions (3.34) and (3.35) hold, then

‖u−uh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ inf
vh∈Vh

vh−g0,h∈V 0
h

‖u− vh‖H(div,Ω) + inf
qh∈Qh

‖p− qh‖0,Ω. (3.36)

If we assume that Vh = RT0, the lowest Raviart-Thomas space, and Qh =

⊕

K P0(K), the piecewise constant space, then the standard mixed finite method

theory [19] implies the following estimate for scale-separation problem with physical



31

scale length ǫ.

Proposition 3.2.5. If Vh = RT0 and Qh =
⊕

K P0(K) and f ∈ H1, then

‖uǫ − uh‖H(div,Ω) + ‖pǫ − ph‖0,Ω ≤ C
h

ǫ
‖f‖0,Ω + Ch|f |1,Ω + Cǫ‖g‖− 1

2
,∂Ω. (3.37)

Remark 3.2.2. In the Proposition 3.2.5, we have used the regularity estimate, i.e.,

|uǫ|1,Ω ≤ Cǫ−1‖f‖1,Ω.

Since ǫ is very small in practice, Proposition 3.2.5 implies that traditional mixed

finite element does not work well for the multiscale elliptic problem.

Local Mixed MsFEM . We would like to follow the local mixed MsFEM in

[22] to discuss the scale-separation problem

divλ(x)kǫ(x)∇pǫ = 0 in Ω

λ(x)kǫ(x)∇pǫ · n = g(x) on ∂Ω,

(3.38)

where kǫ = k(x/ǫ) is ǫ-periodic and Ω ⊂ Rd. Owing to multiscale expansion and

identifying the powers of ǫ, we can get the following homogenization equation

divλ(x)k∗∇p0 = 0 in Ω

λ(x)k∗∇p0 · n = g(x) on ∂Ω,

(3.39)

where k∗ is the homogenized matrix and is defined previously.

For further analysis, we define first order corrector pǫ,1 = p0 + ǫχ∇p0, and the

boundary corrector θǫ ∈ H1/R, which solves

divλ(x)kǫ(x)∇θǫ = 0 in Ω (3.40)

λ(x)kǫ(x)∇θǫ · n = λ
∂

∂xj

(αk
ij(
x

ǫ
)
∂p0

∂xk

) · ni on ∂Ω, (3.41)

where n = {n1, · · · , nd} is the unit outer normal to ∂Ω and αk
ij is zero mean skew-
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symmetric matrix such that
∂αk

ij

∂yj
= kil +kij

∂χl

∂yj
−k∗il . The following estimate is derived

in [22].

Lemma 3.2.6. Assume that p0 ∈ H2(Ω) ∩W 1,∞(Ω), then

(1) ‖∇pǫ −∇(pǫ,1 + ǫθǫ)‖0,Ω ≤ Cǫ‖λ‖0,∞(|p0|2,Ω + |p0|1,Ω);

(2) ‖ǫ∇θǫ‖0,Ω ≤ Cǫ‖λ‖0,∞‖p0‖2,Ω + C
√

ǫ|∂Ω|‖λ‖0,∞|p0|1,∞,Ω.

The similar result holds for the solution of single-phase flow equation by psp
ǫ , i.e.,

‖∇psp
ǫ −∇(psp

ǫ,1 + ǫθǫ)‖0,Ω ≤ Cǫ(|psp
0 |2,Ω + |psp

0 |1,Ω)

and

‖ǫ∇θsp
ǫ ‖0,Ω ≤ Cǫ‖psp

0 ‖2,Ω + C
√

ǫ|∂Ω||psp
0 |1,∞,Ω.

For Mixed MsFEM, one need to solve local problems to construct basis functions

for velocity. Following Chen and Hou [22] (see also [9]), one can construct multiscale

basis functions for velocity in each coarse block K

div(k(x)∇wK
i ) =

1

|K| in K

k(x)∇wK
i n

K =











gK
i on eK

i

0 else,

(3.42)

where eK
i ’s are the edges of K and gK

i = 1
|eK

i |
in local mixed MsFEM proposed in [22].

Then, we can define the finite dimensional space for velocity by

Vh =
⊕

K

{ψK
i },

V 0
h = Vh ∩H0(div,Ω),

where ψK
i = k(x)∇wK

i .

Let Qh =
⊕

K P0(K)∩L2(Ω)/R, a set of piece-wise constant functions. We state

the convergence theorem for scale separation problem as following.
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Theorem 3.2.7. Let (uǫ, pǫ) ∈ H(div,Ω)×L2(Ω)/R solve problem (3.31) and (uh, ph) ∈

Vh × Qh solve the discrete variation problem (3.33). If the homogenized solution

p0 ∈ H2(Ω) ∩W 1,∞(Ω), then

‖uǫ − uh‖H(div,Ω) + ‖pǫ − ph‖0,Ω

≤ C1(p0, λ)ǫ+ C2(p0, λ, g)h+ C3(p0, λ)
√
ǫh + C4(p0, λ)

√

ǫ

h
,

(3.43)

where the coefficients are defined in (3.54), (3.58) ,(3.56) and (3.57) respectively.

We give a brief proof for the sake of completeness (also refer to [22]).

Under the above finite element spaces, the well-posedness of the discrete problem

is easily verified [22], that is, (3.34) and (3.35) are true for the local mixed MsFEM

spaces.

In order to make the error analysis we only need to make an estimation of right-

hand in (3.36), in which the second part is easy to estimate. We have

Proposition 3.2.8. Let pǫ and ph be the solution of pressure in (3.31) and (3.33)

respectively, then

inf
qh∈Qh

‖pǫ − qh‖0 ≤ Ch‖g‖
H−

1
2 (∂Ω)

(3.44)

Proof. Define q̄h = 1
|K|

∫

K
pǫdx in each coarse block K. Then we apply Poincaré

inequality (2.9) and regularity estimation of elliptic equations, the conclusion follows

immediately. That is

inf
qh∈Qh

‖pǫ − qh‖0 ≤ ‖pǫ − q̄h‖0 ≤ Ch‖∇pǫ‖0 ≤ Ch‖g‖
H−

1
2 (∂Ω)

We define the multiscale interpolation operator Πh : H(div,Ω) −→ Vh by

Πhu|K = (

∫

eK
i

u · nKds)ψK
i . (3.45)
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Let RT0 = span{RK
i , i = 1, 2, · · · , n;K ∈ τh} be the lowest order Raviart-Thomas

space and define the interpolation operator Ph : H(div,Ω) −→ RT0 by

Phu|K = (

∫

eK
i

u · nKds)RK
i . (3.46)

It is easy to check that divΠhu = divPhu and Πhu · nK = Phu · nK .

Right now we still need to estimate the first term in the righthand of (3.36).

The basic idea is to choose a particular uh approximating uǫ very well. Let the

homogenized velocity u0 = λk∗∇p0 and choose th|K = Πhu0 and so we have that

th − gh ∈ V 0
h , where gh =

∑

e∈∂Ω(
∫

e
gds)ψK

i . Consequently, it remains to estimate

‖uǫ−th‖H(div,Ω). From the definition of th, an easy calculation gives rise to div(th|K) =

0 and divuǫ = 0. Therefore, we have

‖divuǫ − divth‖0,Ω = 0. (3.47)

The next step is to estimate ‖uǫ−th‖0,Ω. The nature idea is to use homogenization

technique. We set wK
ǫ = αK

i w
K
i ,where αK

i =
∫

eK
i

u0 · nKds and then th = kǫ∇wK
ǫ

and divkǫ∇wK
ǫ = divPhu0 = 0 in K, where wK

ǫ ∈ H1(K)/R satisfies the following

equation

divkǫ∇wK
ǫ = 0 in K (3.48)

kǫ∇wK
ǫ · nK = Phu0 · nK on eK

i . (3.49)

Let wK
0 be the solution of the corresponding homogenization equation, that is

divk∗∇wK
0 = 0 in K (3.50)

k∗∇wK
0 · nK = Phu0 · nK on eK

i . (3.51)

Let wK
1 = wK

0 + ǫχ∇wK
0 . To estimate ‖uǫ − th‖0,Ω, we need the following lemma.
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Lemma 3.2.9. Let pǫ
1 and wK

1 be defined in the above, then

|wK
0 − p0|1,K ≤ Ch‖λ−1 − 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

|pǫ
1 − wK

1 |1,K ≤ C(h‖λ−1 − 1‖0,∞,K + ǫ)‖λ‖1,∞,K‖p0‖2,K

|wK
0 |1,∞,K ≤ Ch−

d
2
+1‖λ‖1,∞,K‖p0‖2,K + C‖λ‖0,∞,K|p0|1,∞,K.

(3.52)

Proof. Owing to k∗∇wK
0 = Phu0 ∈ L∞(K), we get that wK

0 ∈ H2(K) ∩W 1,∞(K).

Applying the interpolation estimate of Raviart-Thomas finite element, we obtain

|wK
0 − p0|1,K = ‖(k∗)−1Phu0 − (λk∗)−1u0||0,K

≤ C‖λ−1 − 1‖0,∞,K‖Phu0 − u0‖0,K

≤ Ch‖λ−1 − 1‖0,∞,K|u0|1,K

≤ Ch‖λ−1 − 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K .

Since ∇wK
0 = (k∗)−1Phu0 and Ph is bounded, we get

|wK
0 |1,K ≤ C|λ|0,∞,K|p0|1,K

|wK
0 |2,K ≤ C‖λ‖1,∞,K|p0|2,K.

Using the above estimations, we obtain

|pǫ
1 − wK

1 |1,K ≤ |p0 − wK
0 |1,K + ‖(∇y · χ)∇(p0 − wK

0 )‖0,k + ǫ‖χ(∇2p0 −∇2wK
0 )‖0,K

≤ Ch‖λ−1 − 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K + Cǫ‖λ‖1,∞,K|p0|2,K .

As for the last inequality in (3.52), we invoke the inverse inequality of finite elements
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and then we get that

|wK
0 |1,∞,K ≤ C‖Phu0− < u0 >K ‖0,∞,K + C‖ < u0 >K ‖0,∞,K

≤ Ch−
d
2‖Phu0− < u0 >K ‖0,K + C‖ < u0 >K ‖0,∞,K

≤ Ch−
d
2
+1‖λ‖1,∞,K‖p0‖2,K + C‖λ‖0,∞,K|p0|1,∞,K

Applying the definitions of uǫ and th and the Lemma 3.2.9, we estimate ‖uǫ −

th‖0,Ω in the following way.

‖uǫ − th‖0,K

≤ C‖λ− 1‖0,∞,K(‖∇pǫ −∇wK
ǫ ‖0,K)

≤ C‖λ− 1‖0,∞,K(‖∇pǫ −∇pǫ
1‖0,K + ‖∇pǫ

1 −∇wK
1 ‖0,K + ‖∇wK

1 −∇wK
ǫ ‖0,K)

≤ C‖λ− 1‖0,∞,K{ǫ(‖λ‖0,∞,K‖p0‖2,K + ‖wK
0 ‖2,K)+

√
ǫhd−1(‖λ‖0,∞,K|p0|1,∞,K + |wK

0 |1,∞,K) + (h‖λ−1 − 1‖0,∞,K + ǫ)‖λ‖1,∞,K‖p0‖2,K}

≤ CK,1(p0, λ)ǫ+ CK,2(p0, λ)h+ CK,3(p0, λ)
√
ǫh + CK,4(p0, λ)

√
ǫhd−1,

where we have used Lemma 3.2.6 and the following notations

CK,1(p0, λ) = C‖λ− 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

CK,2(p0, λ) = C‖λ− 1‖0,∞,K‖λ−1 − 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

CK,3(p0, λ) = C‖λ− 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

CK,4(p0, λ) = C‖λ− 1‖0,∞,K(1 + ‖λ‖0,∞,K)‖p0‖1,∞,K.

Therefore, taking summation all over K, we have

‖uǫ − th‖0,Ω ≤ C1(p0, λ)ǫ+ C̃2(p0, λ)h+ C3(p0, λ)
√
ǫh + C4(p0, λ)

√

ǫ

h
, (3.53)
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where we have used the fact that the family of the mesh is quasi-uniform, and the

notations are

C1(p0, λ) = C‖λ− 1‖0,∞,Ω‖λ‖1,∞,Ω‖p0‖2,Ω (3.54)

C̃2(p0, λ) = C‖λ− 1‖0,∞,Ω‖λ−1 − 1‖0,∞,Ω‖λ‖1,∞,Ω‖p0‖2,Ω (3.55)

C3(p0, λ) = C‖λ− 1‖0,∞,Ω‖λ‖1,∞,Ω‖p0‖2,Ω (3.56)

C4(p0, λ) = C‖λ− 1‖0,∞,Ω(1 + ‖λ‖0,∞,Ω)‖p0‖1,∞,Ω. (3.57)

Using (3.47) and applying the Proposition 3.2.8, we immediately get

‖uǫ − uh‖H(div,Ω) + ‖pǫ − ph‖0,Ω

≤ C1(p0, λ)ǫ+ C2(p0, λ, g)h+ C3(p0, λ)
√
ǫh + C4(p0, λ)

√

ǫ

h
,

where

C2(p0, λ, g) = C̃2(p0, λ) + C‖g‖− 1
2
,∂Ω. (3.58)

This completes the proof.

Remark 3.2.3. It follows from the above proof that the resonance term O(
√

ǫ
h
) comes

from the terms |p0|1,∞,K. If the p0 can be exactly solved by some finite element method,

then we can use inverse inequality, i.e.,

‖p0‖1,∞,K ≤ Ch1− d
2‖p0‖2,K

and the Lemma 3.2.9 implies that

|wK
0 |1,∞,K ≤ Ch−

d
2
+1‖λ‖1,∞,K‖p0‖2,K ,

so resonance is vanished. Consequently, the convergence rate would be O(ǫ+h+
√
ǫh).

Remark 3.2.4. From the proof of the convergence theorem, it follows that λ ∈

W 1,∞(Ω) and λ−1 ∈ L∞(Ω).
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Remark 3.2.5. If over-sampling technique is used to approximate the flux uǫ (see

[22]), then the resonance error O(
√

ǫ
h
) can be reduced to O( ǫ

h
).

Mixed MsFEM Employing Single Global Information . We have already

reviewed local mixed MsFEM. Now we propose a mixed MsFEM that employs single-

phase flow information. Suppose that psp solves the single-phase flow equation. We

set bKi = (k∇psp|eK
i
) · nK and assume that bKi is uniformly bounded. Then the new

basis functions for velocity is constructed by solving problems (3.42) with Neumann

boundary condition gK
i = bKi /β

K
i , where βK

i =
∫

eK
i
k∇psp ·nKds. For further analysis,

we assume that βK
i 6= 0. In general, if βK

i = 0 one can use local mixed multiscale

finite element basis function to fix this part. Let ψK
i = k(x)∇wK

i and the multiscale

finite dimensional space V 0
h for velocity be defined by

Vh :=
⊕

K

{ψK
i } ⊂ H(div,Ω),

V 0
h := Vh ∩H0(div,Ω).

First, we will show that the resulting multiscale finite element solution for velocity

is exact for single-phase flow (i.e., λ(x) = 1). Let vh|K = βK
i ψ

K
i , then βK

i is the

interpolation value of the fine scale solution. Furthermore, a direct calculation yields

(vh|eK
i
) · nK = k∇psp · nK . Because

divvh = βK
i divψ

K
i =

1

|K|

∫

∂K

k∇psp · nKds =
1

|K|

∫

K

div(k∇pspd) = 0,

the following equation is obtained immediately

divvh = 0 in K (3.59)

vh · nK = k∇psp · nK on ∂K (3.60)

Because div(k∇psp) = 0, we get the following proposition.
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Proposition 3.2.10. Let βK
i =

∫

eK
i

k∇psp · nKds, then on each coarse block K

k∇psp = βK
i ψ

K
i . (3.61)

We re-formulate our assumption for the analysis of mixed multiscale finite ele-

ment methods. From (3.8), it follows that

‖∇p−G′(psp)∇psp‖0,Ω ≤ Cδ.

Using the fact that k and λ(x) are bounded, we have

‖λ(x)k∇p−G′(psp)λ(x)k∇psp‖0,Ω ≤ Cδ.

Noting that u = λ(x)k∇p and usp = k∇psp, it follows that there exists a coarse-

scale function scalar A(x) such that

‖u− A(x)usp‖0,Ω ≤ δ. (3.62)

Since A(x)usp approximates u, we assume that it has small divergence,

|
∫

K

div(A(x)usp)dx| ≤ Cδ1h
2 (3.63)

in each K, where δ1 is a small number. For our analysis, we note that (3.63) gives

|
∫

∂K

A(x)usp · nKds| ≤ Cδ1h
2. (3.64)

We will assume that A(x) ∈ Cγ (0 < γ ≤ 1). (3.64) can be written as

|
∑

i

Ai

∫

eK
i

usp · nKds| ≤ Cδ1h
2. (3.65)

Here Ai’s are defined as Ai =
∫

eK
i
A(x)usp ·nKds/

∫

eK
i
usp ·nKds, since

∫

eK
i
usp ·nKds =

βK
i 6= 0. Note that not for any A(x), Ai is necessarily a value of A(x) along the edge

eK
i because usp · nK can change sign. However, we only need to define A(x) for each
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edge by its value Ai (e.g., the value of A(x) at the center of edge). Then, for any such

A(x), (3.62) is satisfied provided δ < hγ . This can be directly verified. Thus, our

main assumption will be (3.62) and (3.65), where A(x) is defined, for example, at the

center of each edge eK
i . We would like to note that from the fact that div(A(x)usp) is

small in each K, it follows that A(x), for example, can be taken as an approximation

of stream function corresponding to usp.

Next, we present our error analysis. If inf-sup condition (3.35) is satisfied, then

(3.36) hold. We will investigate the inf-sup condition under some specific assumptions

for the mixed MsFEM using multiple global information in Section 3.3.3. Based on

(3.36), we estimate ‖u− cKi ψ
K
i ‖H(div,Ω) with appropriate cKi .

‖u− cKi ψ
K
i ‖H(div,Ω) ≤ ‖u− cKi ψ

K
i ‖0,Ω + ‖div(cKi ψK

i )‖0,Ω. (3.66)

Because div(ψK
i ) = 1/|K|, the second term is equal to 1

h

∑

K |
∑

i c
K
i |. Next, we

choose cKi = Aiβ
K
i . Then, noticing that βK

i =
∫

eK
i

usp · nKds, we have from (3.65)

|
∑

i

cKi | ≤ Cδ1h
2

for each K. Consequently, for the second term on the right hand side of (3.66), we

have

‖div(cKi ψK
i )‖0,Ω ≤ Cδ1.
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For the estimation of the first term on the right hand side of (3.66), we have

‖u− cKi ψ
K
i ‖0,K

≤ ‖u− A(x)usp‖0,K + ‖A(x)usp − cKi ψ
K
i ‖0,K

≤ ‖u− A(x)usp‖0,K + ‖(A(x) −AK)usp‖0,K + ‖AKu
sp − Aiβ

K
i ψ

K
i ‖0,K

≤ ‖u− A(x)usp‖0,K + C‖A(x) −AK‖∞,K‖usp‖0,K + ‖(AK − Ai)β
K
i ψ

K
i ‖0,K

≤ ‖u− A(x)usp‖0,K + C‖A(x) −AK‖∞,K‖usp‖0,K + |AK − Ai|h,

(3.67)

where AK is the mean of Ai. Here, we have taken into account that |βi| ≤ Ch and used

Proposition 3.2.10. Summing (3.67) over all K and taking into account A(x) ∈ Cγ,

we have

‖u− ciψ
K
i ‖0,Ω ≤ Cδ + Chγ .

Thus, we have the following estimate

‖u− cKi ψ
K
i ‖H(div,Ω) ≤ Cδ + Cδ1 + Chγ .

According to (3.36), for those K, K
⋂

∂Ω 6= 0, we will adjust proper cKi such that

cKi ψ
K
i − g0,h ∈ V 0

h , but this adjustment will not affect our convergence rate. As

for pressure approximation, choosing qh = 〈p〉K in each K, where 〈·〉K denotes the

average over K, we can obtain an estimate for the second term on right hand side of

(3.36) by Ch.

Theorem 3.2.11. Assume (3.62) and (3.65) and A(x) ∈ Cγ, 0 < γ ≤ 1. Let (u, p)

and (uh, ph) respectively solve the problem (3.31) and (3.33) with single-phase flow

based mixed multiscale finite element, then

‖u− uh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ Cδ + Cδ1 + Chγ. (3.68)

Remark 3.2.6. By lemma 5.3 in [3], no inf-sup condition is assumed and it follows
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that

‖u− uh‖0,Ω ≤ Cδ + Chγ.

In the following, we will use the mixed MsFEM using single phase flow informa-

tion to solve a scale separation (ǫ-scale periodic) problem (3.38).

For the error analysis, we assume (3.23):

|p0 −G(psp
0 )|1,Ω ≤ Cδ0. (3.69)

As we showed previously that if k = k(x/ǫ), this assumption implies the assumption

(3.8), which implies in its turn (3.62). (3.69) is equivalent to

‖∇p0 −G′(psp
0 )∇psp

0 ‖0,Ω ≤ Cδ0.

Because k∗ and λ(x) are bounded, we have

‖u0 −A(x)usp
0 ‖0,Ω ≤ Cδ0. (3.70)

(3.70) is the main assumption for the case with scale separation along with the as-

sumption (cf. (3.65))

|
∑

i

Ai

∫

eK
i

usp
0 · nKds| ≤ Cδ1h

2. (3.71)

Similar to the case of Galerkin method, one can derive the convergence rate for mixed

multiscale finite element method. In this case, the convergence rate does not contain

the resonance error and the following theorem holds.

Theorem 3.2.12. Assume (3.70), (3.71), A(x) ∈ Cγ (0 < γ ≤ 1), |p0|2,Ω + |psp
0 |2,Ω

and ‖∇p0‖∞,Ω + ‖∇psp
0 ‖∞,Ω are bounded. Let (uǫ, pǫ) and (uh, ph) respectively solve

the problem (3.31) and (3.33) with single-phase flow based mixed multiscale finite

element, then

‖uǫ − uh‖H(div,Ω) + ‖pǫ − ph‖0,Ω ≤ Cδ0 + Cδ1 + C
√
ǫ+ Chγ. (3.72)
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Proof. Set

ũǫ = λkǫ(I + ∇yχ)∇p0 + ǫλkǫ∇2p0χ+ ǫλkǫ∇θǫ

and

ũsp
ǫ = kǫ(I + ∇yχ)∇psp

0 + ǫkǫ∇2psp
0 χ+ ǫkǫ∇θsp

ǫ

where χ, θǫ and θsp
ǫ are defined in the part of local mixed MsFEM.

We define cKi as the same as in the case continuum scale. Hence we have

‖uǫ − cKi ψ
K
i ‖H(div,Ω) ≤ ‖uǫ − cKi ψ

K
i ‖0,Ω + Cδ1. (3.73)

As for the first term on the right hand side of (3.73), we have

‖uǫ − cKi ψ
K
i ‖0,Ω ≤ ‖uǫ −A(x)usp

ǫ ‖0,Ω + ‖A(x)usp
ǫ − cKi ψ

K
i ‖0,Ω

≤ ‖uǫ −A(x)usp
ǫ ‖0,Ω + Chλ,

(3.74)

where we used the same argument as in the case of continuum scale for the second

term in right hand side.

A straightforward computation gives rise to

‖uǫ − A(x)usp
ǫ ‖0,Ω ≤ ‖uǫ − ũǫ‖0,Ω + ‖ũǫ −A(x)ũsp

ǫ ‖0,Ω + ‖A(x)ũsp
ǫ −A(x)usp

ǫ ‖0,Ω

≤ (Cǫ|p0|2,Ω + C
√
ǫ|p0|1,∞,Ω) + Cδ0 + (Cǫ|psp

0 |2,Ω

+ C
√
ǫ|psp

0 |1,∞,Ω)

≤ Cǫ(|p0|2,Ω + |psp
0 |2,Ω) + C

√
ǫ(|p0|1,∞,Ω + |psp

0 |1,∞,Ω) + Cδ0,

(3.75)

where we have used Theorem 3.1 in [22].

If we choose qh|K =< pǫ >K , then

‖pǫ − qh‖0,Ω ≤ Ch.

Invoking Lemma 3.2.4, (3.73), (3.74) and (3.75), Theorem 3.2.12 follows immediately.
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Remark 3.2.7. Comparing Theorem 3.2.7 and Theorem 3.2.12 , we see that the

resonance error
√

ǫ
h

is removed by applying the mixed MsFEM using limited global

information.

3.3. Multiscale Methods Using Multiple Global Information for Elliptic Equations

In this section, we consider some multiscale methods using multiple global fields.

First we introduce partition of unity method (PUM) and investigate the global mul-

tiscale method based on PUM. Second we introduce multiscale finite element method

based on harmonic coordinates proposed in [53]. Third we propose a mixed MsFEM

using multiple global fields.

3.3.1. PUM Using Multiple Global Information

Partition of unity (PUM) method is also a multiscale numerical approach. It

was first introduced in [14] to obtain an accurate numerical solution of second order

elliptic equations with rough coefficients. Based on this idea, the approach is further

elaborated on in [49], where it is named by partition of unity methods (PUM). The

main idea of PUM is to find an accurate approximation in each “patch” and then

use partition of unity functions to “paste” those patch approximations together. If

one knows more information about solutions of partial differential equations and

enrich this information into patch approximation, then an accurate approximation of

numerical solution can be obtained. Motivated by this idea, we have designed a PUM

using global information to solve elliptic and evolution equations where the coefficients

have continuum scales. Standard localized multiscale methods or upscaling techniques

are not very suitable for these problems because these problems do not possess scale
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separation and homogenization techniques are not applicable. For our analysis, we

use the fact that the solutions of partial differential equations smoothly depend on

certain global fields (defined over the entire region), which carry the information on

the small scale structure of the solution. These global fields are used to construct

shape functions in each patch. This is not a trivial extension of MsFEM that employs

limited global information because the construction of basis function in every “patch”

are different from that global MsFEM discussed previously, i.e., basis functions in each

“patch” are the span of multiplication of partial unity functions and global fields.

Our analysis shows that the convergence rate of this PUM in H1 for continuum scale

problems is O(hα) (h is the size of coarse meshes), which is free of resonance errors

as global MsFEM and global mixed MsFEM. This method shares some similarities

with the recent work in [53] and [52].

Introduction to PUM . In this subsection, we will apply PUM to the following

model elliptic equation

−divk(x)∇p(x) = f(x) in Ω

p(x) = 0 on ∂Ω.

(3.76)

The numerical variational formulation is to find ph ∈ Sh ⊂ H1
0 (Ω) such that

a(ph, vh) = (f, vh) ∀vh ∈ Sh, (3.77)

where a(ph, vh) = (k∇ph,∇vh).

The definition of PUM in [49] implies that there are three ingredients for PUM.

The first one is patch family {ωi}, which a finite open cover for the domain Ω. The
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second one is the partition of unity {ϕi} subordinate to {ωi} satisfying

suppϕi ⊂ closure(ωi) ∀i,
∑

i

ϕi(x) = 1, ∀x ∈ Ω,

‖ϕi‖∞ ≤ C∞, ∀i,

‖∇ϕi‖∞ ≤ CG

diam(ωi)
, ∀i.

(3.78)

The third one is the family of local approximation spaces {Vi} corresponding to the

patch family {ωi}. A finite approximation space SGM
h for the problem (3.77) can be

defined by

SGM
h := ϕiVi = {ϕivi| vi ∈ Vi} ⊂ H1

0 (Ω). (3.79)

For better accuracy, we have a modified definition for the finite approximation space

SGM
h :

SMGM
h := {ajψj + ϕivi| ψj ∈ Sk

h, vi ∈ Vi} ⊂ H1
0 (Ω). (3.80)

For example, the modified space SMGM
h is used in [58]. The first term recovers some

standard FEM information like polynomial properties. The second term captures

the information from each local approximation. For simplicity of our mathematical

analysis, we use the regular approximation space SGM
h in this section.

Let E(ωi) := {p :
∫

ωi
k∇p · ∇pdx <∞} be the energy space on the patch ωi and

for every i, Vi = span{ξik ∈ E(ωi) : k = 1 · · ·m(k)}, then the weak formulation

is to seek ph =
∑

i,k cikϕiξik so that (3.77) holds. The problem reduces to the linear

system

Ac = F, (3.81)

where the components of the stiffness matrix A are

A(l, s; i, k) = a(ϕlξls, ϕiξik) (l, i = 1 · · ·N ; s = 1 · · ·m(l); k = 1 · · ·m(i)), (3.82)
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and the element for the load vector F is

F (l, s) = (f, ϕlξls)ωl
. (3.83)

Let ξp
i approximate p on each patch ωi and satisfy that

‖p− ξp
i ‖ωi,0 ≤ ǫ1(i), (3.84)

|p− ξp
i |ωi,1 ≤ ǫ2(i). (3.85)

The basic result for convergence analysis of PUM (or GFEM) is as following.

