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ABSTRACT 

 

Implications of Relative Ant Abundance and Diversity for the Management of 

Solenopsis invicta Buren with Broadcast Baits. (August 2008) 

Alejandro Antonio Calixto Sánchez, B.S.; M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Marvin K. Harris 

 

     Higher densities of S. invicta in the United States relative to South America are 

explained mainly by the absence of natural enemies and low interspecific competition 

(IC). Despite advances in S. invicta management, broadcast insecticide baits remain as 

the primary tool for effective control. I studied interspecific interactions of ants and the 

use of baits on the management of S. invicta to test the following hypotheses: 1) relative 

abundance of native ants increases ~25% for bait treated sites compared to untreated, 2) 

behavioral dominance by S. invicta decreases ~10% in bait treated sites compared to 

untreated, and, 3) foraging by S. invicta on insecticide baits is higher ~10% in low native 

ant densities areas compared to high densities. 

     Experiments were conducted on three sites with different densities of native ants 

(low, medium, high), but with similar densities of S. invicta. An enhanced BACI 

(Before/After-Control/Impact) design was used. Experimental units consisted of 0.4 ha 

plots. Three treatments were randomly assigned to units and replicated four times; 1) 

Slow acting bait, 2) Fast acting bait, 3) Untreated Control. Samples and observations 

were collected for several weeks before/after the treatments to account for temporal 



 

 

iv

variation and to determine rates of reinvasion. Ants were monitored using pitfalls and 

food lures. Interspecific competition was determined by applying placebo bait. Results 

indicate that different management methods did not impact resident ants when they are 

at low and medium densities and that S. invicta is greatly affected; at high native ant 

density, competition for these baits is observed affecting both natives and S. invicta. 

Reinvasion of S. invicta was reduced in areas of low and medium native ant densities 

previously treated with baits and native ant abundance increased by ~25%. At high 

native ant densities, reinvasion of S. invicta was similar to Control sites. I conclude: 1) 

properly used, baits can help in recovery of native ant species that then compete with S. 

invicta; however, rote re-treatments may have a negative impact on restored populations. 

2) “bait failures” may be due to interspecific competition when initial native ant 

densities are high. Preliminary management considerations and recommendations are 

presented.       
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CHAPTER I 

INTRODUCTION 

History and Management of Solenopsis invicta in the United States 

     Solenopsis invicta Buren, native to South America, was accidentally introduced into 

the United States > 70 years ago through Mobile, Alabama and has since spread 

throughout the Southern United States infesting more than 130 million ha (Callcott and 

Collins 1996, Vinson 1997). Two colony forms are found in invaded areas: the 

monogyne (single queen) and the polygyne (multiple queens) form. Monogyne colonies, 

characterized by a nest containing a single queen with strongly territorial workers, were 

predominant for decades following the original invasion in Alabama. In the early 1970’s, 

polygyne colonies were detected and since have become the predominant form (Glancey 

et al 1973, Porter et al 1991). Each polygyne colony contains many queens and fewer 

workers than monogyne colonies but polygyne colony densities per ha are double or 

triple those of monogyne (Porter et al 1997). Foraging territories and workers are shared 

among related polygyne colonies. S. invicta prefers disturbed habitats where they rapidly 

establish and proliferate. These key factors hinder the management of this invasive 

species, increasing the cost of management and increasing the risk to humans and 

animals (Macom and Porter 1996, Wojcik et al 2001)   

     Management of S. invicta traditionally has involved suppression by broad spectrum 

insecticides, which have caused a dramatic reduction of native ant densities thus 

accelerating the resurgence and dominance of S. invicta (Markin et al 1974, Wojcik et al  

____________ 
This dissertation follows the style of Ecological Applications. 
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2001, Carson 2002, Tschinkel 2006).  The absence of natural enemies and the lack of 

strong interspecific competition explain the dominance and higher abundance of  S. 

invicta in the United States relative to that in their native South America (Porter et 1988, 

Porter et al 1991, Porter 1992, Porter et al 1997).  

     One of the major factors regulating ant densities is interspecific competition 

(Hölldobler and Wilson 1990). Recent field studies conducted in South America indicate 

that interspecific competition with other ants appears to be a much stronger factor 

regulating S. invicta densities than mortality ascribed to parasitic flies (Phoridae) (Porter 

et al 1997, Morrison and Porter 2005, Holway 1999, Feener 2000, LeBrun et al 2007). 

Relying on these findings and these concepts, improvements in S. invicta management 

practices should include the restoration and preservation of native ants in the United 

States. This is particularly important for the success of management programs that 

include the introduction of natural enemies from South America. This interspecific 

competition appears compatible with biocontrol and is expected to help regulate S. 

invicta densities.  

     The question that arises from this approach is, are there enough ants (in terms of 

diversity and abundance) in local assemblages to out-compete S. invicta? Several studies 

have shown that many ant species coexist with S. invicta (Helms and Vinson 2001, 

Morrison 2002). In fact, S. invicta affects the densities and distributions of individual 

species and not species diversity (Morrison 2002, Calixto et al 2007b). Other studies 

suggest that ant species diversity is greater in similar habitats in South America 

compared to those in the United States 
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     S. invicta research and management programs have included studies of interactions 

among S. invicta and other ant species seeking strategies to limit S. invicta impacts on 

the environment. Research indicates that some ant species are able to eliminate small 

newly established colonies of S. invicta or prevent their establishment by attacking 

newly mated queens (Nickerson et al 1975, Nichols and Sites 1991, Mottern et al 2004, 

Rao and Vinson 2004). The majority of these studies involved laboratory-based trials 

between S. invicta and other ant species focusing on one-to-one interactions under 

controlled conditions rarely if ever observed in the field. These results indicate studies of 

natural systems on a larger scale, accounting for all the species occurring within the 

assemblages, through manipulative field experiments are warranted. . This suggests that 

a slight reduction in S. invicta density using other methods may synergize latent 

competitive capabilities of the resident ant fauna towards the invasive ant (Porter et al 

1997) by increasing their niche overlap and increase interspecific competition with S. 

invicta.  

Broadcast Insecticide Baits 

     Despite advances in management practices and the recent introduction of biological 

control agents (i.e., phorids, Thelohania), pesticides (particularly broadcast baits) remain 

as the primary tool for S. invicta management in the United States (Drees et al 2002, 

Riggs et al 2002, Barr et al 2005, Aubuchon et al 2006). They are the most cost-effective 

means of controlling S. invicta. Poison baits for S. invicta control are typically small 

granules (~1mm) derived from defatted corn cob and mixed with soybean oil and the 

active ingredient (an insecticide dissolved in the oil). The most common active 
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ingredients found in these baits are those carrying metabolic inhibitors, growth 

regulators and neurotoxins (i.e. hydramethylnon, methoprene, indoxacarb, fipronil). Ant 

workers are attracted to the bait and carry it back to the colony, where it is fed to the 

larvae, workers, and queen(s). Although active ingredients have different modes of 

action, they all serve to break the life cycle of the colony, resulting in its death. Fast-

acting short residual baits kill the queen and, to varying degrees, worker ants (Barr et al. 

2005). These baits pose very little toxic threat to people and animals as they are 

broadcast at very low rates (typically 0.6 kg/ha). These baits are not considered selective 

for S. invicta although their effects on non-target ants are relatively unknown. The fast-

acting baits (neurotoxins) differ from slower acting insecticide baits i.e. growth 

regulators) in their mode of action. Understanding the effects these baits have on the ant 

community is critical for development of sustainable S. invicta management practices in 

the United States. 

Pilot Studies 

     A pilot study was conducted in Texas during 2000-2003 to document the impact of 

broadcast baits on S. invicta and non-target species. The manipulative field experiment 

reduced local densities of S. invicta with an Insect Growth Regulator (IGR) bait 

(ExtinguishTM, 0.5% s-methoprene, slow active bait) in a managed ecosystem (Harris et 

al 2003) – a commercial pecan orchard. This study indicated the impact of this bait was 

greater on S. invicta, than on the other ant species. The assemblage was observed to 

increase in abundance by ~25% in relation to control sites following the reduction of S. 

invicta. The bait treatment benefited numerous native ant species (i.e., Dorymyrmex 
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flavus, Diplorhoptrum molesta, Pogonomyrmex barbatus), resulting in a significant 

increase in alpha diversity (species turnover). The same study also reported that some of 

the native ant species still co-existed at high densities with S. invicta two years after the 

last IGR bait treatment (Calixto et al 2007b). One species in particular, Dorymyrmex 

flavus (pyramid ants), showed a significant increase in IGR-treated plots. D. flavus was 

observed strongly interacting with marked S. invicta workers and marked S. invicta 

carcasses. Marked remains were later found mixed with much higher densities of 

unmarked dead S. invicta remains on D. flavus middens (Calixto et al 2007a). Though 

direct predation was not observed in the field some laboratory studies suggests D. flavus 

is able to raid small S. invicta colonies and to disarticulate workers in the process 

(Warriner 1998) which explains the larger numbers of remains found on D. flavus 

middens located in areas previously treated with baits.  

     Density increases of Pogonomyrmex barbatus (red harvester ants), an important 

source of food for the endangered Texas Horned Lizard, were also positively correlated 

with D. flavus increase following reduction in S. invicta with IGR bait (Calixto 2007a). 

Field observations and nest mapping indicate that the two species had similar habitat 

requirements and they selected similar nesting areas, resulting in a mosaic of P. barbatus 

colonies surrounded by D. flavus (Calixto et al 2007a). S. invicta have been widely 

implicated in the disappearance of P. barbatus (and indirectly, in the decline of Texas 

Horned Lizards, Phrynosoma cornutum) through direct predation on P. barbatus brood 

and workers (Hook and Porter 1990). These findings suggested that P. barbatus may 

benefit from the close proximity of D. flavus nests and their aggressive behavior towards 
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S. invicta in an area treated with IGR bait. Increased diversity was also observed in a 

community-wide S. invicta management project conducted by Texas Cooperative 

Extension that documented increased species diversity in neighborhoods treated with 

various bait products (Riggs et al 2002). 

     Native ants have also been monitored in pastures that have received regular aerial 

applications of bait blends of Extinguish and Amdro Pro (0.73% hydramethylnon) using 

different sampling techniques. Native ant abundance was observed to increase, with 

particular benefits to D. flavus and Diplorhoptrum molesta (C. L. Barr, A. Calixto and B. 

Drees, USDA-ARS Area-wide Project internal data).  

     These studies provide strong evidence suggesting that suppression of S. invicta is far 

more beneficial to native ants than any ill effects to the latter from broadcast baits, 

contrary to what King and Tschinkel (2006) have suggested in their study in Florida. The 

use of broadcast baits in particular have been discouraged in areas of relatively low S. 

invicta density and/or high native ant density as a means of conserving native ants 

(Drees et al 2002, King and Tschinkel 2006, Tschinkel 2006) because such baits were 

presumed incompatible with native ants. 

Biotic and Abiotic Factors Affecting S. invicta Success on Introduced Areas 

     Invasive or nonindigenous species are defined as those that have been accidentally or 

intentionally transported outside their native (historic) range, and spread in their new 

environment (Levine 2000). Human mediated transport is likely more important to 

determining ranges, whereas abiotic and abiotic processes (e.g. weather, competitive 

ability, lack of natural enemies) may be more important for densities of invasive species 
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(Richardson et al 2000, Colautti and MacIsaac 2004). The general stages of invasion 

process can be defined as 1) introduction, where the invader is transported from its 

historic range, 2) establishment, where the invader growth from low densities, 3) spread, 

where the invasive species exhibit expansion across the landscape, and 4) impact, where 

the invasive exerts negative, positive effects on resident species (Levine 2000). Two 

major questions arise regarding this process of invasion: 1) do more diverse assemblages 

resist invasion? 2) and second, what traits regulate the successful establishment and 

spread on invaded areas? One possibility that has been suggested is to determine the 

filters invasive species go through during the invasion process and even look at 

ecological traits they are introduced into a potential invaded area.  

     Invasive species, like S. invicta, go through many different filters before it is 

successfully established in their new environments and assembled into an existent 

community (Hobbs and Norton, Tschinkel 2006). Many ecologists have recognized 

these filters and the role they may play on developing management strategies tailoring 

the control of invasives and restoration of species and ecological processes (Hobbs and 

Norton 2004, Morrison 2008). 

     Potential invaders begin as propagules residing in a donor region, then pass through a 

series of filters that may preclude transition to subsequent stages (e.g. establishment, 

spread). General filters can be defined as 1) propagule pressure, 2) physicochemical 

requirements of the invader, and 3) community interactions. Determinants may 

 positively (+) or negatively (-) affect the number of propagules that successfully pass 

through each filter (Colautti and MacIsaac 2004). Hobbs and Norton (2004) recognized 
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similar filters for restoration programs; Morrison (2008) modified them to apply more 

directly to animals and plants and appeared to be more concise and applicable to 

invasive species in contrast to those described by Colauatti and Maclsaac (2004). He 

defined 1) abiotic and 2) biotic filters. He considered abiotic filters climate, substrate and 

landscape structure. Biotic filters he considered are competition, predation, propagule 

availability, mutualism, disturbance, succession and biological legacy. Parasitism and 

disease are also important filters to consider within the context of S. invicta 

management. 

