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ABSTRACT

Stealthy Attacks and Defense Strategies in Competing Sensor Networks.

(August 2008)

Aleksandra Czarlinska, B.A.Sc., University of Toronto

Chair of Advisory Committee: Dr. Deepa Kundur

The fundamental objective of sensor networks underpinning a variety of appli-

cations is the collection of reliable information from the surrounding environment.

The correctness of the collected data is especially important in applications involv-

ing societal welfare and safety, in which the acquired information may be utilized by

end-users for decision-making. The distributed nature of sensor networks and their

deployment in unattended and potentially hostile environments, however, renders this

collection task challenging for both scalar and visual data.

In this work we propose and address the twin problem of carrying out and de-

fending against a stealthy attack on the information gathered by a sensor network at

the physical sensing layer as perpetrated by a competing hostile network. A stealthy

attack in this context is an intelligent attempt to disinform a sensor network in a

manner that mitigates attack discovery. In comparison with previous sensor network

security studies, we explicitly model the attack scenario as an active competition be-

tween two networks where difficulties arise from the pervasive nature of the attack,

the possibility of tampering during data acquisition prior to encryption, and the lack

of prior knowledge regarding the characteristics of the attack.

We examine the problem from the perspective of both the hostile and the legit-

imate network. The interaction between the networks is modeled as a game where

a stealth utility is derived and shown to be consistent for both players in the case



iv

of stealthy direct attacks and stealthy cross attacks. Based on the stealth utility,

the optimal attack and defense strategies are obtained for each network. For the

legitimate network, minimization of the attacker’s stealth results in the possibility of

attack detection through established paradigms and the ability to mitigate the power

of the attack. For the hostile network, maximization of the stealth utility translates

into the optimal attack avoidance. This attack avoidance does not require active

communication among the hostile nodes but rather relies on a level of coordination

which we quantify. We demonstrate the significance and effectiveness of the solution

for sensor networks acquiring scalar and multidimensional data such as surveillance

sequences and relate the results to existing image sensor networks. Finally we discuss

the implications of these results for achieving secure event acquisition in unattended

environments.
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tation of quadruplet (a, b, c, d) and (ã, b̃, c̃, d̃). . . . . . . . . . . . . . 108

33 Comparison of the PD-PFA performance among pure strategies,

doublets, triplets and quadruplets for (a) p = 0.01. (b) p = 0.1. . . . 122

34 Comparison of the PD-PFA performance among pure strategies,

doublets, triplets and quadruplets for (a) p = 0.03. (b) p = 0.4. . . . 123

35 Comparison of the PD-PFA performance for p = 0.01 and p = 0.4

for (a) different pure strategies. (b) different triplets strategies. . . . 124

36 Optimal vs. sub-optimal detectors for representative doublet mix

(a) p = 0.1. (b) p = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . 125

37 Optimal vs. sub-optimal detectors for p = 0.3 and (a) triplet mix

(b, c, d). (b) quadruplet mix (a, b, c, d). . . . . . . . . . . . . . . . . . 126



xiv

FIGURE Page

38 Optimal vs. sub-optimal detectors for p = 0.1 and (a) triplet mix

(a, b, c). (b) quadruplet mix (a, b, c, d). . . . . . . . . . . . . . . . . . 127

39 (a) Cross attack non-equilibrium: h1 plays c and h2 plays b. (b)

Possible locations of h2 to enact strategy c to match h1’s strategy c. . 130

40 Comparison of the direct and cross attacks for doublet (b, c) for

(a) p = 0.1. (b) p = 0.45. . . . . . . . . . . . . . . . . . . . . . . . . 131

41 Comparison of the direct and cross attacks for triplet (a, b, c) for

p = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

42 PD-PFA when h2 deviates from optimal doublet mixing strategy

for (a) p = 0.1. (b) p = 0.4. . . . . . . . . . . . . . . . . . . . . . . . 135

43 Each camera node may employ lightweight image processing (LIP)

to determine if an event of interest has occurred in a collected

frame or it may rely on decisions from the sensor(s)/cluster head

(CH) or a combination of both (CH & LIP). . . . . . . . . . . . . . . 147

44 Frame Seq. 1: indoor test conditions with constant lighting and

no background changes. . . . . . . . . . . . . . . . . . . . . . . . . . 149

45 Frame Seq. 2: outdoor variable lighting due to clouds. The light

intensity changes by 70% between frames. Additional background

movement due to shrub.

150

46 Frame Seq. 3: changing outdoor light and background (swaying

trees). The subject temporarily disappears behind a tree. . . . . . . . 150

47 (a) Frame Seq. 4a showing Seq. 2 modified to remove the shrub.

(b) Frame Seq. 4b showing Seq. 3 modified to remove the swaying

trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

48 For event acquisition, each camera node may utilize lightweight

image processing (LIP), a sensor decision (SN), or rely on both to

determine the presence or absence of an event. . . . . . . . . . . . . . 160



xv

FIGURE Page

49 Probability of detection PD vs. probability of sensor error q for

the LIP, SN and SN & LIP approaches for sequence (a) walk with

trees from Figure 46. (b) walk without trees from Figure 47b. . . . . 161

50 Probability of detection PD vs. probability of sensor error q for

the LIP, SN and SN & LIP approaches for sequence (a) car with

trees from Figure 45. (b) car without trees from Figure 47a. . . . . . 162

51 PD v.s. q for walking with trees from Figure 46. (a) ps = 0.01.

(b) ps = 0.1. (c) ps = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . 163

52 PD v.s. q for walking without trees from Figure 47b. (a) ps = 0.01.

(b) ps = 0.1. (c) ps = 0.33. . . . . . . . . . . . . . . . . . . . . . . . 164

53 PD v.s. q for car with trees from Figure 45 (a) ps = 0.01. (b)

ps = 0.1. (c) ps = 0.44. . . . . . . . . . . . . . . . . . . . . . . . . . 165

54 PD v.s. q for car without trees from Figure 47a (a) ps = 0.01. (b)

ps = 0.1. (c) ps = 0.44. . . . . . . . . . . . . . . . . . . . . . . . . . 166

55 (a) PD v.s. q for walking sequence with tree from Figure 46 for

ps = 0.01. (b) PD v.s. q for walking sequence without tree from

Figure 47b for ps = 0.33. . . . . . . . . . . . . . . . . . . . . . . . . . 168

56 PD v.s. q for car sequence with tree from Figure 45 for (a) ps =

0.01. (b) ps = 0.44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

57 Test for normality of difference images or q-q plot (car sequence)

under (a) H0. (b) H1. . . . . . . . . . . . . . . . . . . . . . . . . . . 202

58 Difference image histogram (car sequence) under (a) H0. (b) H1. . . 203



1

CHAPTER I

INTRODUCTION

A. Competing Sensor Networks

Since the early days of the Internet, researchers and users alike have experienced an

unprecedented level of connectivity to remote digital information as well as to other

distant users. In more recent years, the appeal of connectivity to remote resources

has evolved into the fascinating concept of a network capable of reporting information

about a distant physical environment. This new type of sensor network is generally

comprised of a large number of networked nodes with sensing, actuation, data pro-

cessing and communication abilities for the acquisition of scalar or multidimensional

data. The wide applicability of sensor networks to the scientific enterprise as well as

to industrial and government endeavors is expected to result in the proliferation and

ownership of these networks by numerous and often competing entities.

Deployment of a sensor network in a remote environment bestows upon an entity

the ability to gather valuable data that may otherwise be unaccessible. To harness

the power of such distributed and autonomous acquisition, the data collected by the

network must necessarily be reliable and accurate. The authenticity and correctness

of the collected data is indeed a core requirement of sensor networks irrespective

of the application. This requirement however becomes particularly significant in

applications involving societal welfare and safety, as well as in systems where the

acquired information is utilized by an end-user for critical decision-making.

In this work we propose and address the twin problem of carrying out and de-

fending against a stealthy attack on the information gathered by a sensor network. A

The journal model is IEEE Transactions on Automatic Control.
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Information
Source

Attack and Avoid
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L L

L
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Fig. 1. Dual stealthy attack and defense problem.

stealthy attack in this context is an intelligent attempt to disinform a sensor network

in a manner that minimizes the chance of the attack being uncovered. In response,

a stealthy attack detection mechanism is an approach to maximize the chance of de-

tecting the attack and to mitigate its impact on the accuracy of the collected data.

In examining this mirror problem, we refer to the entities that perpetrate the attack

as hostile (H) and label the entities defending against the attack as legitimate (L) as

shown in Figure 1.

In investigating this novel problem, we introduce the framework of two competing

networks and thus extend the notion of a sensor network attacker. Prior considera-

tions restricted the attacker to a single entity that injects false data into a network

by physically capturing a small subset of nodes or breaking their encryption keys to

render them malicious [1]. The current formulation enables the study of a potentially

large set of distributed hostile nodes that form an allied network. Such distributed

hostile nodes cause disinformation at the legitimate sensors by interfering with their

local readings in a manner that preserves the hostile nodes’ stealth. This form of

distributed denial of service on sensing is also referred to as an actuation attack to

emphasize its active nature and occurrence at the sensing level prior to encryption.
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Fig. 2. Applications of the stealthy attack mechanism and the dual attack defense

mechanisms.

By attacking at the sensing level, a hostile opponent thus gains entrance into an

information gathering system for the purposes of manipulation.

The mitigation and detection of stealthy sensor network attacks is thus of interest

to entities that wish to gather information in the presence of competitors. This arises

in the case of both scalar and image networks deployed over large and potentially

hostile areas to detect an event of interest in the environment such as the passing

of an object or an individual. A stealthy attack in this case can result in an event

of interest being unnoticed with potentially significant consequences. As shown in

Figure 2, defense mechanisms against stealthy attacks are also required for informa-

tion gathering systems that rely on sleep/wake-up cycles, event triggers or multi-tier

architectures [2]. In such systems, stealthy attacks can falsely trigger or mistrigger

the network to drain its limited energy reserves and misinform the network regarding

the presence or absence of an event. Defense mechanisms against these attacks are

thus beneficial for systems that must be reliable, autonomous and distributed (RAD)

while operating in physically exposed or accessible environments.
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Content
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Fig. 3. Approaches for secure collection (our focus) and dissemination of sensor data.

Currently the primary defense mechanisms for the secure collection and dis-

semination of sensor data are chiefly based on cryptographic tools and associated

protocols, as well as on the use of sensor redundancy with sufficiently dense de-

ployments. Cryptographic techniques tailored to the low power and computation

paradigm of sensor networks are especially vital for safeguarding the data during its

wireless transit towards the sink. Redundancy with topology control helps to achieve

the desired physical coverage and also mitigate the effects of sporadic sensor errors

due to faults or harsh environmental conditions. Other complimentary approaches

include physically secure sensor hardware to prevent tampering and key extraction,

signal processing approaches for trust monitoring and coding theory approaches to

protect against transmission errors.

In the case of competing networks however, these techniques alone no longer

guarantee the authenticity, integrity and availability of the collected sensor data. In

particular, the distributed nature and actuation abilities of the hostile nodes enable
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them to inject false readings into arbitrarily many sensors prior to the encryption

stage. Attack detection and mitigation in this scenario are further complicated by the

lack of a priori knowledge regarding the attacker’s strategies. In contrast with systems

containing noise disturbances, attack parameters cannot generally be obtained or

estimated from the system. Indeed an organized attacker wishing to disinform a data

collection network may judiciously select and vary the attack parameters to avoid

detection and to maintain stealth. To address the stealthy attack problem, we thus

propose the use of game theoretic analysis to characterize the optimal strategies of

the attacker under various attack models. Such characterization enables the design of

detection and mitigation strategies based on statistical signal processing and sensor

redundancy as shown in Figure 3. Thus to secure sensor data, we expand the array

of toolsets to ensure that the information is protected not only during its transit but

also during the collection process.

B. Contributions

In this work we present the novel problem of securing sensor data for the case of

competing sensor networks. We explicitly consider the interplay between the two

networks in terms of attack and defense strategies. This is achieved via a dual frame-

work that addresses the problem from the perspectives of both networks. From the

perspective of the hostile network, we present strategies to carry out an attack that is

stealthy and minimizes the chance of detection. From the perspective of the defend-

ing network, we present strategies that maximize attack detection and also mitigate

the attack.

The main contribution to sensor network security is a framework for analyzing

attacks that may be widespread and carried out in an informed manner. This is
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in contrast with existing models which assume that attacks are limited to a small

number of nodes and that the attacker’s exposure is limited specifically through this

small-scale injection and the use of stolen cryptographic materials. As part of the

framework, we develop a stealth condition for the attacker and apply it to various

attack models. We show that use of game theoretic tools is possible in this problem

to obtain meaningful information regarding the active attack and that it facilitates

the use of established statistical signal processing tools. We demonstrate the impor-

tance of this problem to scalar and image-acquiring sensor networks and show the

effectiveness of the proposed solution techniques.

The main difficulties of the proposed problem stem from the distributed na-

ture of the attacker, the possibility of tampering during the sensing process prior to

encryption, and a lack of estimates for the attack parameters in contrast with the con-

ventional case of disturbances due to noise. We overcome these challenges for scalar

and multidimensional sensor networks for the following three cases of inter-network

competition.

1. Stealthy Direct Competition. We formulate the stealthy direct competition

problem where each hostile node may attack one legitimate node in a one-to-

one attack. We develop a stealth condition metric and show its consistency

and relevance for both networks in terms of attack mitigation and detection

such as through the Neyman-Pearson paradigm. We show how the concept

of Nash equilibria allows the hostile network to determine the optimal attack

parameter based on the stealth condition without knowing the defense actions

of the legitimate network. This optimal attack parameter for each hostile node

allows the H network as a whole to minimize the chance of being detected.

This attack avoidance does not require active communication among the hostile
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nodes but rather a level of coordination which we quantify. For the hostile

network H, the direct stealthy attack yields a favorable level of stealth S, power

of attack Pa and power-communication-detection PCD metric compared with

other stealth approaches. We thus show how the stealth condition metric allows

the hostile network to perpetrate the attack in a distributed manner. The main

result for H is the ability to determine a specific value of the attack parameter

without the knowledge of the legitimate network defense.

For the legitimate network L, we employ the developed stealth condition to

determine the optimal defense strategies. This analysis has implications for

the selection of a local sensor decision threshold as well as for the number of

sensor nodes in the legitimate network. Importantly, we show how the defense

strategies can be selected without knowledge of the attack parameter utilized by

H. We demonstrate how attack analysis enables use of an optimal detector based

on the Neyman-Pearson approach and show its effectiveness in detecting and

mitigating the attack. Based on these results we discuss the role of forward and

feedback encryption between L and the sink in ensuring secure data collection.

2. Stealthy Cross Competition. We formulate the stealthy cross competition prob-

lem where each hostile node H may attack more than one neighboring legitimate

node. Importantly two hostile nodes H may attack the same neighboring le-

gitimate L node for a two-to-one cross attack. At the conceptual level for H,

this problem resembles cross interference which is typically undesirable. We

develop the stealth condition for this case of attack and determine the optimal

attack parameters for each hostile node. Surprisingly we show that there exist

strategies for the cross attack that achieve superior stealth for H than the direct

attack without the need for hostile node communication. Finally we discuss im-
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plications for the common knowledge that must be possessed by each hostile

node in order to satisfy the game theoretic equilibria for attack stealth.