Lemma 3.3.1. [49] Assume that the local approximation satisfy (3.84) and (3.85).

Let ξp be the GFEM approximation to p such that ξp = ϕiξ
p
i , then

‖p− ξp‖0,Ω ≤
√
MC∞(

∑

i

ǫ21(i))
1
2 , (3.86)

|p− ξp|1,Ω ≤
√

2M((
CG

diam(ωi)
)2ǫ21(i) + C2

∞ǫ
2
2(i))

1
2 , (3.87)

where M is the overlap index associated with {ωi}. Furthermore, if the local approxi-

mation spaces {Vi} satisfy the uniform Poincaré property [12], then there exist ξ̃p
i ∈ Vi

such that the global approximation ξ̃p = ϕiξ̃
p
i and

‖p− ξ̃p‖0,Ω ≤ C(diam2(ωi)ǫ
2
2(i))

1
2 , (3.88)

‖p− ξ̃p‖1,Ω ≤ C(
∑

i

ǫ22(i))
1
2 . (3.89)

Remark 3.3.1. If the patches ωi are convex and not too “flat”, then the uniform

Poincaré property is satisfied and can be described in terms of some geometric condi-

tions of ωi [13].

Local Multiscale PUM . Similar to MsFEM in [39], a multiscale basis for

PUM is used to approximate to p in each patch ωi, that is to say, Vi = span{φωi

j , j =
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1 · · ·m(i)}, where the generalized multiscale basis φωi

j solves























−div(k(x)∇φωi

j ) = 0 in ωi

φωi

j is linear on ∂ωi

φωi

j (zωi

k ) = δjk.

(3.90)

Here the zk are the vertexes of ωi.

We would like to make a comparison with MsFEM proposed in [39] and take

k(x) = k(x
ǫ
) in (3.76). For this ǫ-periodic problem, Lemma (3.3.1) implies the follow-

ing theorem.

Theorem 3.3.2. Let pǫ and ph ∈ SGM
h solve the problem (3.76) and (3.77) respec-

tively in 1-D (one dimension), then

‖pǫ − ph‖1 ≤ Ch‖f‖0 (3.91)

and

‖pǫ − ph‖0 ≤ Ch2‖f‖0. (3.92)

Proof. Let ξp
i = pI in each patch ωi, where pI is the interpolation of pǫ with basis

function defined in (3.90). Then we apply the results of [39] and find that ξu
i in each

patch ωi ⊂ Ω ⊂ R such that

‖pǫ − ξp
i ‖0,ωi

≤ Ch2‖f‖0,ωi
, (3.93)

|pǫ − ξp
i |1,ωi

≤ Ch|f‖0,ωi
. (3.94)

Let ξp = ϕiξ
p
i (summation convention is used). Applying the (3.93) and (3.86), we
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get that

‖pǫ − ph‖0 ≤ C(
∑

i

h4‖f‖2
0,ωi

)
1
2

≤ Ch2‖f‖0.

The proof of (3.92) is done. On the other hand, we notice (3.93), (3.94) and (3.86)

so that we obtain

|pǫ − ph|1 ≤ C(
∑

i

C2
G

h2
h4‖f‖2

0,ωi
+ C2

∞h
2‖f‖2

0,ωi
)

1
2

≤ Ch‖f‖0.

Owing to the result (3.92) and the above estimation for semi-norm, the result (3.91)

follows immediately.

As for the model problem (3.76) in d-D (d ≥ 2), we can get the following results.

Theorem 3.3.3. Let pǫ and ph ∈ SGM
h solve the problem (3.76) and (3.77) respectively

in d-D (d ≥ 2), then for h > ǫ

(1). ‖pǫ − ph‖1 ≤ Ch‖f‖0 + C
√

ǫ
h
;

(2). ‖pǫ − ph‖0 ≤ Ch2‖f‖0 + Cǫ+ C ǫ
h
.

Proof. Since the proof of d-D for d > 2 is the same as the case of 2-D, we show

the proof for 2-D for simplicity. Applying the homogenization technique and taking

multiscale expansion for solution uǫ and generalized multiscale basis, we can get the

above results. These techniques are used in [39]. For completeness, we provide a

short proof here.

Let p0 be the homogenization of the solution pǫ to our model problem and pωi

I

be the interpolant of p0|ωi
with the multiscale basis defined in (3.90). Since pǫ and
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pωi

I have multiscale structure, they have the multiscale expansion on each patch ωi,

pǫ = p0 + ǫp1 − ǫθǫ +Rpǫ, (3.95)

pωi

I = pωi

I0 + ǫpωi

I1 − ǫθωi

Iǫ +Rpωi

I . (3.96)

From the first order corrector in [50] and the proof of lemma 5.4 in [39], we obtain

that

‖Rpǫ‖1,ωi
≤ Cǫ|p0|2,ωi

, (3.97)

‖Rpωi

I ‖1,ωi
≤ Cǫ|p0|2,ωi

. (3.98)

Applying the triangle inequality and the above estimation for remainder terms, we

have

‖pǫ−pωi

I ‖1,ωi
≤ Cǫ|p0|2,ωi

+‖p0−pωi

I0‖1,ωi
+‖ǫ(p1−pωi

I1)‖1,ωi
+‖ǫ(θǫ −θωi

Iǫ )‖1,ωi
. (3.99)

We are going to estimate the last three terms on the right hand of (3.99). In fact,

the interpolation with linear FEM implies that

‖p0 − pωi

I0‖1,ωi
≤ Ch|p0|2,ωi

. (3.100)

By the definition of p1 and pωi

I1, we obtain that

‖ǫ(p1 − pωi

I1)‖1,ω1 ≤ (Ch+ Cǫ)|p0|2,ωi
. (3.101)

Invoking the interpolation inequalities in Sobolev spaces, we get that

‖ǫ(θǫ − θωi

Iǫ )‖1,ωi
≤ ‖ǫθǫ‖1,ωi

+ ‖ǫθωi

Iǫ‖1,ωi

≤ Cǫ‖p1‖ 1
2
,∂ωi

+ Cǫ‖pI1‖ 1
2
,∂ωi

≤ C
√
ǫ‖p0‖2,ωi

+ C
√
ǫh. (3.102)



51

Thanks to (3.99), (3.100), (3.101) and (3.102), the following inequality follows imme-

diately

‖pǫ − pωi

I ‖1,ωi
≤ C(h +

√
ǫ)‖p0‖2,ωi

+ C
√
ǫh. (3.103)

Define ξ̃pǫ

i = pωi

I and ξ̃pǫ = ϕiξ̃
pǫ

i . Owing to the best approximation property and

(3.89), a straightforward calculation implies that

‖pǫ − ph‖1,Ω ≤ ‖pǫ − ξ̃pǫ‖1,Ω

≤ C

√

∑

i

‖pǫ − pωi

I ‖2
1,ωi

≤ Ch‖f‖0,Ω + C

√

ǫ

h
.

This completes the proof of (1). As for the L2 convergence, we may use the analysis

of discrete Green function as in [39] and then use Lemma (3.3.1), we omit the details

here.

Therefore the previous analysis implies that local PUM defined in (3.90) is equiv-

alent to local MsFEM in [39].

PUM Using Multiple Global Information . The multiscale finite element

methods in Section 3.2.1 employ information from only one single-phase flow solution.

In general, depending on the source term, boundary data, and mobility λ(S) (if it

contains sharp variations), it might be necessary to use information from multiple

global solutions for the computation of accurate two-phase flow solution. The previous

multiscale finite element methods can be extended to take into account additional

global information. Next, we present an extension of the Galerkin multiscale finite

element method that uses the partition of unity method [49].

As the motivation in Section 3.1, we assume that p1, p2,..., pN are the global

functions such that |p− G(p1, p2, ..., pN)|1,Ω is sufficiently small. Here, p1, ..., pN can
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i

xi

ω
K

Fig. 3.2. Schematic description of patch

be possible pressure snapshots for different λ(S) or pressure fields corresponding to

different source terms and/or boundary conditions. Let ωi be a patch (see Figure 3.2),

and define φ0
i to be piecewise linear basis function in patch ωi, such that φ0

i (xj) = δij .

For simplicity of notation, denote p1 = 1. Then, the multiscale finite element method

for each patch ωi is constructed by

ψij = φ0
i pj (3.104)

where j = 1, .., N and i is the index of nodes (see Figure 3.2). First, we note that in

each K,
∑

i ψij = pj is the desired single-phase flow solution.

We will use the following assumption.

There exists a sufficiently smooth scalar valued function G(η), η ∈ RN (G ∈

W 3, 2s
s−2 , s > 2), such that

|p−G(p1, ..., pN)|1,Ω ≤ Cδ, (3.105)

where δ is sufficiently small.

From the stability estimate, we have

|p− ph|1,Ω ≤ |p−G(p1, ..., pN)|1,Ω + |G(p1, ..., pN) − cijψij |1,Ω, (3.106)
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where cij is chosen later. Next, we present the choice of cij and the estimate for the

second term. In each ωi, we choose cij as

cij =
∂G

∂pj
(pi

1, ..., p
i
N), j ≥ 2

and

ci1 = G(pi
1, ..., p

i
N ) − ∂G

∂pj
(pi

1, ..., p
i
N)pi

j,

where pi
j is the average of pj over ωi. We note that the following Taylor expansion in

each ωi

G(p1, ..., pN) = G(pi
1, ..., p

i
N) +

∂G

∂pj
(pi

1, ..., p
i
N)(pj − pi

j) +Ri,

where Ri is the remainder given by

Ri =
∑

j,k

1

2

∂2G

∂pk∂pj
(ξi

1, ..., ξ
i
N)(pk − pi

k)(pj − pi
j),

where ξi
k = pi

k + θi(pk − pi
k), 0 < θi < 1. Then, it can be shown that in each ωi

|G(p1, ..., pN)− cijpj|1,ωi
≤ |G(p1, ..., pN)+

∂G

∂pj
(p1, ..., pN)(pj −pj)− cijpj|1,ωi

+ |R|1,ωi
.

The first term on the right hand side is zero because of the choice of cij . Under the
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assumption that pi ∈W 1,s(Ω) (s > 2), we have

|Ri|1,ωi
≤ C

∑

l,j,k

‖ ∂3G

∂pl∂pj∂pk
∇pl(pj − pi

j)(pk − pi
k)‖0,ωi

+ C
∑

j,k

‖ ∂2G

∂pj∂pk
(pj − pi

j)∇pj + (pk − pi
k)∇pk‖0,ωi

≤ C
∑

j,k,l

h2−4/s|pj|1,s,ωi
|pk|1,s,ωi

|pl|1,ωi
+ C

∑

j

h1−2/s|pj|1,s,ωi
|pj|1,ωi

≤ C
∑

j,k,l

h2−4/s|pj|1,s,Ω|pk|1,s,Ω|pl|1,ωi
+ C

∑

j

h1−2/s|pj |1,s,Ω|pj|1,ωi

≤ C
∑

l

h2−4/s|pl|1,ωi
+ C

∑

j

h1−2/s|pj|1,ωi

≤ Ch1−2/s
∑

l

|pl|1,ωi
.

(3.107)

It can be easily shown that

|Ri|0,ωi
≤ C

∑

j,k

‖(pj − pi
j)(pk − pi

k)‖0,ωi

≤ C
∑

j,k

h2−4/s|pj|1,s,ωi
|pk|1,s,ωi

h

≤ Ch3−4/s
∑

j

|pj|1,s,ωi
.

(3.108)

Following [16], we have

|G(p1, ..., pN) − cijψij |21,Ω =

∫

Ω

|∇(G− cijφ
0
i pj)|2dx =

∫

Ω

|∇(φ0
i (G− cijpj))|2dx

≤ C

∫

Ω

|(G− cijpj)∇φ0
i |2dx+ C

∫

Ω

|φ0
i∇(G− cijpj)|2dx

≤ 1

h2

∑

i

∫

ωi

|Ri|2dx+
∑

i

∫

ωi

|∇Ri|2dx

≤ C
∑

i

1

h2
h6−8/s

∑

j

|pj|21,s,ωi
+ Ch2−4/s

∑

i

∑

j

|pj|21,ωi

≤ Ch4−8/s + Ch2−4/s,

(3.109)
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where we have used the fact that
∑

i φ
0
i = 1 and C depends on the overlapping index

of ωi’s. Consequently, we have the following error estimate

|p− ph|1,Ω ≤ Cδ + Ch1−2/s. (3.110)

Theorem 3.3.4. Assume (3.105) and pi ∈W 1,s(Ω), s > 2, i = 1, ..., N . Then

|p− ph|1,Ω ≤ Cδ + Ch1−2/s.

3.3.2. Harmonic Coordinate System Methods

In this section, we introduce multiscale numerical methods based on harmonic

coordinates [53]. This is an extension of the Galerkin FEM in [53] to mixed FEM.

The idea is to find the global fields pi (i = 1, · · · , d, where d = dim(Ω)) so that pi

satisfy the following equation

div(k(x)∇pi) = 0 in Ω

pi = xi on ∂Ω.

(3.111)

Let F = (p1, · · · , pd), then one can show that p ◦ F−1 ∈ C1,α. Let Li be the stan-

dard linear base function associated to the vertex (p1(xi), · · · , pd(xi)). We define the

Galerkin finite element basis by

ψi = Li ◦ F.

Let ph be the solution of (3.77) using the Galerkin finite element basis function

ψi, one can obtain [53]

‖p− ph‖1,Ω ≤ Chα‖f‖∞,Ω,

where α depends on Ω, λmax(k(x))
λmin(k(x))

and essupx∈Ω(λmax(∇F tk∇F )
λmax(∇F tk∇F )

). This is the convergence

rate of the Galerkin FEM in harmonic coordinates (p1, · · · , pd).

Next we will discuss the mixed FEM in the harmonic coordinate system. Let V F
h
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be the velocity finite element space in (p1, · · · , pd). Define the velocity basis function

space in x = (x1, · · · , xd) coordinate system by the Piola transform [19], i.e.,

V x
h = { 1

J(F−1)
D(F−1)vF

h |vF
h ∈ V F

h },

where D(F−1) is the Jacobian matrix of F−1 and J(F−1) = |detD(F−1)|. Let QF
h

be the pressure basis function space in the harmonic (p1, · · · , pd) system. Define the

pressure basis function space in x = (x1, · · · , xd) system by

Qx
h = {qF

h (F (x))|qF
h ∈ QF

h }.

Let pF = p ◦ F−1, kF = 1
J(F )

D(F )kD(F )t and uF = −kF∇Fp
F , where ∇F is the

gradient operator with respect to the variable (p1, · · · , pd). Then we can obtain the

following lemma.

Lemma 3.3.5. [57]

u = −k∇p =
1

J(F−1)
D(F−1)uF .

By using Lemma 3.3.5 and change of variables, we have the following theorem

provided QF
h is the piecewise constant space and V F

h = RT0.

Theorem 3.3.6. Let ph ∈ Qx
h be the numerical approximation of the pressure p and

uh ∈ V x
h be the numerical approximation of the velocity of u = −k∇p. Then

‖p− ph‖0,Ω + ‖u− uh‖H(div,Ω) ≤ C(F )(‖∇Fp
F‖0,ΩF

+ |uF |1,ΩF
+ |divFu

F |1,ΩF
)h,

where C(F ) = Cmax{(supx J(F ))1/2‖D(F )−1‖L∞(Ω), (supx J(F ))1/2, (infx J(F ))−1/2}

and h is the mesh size in (p1, · · · , pd) system.
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Proof. Let x̂ be the point in coordinate of {p1, · · · , pd}. We first notice

‖p− ph‖0,Ω = (

∫

ΩF

(pF − pF
h )2J(F−1)dx̂)1/2

≤ ( sup
x̂∈ΩF

)1/2‖pF − pF
h ‖0,ΩF

≤ C(inf J(F ))−1/2|∇Fp
F |0,ΩF

h.

(3.112)

Invoking Lemma 3.3.5, it follows

‖u− vh‖0,Ω = (

∫

ΩF

| 1

J(F−1)
||D(F−1)|2(uF − vF

h )2dx̂)1/2

≤ (inf J(F−1))−1/2‖D(F−1)‖L∞(ΩF )‖uF − vF
h ‖0,ΩF

≤ C(sup J(F ))1/2‖D(F )−1‖L∞(Ω)|uF |1,ΩF
h.

(3.113)

Noting that div(u− vh) = 1
J(F−1)

divF (uF − vF
h ) and we have

‖div(u− vh)‖0,Ω = (

∫

ΩF

J(F )(divF (uF − vF
h ))2dx̂)1/2

≤ (sup J(F ))1/2‖divF (uF − vF
h )‖0,ΩF

C ≤ (sup J(F ))1/2|divFu
F |1,ΩF

h.

(3.114)

Combining (3.112), (3.113),(3.114) and the stability estimate [19], i.e.,

‖p−ph‖0,Ω + ‖u−uh‖H(div,Ω) ≤ C( inf
qh∈Qx

h

‖p− qh‖0,Ω + inf
vh∈V x

h

‖u− vh‖H(div,Ω)), (3.115)

we complete the proof.

If we use weighted norms, then we can describe the Theorem 3.3.6 as following.

Proposition 3.3.7. Let ph ∈ Qx
h be the numerical approximation of the pressure

p and uh ∈ V x
h be the numerical approximation of the velocity of u = −k∇p. If

‖D(F )−1‖L∞(Ω) ≤ C, then

‖p− ph‖L2
J(F )

(Ω) + ‖u− uh‖H
J(F )−1(div,Ω) ≤ Ch(‖∇Fp

F‖0,ΩF
+ |uF |1,ΩF

+ |divFu
F |1,ΩF

),
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where ‖.‖L2
J(F )

(Ω) is the weighted L2 norm with weight J(F ) and ‖.‖H
J(F )−1(div,Ω) is the

weighted H(div) norm with weight J(F )−1.

Proof. By the proof of (3.112), it follows that

‖p− ph‖L2
J(F )

(Ω) = ‖pF − pF
h ‖0,ΩF

≤ Ch|∇Fp
F |0,ΩF

.

From the proof of (3.113), we have

‖u− vh‖L2
J(F )−1(Ω) ≤ Ch|uF |1,ΩF

,

where we have used the assumption ‖D(F )−1‖L∞(Ω) ≤ C. Proof of (3.114) implies

that

‖div(u− vh)‖L2
J(F )−1(Ω) = ‖divF (uF − vF

h )‖0,ΩF
≤ Ch|divFu

F |1,ΩF
.

Using the stability estimate completes the proof.

Remark 3.3.2. For a further rigorous proof, we need to show inf-sup condition for

the mixed finite element method in the space V x
h and Qx

h and estimate the terms

‖∇Fp
F‖0,ΩF

, ‖uF‖1,ΩF
and ‖divFu

F‖1,ΩF
in terms of source term f . One of the chal-

lenges for the questions is that the partial differential equation (3.76) becomes a non-

divergence partial differential equation in the harmonic coordinate system (p1, · · · , pd).

This problem is currently under investigation.

3.3.3. Mixed MsFEM Using Multiple Global Information

In this section, we propose a mixed MsFEM using multiple limited global infor-

mation and investigate its application to heterogeneous media. A rigorous analysis

for this method is presented. We apply the global mixed MsFEM to two-phase flows

with parameterized permeability and present numerical results in Section 3.4.3.
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Global Mixed MsFEM . In this section, we study the following elliptic problem

with heterogenous coefficients

−div(λ(x)k(x)∇p) = f(x) in Ω

λ(x)k(x)∇p · n = g on ∂Ω,

(3.116)

where where k(x) is a heterogeneous field and λ(x) is a smooth field.

Let u = λ(x)k(x)∇p be the velocity and Ω ⊂ R2 be convex. We introduce a

quasi-uniform finite element partition τh of Ω and let K be a representative triangle

(coarse), h = maxK diam(K). In the analysis, we will use the following assumption.

Assumption A1. There exist functions u1, · · · , uN and sufficiently smooth

A1(x), · · · , AN(x) such that

u(x) = Ai(x)ui, (3.117)

where ui = k∇pi and pi solves div(k(x)∇pi) = 0 in Ω with appropriate boundary

conditions.

We note that summation convention is used throughout the dissertation. For our

analysis, we assume Ai(x) ∈ W 1,ξ(Ω), and ui = k(x)∇pi ∈ Lη(Ω) for some ξ and η,

i = 1, ..., N . We note that summation convention is used throughout the dissertation.

Remark 3.3.3. As an example of two global fields in R2, we use the results in [53].

Let ui = k(x)∇pi (i = 1, 2) be defined by the elliptic equation

div(k(x)∇pi) = 0 in Ω

pi = xi on ∂Ω,

(3.118)

where x = (x1, x2). In the harmonic coordinate (p1, p2), p(p1, p2) ∈W 2,s (s ≥ 2) [53].

Consequently, u = λ(x)k(x)∇p = λ ∂p
∂pi
k∇pi := Ai(x)ui, where Ai(x) = λ ∂p

∂pi
∈W 1,s.

Let λ be a positive smooth function and k is a positive definite tensor so that

(λk)−1 exists. The mixed formulation is to find {u, p} ∈ H(div,Ω) × L2(Ω)/R such
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that u · n = g on ∂Ω and

((λk)−1u, v) + (divv, p) = 0 ∀v ∈ H0(div,Ω)

−(divu, q) = (f, q) ∀q ∈ L2(Ω)/R,

(3.119)

where (·, ·) is the usual L2-inner product.

To numerically approximate the mixed problem (3.119), we construct the basis

function for velocity,



























div(k(x)∇φK
ij ) = 1

|K|
in K

k(x)∇φK
ij · nel

= δjl
ui · nel

∫

el
ui · nel

ds
on ∂K

∫

K
φK

ij dx = 0,

(3.120)

where i = 1, ..., N , j = 1, 2, 3, el is an edge of ∂K, and

δjj = 1, δjl = 0 if j 6= l.

Here el denotes an edge of the triangle and we omit the subscript el in n, if the integral

is taken along the edge. Note that for each edge, we have N basis functions and we

assume that u1,..., uN are linearly independent in order to guarantee that the basis

functions are linearly independent. To avoid the possibility that
∫

el
ui · nds is zero or

unbounded, we make the following assumption for our analysis.

Assumption A2. There exist positive constants C such that for any ui,

∫

el

|ui · n|ds ≤ Chβ1 and ‖ ui · n
∫

el
ui · nds

‖Lr(el) ≤ Ch−β2+
1
r
−1

uniformly for all edges el, where β1 ≤ 1, β2 ≥ 0,and r ≥ 1.

Remark 3.3.4. The second part of Assumption A2 is to assure |
∫

el
ui ·nds| remains

positive. It can be also written as ‖ ui·n
R

el
ui·nds

− 〈 ui·n
R

el
ui·nds

〉el
‖Lr(el) ≤ Ch−β2+ 1

r
−1, where

〈·〉 = 1
|el|

∫

el
(·)ds, which will be used to estimate the velocity basis function. If ui
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are bounded in L∞(el) for all el and |
∫

el
ui · nds| remains positive uniformly for all

el, then β2 = 0. Note that ‖ ui·n
R

el
ui·nds

− 〈 ui·n
R

el
ui·nds

〉el
‖Lr(el) = 0 if ui|K is RT0 basis

function or standard mixed MsFEM basis functions introduced in [22]. Finally, if

|
∫

el
ui · nds| ≥ Chβ1 and

∫

el
|ui · n|ds ≤ Chβ1 for all el, then we can conclude that

β2 = 0 for r = 1 in Assumption A2.

We define ψK
ij = k(x)∇φK

ij and

Vh =
⊕

K

{ψK
ij }
⋂

H(div,Ω)

and

V 0
h =

⊕

K

{ψK
ij }
⋂

H0(div,Ω).

Let Qh = ⊕KP0(K) ⊂ L2(Ω)/R, i.e., piecewise constants, be the basis function for

the pressure. We define

g0,h =
∑

e∈{∂K
T

∂Ω,K∈τh}

(

∫

e

gds)ψi,e

for some fixed i ∈ {1, 2, · · · , N}, where ψi,e is the corresponding multiscale basis

function to the edge e. Let gh = g0,h · n on ∂Ω. The numerical mixed formulation is

to find {uh, ph} ∈ Vh ×Qh such that uh · n = gh on ∂Ω and

((λk)−1uh, vh) + (divvh, ph) = 0 ∀v ∈ V 0
h

−(divuh, qh) = (f, qh) ∀qh ∈ Qh.

(3.121)

First, we note the following result.

Lemma 3.3.8.

ui|K ∈ span{ψK
ij }, i = 1, .., N ; j = 1, 2, 3.

Proof. First, we prove the lemma for u1. For this proof, we want to find constants
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βK
ij ’s such that βK

ij ψ
K
ij = u1. That is

βK
ij k(x)∇φK

ij · nK
el

= βK
ij δjl

ui · nK
el

∫

el
ui · nds

= u1 · nK
el

βK
ij div(k(x)∇φK

ij ) =
1

|K|β
K
ij = 0.

(3.122)

Noticing that ui = k(x)∇pi and div(k(x)∇pi) = 0, we have pi = βK
ij φ

K
ij + C for some

constant C because pi and βK
ij φ

K
ij satisfy the same elliptic equation with Neumann

boundary condition as pi. Then we have ui = βK
ij ψ

K
ij . The first equation in (3.122)

implies that we can take βK
1j =

∫

ej
u1 · nds and βK

ij = 0 for i 6= 1. Consequently,

∑

i,j

βK
ij =

∑

j

∫

ej

u1 · nds =

∫

K

divu1dx = 0,

which is the first equation in (3.122). We can obtain similar results for other ui’s

(i = 2, ..., N).

Following our assumption, let

X = {u|u = ai(x)ui}

be a subspace ofH(div,Ω). For our analysis, we require that the integrals

∫

ej

ai(x)ui · nds

are well defined for each i. This is also needed in our computations since

∫

ej

ai(x)ui · nds

determines the fluxes along the edges in two-phase flow simulations. One way to

achieve this is to assume, as we did earlier, that ai(x) ∈ W 1,ξ(Ω), ui ∈ Lη(Ω),

1
2

= 1
ξ

+ 1
η
. Because ai(x) ∈ W 1,ξ(Ω) and ui ∈ Lη(Ω) (1

2
= 1

ξ
+ 1

η
), Hölder inequality

implies that (∇ai)ui ∈ L2(Ω). Noticing that divui = 0, we have div(ai(x)ui) ∈ L2(Ω)

immediately. Invoking standard Sobolev embedding theorems 2.2.4 (also c.f. [6]), we

get aiui ∈ Lη(Ω) because W 1,ξ →֒ L∞. The integrals

∫

ej

ai(x)ui · nds are well defined

by the fact that aiui ∈ Lη(Ω) (η > 2) and div(ai(x)ui) ∈ L2(Ω) (see page 125 of

[19]). This can be proved by using Green’s formula and standard Sobolev embedding
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theorems.

Remark 3.3.5. For all
∫

ej
ai(x)ui · nds to be well defined, one sufficient condition is

that aiui ∈ [Lp(K)]d and div(ai(x)ui) ∈ Ls(K) for p > 2, s ≥ q, 1
q

= 1
p

+ 1
d

[34]. We

give a brief proof for the case ai(x) ∈ W 1,ξ(K) and ui ∈ Lη(K), 1
2

= 1
ξ

+ 1
η
. We have

previously proved that aiui ∈ Lη(K) and div(aiui) ∈ L2(K). Let 1
η

+ 1
η′

= 1 (η > 2)

and e ⊂ ∂K. Then exists a function w ∈W 1,η′

(K) such that w|e = 1 and w|∂K\e = 0

(see page 78 in [34]). Applying Green’s formula, we have

∫

K

(aiui) ·∇wdx+

∫

K

(div(aiui))wdx =

∫

∂K

γ(w)(aiui) ·nds =

∫

e

(aiui) ·nds, (3.123)

where γ(w) is the trace of w along boundary of K. Since 1
η
+ 1

η′
= 1, Hölder inequality

implies that the term
∫

K
aiui · ∇wdx is integrable. Since w ∈ W 1,η′

(K), Sobolev em-

bedding theorem 2.2.4 imply that W 1,η′

(K) →֒ L2(K). By combining w ∈ L2(K) with

div(aiui) ∈ L2(K), we obtain that the term
∫

K
(div(aiui))wdx is integrable. Conse-

quently, (3.123) implies that
∫

e
(aiui) ·nds is meaningful. We note that no summation

convention is used here.