     In this study I deal in particular with competition. As with any other invasive species 

and in the particular case of S. invicta, we need to quantify the responses of species to 

one another and to small changes in the physical environment. Management of S. invicta 

includes designed efforts to manipulate these filters to arrive at a desired species 

composition and to achieve sustainable management of S. invicta. Competition is one of 

these filters that can be manipulated, possibly using insecticide baits, to achieve 

sustainable management of S. invicta and restore native ant assemblages. 

The Role of Competition 

 Competition is not the only mechanism that may be invoked to explain patterns of 

fauna assembly (Kelt and Brown 2004). However the mechanisms involved in how 

native ants escape insecticidal effects as previously presented are largely undetermined, 

but appear to be explained by competition. Ant species within an assemblage are often 

subject to a trade off between exploitative and interference ability that permits species 

with different foraging strategies to coexist (Holway 1999). There are 3 common 
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foraging strategies among ants. The first are “opportunists” that arrive first at food 

sources but are timid and withdraw in the face of interspecific competition. Second are 

“extirpators”, which often take longer to locate food but recruit in large numbers and 

aggressively displace other species. Finally, “insinuators” depend on their small size and 

utilize inconspicuous behavior to collect food while in the presence of other ants (Wilson 

1971).  S. invicta combine fast arrival and massive recruitment becoming, in effect, an 

opportunistic extirpator and out-compete other predominantly opportunist or extirpator 

ant species (Porter et al 1988, Camilo and Phillips 1990, Porter and Savignano 1990). 

Competition in this case is asymmetric, with the advantage going to species able to 

recruit higher numbers per unit area (Holldobler and Wilson 1990). This scenario leads 

to linear dominance hierarchies, in which some species that arrive first and take away the 

limited resources “indirectly” displacing other species not able to compete for the 

resource, or where dominant species “directly” displace other species at food sources. 

These two cases are reflective of resource and interference competition (Krebs 2001).   

 These compensatory mechanisms where resource discovery and dominance are 

involved appear to define the guidelines for coexistence in local ant communities 

(Davidson 1998, Holway 1999, Feener 2000) - what Feener (2000) refers to as a 

“dominance-discovery” trade off. Tilman (1982) emphasized that scientists need to study 

the mechanisms by which competition operates and the resources that are being utilized. 

He argued that competition is rare in natural populations and that the few interactions 

involving resource utilization may not lead to exclusion. Competition appears to be 
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common through the evolutionary history of communities that has resulted in 

adaptations (i.e. behavioral shifts) to minimize competitive effects. 

     In a Tennessee study with the hybrid imported fire ant (Solenopsis invicta x S. 

richteri), native ants were able to control food sources better in areas where hybrid fire 

ants had been suppressed with individual mound treatments (Gibbons 2001). This 

strongly suggests that S. invicta’s rapid and aggressive response to any bait may protect 

native ants from exposure to the initial treatment independent of toxicity. But, it leaves 

open the question of whether they would be affected if S. invicta were at low densities or 

absent.  

     Limited information is available as to how suppression of S. invicta benefits native 

ants and even less is known regarding the role of native ants in resisting S. invicta re-

invasion after a bait treatment.  King and Tschinkel (2006) attempted to address this 

issue. Through a manipulative field experiment, they explored the effects of fire ant 

reduction on resident ant abundance and diversity. S. invicta was reduced using hot 

water applied directly to the colony and then observing the response of resident ants to 

the reduction. Samples were taken during a week in the summer in two years. Results 

suggest fire ants do not competitively suppress other ant species; however, the study is 

not well replicated in space and time and appears to be limited to a single week when 

many ant species may not be active. 

     Similarly, the toxic effects of insecticides designed for S. invicta control cannot 

necessarily be extrapolated to native ants. Despite this lack of data, the use of S. invicta 

control products has been discouraged in areas with native ant species and an arbitrary 



 

 

11

“treatment threshold” of 20 colonies per 0.4 ha (1 acre) is often used to trigger 

treatments (Drees et al 2002). Research is needed to define this threshold with 

biological, economic, and/or human nuisance parameters.  

     S. invicta management strategies must be tailored to human expectations for use of 

the infested area. Broadcast baits are the most effective, least expensive and least toxic 

means of S. invicta control in most situations (Barr et al 2005). Broadcast baits offer 

great flexibility in developing tailored strategies because they vary in type of toxin, 

speed of action, residual activity, effects on non-target species, and mode of action. 

Regardless of overall S. invicta density, a single colony in the “wrong” place (such as in 

the breeding site of an endangered species) can cause substantial damage, thus 

necessitating the need for preventive treatments, most typically applied as broadcast 

baits. Yet, baits are not recommended for use in areas of low S. invicta density or native 

ant presence, despite there being a dearth of data from the field to support these 

recommendations. Careful examination of commercially-available S. invicta control 

products in the field is needed to document their actual effects, and then to explore 

development of strategies tailored to human and wildlife needs. 

     The study sites in this project are represented by unimproved grasslands with 

scattered woods under low intensity grazing. The intensive sampling proposed will 

provide a database for S. invicta, native ants, and other macroscopic arthropods’ 

responses and interactions to a variety of different baits. I expect knowledge gained in 

this study to allow tailoring a range of management strategies for S. invicta and for the 

restoration/conservation of native ants in Texas. 
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     This study investigates, through field manipulative experimentation, the effects on the 

relative abundance and diversity of native ants to the application of prescribed baits (fast 

and slow active ingredients) and reduction of S. invicta. The rate of competition 

(dominance and discovery) of broadcast baits during the application, and the impact of 

reinvasion of S. invicta in areas of high, medium and low density of native ants treated 

with baits will be evaluated in typical Post Oak Savannahs in Central Texas. I attempt to 

use the Adaptive Management approach. This uses management practices as 

experiments which must be monitored carefully to ascertain if goals were met and to 

identify errors in understanding the dynamics of the systems managed. In this approach 

actual mechanisms and effect to management actions are compared to our preexisting 

information of the system, then corrected and implemented (Walters 1986). With this 

approach new S. invicta management strategies will be developed tailoring human needs 

by determining attributes of particular poison baits and judiciously combining the best 

management practices with interspecific interactions from native ants. Ideally, S. invicta 

can be sustained at low densities for extended periods reducing the costs of management 

and frequency of re-treatments for the control of this species in vulnerable areas in 

Texas. 

     The objectives of this investigation are 1) determine the effect of different broadcast 

baits on native ant diversity and relative abundance in Post Oak Savannahs in Central 

Texas; 2) determine if different relative abundances of native ants slows and/or prevent 

re-invasion of S. invicta into treated areas with broadcast baits; 3) determine the 

mechanisms for access and removal of broadcast baits by S. invicta and native ants to 
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develop treatment recommendations to improve the use of these products against S. 

invicta and/or minimize effects on native ants; and 4) gather baseline data on other 

arthropods to determine whether secondary effects occur due to the alteration of the ant 

assemblage in the rangeland ecosystem. 
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CHAPTER II 

MATERIALS AND METHODS 

Study Sites 

    This study was conducted at three sites located on private lands in Central Texas (Fig. 

1). Two of these sites are located in (Coryell Co.)193 kilometers NW of College Station 

(“Pruitt”: 31°30'19.33"N, 97°43'32.32"W and; “C3”: 31°25'36.87"N, 97°36'44.25"W). 

These sites are part of the Leon River Restoration Program (Institute of Renewable 

Natural Resources, Texas A&M University). The third site is located in (Burleson Co.), 

20 kilometers SW of College Station (“Barr”: 30°26'2.22"N; 96°30'41.12"W). The 

habitats consist primarily of grazed post-oak savannah with areas of dense brush near 

seasonal creeks. The sites were screened to detect absence or presence of phorid flies 

(Pseudacteon spp.) and Thelohania solenopsae (a natural disease occurring statewide 

that infects S. invicta colonies). Phorid flies have been released on several sites in Texas 

and are spreading off the original release sites (Gilbert et al 2008). Since the impact of 

these introduced organisms remains unclear, sites were located out of the expansion 

range of phorid flies to avoid introducing potential variation. T. solenopsae has been 

found across most of Texas and the persistence of the infection appears constant through 

the state (Mitchell et al 2006). Therefore, a homogeneous effect is expected across sites. 

All sites in this study were positive for T. solenopsae but free of Pseudacteon flies. 
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Research Hypotheses 

     These hypotheses were established based on findings by Calixto et al (2007b). Effect 

size represents the change in density associated with the bait treatment and the reduction 

of S. invicta.                 

     Hypothesis 1. Abundance of native ants increases by at least 25% (Effect Size ≥ 0.6) 

for bait    treated sites compared to untreated.  

     Hypothesis 2. Behavioral dominance by S. invicta decreases by at least 10% (Effect 

Size ≤-0.2) in bait treated sites compared to untreated. 

     Hypothesis 3. Foraging by S. invicta on insecticide baits is higher by at least10% 

(Effect Size ≥ 0.2) in low native ant densities areas compared to high densities. 

Experimental Design 

     Experiments were conducted using an enhanced BACI-P (Before/After-

Control/Impact-Paired) design, which had two sets of sampling replicates in time (1 

before and 1 after the impact) with measurements of biological and environmental data 

in area by time factorial design. A pulse experiment was used to measure the response to 

a single treatment application (resilience). Treatments were applied on 15 May 2006 and 

17 June 2007 respectively. All three sites were sampled from March through October 

during the 2006 and 2007 seasons, with March-May sampling being the set of replicates 

before the impact and June-October the set of replicates after the impact. 

     Initial densities of S. invicta and native ants. The three sites were rigorously sampled 

by using pitfall traps and food lures to determine the relative abundance and behavioral 

dominance of both S. invicta and native ant species. Sixty pitfall traps and 96 food lures 
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(beef/chicken wieners) were deployed on each one of the sites on areas where eventually 

the plots were going to be located. Sites were sampled for up to seven weeks during 

2006. Data indicated the three sites had similar relative abundance and behavioral 

dominance of S. invicta, but differed in the abundance of native ants (P < 0.05, Linear 

Mixed Model, Tukey Post hoc analysis). Sites where then blocked by native ant 

abundance as low (“Pruitt”), medium (“Barr”) and high (“C3”) (see Fig. 2).         

     Experimental plots.  Field experiments used 0.5 ha plots. Plots were created with the 

software ArcGIS (ESRI) and using the Xtools extension. This extension was used to 

create a grid on the sites map; cells with similar characteristics (i.e. soil and vegetation 

characteristics) were grouped to reduce the source of variation. Each cell represented a 

64x64m square plot. Final plots were then selected at random from the grids, and 

established in the field using a Trimble GPS (sub meter accuracy), and marked. A buffer 

of at least ~35m was left between plots to lessen the possibility of treatment effects 

between plots (following Drees and Barr 1992, Martin et al 1998).  

     Treatments.  A completely randomized design was used to assign the treatments to 

the plots (experimental units). The treatments consisted of; 1) a slow acting bait, (IGR - 

Extinguish, 0.5% s-methoprene, Wellmark International, Dallas, TX 75234), 2) a fast 

acting bait (Advion, 0.045% indoxacarb, DuPont Professional Products, Newark, DE 

19714), and 3) untreated controls. Treatments were applied at a rate of 0.68kg/ha using a 

Herd seeder (Model GT-77 ATV - Herd Seeder Co. Inc.) mounted on a utility vehicle 

(John Deere Gator TH 4x4, Deere & Company). Treatments were applied on May 16, 

2006 and June 7, 2007 on “Barr” and May 17, 2006 and June 6, 2007 on “C3” and 
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“Pruitt”. All treatments were applied during the morning (between 8-11 am) and with 

temperatures lower than 28°C. Treatments were replicated four times. The minimum 

number of replications needed to detect differences was determined using power analysis 

based on data collected in previous studies (Calixto 2004) (Power= 0.80; α= 0.05; Effect 

Size = ~25% increase). This analysis suggested the use of six or more replicates per 

treatment. However, due to constraints in space and the limited availability of personnel, 

four replications were used. Observations in time were used to increase the scale and 

improve the inferences that could be made from the results.   

Sampling Methods 

     Relative abundance and behavioral dominance. Two complementary sampling 

techniques were used in each experimental plot at each study site.  The first sampling 

technique consisted of pitfall traps to estimate the relative abundance and species 

composition of ground active ants (Bestelmeyer et al 2000). Traps consisted of a 120 ml 

plastic cup filled with propylene glycol (commercial antifreeze). Traps with lids were set 

in the field and opened 48 hours later to minimize “digging in” effects (Greenslade 

1973). Five traps were used per plot. Traps were distributed uniformly in the 

experimental unit (Systematic sampling).  