For the legitimate network, we employ the derived stealth condition to ob-

tain the best defense strategies. We show how the cross attack presents a

greater challenge for L than the direct attack in terms of attack detection in the

Neyman-Pearson paradigm. We show that both the optimal and sub-optimal

detectors in the cross attack benefit from analysis of the optimal strategies of

H. Importantly we show that the optimal detection and mitigation strategies

obtained for the stealthy direct attack apply to the stealthy cross attack and

are thus consistent.

3. Stealthy Image Network Competition. We formulate the stealthy image network

competition where the hostile network H wishes to disinform and mistrigger a

legitimate network L that consists of both (scalar) sensors and camera nodes

capturing potentially valuable visual content. The hostile network may utilize a

direct or a cross attack strategy to misguide the sensors. The legitimate network

may rely on a combination of detection and mitigation strategies developed for

the direct and cross attacks, as well as on image processing techniques at the

camera nodes.

For the legitimate network, the inclusion of image processing introduces a new

source of information but also a new source of variability in the decision mak-

ing process. This variability is a result of varying (outdoor) conditions and

of the image processing limitations caused by restricted camera resources. We

show how a desired event acquisition performance can be achieved at the camera

nodes despite these limitations and the presence of stealthy attacks. We demon-

strate the performance of the solution using surveillance sequences and relate



9

it to existing prototype image networks. Finally we discuss the implications of

these results for achieving secure event acquisition in unattended environments.

C. Organization

This work focuses on the competition between two sensor networks in the context of

sensor data security. To reflect this framework, the chapters are organized in terms of

an increasing level of attack difficulty and correspondingly more challenging defense

solutions. Chapter II provides the background literature as well as the models and

measures that are critical to the competing sensor networks problem. Chapter III

presents the direct stealthy attack and defense solutions with its implications for

scalar data networks. Chapter IV presents the cross stealthy attack and defense

strategies for scalar data networks and its implications for hostile sensor deployment.

Chapter V presents the attack and defense strategies for multidimensional sensor

networks that collect visual surveillance data. Finally Chapter VI summarizes our

findings and discusses future work.
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CHAPTER II

PRELIMINARIES

A. Characteristics of Sensor Networks for Data Acquisition

In this work we consider two competing sensor networks co-deployed in a common en-

vironment with opposing goals regarding the secure collection of data. To explore this

problem, we begin with a brief overview of the general characteristics and challenges

of sensor networks as they pertain to reliable and secure data gathering.

Sensor networks are comprised of a collection of sensor nodes for scalar or mul-

tidimensional data gathering. Such data may include sensor readings regarding the

ambient conditions or the presence, absence or change in observed motion, temper-

ature, magnetic activity, acoustic activity, seismic activity, toxin levels, as well as

visual information regarding a target of interest [3]–[11].1 Sensor nodes also possess

storage, processing, communication and actuation capabilities to facilitate and en-

able the collection and transmission of sensor data to a sink such as an intermediate

cluster head or a base station.

Despite these capabilities, the data collection and dissemination process in sensor

networks is made challenging by the nodes’ resource limitations as overviewed in

Figure 4. Achieving the level of data reliability required by an application thus

necessitates the design of algorithms and technologies that are tailored to the low cost-

power-computation paradigm [14], [15]. These designs often favor the use of sensor

redundancy in lieu of expensive hardware or algorithms to attain the desired data

1Though typically envisioned for ground applications, sensor nodes have also been
developed for aerial [12], [13] and aquatic applications. The latter was originally
prototyped in a much larger version during the cold war for the detection of foreign
submarines.
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Fig. 4. General challenges in sensor networks.

collection and dissemination performance. Furthermore, sensor networks that are

required to remain operational for long periods of time in unattended environments

often employ sleep/wake-up, trigger-based and multi-tier methodologies [16], [17].

In such approaches, only a few sensors remain awake during any period of time and

trigger the other sensors within a cluster or within a higher tier when a potential event

has been detected. Such approaches have shown significant potential in real-world

prototype testbeds [7], [3], [16] in applications ranging from intelligent infrastructure

monitoring and target tracking to image-based distributed surveillance.

In the case of scalar sensor nodes, further economy in the data collection and

dissemination process is often achieved by requiring the sensors to make local deci-

sions about events in the environment instead of transmitting raw sensor data to the

sink (with the noteworthy exception of scientific applications that require the precise

phenomena readings) [18]. Indeed it has been shown that under many power and

bandwidth constraints, such strategies are asymptotically optimal for the detection

of events [19], [20]. In the case of multidimensional sensor networks, this economi-

cal approach often translates into the use of lightweight image processing techniques

for the collection and transmission of lower resolution images to the end-user unless
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otherwise requested [7], [21], [22].

In addition to resource limitations, the deployment of sensors in physically acces-

sible, unattended and potentially hostile environments presents further challenges for

reliable data collection and dissemination as shown in Figure 4. Gaps in sensing cov-

erage may result if nodes in a certain area become depleted or suffer a fault [23]–[25].

This situation is typically remedied through dense deployments and coverage repair

such as through limited mobility [26]–[29]. Sensing fidelity may also be compromised

due to the presence of an attacker. The attacker may physically capture a subset of

the nodes and their encryption keys to render the nodes malicious and inject false

readings into the network. In such cases, node re-keying and redundancy, as well as

tamper-proof hardware may be utilized [30]. The latter approach however may be

too expensive for certain applications where nodes need to be low-cost and poten-

tially disposable. Node redundancy and re-keying on the other hand may not protect

against a distributed hostile network attacking at the physical level of sensing or the

physical layer of communication. The latter attack belongs to a broader category of

attacks referred to as (distributed) denial of service attacks with a rich literature of

defenses [31]–[34]. The former is referred to as a distributed denial on sensing and is

the focus of this work [35], [36].

In summary, to achieve reliable data collection and distribution, sensor network

design must overcome the numerous resource limitations, communication challenges

and operational challenges outlined in Figure 4. While some of these challenges are

also present in other networks, it is the simultaneous presence of all these issues in

sensor networks that distinguishes them from other networks. These challenges also

in part characterize the type of vulnerabilities that may be exploited by opponents if

no defense mechanisms are in place.
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showing protected and vulnerable parts of the process.

B. The Secure Data Acquisition and Stealthy Attack Problems

In this work we investigate the data collection process at the physical layer in the

case of competing networks deployed in a common environment. In comparison with

previous studies, we focus on attacks that occur during the data gathering process

prior to encryption and prior to the data’s travel through the network towards the

sink as shown in Figure 5.

For this case of competing networks, we extend the attacker model to that of a

distributed hostile network. This is in contrast with previous studies that focused on

a small number of captured nodes that are subverted to behave maliciously within

the legitimate network. This competing network scenario is shown in Figure 6. The

legitimate nodes L and the hostile nodes H are deployed in a common environment

where they collect readings regarding a source of interest. The L nodes wish to

determine if an event of interest has occurred in the environment based on readings

obtained from the source. The decision of each L node may be utilized directly for

network applications. It may also be considered collectively with the decisions of

other L nodes at a cluster head as shown in Figure 6. Both approaches have proven

of particular interest to trigger-based applications and tracking based applications
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Fig. 6. Data gathering in the competing networks scenario.

that operate in large or unattended areas over prolonged periods of time. In such

applications, the individual sensors and/or the cluster head trigger a set of higher-tier

nodes such as cameras [3], [7], [16].

Based on its deployment in the environment, a hostile node may utilize actua-

tion to disrupt the readings collected by a legitimate node L. The actuation may be

performed using a variety of methods depending on the underlying sensor technol-

ogy and the application (Appendix C). Land-based actuation for example includes

magnetometer, acoustic, laser and mobility based technologies while aquatic versions

include sonar and diffusion-based technologies. The effect of the actuation is a pertur-

bation of the readings collected by a legitimate node L such that an incorrect decision

regarding the presence or absence of an event may be made by the node. Based on the

distributed nature of the attacker, each L sensor may be affected with some non-zero

probability. Thus node redundancy without attack detection may not be sufficient to

avoid incorrect sensor and collective decisions. In the competing networks scenario

shown in Figure 6, the goals of each network are thus as follows:

• Goals of the Legitimate Network. The legitimate network wishes to collect both

individual and collective sensor decisions that are correct regarding the presence
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or absence of an event. In the case of an attack, the legitimate network wishes

to maximize the chance of uncovering the attack at the cluster head.

• Goals of the Hostile Network. The hostile network wishes to cause as many

incorrect individual sensor decisions as possible among the n sensors in a cluster.

The hostile network H also wishes to cause an incorrect collective decision at

the cluster while minimizing the chance of the attack being uncovered. The

hostile network thus wishes to select attack strategies that are stealthy.

C. System Models and Metrics

In this section we expand on the goals of each network by presenting the associ-

ated models and measures utilized to evaluate the success of each network in this

competitive scenario.

1. Competing Sensor Networks Model

To study the twin problem of stealthy attacks and defense strategies for the gathering

of sensor network data, we model the competition between the two networks for

sensing fidelity as a static game. The static game model enables study of situations

where one player’s outcome depends not only on his/her actions, but also on the

choices of the other players. This is crucial in the competing networks scenario where

the hostile nodes’ optimal attack parameters depend on the legitimate nodes’ defense

strategies and vice versa.

A static game G consists of a triplet 〈Γ, A, U〉 that specifies the game. Γ is the

set of players Γ = {1, ..., k, ..., n} in the game and A = {A1, ..., Ak, ..., An} where Ak is

the set of actions available to player k. U = {u1, ..., uk, ..., un} where uk is the utility

for player k and specifies player k’s preferences for every action profile of the game.



16

H

H

L

L

cross

cluster
head

n sensor
decisions

decision

direct

Fig. 7. Based on deployment and goals, a hostile node H may attack one or more or

none of its neighboring legitimate nodes L. This abstraction depicts a subset

of two hostile nodes with the possibility of cross-attack.

In modeling G, we must thus specify the players, the action set of each player and the

associated utilities as they pertain to the secure data acquisition and stealthy attack

problem.

The general model of the secure data acquisition and stealthy attack problem

is depicted in Figure 7. Based on its deployment and goals, each hostile node may

attack one or more (or none) of the legitimate nodes. As shown in Figure 7, the direct

attack which is examined in Chapter III refers to the case of one hostile node attacking

one legitimate node with some probability. The cross attack which is examined in

Chapter IV refers to one hostile node attacking more than one legitimate node with

the possibility of cross-over among hostile nodes. In this context, an attack strategy

for hostile node hi from its set of possible actions Ahi is a probability of attacking a

given legitimate node based on the direct or cross attack model.

For the legitimate network, each sensor makes a decision regarding the presence

or absence of an event in the environment as shown in Figure 7. This process of

data acquisition at each sensor is modeled via Eq. (3.1), where oi is an observation
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made by sensor i regarding the source O and γi is the mapping used by sensor i to

produce the decision xi ∈ {0, 1} regarding the presence or absence of the event. Each

sensor makes the decision by comparing its reading to a threshold Thi
, where IP is an

indicator function which is equal to 1 if P is true and is equal to 0 otherwise. Based

on the probability density function f0i
of the observation oi, a sensor reports an even

with probability pi.

xi = γi(oi) = I{oi≥Thi} s.t pi =

∫ ∞

Thi

f0i
(α)dα (2.1)

In the context of energy-constrained sensor networks, this data acquisition model

plays an important role. In the works of [20], [37]–[39] for instance, the distributed de-

tection of phenomena via sensor networks is explored. One of the general conclusions

is that for networks with channel bandwidth and power constraints, a large number

of sensors with binary decisions is asymptotically optimal [20]. That is, increasing

node redundancy produces a better result than obtaining more detailed information

from each sensor. Specifically, the binary sensor setup is not generally asymptotically

optimal for arbitrary sensor correlations and distributions f0i
, but rather it is optimal

for the i.i.d Gaussian or exponential case. It is noted however that in practice the

simplicity of using binary decisions may outweigh the small gain in bit performance

achieved by using more complicated schemes. Thus in this work we assume that each

sensor utilizes the same threshold Th and that the readings are i.i.d. This results in

a probability p that a sensor registers an event.

Based on the data acquisition and attack models, the hostile network wishes to

maximize the probability of an undetected attack while the legitimate network wishes

to minimize this probability. From the perspective of a game G, any utility can be used

to represent the preferences of each player as long as it represents these preferences in

a consistent manner [40]. This signifies that if a player prefers action a1 to action a2
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and action a2 to action a3, then he/she must prefer action a1 over action a3 and the

utility must preserve this consistency2. For the stealthy attack and defense game, we

develop a utility referred to as the stealth condition S and show that it is consistent

for both H and L in terms of attack detection (such as through the Neyman-Pearson

detection paradigm). Based on the stealth condition S, the optimal action a∗k of each

player k is determined where a∗k ∈ Ak : Sk(a
∗
k, a−k) ≥ Sk(a

′
k, a−k) ∀a′k ∈ Ak where

the notation −k denotes all the players other than player k. The optimal actions

of the players in G reveal the best attack and defense approaches for the case of

competing sensor networks.

2. Performance Metrics

In investigating the competing sensor networks problem, we examine the data col-

lection process from the perspective of the hostile network and from the perspective

of the legitimate network. The success of each network in competing with the other

is thus examined in terms of that network’s specific goals from Section B. We now

briefly re-state the goals of each network and present the measures of success for each.

The goal of the hostile network H is to disinform and misguide the legitimate

network during the data gathering process. To this effect, H wishes to cause as many

incorrect individual sensor decisions among the n sensors within a cluster as possible.

H also wishes to cause an error in the collaborative decision at the cluster head while

minimizing the chance of attack detection. From the perspective of H, the following

measures are thus of relevance in the stealthy attack problem.

2Strictly, given a set of actions A and a consequence function g : A → C that
maps A to the set C of possible consequences, all we require is a preference relation
(a complete transitive reflexive binary relation) � on the set C. However we may
use a utility function u : C → R which defines the preference relation a � b by the
condition u(a) ≥ u(b).
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1. Power Pa of the attack. This is the number of sensors among the n sensors

in the cluster that report an incorrect decision (a 1 instead of a 0, or vice

versa) as a result of the attack. From the attacker’s point of view, Pa ∈ {0, n}

should be as large as possible (subject to the condition that the attack stealth

is maximized). The power of the attack thus measures the number of incorrect

individual decisions that H is able to cause.

2. Stealth S of the attack. The relative stealth of one attack strategy over another

is measured through the stealth condition S. Alternatively, the absolute stealth

of an attack strategy is measured through the pair PD-PFA, where PD is the

probability of detecting the attack at the cluster head and PFA is the probability

of raising a false alarm about the attack. From the point of view of H in the

Neyman-Pearson paradigm for instance, PD should ideally be small for a given

PFA in order to evade detection.

3. Power-Communication-Detection PCD of the attack. Instead of measuring the

power Pa and the stealth S of the attack individually, a joint measure can

be considered given that both Pa and S are simultaneously important to the

attacker. Furthermore, such a joint measure facilitates comparisons among

attacks. Of particular interest in the stealth scenario is a comparison of the

number of communications required among the hostile nodes to coordinate the

stealthy attack. Thus we generalize the joint comparison measure to include the

concept of inter-node communication C. In this context, PCD = Pa/(C · S).

More precisely, PCD is given by Eq. (2.2).