Remark 3.3.6. The integral
∫

e
aiui · nds can be controlled by ‖ui‖Lη(K) for any fixed

ui. In fact, let w in Remark 3.3.5 such that ‖w‖W 1,η′(K) = 1. By (3.123), we have

|
∫

e

aiui · nds| ≤ ‖aiui‖Lη(K)‖∇w‖Lη′(K) + ‖div(aiui)‖L2(K)‖w‖L2(K)

≤ ‖aiui‖Lη(K)‖∇w‖Lη′(K) + ‖div(aiui)‖L2(K)‖w‖W 1,η′(K)

≤ ‖aiui‖Lη(K) + ‖(∇ai)ui‖L2(K)

≤ ‖ai‖L∞(K)‖ui‖Lη(K) + ‖∇ai‖Lξ(K)‖ui‖Lη(K)

≤ C‖ui‖Lη(K),

(3.124)

where Sobolev embedding theorem has been used.
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Thus, more precise definition of space X is

X = {u|u = ai(x)ui : ai ∈W 1,ξ(Ω), ui ∈ Lη(Ω)}, (3.125)

where 1
ξ

+ 1
η

= 1
2
. We define an interpolation operator Πh : X −→ Vh such that in

each element K, for any v = ai(x)ui ∈ X

Πh|K(ai(x)ui) = aK
ijψ

K
ij ,

where aK
ij =

∫

ej

ai(x)ui · nds. Utilizing the definition of Πh, we obtain the following

lemma.

Lemma 3.3.9. Let Πh be defined as above. Then ∀v = aiui ∈ X (cf. (3.125)) and

qh ∈ Qh,

(1)
∫

Ω
div(v − Πhv)qhdx = 0;

(2) ‖Πhv‖H(div,Ω) ≤ C‖v‖X,Ω, if β1 ≥ 2β2,

where ‖v‖X,Ω := ‖div(v)‖0,Ω +
∑N

i=1 ‖ai‖1,Ω and C only depends on N , the constants

in Assumption A2 and the pre-computed global fields ui.

Proof. For a better description of the proof, we use summation notation in this proof

instead of summation convention. (1). For this, we only need to show that on each

el,
∫

el
(v − Πhv) · n[qh]el

ds = 0, where [qh]el
is the jump of qh between two sides of el.

It is sufficient to show
∫

el
(v − Πhv) · nds = 0 since qh ∈ Qh. In fact,

∑

i

∫

el

(ai(x)ui · n−
∑

j

aK
ijψij · n)ds =

∑

i

∫

el

(ai(x)ui · n−
∑

j

aK
ij δjl

ui · n
∫

el
ui · n

)ds

=
∑

i

∫

el

(ai(x)ui · n− aK
il

ui · n
∫

el
ui · n

)ds

=
∑

i

(

∫

el

ai(x)ui · nds−
∫

el

ai(x)ui · nds)

= 0.

(3.126)
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(2) In each element K, for any v =
∑

i ai(x)ui, we have

‖divΠhv‖2
0,K = ‖

∑

i,j

∫

ej

ai(x)ui · nds
1

|K|‖
2
0,K

= ‖
∑

i

〈div(ai(x)ui)〉K‖2
0,K

≤ C‖
∑

i

div(ai(x)ui)‖2
0,K

= C‖divv‖2
0,K,

where 〈·〉K denotes the volume average over K and we have used divergence theorem

in the second step and Jensen’s inequality in the third step. After summing all over

K, we get

‖divΠhv‖0,Ω ≤ C‖divv‖0,Ω (3.127)

where C only depends on N .

Let v =
∑

i aiui , āK
i = 1

|K|

∫

K
aidx and 1

r
+ 1

r′
= 1 = 1

η
+ 1

η′
, then

‖Πhv‖2
0,K

= ‖
∑

i,j

(

∫

ej

(ai − āK
i )ui · ndsψK

ij ) +
∑

i,j

(āK
i

∫

ej

ui · ndsψK
ij )‖2

0,K

≤ 2‖
∑

i,j

(

∫

ej

(ai − āK
i )ui · ndsψK

ij )‖2
0,K + 2‖

∑

i

(āK
i ui)‖2

0,K

≤ 2
∑

i,j

|
∫

ej

(ai − āK
i )ui · nds)|2

∑

i,j

‖ψK
ij ‖2

0,K + 4‖
∑

i

(āK
i ui) − v‖2

0,K + 4‖v‖2
0,K

≤ C
∑

i,j

‖ai − āK
i ‖2

Lr′(ej)
‖ui · n‖2

Lr(ej)

∑

i,j

‖ψK
ij ‖2

0,K + 4‖
∑

i

(āK
i − ai)ui‖2

0,K + 4‖v‖2
0,K

≤ Ch
2
r′ ‖∇ai‖2

0,Kh
2β1−2β2+ 2

r
−2h−2β2 + C

∑

i

‖ai − āK
i ‖2

L
2η

η−2 (K)
‖ui‖2

Lη(K) + 4‖v‖2
0,K

≤ Ch2β1−4β2
∑

i

‖∇ai‖2
0,K + C

∑

i

‖∇ai‖2
Lη′ (K)

‖ui‖2
Lη(K) + 4‖v‖2

0,K,

(3.128)

where we have used Lemma 3.3.8 in the second step, Schwarz inequality in the third

and forth step, Assumption A2 and (3.140) along with Sobolev embedding inequality
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(by rescaling) in the fifth step and Poincaré-Friedrichs inequality (by rescaling) in the

sixth step. Making summation all over for K in the above, we have

‖Πhv‖2
0,Ω ≤ Ch2β1−4β2

∑

i

‖∇ai‖2
0,Ω + C

∑

i

(‖∇ai‖2
Lη′ (Ω)

‖ui‖2
Lη(Ω)) + 4‖v‖2

0,Ω

≤ C(h2β1−4β2 + max
i

‖ui‖2
Lη(Ω))‖∇ai‖2

0,Ω + 4‖v‖2
0,Ω

≤ C(h2β1−4β2 + max
i

‖ui‖2
Lη(Ω))‖∇ai‖2

0,Ω + C
∑

i

(‖ai‖2

L
2η

η−2 (Ω)
‖ui‖2

Lη(Ω))

≤ C(h2β1−4β2 + max
i

‖ui‖2
Lη(Ω))‖ai‖2

1,Ω,

(3.129)

where we have used Sobolev embedding inequality in the last step. Combining (3.127)

and (3.129), we conclude

‖Πhv‖H(div,Ω) ≤ C‖v‖X,Ω,

where the C is independent of h and v, and only depends on N , constants in As-

sumption A2, ‖ui‖Lη(Ω) and Sobolev embedding constant.

Remark 3.3.7. If ui ∈ L∞(Ω), then β1 = 1, β2 = 0 and the proof of Lemma 3.3.9

implies that ‖Πhv‖H(div,Ω) ≤ C(maxi ‖ui‖L∞(Ω))
∑

i ‖ai‖1,Ω.

We can get a stability of Πh different from the one in Lemma 3.3.9.

Proposition 3.3.10. For v = aiui, where ai ∈ W 1,ξ(Ω) and ui ∈ Lη(Ω) (1
2

= 1
ξ
+ 1

η
),

then

‖Πhv‖H(div,Ω) ≤ C
∑

i

‖ai‖W 1,ξ(Ω),

if α+ β1 − β2 − 1 ≥ 0, where C only depends on N , the constants in Assumption A2

and the pre-computed global fields ui.

Proof. For a better description of the proof, we use summation notation in this proof
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instead of summation convention. By (3.127), we get

‖divΠhv‖0,Ω ≤ C‖divv‖0,Ω

= C‖
∑

i

(∇ai)ui‖0,Ω

≤ C
∑

i

‖∇aiui‖0,Ω

≤ C
∑

i

‖∇ai‖Lξ(Ω)‖ui‖Lη(Ω)

≤ C max
i

{‖ui‖Lη(Ω)}
∑

i

‖∇ai‖Lξ(Ω),

(3.130)

where the C only depends on N . If we use the estimates (3.141) - (3.142), we find

that

‖Πhv − v‖0,Ω ≤ Chα+β1−β2−1
∑

i

‖ai‖Cα(Ω) ≤ Chα+β1−β2−1
∑

i

‖ai‖W 1,ξ(Ω),

where we have used the Sobolev imbedding inequality in the second step and the C

only depends on N , constants in Assumption A2 and Sobolev imbedding constant.

Consequently,

‖Πhv‖0,Ω ≤ Chα+β1−β2−1
∑

i

‖ai‖W 1,ξ(Ω) + ‖v‖0,Ω

≤ Chα+β1−β2−1
∑

i

‖ai‖W 1,ξ(Ω) +
∑

i

‖aiui‖0,Ω

≤ Chα+β1−β2−1
∑

i

‖ai‖W 1,ξ(Ω) +
∑

i

‖ai‖Lξ(Ω)‖ui‖Lη(Ω)

≤ Chα+β1−β2−1
∑

i

‖ai‖W 1,ξ(Ω) + max
i

‖ui‖Lη(Ω)

∑

i

‖ai‖Lξ(Ω)

≤ C(hα+β1−β2−1 + 1)
∑

i

‖ai‖W 1,ξ(Ω),

(3.131)

where the C only depends on N , constants in Assumption A2 and Sobolev imbedding
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constant. Combining (3.130) and (3.131), we conclude

‖Πhv‖div,Ω ≤ C
∑

i

‖ai‖W 1,ξ(Ω),

where the C is independent of h and v, and only depends on N , constants in As-

sumption A2, ‖ui‖Lη(Ω) and Sobolev imbedding constants.

Remark 3.3.8. We note that ‖v‖X,Ω may not be a norm in general because v =

aiui = 0 may not imply that ai are zero (this does not impact the derivation of

discrete inf-sup condition). In the problem setting considered in this paper, one can

assume that ‖v‖X,Ω is a norm. Indeed, ai are coarse-scale functions, while ui are

fine-scale functions. Thus, in each coarse grid block, the linear combination aiui zero

will imply that ai are zero unless ui are also coarse-scale functions. In the latter case,

one can use standard mixed finite element basis functions. If N = d (d being the

dimension of the space), ‖v‖X,Ω is a norm when ui are linearly independent. In the

discrete setting, ai are vectors defined on the coarse grid, while ui are defined on the

fine grid. If aiui is zero, this implies that the vectors ui are linearly dependent, and

thus, the basis functions are linearly dependent. One can also attempt to prove inf-sup

condition using fine-scale discrete setting (cf. [47]) by defining a discrete norm in X

and showing a lemma analogous to Lemma 3.3.9 in the discrete setting.

Lemma 3.3.9 and continuous inf-sup condition imply the discrete inf-sup condi-

tion (see page 58 of [19]). In the paper, we assume that continuous inf-sup condition

holds. For a special case N = d, the continuous inf-sup condition follows from [53].

We briefly highlight the main idea of the proof. The goal is to find v, such that

div(v) = q, v = aiui and ‖v‖X,Ω ≤ C‖q‖0,Ω. Following [53], one can consider a co-

ordinate transformation from (x1, ..., xd) to (z1, ..., zd), where div(ui) = 0, ui = k∇zi

in Ω and zi = xi on ∂Ω. Defining v = k∇φ = k ∂φ
∂zi

∇zi = ∂φ
∂zi
ui and ai = ∂φ

∂zi
, one
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can show that ‖v‖X,Ω ≤ C‖q‖0,Ω. The latter follows from ‖φ‖W 2,2(Ω) ≤ C‖q‖0,Ω (e.g.,

[53]) which holds in (z1, ..., zd) coordinate system. One can also prove the continuous

inf-sup condition by solving ui∇ai = q for ai along the streamlines of ui (streamlines

are defined as level sets of Ψ, curl(Ψi) = ui).

Assuming continuous inf-sup condition, we have that for any qh ∈ Qh, there

exists a constant C such that

sup
vh∈Vh

∫

Ω
divvhqhdx

‖vh‖H(div,Ω)

≥ C‖qh‖0,Ω. (3.132)

Because of the inf-sup condition (3.132), we have the following optimal approxi-

mation (see [19, 22]).

Lemma 3.3.11. Let {u, p} and {uh, ph} be the solution of (3.119) and (3.121) re-

spectively. Then

‖u−uh‖H(div,Ω)+‖p−ph‖0,Ω ≤ C{ inf
vh∈Vh,vh−g0,h∈V 0

h

‖u− vh‖H(div,Ω) + inf
qh∈Qh

‖p− qh‖0,Ω}.

(3.133)

Next, we formulate our main result.

Theorem 3.3.12. Let {u, p} and {uh, ph} be the solution of (3.119) and (3.121)

respectively. If α + β1 − β2 − 1 > 0, we have

‖u− uh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ Chmin{α+β1−β2−1,1},

where α = 1− 2
ξ
, ξ and Ai are defined in Assumption A1, and βi (i = 1, 2) are defined

in Assumption A2. Here C is independent of h and depends on N , the constants in

Assumption A2, ‖Ai‖W 1,ξ(Ω) (i = 1, .., N) and ‖f‖1,Ω.

Proof. For a better description of the proof, we use summation notation in this proof

instead of summation convention. For the proof, we need to choose a proper vh and
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a proper qh such that the right hand side of (3.133) is small.

The second term on the right hand in (3.133) can be easily estimated. In fact,

with the choice qh|K = 〈p〉K , i.e., the average of p in K, we have

inf
qh∈Qh

‖p− ph‖0,Ω ≤ Ch|p|1,Ω.

Next we try to find a vh ∈ Vh, say vh|K =
∑

i,j c
K
ijψ

K
ij , and estimate the first term

on the right hand in (3.133). Invoking Lemma 3.3.8 and its proof, it follows that in

each K

u− vh =
∑

i

Ai(x)ui −
∑

i,j

cKijψij

=
∑

i

(Ai(x)
∑

j

βK
ij ψ

K
ij ) −

∑

i,j

cKijψ
K
ij

=
∑

i,j

(Ai(x)β
K
ij − cKij )ψ

K
ij ,

(3.134)

where βK
ij =

∫

ej
ui · nds . Set cKij = AK

ij =
∫

ej
Ai(x)ui · nds.

Since
∫

K

∑

i div(Ai(x)ui)dx = f , we get by divergence theorem

∫

∂K

∑

i

Ai(x)ui · nds = f.

This gives rise to

‖div(u−
∑

i,j

cKijψ
K
ij )‖0,K = ‖f −

∑

i,j

cKij
1

|K|‖0,K

= ‖f −
∑

i,j

∫

ej

Ai(x)ui · nds
1

|K|‖0,K

= ‖f − 〈f〉K‖0,K

≤ Ch|f |1,K.

(3.135)
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After making summation over all K for (3.135), we have

‖div(u− vh)‖0,Ω ≤ Ch|f |1,Ω. (3.136)

Next we will estimate ‖u −
∑

i,j c
K
ijψ

K
ij ‖0,K . Because Ai(x) ∈ W 1,ξ(Ω), by using

Sobolev embedding theorem and Taylor expansion (or definition of Cα) we have

|Ai(x)|ej
− Āj

i | ≤ Chα‖Ai‖Cα(Ω),

where Āj
i is the average Ai(x) along ej and α = 1 − 2

ξ
. So

|AK
ij − Āj

iβ
K
ij | = |

∫

ej

Aiui · nds− Āj
i

∫

ej

ui · nds|

= |
∫

ej

(Ai − Āj
i )ui · nds|

≤ Chα+β1‖Ai‖Cα(Ω),

(3.137)

where we have used the Assumption A2.

Next, we present an estimate for ‖ψK
ij ‖0,K . For this reason, we introduce lowest

Raviart-Thomas basis functions RK
j for velocity. We know that divRK

j = 1
|K|

and

RK
j · n = δjl

1
|ej |

[19]. We multiply (3.120) by a test function w we have

∫

K

k∇φK
ij∇wdx = −

∫

K

wdiv(k∇φK
ij )dx+

∫

∂K

(k∇φK
ij · n)wds

= −
∫

K

wdivRK
j dx+

∫

∂K

(k∇φK
ij · n)wds

=

∫

K

(∇w)RK
j dx+

∫

∂K

(k∇φK
ij · n− RK

j · n)wds

=

∫

K

(∇w)RK
j dx+

∫

∂K

δjl(
ui · n

∫

el
ui · nds

− 〈 ui · n
∫

el
ui · nds

〉el
)wds,

(3.138)

where we have used that 〈 ui·n
R

ej
ui·nds

〉ej
= RK

j · nej
= 1

|ej |
. If we set w = φK

ij , then it
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follows that

C‖∇φK
ij‖2

0,K ≤ ‖∇φK
ij ‖0,K‖RK

j ‖0,K + ‖ ui · n
∫

ej
ui · nds

− 〈 ui · n
∫

ej
ui · nds

〉ej
‖Lr(ej)‖φK

ij ‖Lr′(∂K)

≤ C‖∇φK
ij ‖0,K + Ch−β2+ 1

r
−1‖φK

ij ‖Lr′(∂K)

≤ C‖∇φK
ij ‖0,K + Ch−β2+ 1

r
−1(h−1+ 1

r′ ‖φK
ij ‖0,K + h

1
r′ ‖∇φK

ij‖0,K)

≤ C‖∇φK
ij ‖0,K + Ch−β2+ 1

r
−1h

1
r′ ‖∇φK

ij ‖0,K

≤ C‖∇φK
ij ‖0,K + Ch−β2‖∇φK

ij ‖0,K ,

(3.139)

where r′ satisfies 1
r

+ 1
r′

= 1 (r is defined in Assumption A2), and we have used

Assumption A2 and ‖RK
j ‖0,K ≤ C [19] in the second step, the trace inequality (by

rescaling) in the third step and 〈φK
ij 〉K = 0 along with Poincaré-Friedrichs inequality

(by rescaling) in the forth step. Consequently, we have

‖ψK
ij ‖0,K ≤ C(1 + h−β2), (3.140)

where C only depends on AssumptionA2 and the constants in trace inequality and

Poincaré inequality in a fixed reference domain. Combining (3.137) and (3.140), it

follows immediately

‖u− vh‖0,K = ‖
∑

i,j

(Ai(x)β
K
ij − AK

ij )ψ
K
ij ‖0,K

≤ ‖
∑

i,j

(Ai(x) − Āj
i )β

K
ij ψ

K
ij ‖0,K + ‖

∑

i,j

(Āj
iβ

K
ij − AK

ij )ψ
K
ij ‖0,K

≤ ‖
∑

i,j

|Ai(x) − Āj
i |βK

ij ψ
K
ij ‖0,K + ‖

∑

i,j

|Āj
iβ

K
ij −AK

ij |ψK
ij ‖0,K

≤ Chα+β1(
∑

i

‖Ai‖Cα(Ω))
∑

i,j

‖ψK
ij ‖0,K

≤ Chα+β1−β2(
∑

i

‖Ai‖Cα(Ω)),

(3.141)

where we have used Assumption A2 and the C depends on N and the constants in
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Assumption A2. After making summation over all K for (3.141), we have

‖u− vh‖2
0,Ω ≤

∑

K

‖u− vh‖2
0,K

≤ C(
∑

i

‖Ai‖Cα(Ω))
2
∑

K

h2(α+β1−β2)

≤ C(
∑

i

‖Ai‖Cα(Ω))
2 1

h2
h2(α+β1−β2)

= C(
∑

i

‖Ai‖Cα(Ω))
2h2(α+β1−β2−1).

Consequently,

‖u− vh‖0,Ω ≤ C(
∑

i

‖Ai‖Cα(Ω))h
α+β1−β2−1. (3.142)

According to (3.133), for those K, ∂K ∩ ∂Ω, we will adjust proper cKij such that
∑

i,j c
K
ijψ

K
i,j − g0,h ∈ V 0

h , but this will not affect our convergence rate. Therefore,

invoking Lemma 3.3.11, (3.136) (3.142) and Sobolev embedding theorem from W 1,ξ

into Cα, Theorem 3.3.12 follows.

From the proof of Theorem 3.3.12, one can easily get the following result, which

does not assume inf-sup condition by lemma 5.3 in [3].

Corollary 3.3.13. Let u and uh be the velocity in (3.119) and (3.121) respectively,

then we have

‖u− uh‖0,Ω ≤ C(
∑

i

‖Ai‖Cα(Ω))h
α+β1−β2−1.

Remark 3.3.9. If Ai(x) ∈ C1(Ω) in Assumption A1 and ui are defined such that

β1 = 1 and β2 = 0 (e.g., ui are bounded in L∞(el) for all el), then Theorem 3.3.12

implies that

‖u− uh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ Ch.
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Remark 3.3.10. Mixed multiscale finite element method introduced in [22] is re-

lated RT0 mixed finite element method in terms of degrees of freedom on the edges

of elements. The proposed mixed multiscale method for N = 2 has similar relation

to BDM1 element (see [19] for the description of BDM1). We note that the local

mixed multiscale finite element methods suffer from a resonance error and a typical

convergence rate for periodic coefficients is

‖uǫ − uh‖H(div,Ω) + ‖pǫ − ph‖0,Ω ≤ C(h+
( ǫ

h

)γ

),

where γ = 1/2 for mixed multiscale method introduced in [22]. In our global mixed

MsFEM, the boundary condition for velocity basis is heterogenous and Theorem 3.3.12

implies that stability is independent of the small scale and the resonance error is

removed.

Remark 3.3.11. One can relax the main assumption used in the paper and assume

that

‖u(x) −Ai(x)ui(x)‖H(div,Ω) ≤ Cδ.

If i = 1, the proof can be found in [4]. For the general case, i.e., i > 1, we only need

to verify the inf-sup condition (3.132). The main idea to verify the inf-sup condition

is to find a ηqh

h for any qh ∈ Qh such that divηqh

h = qh in each coarse element K and

‖ηqh

h ‖H(div,Ω) ≤ C‖qh‖0,Ω. One can show that the constant C depends on global fields

u1,..., uN and uniformly bounded via a constructive argument. Once we have the inf-

sup condition, we can follow the proof of Theorem 3.3.12 to obtain the convergence

rate

‖u− uh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ C(hmin{α+β1−β2−1,1} + δ).
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3.4. Numerical Results

In this section, we first briefly introduce the discretization of saturation equa-

tions of two-phase flows. Then numerical results are presented for two-phase flow

simulations.

3.4.1. Discretization of Saturation Equation

Before we present numerical results for two-phase flows, we would like to discuss

the discretization of the saturation equation. We use the two-phase flow equation

defined in Section 2.1 to discuss the time discretiszation, i.e.,

−div(λ(S)k∇p) = f

∂S

∂t
+ div(F ) = 0

(3.143)

where F = ufw(S) = (−λ(S)k∇p)fw(S). It is often to use IMPES (implicit pressure

explicit saturation) scheme or improved IMPES scheme (c.f. Chapter 7 in [23]) to

solve the coupled system (3.143). In this subsection, we briefly introduce some dis-

cretization techniques for the saturation equation, i.e., the second equation defined

in Section 3.143.

Let Γij be the common face (or edge) of Ki and Kj and nij be the normal

vector pointing from Ki to Kj. Using the θ-rule for temporal discretization and a

finite-volume scheme for the saturation equation, it follows the following form.

1

∆t
(Sn+1

i − Sn
i ) +

1

|Ki|
∑

j 6=i

[θFij(S
n+1) + (1 − θ)Fij(S

n)] = 0, (3.144)

where Sn
i is the cell-average of water saturation at t = tn, i.e.,

Sn
i = 〈S(x, tn)〉Ki
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and Fij is a numerical approximation of the flux over Γij, i.e.,

Fij(S) ≈
∫

Γij

fw(S)ijuij · nijds.

We note that no summation convention is used in the last equation. Here fw(S)ij

denotes the fractional-flow function associated with Γij and the first-order upstream

weighting scheme for it is defined as

fw(S)ij =











fw(Si) if u · nij ≥ 0

fw(Sj) if u · nij < 0.

For θ = 0 or 1, we can write (3.144) as a vector form

Sn+1 = Sn + (δt
x)

TAf(Sm), m = n or n+ 1,

where (δt
x)i = ∆t

|Ki|
.

If θ = 0, then (3.144) is an explicit scheme and only stable provided that time

step ∆t satisfies a stability condition (CFL) condition, i.e.,

∆t ≤ |Ki|
vin

i max0≤s≤1{f ′(s)} ,

where vin
i is the inflow flux on Ki.

For θ = 1, (3.144) is an implicit scheme and unconditionally stable but gives

rise to a nonlinear system. Such a nonlinear system is often solved with a Newton or

Newton-Raphson iterative method. Define

G(Sn+1) = Sn+1 − Sn − (δt
x)

TAf(Sn+1). (3.145)

By Taylor expansion, we have

G(Sn+1) ≈ G(Sn) +G′(Sn)(Sn+1 − Sn).
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Noticing G(Sn+1) = 0 we have δSn := Sn+1−Sn = −[G′(Sn)]−1G(Sn). From (3.145),

we have

G′(S) = I − (δt
x)

TAf ′(S),

where f ′(S)i = f ′(Si). Hence

Sn+1 = Sn + δSn.

This iteration proceeds until the norm of δSn is smaller than a prescribed value. For

other schemes of saturation equation, refer to [23].

3.4.2. Numerical Results Using Single Global Information

In this subsection, we present numerical results for permeability fields from

SPE Comparative Solution Project [24] (also known as SPE 10). These permeability

fields, as it was mentioned earlier, have channelized structure and a large aspect ratio.

We will show that if one takes use of limited global information based on single-

phase flow information in constructing multiscale basis functions, then the numerical

approximation on the coarse grid becomes much more accurate.

In our numerical simulations, we will perform two-phase flow and transport

simulations defined in Section 2.1. In our simulations, we take krw(S) = S2 and

kro(S) = (1 − S)2. In the presence of capillary effects, an additional diffusion term

is present in (2.3). In the simulations, we solve the pressure equation on the coarse

grid and re-construct the fine-scale velocity field which is used to solve the satura-

tion equation. The basis functions are constructed at time zero and not changed

throughout the simulations.

In our numerical results, we compare the saturation fields and water-cut data

as a function of pore volume injected (PVI). The water-cut is defined as the fraction
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of water in the produced fluid and is given by qw/qt, where qt = qo + qw, with qo

and qw being the flow rates of oil and water at the production edge of the model. In

particular, qw =
∫

∂Ωout f(S)v · nds, qt =
∫

∂Ωout v · nds, where ∂Ωout is the outer flow

boundary. Pore volume injected, defined as PV I = 1
Vp

∫ t

0
qt(τ)dτ , with Vp being the

total pore volume of the system, provides the dimensionless time for the displacement.

The permeability field k(x) is given on 60×220 fine grid and coarse grid is used in two-

phase flow simulations without updating basis functions. We consider a traditional

five-spot problem (e.g., [1]), where the water is injected at right top corner and oil is

produced at four corners of the rectangular domain.

We implement the numerical simulation on 6 × 10, 12 × 11 and 12 × 22 coarse

grid at layer 40, 50 and 70 respectively. On the three different coarse grids and the

three different layers, we compare the relative water-cut error (in L1) and the relative

saturation error (in L2) by utilizing the local mixed MsFEM and the mixed MsFEM

using limited global information from single phase flow. Table 3.1, table 3.2 and table

3.3 list the relative water-cut error and relative saturation error on the different coarse

grids at at layer 40, 50 and 70 respectively when µw

µo
= 1

3
. Table 3.4, table 3.5 and

table 3.6 list the relative water-cut error and relative saturation error on the different

coarse grids at at layer 40, 50 and 70 respectively when µw

µo
= 1

10
.

In Figure 3.3, the saturation profiles at PV I = 1 for layer 50 are compared. The

simulations are run with 12 × 11 coarse grid and µw

µo
= 1/3. Figure 3.4 describes the

relative saturation error from PV I = 0 to PV I = 1. We observe from these figures

that the saturation by using global mixed MsFEM provides an accurate representation

of the reference saturation. Figure 3.5 provides the comparison of water-cut curve

from the reference, local mixed MsFEM and global mixed MsFEM when PV I is

from 0 to 1. We observe that there is almost no difference in water-cut curve between

reference and global mixed MsFEM. These observations are consistent for all other
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Fig. 3.3. Comparison of saturation between reference solution and MsFEM solution at

PV I = 1, layer=50, 12 × 11 coarse grid and µw

µo
= 1/3; Top: The reference

saturation; Middle: The saturation using global mixed MsFEM; Bottom:

Multiscale saturation using local mixed MsFEM.
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Fig. 3.6. Comparison of saturation between reference solution and MsFEM solution at

PV I = 1, layer=50, 12 × 11 coarse grid and µw

µo
= 1/10; Top: The reference

saturation; Middle: The saturation using global mixed MsFEM; Bottom:

Multiscale saturation using local mixed MsFEM.

layers, coarse grids and other ratios µw

µo
. For example, Figures 3.6, 3.7 and 3.8 provide

the similar saturation profile at PV I = 1, saturation errors and water-cut curves for

µw

µo
= 1/10.