     The second sampling technique consisted of food lures (“hot dogs”) (Bestelmeyer et 

al 2000 used to determine relative abundance and behavioral dominance of ant species. 

Eight lures were distributed uniformly through the experimental unit (Systematic 

sampling) in each plot. Lures were inspected after one hour and the number of ants 
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observed on each slice (following Pereira and Porter 2005). Sampling dates for both 

pitfalls and food lures are presented in Table 1. 

     Competition for insecticide baits. In each plot, treated and untreated during and after 

treatment in all field trials, placebo bait (containing soybean oil but lacking active 

ingredient) was broadcast at 0.68kg/ha using a hand-held rotary spreader. The number of 

ants foraging on bait particles on the ground inside quadrats were then recorded 

(Bestelmeyer et al 2000). These quadrats consisted of ½-inch diameter PVC pipe frames, 

25x25 cm2 square Ten of these units were deployed and distributed uniformly through 

the experimental unit (systematic sampling). Ants were recorded every 15 minutes for 90 

minutes or until the last granule was observed removed. These observations examined 

how non-target species access baits under a range of conditions vis a vis S. invicta     

Environmental data. Data loggers (HOBO, Onset Computer Corporation) were placed at 

each of the study sites. Data on daily rainfall, temperature and humidity were recorded 

for the entire duration of the study. 

Data Analysis 

 Impacts of treatments. Data were analyzed separately in three different ways, 

each addressing the hypotheses presented above. I estimated Effect Sizes (ES) (Cohen’s 

d) and 95% confidence intervals for the data collected by pitfall traps and food lures. 

These effect sizes are standardized measures that express changes in density associated 

with the treatments and, therefore, the magnitude of a treatment effect (Cohen 1988, 

Scheiner and Gurevitch 2001).  

d = M1 - M2 / σpooled  
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σpooled = √[(σ1²+ σ2²) / 2] 

     Cohen (1988) defined d as the difference between the means, M1 - M2, divided by 

standard deviation, σ, of either group. Cohen argued that the standard deviation of either 

group could be used when the variances of the two groups are homogeneous. In meta-

analysis the two groups are considered to be the experimental and control groups. By 

convention the subtraction, M1 - M2, is done so that the difference is positive if it is in the 

direction of improvement or in the predicted direction and negative if in the direction of 

deterioration or opposite to the predicted direction. 

     The resulting ES and 95% CI were then plotted to illustrate the biological effects 

(positive, neutral or negative) and statistical significance observed for each experiment 

(Scheiner and Gurevitch 2001). The software Metawin 2.0 was used to perform these 

analyses. 

 I analyzed the data obtained from the different sampling methods using the Linear 

Mixed Model (LMM) (Repeated Measures - Type III sum of squares and diagonal 

repeated covariance) procedure. In this analysis, “plot” was the random factor and 

“treatment” and “week” were the fixed factors in the model.  This analysis allows for 

unsystematic variability of the data and provides greater power to detect effects. In this 

method, the covariance of errors is estimated and then used to constrain the error 

covariance matrix to derive the mean squares estimates of the effects. This method 

provides a way for modeling error structures among the repeated dependent variables 

and avoids Type I errors, it is also used for unbalanced sets of data. The statistical 
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package SPSS 15.0 (SPSS Inc. 2007) was used to perform these analyses (values 

significantly different when P < 0.05).  

     Impact of treatments on diversity. I estimated raw species richness for data collected 

from pitfall traps and compared them among treatments using LMM. In addition I used a 

simple estimator of the absolute number of species in the assemblage based on the 

number of rare species in a sample; this estimator is known as Chao 2 (Colwell and 

Coddington 1994), and is expressed by the formula: 

 

     Where Q1= the number of species that occur in one sample only (singletons) and Q2= 

the number of species that occur in two samples (doubletons). Species richness was 

compared among treatments to detect impacts of treatments on diversity. Rarefaction 

curves were generated by random re-orderings using the program EstimateS (Colwell 

2006). Numbers of species projected by the analysis are reported accompanied by 95% 

CI and an estimation of sampling efficiency. 

     Species co-occurrence. I used a null model to analyze the co-occurrence structure of 

ants in treated vs untreated areas. Null models are statistical methods and computer 

simulations used to analyze patterns in nature (Gotelli 2000). In this case, I examined 

species co-occurrence patterns to test whether ant communities among the treatments are 

non-random assemblages (against a null hypothesis that they are randomly assembled) 

and whether they are predicted by competition with the invasive species. I used pitfall 

trap data, because they reflected community structure. I tested the data collected against 

Q1SChao 2= Sobs+ 
2Q2 

2
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a null model asking whether there were significant differences in the co-occurrence 

patterns observed for native ants in treated vs untreated sites. S. invicta was not included 

because the presence of S. invicta was used to designate treatments. 

     Null models tests whether the mean co-occurrence index among treatments is larger 

or smaller than expected by chance. It also tests the variance of the co-occurrence index 

among treatments. An unusually large variance would mean that the treatments differ 

significantly from one another in their levels of co-occurrence: some treatments have 

species with high levels of co-occurrence and the other has species with low levels of co-

occurrence. An unusually small variance would mean that treatments are similar to one 

another in the level of co-occurrence observed. A random result for the variance means 

that the level of co-occurrence among treatments is about what would be expected if the 

species were assigned randomly to different treatments (Gotelli 2000). 
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CHAPTER III 

RESULTS 

Species Richness 

     A total of 675,422 ants and 34 species were collected for the entire study using pitfall 

traps. During the sampling period of 2006, 121,679; 41,256 and, 268,605 ants were 

collected at “Pruitt”, “Barr” and “C3” respectively. For the sampling period of 2007, 

98,210; 43,990 and, 101,682 ants were collected at “Pruitt”, “Barr” and “C3” 

respectively. By using the two sampling methods (pitfall traps and food lures), 17 

species were found for “Pruitt” (Tables 2 and 3), 22 species for “Barr” (Tables 4 and 5) 

and 27 species for “C3” (Tables 6 and 7). The most abundant species sampled for all 

sites were Solenopsis invicta Buren, Forelius pruinosus (Roger), Paratrechina terricola 

(Buckley), Monomorium minimum (Buckley) and Dorymyrmex flavus McCook. 

     Results from pitfall traps for 2006 and 2007 showed no significant differences among 

treatments before and after the bait application (P > 0.05, LMM) (Figs. 3 and 4). Results 

of these analyses for all sites and sampling techniques are presented in Tables 8 and 9. 

Sample-based rarefaction curves for pooled treatment data for “Pruitt” projected 27 

species (95% CI: 16.67-108.94) and 17 species (95% CI: 13.56-41.72) for Methoprene 

treatments for years 2006 and 2007 respectively, and 18 (95% CI: 16.35-41.46) and 17 

(95% CI: 16.13-26.02) for Indoxacarb treatments for years 2006 and 2007 respectively, 

and, 16 (95% CI: 15.07-29.17) and 15 (95% CI: 13.18-35.13) for untreated Control 

treatments for years 2006 and 2007 respectively. 
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     For “Barr,” sample-based rarefaction curves projected 31 species (95% CI: 20.26-

85.59) and 23 species (95% CI: 15.99-79.82) for Methoprene treatments for years 2006 

and 2007 respectively, 16 (95% CI: 15.07-29.16) and 26 (95% CI: 18.99-82.82) for 

Indoxacarb treatments for years 2006 and 2007 respectively, and, 17 (95% CI: 17.56-

24.8) and 24 (95% CI: 18.57-58.53) for untreated Control treatments for years 2006 and 

2007 respectively. 

     For “C3”, sample-based rarefaction curves projected 18 species (95% CI: 18.06-25.8) 

and 21 species (95% CI: 21.26-86.63) for Methoprene treatments for years 2006 and 

2007 respectively, 17 (95% CI: 17.01-20.53) and 32.96 (95% CI: 21.26-86.63) for 

Indoxacarb treatments for years 2006 and 2007 respectively, and, 20 (95% CI: 19.18-

31.44) and 22 (95% CI: 21.26-86.63) for untreated Control treatments for years 2006 

and 2007 respectively. 

     The shape of the curves during 2006 showed that sampling in “Pruitt” and “Barr” 

accumulated species much more quickly in Indoxacarb and Control treatments compared 

to Methoprene. At “C3” species appear to accumulate similarly among the three 

treatments. Overlap of 95% CI indicates treatments among the three sites project similar 

numbers of species and similar shaped rarefaction curves (Fig. 5). 

     For 2007, the shape of the curves revealed in “Pruitt” showed similar accumulation of 

species as in 2006. “Barr” accumulated species less quickly, as it appeared not to reach a 

plateau in the accumulation of species. In “C3,” Methoprene and untreated Control 

produced similar accumulation curves as they reached a plateau more quickly than the 

Indoxacarb treatment. As in 2006 and based on overlap of 95% CI, treatments among the 
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three sites projected similar numbers of species and similar shaped rarefaction curves 

(Fig. 6). 

Species Co-occurrence 

     Analysis of co-occurrence among treatments in the absence of competition by S. 

invicta indicated that the community structure is very similar. Native ant species do not 

appear to co-occur significantly more or less (small C-score) among untreated areas than 

among sites that have been treated for S. invicta (Table 10). These results suggest 

community structure is predicted by chance and not by any biological interaction, in this 

case, competition. 

 Impact of Bait Treatments on Native Ant’s Relative Abundance and S. invicta 

Dominance 

     Relative abundance. Data from pitfall traps for “Pruitt” during 2006 showed a 

reduction in abundance of S. invicta in both bait treatments compared to untreated 

Controls following the bait application (Fig. 7). However the LMM analysis showed no 

significance differences among treatments (Table 11) but Effect Sizes (ES) were closed 

to the 10% reduction proposed on the original hypotheses (Fig. 8). Native ants at this site 

exhibit at slight increase in abundance (near 25%, close to the ES proposed on the 

hypotheses) however the LMM analysis did not show statistical differences. Numbers in 

some instances were too low to perform the LLM analyses. 

     Data produced for “Barr” for the same year showed a significant reduction of S. 

invicta due to the bait treatments (Table 12). Relative abundance remained similar after 

the bait treatment (Fig. 9). ES also showed the magnitude of the bait impact on S. 
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invicta, especially by Indoxacarb, which exhibited a fast action. A slight reduction was 

observed in native ants for this particular treatment after the application (Fig. 10). 

     For “C3”, the bait treatment had a significant impact on S. invicta abundance (Table 

13). Native ants were also observed increasing in abundance especially in those areas 

treated with Methoprene (Fig. 11).  However, LMM showed no significance differences 

in the same year. ES indicated the magnitude of the impact of the bait on S. invicta 

whereas native ants appeared unaffected (Fig. 12). 

     For year 2007, “Pruitt” showed significant differences among S. invicta abundance 

due to the bait treatments (Table 14) while native ants exhibited a significant increase 

compared to Control (Fig.13). ES indicated the Methoprene exhibited better control of S. 

invicta compared and a positive response by the native ants (Fig. 14). 

     For the same year, “Barr” presented a reduction in the abundance of S. invicta, 

however the LMM indicated otherwise (Table 15). ES however, showed that both 

Methoprene and Indoxacarb appeared to have contributed to the reduction in S. invicta 

unlike the interpretation provided by the LMM (Fig. 15). Based on the LMM and also 

supported by the ES (Fig. 16), native ants do not appear to be adversely affected by the 

treatments.  

    “C3” for 2007 showed significant reduction in S. invicta relative abundance due to 

both bait treatments (Table 16). Native ants exhibited significant increases in bait treated 

areas (Fig. 17). ES consistently showed the negative impact of bait treatment on S. 

invicta and showed no apparent changes in native ant abundance (Fig. 18). 
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      Figures 19 and 20 present a summary of the estimated ES for both years and all the 

sites generated using the pitfall trap data. In summary, pitfall trap data for 2006 showed 

no change due to bait treatments in S. invicta abundance nor were native ants negatively 

impacted. In fact, a slight increase was observed at “Pruitt” near the ES proposed in the 

original hypotheses. For “Barr” and “C3,” S. invicta abundance of workers appeared to 

be slightly impacted, and a slight reduction in natives was observed, though not enough 

to be significant. For 2007, the situation was similar, however native ants were slightly 

reduced (but not significantly).  

     Relative behavioral dominance.  Impact of bait treatment and native ant presence on 

discovery and dominance of resources by S. invicta was measured using food lures. For 

the year 2006 at “Pruitt,” the bait treatment significantly reduced foraging and 

dominance of S. invicta (Table 11). Native ants were observed more at food lures (Fig. 

21), but numbers were not significantly higher compared to Control based on the LMM 

analysis. ES consistently shows an impact of bait treatments on S invicta and, contrary to 

those results yielded by the LMM, native ants appeared to increase and dominate food 

lures in areas where bait treatments were applied (Fig. 22). 

     At “Barr,” dominance of S. invicta was significantly reduced (Table 12). Native ants 

in this site appear to also increase and dominate the food lures in bait treated areas (Fig. 