PCD =
No. attacked nodes

(1 + No. communications) · (1 + PD)
(2.2)
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The definition of PCD offsets each of the denominator terms by 1 to account

for cases where C = 0 and/or PD = 0. As can be seen from Eq. (2.2), it is

beneficial for the hostile network to increase the number of affected sensors while

maintaining a low level of inter-node communication and a small probability of

attack detection.

For the legitimate network, the goal is to collect as many correct individual sensor

and collective decisions as possible while maximizing the chance of attack detection.

Thus the legitimate network L is interested in the following measures of success:

1. Power Pd of the defense. The power of the defense is the number of sensors

among the n sensors in the cluster that report a correct decision (a 1 given that

an event occurred, and a 0 given that no event occurred) in the presence of an

attack. Thus the power of the defense is the complement of the power of the

attack where Pd = n − Pa. From the defense’s point of view, Pa ∈ {0, . . . , n}

should be as small as possible (subject to the condition that the attack stealth

is minimized). The power of the defense thus measures the number of correct

individual decisions that L gathers from the source in the presence of attack.

2. Stealth S of the attack. Based on the competition between the two networks

for stealth and detection, the absolute stealth of an attack strategy from the

point of view of L is also measured through the pair PD-PFA. From the point

of view of L in the Neyman-Pearson paradigm for instance, PD should ideally

be as large as possible for a given PFA in order to detect the attack.

3. Redundancy R of the defense. The redundancy R of the defense is the number

of sensors n required within a cluster to minimize the stealth S while achieve

a given power of defense Pd. From the perspective of L, the requisite level of
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sensor redundancy R ≥ 1 should be small enough to limit unnecessarily dense

deployments while achieving detection goals.

In the sensor network scenario, a variety of other measures can be utilized to

track a network’s performance such as the energy consumption and the lifetime of

the network (defined variously depending on the application). Such measures are

commonly utilized to study the performance of individual networks in ad hoc and

harsh environments. In this work we wish to focus exclusively on the previously un-

explored concept of sensor network competition. As such we focus on metrics that

assess the level of success in this competition as defined in this section. Importantly,

the fundamental metrics defined in this work might be combined with specific experi-

mental or theoretical energy consumption models to derive other valuable information

in the context of competition.

D. Literature Review and Classification

This work examines the competition between two sensor networks one of which is hos-

tile with the intent of disinforming the second network regarding events of interest in

the environment. From the legitimate network’s perspective, the central focus of this

work is thus the development of mechanisms for the secure collection of sensor data

in the case of competition. From the hostile network’s perspective, the focus of this

work is on perpetrating an attack that successfully disinforms the network. In relat-

ing this work to existing sensor network research, we thus examine the relationship

from both the attack and defense perspectives. Appendix C provides a somewhat

orthogonal overview of other fields of relevance to sensor networks such as coverage,

deployment and actuation.
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Fig. 8. Classification of the stealthy hostile attack with respect to existing work in

terms of attack, defense and affected data.

1. Relationship of Literature to Our Work

The competing sensor networks problem as it relates to existing research is depicted in

Figure 8 where the relationship is initially shown broadly in terms of attacks, defenses

and affected data.

As shown in Figure 8, sensor network attacks are often subdivided into the

categories of insider and outsider attacks depending on whether the attacker has pos-

session of secret keys belonging to the legitimate network. Interestingly, the stealthy

attack perpetrated by a distributed hostile network appears to straddle these two

traditional categories by exhibiting characteristics of both. In the new attack, the

hostile opponent does not have “insider” access to the legitimate network’s secret

keys thus qualifying as an outsider attack. On the other hand, the attack enables

the injection of false data into the legitimate network as though the attacker had

by-passed the network’s encryption, thus qualifying as an insider attack. This latter

feature is made possible by the attack occurring at the vulnerable physical layer of
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sensing as depicted in Figure 5. Finally we make an important observation regard-

ing the distributed hostile attack. We note that use of cryptography at the sensors

typically forces an attacker to physically compromise nodes to obtain keying informa-

tion. Given the distribution of the legitimate sensors over an area, the procurement

of a given number of keys may be too laborious for the attacker and thus imposes

limits on the degree of possible compromise. In the hostile attack, this restriction

no longer applies given the distributed nature of the attacker and the physical layer

at which the attack is perpetrated. Figure 9 depicts a finer-grained comparison of

the new attack with existing attacks in terms of their effect of the network and its

data. The hostile attack is listed both under the physical attacks category as a DDoS

(distributed denial on sensing) and as an attack on data. The arrow in Figure 9 illus-

trates that attacking the network at one layer may facilitate attacks on other layers.

For instance, a Sybil attack may be carried out first such that the “Sybil node” has

several supposedly valid identities that it uses to communicate with the rest of the

network. In such a scenario the extra identities of the node can collude to report false

data. In other words, the Sybil attack allows one compromised node to have greater

impact on the aggregation result [15]. The attacker may also skew the aggregation

result by first carrying out a Denial of Service (DoS) attack. In this scenario the

blocked nodes are not reporting their local values and are hence excluded from the

overall aggregation [32].

The competing sensor networks scenario is also compared to existing schemes in

terms of defense strategies as shown in Figure 8. In the context of sensor networks, it

is typically assumed that to perpetrate an insider attack an opponent must compro-

mise secret keys. It is thus assumed that only a small number of nodes and keys will

be compromised [41]–[45]. Typical defense mechanisms against insider attacks there-

fore include the use of sensor redundancy, signal processing schemes (such as data
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Fig. 9. Classification of the stealthy hostile attack with respect to existing attacks

based on their effect on the network and its data.

aggregation) and the use of trust models [46], [47]. In the case of a hostile distributed

network however, node redundancy along with data aggregation are no longer suffi-

cient due to the number of affected nodes at the sensing level. Therefore as shown

in Figure 3, in this work we consider defense mechanisms against the hostile attack

that are based on a combination of attack analysis (through game theory), statistical

signal processing (through attack detection) and sensor redundancy [48]–[51].

Sensor network attacks may also be considered in terms of the data that they

affect as shown in Figure 8. Due to its occurrence at the physical layer of sensing, the

new hostile attack affects the raw collected data and therefore the aggregated data

that is derived from it. The attack does affect data during its transmit through the

network. An interesting observation is that the new attack may also be viewed as one

that compromises multiple security goals simultaneously. Figure 10 shows that the
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Fig. 10. Sensor network security goals affected by the hostile attack (*).

attack compromises the sensor data integrity by altering the collected measurements.

With a slight stretch of the traditional definition, we may also conclude that the attack

compromises data authentication since the measurements do not purely originate from

the source as expected. Furthermore the hostile attack affects data availability since

characteristics of the source are no longer available to the end-user.

2. Game Approach to Sensor Network Security

The theory of games has been used extensively in the study of problems with mul-

tiple cooperative or non-cooperative players where the preferences of each player in

the game can be defined consistently [52]. The model of a game is utilized in situ-

ations where the outcome experienced by a player depends not only on his/her own

actions but also on the unknown actions of others. Game theory may be viewed as

a form of “optimization of an entity’s actions” given that all problem variables are

not centralized at the entity but rather distributed among several entities [53], [54].

Importantly, though many problems can be modeled as a game or optimization, such
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modeling need not always yield a tractable formulation or a meaningful solution [55],

[56].

In this work we focus on two-player, non-cooperative, zero-sum, static games and

show that the models yield meaningful solutions for both the hostile and the legitimate

networks. Generally, a two-player game is non-cooperative if each player attempts

to achieve his/her own goals (which may or may not conflict with the goals of the

other players) and where there is no mechanism to enforce contracts (cooperation)

between the players. Games in which players can enforce contracts through outside

parties are termed cooperative games [40], [57]. The game is said to be zero-sum if

the sum of the payoffs of the two players must always add to zero. Hence if player

one wins a payoff of 4 units, player two must loose 4 units. A game is said to be

static if both players make a move simultaneously without knowing a priori what

their opponent is choosing. A static game is only played once (one move per player)

but can be extended by repeated play. An important concept in non-cooperative

static games is that of a (pure or mixed) Nash equilibrium point (at least one such

point is guaranteed to exist). A Nash equilibrium point is simply a “solution” to

the game predicting the players’ moves (assuming the players are always rational and

choose the highest payoff possible). The equilibrium occurs when neither player has

any payoff incentive to deviate from the strategy if their opponent does not deviate

from it (i.e. deviating from this strategy will not increase the payoff unless the other

player changes his/her moves) [40].

In recent years game theoretic approaches to various aspects of sensor network

security have been presented. In [58] the authors describe how to disrupt the cover-

age of an opponent’s network by modeling node removal as a two-stage game. In [59]

the authors model secure key distribution schemes in a probabilistic way. They show

how the game theoretic model can be formally translated into properties that would
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render the distribution schemes more secure. In [60] the authors employ game the-

ory to study medium access control. Using this approach they provide a protocol

that achieves short-term fairness within a window size of 3-4 packets per node, in

comparison with existing MAC protocols which require 80-140 packets per node to

achieve fairness. In [61] the authors adapt existing game theoretic approaches to the

particular challenges associated with secure routing in sensor networks. Specifically,

the authors develop a game theoretic model that accounts for non-simultaneous de-

cision making and incorporates history information into the decision making process.

In [62] the authors develop an analytical model of data-centric information routing

in sensor networks under the constraints of trading off individual node energy versus

the overall network’s goals. These recent advances demonstrate the potential of game

theoretic modeling for sensor network security analysis and design.

3. Data Content Security in Sensor Networks

The body of literature on sensor network security is vast, with numerous attack models

and proposed solutions. Attack countermeasures exist at various network levels and

are aimed at protecting the data during various stages of the collection, processing and

distribution process. This section overviews a subset of the specific attacks shown in

Figure 9 along with their mitigation strategies. We focus the discussion on the subset

of attacks most directly related to our proposed work at the physical sensing layer as

shown in Figure 9. As such, we focus the review on attacks that affect the collection

of data such as through denial of service (DoS) attacks, trust model violations and

a special attack referred to as the “Byzantine Generals’ Problem.” We also examine

tampering at the physical layer such as through node capture, and attacks on the

node processing level such as during the aggregation process.
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a. Attacks on Collection and Processing

In [63], sensor decision redundancy allows the fusion center to select the correct

hypothesis regarding a source within some probability while channel coding protects

against the binary decisions being flipped during transmission. This methodology

however does not protect against a hostile attack where sensor errors may not be rare

but pervasive throughout the network and where the attack hypotheses are not known.

Due to the large amount of information collected by sensors, it is often necessary and

useful to perform data aggregation [64]–[66]. However if the aggregation function is

performed by a designated subset of nodes that become compromised by an attacker,

then the resulting data may be misleading [67].

Compromising a single aggregator is often sufficient to skew the data from dozens

or hundreds of nodes. In [68], [69] the authors propose a statistical en-route filtering

mechanisms that relies on the assumption that multiple neighboring nodes witness

the same original event and can confirm this event by using MACs along the path

from the aggregator to the base station. Any packet that fails any of the MAC tests is

discarded. In [70], the authors describe LEAP+. The proposed Localized Encryption

and Authentication Protocol is a key management protocol for sensor networks that is

designed to support in-network processing. The protocol restricts the security impact

of a node compromise to the immediate network neighborhood of the compromised

node. In [71] the authors propose an SQL like language called TAG (Tiny Aggrega-

tion Service). In this approach the base station generates queries. The sensors then

route data back to the base station according to a routing tree. At each point in the

tree, data is aggregated according to the routing tree and the aggregation function

demanded by the query.
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In [72] the authors propose mechanisms that enable more complex aggregation

functions to be computed approximately and prove strict guarantees on the approxi-

mation of the queries. In [73] the author analyzes the robustness of various aggrega-

tion functions to the capture of k nodes (with k 	 N where N is the total number

of nodes). It is concluded that most functions are not robust to such tampering with

the exception of the count statistic and of any other statistic meeting the proposed

(k, α) definition of functions. In [44] the authors present a three-stage technique called

aggregate-commit-prove to protect against false data injection at k 	 N nodes as

well as a take over of the aggregator. To achieve this the authors make use of Merkle

hash-trees and interactive proofs. In [74] the authors propose a secure aggregation

technique that protects against at most 1 compromised node. Their approach bor-

rows the µTESLA protocol for symmetric key management to generate and validate

the MACs of individual nodes for multihop message authentication. Most recently,

in [75] the authors extend the methodology found in [44] to include a hierarchy of

aggregators (several aggregators send data to a higher level aggregator that aggre-

gates their result). Their approach guarantees that the attacker does not gain more

by attacking the intermediate aggregators than he/she would by compromising the

individual nodes that report to the aggregators.

b. Physical Attacks

The category of physical attacks encompasses activities where a malicious entity tam-

pers with the physical components and hardware of the node. Physical attacks pose

a large threat to sensor networks due to their unattended operation in open and pos-

sibly hostile environments. One way of coping with this attack is to tamper-proof the

node’s physical package or hardware [76]–[78]. Since sensors need to be low-cost and

numerous, the extra cost of such hardware may be prohibitive [32], [76].
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In [79] the authors introduce the concept of a secure localization scheme called

the ECHO protocol to prevent attackers from eavesdropping the physical location of

sensor nodes. Their work relies on the physical properties of sound and RF signal

propagation. In [80] the authors introduce the use of directional antennas to defend

against wormhole attacks. As such they propose “turning the table” on the attackers

by using physical characteristics of the sensor network against the attackers. In

[81] the authors study the modeling and defense of sensor networks against search-

based physical attacks where an opponent walks through the sensor field with signal

detecting equipment. Their solution strategy relies on a subset of nodes detecting the

attack and transmitting this warning to other nodes. The nodes that detect such an

attack or receive such a warning shut off their power and hence become undetectable.

c. Denial of Service Attacks

A Denial of Service (DoS) attack in sensor networks and networks in general is defined

as any event that diminishes or eliminates the network’s capacity to perform its

expected function [32], [34]. DoS attacks in sensor networks may be carried out at

the physical, link, routing and transport layers. At the physical layer an attacker may

simply jam a sensor’s radio transmissions, either constantly or intermittently [32].

Solutions to this attack include spread spectrum communications, priority messages,

lower duty cycling, and node mobility. To attack at the link layer an attacker may

simply intentionally violate a communication protocol, attempting to cause collisions.

Solutions to this level of attack include error-correction codes, rate limitation and

small frames. At the routing layer a malicious node may take advantage of a multihop

network by refusing to route messages. Protection mechanisms at this layer include

encryption, egress filtering, authorization monitoring and redundancy. Finally at the

transport layer a DoS may consist of packet flooding which drains resources. At this
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layer solutions include issuing client puzzles and using authentication mechanisms.

In [82] the authors present an efficient mechanism called message-specific puzzle to

mitigate DoS attacks for broadcast authentication. In addition to signature-based

or µ-Tesla-based authentication, the approach adds a weak authenticator in each

broadcast packet which is computationally difficult for an attacker to forge. In [83] the

authors employ cooperative game theory between the nodes of the legitimate network.

This game between the legitimate sensor nodes is based on three factors: cooperation,

reputation and quality of security. Nodes form clusters with other nodes that have

similar payoff functions. Misbehaving nodes that drop traffic may thus be detected.