It is clear from these figures that the use of the global information in mixed

multiscale finite element methods gives us an more accurate approximation. The

presented numerical results show that one can use a single phase flow solution to con-

struct basis functions that can be employed for solving two-phase flow and transport

on the coarse grid accurately. We would like to note that similar ideas have been

used in ensemble level of upscaling in two-phase flow simulation [20].
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Fig. 3.7. Relative saturation error, layer=50, 12 × 11 coarse grid and µw
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Next, we discuss the convergence of global mixed MsFEM with limited global

information. For this reason, we consider different coarse grids, 6 × 10, 12 × 11,

and 12 × 22 for the previous examples. As our convergence analysis indicates that

the proposed method converges upto a small parameter δ which represents how well

two-phase velocity field can be approximated by single-phase velocity field in each

coarse patch. Table 3.1-table 3.6 show that as the coarse mesh size decreases the

error decreases. This confirms our convergence analysis for the global MsFEM. We

note that this is in contrast to standard MsFEM where one can observe the resonance

error in the form ǫ/h. As a result, the standard mixed MsFEM does not converge as

h approaches to zero.

Table 3.1. Relative Errors (layer=40, µw

µ0
= 1/3)

coarse water-cut error sat. error water-cut error sat. error

grid (global Msfem) (global Msfem) (local Msfem) (local Msfem)

6 × 10 0.0144 0.0512 0.1172 0.2755

12 × 11 0.0093 0.0435 0.2057 0.3459

12 × 22 0.0039 0.0370 0.1867 0.3158

Table 3.2. Relative Errors (layer=50, µw

µ0
= 1/3)

coarse water-cut error sat. error water-cut error sat. error

grid (global Msfem) (global Msfem) (local Msfem) (local Msfem)

6 × 10 0.0129 0.0871 0.1896 0.5061

12 × 11 0.0055 0.0753 0.1806 0.5032

12 × 22 0.0046 0.0568 0.1702 0.4578
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Table 3.3. Relative Errors (layer=70, µw

µ0
= 1/3)

coarse water-cut error sat. error water-cut error sat. error

grid (global Msfem) (global Msfem) (local Msfem) (local Msfem)

6 × 10 0.0106 0.0562 0.0408 0.2291

12 × 11 0.0081 0.0483 0.0863 0.2858

12 × 22 0.0039 0.0421 0.0976 0.2530

Table 3.4. Relative Errors (layer=40, µw

µ0
= 1/10)

coarse water-cut error sat. error water-cut error sat. error

grid (global Msfem) (global Msfem) (local Msfem) (local Msfem)

6 × 10 0.0080 0.0534 0.0902 0.2721

12 × 11 0.0056 0.0491 0.1382 0.3472

12 × 22 0.0026 0.0403 0.1414 0.3153

Table 3.5. Relative Errors (layer=50, µw

µ0
= 1/10)

coarse water-cut error sat. error water-cut error sat. error

grid (global Msfem) (global Msfem) (local Msfem) (local Msfem)

6 × 10 0.0049 0.0957 0.1577 0.5137

12 × 11 0.0042 0.0850 0.1499 0.5063

12 × 22 0.0041 0.0628 0.1404 0.4613
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Table 3.6. Relative Errors (layer=70, µw

µ0
= 1/10)

coarse water-cut error sat. error water-cut error sat. error

grid (global Msfem) (global Msfem) (local Msfem) (local Msfem)

6 × 10 0.0044 0.0629 0.0280 0.2262

12 × 11 0.0027 0.0522 0.0576 0.2736

12 × 22 0.0025 0.0473 0.0678 0.2397

3.4.3. Numerical Results Using Multiple Global Information

In this subsection, we present numerical results for parameter dependent per-

meability fields. We will show that if one takes a larger set of global fields in con-

structing multiscale basis functions, then the numerical approximation on the coarse

grid becomes more accurate. For our numerical results, we consider the following

permeability field,

k(x, θ) = exp(θiYi(x)),

where Yi(x) is heterogeneous permeability fields and θi ∈ R. As for Yi(x), we use

heterogeneous permeability fields from SPE Comparative Solution Project [24] (also

known as SPE 10). These permeability fields have channelized structure and a large

aspect ratio. Because of channelized structure of the permeability fields, the localized

approaches do not perform well. On the other hand, it is known [29] that the use

of limited global information based on single-phase flow information improves the

accuracy. Because of θ = (θ1, ..., θM) dependence, one needs to use several single-

phase flow solutions. Our goal here is to choose a few permeability realizations such

that using these realizations, one can construct basis functions which can be used

to approximate the solution for any realization (any θ). Because of smooth depen-

dence of permeability with respect to θ, it can be shown [27] that mixed multiscale
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finite element method converges independent of small scales if sufficient number of

realizations are chosen.

In our numerical experiments, we consider k(x, θ) = exp(θY (x)). We consider a

range of θ, θ1 ≤ θ ≤ θ2, and use the global single-phase flow solutions corresponding

to end points θ = θ1 and θ = θ2 to construct the multiscale basis functions. In

particular, u1 = −k(x, θ1)∇p(x, θ1) and u2 = −k(x, θ2)∇p(x, θ2) are used to construct

mixed multiscale basis functions as described earlier.

In our numerical simulations, we will perform two-phase flow and transport

simulations defined in Section 2.1. In our simulations, we take krw(S) = S2 and

kro(S) = (1 − S)2. In the presence of capillary effects, an additional diffusion term

is present in (2.3). In the simulations, we solve the pressure equation on the coarse

grid and re-construct the fine-scale velocity field which is used to solve the satura-

tion equation. The basis functions are constructed at time zero and not changed

throughout the simulations.

In our numerical results, we compare the saturation fields and water-cut data

as a function of pore volume injected (PVI). The permeability field Y (x) is given

on 60 × 220 fine grid and 6 × 22 coarse grid is used in two-phase flow simulations

without updating basis functions. We consider a traditional five-spot problem (e.g.,

[1]), where the water is injected in the middle and oil is produced at four corners of

the rectangular domain.

In Figure 3.9, the water-cut and the saturation profiles for a value of θ = 0.75

are compared. The global fields corresponding to single-phase flow solutions are

computed at θ1 = 0.5 and θ2 = 1. The simulations are run with µo/µw = 5. We note

that the value of θ is different from the values used in generating basis functions. We

observe from these figures that the mixed multiscale finite element method provides

an accurate representation of the solution. In particular, there is almost no difference
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in water-cut curve and the error in the saturation profile at PV I = 1 is less than

5 %. This observation is consistent for all other values between θ1 and θ2, and it is

demonstrated next.

In our next set of numerical experiments, water-cut errors and saturation errors

for values of θ between θ1 = 0.5 and θ2 = 1.5 are presented. We also compare these

results with the results obtained using only one value of θ, θ = 1. More precisely,

we only use the global solution corresponding to θ = 1 to construct multiscale basis

functions. Furthermore, these basis functions are used for solving two-phase flow and

transport on the coarse grid for other values of θ. We observe from Figures 3.10 -

3.11, that the results are substantially better if two global solutions are employed in

characterizing the solutions for all the range of θ. In Figure 3.10, µo/µw = 0.1 is

taken and in Figure 3.11, µo/µw = 10 is taken. It is clear from these figures that

the use of two global solutions in mixed multiscale finite element methods gives us

an accurate approximation. The presented numerical results show that one can use

a few realizations of the permeability field to construct basis functions that can be

employed for solving two-phase flow and transport on the coarse grid accurately. We

would like to note that similar ideas have been used in ensemble level of upscaling

in two-phase flow simulation [20]. The proposed approach has now been applied

to more complicated stochastic permeability fields in [2] where the uncertainty is

parameterized via high dimensional parameter θ (i.e., M > 1). Using a few values of

θ, one can pre-compute multiscale basis functions that are used to characterize the

uncertainty.

One of our goals with presented numerical results is to show that the solution

can be approximated using multiple global fields. Next, we discuss the convergence of

global mixed MsFEM with limited global information. For this reason, we consider

different coarse grids, 6 × 22, 12 × 44, and 15 × 55 for the previous example with
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Fig. 3.9. Top: Comparison of water-cut between reference solution and multiscale so-

lution; Middle: The reference saturation at PV I = 1; Bottom: Multiscale

saturation at PV I = 1. (layer 85)
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Fig. 3.10. The saturation and water-cut error using one single-phase flow solution and

two single-phase flow solutions, µo/µw = 0.1. (layer 85)
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Fig. 3.11. The saturation and water-cut error using one single-phase flow solution and

two single-phase flow solutions, µo/µw = 10. (layer 85)

µo/µw = 10. As our convergence analysis indicates that the proposed method con-

verges upto a small parameter δ which represents how well two-phase velocity field

can be approximated by single-phase velocity field in each coarse patch. Moreover,

the convergence rate also depends on the smoothness of Ai in (3.117). One can con-

sider an ideal toy problem where the convergence rate can be verified by specifying

the form of the solution upto smooth functions Ai (see (3.117). Instead, we would

like to consider SPE 10 example and show that as the coarse mesh size decreases the

error decreases. We note that this is in contrast to standard MsFEM where one can

observe the resonance error in the form ǫ/h. As a result, the mixed MsFEM does not

converge as h approaches to zero. As we see from Figure 3.12, the mixed MsFEM

using limited global information converges as the coarse mesh size decreases. This is

an indication that for general complicated media such as SPE 10 with high contrast,

one can expect the convergence of mixed MsFEM using limited global information.

As we mentioned earlier that if one uses directional fields, then δ = 0. In this case,

one can perhaps show more rigorous convergence rates in the absence of source terms.
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Fig. 3.12. The saturation and water-cut error using one single-phase flow solution and

two single-phase flow solutions, µo/µw = 10 for different degree of coarsen-

ing. (layer 85)

3.5. Conclusions and Comments

In this chapter, we present the multiscale numerical methods: Galerkin Ms-

FEM, PUM, and mixed MsFEM. These methods employ limited global information.

In multi-phase flow simulations, the global fields are employed from the solutions

of single-phase flow problems to construct multiscale basis functions. Our analysis

assumes the solution of partial differential equation smoothly depends on the global

information. Under this assumption, we derive convergence rate for the global mul-

tiscale numerical methods. This assumption is relaxed for the case with scale sepa-

ration, where we show that multiscale finite element methods converge without the

resonance error. The convergence analysis shows that approximation is improved and

accurate compared to local MsFEMs.

A few numerical results are shown. First we consider two-phase flows simula-

tion. We consider complicated spatial heterogeneities presented in SPE Comparative

Project [24]. Single-phase flow solution is used to construct velocity basis functions.

Secondly, we consider a parameter dependent permeability field (a simplified case for
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general stochastic permeability fields) where a limited number of parameter values are

used to generate the global fields. Based on these global fields, we compute multiscale

basis functions. These permeability fields (SPE 10) are channelized and difficult to

upscale and, thus, single-phase flow information (limited global information) is used

for two-phase flow simulations. Our numerical results show that one can accurately

approximate the solution of parameter dependent two-phase flow equations with a few

global fields corresponding to single-phase flow solutions. One can find a few more

representative numerical examples in [3] involving highly channelized permeability as

well as a 3-D reservoir model with unstructured fine grid. We observe that the use of

unstructured coarse grids provides more accurate results and more flexibility.
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CHAPTER IV

MULTISCALE NUMERICAL METHODS FOR PARABOLIC EQUATIONS

WITH CONTINUUM SCALES USING GLOBAL INFORMATION

In this chapter, we consider multiscale approaches for solving parabolic equations

with heterogeneous coefficients. Our interest stems from porous media applications

and we assume that there is no scale separation with respect to spatial variables.

To compute the solution of these multiscale problems on a coarse grid as before,

we define global fields such that the solution smoothly depends on these fields. We

present various finite element discretization techniques and provide analyses of these

methods. A few representative numerical examples are presented using heterogeneous

fields with strong non-local features. These numerical results demonstrate that the

solution can be captured accurately on the coarse grid when some type of limited

global information is used for parabolic equations. The results of this chapter can

been found in our papers [5, 45].

The chapter is organized as follows.

In Section 4.1, we present problem setting. In Section 4.2, we present an analysis

of MsFEM with single global information for parabolic equations. In Section 4.3,

we present the analysis for general case using PUM with multiple global fields. In

Section 4.4, we discuss the global mixed MsFEM for parabolic equations. In Section

4.5, we present a few numerical results for Richards equations. Finally, we draw some

conclusions and make further comments.
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4.1. Preliminaries on Parabolic Equations

In this chapter, we consider a model parabolic equation

Dtp− divk∇p = f in ΩT

p(t = 0) = p0 in Ω

(4.1)

where ΩT := Ω × [0, T ) and k := k(x, t) is uniformly positive and bounded in ΩT ,

k(x, t) is a rough function with respect to x, f = f(x, t) ∈ L2(L2(Ω)) and the problem

is subject to boundary conditions. Our objective is to define multiscale methods

that can capture the solution of (4.1) when k(x, t) does not have scale separation

with respect to spatial variable. This type of problems arise in many porous media

applications, e.g., in compressible flow, Richards equations and etc.

Next, we introduce some notations. Let M be a finite dimensional subspace of

H1
0 and for simplicity, we consider p|∂Ω = 0. We suppose that ph : [0, T ) 7−→M solve

the following equation

(Dtph, vh) + (k∇ph,∇vh) = (f, vh)

(ph(0), vl
h) = (p0, v

l
h)

(4.2)

for all vh ∈ M and vl
h ∈ Sh (or M and it depends on the feature of initial values),

where Sh denotes standard polynomial finite element spaces. Let p0,h = (p0, v
l
h). Let

us define in this chapter

|||p− ph|||2ΩT
= ‖p− ph‖2

L∞(L2(Ω)) + |p− ph|2L2(H1(Ω)).

The following is a known stability result [36].

Lemma 4.1.1. Let p and ph be the solutions to (4.1) and (4.2) respectively. Assume
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that w : [0, T ) 7−→M be any function, then

|||p− ph|||ΩT
≤ C(|||p− w|||ΩT

+ ‖Dt(p− w)‖L2(H−1(Ω)) + ‖p0,h − w(0)‖L2(Ω)). (4.3)

Proof. Let ξ = ph − w and η = p− w, then for v ∈M

(Dtw, v) + (k∇w,∇v) = (f, v) + (k∇w − k∇p,∇v) − (Dtη, v).

Take v = ξ, then

(Dtξ, ξ) + (k∇ξ,∇ξ) = (k∇u− k∇w,∇ξ) + (Dtη, ξ).

Consequently,

Dt‖ξ‖2
0,Ω + |ξ|21,Ω ≤ C1

2γ1
|η|21,Ω +

γ1

2
|ξ|21,Ω +

1

2γ2
‖ξ‖2

1,Ω +
γ2

2
‖Dtη‖2

−1,Ω

≤ C1

2γ1

|η|21,Ω + (
γ1

2
+

1

2γ2

)|ξ|21,Ω +
1

2γ2

‖ξ‖2
0,Ω +

γ2

2
‖Dtη‖2

−1,Ω

Pick proper values of γ1 and γ2 so that

‖ξ‖2
0,Ω(τ)+

∫ τ

0

|ξ|21,Ω(s)ds ≤ C(|η|2L2(H1(Ω))+‖Dtη‖2
L2(H−1(Ω))+‖ξ(0)‖2

0,Ω)+

∫ τ

0

‖ξ‖2
0,Ω(s)ds,

and Gronwall’s inequality (i.e., Lemma 2.2.7) implies that

‖ξ‖2
L∞(L2(Ω)) + |ξ|L2(H1(Ω)) ≤ C(|η|2L2(H1(Ω)) + ‖Dtη‖2

L2(H−1(Ω)) + ‖ξ(0)‖2
0,Ω).

Since p− ph = η − ξ, the triangle inequality gives

‖p− ph‖L∞(L2(Ω)) + |p− ph|L2(H1(Ω))

≤ C(‖p− w‖L∞(L2(Ω)) + |p− w|L2(H1(Ω)) + ‖Dt(p− w)‖L2(H−1(Ω)) + ‖p0,h − w(0)‖0,Ω).
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Lemma 4.1.1 implies the following inequality

|||p− ph|||ΩT
≤ C(|||p− w|||ΩT

+ ‖Dt(p− w)‖L2(L2(Ω)) + ‖p0,h − w(0)‖L2(Ω)). (4.4)

We note that summation convention is used in this chapter.

4.2. Galerkin MsFEM with Limited Global Information

The key idea of the method has been described in Section 3.2.1. The basis

functions, φK
i , i = 1, · · · , d are the set to satisfy the elliptic problem (3.4) Let p1 be

the solution of the following equation

−divk(x)∇p1 = f0 in Ω, (4.5)

subject to the same boundary conditions as the original equation. Here f0 is time

independent right hand side and can be thought as the heterogeneous spatial part

of f , e.g., f(x, t) = f0(x)g(t). If f ∈ L2(L2(Ω)), we can take f0 = 0 or any smooth

function because the small scale features of the solution, p, are independent of the

source term provided the source term is a smooth function. In simulations, (4.5)

is solved on the fine-scale grid by using standard finite element method, e.g., using

piecewise linear basis functions. We note that this is one time overhead, though

these basis functions capture the non-local information and allows us to obtain the

convergence independent of small scales.

We define the Galerkin finite element space by

Vh = span{φK
i : 1, · · · , d;K ∈ τh}. (4.6)
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The weak formulation of (4.1) is to seek ph ∈ Vh ⊂ H1
0 such that

(Dtph, vh) + (k∇ph,∇vh) = (f, vh)

(ph(0), vl
h) = (p0, v

l
h)

(4.7)

for all vh ∈ Vh and vl
h ∈ Sh (or Vh ).

For the analysis, we may assume that p smoothly depends on p1. This can be

derived for a channelized media as it is done in [29].

Assumption G. There exists a sufficiently smooth scalar valued function G(η, t)

(G ∈ L∞(H2) ∩H1(H2) ∩ L 2s
s−2 (W 3, 2s

s−2 ), s > 2), such that

|||p−G(p1, t)|||ΩT
+ ||Dt(p−G(p1, t))‖L2(L2(Ω)) ≤ Cδ, (4.8)

where δ is sufficiently small.

Note that G is defined on a bounded domain in R2 because p is a bounded function

and [0, T ] is bounded.

To get an accurate numerical solution of equation (4.2) on the coarse grid, we

use the global solutions (on the fine grid) of equation (4.5) to construct MsFEM basis

functions as described earlier. Next, we prove that with these basis functions and

Assumption G, MsFEM converges independent of small scales.

Theorem 4.2.1. Under Assumption G and p ∈W 1,s(Ω) (s > 2), we have

|||p− ph|||ΩT
≤ Cδ + Cα(h) + Ch1− 2

s |p1|1,s,Ω,

where α(h) is the approximation error for initial values.

Proof. In the proof, we first use Lemma 4.1.1 and then break the estimate in this

lemma into the estimates over each coarse grid block. The estimation over each coarse

grid block is obtained using perturbation of G and regularities of basis functions and

the global field. Following standard practice of finite element estimation, we seek
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finite dimensional function w = ci(t)φ
K
i , where φK

i are specified in (??). Our analysis

is similar to that presented in [4] for elliptic equations.

From Lemma 4.1.1, we have

|||p− ph|||ΩT
≤ C(|||p−G(p1, t)|||ΩT

+ |||G(p1, t) − ci(t)φ
K
i |||ΩT

+ ‖Dt(p−G(p1, t))‖L2(L2(Ω)) + ‖Dt(G(p1, t) − ci(t)φ
K
i )‖L2(L2(Ω))

+ ‖p0,h − ci(0)φK
i ‖L2(Ω)).

(4.9)

We may assume that ‖p0,h − ci(0)φK
i ‖L2(Ω)) ≤ α(h). Hence,

|||p− ph|||ΩT
≤ Cδ + Cα(h) + C(|||G(p1, t) − ci(t)φ

K
i |||ΩT

+ ‖Dt(G(p1, t) − ci(t)φ
K
i )‖L2(L2(Ω))).

(4.10)

Next, we present an estimate for the third term. We choose ci(t) = G(p1(xi), t) for

t > 0, where xi are vertices of K. Furthermore, using Taylor expansion of G around

p1K , which is the average of p1 over K,

G(p1(xi), t) = G(p1K , t) + ∂ηG(p1K , t)(p1(xi) − p1K)

+ (p1(xi) − p1K)2

∫ 1

0

s∂2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds,

where ∂2
ηG refers to the second derivative with respect to first variable G(η, t), We

have in each K

ci(t)φ
K
i = G(p1K , t)

∑

i

φK
i + ∂ηG(p1K , t)(p1(xi) − p1K)φK

i

+ (p1(xi) − p1K)2φK
i

∫ 1

0

s∂2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds

= G(p1K , t) + ∂ηG(p1K , t)(p1(xi)φ
K
i − p1K)

+ (p1(xi) − p1K)2φK
i

∫ 1

0

s∂2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds.

(4.11)
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In the last step, we have used
∑

i φ
K
i = 1. Similarly, in each K,

G(p1(x), t) = G(p1K , t) + ∂ηG(p1K)(p1(x) − p1K)

+ (p1(x) − p1K)2

∫ 1

0

s∂2
ηG(p1(x) + s(p1K − p1(x)), t)ds.

(4.12)

Using (4.11) and (4.12), we get

‖G(p1, t) − ci(t)φ
K
i ‖L∞(L2(K))

≤ ‖∂ηG(p1K , t)(p1(x) − p1(xi)φ
K
i )‖L∞(L2(K))+

‖(p1(xi) − p1K)2φK
i

∫ 1

0

s∂2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds‖L∞(L2(K))

+ ‖(p1(x) − p1K)2

∫ 1

0

s∂2
ηG(p1(x) + s(p1K − p1(x)), t)ds‖L∞(L2(K))

≤ Ch2‖f0‖0,K + Ch2− 4
s |p1|21,s,K

≤ Ch2‖f0‖0,K + Ch2− 4
s |p1|1,s,Ω|p1|21,s,K

≤ Ch2‖f0‖0,K + Ch2− 4
s |p1|1,s,K.

(4.13)

From the third step to the forth step, we have used the fact |p1|21,s,K ≤ |p1|1,s,Ω|p1|1,s,K ≤

C|p1|1,s,K (we assume elements K’s have continuous extension property). Since

p1 ∈W 1,s(Ω) is bounded apriori, |p1|1,s,K is absorbed into the constant C. In the sec-

ond step we used the fact ‖p1(x) − p1(xi)φ
K
i ‖0,K ≤ Ch‖f0‖0,K (see [4]) , smoothness

of G(η, t) and the inequality

|p1(x) − p1(y)| ≤ C|x− y|1− 2
s |p1|1,s,K,
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for x, y ∈ K when s > 2. A direct calculation gives

|(p1(x) − p1K)2

∫ 1

0

s∂2
ηG(p1(x) + s(p1K − p1(x)), t)ds|L2(H1(K))

≤ ‖(p1(x) − p1K)2∇p1(x)

∫ 1

0

(1 − s)s∂3
ηG(p1(x) + s(p1K − p1(x)), t)ds‖L2(L2(K))

+ 2‖(p1(x) − p1K)∇p1(x)

∫ 1

0

s∂2
ηG(p1(x) + s(p1K − p1(x)), t)ds‖L2(L2(K))

≤ Ch2− 4
s |p1|21,s,K(T |p1|s1,s,Ω + |G|

2s
s−2

L
2s

s−2 (W
3, 2s

s−2 )
)

1
2

+ Ch1− 2
s |p1|1,s,K(T |p1|s1,s,Ω + |G|

2s
s−2

L
2s

s−2 (W
2, 2s

s−2 )
)

1
2

≤ Ch2− 4
s |p1|21,s,K + Ch1− 2

s |p1|1,s,K

≤ Ch1− s
2 |p1|1,s,K,

(4.14)

where we used Young’s inequality in the second step. Noticing |p1(x)−p1(xi)φ
K
i |1,K ≤

Ch‖f0‖0,K , we get

|G(p1, t) − ci(t)φ
K
i |L2(H1(K))

≤ ‖∂ηG(p1K , t)(p1(x) − p1(xi)φ
K
i )‖L2(H1(K))+

‖(p1(xi) − p1K)2φK
i

∫ 1

0

s∂2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds‖L2(H1(K))

+ ‖(p1(x) − p1K)2

∫ 1

0

s∂2
ηG(p1(x) + s(p1K − p1(x)), t)ds‖L2(H1(K))

≤ Ch‖f0‖0,K + Ch2− 4
s |p1|21,s,K|φK

i |1,K + Ch1− s
2 |p1|1,s,K

≤ Ch‖f0‖0,K + Ch2− 4
s |p1|1,s,K + Ch1− s

2 |p1|1,s,K.

(4.15)
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In the last step, we have used the fact that |∇φK
i | ≤ C/h. Similarly one can estimate

‖Dt(G(p1, t) − ci(t)φ
K
i )‖L2(L2(K))

≤ ‖∂t∂ηG(p1K , t)(p1(x) − p1(xi)φ
K
i )‖L2(L2(K))+

‖(p1(xi) − p1K)2φK
i

∫ 1

0

s∂t∂
2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds‖L2(L2(K))

+ ‖(p1(x) − p1K)2

∫ 1

0

s∂t∂
2
ηG(p1(x) + s(p1K − p1(x)), t)ds‖L2(L2(K))

≤ Ch2‖f0‖0,K + Ch2− 4
s |p1|21,s,K

≤ Ch2‖f0‖0,K + Ch2− 4
s |p1|1,s,K.

(4.16)

In the second step, we used the regularity G ∈ H1(H2). Combing (4.13), (4.15) and

(4.16), we have

|||G(p1, t) − ciφ
K
i |||K + ||Dt(G(p1, t) − ciφ

K
i )‖L2(L2(K))

≤ Ch‖f0‖0,K + Ch2− 4
s |p1|1,s,K + Ch1− s

2 |p1|1,s,K.

(4.17)

Summing (4.17) over K and take into account (4.10), we have

|||p− ph|||ΩT
≤ Cδ + Cα(h) + Ch1− 2

s |p1|1,s,Ω.

The proof is done.

Remark 4.2.1. If ∇p1 ∈ L∞(Ω), the regularity of G can be relaxed to G ∈ H1(H2)∩

L2(H3) and the convergence rate would be Cδ + Cα(h) + Ch.

Remark 4.2.2. We can relax the assumption on G if the proof is carried out using

Taylor polynomials in Sobolev spaces. In particular, it is sufficient to assume G(η, t) ∈

H1(H2) ∩ L∞(H2) . We will study this in the next section within the framework of

partition of unity method (PUM).

Remark 4.2.3. If equation (4.1) has small ǫ-scale feature (see[38]), the proof of the
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Theorem of 4.2.1 implies that the resonance error O( ǫ
h
) is removed by the method

described in this section.

4.3. PUM for Parabolic Equations Using Multiple Global Information

In this section, PUM is applied to parabolic equations by using multiple global

fields.

4.3.1. Framework of PUM for Parabolic Equations

In Section 4.2, we have studied parabolic equations when the solution smoothly

depends on a single global field. In many applications, the solution may smoothly

depend on multiple fields. In this section, we are going to discuss the latter, which

is more general. We utilize the idea of partition of unity method (PUM) in [49] and

[58] to capture the small scale information of the solution.

We define patch wj (j = 1, 2, ..., m) to be the union of elements (coarse) sharing

the common vertex xj . Let diam(wj) = hj and h = maxj{hj}. We suppose that the

solution p of (4.1) can be approximated by ξp
j on each patch wj (j = 1, 2, ..., m) and

satisfies the following conditions on each patch (no summation over j),

‖p(t) − ξp
j (t)‖2

0,ωj
≤ Cǫ1(t, j)

2

|p(t) − ξp
j (t)|21,ωj

≤ Cǫ2(t, j)
2

‖Dt(p(t) − ξp
j (t))‖2

0,ωj
≤ Cǫ3(t, j)

2.