23). As in “Pruitt,” the LMM did not show significant differences, however careful 

analysis using ES shows a dramatic and significant dominance by native ants (Fig. 24). 

      “C3” did not show significant reduction of dominance of resources by S. invicta 

(Table 13). Native ants also appeared unaffected by the treatments (Fig. 25). ES were 
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consistent with these results. The impact of the treatment did not achieve good control of 

the invasive however native ants appeared slightly affected (Fig. 26). 

     For the year 2007, “Pruitt” showed significant reduction of S. invicta dominance on 

both bait-treated plots (Table 14). Native ants also significantly increased in dominance 

in bait treated plots (Fig. 27). ES were also consistent with the impact on S. invicta 

dominance and showed a slight increase of native ants at food lures (Fig. 28). 

 “Barr” also exhibited significant reduction of S. invicta at food lures (Table 15), 

with native ants also more common at food lures in plots that were treated with baits 

(Fig. 29). ES estimations were also consistent with the reduction of S. invicta and the 

increase of dominance at lures by native ants (Fig. 30) in 2007. 

     The bait treatments did not significantly reduce the dominance of S. invicta at “C3” 

(Table 16) in 2007. To the contrary, foragers of the invasive appear more active in bait 

treated plots. Native ants were significantly more active in Control areas compared to 

bait treated plots where they tended to dominate food lures – an indication the bait 

treatment had the greatest impact on the native assemblage (Fig. 31). ES reflected that, 

in fact, S. invicta was not altered by the bait treatment and remained active in those plots, 

whereas natives appeared to be affected by the bait treatments (Fig. 32) 

     Figures 33 and 34 present a summary of the estimated ES for all years and sites 

generated using the food lure data. In summary, food lure data for 2006 showed 

significant impacts by baits on dominance and relative abundance of S. invicta at low 

and medium native ant densities (“Pruitt” and “Barr” respectively). At “C3”, the site 

with higher native ant abundances, S. invicta appears unaffected by the Indoxacarb 
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treatment but shows an impact from the Methoprene. Native ants also showed decreases 

in dominance at food lures especially in those areas treated with Methoprene. For 2007, 

the bait treatments exhibited a similar efficacy to those observed during 2006 for the 

sites with low and medium native ant densities (“Pruitt” and “Barr”). On the same sites, 

native ants exhibit increases in dominance near the ES proposed in the original 

hypothesis. For “C3,” the bait treatment definitively did not reduce dominance of S. 

invicta, but it did affect foraging and abundance of native ants. 

Competition for Bait Insecticides 

     During the spring of 2006, the placebo baits in all three sites and in all experimental 

plots were rapidly discovered and removed by S. invicta (Fig. 35), most bait granules 

being gone in less than two hours. Figures 36-38 shows how S. invicta rapidly removed 

those bait particles. No significant differences were found at this point in the number of 

S. invicta foragers observed at quadrats among the experimental plots (Tables 11-13). 

Individuals of native ant species were not frequently observed at quadrants and only 

three species (S. invicta, F. pruinosus and M. minimum) were observed attracted to the 

bait particles (Tables 17-19). 

     After the fall insecticide application, frame evaluations indicated more native ant 

foragers collecting the placebo particles than S. invicta (Fig. 35). A shift in discovery 

and removal was observed in areas where S. invicta has been reduced with baits. 

Nevertheless, S. invicta remained, in some instances, dominant at, while other ant 

species appeared foraging and collecting these baits (Figs. 36-38). 
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     For 2007, a similar situation was found. S. invicta quickly discovered and removed 

the grits before the insecticide bait application (Fig. 39) and, as in 2006, S. invicta 

appeared more actively discovering the particles in areas of low native ant density. At 

high native ant densities, particle discovery was distributed among S. invicta and some 

native ant species (Figs. 40-42). Following the bait application and the reduction of S. 

invicta, native ants appeared to discover and collect the particles more often. For 2007, 

S. invicta appeared to collect particles less frequently in previously Methoprene treated 

areas, but the direct effect remains unclear. 

Impact of Baits and S. invicta on Relative Insect Abundance and Taxa Diversity 

     Preliminary data obtained using pitfall traps during 2006 indicated that neither bait 

insecticides had a significant effect on relative insect abundance for any of the sites and 

proportions remained relatively similar before and after the bait application (Fig. 43). 

The average number of taxa found in samples appeared to remain constant and was 

similar before and after the bait application. No significant statistical differences were 

found both on relative abundance and taxa diversity among the three treatments. Linear 

Mixed Models results for effects of treatments on the relative abundance and taxa 

diversity of insects during 2006 are presented in Table 20. 
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

Ant Species Diversity and Co-occurrence 

     Ant species found in this study are fairly consistent with those reported coexisting 

with S. invicta in other studies (Helms and Vinson 2001, King and Tschinkel 2006, 

Calixto et al 2007b). More importantly, this study shows that management of S. invicta 

using insecticide baits does not have a significant impact on species richness and 

abundance. No species suffered local extinction among the treatments and the number of 

species projected for each method was relatively close to those observed through the 

sampling periods. The ants of Texas have been surveyed thoroughly (O’Keefe et al 

2002), so species patterns can be evaluated more accurately in the context of species co-

occurrence in relation to the invasive S. invicta. Intensive sampling at all three sites 

captured 34 species of ants (almost 12% of all ants reported for Texas (O’Keefe et al 

2000).  

     Species richness (Chao2) for all sites and treatments did not exhibit a “hump-shaped” 

pattern observed for disturbed habitats (Rosenzweig and Abramsky 1993). This is 

particularly unusual considering these Post Oak Savannahs are used for grazing and are 

subject to disturbance. The pattern that was observed among the three treatments for the 

two years possibly indicates that the ant assemblage was symmetrically disturbed and 

responded similarly. Another type of disturbance that was not reflected in the rarefaction 

curves was the bait application and the reduction of S. invicta. These findings are 

consistent with those reported by King and Tschinkel (2006) and Tschinkel (2006) 
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where they suggested a reduction of S. invicta does not affect ant diversity. In fact, 

among all treatments, before and after the bait “impact” raw species richness remained 

similar. S. invicta has been considered as the cause of a loss in insect diversity, 

especially in the ant mosaic (Porter and Savignano1990). More recent studies showed 

otherwise (Morrison and Porter 2003). S. invicta does not appear to dramatically impact 

other ants and insects and some are benefitted by the presence of S. invicta.  

     This study shows that “community stability” between S. invicta and native ants 

appears to occur. Results from the null model did show that community patterns are 

equally predicted in the absence or presence of S. invicta. This stability may be mediated 

by the allocation of resources and how different species access those resources. Some 

species may have evolved mechanisms to avoid competition, escaping in space and time 

or developing behavioral strategies that secure their survival (fitness) (Krebs 2001). 

     Species richness should be highest in favorable localities where competitive 

exclusion (if it occurs) is reduced by infrequent disturbance events or mildly stressful 

conditions (Rosenzweig and Abramsky 1993). Whether this applies to this particular 

study remains unclear. 

     Finally, the small variances observed among the C-score (Table 10) means that 

treatments are similar to one another in the level of co-occurrence observed. A random 

result for the variance indicated that the level of co-occurrence among treatments is 

about what would be expected if the species were assigned randomly to different 

treatments, these findings contradict those studies that suggested S. invicta and other 

invasive ant species causes community disassembly (Gotelli and Arnett 2000, Sanders et 
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al 2003, Calixto et al 2007b). In these studies, sites without the invasive species ant 

assemblages exhibit significant species segregation, consistent with competitive 

dynamics. In sites with the invasive ant, ant assemblages appear random or weakly 

aggregated in species co-occurrence. These results indicate that invasive species reduce 

 biodiversity but rapidly disassemble communities. The findings from my study show 

strong species co-occurrence in both reduced and untreated areas, indicating S. invicta 

does not dissemble the ant assemblage nor reduced the number of species in this 

particular ecosystem. Several hypotheses can be drawn from these results, 1) coexistence 

with the invasive ant has been common but the limited scale of natural and manipulative 

experiments have led to the conclusion that S. invicta excludes resident species, 2) 

resident ant assemblages have evolved physiological and behavioral mechanisms to 

avoid competition and predation from S. invicta considering this species has been in 

contact with indigenous species for more than 70 years since its original introduction, 

evolutionary processes at local levels may be undergoing, 3) the different filters present 

at introduced locations have level down the net effects of this invasive on population 

levels of other ant species, and 4) a combinations of all these factor its occurring.  

Impact of Bait Treatments on S. invicta Dominance and Native Ants 

     At the beginning, I hypothesized that abundances of native ants were expected to 

increase near 25% in bait treated areas compared to untreated. These differences were 

obtained from studies conducted by Calixto et al (2007b). Pitfall trap data and especially 

food lure data (behavioral dominance) demonstrated that, in some instances, the 

experiments achieved the effect proposed in the original hypothesis, indicating that the 
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bait application does not exert significant impact on native ant abundance. Pitfall trap 

data for the two years was consistent in showing no impact of bait treatments on natives. 

But, it did not provide conclusive evidence that an increased abundance occurs, as was 

observed in the study conducted by Calixto et al (2007b). However, in that study, the 

number of traps used for sampling ants was significantly lower compared to this study. 

The data however appears to have some characteristic “noise” and these traps are better 

at describing community structure and diversity than abundance (Bestelmeyer et al 

2000). Food lures, though, showed marked dominance by S. invicta which consistently 

discovered and dominated food lures, as is observed at natural resources (Tschinkel 

2006, LeBrun et al 2007, Calcaterra et al 2008). S. invicta, before bait treatment at low 

and medium native ant densities, appeared to rapidly recruit to food lures and dominate 

the resource, thus displacing other ant species. Following the bait treatments, S. invicta 

does not appear to be the dominant species and a shift in hierarchy is observed in ants of 

similar size and with the ability to produce defense mechanisms (Holldobler and Wilson 

1990, Tschnikel 2006). Several ant species, especially Forelius pruinosus, tended to 

dominate the resources when S. invicta was reduced with baits. These results are 

consistent with those obtained by Calixto et al (2007b) where behavioral dominance by 

other ant species occurs when S. invicta is reduced. This is also in agreement with the 

theory of “discovery-dominance trade off” proposed by Feener (2000) and covered by 

Holldobler and Wilson (1990). In this case, S. invicta appeared to be reduced to levels 

where other ant species were able to compete with them and exhibit similar community 

structure found in their original territories in South America (Macom and Porter 1996). 
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This presents an interesting scenario for the management of S. invicta - inducing 

interspecific competition by selectively reducing S. invicta and allowing increase in 

fitness of native species. More studies are needed to investigate further the impact on 

fitness of S. invicta under this management scenario.   

Competition for Bait Insecticides 

     The third and last hypothesis presented assumed that if S. invicta is the dominant 

species, with more colonies per unit area and with larger colonies than resident ant fauna 

(Tschinkel et al 1995), that the chances for them to encounter insecticide baits is greater 

than those for native ants. In this study I found that S. invicta discovers and removes the 

particles more quickly than resident ant species and that, in most of the cases, no more 

than four species access these particles. Based on these results, I argue that, given the 

ability of S. invicta to quickly discover and dominate resources, management of this 

species with insecticide baits under several environmental conditions is the preferred 

means of control.  The trade off is that at relative high native ant abundance, 

interspecific competition may occur. Therefore, the “resources” in this case, the bait 

particles, are allocated to both the invasive and resident ants, thus causing some degree 

of mortality to a few native ant species.  

     Interspecific competition among ants occurs most frequently among similar (size, 

morphology, life history) species (Holldobler and Wilson 1990). Given these 

circumstances, it is expected that out of the ant mosaic found in Post Oak Savannahs in 

Texas that just a few species may access these baits and be adversely affected. In this 

study, the most common ant species attending the particles (exclusive of S. invicta) were 
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Forelius pruinosus and Monomorium minimum, two species known to engage in strong 

interspecific competition with S. invicta and also known to attack and raid small S. 

invicta colonies and kill newly mated queens (Nickerson et al 1975, Nichols and Sites 

1991, Mottern et al 2004, Rao and Vinson 2004). Other ant species within the 

assemblage are not expected to be affected by the bait treatment. These mechanisms of 

interspecific competition (interference and resource) at play in this ecological scenario 

support the well know theory of niche specialization, which results in differences in 

relative survival across niches by different ant species and in the rates of production of 

different niches (Krebs 2001).  

     The use of insecticide baits has created a large controversy in the US. Many believe 

the use of these products harm resident ant fauna and that the active ingredients enter the 

food chain affecting other non-ant species (King and Tschinkel 2006, Tschinkel 2006). 

The information in this regard is very limited as few sound, intensive manipulative 

experiments have been conducted. This study shows bait treatments (applied at the rate 

indicated by the product label and authorized by the Environmental Protection Agency, 

EPA) have little effect on native ants when native ants are at low and medium densities 

and S. invicta is present in significantly higher numbers. 