In [84] the authors formulate the attack-defense problem as a two-player, nonzero-

sum, non-cooperative game between an attacker and a sensor network. Using this

formulation they propose two schemes for preventing DoS attacks. The first approach

is Utility based Dynamic Source Routing (UDSR). It incorporates the total utility

of each route in data packets, where utility is a value that the legitimate network is

trying to maximize. The second approach is based on a watch-list, where each node

earns a rating from its neighbors based on its previous cooperation in the network.

d. Trust Models

Given the likelihood of sensor node compromise in a sensor network, the associated

trust model cannot blindly include all network nodes. In [85] the authors propose a

trust evaluation scheme where nodes evaluate other nodes based on factors such as

experience statistics, data value, intrusion detection results and references from other

nodes. In [86] the authors describe a probabilistic solution based on a distributed trust

model with an initial secret dealer. In [87] the authors propose a reputation-based

framework for high integrity in sensor networks.
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e. Byzantine Generals’ Problem

The original version of the Byzantine Generals’ Problem is presented in [88]. The

Byzantine Generals Problem involves a group of generals, each commanding a division

of the Byzantine army. In its simplest form, each general independently makes a one

bit binary decision to attack (bit 1) or to retreat (bit 0) based on his/her local

observations of the enemy. Importantly, we require that all the generals agree on a

common decision to attack or retreat (their combined resources are required in order

to succeed should they choose to attack). To achieve this consensus, each general

sends his/her decision to every other general. Each general then makes his/her final

decision based on applying a majority rule to the incoming decisions.

The difficulty of this original formulation stems from the fact that some of the

generals are allowed to be corrupt. This means that they are allowed to recommend

bad strategies (recommend 1 when 0 should have been recommended and vice versa)

and furthermore, they are allowed to recommend different strategies to different gen-

erals. In other words, a corrupt general may recommend decision bit 1 to one of its

neighbors and decision bit 0 to another neighbor. The corrupt generals hence behave

not only erroneously but also inconsistently. It has been shown that the Byzantine

Generals’ Problem can be reduced to a “Commander and Lieutenants” problem [88].

If message authentication (encryption) is allowed, then it is possible in many cases

to reach a consensus when an arbitrary number of traitorous generals is present. If

message authentication is not available, in general we can only protect the system if

the number of traitors is less than a third of the total number of generals [89].

As extended to general systems, a Byzantine fault is one in which a component of

some system not only behaves erroneously, but also fails to behave consistently when

interacting with multiple other components. For instance, a sensor node taken over
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by an attacker may report a certain decision about its environment to one neighbor

(for instance it transmits “enemy present”), but sends a different message to another

neighbor (“enemy absent”) [90]. Correctly functioning components of a Byzantine

fault tolerant system will be able to reach the same group decisions regardless of

Byzantine faulty components [91]. It is also insightful to examine the connection

between the Byzantine Generals’ Problem and the stealthy hostile attack model. In

the original form of the Byzantine Generals’ Problem, we require that all non-corrupt

generals reach a consensus in the presence of a number of corrupt generals that send

erroneous and inconsistent decisions. If we have access to message authentication

then under many situations we are able to achieve Byzantine fault tolerance in the

presence of an arbitrary number of corrupt generals [88].

In contrast with this setup, in the stealthy attack problem we do not require

that all the sensor nodes reach a consensus. Rather, only one select entity (the

cluster head) is required to reach a correct decision about the presence or absence

of an attacker. The connection between the two problems may be better understood

with the following analogy. In the stealth attack formulation, each sensor may be

thought of as a general. Each general makes a local decision about the presence or

absence of an event. However, each general also has his/her own advisor (the hostile

node that interferes with the readings). Each advisor may be corrupt with some

probability and change the general’s decision. Once the general finalizes his/her local

decision based on his/her observation and the advisor’s input, the decision is sent

to an overall commander (the cluster head) through encrypted means. Hence the

decisions (messages) cannot be forged during the communication process. It is the

commander (the cluster head) that ultimately decides whether at least one general has

sent an incorrect decision under the influence of a hostile advisor but the commander

does not know which generals may have been ill-advised by a hostile advisor.
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CHAPTER III

STEALTHY DIRECT COMPETITION∗

A. Introduction and Motivation

In this chapter we wish to investigate the competing sensor networks scenario for the

case of a direct stealthy attack. In a direct stealthy attack, each hostile node may

attack a legitimate node with some probability, causing an incorrect decision at the

sensor. Unlike occasional errors, decision errors due to a distributed stealthy attack

may be persistent over time and pervasive throughout the cluster. Such errors can

corrupt the data acquisition process and cause misinformation regarding events of

interest in the environment.

We examine the problem from the perspective of both the hostile and the legit-

imate network. The interaction between the networks is modeled as a game where

a stealth utility is derived and shown to be consistent for both players. Based on

the stealth utility, the optimal attack and defense strategies are obtained for each

network. For the legitimate network, minimization of the attacker’s stealth results

in the possibility of attack detection through the Neyman-Pearson paradigm and the

capability of mitigating the power Pa of the attack. For the hostile network, max-

imization of the stealth utility translates into the optimal attack avoidance. This

attack avoidance does not require active communication among the hostile nodes but

rather a level of coordination which we quantify. The direct stealthy attack yields a

favorable level of stealth S, power of attack Pa and power-communication-detection

*Part of the material in this chapter is reprinted with permission from A. Czarlin-
ska and D. Kundur, “Event-Detection in Wireless Visual Sensor Networks through
Scalar Collaboration and Game Theoretic Consideration,” IEEE Transactions on
Multimedia, Special Issue on Multimedia Applications in Mobile/Wireless Contexts,
August 2008, to appear. c© 2008 IEEE.
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Fig. 11. Direct stealthy attack model.

PCD compared with other stealth approaches.

B. System Model

We consider a legitimate network L and a hostile network H deployed in a common

environment by competing entities. Based on deployment and goals, each hostile

node may attack a legitimate node with some probability in a direct “one-to-one”

attack as shown in Figure 11.

A legitimate node li where i ∈ {1, . . . , n} obtains an observation oi from the

environment regarding the source of interest O. Each node utilizes a local decision

threshold Th to decide whether an event of interest has occurred in the environment

based on Eq. (3.1) where f0 is the probability density function of the source O and

xi is the realization of a decision made by node i. This scenario is depicted in Figure

12a. The decision of each node can thus be modeled as a Bernoulli random variable

Xi as given by Eq. (3.2).

xi = γ(oi) = I{oi≥Th} s.t p =

∫ ∞

Th

f0(α)dα (3.1)
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Xi =




1 w.p. p

0 w.p. 1 − p
(3.2)

Each hostile node hi where i ∈ {1, . . . , n} performs local actuation yi upon a

legitimate node with a probability 0 ≤ q ≤ 1 as shown in Figure 12b. Based on this

binary symmetric error model, a hostile node may interfere with the local readings of

a sensor with probability q such that an incorrect decision is made. Importantly in

the case of attack, the probability q may take on any value based on the actions of

the attacker and is thus generally unknown. This is in contrast with decision errors

caused by occasional sensor faults where the value of q is generally known through

quality testing and is typically assumed to be small. The actuation attack of node hi

can thus be modeled as a Bernoulli random variable Yi as given by Eq. (3.3) where

the effect of the attack is given by Eq. (3.4) where ⊕ denotes modulo 2 addition and

corresponds to the binary symmetric error model of Figure 12b. Thus as shown in

Figure 12b, the decision of a legitimate sensor node li under the attack model is given

by a Bernoulli random variable Zi as given by Eq. (3.5).

Yi =




1 w.p. q

0 w.p. 1 − q
(3.3)

Zi = Xi ⊕ Yi (3.4)

Zi =




1 w.p. r

0 w.p. 1 − r where r = q + p− 2pq
(3.5)

Importantly in the general case without constraints, the attack probability q may

take on any value in the permissible range. In the scenario of competing networks

however, this is no longer the case. In particular, the legitimate network employs

redundancy in the form of n sensor decisions that are sent to the cluster head as shown
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Fig. 12. (a) Binary sensor model with sensing threshold Th and resulting probability

of witnessing an event 0 ≤ p ≤ 1. (b) Basic bit error model due to fault or

unstealthy attack where 0 ≤ q ≤ 1 is typically small for faults but may be

arbitrarily large for unstealthy attacks.

in Figure 11. A competing hostile network must therefore select attack strategies that

are informed and competitive in this scenario rather than arbitrary. Specifically H

faces a situation where under no attack, the cluster head receives a vector x of n sensor

decisions where each decision comes from a distribution Bern(p). To achieve stealth

and minimize the probability of attack detection, the hostile network wishes to attack

such that the attacked vector z from distribution Bern(r) statistically resembles the

prestine vector x. The attacker thus wishes to satisfy the stealth condition S given

in Definition 1.

Definition 1 The stealth condition S of the hostile sensor network H for the direct

attack is given by Eq. (3.6) where w is the weight of a vector which is the number of

1’s contained in the vector and defined as w(ξ)
.
=

∑n
i=1 ξi for a vector ξ of length n.

S = Pr{w(Zpq) = w(Xp)} (3.6)

We now provide the intuition behind the stealth condition and formally show its

consistency and effectiveness for the attacker in Section C. Informally, the stealth

condition allows the hostile network to flip individual sensor readings (from 1 to 0
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and vice versa) to achieve a power of attack Pa while maintaining the appearance of

a statistically legitimate decision vector as received by the cluster head on average.

By altering individual sensor decisions within the stealth constraint, H can also cause

the cluster head to make the wrong collective decision about an event. The cluster

head typically requires that a specified number of sensors c report an event before

deciding that an event has most likely occurred [3], [7], [92]. The requisite number of

sensors c (also known as the “weight” [6] or the degree of aggregation DoA [3]) may

be determined experimentally, approximated based on expectations or obtained via

detection mechanisms such as based on the Neyman-Pearson paradigm (Section D).

For instance to perform an approximation, if there are n sensors and each sensor has

a probability p of witnessing an event (based on its threshold Th), then the average

expected number of sensors that report an event is c ≈ np ± ε where ε may be

determined experimentally. In this context, the stealth condition S as defined in

Eq. (3.6) is a more general and strict condition on the attack such that the attacker

is able to minimize the chance of detection at the cluster head without knowledge of

the specific cluster head mechanism.

Thus in the game between the two networks, the attacker wishes to choose an

optimal value of attack parameter q∗ such that the weight of the attacked data (which

depends on probabilities p and q) generally matches (in terms of the probability of

occurrence) the weight of the unaltered data (which depends on the probability p

alone). In general the attacker need not know the probability p since the sensor

threshold Th may not be known to the attacker. In that case the selection of the attack

parameter is performed through game theoretic optimization where the sensors with

unknown parameter p are treated as an opponent and where the attacker is treated

as the other player with unknown parameter q. The direct stealthy game G between

H and L is thus given formally by definition 2.



39

Definition 2 The direct stealthy game is given by:

G = 〈Γ, A, U〉 = 〈{L,H}, {A1, A2}, {u1, u2}〉 (3.7)

A1 = {p : p ∈ [0, 1]} A2 = {q : q ∈ [0, 1]} (3.8)

u1(p, q) = 1 − Pr{w(Xp) = w(Zpq)}, u2(p, q) = Pr{w(Xp) = w(Zpq)} (3.9)

To solve the game and obtain the optimal actions of each player, we are looking

for best response functions 1 B1(q
∗) and B2(p

∗) where the notation Ba(b) denotes the

best response B of player a to the opponents best strategy b as given by Eqs. (4.21)

and (4.22) respectively.

B1(q
∗) = arg min 0≤p≤1 Pr{w(Xp) = w(Zpq)} (3.10)

B2(p
∗) = arg max 0≤q≤1 Pr{w(Xp) = w(Zpq)} (3.11)

C. Stealthy Attack Results

In this section we analyze and solve the direct stealthy attack game G from definition

2. We begin by deriving the stealth condition S from Eq. (3.6) through Problem 1

which we also refer to as the overlap problem.

Problem 1 (OVERLAP)

GIVEN: w(X) ∼ Binomial(n, p)

w(Y) ∼ Binomial(n, q)

FIND: S = Pr{w(X) = w(X⊕ Y)}.

A more general relaxed version of the stealth condition that allows the attacker

to deviate from the optimal weight by a factor of ε is derived via Problem 2.

1In general the best response can be a functional [56].
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Problem 2 (OVERLAP-2)

GIVEN: ε a fixed integer

w(X) ∼ Binomial(n, p)

w(Y) ∼ Binomial(n, q)

FIND: S ′ = Pr{|w(X) − w(X⊕Y)| ≤ ε}.

Problem 3 focuses specifically on the best strategies of the attacker and finally

Problem 4 presents the solution to the entire game including the strategies of the

legitimate network L.

Problem 3 (OPTIMAL-q)

GIVEN: w(X) ∼ Binomial(n, p),

w(Y) ∼ Binomial(n, q)

FIND: arg maxq∈[0,1] Pr{w(X) = w(X⊕ Y)}.

Problem 4 (STATIC-GAME)

GIVEN: w(X) ∼ Binomial(n, p),

w(Y) ∼ Binomial(n, q)

FIND: B1(q
∗) and B2(p

∗) from Eqs. (4.21) and (4.22).

In addressing the problems in this chapter, we make use of the following notation.

We make extensive use of the binomial coefficient
(

a
b

)
where

(
a
b

)
= a!/(b!(a − b)!) for

a positive integer a and non-negative integer b ≤ a, and 0 otherwise (negative and

fractional a and b, defined using Gamma functions, have no physical meaning in our

problem) [93]. Here the factorial of a, written as a! is equal to a× (a− 1)× (a− 2)×

· · · × 2 × 1. We also use the notation x ↓ 0 to indicate the limit from above, or more

intuitively, x approaching 0 from the right-side. The absolute value | · | when applied

to a finite set, denotes the cardinality of that set, while when applied to non-sets it

denotes the real absolute value as will be clear from the context.



41

1. Attack Analysis

First we set out to solve Problem 1 also referred to as the overlap problem. The aim

of Lemma 1 is to outline the necessary and sufficient condition of the legitimate and

attacker’s bit vectors overlapping, such that x⊕y has the same weight as the pristine

x. The goal is to first determine the weight of x⊕y, which is illustrated in Figure 13.

The idea is that whenever the 1s in x and y do not overlap, these positions contribute

to the overall weight of x ⊕ y, since 1 ⊕ 0 = 0 ⊕ 1 = 1.

Lemma 1 w(x) = w(x ⊕ y) if and only if the number of 1s in x and y coincide in

exactly m = w(y)/2 positions.

Proof 1 Let k = w(x), l = w(y), and let A be the set of positions in x that have

a value of 1, i.e. A = {i : xi = 1} and let B be the set of positions in y that

have a value of 1, i.e. B = {i : yi = 1}. Then k = |A| and l = |B|. The set

of positions in both A and B that coincide is A ∩ B so by definition m = |A ∩ B|.

The set of positions that do not coincide is (A ∪ B) − (A ∩ B). In binary addition,

bits that match always add to 0, and bits that do not match always add to 1, hence

w(x⊕y) = |(A∪B)−(A∩B)|(a)
= |(A∪B)|−|(A∩B)|(b)= |A|+|B|−2|A∩B| = k+l−2m,

where (a) results because A∩B ⊂ A∪B, and (b) follows from the principle of inclusion

and exclusion. If w(x) = w(x ⊕ y), then k = k + l − 2m, which implies m = 1/2.

Conversely, if m = 1/2, then w(x⊕ y) = k + l − 2(1/2) = k = w(x).