(4.18)

Let φ0
j be partition of unity functions (e.g., linear hat functions) associated with

the patches wj . If we paste ξp
j (t) with φ0

j to get w defined in Lemma 4.1.1 (i.e.,

w = φ0
jξ

p
j ) and follow the techniques in [12], we can obtain the following theorem

which provides us with a basic estimate for the convergence of multiscale finite element

method.
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Theorem 4.3.1. Let u and uh be the solutions to (4.1) and (4.2) respectively. If

(4.18 ) holds, then

|||p− ph|||2ΩT
≤ α(h) + C

∫ T

0

(ǫ1(t, j)
2 +

ǫ21(t, j)

h2
j

+ ǫ2(t, j)
2 + ǫ3(t, j)

2)dt, (4.19)

where α(h) is the approximation error for initial values.

Proof. For the approximation error for initial values, we assume that

‖(p− w)(0)‖2
0,Ω + ‖p0,h − w(0)‖2

0,Ω ≤ α(h).

Let φ0
j be partition of unity functions associated with the patches wj. If we take

w = φ0
jξ

p
j , then (refer to [12])

|p− w|1,Ω ≤ C(
ǫ1(t, j)

2

h2
j

+ ǫ22(t, j))
1
2 ,

and

‖Dt(p− w)‖0,Ω ≤ C(
m
∑

j=1

ǫ23(t, j))
1
2 .

Set η(t) = p(t) − w(t). Since for any t ∈ [0, T ],

‖η(t)‖2
0,Ω = ‖η(0)‖2

0,Ω +

∫ t

0

Ds‖η(s)‖2
0,Ωds

= ‖η(0)‖2
0,Ω + 2

∫ t

0

(η,Dsη(s))ds

≤ ‖η(0)‖2
0,Ω + ‖η‖2

L2(L2(Ω)) + ‖Dtη‖2
L2(L2(Ω))

≤ ‖η(0)‖2
0,Ω + C

∫ T

0

(ǫ21(t, j) + ǫ23(t, j))dt.
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Hence we obtain the following estimate for the partition of unity method

‖p− ph‖2
L∞(L2(Ω)) + |p− ph|2L2(H1(Ω))

≤ C(‖(p− w)(0)‖2
0,Ω + ‖p0,h − w(0)‖2

0,Ω)

+C

∫ T

0

(ǫ1(t, j)
2 +

ǫ21(t, j)

h2
j

+ ǫ2(t, j)
2 + ǫ3(t, j)

2)dt

(4.20)

and which is the same as (4.19).

Remark 4.3.1. If the patches wj have the uniform Poincaré property (as defined in

[12], page 92), one can simplify (4.19) to

|||p− ph|||2ΩT
≤ Cα(h) + C

∫ T

0

(h2
jǫ2(t, j)

2 + ǫ2(t, j)
2 + ǫ3(t, j)

2)dt. (4.21)

Remark 4.3.2. By the proof of Theorem 4.3.1, (4.19) can be reduced to

|||p−ph|||2ΩT
≤ Cα(h)+sup

t

m
∑

j=1

ǫ1(t, j)
2+C

∫ T

0

(
ǫ21(t, j)

h2
j

+ǫ2(t, j)
2+ǫ3(t, j)

2)dt. (4.22)

Remark 4.3.3. Assume the finite space M ∈ Pk, i.e., polynomials with degree k,

p ∈ L2(Hk(Ω)) and Dtp ∈ L2(Hk−1(Ω)). If w is chosen to be H1 projection onto M

of p, standard analysis and Lemma 4.1.1 or Theorem 4.3.1 imply that (see [36])

|||p− ph|||ΩT
≤ α(h) + Chk−1.

4.3.2. Incorporating Multiple Global Information

In applications, one often deals with multiple global fields that allow to represent

the solution. We assume that p can be approximated by G(p1, ..., pN , t), where pi(x)

(i = 1, 2, ..., N) are pre-defined functions. Here, p, p1, ..., pN are scalar functions.

More precisely, we assume there exists a function G(η, t) ∈ L∞(H2) ∩ H1(H2) ∩
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L
2s

s−2 (W 3, 2s
s−2 ), s > 2, η ∈ RN , such that

|||p−G(p1, ..., pN , t)|||ΩT
+ ||Dt(p−G(p1, ..., pN , t))||L2(L2(Ω)) ≤ δ, (4.23)

where pi ∈ W 1,s(Ω)(s > 2), i = 1, 2, ..., N . This is an extension of the previous

approach. We would like to note that multiple global fields need to be used for

stochastic differential equations [27]. Next, we define M = span{pi|i = 1, 2, ..., N},

p1 = 1 and follow Theorem 4.3.1 to approximate u. Let ψij = φ0
i pj, then

∑

i φ
0
i pj = pj .

Next, we study this method and provide convergence analysis. For this, we have the

following theorem. This convergence theorem shows that multiscale finite element

method converges independent of small scales in a more general setting when multiple

global fields are used.

Theorem 4.3.2. Under the assumption (4.23) and if s > 4, we have

|||p− ph|||ΩT
≤ α(h) + δ + Ch1− 4

s .

Proof. In the proof, after formulating stability estimate (4.24), we break the estimate

into the estimates over each coarse patch. The estimation over each coarse patch is

obtained using perturbation of G and regularities of basis functions and the global

fields. By (4.4), we need to estimate the right hand sides of the following inequalities

|||p− w|||ΩT
≤ |||p−G(p1, ..., pN , t)|||ΩT

+ |||G(p1, ..., pN , t) − cijψij |||ΩT
, (4.24)

and

||Dt(p− w)||L2(L2(Ω)) ≤ ||Dt(p−G(p1, ..., pN , t))||L2(L2(Ω))

+ ||Dt(G(p1, ..., pN , t) − cijψij)||L2(L2(Ω)),

(4.25)

where w = cijψij and cij is chosen such that the second term on the right hand of the
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the above two inequalities is small. In each ωi, we choose cij as

ci1 = G(p̄i
1, ..., p̄

i
N , t) −

∂G

∂pj
(p̄i

1, ..., p̄
i
N , t)p̄

i
j,

and

cij =
∂G

∂pj
(p̄i

1, ..., p̄
i
N , t), j ≥ 2,

where p̄i
j is the average of pj over ωi. We note the following Taylor expansion in each

ωi,

G(p1, ..., pN , t) = G(p̄i
1, ..., p̄

i
N , t) +

∂G

∂pj
(p̄i

1, ..., p̄
i
N , t)(pj − p̄i

j) +Ri,

where Ri is the remainder, which can be written as

Ri =
∑

k,j

(pk − p̄i
k)(pj − p̄i

j)

∫ 1

0

s∂2
k,jG(p1 + s(p̄i

1 − p1), ..., pN + s(p̄i
N − pN), t)ds,

where ∂2
k,j refers to second derivative with respect to pk and pj .

We first estimate (4.24). One can show that in each ωi

|||G(p1, ..., pN , t) − cijpj |||ωiT

≤ |||G(p̄i
1, ..., p̄

i
N , t) +

∂G

∂pj
(p̄i

1, ..., p̄
i
N , t)(pj − p̄i

j) − cijpj |||ωiT
+ |||Ri|||ωiT

,

where ωiT = ωi× [0, T ]. The choice of cij implies that the first term on the right hand

side is zero. We only need to estimate the second term |||Ri|||ωiT
. A straightforward

computation (also see [4]) gives rise to

‖Ri‖L2(L2(ωi)) ≤
∑

k,j

h2− 4
s |pk|1,s,ωi

|pj|1,s,ωi
|G|L2(H2)

≤ Ch2− 4
s

∑

j

|pj |1,s,ωi
,

(4.26)
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‖Ri‖L∞(L2(ωi)) ≤
∑

k,j

h2− 4
s |pk|1,s,ωi

|pj|1,s,ωi
|G|L∞(H2)

≤ Ch2− 4
s

∑

j

|pj |1,s,ωi

(4.27)

and

|Ri|L2(H1(ωi)) ≤
∑

j,k,l

‖(pj − p̄i
j)(pk − p̄i

k)∇pl

∫ 1

0

(1 − s)s∂3
k,j,lGs(., t)ds‖L2(L2(ωi))

+
∑

j,k

‖((pj − p̄i
j)∇pj + (pk − p̄i

k)∇pk)

∫ 1

0

s∂2
k,jGs(., t)ds‖L2(L2(ωi))

≤ C
∑

j,k,l

h2− 4
s |pj|1,s,ωi

|pk|1,s,ωi
(T |pl|s1,s,Ω + |G|

2s
s−2

L
2s

s−2 (W
3, 2s

s−2 )
)

1
2

+ C
∑

j

h1− 2
s |pj|1,s,ωi

(T |pj|s1,s,Ω + |G|
2s

s−2

L
2s

s−2 (W
2, 2s

s−2 )
)

1
2

≤ C
∑

j,k

h2− 4
s |pj|1,s,ωi

|pk|1,s,ωi
+ C

∑

j

h1− 2
s |pj|1,s,ωi

≤ C
∑

j

h1− 2
s |pj|1,s,ωi

(4.28)

where ∂3
i,j,k is partial triple partial derivative with respect to pi, pj , pk, Gs(., t) =

G(p1 + s(p̄i
1 − p1), ..., pN + s(p̄i

N − pN), t) and Young’s inequality is applied in the

second step.
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Notice that
∑

i φ
0
i = 1 and |∇φ0

i | ≤ C 1
h
, then it follows that

|G(p1, ..., pN , t) − cijψij |2L2(H1(Ω))

=

∫

Ω

|∇(G− cijφ
0
i pj)|2dxdt

=

∫

Ω

|∇(φ0
i (G− cijpj))|2dxdt

≤ C

∫

Ω

|(G− cijpj)∇φ0
i |2dxdt+ C

∫

Ω

|φ0
i∇(G− cijpj)|2dxdt

≤ C
1

h2

∑

i

‖Ri‖2
L2(L2(ωi))

+ C
∑

i

|Ri|2L2(H1(ωi))

≤ Ch2−8/s
∑

i,j

|pj|21,s,ωi
+ Ch2−4/s

∑

i,j

|pj |21,s,ωi

≤ Ch2−8/s,

(4.29)

and

|G(p1, ..., pN , t) − cijψij |2L∞(L2(Ω)) ≤ C
∑

i

‖Ri‖2
L∞(L2(ωi))

≤ Ch4−8/s
∑

i,j

|pj|21,s,ωi

≤ Ch4−8/s.

It remains to estimate (4.25). We only need to estimate ‖DtRi‖L2(L2(Ω)). It is easy to

show

‖DtRi‖L2(L2(ωi)) ≤
∑

j,k

‖(pj − p̄i
j)(pk − p̄i

k)

∫ 1

0

s∂t∂
2
k,jGs(., t)ds‖L2(L2(ωi))

≤ C
∑

j,k

h2− 4
s |pj|1,s,ωi

|pk|1,s,ωi
|∂tG|L2(H2)

≤ Ch2− 4
s

∑

j,k

|pj|1,s,ωi
|pk|1,s,Ω

≤ Ch2− 4
s

∑

j

|pj|1,s,ωi

(4.30)
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and consequently

‖Dt(G(p1, ..., pN , t) − cijψij)‖2
L2(L2(Ω)) ≤ Ch4−8/s.

Invoking (4.24) , (4.25) and (4.4), we complete the proof.

Comparing the convergence rate given by Theorem 4.2.1 and Theorem 4.3.2, the

convergence rate by PUM is slightly less than that given by the Galerkin MsFEM

using single global field in Theorem 4.2.1. However, if the patches ωi have the uniform

Poincaré property (as defined in [12]), then we can obtain the same convergence rate

for these two methods. The result is given in the following corollary.

Corollary 4.3.3. Provided that patches ωi have the uniform Poincaré property and

s > 2, then

|||p− ph|||ΩT
≤ α(h) + δ + Ch1− 2

s .

Proof. Let Aint = {i : ω̄i ∩ ∂Ω = 0} and Abd = {i : ω̄i ∩ ∂Ω 6= 0}. We choose

ri(t) =
1

|ωi|

∫

ωi

(G− cij(t)pj)dx

for i ∈ Aint and ri(t) = 0 for i ∈ Abd. we reset cij(t)pj in the proof of Theorem 4.3.2

to be cij(t)pj + ri(t) in each patch ωi.

Owing to

G(p̄i
1, ..., p̄

i
N , t) +

∂G

∂pj
(p̄i

1, ..., p̄
i
N , t)(pj − p̄i

j) − cijpj = 0
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in each ωi, it follows immediately that

‖G(p1, ..., pN , t) − cijpj − ri‖L∞(L2(ωi))

≤ ‖G(p̄i
1, ..., p̄

i
N , t) +

∂G

∂pj
(p̄i

1, ..., p̄
i
N , t)(pj − p̄i

j) − cijpj − ri‖L∞(L2(ωi)) + ‖Ri‖L∞(L2(ωi))

= ‖ri‖L∞(L2(ωi)) + ‖Ri‖L∞(L2(ω))

= ‖ 1

|ωi|

∫

ωi

(G−G(p̄i
1, · · · , p̄i

N , t) − ∂jG(p̄i
1, · · · , p̄i

N , t)(pj − p̄i
j))dx‖L∞(L2(ωi))

+ ‖Ri‖L∞(L2(ωi))

= ‖ 1

|ωi|

∫

ωi

Ridx‖L∞(L2(ωi)) + ‖Ri‖L∞(L2(ωi))

≤ Ch‖Ri‖L∞(L2(ωi)) + ‖Ri‖L∞(L2(ωi))

≤ C‖Ri‖L∞(L2(ωi)).

(4.31)

Since patches ωi have uniform Poincaré property by assumption in Corollary

4.3.3, Poincaré inequality implies that there exists a constant C independent of ωi

such that

‖G− cijpj − ri‖L2(ωi)(t) ≤ Ch‖G− cijpj‖H1(ωi)(t)

‖G− cijpj − ri‖H1(ωi)(t) ≤ ‖G− cijpj‖H1(ωi)(t).

(4.32)
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By (4.29) and (4.32), one can obtain that

|G(p1, ..., pN , t) − cij(t)ψij − φ0
i ri|2L2(H1(Ω))

=

∫

Ω

|∇(φ0
i ((G− cijpj − ri))|2dxdt

≤ C

∫

Ω

|(G− cijpj − ri)∇φ0
i |2dxdt+ C

∫

Ω

|φ0
i∇(G− cijpj − ri)|2dxdt

≤ C
1

h2

∑

i

h2‖G− cijpj‖2
L2(H1(ωi))

+ C
∑

i

|G− cijpj|2L2(H1(ωi))

≤ C(
∑

i

(|Ri|L2(H1(ωi)))
2)

≤ C(
∑

i

(
∑

j

h1− 2
s |pj|1,ωi

)2)

≤ Ch2− 4
s .

(4.33)

Utilizing (4.31) , (4.33) and following the proof of 4.3.2, we complete the proof.

Remark 4.3.4. If G(η, t) ∈ L∞(W 2,∞) ∩ H1(H2) ∩ L
2s

s−2 (W 3, 2s
s−2 ), s > 2, then the

proof of Theorem 4.3.2 implies that

|||p− ph|||ΩT
≤ α(h) + δ + Ch1− 2

s .

If the number of global fields p1, · · · , pn is equal the dimension of Ω, then by

using Taylor polynomials of Sobolev functions (see [17]) one can relax regularity of

G and improve the convergence rate. For an example, we are going to consider the

case of two global fields p1, p2 for Ω ⊂ R2, i.e., the local basis is a span of {1, p1, p2}.

We define

Ti(x, y, t) =G(y, t) + ∇xG(y, t) · (x− y)

Qi(x, t) =

∫

Bi

Ti(x, y, t)φ(y)dy

Ri(x, t) =G(x, t) −Qi(x, t),

(4.34)

where x ∈ Di ⊂ R2 , y ∈ Di, Bi ⊂⊂ Di is the ball centered at yi with radius ρ and
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φ(y) is the cut-off function supported in B̄i. Suppose Di is star-shaped with respect

to the ball Bi and diam(Di) ≤ Cd uniformly for all i. If G(., t) ∈ H2(Di) for any t in

its domain, then the following results hold [17],

‖Ri(., t)‖0,∞,Di
≤ Cd|G(., t)|2,Di

, (4.35)

|Ri(., t)|k,Di
≤ Cd2−k|G(, .t)|2,Di

k = 0, 1. (4.36)

Define a map g : ωi −→ Di via x −→ (p1(x), p2(x)) , H(x) = ∂(p1,p2)
∂(x1,x2)

and the

Jacobian J(x) = det ∂(p1,p2)
∂(x1,x2)

. Assume that there exist constants C1 , C2 and C3 such

that

C1 ≤ |J(x)| ≤ C2 (4.37)

and

‖H(x)‖∞ ≤ C3 (4.38)

uniformly hold for x ∈ Ω, where

‖H(x)‖∞ := sup
x∈Ω

(

sup
ξ∈R2

(H(x)ξ, ξ)

|ξ|2

)

.

(4.37) means that C1h ≤ d ≤ C2h, where diam(Di) ≈ d and diam(ωi) ≈ h. One

can use change of variables and the assumption of (4.37) and (4.38) to obtain the

following inequalities:

‖Ri(p1(x), p2(x), t)‖0,∞,ωi
≤ Ch‖G(., t)‖2,Di

, (4.39)

‖Ri(p1(x), p2(x), t)‖0,ωi
≤ Ch2‖G(., t)‖2,Di

, (4.40)

|Ri(p1(x), p2(x), t)|1,ωi
≤ Ch‖G(., t)‖2,Di

. (4.41)

The first two inequality (4.39) and (4.40) are easy to verify. We give a short proof
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for (4.41). In fact,

|Ri(p1(x), p2(x), t)|1,ωi
≤ (inf

x
J(x))−1/2‖H(x)‖∞|Ri(., t)|1,Di

≤ Ch|G(., t)|2,Di
,

where we have used (4.37), (4.38) and (4.36) in the last step.

For the special case, we have the following theorem. We note that this theorem

proves the convergence under weaker regularity assumptions for G.

Theorem 4.3.4. Suppose that (4.37) and (4.38) hold. If G ∈ H1(H2) ∩ L∞(H2),

then

|||p− ph|||ΩT
≤ α(h) + δ + Ch.

Proof. Let ψij = φ0
i vj (i = 1, 2, .., m, j = 1, 2, 3), where v1 = 1, v2 = p1 and v3 = p2.

Define w = cijψij , where

ci1 =

∫

g−1(Bi)

[G(p1(y), p2(y), t) − ∂jG(p1(y), p2(y), t)pj(y)]φ(g−1(y))dy,

ci,j+1 =

∫

g−1(Bi)

∂jG(p1(y), p2(y), t)φ(g−1(y))dy.

(4.42)

By the proof Theorem 4.3.2, it is sufficient to estimate ‖Ri(p1, p2, t)‖L2(L2(ωi)),

‖Ri(p1, p2, t)‖L∞(L2(ωi)), ‖Ri(p1, p2, t)‖L2(H1(ωi)) and ‖DtRi(p1, p2, t)‖L2(L2(ωi)). In fact,

‖Ri(p1, p2, t)‖L2(L2(ωi)) ≤ Ch2‖G‖L2(H2(Di)),

‖Ri(p1, p2, t)‖L∞(L2(ωi)) ≤ Ch2‖G‖L∞(H2(Di)),

‖Ri(p1, p2, t)‖L2(H1(ωi)) ≤ Ch‖G‖L2(H2(Di)),

‖DtRi(p1, p2, t)‖L2(L2(ωi)) ≤ Ch2‖DtG‖L2(H2(Di)),

(4.43)

where we have used (4.40) and (4.41). The rest of the proof is the same as that of

Theorem 4.3.2.

Remark 4.3.5. The assumption on G in Theorem 4.3.4 is weaker than that of The-
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orem 4.3.2. At the same time, global fields p1 and p2 need to satisfy hypothesis (4.37)

and (4.38). If pi ∈ W 1,∞(Ω), Theorem 4.3.4 and Theorem 4.3.2 simply imply the

same convergence rate.

Remark 4.3.6. Let pi (i = 1, 2, ..., d and d = dim(Ω)) be the solution to

divk(x)∇pi = 0 in Ω

pi(x) = xi on ∂Ω,

(4.44)

then g(x) is an homeomorphism for k(x) ∈ L∞(Ω) [7]. Authors in [53] show

p(g−1(p1, p2), t) ∈ L2(H2) and solve parabolic equations with continuous scales in

(u1, p2) harmonic coordinate system(the meshes may be distorted). Theorem 4.3.4

implies the same convergence rate as that of harmonic coordinate method in [53] if

we take G(p1, p2, t) = p(g−1(p1, p2), t).

4.3.3. Space and Time Dependent Global Information

In the previous subsection, the global fields p1, · · · , pN only depend on spatial

variables. In this subsection, we consider a more general case that global fields depend

on space and time, i.e., pi = pi(x, t). We assume there exists a function G ∈ H3 and

such that

|||p−G(p1, ..., pN)|||ΩT
+ ||Dt(p−G(p1, ..., pN))||L2(L2(Ω)) ≤ δ, (4.45)

where we assume

pi ∈ H1(L2(Ω)) ∩ L∞(W 1,s(Ω))(s > 2) i = 1, 2, ..., m. (4.46)

If we apply the PUM with global fields pi = pi(x, t) (i = 1, · · · , N), we have

the following theorem for the convergence. This convergence theorem shows that

multiscale finite element method converges independent of small scales in a more
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general setting when multiple global fields are used.

Theorem 4.3.5. Under the assumptions (4.45) and (4.46), we have

|||p− ph|||ΩT
≤ α(h) + δ + C(h1− 2

s + h3− 4
s ). (4.47)

Proof. Because this proof is similar to that of Theorem 4.3.2, we only give a brief

outline here. We know as before, it is sufficient to chose a proper w : (0, T ] −→ M

and estimate |||p−w|||ΩT
and ||Dt(p−w)||L2(L2(Ω)). Set w = cijψij , where cij is chosen

such that cijψij is a good approximation of G(p1, ..., pN). In each ωi, we choose cij as

ci1 = G(p̄i
1, ..., p̄

i
N) − ∂G

∂pj
(p̄i

1, ..., p̄
i
N)p̄i

j,

and

cij =
∂G

∂pj
(p̄i

1, ..., p̄
i
N), j ≥ 2,

where p̄i
j is the average of pj over ωi. We note the following Taylor expansion in each

ωi,

G(p1, ..., pN) = G(p̄i
1, ..., p̄

i
N) +

∂G

∂pj

(p̄i
1, ..., p̄

i
N)(pj − p̄i

j) +Ri,

where Ri is the remainder, which can be given by

Ri =
∑

k,j

(pk − p̄i
k)(pj − p̄i

j)

∫ 1

0

s∂2
k,jGsds.

where we remind that Gs = G(p1+s(p̄i
1−p1), ..., pN +s(p̄i

N −pN )). Triangle inequality

implies that in each ωi

|||G(p1, ..., pN) − cijpj |||ωiT

≤ |||G(p̄i
1, ..., p̄

i
N) +

∂G

∂pj
(p̄i

1, ..., p̄
i
N)(pj − p̄i

j) − cijpj|||ωiT
+ |||Ri|||ωiT

.
(4.48)

The choice of cij implies that the first term on the right hand side is zero. We only
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need to estimate the second term. A direct computation gives

‖Ri‖L2(L2(ωi)) ≤ Ch3− 4
s |G|2

∑

j,k

|pj|L∞(W 1,s(ωi))|pk|L∞(W 1,s(ωi))

≤ Ch3− 4
s

∑

j

|pj|L∞(W 1,s(ωi)),

‖Ri‖L∞(L2(ωi)) ≤ Ch3− 4
s

∑

j

|pj|L∞(W 1,s(ωi))

|Ri|L2(H1(ωi)) ≤ Ch1− 2
s

∑

l

|pl|L2(H1(ωi)),

and

|Ri|L2(H1(ωi)) ≤
∑

j,k,l

‖(pj − p̄i
j)(pk − p̄i

k)∇pl

∫ 1

0

(1 − s)s∂3
k,j,lGsds‖L2(L2(ωi))

+
∑

j,k

‖((pj − p̄i
j)∇pj + (pk − p̄i

k)∇pk)

∫ 1

0

s∂2
k,jGsds‖L2(L2(ωi))

≤ C
∑

j,k,l

h2− 4
s |pj|L∞(W 1,s(ωi))|pk|L∞(W 1,s(ωi))|pl|L2(H1(ωi))

+ C
∑

j

h1− 2
s |pj|L∞(W 1,s(ωi))|pj|L2(H1(ωi))

≤ Ch1− 2
s

∑

j

|pj|L2(H1(ωi)).

(4.49)

Consequently, we can obtain

|G(p1, ..., pN) − cijψij |2L2(H1(Ω)) ≤ Ch2−4/s,

and

|G(u1, ..., pN) − cijψij |2L∞(L2(Ω)) ≤ Ch6−8/s.
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If pi ∈ L∞(W 1,s(Ω)) ∩H1(H1(Ω)), one can show that

‖DtRi‖L2(L2(ωi)) ≤
∑

j,k

‖Dt((pj − p̄i
k)(pj − p̄i

k))

∫ 1

0

s∂2
j,kGsds‖L2(L2(ωi))

+
∑

j,k,l

‖(pj − p̄i
j)(pk − p̄i

k)Dtpl

∫ 1

0

s(1 − s)∂3
j,k,lGsds‖L2(L2(ωi))

+
∑

j,k,l

‖(uj − p̄i
j)(pk − p̄i

k)Dtp̄
i
l

∫ 1

0

s2∂3
j,k,lGsds‖L2(L2(ωi))

≤ Ch2− 2
s |G|2

∑

j,k

|pj|L∞(W 1,s(ωi))|Dtpk|L2(H1(ωi))

+ Ch2− 4
s |G|3

∑

j,k,l

|pj |L∞(W 1,s(ωi))|pk|L∞(W 1,s(ωi))|Dtpl|L2(L2(ωi))

≤ Ch2− 4
s

∑

l

‖Dtpl‖L2(H1(ωi)).

(4.50)

Consequently, it follows

‖Dt(G(p1, ..., pN) − cijψij)‖2
L2(L2(Ω)) ≤ Ch4−8/s.

The rest of the proof is the same as that of Theorem 4.3.2.

Remark 4.3.7. Let pi(x, t) (i = 1, 2, ..., d and d = dim(Ω)) is the solution of the

following equation























Dtpi − divk(x, t)∇pi = 0 in ΩT

pi = xi on[0, T ) × ∂Ω

divk(x, 0)∇pi(x, 0) = 0 in Ω.

Define a map g : (x, t) −→ (p1(x, t), · · · , pn(x, t)), authors in [52] showed

p(g−1(p1, · · · , pn), t) ∈ L2(H2) ∩ H1(L2) (if f and initial values are smooth enough)

and solved the parabolic equations in terms of (p1, · · · , pn) system. Let finite dimen-

sion space be defined by

M̂ = {ϕ(g(x, t)) : ϕ ∈ Xh},
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where Xh is some standard finite element space like weighted extended B-splines space.

If ph ∈ M̂ , then it is shown in [52] that

|||p− ph|||ΩT
≤ Ch.

Let

‖Dt(p(t) − ξp
j (t))‖2

−1,ωj
≤ Cǫ̃3(t, j)

2 (4.51)

According to Lemma 4.1.1, we can adapt the proof of Theorem 4.3.1 and easily get

the following result.

Theorem 4.3.6. Let p and ph be the solutions to (4.1) and (4.2) respectively. If

(4.18 ) and (4.51) hold, then

|||p− ph|||2ΩT
≤ Cα(h) + C

∫ T

0

(ǫ1(t, j)
2 +

ǫ21(t, j)

h2
j

+ ǫ2(t, j)
2 + ǫ̃3(t, j)

2)dt. (4.52)

One can apply Theorem 4.3.6 to parabolic equations as we did before and obtain

the convergence rate under a weaker assumption (4.51) instead of (4.18).

4.3.4. Time Discretization of PUM for Parabolic Equations

In Section 4.3, we have considered the semi-discretization of the parabolic equa-

tion (4.2) using Galerkin MsFEM and PUM. In practice, one needs to discretize the

temporal variables also. In this section, we present time discretization of multiscale

parabolic equation when multiple global fields are used to construct basis functions.

To fully discretize systems, we introduce the following notation. If vh : {tm}M
0 −→ X,

where M is a positive integer. Let ∆t = T
M

and X be normed space with norm ‖.‖X
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(similar definition for X to be semi-norm space), then

‖vh‖L∞

∆ (X) = max
0≤m≤M

‖vm
h ‖X

‖vh‖2
L2

∆(X) =

M
∑

m=0

‖vm
h ‖2

X∆t

‖vh‖2
L̃2

∆(X)
=

M−1
∑

m=0

‖vm+1
h ‖2

X∆t.