Impact of Baits and S. invicta on Relative Insect Abundance and Taxa Diversity 

     S. invicta is an omnivorous predator and scavenger, with insects comprising most of 

their diet (Killion et al 1995). The extent of the impacts of S. invicta on native faunal 

communities is not yet known.  S. invicta have been shown to reduce the diversity of 

arthropod communities and to have negatively affected other invertebrate fauna (Lofgren 
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1986, Wojcik et al 2001). It has long has been debated whether insecticide baits harm 

non-ant species and whether S. invicta exerts an impact on non-ant communities. 

Invasive species are known not only to displace closely related species but also to 

outcompete other species and prey upon them. The impact of these two factors is 

relatively unknown (Tschinkel 2006). I attempted to provide baseline data to document 

both the impact of bait insecticides and S. invicta on insect abundance and diversity of 

ant taxa.  

     Results reported in this study indicate that bait insecticides do not appear to 

negatively affect insect abundance and insect taxa. This was consistently observed for all 

the sites of this study. No evidence was found to indicate that the reduction of S. invicta 

using these products significantly increased the abundance of insects. The bait 

application, given that the active ingredients s-methoprene and indoxacarb are very 

volatile and longer exposure to warm temperature and moisture appears to dissipate the 

effect (Moncada 2003, Csondes 2004), and the fact that most of the grits are probably 

collected by ants, does not appear to impact other insects.  

     It remains unknown if insects other than ants access these baits. However, based on 

the intensive observations conducted during 2006 and 2007, no insects other than ants 

were observed near the bait particles, so it is expected that the impact, if it occurs, is 

minimal.       

     In relation to the impact of S. invicta on insect abundance and taxa diversity, it is not 

surprising to have found no impacts at that level. Perhaps the negative impacts of S. 

invicta on other arthropods (excluding ants) is not reflected on their abundance simply 
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because this species puts pressure at population levels that are not reflected in numbers 

but in biomass and size which were not considered in this investigation.  

     Although credible experimental work links S. invicta to effects on invertebrates, 

claims about the impact of this species are built mostly on anecdotal observations (Allen 

et al 2004, Tschinkel 2006). To cite some examples without experimental evidence, S. 

invicta has been linked to the declining horned lizard. S. invicta is believed to 

competitively exclude harvester ants, Pogonomyrmex sp., one of the primary food 

sources of this lizard (Taber 1998). In another study, Barlett (1997) speculates that the 

decline of snakes in some areas is caused by egg predation by S. invicta. Another 

observational study argues that S. invicta exerts a significant impact on black capped 

vireo survival, a federally endangered species (Stake and Cimprich 2003). However, 

there are few studies involving manipulations of S. invicta densities to explore the effect 

of their removal on invertebrates. The lack of field manipulative experiments and limited 

inferences that can be drawn from these experiments are strong justification for studying 

the impact of this invasive species on other insect species. Understanding the effects of 

S. invicta (positive, negative, none) as well the mechanisms underlying these effects will 

help to provide a better understanding of the impact of S. invicta on food webs. For 

achieving this, long term comprehensive ecological studies with a larger scope, 

conducted with controls and adequate temporal and spatial replication to provide an 

understanding of the effects of S. invicta on vertebrate and invertebrate populations 

     This study raises the level of certainty that bait insecticides and native ants are 

compatible at some level. Long term studies and replication of this study in other 
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habitats and other states is needed to completely understand the potential of using baits 

to enhance interspecific competition by native ants. However I have shown that baits do 

not impact native ants when the latter are at low and medium densities. It remains 

unclear whether the effect of interspecific competition has a net effect on fitness of S. 

invicta. Ecological interactions can also change geographically (Thompson 2005).  Also, 

this study has shown that baits tilted the balance favoring some native ant species. 

Conversely, I have shown that repeated applications may harm native ants and that in 

areas with especially high native ant densities, baits may target resident fauna harming 

important species, causing “bait failures” and justifying the repeated use of bait 

insecticides to achieve “good” S. invicta control.  

Management Recommendations and Final Remarks 

     Protocols to assess initial densities of both S. invicta and native ants may be 

necessary to design and implement management strategies that include establishing 

“native ant” thresholds for treatments or re-treatments to reduce the impact on non-target 

species and improve the efficacy of bait products, unless product companies develop 

more specific products initial assessments remains necessary especially in rangeland 

ecosystems.  

     These protocols may include the use of food lures for determining relative abundance 

and, more importantly, behavioral dominance on targeted areas. This study and a few 

others have shown that ant species recruiting to food lures will be also those likely to get 

insecticidal bait (King and Tschinkel, Calixto et al 2007b). Food lures have been 

suggested as one of the tools to evaluate relative abundance and dominance of S. invicta 
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and to trigger bait applications on pastures (Pereira 2003, Pereira and Porter 2005). 

Preliminary studies conducted in Texas (Calixto et al, in preparation) shown that food 

lures can provide a reliable estimation of relative abundance and dominance of S. 

invicta. Plots with low, medium and high S. invicta density were established and 

performance of food lures was evaluated. Recruitment in high density areas was higher 

and strongly correlated to colony density. In less than 20 minutes, more than 90% of the 

lures were saturated with S. invicta foragers with a similar response at medium densities. 

At low densities, lures were never saturated, leaving “unvisited” lures where other ant 

species were later observed.  

     Relying on these preliminary observations and the results herein presented, I suggest 

the use of at least ten food lure units (0.5 gm beef/chicken wieners), deployed every 20 

m on an imaginary grid. Units should be left exposed for no more than 30 minutes, 

revisited and provided an estimated number of ants per unit. If more than 70% of lures 

are found saturated with S. invicta, one might argue it is “safe” to treat using insecticide. 

Under these conditions S. invicta is expected to control the bait allowing native ants to 

escape the treatment. If only 50-70% of lures are occupied, but no other ant species is 

observed, a bait treatment may be relatively safe. However there are other considerations 

regarding whether bait should be applied to control S. invicta (ground temperature, 

humidity).  Less than 50% of lures occupied does not warrant a safe application of baits. 

First, at this point, the treatment would not be necessary, numbers may be below the 

economic threshold, if one exists, for that particular site. Second, a bait application may 

impact ant species that are present at the moment and successful S. invicta suppression 
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would probably require repeated applications thus increasing economic costs of S. 

invicta management.  

     Also, timing of bait applications is important, S. invicta and native ants are not 

always active (through the day and seasons). Several studies have shown that S. invicta 

is likely active through the year compared to other ant species (Vogt et al 2005, Gibbons 

and Simberloff 2005). This allows treatments in periods of low native ant activity, like in 

the early spring in Texas (March) and later fall (December) (Calixto 2004). Time of day 

is also an important factor. Vogt et al (2005) indicated that bait treatments at noon and 

evening were likely to impact native ant species since S. invicta appears to forage more 

in the morning, late afternoon and evening, avoiding the high temperatures on the 

ground (Tschinkel 2006). Other ant species, like Dorymyrmex sp. and Forelius sp. are 

more resistant to high temperatures and are observed increasing foraging during warmer 

hours of the day. Other considerations to improve management practices are not here 

included such as the dietary requirements of S. invicta at specific times of the day or 

season. This information is necessary not only to develop better bait insecticide carriers 

but to avoid the amount of interspecific competition for these baits during the 

application.  

     All these recommended guidelines require more investigation. In order to validate 

these recommendations, investigation needs to focus on optimal foraging of S. invicta 

and competition for baits through day and season, using different matrices and 

performing applications on different localities with different ant assemblages, but where 

S. invicta is considered an economic pest. No data is yet available addressing issues such 
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as optimal foraging of S. invicta on insecticide baits both through the day and the 

seasons. In this study I have shown that morning applications during the spring and fall 

effectively suppresses S. invicta when other ant species relative abundance are low but 

that fall applications may target ant species other than S. invicta that increase following 

its reduction during the spring. 

     Finally, if an elevated percentage (~ 30%) of native ants is observed occupying food 

lures, the more likely it is that the bait treatment will fail in reducing S. invicta to those 

control levels expected by insecticide baits.  More importantly, the reduction of the 

native ants may leave open niches that most likely will be occupied by S. invicta and 

accentuate the economic and ecologic impact. It is important to understand that a 

sustainable management of S. invicta is necessary not only to reduce the costs of 

management practices but also to reduce the impact on non target species that at the end 

of the spectrum, may hold the key for an effective management of S. invicta in the US.  
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APPENDIX 1 

FIGURES 

 
FIG. 1. Study sites located in Central Texas. Stars indicate the three areas where the 
investigation was conducted, two sites are located in Coryell Co. (“C3” and “Pruitt”) and 
the third site is located in Burleson Co. (“Barr”). 
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FIG. 2. Initial relative abundance and behavioral dominance (mean and ± 1 SE) for S. 
invicta and native ants based on food lures and pitfall traps sampled for seven weeks 
prior bait application; different letters signify P < 0.05 (Linear Mixed Model).  
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FIG. 3. Impact of baits and S. invicta reduction on species Richness (S) based on pitfall 
traps, FY 2006. 
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FIG. 4. Impact of baits and S. invicta reduction on species Richness (S) based on pitfall 
traps, FY 2007.  
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FIG. 5. Diversity estimators among different treatments (Chao2), FY 2006. Curves are 
sample based rarefaction curves generated from 50 randomizations of sample order.  
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FIG. 6. Diversity estimators among different treatments (Chao2), FY 2007. Curves are 
sample based rarefaction curves generated from 50 randomizations of sample order.  
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FIG. 7. Impact of baits on S. invicta and Natives based on pitfall traps, FY 2006. 
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FIG. 8. Effect Sizes and 95% CI showing changes in pitfall traps in two treatments using 
BACI-P - Pruitt Ranch (Low Native Ant density), FY 2006. 
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Barr Ranch (Medium native ant density)
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FIG. 9. Impact of baits on S. invicta and Natives based on pitfall traps, FY 2006. 
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FIG. 10. Effect Sizes and 95% CI showing changes in pitfall traps in two treatments 
using BACI-P - Barr Ranch (Medium Native Ant density), FY 2006. 
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C3 Ranch (High native ant density)
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FIG. 11. Impact of baits on S. invicta and Natives based on pitfall traps, FY 2006. 
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FIG. 12. Effect Sizes and 95% CI showing changes in pitfall traps in two treatments 
using BACI-P - C3 Ranch (High Native density), FY 2006. 
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Pruitt Ranch (Low native ant density)
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FIG. 13. Impact of baits on S. invicta and Natives based on pitfall traps, FY 2007. 
 



 

 

65

E
ffe

ct
 S

iz
e 

(9
5%

 C
I)

-4

-3

-2

-1

0

1

2

Before (weeks)

1 2 3 4 5 6 7 8 9
-2

-1

0

1

2

3

Slow bait
Fast bait

After (weeks)

11 12 13 14 15 16 17 18 19 20 21

Solenopsis invicta

Natives

 
 