Lemma 2 Suppose x and y have exactly m overlapping 1s. Then w(x) ≥ m and

w(y) ≥ m must satisfy:

n− w(x) ≥ w(y) −m (3.12)

Proof 2 Define k, l, A, and B as in the proof of Lemma 1. The distinct 1-positions

over both x and y are given by the set A ∪ B. Since the total number of distinct
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A = 1-positions for x B = 1-positions for y

Result x + y: 1 + 0 = 1 1 + 1 = 0 0 + 1 = 1

Fig. 13. Visualization of Lemma 1: when 1-positions do not overlap (intersect) the

result is a bit 1, otherwise a bit 0.

1-positions cannot exceed n (for either x or y would be of length greater than n), we

have n ≥ |A ∪ B| = |A| + |B| − |A ∩B| = k + l −m.

The following definition is based on Lemma 2 and will be used in subsequent proofs.

Definition 3 Given a number m, the pair (k, l) is said to be well-defined if it satisfies

n− k ≥ l −m, and n ≥ k ≥ m, n ≥ l ≥ m.

In Lemma 3 we look at the conditional probability of x and y overlapping in

exactly m positions. The technique used in the proof is to fix one of the vectors, i.e.

x, as shown in Figure 14, and then choose ys so that only m of their 1s overlap with

any of the x’s 1s. This probability turns out to be a hypergeometric distribution.

Lemma 3 Let E be the event that the number of 1s in X and Y overlap in exactly

m positions. Then

Pr(E|{w(X) = k and w(Y) = l}) =

(
k
m

)(
n−k
l−m

)
(

n
l

) (3.13)

=

(
l
m

)(
n−l
k−m

)
(

n
k

) (3.14)
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Fixed x:     1 1 1  … 1      0 0 0 … 0 0 0

k 1s n-k 0s

Sample y:    0 0 1 … 1 0     0 … 0 1 …  1

m 1s l-m 1s

Fig. 14. Visualization of Lemma 3: choosing exactly m of y’s 1s to overlap with x’s

1s.

when k and l are well-defined (as in Definition 3), otherwise the probability is 0.

Proof 3 We prove Eq. (3.13), and let the reader verify Eq. (3.14). We fix x, and

think of y as the binary string that we vary so that we may look at the event E ′ =

{y|exactly m of y’s l 1s overlap with x’s k 1s}. We can count the number of y that

satisfies E ′ by choosing m 1s in y from positions out of the k 1-positions in x, which is(
k
m

)
, and then choosing the remainder l−m 1s in y from positions out of the n−k 0-

positions in x, which is
(

n−k
l−m

)
. The multiplication counting rule gives |E ′| =

(
k
m

)(
n−k
l−m

)
.

Now if we vary x, by the multiplication rule we have |E| =
(

n
k

)(
k
m

)(
n−k
l−m

)
. There are

a total of
(

n
k

)(
n
l

)
pairs of (x,y) of specified weights. Since all such pairs have the

same probability, we can take the ratio of |E| over the total number of pairs, giving

us Eq. (3.13).

Theorem 1 Let E be the event that the number of 1s in X and Y overlap in exactly
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m positions. Define:

a(k,m) =




(
k
m

)
if k ≥ m

0 o.w
(3.15)

b(k, l,m) =




(
n−k
l−m

)
if n− k ≥ l −m

0 o.w
(3.16)

c(k) =




(
n
k

)
if n ≥ k

0 o.w
(3.17)

In addition, we define
(

a
b

)
to be equal to 0 if either a or b are not integers. Then:

Pr(E) =
n∑

k=1

n∑
l=1

a(k,m)b(k, l,m)c(k)pk(1 − p)n−kql(1 − q)n−l (3.18)

Proof 4

Pr({w(X) = k and w(Y) = l and} ∩ E)

= Pr(E|{w(X) = k and w(Y) = l})

·Pr{w(X) = k}Pr{w(Y) = l} (3.19)

=

(
k
m

)(
n−k
l−m

)
(

n
l

) (
n

k

)
pk(1 − p)n−k

(
n

l

)
ql(1 − q)n−l (3.20)

Eq. (3.20) follows from Lemma 3, where again we assume k and l are well-defined,

or the probability is 0. Finally we can extract the desired marginal distribution:

Pr(E) =
n∑

k=1

n∑
l=1

Pr({w(X) = k and w(Y) = l and} ∩E) (3.21)

Corollary 1

Pr{w(X) = w(X⊕ Y)}

=
n∑

k=1

n∑
l is even

a

(
k,
l

2

)
b

(
k, l,

l

2

)
c(k)

·pk(1 − p)n−kql(1 − q)n−l (3.22)
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where a(k,m), b(k, l,m), c(k) are as defined in Theorem 1.

Proof 5 Apply Lemma 1 to Theorem 1.

We are ready to state our first result as the solution to Problem 1.

Solution 1 The stealth condition S = Pr{w(X) = w(X⊕ Y)} is given by

S =

n∑
k=1

n∑
l is even

a

(
k,
l

2

)
b

(
k, l,

l

2

)
c(k)

·pk(1 − p)n−kql(1 − q)n−l (3.23)

where a(k,m), b(k, l,m), c(k) are as defined by

a(k,m) =




(
k
m

)
if k ≥ m

0 o.w
(3.24)

b(k, l,m) =




(
n−k
l−m

)
if n− k ≥ l −m

0 o.w
(3.25)

c(k) =




(
n
k

)
if n ≥ k

0 o.w
(3.26)

Before investigating the implications of solution 1, we proceed to the relaxed

version of the stealth condition via the study of Problem 2.

Corollary 2 Let ε be a positive integer. Then:

Pr{|w(X) − w(X⊕ Y)| < ε}

=

� l+ε
2

�∑
m=	 l−ε

2



n∑
k=1

n∑
l=1

a (k,m) b (k, l,m) c(k)

·pk(1 − p)n−kql(1 − q)n−l (3.27)

where a(k,m), b(k, l,m), c(k) are as defined in Theorem 1.
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Proof 6 Given realizations x and y, let k = w(x) and l = w(y).

|w(x) − w(x ⊕ y)| < ε (3.28)

⇒




k < k + l − 2m+ ε

k > k + l − 2m− ε
(3.29)

The second line relies on the proof for Lemma 1. Since the events of strings having 1s

overlapping in exactly m′ and m′′ positions are disjoint, the probability of the union

of the events is the sum of the probabilities of the individual events.

The solution to Problem 2 readily follows from Corollary 2.

Solution 2 The relaxed form of the stealth condition S ′ for the direct stealthy attack

game is given by:

S ′ = Pr{|w(X) − w(X⊕Y)| < ε}

=

� l+ε
2

�∑
m=	 l−ε

2



n∑
k=1

n∑
l=1

a (k,m) b (k, l,m) c(k)

·pk(1 − p)n−kql(1 − q)n−l (3.30)

where ε is an integer and a(k,m), b(k, l,m), c(k) are as defined in Theorem 1.

We are now in a position to address Problem 3 where the goal is the determination

of the best probability q that a hostile sensor network should employ given that the

probability p (based on local sensor threshold Th) is not known. We answer this

question for sufficiently large sensor densities in Theorem 2.

Theorem 2 For n sufficiently large, q∗ ↓ 0 as n→ ∞, where q∗ = arg maxq∈[0,1] S,

that is, q∗ = arg maxq∈[0,1] Pr{w(X) = w(X⊕ Y)}.
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Proof 7 Let ϕ(q) = Pr{w(X) = w(X⊕Y)} where p is treated as a fixed constant.2

As n → ∞, w(X)/na.s.
→ p and similarly w(Y)/na.s.

→ q. Using this idea (which could

also be strengthened using strong typicality), it can be shown that w(x) ≈ np and

w(y) ≈ nq for all realizations x and y for sufficiently large n. Hence substituting

k = np and l = nq into Eq. (3.23), we obtain:

ϕ(q) ≈
(
np

nq/2

)(
n(1 − p)

nq/2

)(
n

np

)
pnp(1 − p)n(1−p)qnq(1 − q)n(1−q) (3.31)

when n is sufficiently large. The conditions for being well-defined imply q ≤ min{2p, 2(1−

p)}, which can readily be verified. Again for sufficiently large n, we apply Stirling’s

approximation (n! ≈ (n/e)n) to Eq. (3.31).

ϕ(q) ∝ (1 − q)n(1−q)(
n
2

)nq
[n(p− q/2)]n(p−q/2)[n(1 − p− q/2)]n(1−p−q/2)

(3.32)

In Eq. (3.32), we have removed the non-negative constants (independent of q). Next

we examine the derivative of ϕ(q).

∂ϕ(q)

∂q
∝ 2nq−1n1−nq(1 − q)n(1−q)

·[n(1 − p− q/2)]−n(1−p−q/2)[n(p− q/2)]−n(p−q/2)

· ln
(

4(p− q/2)(1 − p− q/2)

(1 − q)2

)
(3.33)

We can verify that the point q = 0 is a salient point (i.e. a “corner” since ϕ(q) “turns

on” at q = 0) so the derivative does not exist at this point. Hence our discussion of

the derivative is restricted to 0 < q ≤ min{2p, 2(1 − p)}. Under the implications for

being well-defined, it can be verified that the terms outside ln are always non-negative

2The difficulty in this proof lies not in taking the derivative of ϕ(q), but rather
in solving the first order condition ∂ϕ(q)/∂q = 0; hence we resort to the asymptotic
case as well as approximations. We also note that although q∗ approaches 0, setting
q∗ = 0 is incorrect, as this results in ϕ(0) = 0.
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(Appendix A). However, the ln term can be shown to be non-positive by showing that

the argument inside ln is always ≤ 1 (Appendix A). Therefore ∂ϕ(q)/∂q ≤ 0 over the

interval of q ∈ (0,min{2p, 2(1− p)}] implies ϕ(q) is monotonically decreasing in this

interval. The maximum q∗ must then be the left boundary, i.e q∗ ↓ 0.

Theorem 2 suggests that when n is large, the hostile sensor network should be

looking for an optimal q that is quite small. This result is important since ϕ(q) is

not concave and hence utilization of numerical methods to find the optimal q benefits

from a good initialization.

Solution 3 In a stealthy direct attack, each hostile node hi should attack with q∗ = ζ

where ζ is closer to 0 than to 0.5 when n is sufficiently large. This ensures the

maximization of the stealth condition S and hence of the probability that the attack is

undetected for this choice of q∗.

Theorem 2 also provides general information regarding the power of the attack Pa

under the strict stealth S condition as specified in Corollary 3.

Corollary 3 Suppose that the hostile sensor network plays q∗ according to Theo-

rem 2. Let l = E[w(Y)] be the average expected number of legitimate bits that are

flipped. Then l 	 n.

Proof 8 Since l = nq∗, therefore l/n = (nq∗)/n = q∗ 	 1, which implies E[w(Y)] 	

n.

For the static stealthy direct attack game G, the pure strategy Nash equilibria

are the strategy vectors (p∗, q∗) (p∗ ∈ [0, 1], q∗ ∈ [0, 1]) such that Player 1 would not

find it beneficial to deviate from p∗ given Player 2 plays q∗, and vice versa. This

problem is generally difficult, but if we look at the asymptotic case again, that is for

n sufficiently large, it can be shown that p∗ and q∗ are again close to some boundary.
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Theorem 3 Suppose that Player 1 can select p∗ from a closed subinterval [0, 1] de-

noted P = [a, b], a < b, while q∗ ∈ [0, 1]. For n sufficiently large, the pure strategy

Nash equilibrium is given by:

p∗ =




a if a < |1 − b|

b if a > |1 − b|
(3.34)

and q∗ = ζ, where ζ ↓ 0. If a = |1 − b|, then there are two equilibria at (a, ζ) and

(b, ζ).

Remark 1 The expression in Eq. (3.34) refers to choosing the left-most boundary if

it is closer to 0 than the right-most boundary is closer to 1, and choosing the right-

most boundary if it is closer to 1 than the left-most boundary is closer to 0.

Proof 9 First we find the best response of Player 2 to Player 1’s p. We have already

shown in Theorem 2 that q∗ ↓ 0 as n→ ∞. For q∗ sufficiently small, we can assume

it is irrespective of p. Next we examine the best response of Player 1 to Player 2’s

q, where we know that q will always be approaching 0. With this in mind, we define

φ(p) for q fixed at q∗:

φ(p) =

n∑
k=1

n∑
l is even

(
l

l/2

)(
n− l

k − l/2

)(
n

l

)
ql(1 − q)n−lpk(1 − p)n−k (3.35)

where we have used Eq. (3.14) instead of Eq. (3.13). Now since q∗ is small, nq∗ 	 n so(
n
l

)
ql(1−q)n−l can be approximated by a Poisson distribution λl/l!e−λ, where λ = nq∗.

φ(p) ≈
n∑

k=1

n∑
l is even

(
l
l
2

)(
n− l

k − l
2

)
λl

l!
e−λpk(1 − p)n−k (3.36)

≈
n−1∑
k=1

(
2

1

)(
n− 2

k − 1

)
λ2

2!
e−λpk(1 − p)n−k (3.37)

where we have kept only the smallest l = 2 in the series, as λl for l ≥ 4 is insignificant
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[94]. Next we use the identity:

(
n− 2

k − 1

)
+

(
n− 2

k

)
=

(
n− 1

k

)
(3.38)

φ(p) ≈ λ2e−λ

{
n−1∑
k=1

(
n− 1

k

)
pk(1 − p)n−k−1(1 − p)

−
n−2∑
k=1

(
n− 2

k

)
pk(1 − p)n−k−2(1 − p)2

}
(3.39)

= λ2e−λ

{
(1 − p)

[
n−1∑
k=0

(
n− 1

k

)
pk(1 − p)(n−1)−k

]
− (1 − p)n

− (1 − p)2

[
n−2∑
k=0

(
n− 2

k

)
pk(1 − p)(n−2)−k

]
+ (1 − p)n

}
(3.40)

where in the last line we have extended k to start at 0 in the series, and hence must

subtract/add the k = 0 term to maintain equality. We have chosen to do this be-

cause each of the series sum to 1 as both series represent the total sum of a binomial

distribution. The expression then simplifies to:

φ(p) ≈ λ2e−λ
{
(1 − p) − (1 − p)2

}
(3.41)

= λ2e−λ(p− p2) (3.42)

This shows that φ(p) is approximated as a concave function with peak at p = 1/2

when n is sufficiently large. If p can be chosen from the entire interval [0, 1], then the

minima of φ(p) would be at p∗ = 0 and p∗ = 1. If instead we have to choose p from

the closed subinterval P ⊂ [0, 1], then we would take either the left or right boundary,

whichever is closer to 0 or 1 respectively.

The result of Theorem 3 is an approximation for sufficiently large n, so it does not

predict games involving average-sized sensor networks. Again we only have some

guidelines as to where to search for the pure strategy Nash equilibrium or equilibria.
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If the left and right boundary of P are equally close to 0 and 1 respectively, then

there are two equilibria. This suggests a symmetry in p, which is stated in Theorem 4

Theorem 4 Define ψ(p, q) = Pr{w(X) = w(X ⊕ Y)}, where both p and q are now

variable. Let p̄ = 1 − p, then ψ(p, q) = ψ(p̄, q).