We use the backward Euler scheme to discretize the time, i.e.,

(Dtp
m
h , v) + (km+1∇pm+1

h ,∇v) = (fm+1, v) v ∈M, (4.53)

where Dtp
m
h =

pm+1
h

−pm
h

∆t
, km+1 = k(x, tm+1) and fm+1 = f(x, tm+1) if f is sufficiently

smooth with respect to temporal variable. We assume that pm can be approximated

by ξj(p
m) on each patch wj and the following estimates in each patch ωi are satisfied:

‖pm − ξj(p
m)‖2

0,ωj
≤ Cǫ21(m, j), (4.54)

|pm − ξj(p
m)|21,ωj

≤ Cǫ22(m, j), (4.55)

‖Dt(p
m − ξj(p

m))‖2
0,ωj

≤ Cǫ23(m, j). (4.56)

Let us define

|||p− ph|||ΩT ,∆ = ‖p− ph‖L∞

∆ (L2(Ω)) + |p− ph|L̃2
∆(H1(Ω)).

In this subsection, we always assume ph is the solution of (4.53), unless otherwise

is stated.

Based on the backward Euler scheme in (4.53) and PUM in section 4.3.1, the

following theorem follows. This theorem estimates spatio-temporal convergence rate

through the approximation estimates on the patches.

Theorem 4.3.7. Let p and pm
h be the solutions to (4.1) and (4.53) respectively. If
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(4.54 ) holds and supptDttp ≤ C, then

|||p− ph|||2ΩT ,∆ ≤ C(ǫ1(m, j)
2∆t+

ǫ1(m, j)
2∆t

h2
j

+ ǫ2(m, j)
2∆t+ ǫ3(m, j)

2∆t)

+ α(h) + C∆t.

(4.57)

Proof. Suppose w is an arbitrary map from [0, t] into M , and ξ = ph − w, η = p− w

and consistency error Rm+1 =
pm+1

h
−pm

h

∆t
−Dtp(tm+1), then we obtain that

(Dtξ
m, v)+ (km+1∇ξm+1,∇v) = (km+1∇ηm+1,∇v)+ (Dtη

m, v)+ (Rm+1, v), v ∈ M.

If we choose the test function v = ξm+1 and notice that

(Dtξ
m, ξm+1) =

1

2∆t
(‖ξm+1‖2

0,Ω − ‖ξm‖2
0,Ω + ‖ξm+1 − ξm‖2

0,Ω),

then by applying coerciveness and Schwartz inequality, we have

1

2∆t
(‖ξm+1‖2

0,Ω − ‖ξm‖2
0,Ω) + C|ξm+1|21,Ω ≤ C

2γ
|ηm+1|21,Ω +

γ

2
|ξm+1|21,Ω

+
1

2
(‖ξm+1‖2

0,Ω + ‖Dtη
m‖2

0,Ω) +
1

2
(‖Rm+1‖2

0,Ω + ‖ξm+1‖2
0,Ω).

With a proper choice of γ and summing m from 0 to q − 1 (q ≤M) we get

‖ξq‖2
0,Ω − ‖ξ0‖2

0,Ω +

q−1
∑

m=0

|ξm+1|21,Ω∆t

≤ C∆t

q−1
∑

m=0

‖ξm+1‖2
0,Ω + C(‖Dtη‖2

L2
∆(L2(Ω)) + |η|2

L̃2
∆(H1(Ω))

+ ‖R‖2
L̃2

∆(L2(Ω))
).

(4.58)

When ∆t is sufficiently small, the discrete Gronwall’s inequality (i.e., Remark 2.2.7)

implies that

‖ξ‖2
L∞

∆ (L2(Ω)) + |ξ|2
L̃2

∆(H1(Ω))

≤ C(‖Dtη‖2
L2

∆(L2(Ω)) + |η|2
L̃2

∆(H1(Ω))
+ ‖R‖2

L̃2
∆(L2(Ω))

+ ‖ξ(0)‖2
0,Ω).

(4.59)
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Owing to p− ph = η − ξ, triangle inequality gives rise to

|||p− ph|||ΩT ,∆ ≤ C(|||p− w|||ΩT ,∆ + ‖Dt(p− w)‖L2
∆(L2(Ω))

+ ‖R‖2
L̃2

∆(L2(Ω))
+ ‖p0,h − w(0)‖0,Ω).

(4.60)

Because

Rm+1 =
pm+1

h − pm
h

∆t
−Dtp(tm+1)

=
1

∆t

∫ tn+1

tn

(Dtph(t) −Dtp(t))dt−
1

∆t

∫ tn+1

tn

(t− tn)Dttp(t)dt,

Peano Kernel Theorem (e.g., [36]) implies that

‖R‖2
L̃2

∆(L2(Ω))
≤ C sup

t
‖Dttu‖0,Ω∆t.

Taking wm =
∑

j φ
0
jξj(p

m) and following the proof of Theorem 4.3.1, we easily com-

plete the proof.

Remark 4.3.8. If patches wj have the uniform Poincaré property, one can simplify

(4.57) to be

|||p− ph|||2ΩT ,∆ ≤ C(h2
jǫ2(m, j)

2∆t+ ǫ2(m, j)
2∆t+ ǫ3(m, j)

2∆t)

+ α(h) + C∆t.

(4.61)

By the proof the Theorem 4.3.7, inequality (4.57) can be reduced to

|||p− ph|||2ΩT ,∆ ≤ sup
tm

∑

j

ǫ1(t
m, j) + C(

ǫ1(m, j)
2∆t

h2
j

+ ǫ2(m, j)
2∆t+ ǫ3(m, j)

2∆t)

+ α(h) + C∆t.

(4.62)

Remark 4.3.9. Let the finite space M ∈ Pk, p ∈ L2(Hk(Ω)) and Dttp ∈ L∞(L2(Ω)).

If w is chosen to be H1 projection onto M of p, the proof of Theorem 4.3.7 imply that

|||p− ph|||ΩT ,∆ ≤ α(h) + C(hk−1 + ∆t).
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We assume there exists a functionG(η, t) ∈ L∞(H2)∩H1(H2)∩L 2s
s−2 (W 3, 2s

s−2 ), (s >

2) such that

|||p−G(p1, ..., pN , t)|||ΩT ,∆ + ||Dt(p−G(p1, ..., pN , t))||L2
∆(L2(Ω)) ≤ δ, (4.63)

where pi = pi(x) ∈ W 1,s(Ω)(s > 2), i = 1, 2, ..., N . We utilize PUM and apply

Theorem 4.3.7 and repeat the same procedure as that in the proof of Theorem 4.3.2,

and we have the following result immediately.

Theorem 4.3.8. Under assumption (4.63) and Dttp ∈ L∞(L2(Ω)) , if s > 4, then

|||p− ph|||ΩT ,∆ ≤ α(h) + δ + C(h1− 4
s + ∆t).

Following the similar analysis presented in the previous section, one can obtain

the corollary as following.

Corollary 4.3.9. Provided that patches ωi have the uniform Poincaré property and

s > 2, then

|||p− ph|||ΩT ,∆ ≤ α(h) + δ + C(h1− 2
s + ∆t).

As a discrete analogue of Theorem 4.3.4, we have the theorem as following.

Theorem 4.3.10. Suppose that (4.37) and (4.38) hold. If Dttp ∈ L∞(L2(Ω)) and

G ∈ H1
∆(H2) ∩ L∞

∆ (H2), then

|||p− ph|||ΩT ,∆ ≤ α(h) + δ + C(h + ∆t).

The proof is similar to that of Theorem 4.3.4, and we only need to switch the

time integral to the discrete time summation.

When Dttp /∈ L∞(L2(Ω)), standard time discretization may not good enough.

For this case, we suggest to apply some weak implicit scheme to discretize time.
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Owhadi and Zhang in [52] proposed a weak implicit Euler method. We may use this

scheme for our PUM method. The idea is the following. Let ψij = φ0
i (x)pj . If

wh = cij(t)ψij ,

we define

wn
h = cij(tn)ψij .

The weak implicit scheme is to seek vn
h such that

(vn+1
h (tn+1), ψij(tn+1)) = (vn

h(tn), ψij(tn)) +

∫ tn+1

tn

[(vn+1
h , Dtψij(t))

− (k∇vn+1
h (t),∇ψij(t)) − (f(t), ψij(t))]dt

(4.64)

for all shape functions ψij . Let ph and vh be the time continuous solution of (4.2) and

the solution to (4.64), respectively. Then one can follow the techniques of [52] and

derive the following convergence rate for space dependent global fields.

|||ph − vh|||ΩT ,∆ ≤ C∆t.

If p = G(p1, p2, · · · , pN , t), N is the dimension of the domain Ω and pi = pi(x) is the

solution of (4.44). For the space-time dependent fields, the convergence rate is given

by

|||ph − vh|||ΩT ,∆ ≤ C
∆t

h

if p = G(p1, p2, · · · , pN), N is the dimension of the domain Ω, and pi = pi(x, t)

solve the parabolic equation with some prescribed boundary and initial conditions as

defined in [52].
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4.4. Mixed MsFEM for Parabolic Equations Using Global Information

In this section we investigate the mixed MsFEM using multiple global infor-

mation to the model parabolic equation (4.1) with homogeneous Dirichlet boundary

condition. We note that parabolic equations arise in two-phase flow simulations when

compressibility is present. For convenience, we dropped λ(x) from the equations since

it does not change the analysis. One can assume k(x) = λ(x)K(x), where K(x) is a

heterogeneous field and λ(x) is a smooth field. Let u = −k(x)∇p, then

Dtp+ divu = f

(k(x))−1u+ ∇p = 0.

(4.65)

We will use the following assumption for the parabolic equation.

Assumption A1p. There exist functions u1, · · · , uN and sufficiently smooth

A1(t, x), · · · , AN(t, x) such that

u(t, x) = Ai(t, x)ui,

where ui = k∇pi and pi solves div(k(x)∇pi) = 0 in Ω with appropriate boundary

conditions.

For our analysis, we assume, as before, Ai(t, x) ∈ L2(0, T ;W 1,ξ(Ω))(ξ > 2) and

ui = k(x)∇pi ∈ Lη(Ω) (1
2

= 1
ξ

+ 1
η
), i = 1, ..., N .

Remark 4.4.1. Let ui = k(x)∇pi (i = 1, · · · , d and d = dim(Ω)) be defined in

(3.118), then Owhadi and Zhang in [52] show that p(t, x) = p(t, p1, p2) ∈ L2(0, T ;W 2,s)

(s > 2). Consequently, u(t, x) = k(x)∇p = ∂p
∂pi
k∇pi := Ai(t, x)ui, where Ai(t, x) =

∂p
∂pi

∈ L2(0, T ;W 1,s(Ω)).

The mixed formulation associated to (4.1) is to find {u, p} : [0, T ] −→ H(div,Ω)×
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L2(Ω) such that























(Dtp, q) + (divu, q) = (f, q) ∀q ∈ L2(Ω)

(k−1u, v) − (divv, p) = 0 ∀v ∈ H(div,Ω)

p(0) = p0.

(4.66)

Let finite dimensional space Vh and Qh be defined as in Section 3.3.3, then Vh×Qh ⊂

H(div,Ω) × L2(Ω) and the space-discrete mixed formulation is to find {uh, ph} :

[0, T ] −→ Vh ×Qh such that























(Dtph, qh) + (divuh, qh) = (f, qh) ∀qh ∈ Qh

(k−1uh, vh) − (divvh, ph) = 0 ∀vh ∈ Vh

ph(0) = p0,h,

(4.67)

where p0,h is the L2 projection of p0 onto Qh. Because (3.132) holds, the problem

(4.67) is well-posed. This problem can be rewritten in matrix form

MDtP +BU = F

BtP − LU = 0

(4.68)

with P (0) given, where M and L are symmetric positive and definite. After elimi-

nating U , (4.68) is a linear system ODEs for P ,

MDtP +BL−1BtP = F.

Since M is positive and definite, this system has a unique solution.

We define

‖u‖2
L2

k
(Ω) =

∫

Ω

ut · k−1(x)udx

and

‖u‖2
L2(0,T ;L2

k
(Ω)) =

∫ T

0

∫

Ω

ut · k−1(x)udxds.
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Let Πh : H(div) −→ Vh be the interpolation operator defined as in Section 3.3.3 and

PQh
: L2(Ω) −→ Qh be the L2 projection onto Qh.

From (4.66) and (4.67), we have

(Dt(p− ph), qh) + (div(u− uh), qh) = 0 ∀qh ∈ Qh

(k−1(u− uh), vh) − (divvh, p− ph) = 0 ∀vh ∈ Vh.

(4.69)

Taking vh = Πhu− uh and qh = PQh
p− ph, we have

(Dt(p− ph), PQh
p− ph) + (div(u− uh), PQh

p− ph) = 0

(k−1(u− uh),Πhu− uh) − (div(Πhu− uh), p− ph) = 0.

(4.70)

Rewriting p− ph = p−PQh
p+PQh

p− ph and u− uh = u−Πhu+ Πhu− uh in (4.70)

and making summation of the two equalities, we obtain

(Dt(PQh
p− ph), PQh

p− ph) + (k−1(Πhu− uh),Πhu− uh)

= −(Dt(p− PQh
p), PQh

p− ph) − (k−1(u− Πhu),Πhu− uh)

+(div(Πhu− uh), p− PQh
p) − (div(u− Πhu), PQh

p− ph).

(4.71)

Since PQh
is L2(Ω) projection onto Qh, PQh

commutes with the time derivative op-

erator Dt. Consequently, the first and third term of the right hand in (4.71) are

vanished. By Lemma 3.3.9, the fourth term of the right hand in (4.71) is also van-

ished. Consequently, (4.71) becomes

(Dt(PQh
p− ph), PQh

p− ph) + (k−1(Πhu− uh),Πhu− uh)

= −(k−1(u− Πhu),Πhu− uh).

(4.72)

Schwarz inequality and Young’s inequality give rise to

1

2
Dt‖PQh

p− ph‖2
0,Ω + 2‖Πhu− uh‖2

L2
k
(Ω) ≤ λ‖Πhu− uh‖2

L2
k
(Ω) +

1

4λ
‖u− Πhu‖2

L2
k
(Ω).(4.73)

Integrating with respect with time and applying Gronwall’s inequality and after choos-
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ing proper value for λ, we have

‖PQh
p− ph‖2

C0(0,T ;L2(Ω)) + ‖Πhu− uh‖2
L2(0,T ;L2

k
(Ω))

≤ C(‖PQh
p(0) − p0,h‖2

0,Ω + ‖u− Πhu‖2
L2(0,T ;L2

k
(Ω))).

(4.74)

Invoking the triangle inequality, we have

‖p− ph‖2
C0(0,T ;L2(Ω)) + ‖u− uh‖2

L2(0,T ;L2
k
(Ω))

≤ C(‖PQh
p(0) − p0,h‖2

0,Ω + ‖u− Πhu‖2
L2(0,T ;L2

k
(Ω))) + ‖p− PQh

p‖2
C0(0,T ;L2(Ω)).

(4.75)

Hence, we obtain the following lemma.

Lemma 4.4.1. Let {u, p} and {uh, ph} be the solution of (4.66) and (4.67) respec-

tively. Under Assumption A1p and the definition of Vh in Section 3.3.3, (4.75) holds.

Utilizing Lemma 4.4.1 and the proof of Theorem 3.3.12, we can derive the con-

vergence result.

Theorem 4.4.2. Let {u, p} and {uh, ph} be the solution of (4.66) and (4.67) respec-

tively. If α + β1 − β2 − 1 > 0 then

‖p− ph‖C0(0,T ;L2(Ω)) + ‖u− uh‖L2(0,T ;L2
k
(Ω)) ≤ Chmin{α+β1−β2−1,1},

where α = 1 − 2
ξ

and ξ is from Assumption A1p, and βi (i = 1, 2) are defined in

Assumption A2 described in Section 3.3.3.

Proof. Owing to the fact that PQh
is the L2(Ω) projection onto Qh,

‖p− PQh
p‖C0(0,T ;L2(Ω)) ≤ Ch|p|C0(0,T ;H1(Ω)), (4.76)

this estimates the first and the third term of right hand side in (4.75). Next we

estimate the term ‖u− Πhu‖2
L2(0,T ;L2

k
(Ω))

. Define

AK
ij (t) =

∫

ej

Ai(t, s)ui · nds
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in each element K. Because k−1(x) is bounded, we have in each element K

‖u− Πhu‖2
L2(0,T ;L2

k
(K)) =

∫ T

0

∫

K

(Ai(t, x)β
K
ij − AK

ij (t))ψ
K
ij · k−1(Ai(t, x)β

K
ij −AK

ij (t))ψ
K
ij dxdt

≤ C

∫ T

0

∫

K

((Ai(t, x)β
K
ij − AK

ij (t))ψ
K
ij )2dxdt

= C‖(Ai(t, x)β
K
ij −AK

ij (t))ψ
K
ij ‖2

L2(0,T ;L2(K))

≤ C‖(Ai(t, x) − Āj
i (t))β

K
ij ψ

K
ij ‖2

L2(0,T ;L2(K))

+ C‖(Āj
i (t)β

K
ij − AK

ij (t))ψ
K
ij ‖2

L2(0,T ;L2(K))

≤ Ch2(α+β1)‖ψK
ij ‖2

0,K .

(4.77)

In the last step, we used that facts that Ai ∈ L2(0, T ;W 1,ξ), Assumption A2 and

proof of Theorem 3.3.12 (see (3.141)). After making summation over all K for (4.77),

we have

‖u− Πhu‖L2(0,T ;L2
k
(Ω)) ≤ Ch(α+β1−β2−1). (4.78)

Now, the proof can be completed taking into account (4.76) and (4.78).

4.5. Numerical Results

In this section, we present a few numerical results to demonstrate the impor-

tance of incorporating global information for a parabolic equation. We will consider

multiscale finite element methods with limited global information presented in Section

4.2 and restrict ourselves to nonlinear parabolic equations (Richards equations)

Dtθ(p) −∇ · (kr(p)k(x)∇p) = 0 (4.79)

with some prescribed boundary and initial conditions. In this case, kr(p) acts as a

smooth function, consequently, does not modify the small scale information which



128

 

 

−4

−2

0

2

4

6

8

Fig. 4.1. Log of permeability field of layer 40 of SPE 10 SPE comparative project [24]

is contained in k(x). In our numerical tests, we will use a channelized permeability

field k(x) which induces strong non-local effects. This type of heterogeneities is pre-

sented in a benchmark test of the SPE comparative project [24] (upper Ness layers).

These permeability fields are highly heterogeneous, channelized, and difficult to up-

scale. In Figure 4.1, we plot a log of this field. As it can be observed, the irregular

channels introduces strong non-locality across the entire domain. For these types of

heterogeneities, usually local approaches fail to give an accurate results.

In our numerical tests, we compare the solution at several time instances. The

following boundary conditions are prescribed: p = 1 along the x = 0 edge and p = 0

along the x = 1 edge. We assume initially p0 = 0 in the entire region and compare

the following methods. In our numerical examples, we take θ(p) = exp(0.01p) and

kr(p) = exp(−p). Our first choice is standard MsFEM with local basis functions where

linear boundary conditions are imposed for these basis functions. For the second

approach, MsFEM with oversampling [38] is chosen. Here, larger regions (larger

than the target coarse grid block) are used to construct auxiliary basis functions.

The local nodal basis functions are constructed using linear combinations of these
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auxiliary functions. The size of the global domain influences the convergence of

the method and, in particular, larger regions provide better accuracy. For general

heterogeneities, it is difficult to determine optimal oversampling domain size and this

is the reason of using global approaches in subsurface applications. In our numerical

comparisons, oversampling is used with one extra coarse block extension to calculate

the basis functions. Finally, we use MsFEM with limited global information presented

in Section 4.2 where steady state solution is used to generate basis functions. Note

that the construction of the basis functions is one time overhead that involves the

solution of elliptic partial differential equation. Using these basis functions, the fine-

scale equation can be solved repeatedly for various boundary conditions and right

hand sides. For solving (4.79), we use a known technique called modified Picard

iteration, where p in kr(p) is linearized by using the p at the previous time step, and

implicit backward Euler discretization is employed.

First, we present a table (Table 4.1) for relative errors for the solution p com-

paring (1) standard MsFEM (2) MsFEM with oversampling and (3) MsFEM with

limited global information at three different time instances. It is clear from this table

that MsFEM with limited global information performs several times better than other

local multiscale methods. This suggests that one needs to use some type of global

information in constructing basis functions. We would like to note that the errors

in the fluxes (defined as kr(p)k(x)∇p) with localized methods are very large due to

non-local heterogeneities. However, the multiscale finite element method with limited

global information gives about 5% percent error in the fluxes. We depict the reference

solution and the solution obtained using MsFEM with limited global information in

Figures 4.2 - 4.7 at two different times t = 0.12 and t = 0.32. In Figures 4.2 and

4.5, we compare the solutions p at t = 0.12 and t = 0.32. This figure shows that

the solution is not at steady state at t = 0.12. In Figures 4.3 and 4.6, the horizontal
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fluxes are compared, while in Figures 4.4 and 4.7, the vertical fluxes are compared.

It is clear from these figures that MsFEM with limited global information provides

accurate solution for such heterogeneous fields, where the localized methods fail. We

would like to note that the localized methods introduce errors more than 50% in the

fluxes and these fluxes are not acceptable for computational purposes.

In this section, we restricted ourselves to only a few numerical results. In partic-

ular, we have also tested MsFEM with oversampling when the oversampling region

is the entire domain. This approach uses multiple global fields to represent the solu-

tion, and thus provides an accurate solution because the solution of (4.79) is a smooth

functions of these fields, in general. We observed very accurate results when using

MsFEM with oversampling with oversampling region being the entire domain (the

errors in the solution is 1.6 %). All these results suggest that the use of limited global

information is important for accurate simulation when non-local effects are strong.

Table 4.1. Relative Errors

time conform ovs limited global

time=0.12 13.7% 11.5% 5.4%

time=0.2 11.1% 9.5% 3.5%

time=0.32 9.9% 8.8% 1.77%

4.6. Conclusions and Comments

In this chapter, we discuss numerical multiscale methods using global infor-

mation and applications to parabolic equations. The first approach is a Galerkin

multiscale finite element method using a single global field (or function) which is em-

ployed to construct multiscale finite element basis functions. Here the basis functions

defined on the coarse grid are constructed from a global field which captures non-local
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Fig. 4.2. Pressure at t = 0.12. Left: Reference solution. Right: The solution obtained

with MsFEM using limited global information.
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Fig. 4.3. Horizontal flux at t = 0.12. Left: Reference horizontal flux. Right: The

horizontal flux obtained with MsFEM using limited global information.
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Fig. 4.4. Vertical flux at t = 0.12. Left: Reference vertical flux. Right: The vertical

flux obtained with MsFEM using limited global information.
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Fig. 4.5. Pressure at t = 0.32. Left: Reference solution. Right: The solution obtained

with MsFEM using limited global information.
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Fig. 4.6. Horizontal flux at t = 0.32. Left: Reference horizontal flux. Right: The

horizontal flux obtained with MsFEM using limited global information.
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Fig. 4.7. Vertical flux at t = 0.32. Left: Reference vertical flux. Right: The vertical

flux obtained with MsFEM using limited global information.
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and small scale features of the solution. The second approach allows to incorporate

multiple global fields and based on partition of unity method (PUM). Here we assume

that the solution of parabolic equation smoothly depends on these global fields. The

second approach is more general and capable of incorporating multiple global fields

at the expense of introducing extra degrees of freedoms on each coarse element. We

note that the first approach is not a special case of the second approach and it is often

used in two-phase flow simulations where the single-phase flow solution is taken as a

global field. Finally, we discuss a global mixed MsFEM and applications to parabolic

equations. All of these multiscale approaches capture the small scale features of the

solution accurately and give rise to a convergence rate independent of small scales.

We provide analyses of the proposed methods and present a few numerical examples.

The numerical results demonstrate that the solution can be captured more accurately

on a coarse grid when some type of limited global information is used.
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CHAPTER V

MULTISCALE NUMERICAL METHODS FOR WAVE EQUATIONS WITH

CONTINUUM SCALES USING GLOBAL INFORMATION

In this chapter, we explore multiscale approaches for solving wave equations with

heterogeneous coefficients. Our interest comes from geophysics applications and we

assume that there is no scale separation with respect to spatial variables. To compute

the solution of these multiscale problems on a coarse grid, we define global fields such

that the solution smoothly depends on these fields. We present various multiscale

finite element discretization techniques and provide analysis of these methods. A

few representative numerical examples are presented using heterogeneous fields with

strong non-local features. These numerical results demonstrate that the solution can

be captured more accurately on the coarse grid when some type of limited global

information is utilized for wave equations. The results in this chapter can been found

in our paper [44].

The chapter is organized as follows.

In Section 5.1, we present acoustic wave problem setting. In Section 5.2, we

present an analysis of multiscale finite element methods with limited global informa-

tion. In Section 5.3, we present the analysis for a general case using partition of unity

method. In Section 5.4, we present the analysis for mixed multiscale finite element

method using information from multiple global fields. In Section 5.5, we present a

few numerical results. Finally we make some conclusions and comments.
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5.1. Preliminaries on Wave Equations

In geophysics, the scalar model acoustic problem is the following equation

Dttp− λdiv(ρ−1∇p) = f, (5.1)

where Dtt is the second order partial derivative regarding to t, ρ is the density of

material, λ > 0 is a Lamé coefficient characterizing the material and p stands for the

unknown pressure [41].

Without loss of generality, we will assume λ is a constant in this chapter. Our

methods in the paper can be straightforwardly extended to (5.1). From now on, we

consider a model wave equation























Dttp− divk(x)∇p = f in ΩT

p(x, 0) = g0 in Ω

Dtp(x, 0) = g1 in Ω

(5.2)

where ΩT := Ω × (0, T ] and k := k(x) is uniformly positive, symmetric and bounded

in Ω and is a rough function with respect to x, and the problem is subject to boundary

conditions. Our objective is to define multiscale methods that can capture the solution

of (5.2) when k(x) does not have scale separation with respect to spatial variable. In

this paper, we assume that source term f , initial value g0 and g1 are smooth enough.

This type of problems arise in many applications in geophysics, electromagnetics and

seismology. Because there is no scale separation, standard upscaling and multiscale

methods are not applicable. As it was shown in a number of previous findings ([53,

29]), to construct multiscale basis functions, one needs to determine global fields such

that the solution smoothly depends on these fields. In this chapter, we consider an

abstract framework assuming that these global fields are given. We discuss how these

global fields can be determined in some special cases.
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Next, we introduce some notations. For simplicity, we consider p|∂Ω = 0, then

the weak formulation is to find p ∈ C0(0, T ;H1
0(Ω)) ∩ C1(0, T ;L2(Ω)) such that























(Dttp, v) + (k∇p,∇v) = (f, v)

(p(0), v) = (g0, v)

(Dtp(0), v) = (g1, v),

(5.3)

for all v ∈ H1
0 (Ω), where (., .) is a standard L2 inner product. Throughout the chapter,

Dtp(tm) := Dtp(t)|t=tm at time tm ∈ [0, T ] and the similar definition applicable to

Dttp(tm).

Let M be a finite dimensional subspace of H1
0 (Ω) which will be specified later.

We suppose that ph : (0, T ] 7−→ M is a twice differentiable map with respect to t

satisfying























(Dttph, vh) + (k∇ph,∇vh) = (f, vh)

(ph(0), vl
h) = (g0, v

l
h)

(Dtph(0), vl
h) = (g1, v

l
h),

(5.4)

for any vh ∈ M and vl
h ∈ M . Let g0,h = (g0, v

l
h) and g1,h = (g1, v

l
h). Let us define in

this chapter

|||p− ph|||2ΩT
= ‖Dt(p− ph)‖2

L∞(L2(Ω)) + |p− ph|2L∞(H1(Ω)).

After slightly modifying the proof of Lemma 1 in [28], one can obtain the following

stability result.

Lemma 5.1.1. Let p and ph be the solutions to (5.3) and (5.4) respectively. Assume

that w : [0, T ] 7−→M be any function, then

|||p− ph|||ΩT
≤ C(|||p− w|||ΩT

+ ‖Dtt(p− w)‖L2(L2(Ω))

+ |g0,h − w(0)|1,Ω + ‖g1,h −Dtw(0)|‖L2(Ω)).