FIG. 14. Effect Sizes and 95% CI showing changes in pitfall traps in two treatments 
using BACI-P - Pruitt Ranch (Low Native ant density), FY 2007. 
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Barr Ranch (Medium native ant density)
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FIG. 15. Impact of baits on S. invicta and Natives based on pitfall traps, FY 2007. 
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FIG. 16. Effect Sizes and 95% CI showing changes in pitfall traps in two treatments 
using BACI-P - Barr Ranch (Medium Native ant density), FY 2007. 
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C3 Ranch (High native ant density)
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FIG. 17. Impact of baits on S. invicta and Natives based on pitfall traps, FY 2007. 
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FIG. 18. Effect Sizes and 95% CI showing changes in pitfall traps in two treatments 
using BACI-P – C3 Ranch (High Native ant density), FY 2007. 
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FIG. 19. Impact of baits on S. invicta and Natives (three densities, low, medium and 
high) based on pitfall traps, FY 2006. 
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FIG. 20. Impact of baits on S. invicta and Natives (three densities, low, medium and 
high) based on pitfall traps, FY 2007. 
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Pruitt Ranch (Low native ant density)
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FIG. 21. Impact of baits on S. invicta and natives based on food lures, FY 2006. 
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FIG. 22. Effect Sizes and 95% CI showing changes in food lures counts in two 
treatments using BACI-P - Pruitt Ranch (Low Native Ant density), FY 2006. 
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Barr Ranch (Medium native ant density)
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FIG. 23. Impact of baits on S. invicta and Natives based on food lures, FY 2006. 
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FIG. 24. Effect Sizes and 95% CI showing changes in food lures counts in two 
treatments using BACI-P - Barr Ranch (medium native ant density), FY 2006. 
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C3 Ranch (High native ant density)
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FIG. 25. Impact of baits on S. invicta and natives based on food lures, FY 2006. 
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FIG. 26. Effect Sizes and 95% CI showing changes in food lures counts in two 
treatments using BACI-P - C3 Ranch (high native density), FY 2006. 
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Pruitt Ranch (Low native ant density)
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FIG. 27. Impact of baits on S. invicta and Natives based on food lures, FY 2007. 
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FIG. 28. Effect Sizes and 95% CI showing changes in food lures counts in two 
treatments using BACI-P - Pruitt Ranch (Low Native Ant density), FY 2007. 
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FIG. 29. Impact of baits on S. invicta and natives based on food lures, FY 2007. 
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FIG. 30. Effect Sizes and 95% CI showing changes in food lures in two treatments using 
BACI-P - Barr Ranch (medium native ant density), FY 2007. 
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FIG. 31. Impact of baits on S. invicta and natives based on food lures, FY 2007. 
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FIG. 32. Effect Sizes and 95% CI showing changes in food lures in two treatments using 
BACI-P – C3 Ranch (High Native Ant density), FY 2007. 
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FIG. 33. Impact of baits on S. invicta and Natives (three densities, low, medium and 
high) based on food lures, FY 2006. 
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FIG. 34. Impact of baits on S. invicta and Natives (three densities, low, medium and 
high) based on food lures, FY 2007. 
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FIG. 35. Foraging behavior of S. invicta and Natives (three densities, low, medium and 
high) on placebo baits, FY 2006. 
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FIG. 36. Foraging behavior of S. invicta and Natives (Pruitt - Low native ant density) on 
placebo bait, before poison bait was applied and ~22 weeks after poison bait application. 
Observations taken at 15 min intervals following deployment of the placebo for a 90 
minute period for the before and the after measurements, FY 2006. 
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FIG. 37. Foraging behavior of S. invicta and Natives (Barr - Medium native ant density) 
on placebo bait, before poison bait was applied and ~22 weeks after poison bait 
application. Observations taken at 15 min intervals following deployment of the placebo 
for a 90 minute period for the before and the after measurements, FY 2006. 
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FIG. 38. Foraging behavior of S. invicta and Natives (C3 - High native ant density) on 
placebo bait, before poison bait was applied and ~22 weeks after poison bait application. 
Observations taken at 15 min intervals following deployment of the placebo for a 90 
minute period for the before and the after measurements, FY 2006. 
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FIG. 39. Foraging behavior of S. invicta and Natives (three densities, low, medium and 
high) on placebo baits, FY 2007. 
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FIG. 40. Foraging behavior of S. invicta and Natives (Pruitt - Low native ant density) on 
placebo bait, before poison bait was applied and ~22 weeks after poison bait application. 
Observations taken at 15 min intervals following deployment of the placebo for a 90 
minute period for the before and the after measurements, FY 2007. 
 
 
 
 
 
 
 



 

 

92

May
M

ea
n 

(±
S

E
M

) a
nt

s/
pl

ot
 

0
2
4
6
8

10
12
14
16

Slow bait
Fast bait
Control

October

Minutes

15 30 45 60 75 90
0
2
4
6
8

10
12
14
16

Minutes

15 30 45 60 75 90

Solenopsis invicta

Natives

 
 
FIG. 41. Foraging behavior of S. invicta and Natives (Barr - Medium native ant density) 
on placebo bait, before poison bait was applied and ~22 weeks after poison bait 
application. Observations taken at 15 min intervals following deployment of the placebo 
for a 90 minute period for the before and the after measurements, FY 2007. 
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FIG. 42. Foraging behavior of S. invicta and Natives (C3 - High native ant density) on 
placebo bait, before poison bait was applied and ~22 weeks after poison bait application. 
Observations taken at 15 min intervals following deployment of the placebo for a 90 
minute period for the before and the after measurements, FY 2007. 
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FIG. 43. Impact of insecticide baits and S. invicta reduction on relative insect abundance 
(non-ant) and taxon diversity (order level) based on pitfall traps across the three study 
sites, FY 2006. 
 
 
 
 
 
 
 
 



 

 

95

APPENDIX 2 

TABLES 

 
TABLE 1. Sampling dates for each site before and after the treatment application. 
Treatments were applied at a rate of 0.68kg/ha using a Herd seeder (Model GT-77 ATV - 
Herd Seeder Co. Inc.) mounted on a utility vehicle (John Deere Gator TH 4x4, Deere & 
Company). Treatments were applied on May 16, 2006 and June 7, 2007 on “Barr” and 
May 17, 2006 and June 6, 2007 on “C3” and “Pruitt”. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  2006       2007 
 Barr C3 Pruitt    Barr C3 Pruitt 
Before 15-Mar 31-Mar 31-Mar   Before 9-Mar 2-Apr 2-Apr 
 22-Mar 5-Apr 5-Apr     6-Apr 9-Apr 9-Apr 
 30-Mar 12-Apr 12-Apr     13-Apr 25-Apr 25-Apr 
 6-Apr 19-Apr 19-Apr     20-Apr 2-May 2-May 
 13-Apr 26-Apr 26-Apr     27-Apr 9-May 9-May 
 18-Apr 3-May 3-May     4-May 16-May 16-May 
 28-Apr 11-May 11-May     11-May 23-May 24-May 
 4-May     18-May 30-May 30-May 
 9-May     25-May 6-Jun 6-Jun 
      1-Jun   
After 23-May 24-May 24-May   7-Jun   
 30-May 31-May 31-May      
 8-Jun 7-Jun 7-Jun   After 22-Jun 21-Jun 21-Jun 
 15-Jun 14-Jun 16-Jun     28-Jun 11-Jul 11-Jul 
 22-Jun 23-Jun 21-Jun     6-Jul 17-Jul 17-Jul 
 29-Jun 28-Jun 28-Jun     12-Jul 25-Jul 25-Jul 
 6-Jul 6-Jul 5-Jul     18-Jul 1-Aug 1-Aug 
 13-Jul 12-Jul 12-Jul     2-Aug 8-Aug 8-Aug 
 19-Jul 20-Jul 20-Jul     9-Aug 15-Aug 15-Aug 
 27-Jul 26-Jul 26-Jul     17-Aug 24-Aug 24-Aug 
 2-Aug 2-Aug 2-Aug     25-Aug 30-Aug 30-Aug 
 30-Aug 9-Aug 10-Aug     5-Oct 4-Oct 5-Oct 
 29-Sep 31-Aug 31-Aug     30-Oct 1-Nov 1-Nov 
 26-Oct 28-Sep 28-Sep        
    27-Oct             



 

 

96
96

TABLE 2. Ant species and abundance at “Pruitt” site by year among the different treatments, using pitfall traps. 
 
  2006  2007 
Pitfall traps Before After  Before After 
Species Slow Fast Control Slow Fast Control  Slow Fast Control Slow Fast Control 
Dolichoderinae              
     Dorymyrmex flavus McCook 0 0 13 0 1 7  0 2 2 0 19 29 
     Forelius pruinosus Roger 960 2367 2340 13259 20869 15783  761 768 332 4267 1647 1750 
Ecitoninae              
     Ladibus coecus Latreille 1 0 0 0 0 0  0 0 0 1 3 11 
     Neivamyrmex opacithorax Emery 0 0 0 0 6 0  0 0 0 0 6 0 
Formicinae              
     Brachymyrmex depilis Emery 0 0 2 56 10 34  0 0 2 3 1 1 
     Paratrechina terricola Buckley 122 66 93 414 391 656  122 60 49 337 388 210 
Myrmicinae              
              
     Carebara longii Wheeler 0 0 0 0 0 0  0 0 0 0 1 0 
     Crematogaster laeviuscula Mayr 0 0 1 0 0 0  0 3 1 10 3 7 
     Cyphomyrmex wheeleri Forel 0 0 1 243 14 97  1 0 0 0 2 0 
     Monomorium minimum Buckley 0 0 1 15 16 10  2 0 1 1 2 10 
     Pheidole sp. 3 13 60 9 6 170  3 1 37 92 17 16 
     Pogonomyrmex barbatus F. Smith 0 1 0 2 30 3  0 16 4 2 4 3 
     Solenopsis invicta Buren 0 0 1 1 6 108  0 1 9 1 7 72 
     Solenopsis molesta Say 4181 2984 6298 20109 2607 27077  550 461 1024 15103 23288 44535 
     Strumigenys silvestrii Emery 3 6 0 19 42 24  2 0 0 0 0 1 
     Trachymyrmex sp. 0 0 0 1 0 0  0 0 0 0 0 0 
Ponerinae              
     Hypoponera opacior Forel 1 1 1 0 2 0  0 0 0 1 2 0 
              
Total number of specimens 5270 5437 8811 34128 24000 43969  1441 1312 1461 19818 25390 46645 
Raw species richness 7 7 11 11 13 11   7 8 10 11 15 12 
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TABLE 3. Ant species and abundance at “Pruitt” site by year among the different treatments, using food lures.  
 
  2006  2007 
   Before     After      Before     After   
Species Slow Fast Control Slow Fast Control  Slow Fast Control Slow Fast Control 
Dolichoderinae              
     Dorymyrmex flavus McCook 2 0 0 151 70 0  0 0 0 0 0 0 
     Forelius pruinosus Roger 511 2540 971 11582 9372 2640  589 135 105 3484 696 745 
Formicinae              
     Paratrechina terricola Buckley 10 62 0 50 24 150  21 81 2 199 102 0 
Myrmicinae              
     Crematogaster laeiuscula Mayr 0 0 0 0 10 0  0 0 25 0 5 0 
     Monomorium minimum Buckley 20 252 210 0 350 50  0 2 2 2 51 0 
     Pheidole sp. 0 0 0 0 0 0  0 0 0 0 50 5 
     Pogonomyrmex barbatus F. Smith 0 0 0 0 1 16  0 0 25 0 0 0 
     Solenopsis invicta Buren 20520 18034 22344 8306 4018 17459  7772 7464 9261 8958 16201 24219 
     Solenopsis molesta Say 0 0 0 51 10 0  0 0 0 0 0 0 
              
Total number of specimens 21063 20888 23525 20140 13855 20315  8382 7682 9420 12643 17105 24969 
Raw species richness 5 4 3 5 8 5   3 4 6 4 6 3 
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TABLE 4. Ant species and abundance at “Barr” site by year among the different treatments, using pitfall traps. 
 
  2006  2007 
Species   Before     After      Before     After   
Dolichoderinae Slow Fast Control Slow Fast Control  Slow Fast Control Slow Fast Control 
     Dorymyrmex flavus McCook 150 23 8 198 90 225  104 106 199 237 45 217 
     Forelius pruinosus Roger 385 465 340 2127 850 1671  765 701 396 1851 739 4872 
     Tapinoma sessile Say 26 3 3 195 32 75  100 45 72 131 94 110 
Ecitoninae              
     Neivamyrmex isodentatus MacKay 0 0 0 1 0 0  0 0 0 0 1 0 
Formicinae              
     Brachymyrmex depilis Emery 0 0 0 12 1 10  0 0 1 0 0 0 
     Camponotus pennsylvanicus Degeer 0 0 0 1 1 0  0 1 0 0 0 1 
     Camponotus sansabeanus Buckley 0 0 0 0 0 1  1 0 1 0 0 0 
     Camponotus sayi Emery 0 0 0 1 0 0  0 0 0 0 1 0 
     Paratrechina terricola Buckley 48 63 84 316 510 564  147 309 315 271 691 313 
Myrmicinae              
     Crematogaster laeviuscula Mayr 1 4 0 0 16 10  0 18 1 5 7 1 
     Cyphomyrmex rimosus Spinola 0 0 2 27 46 106  0 1 0 2 8 7 
     Cyphomyrmex wheeleri Forel 15 7 4 54 29 41  10 7 7 11 4 12 
     Monomorium minimum Buckley 40 4 1 129 31 19  82 66 110 176 216 152 
     Myrmecina americana Emery 0 0 0 0 0 2  0 0 0 0 0 2 
     Pheidole lamia Wheeler 0 0 0 0 0 0  0 0 0 0 3 2 
     Pheidole sp. 0 12 1 1 101 30  7 85 10 3 202 25 
     Solenopsis invicta Buren 1730 861 974 4007 1313 6860              
     Solenopsis molesta Say 2 1 2 6 19 32  0 16 0 10 37 31 
     Strumigenys silvestrii Emery 0 0 0 14 12 2  0 1 0 1 4 5 
Ponerinae              
     Hypoponera opacior Forel 0 0 0 1 4 3  1 0 0 0 13 0 
     Leptogenys elongata Buckley 0 0 0 0 0 1  0 0 1 0 1 0 
Psuedomyrmecinae              
     Pseudomyrmex ejectus Smith 0 0 0 1 0 0  0 0 0 1 1 0 
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Total number of specimens 2397 1443 1419 7091 3055 9652  1217 1356 1113 2699 2067 5750 
Raw species richness 9 10 10 17 15 17   9 12 11 12 17 14 
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TABLE 5. Ant species and abundance at “Barr” site by year among the different treatments, using food lures. 
 