Proof 10 Write:

ψ(p̄, q)

=
n∑

k=1

n∑
l is even

(
k

l/2

)(
n− k

l/2

)(
n

k

)
p̄k(1 − p̄)n−kQ(l) (3.43)

=
n∑

x=1

n∑
l is even

(
n− x

l/2

)(
x

l/2

)(
n

n− x

)

·(1 − p)n−xpxQ(l) (3.44)

=
n∑

x=1

n∑
l is even

(
n− x

l/2

)(
x

l/2

)(
n

x

)
(1 − p)n−xpxQ(l) (3.45)

= ψ(p, q) (3.46)

where Q(l) = ql(1 − q)n−l. In Eq. (3.45) we used the substitution x = n − k, and

in Eq. (3.45) we used the identity
(

a
b

)
=

(
a

a−b

)
. One can also easily verify that the

conditions for being well-defined hold by substituting k = n− x.

Solution 4 Two competing sensor networks L and H should play relatively small p

(or large p̄) and relatively small q in the static game when n is sufficiently large in

order to minimize and maximize the stealth condition S respectively.

In the next section we discuss the results derived above for the hostile network

H as well as their implications for sensor networks of varying cluster size n.

2. Attack Performance

In the above section we derived theoretical predictions of how two competing sensor

networks affect each other. The results were mainly of existence and asymptotic
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Fig. 15. Theoretical vs. simulated ϕ(q), probability of stealthy attack success, for

n = 60 nodes, p = 0.495 (probability bit 1 is sent by legitimate node).

nature. In this section we examine realistic finite sized networks and discuss some

trends not explicitly stated by the theorems to assess the performance of the attack

under the stealth condition in the case of direct stealthy attacks.

We first examine a plot of ϕ(q) which corresponds to the probability of attack

success or more precisely to the stealth condition S for a given value of probability p.

As seen in Figure 15, the theoretical curve from Eq. (3.23) and the simulated curve

based on 105 experiments match closely. Furthermore for sensor networks of size

n = 60 and p = 0.495, it is seen that the optimal attack probability q is q∗ ≈ 0.05,

which is closer to 0 than to 0.5 and thus in agreement with both Solutions 3 and

4. Importantly we note that the probability of attack success ϕ(q) (i.e. the stealth
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Fig. 16. Probability of stealthy attack success, ϕ(q), for p = 0.3 (probability bit 1 is

sent by legitimate node) over various network sizes n.

condition) is a relative measure of stealth as described in Chapter II. Thus a higher

value of ϕ(q) is advantageous for the hostile network while a lower value of ϕ(q) is

advantageous for the legitimate network. As will be shown in Section D, this relative

measure corresponds to the probability of attack detection such that higher values

of ϕ(q) (corresponding to greater stealth) correspond to a lower probability of the

attack being detected. As such, the stealth metric is consistent for both H and L.

The dynamics of the optimal q∗ which vary with varying n can be seen in Fig-

ure 16. We note that as n becomes larger, the peak q∗ approaches 0 as indicated by

Solution 3. Most importantly, this is not generally the case for arbitrarily small n.

Indeed for certain values of n based on the underlying combinatorics, the peak may
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Fig. 17. Probability of stealthy attack failure, 1 − ϕ(q), for n = 55 nodes, p = 0.2

(probability bit 1 is sent by legitimate node) over various ε uncertainty.

arise closer to q = 1. This indicates that the hostile network should attack with high

probability while obtaining a comparably high level of (relative) stealth. This does

not contradict the theoretical predictions of Solution 3 since the latter were obtained

for sufficiently large n. Intuitively this can also be understood from the fact that ϕ(q)

is a positive weighted sum of semi-concave functions in q (i.e. ql(1 − q)n−l) where

such a sum need not be semi-concave [95] as is demonstrated in Figure 16. The ob-

servations regarding the cluster size n have implications for the defense strategies of

the legitimate network L which we will discuss.

In solution 2 the stealth condition S was relaxed by a factor of ε to produce a new

modified stealth condition S ′ which is given by Eq. (3.30). Figure 17 shows the effect
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of varying ε on the relative probability that the attack will be detected, that is, the

vertical axis depicts the probability of anti-stealth 1−ϕ(q) for a given value of p. We

note that as ε is increased, the peak of the anti-stealth (i.e. relative detection) curve

increases, thus decreasing H’s stealth and increasing the chance of attack detection.

Importantly, relaxing the stealth condition by even the small factor of ε = 1 (shown

in Figure 17 for the case of n = 55 and p = 0.2) increases the relative probability

of attack detection significantly. For the case shown in Figure 17, the probability

of attack failure (i.e. the attack is detected) increases from approximately 0.1 to

0.5. This result is very intuitive in that relaxing the average statistical similarity of

the x and z vectors by even a small factor can cause the count at the cluster head

to depart from the count expected by the cluster head under the case of no attack.

Thus we conclude that the stealth condition is a very strict condition as previously

stipulated. Satisfying this strict condition is important for the hostile network given

a lack of knowledge regarding the specific attack detection mechanisms utilized by

the legitimate network.

Next we examine the overall game G via the ψ(p, q) manifold for the two sensor

networks of size n = 60 as shown in Figure 18. The legitimate network L (Player

1) wishes to minimize the probability of attack success (i.e. the stealth condition S)

while the hostile network (Player 2) wishes to maximize it. If Player 1 can choose

from the entire interval then Player 1 will choose p = 0 or p = 1 on the p-axis of

Figure 18 as predicted by Theorem 3. Player 2 chooses a probability q that maximizes

Figure 18. As can be seen from Figure 18, any choice of q given Player 1’s choice

of p = 0, 1 will result in an attack success probability of 0. This result agrees with

the expectation that if the cluster head always expects z = 0 (the all-zero vector) or

z = 1 (the all-one vector), then no attack can misguide the cluster head. In the proof

of Theorem 3 we showed that the peak on the p-ψ plane is always at p = 0.5 and in
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Fig. 18. Probability of stealthy attack success, ψ(p, q), for n = 60 nodes.

Theorem 4 we showed that this trace is symmetrical in p. These features are readily

verified in Figure 18 and carry implications for the defense strategies of L in terms of

local threshold Th selection which yields the probability p of witnessing an event.

3. Attack Implications

Having examined the salient features of the game for both networks, we now expand

upon the significance of these results for both attack and defense strategies. The

stealth condition of Eq. (3.23) (or more generally (3.30)) is unfortunately cumbersome

to inspect. Plotting Eq. (3.23) for different values of cluster size n and probability

of an event p nevertheless yields a unique value of probability q that maximizes the

stealth condition (i.e. it is the global peak of Eq. (3.23)). The results of such plotting
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Table I. Optimal q∗ Value for Cluster Size n and Probability of Event p

n p = 0.01 p = 0.05 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

2 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990

5 0.4050 0.4050 0.4050 0.4550 0.5050 0.5050 0.5050

10 0.2050 0.2050 0.2050 0.2550 0.2550 0.9990 0.9990

20 0.1010 0.1050 0.1100 0.1220 0.1350 0.1470 0.1520

30 0.0670 0.0700 0.0740 0.0820 0.0910 0.0990 0.1030

40 0.0500 0.0530 0.0550 0.0620 0.0680 0.0750 0.0780

50 0.0400 0.0420 0.0440 0.0490 0.0550 0.0600 0.0620

100 0.0200 0.0210 0.0220 0.0250 0.0280 0.0300 0.0310

are summarized in Table I which shows the optimal value of attack probability q∗ for

each pair (n, p) (the stealth condition is symmetric in p and thus the effect of p is

the same as the effect of 1− p and we only consider p ∈ [0, 0.5]). We make a few key

observations regarding this result. For a given value of cluster size n (i.e. a row in

Table I), q∗ is almost constant to within one significant digit irrespective of the value

of probability p. Thus if the attacker knows the cluster size n, he can determine the

optimal value of attack without having to know the probability p. This is significant

since the value of p depends in part on a sensor’s threshold selection Th and may not

always be available to the attacker [6].

Examination of Table I also yields important insights regarding the dynamic

relationship between the cluster size n and the optimal attack parameter q∗. We

observe that as n increases, q∗ decreases for all values of p. This result can be

understood in the context of typical sets if we consider the n sensor decisions as a

string of length n. The typical set is usually a small set but with probability of

occurrence close to 1. When n is small, the typical set is small but relatively large
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compared to the set of all possible strings of length n. When n increases, the set of

all possible strings of length n grows to be very large and the size of the typical set is

relatively much smaller. Thus it becomes more difficult for the attacker to attack the

“string” and still remain in the typical set. This implies that the chance of attack on

the sensors decreases but this decrease may also carry ramifications for the detection

of such an attack as we will explore in Section D.

The results of Table I also support the analytical results from solution 4 for

the legitimate network. Such analysis reveals that the optimal value of p for p ∈

[0, 0.5] is p∗ small (the optimal value of p for p ∈ [0.5, 1] is p∗ large). This suggests

that to improve the attack detection, the sensors should be calibrated to have a

small (or large) value of p through threshold Th selection if such selection is possible

(depending on the underlying technology of the sensor). Indeed if we examine more

of the significant digits in the results of Table I, the optimal value of q∗ does indeed

decrease with decreasing p with ramifications for attack detection which is examined

in Section D. The implications of these results for the hostile network in terms of

carrying out a stealthy direct attack are summarized in Algorithm 1.

D. Secure Data Acquisition Results

In this section we investigate attack detection and mitigation strategies at the cluster

head in the case of direct stealthy attacks. As modeled in Section B, the cluster head

receives decisions regarding an event from n sensors that may be attacked by hostile

nodes deployed in the area. Importantly we show how game theoretic analysis of the

optimal attack strategies from Section D-C enables the use of established detection

techniques to uncover the attack and mitigate its effects.
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Algorithm 1 Stealthy Direct Attack Algorithm for Hostile Network

Ensure: Min attack detection and power of defense given legitimate network whose

detection paradigm and defense mechanisms are not known.

1: if legitimate cluster size n is not known: then

2: Select a large cluster size where large signifies n ≥ 30

3: end if

4: if p is not known then

5: Select a small value of p where small signifies p ≤ 0.1

6: end if

7: Find the value of q∗ based on (n, p) and Eq. (3.23).

8: if both (n, p) are known then

9: The value of q∗ is optimal and exact.

10: else if only n is known then

11: The value of q∗ is approximate to within one significant digit.

12: else

13: The value of q∗ is a worst case scenario approximation.

14: end if

15: Find the relative stealth S based on q∗ and Eq. (3.23).

16: Find the expected power of the attack E[Pa] = nq∗.

17: if the relative stealth S is desirable then

18: The optimal q∗ has been found.

19: else

20: Decrease the value of q∗. Return to step 15.

21: end if
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1. Defense Analysis

In detection problems we are generally faced with the task of deciding between two or

more hypotheses based on received data. The Neyman-Pearson (NP) detector is an

optimal detector appropriate for cases where a priori probabilities of the hypotheses

are not available, and for cases where the probability of detection PD and the proba-

bility of false alarm PFA may not be of equal significance to the application (otherwise

a Bayesian detector may be appropriate). According to the NP approach, we obtain

a detector by maximizing PD for a desired false alarm rate PFA = α. The resulting

optimal detector is a likelihood ratio detector Λ(z) given by Eq. (3.47), where z is

the received data vector, where the comparison threshold T is chosen according to

Eq. (3.48) and where randomization may need to be performed if Λ(z) = T to achieve

the desired α.

Λ(z) =
p(z;H1)

p(z;H0)

H1
>
<
H0

T (3.47)

PFA =
∑

z:Λ(z)>T

p(z;H0) d z ≤ α (3.48)

For the case of n binary sensors, the data vector z consists of Bernoulli random

variables from a distribution which is Bern(p) (hypothesis H0) or a distribution

Bern(r) (hypothesis H1) as given by Eq. (3.49). By applying Eq. (3.47) it can easily

be shown that the NP detector for this case is given by Eq. (3.50), where w(z) is the

weight (the number of 1s) in the data vector z.

H0 : normal operation,Z ∼ Bern(p) (3.49)

H1 : attacked operation,Z ∼ Bern(r)

Λ(z) =
rw(z)(1 − r)n−w(z)

pw(z)(1 − p)n−w(z)

H1
>
<
H0

T (3.50)

∑
z:Λ(z)>T

pw(z)(1 − p)n−w(z) ≤ α (3.51)
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The threshold T is chosen to satisfy a desired α based on Eq. (3.51), where the

summation is over all the possible data vectors z such that Λ(z) exceeds T . However

this is equivalent to summing over all possible weights w for w ∈ [0, n] as shown in

Eq. (3.52). The notation IP denotes the indicator function which is equal to 1 if P

is true and is equal to 0 otherwise. Finally, the probability of detection β resulting

from the use of the Λ(z) detector is given by Eq. (3.53).

n∑
w=0

(n
w)pw(z)(1 − p)n−w(z) I Λ(z)>T ≤ α (3.52)

β =
n∑

w=0

(n
w)rw(z)(1 − r)n−w(z) I Λ(z)>T (3.53)

To distinguish between normal operation and an attack/fault, the cluster head

must therefore employ the detection statistic (likelihood ratio Λ) of Eq. (3.50) and

compare it to the threshold T that is set based on Eq. (3.52) with the resulting prob-

ability of detection given by Eq. (3.53). Importantly, the detection statistic Λ(p, r)

depends on the value of p and r. Hence in the case of an attack with unpredictable

probability, the detection statistic depends on the unknown underlying parameter q

since r = p + q − 2pq. The detection statistic’s dependence on q also translates into

difficulties in determining the probability of false alarm and detection based on the

dependence of Eqs. (3.52) and (3.53) on Λ.

Thus although we have determined an optimal attack detector for the cluster

head, it is not implementable in its current form unless the parameter q is known.

Fortunately we can re-arrange the likelihood ratio Λ as shown in Eq. (3.54) where

(1 − r)n/(1 − p)n is equal to a positive constant k > 0 for all values of 0 ≤ r ≤ 1,

0 ≤ p < 1 and n. Let us for the moment assume that r > p in Eq. (3.54). Then it

can easily be seen that Λ(w) = k(r/p)w((1− p)/(1− r))w is monotonically increasing
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in w where we have written Λ in terms of w to simplify the notation and emphasize

the role of the “aggregate” statistic (the weight w) in lieu of the original data vector

z.

Λ(z) =
rw(z)(1 − r)n−w(z)

pw(z)(1 − p)n−w(z)
=

( r
1−r

)w(z)

( p
1−p

)w(z)

(1 − r)n

(1 − p)n
= k

(
r

p

)w(z) (
1 − p

1 − r

)w(z)

(3.54)

Based on the monotonicity of Λ, we may now invoke the Karlin-Rubin theorem

[96] to obtain an alternative form for the cluster head detector with the same PD-

PFA performance. The alternative form for the cluster head detector is given by

Eqs. (3.55), (3.56) and (3.57) where p′ is a probability of mixing between the two

hypotheses if w is precisely equal to T (the mixing probability p′ is set based on

Eq. (3.56) for a desired α). As shown in Eq. (3.58), based on the assumption that

r > p, these equations are valid for the interval where p < 1/2. When p ∈ [1/2, 1],

the hypotheses in Eq. (3.55) are switched.

w
H1
>
<
H0

T (3.55)

if w = T then declare H1 w.p p′

α =

n∑
w>T

(n
w)(

p

1 − p
)w(1 − p)n + p′(n

T )(
p

1 − p
)T (1 − p)n (3.56)

β =
n∑

w>T
(n
w)(

r

1 − r
)w(1 − r)n + p′(n

T )(
r

1 − r
)T (1 − r)n (3.57)

r > p⇒ p+ q − 2pq > p ⇒ p <
1

2
(3.58)

We observe that the detection statistic w and the comparison threshold T in

Eq. (3.55) no longer require the cluster head to know the value of q and thus the

detector is implementable at the cluster head. We note however that in order to

determine the resulting probability of detection PD, the value of r (and thus q) is

still required in Eq. (3.57). Thus for the case of an attack, analysis of the optimal
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attack q as addressed in Section C is required in order to determine the detector’s

performance.