(5.5)
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5.2. Galerkin MsFEM with Limited Global Information

Let φK
i be defined in (3.4). We define the Galerkin finite element space by

Vh = span{φK
i : 1, · · · , d;K ∈ τh}. (5.6)

The weak formulation of (5.2) is to seek uh ∈ Vh ⊂ H1
0 such that























(Dttph, v) + (k∇ph,∇v) = (f, v)

(ph(0) − g0, v
l
h) = 0

(Dtph(0) − g1, v
l
h) = 0,

(5.7)

for all v ∈ Vh and vl
h ∈ Vh.

Next, following the analysis presented in [4], we assume that p smoothly depends

on p1. This can be derived for a channelized media as it is done in [29].

Assumption G. There exists a sufficiently smooth scalar valued function G(η, t)

(G ∈ W 1,∞(H2) ∩H2(H2) ∩ L∞(W 3, 2s
s−2 ), s > 2), such that

|||p−G(p1, t)|||ΩT
+ ||Dtt(u−G(p1, t))‖L2(L2(Ω)) ≤ Cδ, (5.8)

where δ is sufficiently small.

Note that G is defined on a bounded domain because p is a bounded function and

[0, T ] is bounded.

For an accurate numerical solution of equation (5.4) on the coarse grid, we use

the global solutions (on the fine grid) of equation (4.5) to construct MsFEM basis

functions as described earlier. Next, we prove that with these basis functions and

Assumption G, MsFEM converges independent of small scales.

Theorem 5.2.1. Under Assumption G and p ∈W 1,s(Ω) (s > 2), we have

|||p− ph|||ΩT
≤ C(δ + α(h)) + Ch1− 2

s |p1|1,s,Ω. (5.9)
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Proof. In the proof, we first use Lemma 5.1.1 and then break the estimate in this

lemma into the estimates over each coarse grid block. The estimation over each coarse

grid block is obtained using perturbation of G and regularities of basis functions and

the global field. Following standard practice of finite element estimation, we seek

finite dimensional function w = ci(t)φ
K
i , where φK

i are specified in (3.4).

From Lemma 5.1.1, we have

|||p− ph|||ΩT

≤ C(|||p−G(p1, t)|||ΩT
+ |||G(p1, t) − ci(t)φ

K
i |||ΩT

+ ‖Dtt(p−G(p1, t))‖L2(L2(Ω)) + ‖Dtt(G(p1, t) − ci(t)φ
K
i )‖L2(L2(Ω)) + α(h)),

(5.10)

where we assume that

|g0,h − ci(0)φK
i |1,Ω + ‖g1,h −Dtci(0)φK

i |‖0,Ω ≤ α(h). (5.11)

If g0 and g1 are smooth functions, we pick the basis function φK
i from Sh at t = 0,

otherwise from Vh. Hence,

|||p− ph|||ΩT
≤ C(|||G(p1, t) − ci(t)φ

K
i |||ΩT

+ ‖Dtt(G(p1, t) − ci(t)φ
K
i )‖L2(L2(Ω)))

+ Cδ + Cα(h).

(5.12)

Next, we present an estimate for the third term. We choose ci(t) = G(p1(xi), t) for

t > 0, where xi are vertices of K. Furthermore, using Taylor expansion of G around

p1K , which is the average of p1 over K,

G(p1(xi), t) = G(p1K , t) + ∂ηG(p1K , t)(p1(xi) − p1K)+

(p1(xi) − p1K)2

∫ 1

0

s∂2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds,

where ∂2
ηG refers to the second derivative with respect to first variable G(η, t), We
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have in each K

ci(t)φ
K
i = G(p1K , t)

∑

i

φK
i + ∂ηG(p1K , t)(p1(xi) − p1K)φK

i

+(p1(xi) − p1K)2φK
i

∫ 1

0

s∂2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds

= G(p1K , t) + ∂ηG(p1K , t)(p1(xi)φ
K
i − p1K)+

(p1(xi) − p1K)2φK
i

∫ 1

0

s∂2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds.

(5.13)

In the last step, we have used
∑

i φ
K
i = 1. Similarly, in each K,

G(p1(x), t) = G(p1K , t) + ∂ηG(p1K)(p1(x) − p1K)

+ (p1(x) − p1K)2

∫ 1

0

s∂2
ηG(p1(x) + s(p1K − p1(x)), t)ds.

(5.14)

Using (5.13) and (5.14), we get

‖Dt(G(p1, t) − ci(t)φ
K
i )‖L∞(L2(K))

≤ ‖∂t∂ηG(p1K , t)(p1(x) − p1(xi)φ
K
i )‖L∞(L2(K))+

‖(p1(xi) − p1K)2φK
i

∫ 1

0

s∂t∂
2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds‖L∞(L2(K))

+ ‖(p1(x) − p1K)2

∫ 1

0

s∂t∂
2
ηG(p1(x) + s(p1K − p1(x)), t)ds‖L∞(L2(K))

≤ Ch2‖f0‖0,K + Ch2− 4
s |p1|21,s,K

≤ Ch2‖f0‖0,K + Ch2− 4
s |p1|1,s,Ω|p1|21,s,K

≤ Ch2‖f0‖0,K + Ch2− 4
s |p1|1,s,K.

(5.15)

In the second step we used the fact ‖p1(x) − p1(xi)φ
K
i ‖0,K ≤ Ch2‖f0‖0,K (see [4]) ,

smoothness of G(η, t)(ie. ∂tG(η, t) ∈ L∞(H2)) and the inequality

|p1(x) − p1(y)| ≤ C|x− y|1− 2
s |p1|1,s,K,



141

for x, y ∈ K when s > 2. A direct calculation gives

|(p1(x) − p1K)2

∫ 1

0

s∂2
ηG(p1(x) + s(p1K − p1(x)), t)ds|L∞(H1(K))

≤ ‖(p1(x) − p1K)2∇p1(x)

∫ 1

0

(1 − s)s∂3
ηG(p1(x) + s(p1K − p1(x)), t)ds‖L∞(L2(K))

+ 2‖(p1(x) − p1K)∇p1(x)

∫ 1

0

s∂2
ηG(p1(x) + s(p1K − p1(x)), t)ds‖L∞(L2(K))

≤ Ch2− 4
s |p1|21,s,K(|p1|s1,s,Ω + |G|

2s
s−2

L∞(W
3, 2s

s−2 )
)

1
2

+ Ch1− 2
s |p1|1,s,K(|p1|s1,s,Ω + |G|

2s
s−2

L∞(W
2, 2s

s−2 )
)

1
2

≤ Ch2− 4
s |p1|21,s,K + Ch1− 2

s |p1|1,s,K

≤ Ch1− s
2 |p1|1,s,K ,

(5.16)

where we used Young’s inequality in the second step. Notice that |p1(x)−p1(xi)φ
K
i |1,K ≤

Ch‖f0‖0,K and G ∈ L∞(H2), we get

|G(p1, t) − ci(t)φ
K
i |L∞(H1(K))

≤ ‖∂ηG(p1K , t)(p1(x) − p1(xi)φ
K
i )‖L∞(H1(K))+

‖(p1(xi) − p1K)2φK
i

∫ 1

0

s∂2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds‖L∞(H1(K))

+ ‖(p1(x) − p1K)2

∫ 1

0

s∂2
ηG(p1(x) + s(p1K − p1(x)), t)ds‖L∞(H1(K))

≤ Ch‖f0‖0,K + Ch2− 4
s |p1|21,s,K|φK

i |1,K + Ch1− s
2 |p1|1,s,K

≤ Ch‖f0‖0,K + Ch2− 4
s |p1|1,s,K + Ch1− s

2 |p1|1,s,K.

(5.17)
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In the last step, we have used the fact that |∇φK
i | ≤ C/h. Similarly one can estimate

‖Dtt(G(p1, t) − ci(t)φ
K
i )‖L2(L2(K)) ≤ ‖∂tt∂ηG(p1K , t)(p1(x) − p1(xi)φ

K
i )‖L2(L2(K))+

‖(p1(xi) − p1K)2φK
i

∫ 1

0

s∂tt∂
2
ηG(p1(xi) + s(p1K − p1(xi)), t)ds‖L2(L2(K))

+ ‖(p1(x) − p1K)2

∫ 1

0

s∂tt∂
2
ηG(p1(x) + s(p1K − p1(x)), t)ds‖L2(L2(K))

≤ Ch2‖f0‖0,K + Ch2− 4
s |p1|21,s,K

≤ Ch2‖f0‖0,K + Ch2− 4
s |p1|1,s,K .

(5.18)

In the second step, we used the regularity ∂ttG ∈ L2(H2). Combing (5.15), (5.17)

and (5.18), we have

|||G(p1, t) − ciφ
K
i |||K + ||Dt(G(p1, t) − ciφ

K
i )‖L2(L2(K))

≤ Ch‖f0‖0,K + Ch2− 4
s |p1|1,s,K + Ch1− s

2 |p1|1,s,K.

(5.19)

Summing (5.19) over K and take into account (5.12), we have

|||p− ph|||ΩT
≤ Cδ + Cα(h) + Ch1− 2

s |p1|1,s,Ω.

Therefore, the proof is complete.

Remark 5.2.1. α(h) is the approximation errors associated with initial conditions

and defined in (5.11) (see also page 219 of [36] where this term appears in standard

wave equations). α(h) = 0 if initial conditions in numerical approximation are chosen

appropriately (i.e., ci(0) = g0,h, Dtci(0) = g1,h in (5.11)).

Remark 5.2.2. If ∇p1 ∈ L∞(Ω), the regularity of G can be relaxed to G ∈ H2(H2)∩

L∞(H3) and the convergence rate would be Cδ + Cα(h) + Ch.

5.3. PUM for Wave Equations Using Multiple Global Information
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5.3.1. Framework of PUM for Wave Equations

In the Section 5.2, we have studied wave equations when the solution smoothly

depends on a single global field. In many applications, the solution may smoothly

depend on multiple fields and we are going to discuss this case.

We define patch wj (j = 1, 2, ..., m) to be the union of elements (coarse) sharing

the common vertex xj . Let diam(wj) = hj and h = maxj{hj}. We suppose that the

solution p of (5.2) can be approximated by ξp
j on each patch wj (j = 1, 2, ..., m) and

satisfies the following conditions on each patch (no summation over j),

‖p(t) − ξp
j (t)‖2

0,ωj
≤ Cǫ1(t, j)

2

|p(t) − ξp
j (t)|21,ωj

≤ Cǫ2(t, j)
2

‖Dt(p(t) − ξp
j (t))‖2

0,ωj
≤ Cǫ3(t, j)

2

‖Dtt(p(t) − ξp
j (t))‖2

0,ωj
≤ Cǫ4(t, j)

2

(5.20)

Let diam(wj) = hj and h = maxj{hj}. For simplicity, we still make the hypothesis,

|g0,h − w(0)|1,Ω + ‖g1,h −Dtw(0)|‖0,Ω ≤ α(h),

where α(h) is defined as before (see (5.9)).

Theorem 5.3.1. Let p and ph be the solutions to (5.3) and (5.4) respectively. If

(5.20 ) holds, then

|||p−ph|||2ΩT
≤ Cα(h)+C

∫ T

0

(ǫ3(t, j)
2+ǫ4(t, j)

2)dt+C sup
t

(
ǫ1(t, j)

2

h2
j

+ǫ2(t, j)
2). (5.21)

This theorem provides a convergence rate which depends on the estimates over

the patches.

Remark 5.3.1. If the patches wj have the uniform Poincaré property (as defined in
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page 92 in [12]), one can simplify (5.21) to

|||p− ph|||2ΩT
≤ Cα(h) + C

∫ T

0

(ǫ3(t, j)
2 + ǫ4(t, j)

2)dt+ sup
t

m
∑

j=1

ǫ2(t, j)
2. (5.22)

Remark 5.3.2. Assume the finite space M ∈ Pk, i.e., polynomials with degree k, and

u is sufficiently smooth. If w is chosen to be elliptic projection onto M of p, standard

analysis and Lemma 5.1.1 or Theorem 5.3.1 imply that (see [36])

|||p− ph|||ΩT
≤ Cα(h) + Chk−1.

5.3.2. Incorporating Multiple Global Information

In applications, we often deal with multiple global fields that allow to represent

the solution. We assume that p can be approximated by G(p1, ..., pN , t), where pi(x)

(i = 1, 2, ..., N) are pre-defined functions. Here, p, p1, ..., pN are scalar functions.

More precisely, we assume there exists a function G(η, t) ∈ W 1,∞(H2) ∩ H2(H2) ∩

L∞(W 3, 2s
s−2 ), s > 2, η ∈ RN , such that

|||p−G(p1, ..., pN , t)|||ΩT
+ ||Dtt(p−G(p1, ..., pN , t))||L2(L2(Ω)) ≤ δ, (5.23)

where pi ∈ W 1,s(Ω)(s > 2), i = 1, 2, ..., N . This is an extension of the previous

approach presented in Section 5.2. We would like to note that multiple global fields

need to be used for stochastic differential equations ([27]). Next, we define M =

span{pi|i = 1, 2, ..., N}, p1 = 1 and follow Theorem 5.3.1 to approximate p. Let

ψij = φ0
i pj , then

∑

i φ
0
i pj = pj . Next, we study this method and provide convergence

analysis. Using this approach, we have the following theorem. The theorem shows

that the PUM converges independent of small scales in a general setting for multiple

global fields to be used.



145

Theorem 5.3.2. Under the assumption (5.23) and if s > 4, we have

|||p− ph|||ΩT
≤ α(h) + δ + Ch1− 4

s .

Proof. In the proof, after formulating stability estimate (5.21), we break the estimate

into the estimates over each coarse patch. The estimation over each coarse patch is

obtained using perturbation of G and regularities of basis functions and the global

fields. By Lemma 5.1.1, we need to estimate the right hand sides of the following

inequalities

|||p− w|||ΩT
≤ |||p−G(p1, ..., pN , t)|||ΩT

+ |||G(p1, ..., pN , t) − cijψij |||ΩT
, (5.24)

and

||Dtt(p− w)||L2(L2(Ω)) ≤ ||Dtt(p−G(p1, ..., pN , t))||L2(L2(Ω))

+ ||Dtt(G(p1, ..., pN , t) − cijψij)||L2(L2(Ω)),

(5.25)

where w = cijψij and cij is chosen such that the second term on the right hand of the

above two inequalities is small. In each ωi, we choose cij as

ci1 = G(p̄i
1, ..., p̄

i
N , t) −

∂G

∂pj
(p̄i

1, ..., p̄
i
N , t)p̄

i
j,

and

cij =
∂G

∂pj
(p̄i

1, ..., p̄
i
N , t), j ≥ 2,

where p̄i
j is the average of pj over ωi. We note the following Taylor expansion in each

ωi,

G(p1, ..., pN , t) = G(p̄i
1, ..., p̄

i
N , t) +

∂G

∂pj
(p̄i

1, ..., p̄
i
N , t)(pj − p̄i

j) +Ri,

where Ri is the remainder, which can be written as

Ri =
∑

k,j

(pk − p̄i
k)(pj − p̄i

j)

∫ 1

0

s∂2
k,jG(p1 + s(p̄i

1 − p1), ..., pN + s(p̄i
N − pN), t)ds,
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where ∂2
k,j refers to second derivative with respect to pk and pj .

We first estimate (5.24). One can show that in each ωi

|||G(p1, ..., pN , t) − cijpj |||ωiT

≤ |||G(p̄i
1, ..., p̄

i
N , t) +

∂G

∂pj
(p̄i

1, ..., p̄
i
N , t)(pj − p̄i

j) − cijpj |||ωiT
+ |||Ri|||ωiT

,

where ωiT = ωi× [0, T ]. The choice of cij implies that the first term on the right hand

side is zero. We only need to estimate the second term |||Ri|||ωiT
. A straightforward

computation gives rise to

‖DtRi‖L∞(L2(ωi)) ≤
∑

k,j

h2− 4
s |pk|1,s,ωi

|pj|1,s,ωi
|DtG|L∞(H2)

≤ Ch2− 4
s

∑

j

|pj |1,s,ωi
,

(5.26)

‖Ri‖L∞(L2(ωi)) ≤
∑

k,j

h2− 4
s |pk|1,s,ωi

|pj|1,s,ωi
|G|L∞(H2)

≤ Ch2− 4
s

∑

j

|pj |1,s,ωi

(5.27)

and

|Ri|L∞(H1(ωi)) ≤
∑

j,k,l

‖(pj − p̄i
j)(pk − p̄i

k)∇pl

∫ 1

0

(1 − s)s∂3
k,j,lGs(., t)ds‖L∞(L2(ωi))

+
∑

j,k

‖((pj − p̄i
j)∇pj + (pk − p̄i

k)∇pk)

∫ 1

0

s∂2
k,jGs(., t)ds‖L∞(L2(ωi))

≤ C
∑

j,k,l

h2− 4
s |pj|1,s,ωi

|pk|1,s,ωi
(|pl|s1,s,Ω + |G|

2s
s−2

L∞(W
3, 2s

s−2 )
)

1
2

+ C
∑

j

h1− 2
s |pj|1,s,ωi

(|pj|s1,s,Ω + |G|
2s

s−2

L∞(W
2, 2s

s−2 )
)

1
2

≤ C
∑

j,k

h2− 4
s |pj|1,s,ωi

|pk|1,s,ωi
+ C

∑

j

h1− 2
s |pj|1,s,ωi

≤ C
∑

j

h1− 2
s |pj|1,s,ωi

,

(5.28)
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where ∂3
i,j,k is partial triple partial derivative with respect to pi, pj , pk, Gs(., t) =

G(p1 + s(p̄i
1 − p1), ..., pN + s(p̄i

N − pN), t) and Young’s inequality is applied in the

second step.

Note that
∑

i φ
0
i = 1 and |∇φ0

i | ≤ C 1
h
, then it follows that

|G(p1, ..., pN , t) − cijψij |2L∞(H1(Ω))

= sup
t

∫

Ω

|∇(G− cijφ
0
i pj)|2dx

= sup
t

∫

Ω

|∇(φ0
i (G− cijpj))|2dx

≤ C sup
t

∫

Ω

|(G− cijpj)∇φ0
i |2dx+ C sup

t

∫

Ω

|φ0
i∇(G− cijpj)|2dx

≤ C
1

h2

∑

i

‖Ri‖2
L∞(L2(ωi))

+ C
∑

i

|Ri|2L∞(H1(ωi))

≤ Ch2−8/s
∑

i,j

|pj|21,s,ωi
+ Ch2−4/s

∑

i,j

|pj|21,s,ωi

≤ Ch2−8/s,

(5.29)

and

‖Dt(G(p1, ..., pN , t) − cijψij)‖2
L∞(L2(Ω)) ≤ C

∑

i

‖DtRi‖2
L∞(L2(ωi))

≤ Ch4−8/s
∑

i,j

|pj|21,s,ωi

≤ Ch4−8/s.

(5.30)

It remains to estimate (5.25). We only need to estimate ‖DttRi‖L2(L2(Ω)). It is easy
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to show

‖DttRi‖L2(L2(ωi)) ≤
∑

j,k

‖(pj − p̄i
j)(pk − p̄i

k)

∫ 1

0

s∂tt∂
2
k,jGs(., t)ds‖L2(L2(ωi))

≤ C
∑

j,k

h2− 4
s |pj|1,s,ωi

|uk|1,s,ωi
|∂ttG|L2(H2)

≤ Ch2− 4
s

∑

j,k

|pj|1,s,ωi
|pk|1,s,Ω

≤ Ch2− 4
s

∑

j

|pj|1,s,ωi

(5.31)

and consequently

‖Dtt(G(p1, ..., pN , t) − cijψij)‖2
L2(L2(Ω)) ≤ Ch4−8/s.

Invoking (5.24) , (5.25) and Lemma 5.1.1, we complete the proof.

Remark 5.3.3. If G(η, t) ∈ L∞(W 2,∞) ∩W 1,∞(H2) ∩H1(H2) ∩ L∞(W 3, 2s
s−2 ), s > 2,

then the proof of Theorem 5.3.2 implies that

|||p− ph|||ΩT
≤ α(h) + δ + Ch1− 2

s .

If patches ωi have the uniform Poincaré property (as defined in [12]), then one

can improve the convergence rate, which is the same as that in Theorem 5.2.1. The

result is given in the following theorem.

Theorem 5.3.3. Provided that patches ωi have the uniform Poincaré property and

s > 2, then

|||p− ph|||ΩT
≤ α(h) + δ + Ch1− 2

s .

Proof. If patches ωi have the uniform Poincaré property, we can reset cij(t)pj to be

cij(t)pj +ri(t) in each patch ωi. Let Aint = {i : ω̄i∩∂Ω = 0} and Abd = {i : ω̄i∩∂Ω 6=
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0}. We choose

ri(t) =
1

|ωi|

∫

ωi

(G− cij(t)pj)dx

for i ∈ Aint and ri(t) = 0 for i ∈ Abd.

Since

G(p̄i
1, ..., p̄

i
N , t) +

∂G

∂pj
(p̄i

1, ..., p̄
i
N , t)(pj − p̄i

j) − cijpj = 0

in each ωi, it follows immediately that

‖Dt(G(p1, ..., pN , t) − cijpj − ri)‖L∞(L2(ωi))

≤ ‖Dt(G(p̄i
1, ..., p̄

i
N , t) +

∂G

∂pj
(p̄i

1, ..., p̄
i
N , t)(pj − p̄i

j) − cijpj − ri)‖L∞(L2(ωi))

+ ‖DtRi‖L∞(L2(ωi))

= ‖Dtri‖L∞(L2(ωi)) + ‖DtRi‖L∞(L2(ω))

= ‖ 1

|ωi|

∫

ωi

(Dt(G−G(p̄i
1, · · · , p̄i

N , t)) −Dt∂jG(p̄i
1, · · · , p̄i

N , t)(pj − p̄i
j))dx‖L∞(L2(ωi))

+ ‖DtRi‖L∞(L2(ωi))

= ‖ 1

|ωi|

∫

ωi

DtRidx‖L∞(L2(ωi)) + ‖DtRi‖L∞(L2(ωi))

≤ sup
t

∫

ωi

|DtRi|dx+ ‖DtRi‖L∞(L2(ωi))

≤ Ch‖DtRi‖L∞(L2(ωi)) + ‖DtRi‖L∞(L2(ωi))

≤ C‖DtRi‖L∞(L2(ωi)),

(5.32)

where we used Holder inequality in the last step. Similarly, one can show

‖Dtt(G(p1, ..., pN , t) − cijpj − ri)‖L2(L2(ωi)) ≤ C‖DttRi‖L2(L2(ωi)). (5.33)

Since patches ωi have uniform Poincaré property by assumption in Theorem 5.3.3

, Poincaré inequality implies that there exists a constant C independent of ωi such
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that

‖G− cijpj − ri‖L2(ωi)(t) ≤ Ch‖G− cijpj‖H1(ωi)(t)

‖G− cijpj − ri‖H1(ωi)(t) ≤ ‖G− cijpj‖H1(ωi)(t).

(5.34)

From (5.29) and (5.34) , it follows that

|G(p1, ..., pN , t) − cij(t)ψij − φ0
i ri|2L∞(H1(Ω))

= sup
t

∫

Ω

|∇(φ0
i ((G− cijpj − ri))|2dx

≤ C sup
t

∫

Ω

|(G− cijpj − ri)∇φ0
i |2dx+ C sup

t

∫

Ω

|φ0
i∇(G− cijpj − ri)|2dx

≤ C
1

h2
sup

t

∑

i

h2‖G− cijpj‖2
H1(ωi)

+ C sup
t

∑

i

|G− cijpj |2H1(ωi)

≤ C(
∑

i

(|Ri|L∞(H1(ωi)))
2)

≤ C(
∑

i

(
∑

j

h1− 2
s |pj|1,ωi

)2)

≤ Ch2− 4
s .

(5.35)

By (5.32) and (5.30), we obtain that

‖Dt(G(p1, ..., pN , t) − cijψij − φ0
i ri)‖L∞(L2(Ω)) ≤ C

∑

i

‖DtRi‖L∞L2(ωi)

≤ Ch2− 4
s .

(5.36)

By (5.33) and (5.31), it follows that

‖Dtt(G(p1, ..., pN , t) − cijψij − φ0
i ri)‖L2(L2(Ω)) ≤ C

∑

i

‖DtRi‖L2(L2(ωi))

≤ Ch2− 4
s .

(5.37)

Invoking (5.35), (5.36), (5.37) and Lemma 5.1.1, the proof is complete.
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Remark 5.3.4. Let pi (i = 1, 2, · · · , dim(Ω)) be the solution of the following equation

divk(x)∇pi = 0 in Ω

pi(x) = xi on ∂Ω.

(5.38)

Define a map F : x −→ (p1(x), · · · , pn(x)), authors in [51] showed p(F−1(p1, · · · , pn), t) ∈

L∞(H2) (or W 1,∞(H2) if f and initial conditions are sufficiently smooth) and solved

the acoustic wave equations in (p1, · · · , pn) harmonic coordinate system. Let a finite

dimensional space be defined by

M̂ = {ϕ(F (x)) : ϕ ∈ Xh},

where Xh is some standard finite element space, e.g., piecewise linear finite element

space or weighted extended B-splines space [37]. If ph ∈ M̂ , then it is shown in [51]

that

|||p− ph|||ΩT
≤ Ch.

5.3.3. Time Discretization of PUM for Wave Equations

In the previous subsection, we have considered the semi-discretization of the

wave equation (5.4) using Galerkin MsFEM and PUM. In practice, one also needs

to discretize the temporal variables. In this section, we present time discretization

of multiscale wave equation when multiple global fields are used to construct basis

functions. We introduce the following notations. If ph : {tm}J
0 −→ X, where J is a

positive integer. Let ∆t = T
J

and pn be the value of p at t = n∆t. We will use the
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following notations.

pn+ 1
2 =

pn+1 + pn

2

pn, 1
4 =

1

4
pn+1 +

1

2
pn +

1

4
pn−1

Dtp
1
2 =

p1 − p0

∆t

Dtp
n =

pn+1 − pn−1

2∆t

Dttp
n =

pn+1 − 2pn + pn−1

∆t2
.

We use the discrete time Galerkin method to (5.4)

(Dttp
m
h , vh) + (k∇pm, 1

4
h ,∇vh) = (fm, 1

4 , vh), ∀vh ∈M, (5.39)

where we assume that f is sufficiently smooth with respect to temporal variable. The

scheme in (5.39) is unconditionally stable [28]. In this subsection, we always assume

that ph is the solution of (5.39), unless otherwise is stated. Suppose w is an arbitrary

map from [0, t] into M , and ξ = ph − w, η = p− w and consistency error

Rm = Dttp
m − (

1

4
Dtp(tm+1) +

1

2
Dtp(tm) +

1

4
Dtp(tm−1)|),

then we obtain that

(Dttξ
m, vh) + (k∇ξm, 1

4 ,∇vh) = (Dttη
m + k∇ηm, 1

4 +Rm,∇vh), vh ∈M.

Let us define

‖p‖L∞

∆ (X) = max
n

‖pn+ 1
2‖X

for some normed space X and

|||p− ph|||ΩT ,∆ = ‖Dt(p− ph)‖L∞

∆ (L2(Ω)) + |p− ph|L∞

∆ (H1(Ω)).



153

Take vh = Dtξ
m and apply discrete Grownwall’s lemma, the proof of Lemma 6

in [28] implies that

‖Dtξ‖L∞

∆ (L2(Ω)) + ‖ξ‖L∞

∆ (H1(Ω)) ≤ C(‖Dtξ
1
2‖0,Ω + ‖ξ 1

2‖1,Ω

+‖Dttη‖0,Ω + |η|L∞(H1(Ω)) + ‖D4
t p‖L2(L2(Ω))∆t

2).

Triangle inequality gives

|||p− ph|||ΩT ,∆ ≤ C(‖Dtξ
1
2‖0,Ω + ‖ξ 1

2‖1,Ω

+‖Dtt(p− w)‖0,Ω + |||p− w|||ΩT ,∆ + ‖D4
t p‖L2(L2(Ω))∆t

2).

Consequently, we have the following theorem. This theorem gives a spatio-temporal

convergence rate through the the approximation estimates on the patches.

Theorem 5.3.4. Let p and pm
h be the solutions to (5.3) and (5.39) respectively.

Suppose ‖Dtξ
1
2‖0,Ω + ‖ξ 1

2‖1,Ω ≤ α(h) and p is sufficiently smooth for t, then

|||p− ph|||2ΩT ,∆ ≤ C(α(h) + ∆t2) + C

∫ T

0

(ǫ3(t, j)
2 + ǫ4(t, j)

2)dt

+ C sup
t

(
ǫ1(t, j)

2

h2
j

+ ǫ2(t, j)
2).