 2006  2007 
Food lures   Before     After      Before     After   
Species Slow Fast Control Slow Fast Control  Slow Fast Control Slow Fast Control 
Dolichoderinae              
     Dorymyrmex flavus McCook 0 200 0 374 177 110  50 0 0 96 0 0 
     Forelius pruinosus Roger 2775 1131 1217 6601 5511 1525  2261 1009 1310 3950 927 1045 
Formicinae              
     Paratrechina terricola Buckley 200 335 420 835 3234 51  120 172 0 873 1433 68 
Myrmicinae              
     Crematogaster laeviuscula Mayr 0 0 0 0 125 0  0 2 0 0 35 0 
     Crematogaster sp. 2 0 0 0 0 0 0  0 25 0 0 0 0 
     Monomorium minimum Buckley 100 527 150 2130 2655 210  819 393 200 1391 1461 0 
     Pheidole sp. 0 0 0 100 103 0  0 21 10 0 92 10 
     Solenopsis geminata Fabicius 0 0 0 0 2 0  0 0 0 0 0 0 
     Solenopsis invicta Buren 20446 21098 21195 13917 7528 35125  12964 15384 20320 9253 10400 25071 
     Solenopsis molesta Say 0 100 0 0 100 0  10 50 50 180 77 328 
              
Total number of specimens 23521 23391 22982 23957 19435 37021  16224 17056 21890 15743 14425 26522 
Raw species richness 4 6 4 6 9 5   6 8 5 6 7 5 
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TABLE 6. Ant species and abundance at “C3” site by year among the different treatments, using pitfall traps. 
 
 
  2006  2007 
Species   Before     After      Before     After   
Dolichoderinae Slow Fast Control Slow Fast Control  Slow Fast Control Slow Fast Control 
     Dorymyrmex flavus McCook 11 27 77 41 14 186  8 1 18 160 14 97 
     Forelius pruinosus Roger 6291 1248 1134 73393 18417 17401  11786 1314 363 15474 4758 2070 
     Tapinoma sessile Say 0 0 0 0 0 0  0 0 0 1 0 0 
Ecitoninae              
     Labidus coecus  Latreille 0 0 0 0 0 1  3 1 0 0 0 0 
     Neivamyrmex texanus Watkins 21 0 2 6 2 7  0 0 0 0 0 0 
Formicinae              
     Brachymyrmex depilis Emery 0 0 0 11 19 4  1 2 1 4 4 0 
     Camponotus sansabeanus Buckley 2 0 0 0 0 0  1 0 0 3 0 0 
     Camponotus sayi Emery 4 1 0 2 2 0  10 0 0 3 1 1 
     Paratrechina terricola Buckley 94 197 91 514 463 425  95 97 42 921 700 388 
Myrmicinae              
     Carebara longii Wheeler 0 0 0 0 0 0  0 0 0 0 3 0 
     Crematogaster laeviuscula Mayr 28 5 1 58 65 0  39 10 0 82 62 2 
     Crematogaster sp. 2 2 20 0 9 52 4  8 20 1 4 20 0 
     Cyphomyrmex wheeleri Forel 2 1 1 7 15 7  2 2 0 5 2 4 
     Leptothorax obturator Wheeler 0 0 0 0 0 0  0 0 0 1 0 0 
     Monomorium minimum Buckley 130 80 90 276 45 272  96 21 68 625 427 577 
     Myrmecina americana  Emery 0 0 2 1 1 3  0 0 1 0 1 0 
     Pheidole lamia Wheeler 0 0 0 0 0 0  0 0 0 0 0 17 
     Pheidole sp. 1 2 19 2 11 18 30  1 5 7 5 4 18 
     Pheidole hyatti Emery 0 0 0 0 6 7  0 0 4 1 1 0 
     Pheidole sp. 3 0 0 0 0 0 2  0 0 0 0 0 0 
     Pogonomyrmex barbatus F. Smith 0 0 1 0 0 0  0 0 0 0 0 0 
     Pyramica margaritae Forel 0 0 0 0 0 2  0 0 0 0 0 0 
     Solenopsis invicta Buren 3329 1757 4188 9668 5120 32007  324 446 3211 6142 7688 40683 
     Solenopsis molesta Say 2 25 25 80 113 62  6 116 18 90 307 67 
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     Strumigenys silvestrii Emery 2 2 0 31 7 23  0 0 0 4 3 4 
     Trachymyrmex sp. 0 0 0 2 0 2  1 0 0 1 0 0 
Ponerinae              
     Hypoponera opacior Forel 0 0 0 0 0 1  0 0 0 2 0 0 
              
Total number of specimens 9920 3382 5614 84110 24359 50446  12381 2035 3734 23527 13995 43928 
Raw species richness 14 12 12 16 16 19   15 12 11 18 16 12 
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TABLE 7. Ant species and abundance at “C3” site by year among the different treatments, using food lures. 
 
 
  2006  2007 
   Before     After      Before     After   
Species Slow Fast Control Slow Fast Control  Slow Fast Control Slow Fast Control 
Dolichoderinae              
     Dorymyrmex flavus McCook 0 50 0 192 425 124  0 0 0 20 0 0 
     Forelius pruinosus Roger 4120 5239 6592 10023 8502 11825  978 2318 1960 920 102 1516 
     Forelius sp. 2 0 0 101 0 50 50  0 0 0 0 0 0 
Formicinae              
     Brachymyrmex depilis Emery 0 0 0 0 0 0  0 0 1 0 0 0 
     Paratrechina terricola Buckley 1 1 0 157 401 71  93 30 136 554 279 804 
Myrmicinae              
     Crematogaster laeiuscula Mayr 208 0 0 550 50 110  102 65 10 0 8 85 
     Monomorium minimum Buckley 50 360 1730 1460 842 781  355 302 917 30 1 395 
     Pheidole sp. 0 15 0 0 0 10  0 0 0 10 0 0 
     Solenopsis invicta Buren 17072 15431 13833 17015 11164 12396  10834 10018 11247 18302 16575 12889 
     Solenopsis molesta Say 0 0 0 0 5 0  10 0 76 21 0 200 
              
Total number of specimens 21451 21096 22256 29397 21439 25367  12372 12733 14347 19857 16965 15889 
Raw species richness 5 6 4 6 8 8   6 5 7 7 5 6 
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TABLE 8. Linear Mixed Models results for effects of treatments on the relative diversity 
of ants based on pitfall traps, excluding Solenopsis invicta, during 2006. 
 
  Richness 
   Before   After 
Pruitt Source df* F P   df F P 
 Treatments 2,8 0.581 0.580  2,109 2.810 0.065 
 Week 5,2 1.538 0.385  12,15 1.028 0.471 
  Treatment x Week 0,2 3.319 0.178   24,15 0.560 0.901 
         
Barr Source df F P   df F P 
 Treatments 2,9 0.259 0.777  2,9 0.259 0.777 
 Week 7,12 9.432 0.000  7,12 9.432 0.000 
  Treatment x Week 14,12 1.118 0.427   14,12 1.118 0.427 
         
C3 Source df F P   df F P 
 Treatments 2,11 0.053 0.949  2,94 1.659 0.196 
 Week 5,16 9.784 0.000  12,17 4.218 0.003 
  Treatment x Week 10,16 0.639 0.762   24,17 0.455 0.963 

 
* Denotes degrees of freedom of Linear Mixed Model (numerator, denominator). 
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TABLE 9. Linear Mixed Models results for effects of treatments on the relative diversity 
of ants based on pitfall traps, excluding Solenopsis invicta during 2007. 
 
  Richness 
   Before   After 
Pruitt Source df* F P   df F P 
 Treatments 2,8 0.288 0.756  2,79 1.433 0.245 
 Week 8,12 3.787 0.018  9,16 5.515 0.001 
  Treatment x Week 16,12 1.567 0.213   18,16 0.495 0.925 
         
Barr Source df F P   df F P 
 Treatments 2,8 0.120 0.888  2,93 1.066 0.348 
 Week 9,13 4.096 0.010  10,15 8.047 0.000 
  Treatment x Week 18,13 2.789 0.030   20,15 0.692 0.783 
         
C3 Source df F P   df F P 
 Treatments 2,9 0.197 0.825  2,76 2.599 0.081 
 Week 8,15 5.555 0.002  9,18 26.778 0.000 
  Treatment x Week 16,15 0.497 0.912   18,18 0.560 0.887 

 
* Denotes degrees of freedom of Linear Mixed Model (numerator, denominator). 
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TABLE 10. Co-occurrence patterns of ants on the three study sites before and after the bait treatment. Mean columns under observed 
indicates the estimated C-scores of the model. Communities with high co-occurrence should frequently fail to reject the null 
hypothesis. Small variances would mean that treatments are strikingly similar to one another in the level of co-occurrence observed.  
  
  2006   2007 
  Observed Estimated     Observed Estimated   
Pruitt Mean Variance Mean Variance P-value   Mean Variance Mean Variance P-value 
  Before 0.82 0.09 0.69 0.07 0.25  0.32 0.12 0.44 0.07 0.14 
  After 0.38 0.07 0.33 0.03 0.05  0.49 0.02 0.51 0.03 0.44 
            
Barr            
  Before 0.41 0.05 0.41 0.03 0.24  0.41 0.05 0.21 0.03 0.24 
  After 0.25 0.01 0.31 0.02 0.83  0.44 0.00 0.44 0.03 0.91 
            
C3            
  Before 0.44 0.00 0.46 0.01 0.60  0.43 0.05 0.48 0.05 0.20 
  After 0.45 0.00 0.46 0.01 0.76   0.37 0.01 0.50 0.03 0.68 
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TABLE 11. Linear Mixed Models results for effects of treatments on the relative abundance and behavioral dominance of 
Solenopsis invicta and native ants during 2006 in “Pruitt”. 
 
    Solenopsis invicta   Natives 
Pruitt   Before   After  Before   After 
Food 
Lures Source df* F P   df F P  df F P   df F P 
 Treatments 2,13 0.366 0.700  2,14 43.965 0.000  2,3 1.213 0.411  2,4 0.581 0.597 
 Week 6,12 23.193 0.000  13,14 17.561 0.000  6, 1.455 **  13,13 3.530 0.013 
 Treatment x Week 12,12 1.266 0.342  26,14 4.966 0.001  12, 0.866 **  26,13 1.235 0.349 
                 
Pitfall 
traps Source                
 Treatments 2,38 4.153 0.023  2,25 1.282 0.295  2,25 0.612 0.550  2,14 0.068 0.935 
 Week 5,21 3.437 0.020  12,6 2.347 0.133  5,14 1.099 0.404  12,16 1.333 0.286 
 Treatment x Week 10,21 0.365 0.949  24,6 1.672 0.250  10,14 0.344 0.952  24,16 1.143 0.394 
                 
Quadrats Source                
 Treatments 2,9 2.271 0.156  2,56 38.934 0.000  2,9 1.321 0.312  2,4 3.789 0.101 
 Time 5,11 0.244 0.935  5,7 19.037 0.000  5,11 0.516 0.760  5,5 9.643 0.011 
  Treatment x Time 10,11 1.320 0.325   10,7 5.708 0.014  10,11 0.868 0.583   10,5 3.836 0.067 

 
* Denotes degrees of freedom of Linear Mixed Model (numerator, denominator). 
** Not enough information to perform the Linear Mixed Model, test inconclusive. 
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TABLE 12. Linear Mixed Models results for effects of treatments on the relative abundance and behavioral dominance of 
Solenopsis invicta and native ants during 2006 in “Barr”. 
 
  Solenopsis invicta  Natives 
Barr   Before   After  Before   After 
Food 
Lures Source df F P   df F P  df F P   df F P 
 Treatments 2,9 0.092 0.913  2,10 68.978 0.000  2, 0.473 **  2,8 2.389 0.147 
 Week 8,13 16.723 0.000  14,13 14.662 0.000  8,30 4.037 0.002  14,12 9.272 0.000 
 Treatment x Week 16,13 1.220 0.359  28,13 11.351 0.000  16,30 0.912 0.565  28,12 3.141 0.019 
                 
Pitfall 
traps Source                
 Treatments 2,10 2.644 0.118  2,36 12.270 0.000  2,39 0.532 0.591  2,20 1.205 0.320 
 Week 7,15 5.180 0.003  12,17 13.139 0.000  7,12 5.315 0.005  12,14 8.324 0.000 
 Treatment x Week 14,15 1.228 0.346  24,17 7.196 0.000  14,12 0.527 0.875  24,14 1.206 0.362 
                 
Quadrats Source                
 Treatments 2,51 0.542 0.585  2,8 14.607 0.002  2,9 1.000 0.405  2, 1.472 ** 
 Time 5,28 11.757 0.000  5,13 0.216 0.950  1,9 1.000 0.343  5,19 1.437 0.255 
  Treatment x Time 10,28 1.711 0.128   10,13 0.694 0.716  2,9 1.000 0.405   10,19 1.307 0.294 

 
* Denotes degrees of freedom of Linear Mixed Model (numerator, denominator). 
** Not enough information to perform the Linear Mixed Model, test inconclusive. 
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TABLE 13. Linear Mixed Models results for effects of treatments on the relative abundance and behavioral dominance of 
Solenopsis invicta and native ants during 2006 in “C3”. 
 