We also note that the detection statistic is now a simple weight and thus the

cluster head must merely count the number of 1’s that it has received from the n

sensors and compare this count to a threshold. The optimal NP detector at the cluster

head is thus identical in form to the detectors often used in practical implementations

as discussed in Section B (in such implementations the comparison threshold may be

set based on experimental trials or based on an expected average count of c± ε3) [7],

[3], [16]. The optimal NP detector however makes use of a threshold T that is set

based on a desired probability of false alarm α and based on the probability p of

an event. Setting the threshold based on Eq. (3.56) thus provides a greater level of

control and flexibility to meet the PFA requirements of the application. Furthermore,

this detector is guaranteed to provide the best probability of detection PD for a chosen

PFA = α (a property of Neyman-Pearson detectors). In Section 2 we examine the

actual performance of this cluster head detector and compare it to the performance

of a detector based on the expected average c± ε.

2. Defense Performance

Based on the model of Section B, a detector for attack identification at the cluster

head may be based on the Neyman-Pearson design or on an average expected count

c where c ≈ np± ε for a cluster size of n sensors with probability of event p. In this

section we wish to compare the performance of these two approaches and also obtain

some general insights into the PD-PFA performance curve for different values of p and

n and for various attack probabilities q.

3This ε should not be confused with the ε relaxation factor in the modified stealth
condition S ′.
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Fig. 19. (a) n = 50, p = 0.01 and q = 0.1. (b) n = 50, p = 0.1 and q = 0.1.

In Figures 19a and 19b, as well as in Figure 20, the PD-PFA performance of

the NP and c ± ε detectors are depicted for n = 50 sensors, various (p, q) pairs and

various values of ε “slack” in the c detector. As can be seen from these figures,

the performance of the average expected c detector follows the general trend of the

NP detector although it typically does not achieve the same overall performance.

Nevertheless, by choosing a different value of ε, it is possible to achieve a desired

trade-off between the probability of detection PD (vertical axis) and the probability

of false alarm PFA (horizontal axis). The average expected c detector may thus be

useful for certain applications, in particular ones where the probability of an event

p is expected to be small (based on the phenomenon of interest and the selection

of the sensor threshold Th) as in Figure 19a. As a side note, we observe that the

performance of the NP detector based on Eqs. (3.50), (3.52) and (3.53) which we

denote by “NP” is the same as the performance of the NP detector based on the

Karlin-Rubin simplification of Eqs. (3.55), (3.56) and (3.57) which we denote by

“KR” in Figures 19a and 19b and in Figure 20. Thus we are justified in utilizing the

simplified form of the NP detector to obtain the same performance.

Importantly based on Figures 19 and 20, we observe that the NP detector per-
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Fig. 20. n = 50, p = 0.47 and q = 0.47.

forms better for smaller values of probability p for p ∈ [0, 0.5]. By symmetry for

p ∈ [0.5, 1], it performs better for values of p closer to 1. This result is consistent with

the results of Section C where based on analysis of the stealth condition of Eq. (3.23)

we noted that it was best to calibrate the sensors to a small value of p or to a large

value of p. Indeed based on Figures 19 and 20 and the results of Table I, the worst

PD-PFA performance is obtained for values of p closest to p = 0.5. This can be un-

derstood from Eq. (3.58) where r = p+ q− 2pq. When p = 0.5, r = 0.5 and thus the

detector is not able to distinguish between the H0 and H1 hypotheses. At an intu-

itive level, when p = 0.5, the probability of obtaining a decision bit of value 1 is the

same as the probability of obtaining a sensor decision bit of value 0. This situation

corresponds to the largest level of uncertainty that the cluster head can experience

and makes it easier for an attacker to fool the detector.

Based on these results we are able to confirm the previous assertion regarding

the consistency of the stealth condition for the legitimate and hostile networks.
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Fig. 21. The PD-PFA performance curves for various values of n and the optimal value

of q∗ corresponding to that n for (a) p = 0.05 and (b) p = 0.1.

Remark 2 The stealth condition S of Eq. (3.23) is a relative measure of the hos-

tile network’s stealth and is a consistent measure for both the legitimate and hostile

networks in terms of the probability of detecting the attack such as under the Neyman-

Pearson paradigm.

3. Defense Implications

In the previous section we compared the performance of the NP and c detectors

for various values of the probability p with implications for the selection of a local

sensor threshold Th. We now wish to explicitly investigate the performance of the

NP detector for an optimal attack parameter q∗ as obtained from Section C. Figure

21a depicts the PD-PFA performance of the NP detector for p = 0.05 and for various

values of cluster size n ∈ [5, 100]. Crucially, each performance curve is obtained

assuming the value of attack parameter q that is optimal for the given (n, p) pair as

obtained in Table I or directly from the stealth condition S in Eq. (3.23). Figure 21b

is obtained similarly but for a value of p = 0.1.

Based on these two figures, we make the important observation that the PD-
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PFA performance decreases as the number of sensors n is increased. This somewhat

surprising result is an outcome of the stealth condition of the attacker. That is, if the

attacker is not stealthy, increasing the number of sensors will increase the detection

performance. If however the attacker is stealthy, then he selects an optimal value of

q∗ based on Eq. (3.23) or Table I. As discussed in Section C, this optimal value of q

decreases with increasing cluster size n. Thus the attack becomes more rare in the

sense that the average expected power of the attack E[Pa] = nq|q=q∗ decreases, which

is a desirable property. At the same time however, it becomes more difficult to detect

the attack when it does occur. The implications of these results for attack detection

and mitigation for the legitimate sensor network are summarized via Algorithm 2.

Finally we make a brief but important observation regarding the sensor decision

threshold Th and the role that cryptography plays in the competing networks sce-

nario. As noted in Chapter II Section D-1, encryption mechanisms do not protect the

data against a hostile attack that occurs during the collection process. In this sense,

forward data encryption, that is encryption between the sensors and the sink, does

not protect against the actuation attacks (though this forward encryption is required

to protect the data during its dissemination). Interestingly we note that for the com-

peting networks scenario, it is the backward encryption of data between the sink and

the sensors that plays an important role. As discussed in Section C and summarized

in Algorithm 1, the hostile network benefits from knowledge of the sensor threshold

Th. Consequently the legitimate network benefits from keeping the value of Th secret

in addition to setting its value to a desirable level. If the hostile network estimates (or

otherwise obtains) the value of Th, the sink of the legitimate network benefits from

re-issuing a new value of Th to its sensors. It may also instruct the sensors to set their

thresholds to obtain a probability of event p = 0 or p = 1 in order to “catch” the

hostile network in the midst of attack. Such re-issuing through the backward channel
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must be encrypted in order to be effective.

Algorithm 2 Defense Algorithm for Legitimate Network

Ensure: Max attack detection and power of defense given competing hostile network.

1: Given the probability density function (pdf) of the phenomenon, set the local

sensor threshold Th:

2: if events are expected to be common then

3: Set Th such that p (area under the pdf to the left of Th) is close to 1.

4: else

5: Set Th such that p is close to 0.

6: end if

7: Select a value of cluster size n.

8: Find attacker’s q∗ based on (n, p) pair and Eq. (3.23).

9: Find the defense’s PD-PFA based on q∗ from Eqs. (3.55), (3.56) and (3.57).

10: Find the defense’s expected power of defense E[Pd] = 1 − nq∗.

11: if PD-PFA and E[Pd] are appropriate for the application then

12: cluster size n and decision threshold Th have been determined.

13: else

14: Return to step 7 and select a higher value of n.

15: end if

E. Stealthy Direct Attack Comparisons

In the previous sections we have derived the stealth condition S for the case of a

direct stealthy attack. We determined that this condition is consistent for both the

legitimate and hostile networks such that it can be utilized to obtain the optimal

defense and attack strategies. In this section we wish to compare the stealthy direct
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may actuate with a different probability qi.

attack to a stealthy attack where the hostile nodes must actively communicate with

each other. We also compare the direct stealthy attack to the case of an uncoordinated

stealthy attack where each hostile node may select a different attack strategy. We

show interesting properties of these attacks and demonstrate that the direct stealthy

attack achieves a favorable stealth S performance and a good power-communication-

detection PCD performance compared with the other two stealthy attacks. These

results carry important implications for the design of attack and defense strategies.

1. Comparison with Uncoordinated Attack

In the direct stealthy attack, each hostile node optimizes its attack parameter based

on the knowledge that every other hostile node is utilizing the same attack parameter.

That is, qi = q ∀ i ∈ {1, . . . , n} which enables each hostile node to solve for q∗ in the

stealth condition S of Eq. (3.23). To assess the direct stealthy attack, we compare

it with the uncoordinated stealthy attack [97]. In the uncoordinated attack, each

hostile node may utilize a different attack parameter qi as shown in Figure 22.

Specifically we consider the scenario where n = 2 hostile nodes are actuating

against two legitimate sensors as shown in Figure 22. We employ the same data

acquisition and attack models as in Section B. That is, we assume that the case
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where a legitimate sensor i witnesses an event of interest when the attack is absent

is denoted by xi = 1, and that this event occurs with Bernoulli probability p such

that Pr(Xi = 1) = p. Conversely xi = 0 denotes the condition where no event of

interest is recorded by sensor node i when actuation is absent and this event carries

probability Pr(Xi = 0) = 1−p. The action of a hostile node i is denoted by Yi where

the realization yi = 1 denotes attack and yi = 0 denotes no attack. We assume that

the Bernoulli probability that a hostile node yi actuates is given by Pr(Yi = 1) = qi.

Let x = [x1x2], y = [y1y2] and z = [z1z2]. We examine the case where the stealth

relaxation parameter is ε = 0 and thus in order to evade detection, each node i in

the hostile network wishes to maximize it’s utility function πi given by Eq. (3.59)

which depends on the parameter qi that it chooses, as well as on the parameter qj

that the other hostile node chooses independently. Importantly πi from Eq. (3.59)

still depends on the probability of an event p as was the case in the direct stealthy

attack, though this is not emphasized in Eq. (3.59) where qi is the focus.

πi(q1, q2) = Pr{w(X) = w(Z)} = Pr{w(X) = w(X⊕ Y)} (3.59)

The probability of Eq. (3.59) can be expressed and simplified as shown in Eqs. (3.60)

to (3.63). The final simplified utility function πi(q1, q2) is given by Eq. (3.64) which

has been written to emphasize the form of the interaction between q1 and q2.

Pr{w(X) = w(Z)} = Pr{w(X) = w(Z)|X = 00} · Pr{X = 00}

+Pr{w(X) = w(Z)|X = 01} · Pr{X = 01}

+Pr{w(X) = w(Z)|X = 10} · Pr{X = 10}

+Pr{w(X) = w(Z)|X = 11} · Pr{X = 11} (3.60)
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Pr{w(X) = w(Z)} = Pr{(w(Y1) = 0 ∧ w(Y2) = 0)} · (1 − p)2 +

Pr{(w(Y1) = 0 ∧ w(Y2) = 0) ∨ (w(Y1) = 1 ∧ w(Y2) = 1)} · 2p(1 − p) +

Pr{(w(Y1) = 0 ∧ w(Y2) = 0)}p2 (3.61)

Pr{w(X) = w(Z)} = Pr{[w(Y1) = 0 ∧ w(Y2) = 0]} · (1 − p)2 +

2 · [Pr{(w(Y1) = 0 ∧ w(Y2) = 0) ∨ (w(Y1) = 1 ∧ w(Y2) = 1)} · p(1 − p)] +

Pr{[w(Y1) = 0 ∧ w(Y2) = 0]} · p2 (3.62)

Pr{w(X) = w(Z)} = (1 − q1)(1 − q2)(1 − p)2 +

((1 − q1)(1 − q2) + q1q2) · 2p(1 − p) + (1 − q1)(1 − q2) · p2 (3.63)

Πi(q1, q2) = α · (q1 + q2) + βp · (q1 · q2) + γ i = {1, 2}

α = −1

βp = −2p2 + 2p+ 1 (3.64)

γ = 1

Based on the utility of Eq. (3.64), it can be shown (Appendix A) that the best

response Bi(qj) of node i to a strategy qj of node j is given by Eq. (3.65), where Tp

is a threshold point that depends on βp from Eq. (3.64) (and hence on parameter

p, that is, the probability of an event under no attack). The intersection(s) of the

best response functions of the players (if any) provide the set of Nash equilibria of

the game. It can be shown based on Eqs. (3.64) and (3.65) that there are two pure

action Nash equilibria (q1,N , q2,N) for this game as given by Eq. (3.66), and that the
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resulting utility πi(q1,N , q2,N) for node i at each equilibrium is given by Eq. (3.67).

Bi(qj) = 0 if qj < Tp

Bi(qj) = 1 if qj > Tp

Tp =
1

βp

βp ∈ [1, 1.5] (3.65)

(q1,N , q2,N) = {(0, 0), (1, 1)} (3.66)

πi(0, 0) = 1 πi(1, 1) = βp − 1 (3.67)

To better illustrate the interaction of the hostile nodes and the consequences of

the game, Figure 23 depicts the stealth S utility manifold πi(q1, q2) between the two

hostile nodes over the entire domain of q1 and q2. The two Nash equilibria occur

at (q1,N , q2,N) = (0, 0) and (q1,N , q2,N) = (1, 1) as predicted via Eq. (3.66) and as

confirmed by examining the best response intersections shown in Figure 24. We note

two salient features of this result which we will examine further:

1. In contrast with the direct stealthy attack, when each hostile node i is permitted

to choose its own attack parameter qi more than one pure Nash equilibrium

emerges. Specifically, for the n = 2 case in the direct stealthy attack, the

unique optimal value of q is q∗ = 0.999 ≈ 1 (for all values of p). However for

the n = 2 and independent qi’s case, two extreme optimal values of qi emerge.

One such value occurs at qi = 0 and the other at qi = 1, thus directing each

hostile node to attack either with probability 0 or with probability 1.

2. The threshold or dividing point Tp between the two equilibria depends solely on

the parameter βp and thus on the underlying probability of an event p which is
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Fig. 23. Stealth utility manifold for a hostile node i versus the full set of actions q1

and q2 for the case where p = 0.5. The two Nash equilibria for this game

occur at (0, 0) and (1, 1) and the Tp threshold is the saddle point.

not controlled by the hostile nodes and may not be known due to its dependence

on the legitimate node’s threshold Th.

We now expand upon the significance of these two points. The emergence of a

second equilibrium and the dependence of a hostile node’s decision threshold Tp on p

raises two new questions. Namely we are presented with the question of how a hostile

node will select its action and with the question of which equilibrium will actually

occur. If the two hostile nodes have a means of direct communication, it suffices for

the two nodes to agree upon a common action where both nodes pick q = 0 or both

nodes pick q = 1. This type of attack with dynamic communication is examined in

the next section.4 Importantly, agreement between the two nodes may be reached

4We note that communication among the hostile nodes must also remain “stealthy”
(in a sense relevant to the given application) for the attack to go unnoticed overall.
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Fig. 24. Best response functions of hostile nodes h1 and h2 showing the two Nash

equilibria at the intersection points.

instead by means of strategy mixing. To describe the process of strategy mixing,

we assume for the moment that both hostile nodes can determine the probability

density function of the phenomenon (such as through observations over time) and

with an approximation of the threshold Th can thus obtain the approximate value of

the probability p. Despite this information, each hostile node still needs to know if

the other hostile node will choose a value of probability q below or above Tp to choose

its best q (Eq. (3.65)) given no communication.