(5.40)

Applying Theorem 5.3.4 and repeat the same procedure as that in the proof of

Theorem 5.3.2, and we have the following theorem immediately.

Theorem 5.3.5. Under assumptions in Theorem 5.3.2 and Theorem 5.3.4, we have

|||p− ph|||ΩT ,∆ ≤ α(h) + δ + C(h1− 4
s + ∆t2).

Following the similar analysis presented in Theorem 5.3.3, one can obtain the

following theorem.

Theorem 5.3.6. Provided that patches ωi have the uniform Poincaré property and

s > 2, then

|||p− ph|||ΩT ,∆ ≤ α(h) + δ + C(h1− 2
s + ∆t2).
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If we define ζ = p and ρ = Dtp, then one can rewrite (5.3) as a system

(Dtρ, v) + (a∇ζ, v) = (f, v), ∀v ∈ H1
0

(Dtζ, v)− (ρ, v) = 0, ∀v ∈ H1
0 ,

and its full discretization form is


































(
ρn+1

h
−ρn

h

∆t
, vh) + (aβζn+1

h + (1 − β)ζn
h , vh) = (f, vh)

(
ζn+1
h

−ζn
h

∆t
, vh) − (γρn+1

h + (1 − γ)ρn
h, vh) = 0

(ζ0
h − g0, vh) = 0

(ρ0
h − g1, vh) = 0

(5.41)

for ∀vh ∈ M . It is known that the scheme in (5.41) is unconditionally stable when

β ≥ 1
2

and γ ≥ 1
2

[55]. In the numerical experiment section, we will use this scheme

to discretize the time.

5.4. Mixed MsFEM for Wave Equations Using Multiple Global Information

In this section, we apply a mixed MsFEM using multiple global fields we pro-

posed in [5]. This approach is a mass conservative approach.

Let u = k∇p and assume zero Dirichlet boundary conditions for (5.2). The weak

mixed formulation is to find {p, u} : (0, T ] −→ L2(Ω) ×H(div,Ω) such that















































(Dttp, w) − (divu, w) = (f, w) ∀w ∈ L2(Ω)

(k−1u, χ) + (p, divχ) = 0 ∀χ ∈ H(div,Ω)

(p(0), w) = (g0, w) ∀w ∈ L2(Ω)

((Dtp)(0), w) = (g1, w) ∀w ∈ L2(Ω)

(k−1u(0), χ) = (∇g0, χ) ∀χ ∈ H(div,Ω).

(5.42)

Assumption A1w. There exist functions u1, · · · , uN and A1(t, x), · · · , AN(t, x)
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such that

u(t, x) = Ai(t, x)ui(x),

where Ai(t, x)’s are smooth functions (specify their smoothness later) and ui = k(x)∇pi

(i = 1, ..., N) solves a elliptic equation divk(x)∇pi = 0 with appropriate boundary

conditions.

To numerically approximate the mixed problem (5.42), we construct the basis

function φK
ij defined in (3.120) in Section 3.3.3 for the velocity, Note that for each edge

e, we have N basis functions and we assume that u1,..., uN are linearly independent

in order to guarantee that the basis functions are linearly independent. To avoid the

possibility that
∫

el
ui · nds is zero or unbounded, we make the following assumption

for convenience analysis.

Assumption A2w. There exist positive constants C such that

∫

el

|ui · n|ds ≤ Chβ1 and ‖ ui · n
∫

el
ui · nds

‖Lr(el) ≤ Ch−β2+
1
r
−1

uniformly for all edges el, where β1 ≤ 1, β2 ≥ 0,and r ≥ 1.

We define ψK
ij = k(x)∇φK

i,j and

Σh =
⊕

K

{ψK
ij } ⊂ H(div,Ω),

where φK
ij is defined in (3.120). Let Qh =

⊕

K P0(K) ⊂ L2(Ω), i.e., piecewise con-

stants, be the basis functions approximating u. Let Ph be L2(Ω) orthogonal projection

onto Qh. Denote by RK
j be the lowest Raviart-Thomas basis function [19] associated

edge ej of K. For t = 0, we define

Πh|Ku(0) = (

∫

ej

k(x)∇g0 · ndx)RK
j
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in each element K. For t > 0, we define

Πh|Ku(t) = (

∫

ej

Ai(t, x)ui · ndx)ψK
ij

in each element K. If Ai(t, x) and ui satisfy proper smoothness, i.e., Ai(t, .) ∈W 1,ξ(Ω)

and ui ∈ Lη(Ω) (1
2

= 1
ξ

+ 1
η
), then Πh is well defined (see [19, 5]).

The numerical weak mixed formulation is to find {ph, uh} : (0, T ] −→ Qh × Σh

such that















































(Dttph, w) − (divuh, w) = (f, w) ∀w ∈ Qh

(k−1uh, χ) + (ph, divχ) = 0 ∀χ ∈ Σh

(ph(0), w) = (g0, w) ∀w ∈ Qh

((Dtph)(0), w) = (g1, w) ∀w ∈ Qh

(uh(0), χ) = (Πhu(0), χ) ∀χ ∈ RT 0
h ,

(5.43)

where RT 0
h is the lowest Raviart-Thomas space.

We define ‖u‖L2
k
(Ω) and ‖u‖L2(0,T ;L2

k
(Ω)) in the same way as in Section 4.4. Let us

recall some results from [5].

ui|K = βK
ij ψ

K
ij , (5.44)

where βK
ij =

∫

ej
δijui · ndx (summation convention is not applied here) (see Lemma

3.1 in [5]). For the property of Πh, Lemma 3.2 in [5] claims

(∇ · (u− Πhu), w) = 0 w ∈ Qh. (5.45)

Based on Assumption A1w and the construction of the velocity basis given in

(3.120), the convergence rate by the mixed method is given in the following theorem.

Theorem 5.4.1. Let {p, u} and {ph, uh} be respectively solution of (5.42) and (5.43).

If Assumption A1w and Assumption A2w hold and Ai(t, x) ∈ L2(Cα(Ω)) for i =
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1, · · · , N , then for α + β1 − β2 − 1 > 0,

‖p− ph‖L∞(L2(Ω)) + sup
t

‖
∫ t

0

(u(s) − uh(s))ds‖L2
k
(Ω) ≤ Chmin(1,α+β1−β2−1).

Proof. The first two equations in (5.42) and (5.43) imply that

(Dtt(p− ph), w) − (∇ · (u− uh), w) = 0 ∀w ∈ Qh

(k−1(u− uh), χ) + (p− ph,∇ · χ) = 0 ∀χ ∈ Σh.

(5.46)

Since p−ph = p−Php+Php−ph and u−uh = u−Πhu+Πhu−uh, a straightforward

calculation gives for ∀w ∈ Qh and ∀χ ∈ Σh

(Dtt(Php− ph), w) − (∇ · (Πhu− uh), w) = (Dtt(Php− p), w) − (∇ · (Πhu− u), w)

(k−1(Πhu− uh), χ) + (Php− ph,∇ · χ) = (k−1(Πhu− u), χ) + (Php− p,∇ · χ).

(5.47)

Since Ph is a L2 projection and (5.45) holds, then (5.47) reduces to

(Dtt(Php− ph), w) − (∇ · (Πhu− uh), w) = (Dtt(Php− p), w) ∀w ∈ Qh

(k−1(Πhu− uh), χ) + (Php− ph,∇ · χ) = (k−1(Πhu− u), χ) ∀χ ∈ Σh.

(5.48)

If one integrates the first equation with respect to s from 0 to t and then set w =

Php− ph, one can get

(Dt(Php− ph), Php− ph) − (
∫ t

0
∇ · (Πhu(s) − uh(s))ds, Php− ph)

= (Dt(Php− p), Php− ph) − (Dt(Php− p)(0), Php− ph),

where we have used the fact (Dt(Php−ph)(0), w) = 0 by (5.43). Because Ph commutes

with Dt, it follows

(Dt(Php− ph), Php− ph) − (

∫ t

0

∇ · (Πhu(s) − uh(s))ds, Php− ph) = 0. (5.49)
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Pick χ =
∫ t

0
(Πhu(s) − uh(s))ds in the second equation in (5.48), then

(k−1(Πhu− uh),

∫ t

0

(Πhu(s) − uh(s))ds) + (Php− ph,

∫ t

0

∇ · (Πhu(s) − uh(s))ds)

= (k−1(Πhu− u),

∫ t

0

(Πhu(s) − uh(s))ds).

(5.50)

Summing (5.49) and (5.50), we have

(Dt(Php− ph), Php− ph) + (k−1(Πhu− uh),

∫ t

0

(Πhu(s) − uh(s))ds)

= (k−1(Πhu− u),

∫ t

0

(Πhu(s) − uh(s))ds).

(5.51)

Applying integration by parts and Schwarz inequality to (5.51), we obtain

Dt‖Php− ph‖2
L2(Ω) +Dt‖

∫ t

0
(Πhu(s) − uh(s))ds‖2

L2
k
(Ω)

≤ ‖Πhu− u‖2
L2

k
(Ω)

+ ‖
∫ t

0
(Πhu(s) − uh(s))ds‖2

L2
k
(Ω)
.

Integrating the above inequality with respect to time from 0 to t and noting that

‖Php− ph‖2
L2(Ω)(0) = 0 from (5.43), then we apply Gronwall’s inequality to get

‖Php− ph‖2
L2(Ω)(t) + ‖

∫ t

0

(Πhu(s)− uh(s))ds‖2
L2

k
(Ω) ≤ C‖Πhu− u‖2

L2(0,t;L2
k
(Ω)). (5.52)

Consequently,

‖Php−ph‖2
L∞(L2(Ω))+sup

t
‖
∫ t

0

(Πhu(s)−uh(s))ds‖2
L2

k
(Ω) ≤ C‖Πhu−u‖2

L2(L2
k
(Ω)). (5.53)

Invoking p−ph = p−Php+Php−ph and
∫ t

0
(u−uh)ds =

∫ t

0
(u−Πhu)ds+

∫ t

0
(Πhu−uh)ds,
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triangle inequality infers that

‖p− ph‖2
L∞(L2(Ω)) + sup

t
‖
∫ t

0

(u(s) − uh(s))ds‖2
L2

k
(Ω)

≤ C(‖Php− p‖2
L∞(L2(Ω)) + sup

t
‖
∫ t

0

(Πhu(s) − u(s))ds‖2
L2

k
(Ω) + ‖Πhu− u‖2

L2(L2
k
(Ω)))

≤ C(‖Php− p‖2
L∞(L2(Ω)) + sup

t
t‖Πhu− u‖2

L2(0,t;L2
k
(Ω)) + ‖Πhu− u‖2

L2(L2
k
(Ω)))

≤ C(‖Php− p‖2
L∞(L2(Ω)) + ‖Πhu− u‖2

L2(L2
k
(Ω))),

(5.54)

where we have used Jensen’s inequality in the second step.

If the source term f ∈ L2(L2(Ω)), the initial conditions g0 ∈ H1(Ω) and g1 ∈

L2(Ω), then p ∈ L∞(H1(Ω)) (see [51, 35] ). Thanks to the fact that Ph is the L2(Ω)

projection onto Qh,

‖p− Php‖L∞(L2(Ω)) ≤ Ch|p|L∞(H1(Ω)), (5.55)

this estimates the first term of right hand side in (5.53). Next we estimate the term

‖u− Πhu‖2
L2(L2

k
(Ω))

. Define

AK
ij (t) =

∫

ej

Ai(t, s)ui · nds

in each element K. Let Āj
i be the average Ai(x) along ej , then

|AK
ij − Āj

iβ
K
ij | = |

∫

ej

Aiui · nds− Āj
i

∫

ej

ui · nds|

≤ Chα+β1‖Ai(t)‖Cα(Ω),

(5.56)

where we have used the Assumption A2w.

Invoking Assumption A1w, (5.44) and ‖ψK
ij ‖0,K ≤ C(1 + h−β2) [5], we have in
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each element K (summation convention is used in the following)

‖u− Πhu‖2
L2(0,T ;L2

k
(K)) =

∫ T

0

∫

K

(Ai(t, x)β
K
ij − AK

ij (t))ψ
K
ij · k−1(Ai(t, x)β

K
ij −AK

ij (t))ψ
K
ij dxdt

≤ C

∫ T

0

∫

K

((Ai(t, x)β
K
ij − AK

ij (t))ψ
K
ij )2dxdt

= C‖(Ai(t, x)β
K
ij −AK

ij (t))ψ
K
ij ‖2

L2(0,T ;L2(K))

≤ C‖(Ai(t, x) − Āj
i (t))β

K
ij ψ

K
ij ‖2

L2(0,T ;L2(K))

+ C‖(Āj
i (t)β

K
ij − AK

ij (t))ψ
K
ij ‖2

L2(0,T ;L2(K))

≤ Ch2(α+β1)(
∑

i

‖Ai‖2
L2(0,T,Cα(K)))

∑

ij

‖ψK
ij ‖2

0,K

≤ Ch2(α+β1−β2)(
∑

i

‖Ai‖2
L2(0,T,Cα(K))),

(5.57)

where we have used facts that Ai ∈ L2(0, T ;Cα(Ω)) and (5.56). After making sum-

mation over all K for (5.57), we have

‖u− Πhu‖L2(0,T ;L2
k
(Ω)) ≤ Chα+β1−β2−1. (5.58)

Taking into account (5.55) , (5.58) and (5.53), the proof is complete.

Remark 5.4.1. From (5.57), it is sufficient to assume that Ai(t, .) is x-pointwise

Holder continuous for all t and Ai(t, x) is bounded globally. If global fields pi (i =

1, · · · , N , where N = dim(Ω)) are defined in (5.38) and set p = p(t, p1, · · · , pN), then

k∇p =
∂p

∂pi
k∇pi := Ai(t, x)ui,

where Ai(t, x) = ∂p
∂pi

and ui = k∇pi. Provided that f ∈ L∞(Lp(Ω)) ∩ H1(Lp(Ω)) ,

g1 ∈ W 1,p(Ω) and Dttp(0) ∈ Lp(Ω), then the proof Theorem 1.1 in [51] implies that

Ai(t, x) = ∂p
∂pi

∈ L∞(W 1,p(Ω)). Consequently Ai(t, x) ∈ L2(C1−N
p (Ω)) if p > N by
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using Sobolev embedding theorem.

Remark 5.4.2. In the case of homogenization problems with ǫ-period, Ai(t, x) = ∂p∗

∂xi

and ui = kǫ(x)∇pi. Here p∗ is the solution of the homogenized wave equation and pi

are computed in each ǫ-period [5].

If the functions Ai(t, x) in Assumption A1w have higher regularity regarding to

time t, we can obtain an convergence rate in energy norm, the definition of which is

similar to |||p− ph|||ΩT
defined in section 5.1. The following is the result.

Theorem 5.4.2. Let {p, u} and {ph, uh} be respectively solution of (5.42) and (5.43).

If Assumption A1w holds and Ai(t, x) ∈ L∞(Cα(Ω)) ∩H1(Cα(Ω)) for i = 1, · · · , N ,

then for α + β1 − β2 − 1 > 0,

‖p− ph‖L∞(L2(Ω)) + ‖u− uh‖L∞(L2
k
(Ω)) ≤ Chmin(1,α+β1−β2−1).

Proof. We take w = Dt(Php− ph) and χ = Πhu − uh in (5.48). Since Dt commutes

with Ph and (5.45) holds, it follows

(Dtt(Php− ph), Dt(Php− ph)) − (∇ · (Πhu− uh), Dt(Php− ph)) = 0

(k−1(Dt(Πhu− uh),Πhu− uh) + (Dt(Php− ph),∇ · (Πhu− uh))

= (k−1(Dt(Πhu− u)),Πhu− uh),

(5.59)

where we differentiated the second equation in (5.48) to get the second equation of

(5.59). Make summation of the two equation in (5.59), we have

(Dtt(Php− ph), Dt(Php− ph)) + (k−1(Dt(Πhu− uh),Πhu− uh)

= (k−1(Dt(Πhu− u)),Πhu− uh).

(5.60)

After applying integration by parts and Schwarz inequality to (5.60), it follows

Dt‖Dt(Php− ph)‖2
L2(Ω) +Dt‖Πhu− uh‖2

L2
k
(Ω)

≤ ‖Dt(Πhu− u)‖2
L2

k
(Ω)

+ ‖Πhu− uh‖2
L2

k
(Ω)
.
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By integrating with respect to t in the above, Gronwall’s inequality gives rise to

‖Dt(Php− ph)‖2
L∞(L2(Ω)) + ‖Πhu− uh‖2

L∞(L2
k
(Ω))

≤ C(‖Dt(Php− ph)‖2
L2(Ω)(0) + ‖Πhu− uh‖2

L2
k
(Ω)(0))

≤ C‖Dt(Πhu− u)‖2
L2(L2

k
(Ω)).

(5.61)

From the fourth and fifth equation of (5.43), the first term in right hand of (5.61) is

vanished and (5.61) becomes

‖Dt(Php− ph)‖2
L∞(L2(Ω)) + ‖Πhu− uh‖2

L∞(L2
k
(Ω))

≤ C‖Dt(Πhu− u)‖2
L2(L2

k
(Ω)).

(5.62)

Owing to triangle inequality and (5.62), it follows immediately that

‖Dt(p− ph)‖L∞(L2(Ω)) + ‖Πhu− uh‖L∞(L2
k
(Ω))

≤ C(‖Dt(Php− p)‖L∞(L2(Ω)) + ‖Dt(Πhu− u)‖L2(L2
k
(Ω)) + ‖Πhu− u‖L∞(L2

k
(Ω))).

(5.63)

If source term f ∈ H1(L2(Ω)) , initial value g1 ∈ H1(Ω) and Dttp(0) ∈ L2(Ω), then

Dtp ∈ L∞(H1(Ω)) (see [51, 35] ). Since Ph is the L2(Ω) projection onto Qh,

‖Dt(p− Php)‖L∞(L2(Ω)) ≤ Ch|Dtp|L∞(H1(Ω)), (5.64)

If Ai(t, x) ∈ L∞(Cα(Ω)) ∩H1(Cα(Ω)), one can utilizing the similar process in (5.57)

to get

‖Πhu− u‖L∞(L2
k
(Ω)) ≤ Chα+β1−β2−1

‖Dt(Πhu− u)‖L2(L2
k
(Ω)) ≤ Chα+β1−β2−1.

(5.65)

Combining (5.63), (5.64) and (5.65), the proof is complete.

Remark 5.4.3. If global fields pi (i = 1, · · · , N, N = dim(Ω)) are defined in (5.38)
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and set p = p(t, p1, · · · , pN), then

k∇p =
∂p

∂pi
k∇pi := Ai(t, x)ui,

where Ai(t, x) = ∂p
∂pi

and ui = k∇pi. Provided that f ∈ W 1,∞(Lp(Ω)) ∩W 2,p(Lp(Ω))

, Dttu(0) ∈W 1,p(Ω) and Dtttp(0) ∈ Lp(Ω), then the proof Lemma 2.6 in [51] implies

that Ai(t, x) = ∂p
∂pi

∈W 1,∞(W 1,p(Ω)). Consequently Ai(t, x) ∈ H1(C1−N
p (Ω)) if p > N

by using Sobolev embedding theorem.

As for the fully discrete scheme, we may use the following scheme (also see

[41, 26]). The fully mixed formulation is to find {pn+1
h , un+1

h } ∈ Qh × Σh such that















































(Dttp
n
h, w) − (divun

h, w) = (fn, w) ∀w ∈ Qh

(k−1un+1
h , χ) + (pn+1

h , divχ) = 0 ∀χ ∈ Σh

(p0
h, w) = (g0, w) ∀w ∈ Qh

( 2
∆t
Dtp

1
2
h , w) − (divu0

h, w) = (f 0 + 2
∆t
g1, w) ∀w ∈ Qh

(u0
h, χ) = (Πhu(0), χ) ∀χ ∈ RT 0

h ,

(5.66)

where the difference notations are defined in section 5.3.3. It is known that the

scheme in (5.66) is stable when ∆t ≤ Ch and that the time consistence error O(∆t2)

if u(t, x) is smooth enough regarding to t (refer to [41, 26]). Consequently, we have

by the global mixed MsFEM

sup
tn

‖p− pn
h‖L2(Ω) + sup

tn

‖u− un
h‖L2

k
(Ω) ≤ C(hmin(1,α+β1−β2−1) + ∆t2).

5.5. Numerical Results

In this section, we present a few numerical results to demonstrate the impor-

tance of incorporating global information. We will consider multiscale finite element

methods with limited global information presented in Section 5.2.
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We will use a channelized permeability field k(x) which induces strong non-

local effects on a domain Ω = [0, 1]2. This type of heterogeneities is presented in

a benchmark test of the SPE comparative project [24] (upper Ness layers). These

permeability fields are highly heterogeneous, channelized, and difficult to upscale. In

Figure 4.1, we plot a log of this field. As can be observed, the irregular channels

introduces strong non-locality across the entire domain. For these types of hetero-

geneities, local approaches usually fail to give an accurate results. In this experiment,

we take f = 10, initial value g0 = 0 and g1 = 0. We impose zero Dirichlet boundary

conditions in (5.2).

In our numerical tests, we compare the solutions at several time instances. Our

first choice is standard MsFEM with local basis functions where linear boundary

conditions are imposed for these basis functions. For the second approach, we used

the MsFEM using limited global information, where where steady state solution is

used to generate basis functions. Note that the construction of the basis functions is

one time overhead that involves the solution of elliptic partial differential equation.

Using these basis functions, the fine-scale equation can be solved repeatedly for various

boundary conditions and right hand sides. For full discretization, the scheme in (5.41)

is utilized and we use 220x60 fine grid and 22x6 coarse grid.

First, we present numerical results (Table 5.1 and 5.2) for relative errors for the

solution u comparing (1) standard MsFEM (2) Oversampling MsFEM (3) MsFEM

with limited global information at two different time instances. It is clear from these

tables that MsFEM with limited global information performs much better than other

local multiscale methods. This suggests that one needs to use some type of global

information in constructing basis functions.

We depict the reference solution, the solution obtained local MsFEM and the

improved MsFEM using limited global information in Figures 5.1 - 5.2 at two different
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Table 5.1. Relative Errors at Time=0.4, Coarse Model = 22x10

Method L2(%) H1(%) L∞(%)

MsFEM +2.03e+01 +4.94e+01 +3.52e+01

MsFEM-ovs +6.36e+00 +2.51e+01 +1.44e+01

Global MsFEM +4.33e+00 +1.98e+01 +9.92e+00

Table 5.2. Relative Errors at Time=0.6, Coarse Model = 55x15

Method L2(%) H1(%) L∞(%)

MsFEM +1.95e+01 +3.53e+01 +3.03e+01

MsFEM-ovs +3.56e+00 +1.50e+01 +8.48e+00

Global MsFEM +2.46e+00 +1.08e+01 +4.78e+00

times t = 0.4 and t = 0.6. It is clear from these figures that MsFEM with limited

global information provides accurate solution for such heterogeneous fields, where the

localized methods fail. In this section, we restricted ourselves to only a few numerical

results.

x

z

x

z

x

z

Fig. 5.1. Solution uh at t = 0.4. Left: Reference solution. Middle: solution obtained

by global MsFEM. Right: solution by local MsFEM
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x

z

x

z

x

z

Fig. 5.2. Solution uh at t = 0.6. Left: Reference solution. Middle: solution obtained

by global MsFEM. Right: solution by local MsFEM

5.6. Conclusions and Comments

In this chapter, we study multiscale approaches for solving acoustic wave equa-

tions with heterogeneous coefficients without scale separation. The solution is ap-

proximated on a coarse grid using multiscale basis functions. For the construction of

these basis functions, we employ global functions. In particular, these global fields are

defined such that the solution smoothly depends on these fields. We provide analysis

of the proposed methods for Galerkin finite element and mixed finite element formu-

lations, and present a few numerical examples. The numerical results demonstrate

that the solution can be captured accurately on a coarse grid when some type of

limited global information is used.
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CHAPTER VI

CONCLUSIONS

6.1. Conclusions

In this dissertation, we present and focus on the following multiscale numerical

methods using limited global information: MsFEM, mixed MsFEM and multiscale

PUM. The global information is represented by a set of functions. These functions

can be thought as auxiliary functions which contain essential information about the

heterogeneities. The computations of the global information are performed off-line.

The finite element basis functions constructed employing the global information can

be used to solve flow equations in heterogeneous porous media with different source

terms, boundary conditions or mobility (see Section 2.1) on the coarse grid. The

computation of global fields requires solving single-phase equations, thus the pro-

posed approaches are effective when flow equations are solved repeatedly. One can

use local solutions instead of global solutions in the proposed formulation of these

global multiscale numerical methods. In this respect, the proposed global multi-

scale numerical methods will be similar to the local multiscale methods introduced

in [38, 22] where the resonance error will appear in the convergence rates.

In this dissertation, we apply the proposed global multiscale numerical methods

to elliptic, parabolic and wave equations with continuum spatial scales. We present

rigorous analysis of the proposed multiscale numerical methods for the partial dif-

ferential equations. We show that these methods are stable and converge without

the resonance error. Assumption that the solution of the partial differential equation

smoothly depends on the global fields, we construct multiscale finite element basis

functions which contain these global information (fields). We discuss several cases
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where the global fields can be found and it can be shown that the solution smoothly

depends on these global fields. We present a few preliminary numerical results to

demonstrate the accuracy of the proposed approaches. We also consider a parameter

dependent permeability field where a limited number of parameter value is used to

generate the global fields. Based on these global fields, we compute multiscale basis

functions. Basis functions are computed using single-phase flow solutions and these

basis functions are used for the simulations of two-phase flow and transport. We con-

sider SPE Comparative Project [24]. These permeability fields are channelized and

hard to upscale and, therefore, single-phase flow information (limited global informa-

tion) is used. Our numerical results show that one can achieve much better accuracy

with a few global fields corresponding to single-phase flow solutions than those local

multiscale finite element methods.

6.2. Future Work

While we have presented several multiscale numerical methods using limited

global information for partial differential equations, we believe there are still many

interesting areas for further research.

One of the areas for further study is to investigate the global multiscale numer-

ical methods on unstructured grids. From the analysis presented in Chapter III, IV

and V, we may find the possibility that the global multiscale finite element methods

can be extended to unstructured coarse grids. The use of unstructured coarse grids

has advantages in subsurface simulations since they provide flexibility and can ren-

der more accurate upscaled solutions for flow and transport equations. It is often

necessary to use an unstructured coarse grid when highly heterogeneous reservoirs

are discretized via irregular anisotropic fine grids. Although we have discussed global
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mixed MsFEM on unstructured grids and presented some encouraging results in [3],

there is room for further exploration of some of the underlying approaches. As our

intent in [3] was to demonstrate that mixed MsFEM on an unstructured grid could

be effectively used in a full coarse-scale model, we did not consider the issue related

to the upscaling of the saturation equation. As we noticed that the main source of

errors in our coarse-scale simulations is due to the saturation upscaling. The up-

scaling of the saturation is achieved via the use of a carefully selected coarse grid,

however, no subgrid model is used in the upscaling of the transport equations. We

plan to investigate the subgrid effects in the saturation equation in the future. This

will help to improve further the upscaling result. It may also be worth exploring the

impact of the unstructured grid obtained via the single-phase flow on the accuracy of

the mixed MsFEM. As we noticed that the mixed MsFEM is more accurate when an

unstructured coarse grid is used. Further theoretical investigation of these issues is

worth pursuing in future. In the meanwhile, it would be interesting in the future to

study the global multiscale PUM and other global multiscale numerical methods on

unstructured grids.

It would be also interesting in the future to consider nonlinear partial differential

equations. We have considered the global multiscale numerical methods only for lin-

ear partial differential equations and have not discussed nonlinear partial differential

equations in the dissertation. In the formulations of the global multiscale methods,

we assume the solutions of partial differential equations smoothly depend on the pre-

defined global fields (information). However, we have not yet found such global fields

for nonlinear partial differential equations (e.g. nonlinear elliptic equations). We be-

lieve this would be a challenging problem in the future. Once we find the global fields,

we can use the frameworks of the global multiscale methods to numerically solve the

nonlinear partial differential equations and remove resonance error.
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Another future direction is to consider domain decomposition methods for mul-

tiscale partial differential equations using limited global information. Domain decom-

position refers to the splitting of a partial differential equation into coupled problems

on smaller subdomains forming a partition of the original domain. We believe us-

ing global information would yield a robust coarsening when domain decomposition

methods are applied to solve multiscale partial differential equations with continuum

scales. It would be interesting in the future to theoretically study domain decom-

position methods using limited global information and test the performance of the

methods in numerical experiments.
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