  Solenopsis invicta  Natives 
C3   Before   After  Before   After 
Food 
Lures Source df* F P   df F P  df F P   df F P 
 Treatments 2,16 2.302 0.132  2,43 1.325 0.276  2,52 3.186 0.049  2,77 0.703 0.498 
 Week 6,13 38.639 0.000  15,13 17.039 0.000  6,29 26.958 0.000  15,13 12.609 0.000 
 Treatment x Week 12,13 1.479 0.241  30,16 4.993 0.001  12,29 1.019 0.458  30,13 0.760 0.744 
                 
Pitfall 
traps Source                
 Treatments 2,30 4.120 0.026  2,8 5.496 0.029  2,14 2.185 0.148  2,7 1.743 0.243 
 Week 5,23 8.587 0.000  12,15 3.439 0.012  5,13 1.294 0.323  12,3 3.102 0.158 
 Treatment x Week 10,23 1.908 0.096  24,15 1.875 0.102  10,13 0.813 0.622  24,3 1.268 0.467 
                 
Quadrats Source                
 Treatments 2,215 2.506 0.084  2,44 14.516 0.000  2,16 1.021 0.382  2,11 8.334 0.006 
 Time 5,20 9.890 0.000  5,17 1.380 0.279  5,12 8.545 0.001  5,16 1.203 0.351 
  Treatment x Time 10,20 0.942 0.518   10,17 1.963 0.104  10,12 1.003 0.489   10,16 1.825 0.136 

 
* Denotes degrees of freedom of Linear Mixed Model (numerator, denominator). 
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TABLE 14. Linear Mixed Models results for effects of treatments on the relative abundance and behavioral dominance of 
Solenopsis invicta and native ants during 2007 in “Pruitt”. 
 
  Solenopsis invicta  Natives 
Pruitt   Before   After  Before   After 
Food 
Lures Source df* F P   df F P  df F P   df F P 
 Treatments 2,17 1.189 0.327  2,85 36.331 0.000  2,35 2.922 0.067  2,32 4.577 0.018 
 Week 8,17 17.360 0.000  10,18 8.848 0.000  8,13 1.964 0.134  10,15 2.203 0.077 
 Treatment x Week 16,17 1.691 0.142  20,18 0.846 0.643  16,13 1.474 0.242  20,15 1.263 0.322 
                 
Pitfall 
traps Source                
 Treatments 2,36 6.267 0.005  2,52 6.826 0.002  2,44 0.769 0.469  2,44 3.191 0.051 
 Week 8,16 12.360 0.000  9,15 7.945 0.000  8,30 2.780 0.019  9,22 2.519 0.037 
 Treatment x Week 16,16 1.308 0.298  18,15 2.068 0.080  16,30 0.377 0.979  18,22 0.788 0.693 
                 
Quadrats Source                
 Treatments 2,10 1.137 0.357  2,8 0.346 0.717  2,13 0.928 0.420  2,13 0.480 0.629 
 Time 5,13 0.870 0.526  5,8 0.188 0.959  5,45 0.206 0.958  5,45 4.235 0.003 
  Treatment x Time 10,13 1.285 0.327   10,8 0.748 0.673  10,45 0.206 0.995   10,45 0.106 1.000 

 
* Denotes degrees of freedom of Linear Mixed Model (numerator, denominator). 
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TABLE 15. Linear Mixed Models results for effects of treatments on the relative abundance and behavioral dominance of 
Solenopsis invicta and native ants during 2007 in “Barr”. 
 
    Solenopsis invicta   Natives 
Barr   Before   After  Before   After 
Food 
Lures Source df* F P   df F P  df F P   df F P 
 Treatments 2,9 3.743 0.066  2,77 151.423 0.000  2,528 2.057 0.129  2,60 12.555 0.000 
 Week 10,13 5.963 0.002  11,17 38.862 0.000  10,19 5.746 0.000  11,21 4.423 0.002 
 Treatment x Week 20,13 1.997 0.098  22,17 7.743 0.000  20,19 0.833 0.656  22,21 1.629 0.133 
                 
Pitfall 
traps Source                
 Treatments 2,24 8.062 0.002  2,9 0.855 0.455  2,14 0.114 0.893  2,23 2.359 0.117 
 Week 9,18 4.106 0.005  10,16 3.751 0.009  9,15 3.444 0.015  10,16 4.541 0.004 
 Treatment x Week 18,18 1.272 0.305  20,16 2.197 0.057  18,15 1.464 0.225  20,16 1.095 0.431 
                 
Quadrats Source                
 Treatments 2,10 0.585 0.574  2,8 14.607 0.002  0, ** **  2, 1.472 ** 
 Time 5,12 1.121 0.399  5,13 0.216 0.950  3,36 1.160 0.338  5,19 1.437 0.255 
  Treatment x Time 10,12 0.724 0.691   10,13 0.694 0.716  6,27 1.200 0.336   10,19 1.307 0.294 

 
* Denotes degrees of freedom of Linear Mixed Model (numerator, denominator). 
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TABLE 16. Linear Mixed Models results for effects of treatments on the relative abundance and behavioral dominance of 
Solenopsis invicta and native ants during 2007 in “C3”. 
 
  Solenopsis invicta  Natives 
C3   Before   After  Before   After 
Food 
Lures Source df* F P   df F P  df F P   df F P 
 Treatments 2,18 0.292 0.750  2,85 2.740 0.070  2,42 0.446 0.643  2,44 11.167 0.000 
 Week 8,12 12.138 0.000  10,17 3.353 0.013  8,16 5.727 0.001  10,14 4.687 0.004 
 Treatment x Week 16,13 0.751 0.711  20,17 5.806 0.000  16,16 0.948 0.541  20,14 1.815 0.123 
                 
Pitfall 
traps Source                
 Treatments 2,6 2.354 0.165  2,23 37.718 0.000  2,12 0.489 0.625  2,19 5.473 0.013 
 Week 8,18 2.711 0.037  9,18 9.696 0.000  8,11 1.484 0.264  9,11 4.482 0.011 
 Treatment x Week 16,18 1.414 0.238  18,18 3.907 0.003  16,11 1.200 0.385  18,11 0.964 0.543 
                 
Quadrats Source                
 Treatments 2,10 1.472 0.257  2,8 0.346 0.717  2,13 0.928 0.420  2,13 0.480 0.629 
 Time 5,19 1.437 0.255  5,8 0.188 0.959  5,45 0.206 0.958  5,45 4.235 0.003 
  Treatment x Time 10,19 1.307 0.294   10,8 0.748 0.673  10,45 0.206 0.995   10,45 0.106 1.000 

 
* Denotes degrees of freedom of Linear Mixed Model (numerator, denominator). 
 
 
 
 
 
 
 
 
 



 

 

113
113

TABLE 17. List of ant species observed at quadrats discovering and collecting placebo baits at “Pruitt”. 
 
  2006  2007 
 Before After  Before After 
Species Slow Fast Control Slow Fast Control  Slow Fast Control Slow Fast Control 
Dolichoderinae              
     Forelius sp. 41 14 5 28 20 1  1 0 0 1 0 0 
Myrmicinae              
     Monomorium minimum 1 1 6 0 0 0  0 0 0 0 0 0 
     Solenopsis invicta Buren 19 177 88 38 8 119  38 57 95 23 19 13 
              
Total number of specimens 61 192 99 66 28 120  39 57 95 24 19 13 
Raw species richness 3 3 3 2 2 2   2 1 1 2 1 1 
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TABLE 18. List of ant species observed at quadrats discovering and collecting placebo baits at “Barr”. 
 
  2006   2007 
 Before After   Before After 
Species Slow Fast Control Slow Fast Control   Slow Fast Control Slow Fast Control 
Dolichoderinae              
     Dorymyrmex flavus 0 0 1 2 1 0  0 0 0 5 0 0 
     Forelius sp. 0 0 0 46 5 14  0 0 0 0 0 0 
Formicinae              
     Paratrechina terricola 0 0 0 4 2 1  0 0 0 0 0 0 
Myrmicinae              
     Monomorium minimum 0 0 0 1 7 0  0 0 0 0 0 0 
     Solenopsis invicta Buren 125 122 151 19 38 227  29 100 90 16 9 13 
              
Total number of specimens 125 122 152 72 53 242  29 100 90 21 9 13 
Raw species richness 1 1 2 5 5 3   1 1 1 2 1 1 
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TABLE 19. List of ant species observed at quadrats discovering and collecting placebo baits at “C3”. 
 
  2006  2007 
 Before After  Before After 
Species Slow Fast Control Slow Fast Control  Slow Fast Control Slow Fast Control 
Dolichoderinae              
     Dorymyrmex flavus 0 0 0 0 0 0  0 0 2 0 0 0 
     Forelius sp. 19 42 18 51 50 31  20 2 9 0 0 0 
Myrmicinae              
     Monomorium minimum 3 0 0 0 0 0  0 0 0 0 0 0 
     Solenopsis invicta Buren 62 28 88 13 9 70  11 14 41 2 1 5 
              
Total number of specimens 84 70 106 64 59 101  31 16 50 2 1 5 
Raw species richness  3 2  2  2  2  2    2  2  2  1  1  1  
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TABLE 20. Linear Mixed Models results for effects of treatments on the relative abundance and taxa diversity of insect during 
2006. 
 
 Abundance  Taxa 
   Before   After  Before   After 
Pruitt Source df* F P   df F P  df F P   df F P 
 Treatments 2,17 0.974 0.397  2,11 0.046 0.956  2,10 0.570 0.582  2,12 1.380 0.287 
 Week 5,16 53.511 0.000  11,17 30.311 0.000  5,13 19.846 0.000  11,16 23.715 0.000 
  Treatment x Week 10,16 0.393 0.931   22,17 0.405 0.977   10,13 0.521 0.848   22,17 1.003 0.505 
                 
Barr Source df F P   df F P  df F P   df F P 
 Treatments 2,17 1.753 0.202  2,98 2.861 0.062  2,8 2.814 0.114  2,77 0.963 0.386 
 Week 7,15 42.891 0.000  12,16 17.149 0.000  7,15 16.607 0.000  12,17 10.992 0.000 
  Treatment x Week 14,15 1.860 0.175   24,16 1.669 0.144   14,15 1.055 0.456   24,17 1.029 0.485 
                 
C3 Source df F P   df F P  df F P   df F P 
 Treatments 2,19 0.074 0.929  2,82 12.102 0.000  2,33 0.593 0.558  2,3515 0.443 0.642 
 Week 5,12 47.074 0.000  13,10 137.829 0.000  5,17 148.639 0.000  13,34 8103.160 0.000 
  Treatment x Week 10,12 0.360 0.944   25,9 1.849 0.163   10,17 0.769 0.657   25,14 1.277 0.317 
 
* Denotes degrees of freedom of Linear Mixed Model (numerator, denominator). 
 
 
 



 

 

117

VITA 
 

Alejandro Antonio Calixto Sánchez 
 

Address  Department of Entomology, Texas A&M University 
   College Station, TX 77843-2150 USA 

 
Email Address  aacalixto@ag.tamu.edu 
 
Education  B.S., Biology, Universidad de los Andes, 1997 
   M.S., Entomology, Texas A&M University, 2004 
   Ph.D., Entomology, Texas A&M University, 2008 
 
Current Employment 
 
Extension Associate – USDA Areawide Fire Ant Program (Program Coordinator 2007- 
 2008), Texas Imported Fire Ant Research and Management Program. Department of 
 Entomology, Texas A&M University System 
 
Selected Publications 
 
Gilbert, L. E., C. L. Barr, A. Calixto, J L. Cook, B.  M. Drees, E. G. LeBrun, R. J. W. 
Patrock, R. Plowes, S. D. Porter and R. T. Puckett. 2008. Introducing phorid fly 
parasitoids of red imported fire ant workers from South America to Texas:  Outcomes 
vary by region and by Pseudacteon species released. Southwest. Entomol. 33: 15-29. 
 
Calixto, A., M. K. Harris, A. Knutson and C. L. Barr. 2007. Responses of native ants to 
Solenopsis invicta Buren reduction with a broadcast bait. Env. Entomol. 36: 1112-123. 
 
Calixto, A., A. Dean and M. K. Harris. 2007. Sampling ants with pitfall traps: propylene 
glycol vs water as kill/preservative agent. Southwest. Entomol. 32: 87-91. 
 
Calixto, A., M. K. Harris and C. L. Barr. 2007. Resurgence and persistence of 
Dorymyrmex flavus Mc Cook following reduction of Solenopsis invicta Buren with a  
broadcast bait. Env. Entomol. 36: 549-554. 
 
Puckett, R. T., A. Calixto, C. L. Barr and M. K. Harris. 2007. Passive traps for  
monitoring Pseudacteon parasitoids of Solenopsis fire ants. Env. Entomol. 36: 584- 
588. 
 
Calixto, A. and H. W. Levi. 2006. Notes on the natural history of Aspidolasius branicki 
(Araneae: Araneidae) at Tinigua National Park, Colombia with a revision of the genus. 
Bull. British Arachnol. Soc. 13: 314-320. 