In the absence of such knowledge, each hostile node may mix between its pure

optimal actions of q = 0 and q = 1 with some probability as shown in Figure 25. We

assume that Player 1 (hostile node 1) chooses action q1 = 0 with some probability x

and that it chooses q1 = 1 with probability 1 − x. Similarly, Player 2 (hostile node

2) chooses action q2 = 0 with probability y and q2 = 1 with probability 1 − y. The

new utility πi(x, y) obtained by node i based on its mixing variable x and the mixing
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Fig. 25. A mixed-action game with mixing probabilities x and y. The (u1, u2) numbers

inside each cell represent the utility of player 1 and 2 respectively.

variable of the other node y is given by Eq. (3.68). It can thus be shown that a third

mixed strategy Nash equilibrium emerges, where the optimal Nash x and y mixes are

given by Eq. (3.69) along with the corresponding utility πi(xN , yN) at equilibrium

given by Eq. (3.70).

πi(x, y) = xy + (1 − x)(1 − y)(βp − 1) (3.68)

(xN , yN) = (
1

βp

,
1

βp

) (3.69)

πi(xN , yN) =
1

βp
(3.70)

We make three key observations regarding this result. First we observe that the

mixing probabilities only depend on βp (and thus on the probability p) and do not

require the nodes to know each other’s actions. The second observation regarding
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the new mixed equilibrium reveals an interpretation for the Tp threshold dividing the

two pure action equilibria. We examine Eq. (3.64) and suppose that hostile node 1

plays with q1 set to Tp, that is, q1 = 1/βp. We observe that the resulting utility π2

for hostile node 2 is given by π2(q1 = Tp, q2) = 1 − 1/βp. Thus the utility of node 2

is independent of its own q2 selection or in other words, node 2 is indifferent in its

q2. Furthermore, the achieved utility of 1 − 1/βp is equal to the utility achieved at

mixed equilibrium shown in Eq. (3.70). By the properties of mixed equilibria [56],

these two observations imply that the Tp threshold (saddle point in Figure 23) is

the mixed strategy equilibrium. Finally the third observation is that the range and

maximum value of the new utility πi(xN , yN) ∈ [0, 0.5] is generally smaller than the

range and maximum of the previous utility πi(q1,N , q2,N) ∈ [0, 1]. Eliminating direct

communication and eliminating implicit coordination (implemented via the qi = q

∀i condition) thus comes at the price of a decrease in the utility (i.e. stealth of the

attack) and can be understood as the associated cost.

Based on these three observations we obtain the following comparison between

the uncoordinated attack and the direct stealthy attack. The stealth S benefit of

coordination via the qi = q ∀i condition is captured analytically through Eq. (3.70)

and can be seen directly in Figure 23 for the case of n = 2 hostile nodes. In Fig-

ure 23, the (q1, q2) = (1, 1) point results in the maximal (relative stealth measure)

S and corresponds to the coordinated attack. In the same figure, the saddle point

(q1, q2) = (1/βp, 1/βp) yields the lowest S and corresponds to the case of no coordi-

nation. Intuitively this loss in stealth performance stems from the uncertainty that

arises due to the existence of two possible pure Nash equilibria. For the hostile net-

work, this result captures the tradeoff between coordination via the qi = q∀i condition

and between the achieved stealth S. For the legitimate network, this result signifies

that hostile nodes do not need to communicate directly with each other to carry out
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a stealthy attack (where communication may presumably reveal the attack). In the

next section we explicitly examine the case of active hostile node communication.

2. Comparison with Active Communication Attack

We consider the situation where hostile nodes are able to communicate with each

other directly prior to an attack to select the optimal attack strategy to achieve a

power of attack while maintaining stealth. For this comparison we employ the power-

communication-detection PCD metric given in Eq. (3.71) which takes into account

the number of communications required for the attack. In the context of a stealthy

attack, the significance of communication is that each use of it among the hostile

nodes may potentially reveal the attack to the legitimate network and thus requires

special methodologies (such as the use of spread spectrum covert communications).

PCD =
No. attacked nodes

(1 + No. communications) · (1 + PD)
(3.71)

As in the case of the uncoordinated attack, for the comparison we assume that the

hostile nodes are able to estimate the probability density function of the phenomenon

and the local decision threshold Th of the legitimate nodes. Based on such knowledge

and based on its own local readings of the source O, each hostile node is able to decide

if its neighboring legitimate node will produce a decision bit of value 1 or 0 as given

in Eq. (3.1). Thus as a group, the hostile network is able to determine the weight w

that the legitimate nodes wish to report to the cluster head prior to the attack. We

denote this pristine weight prior to the attack by wx (in relation to the notation x

which denotes the pristine sensor decisions).

Importantly based on such group knowledge, H is able to achieve the maximal

power of attack Pa which is still stealthy (where Pa is the number of sensor decisions

that are altered). That is, each sensor decision may be flipped from 1 to 0 or vice
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versa provided that the overall weight wx is maintained. As an example, if there are

ten sensors and three of them would report a 1 (i.e. n = 10 and wx = 3), then the

hostile network can flip all three 1s to a value of 0 and find three 0s to flip to a 1.

Thus Pa = 3. If n = 10 and wx = 7, the hostile network can still only flip three 1s to

a 0 and find three 0s to flip to a 1. The hostile network cannot flip all seven 1’s to

0’s because of the “lack of zeros” to flip back to ones. The power of the attack in the

second example is thus still Pa = 3. More generally, subject to the stealth constraint

S, H achieves the maximal power of attack Pa in the active communications case

which is given by Eq. (3.72).

Pa = min(wx, n− wx) (3.72)

This result however can only be achieved if the hostile nodes are able to commu-

nicate actively with each other, that is, they are able to exchange information on the

actual conditions that each hostile node encounters prior to the attack. We consider

a simplified communication algorithm to achieve this goal with the aim of obtaining

the minimum number of communications that are required for this process. The min-

imum is used mainly for simplicity of analysis and represents the best case scenario

for the active communications attack. In this communication algorithm, each hostile

node that has a bit of value 1 broadcasts its desire to do a “flip” process. Each hostile

node with a value of 0 responds to one such broadcasting hostile node. If collisions

occur, any efficient resolution process may be utilized. For instance, a broadcasting

node accepts the first received bid, confirms it and ends the broadcast. An example

of such a communication process is summarized in Algorithm 3 for each hostile node.

To estimate the minimum number of required communications however, we as-

sume that no collisions occur. Based on the assumption of no collisions, no acknowl-
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Algorithm 3 Example of a Communication Algorithm for each Hostile Node

Ensure: Power of the attack Pa must satisfy Pa = min(wx, n− wx)

1: Determine if the legitimate sensor will report a bit of value 1 or 0.

2: if legitimate sensor will report a bit of value 1 then

3: Broadcast to other hostile nodes that you have a 1, until bids are received.

4: Accept a bid (such as the first bid) and end the broadcast.

5: else

6: Listen for broadcasts and issue bid (such as to closest broadcasting node).

7: if confirmation from broadcasting node is received: then

8: Accept the match-up.

9: else

10: Return to step 6.

11: end if

12: end if
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edgements of the receipt of a bid are required. The communications are thus due

to the original broadcast calls from each node that has a bit 1. Thus the minimum

number of required communications under this paradigm is easily determined to be

min(wx, n− wx). Thus the PCD metric for the active communications attack which

we denote by PCDc is given by Eq. (3.73). The corresponding PCD metric for the

direct stealthy attack which we denote by PCDd is given by Eq. (3.74). As can be

seen, the direct stealthy attack does not incur any communication costs (it relies on

coordination instead). However it generally does not achieve the same maximal power

of attack Pa as the active communications attack. Indeed each hostile node attacks

with an optimal probability q∗ and the overall number of altered sensor decisions is

min(wy, n− wy) which may approximately equal min(nq∗, n− nq∗) on average for n

hostile nodes.

PCDc =
min(wx, n− wx)

(1 + min(wx, n− wx)) · (1 + PD)
(3.73)

PCDd =
min(wy, n− wy)

1 · (1 + PD)
(3.74)

The average power of the attack Pa for the active communications attack and the

direct stealthy attack are compared for various cluster sizes n and different probabili-

ties p in Figure 26. We make some important observations regarding this result. First

we recall that the active communications attack achieves the maximal Pa that main-

tains perfect stealth S. The direct stealthy attack relies only on stealth coordination

and does not always satisfy S perfectly. Interestingly, the latter coordination tactic

actually translates into a higher power of attack Pa for smaller clusters n. Specifi-

cally, the stealthy direct attack achieves a higher Pa than the active communications

attack for n ≤ 20 for p = 0.1 and for n ≤ 40 for p = 0.05. For higher values of

n, the stealth condition S dictates that a smaller probability of attack q∗ must be

utilized as shown in Section C. Thus the Pa of the direct stealthy attack tapers off
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Fig. 26. Comparison of the power of the attack Pa for various cluster sizes n and

probabilities p for the direct stealth attack (no communications) and the active

communications attack.

in tandem with increasing n. Interestingly, this gives rise to the phenomenon of an

almost constant level of Pa over n. Thus if examined by the legitimate network, this

constant “background” level of “error” could be mistaken for an inherent probability

of a fault associated with the sensor technology. The direct stealthy attack thus ex-

hibits stealth over the size of the cluster n. In contrast, the active communications

attack allows the entire hostile network to organize itself to meet the stealth condition

perfectly. Thus in the active communications attack, the hostile network is able to

keep increasing the power of the attack as the cluster size n increases. Finally we note

that as predicted in the analysis of Sections C and D, smaller values of probability

p favor the legitimate network by restricting the power of the attack that maintains

stealth.
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Fig. 27. Comparison of the PCD metric for various cluster sizes n and probabilities p

for the direct stealth attack (no communications) and the active communica-

tions attack.

Based on Figure 26 we conclude that the direct stealthy attack achieves a higher

Pa for smaller clusters n and that the active communications attack achieves higher

values of Pa for larger clusters n. The former attack may not always achieve perfect

stealth since it relies on coordination alone while the latter attack requires active com-

munication. We thus compare the two attacks in terms of their power-communication-

detection PCD metrics as shown in Figure 27.

As can be seen from Figure 27, once the number of required communications

and the probability of attack detection PD at the cluster head are also factored into

the comparison, the direct stealthy attack achieves a superior PCD performance for

n ≥ 2 for all values of probability p. This result is predominantly due to the increasing

number of required communications which grow in an affine manner with increasing n.
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This outcome is significant since the minimum number of required communications

was utilized for the comparison thus presenting a best case scenario for the active

communications attack. We thus conclude that for very small clusters, the active

communications attack produces a very small PCD advantage over the direct stealthy

attack. For larger clusters the communication overhead may be prohibitive and thus

favors the direct stealthy attack. Overall we conclude that the appeal of the direct

stealthy attack stems from three properties as compared with active communication:

1- it achieves a higher Pa for n ≤ 20, 2- it achieves a higher PCD over almost the

entire range of n and 3- it exhibits a constancy in Pa over n that may be mistaken

for inherent sensor faults.

Finally we make a brief but important observation regarding the implementabil-

ity of a stealthy hostile attack under the active communications paradigm. Namely,

we note that based on the stealth condition S, the active communication attack is

indeed implementable for the hostile nodes from a game theoretic perspective without

the need for special enforcement. We demonstrate this point through a leader-follower

example. In this example, the hostile node that communicates first is called the leader

and it announces to the follower its choice of attack parameter. As shown in Figure 28,

the second node’s (the follower’s) optimal action is to always match the action of the

first node in order to maximize its stealth utility. Thus the attack is implementable

in the sense that given an announcement from a subset of nodes, the remaining nodes

have no incentive to deviate from the strategy dictated by the leaders.

F. Chapter Summary

In this chapter we investigated the competing networks scenario for the case of a direct

stealthy attack perpetrated by a distributed hostile network. In the direct stealthy
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Fig. 28. To maintain stealth, the follower must match the leader.

attack each hostile node may attack a legitimate node with some probability chosen

such that the overall stealth of the hostile network is maintained. The persistence and

pervasiveness of the attack throughout the cluster causes incorrect individual sensor

decisions as well as errors in the collective decision at the cluster head. Attack detec-

tion and mitigation are made challenging by the distributed nature of the attacker,

the occurrence of the attack at the physical sensing layer and the lack of knowledge

concerning the specific actions of the attacker a priori.

The competitive interaction between the two networks is modeled as a game G

where we derive a stealth condition S and show its consistency and relevance for both

the hostile and the legitimate network in terms of attack detection and mitigation. For

the hostile network H we show how the stealth condition can be utilized to select the

optimal attack parameter for cases where the cluster size n and the sensor threshold

Th of the legitimate network L may not be known. For the legitimate network L we

show how the stealth condition yields the optimal defense parameters in terms of n

and Th and how this analysis enables the use of established detection tools such as the

Neyman-Pearson paradigm. In general, the optimal attack parameter decreases with
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increasing cluster size n and with decreasing probability of an event p. While this

improves attack mitigation by restricting the power of the attack Pa, it also makes

the attack less detectable at the cluster head and thus presents a detection-mitigation

trade-off for the legitimate network.

The direct stealthy attack does not require active communication among the

hostile nodes during the attack but rather depends on a level of coordination which we

quantify. Compared with the active communications case, we show that the stealthy

direct attack achieves a higher power of attack Pa for n ≤ 20 and a higher power-

communication-detection PCD metric for n ≥ 2. Importantly, the direct stealthy

attack exhibits a constancy in Pa over n that may be mistaken for inherent sensor

faults and is thus highly desirable for stealth.

Finally we note the role that encryption plays in the competing networks scenario.

Forward encryption between the sensors and the sink cannot protect against a hostile

attack due to its occurrence during data collection. Based on the role of the sensor

threshold Th in the stealth game, it is the backward encryption between the sink and

the sensors that plays a role in attack mitigation and discovery.
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CHAPTER IV

STEALTHY CROSS COMPETITION∗

A. Introduction and Motivation

In this chapter we investigate the competing sensor networks scenario for the case of

a stealthy cross attack. In a stealthy cross attack, each hostile node may attack one

or more legitimate nodes with some probability, causing an incorrect decision at the

sensor. Unlike in the direct stealthy attack however, based on hostile node deployment

and goals, two hostile nodes may both attack the same legitimate node. The cross

attack can cause errors in both the local sensor decisions and in the collective sensor

decision at the cluster head with ramifications for data acquisition. It is not clear

however if the cross attack is more beneficial to the hostile network in terms of attack

power and stealth than the direct attack, or if the cross attack creates a form of

interference among the attackers that benefits the legitimate network by lowering the

attacker’s performance.

To examine the ramifications of the cross attack for both the hostile and the

legitimate network, we model the interaction between the hostile nodes as a static

non-cooperative game. We derive the stealth utility for this scenario and show that

it is consistent for both the hostile and the legitimate networks. Based on the stealth

utility, the optimal attack and defense strategies are obtained for each network. For

the hostile network, we show that surprisingly there exist strategies for the cross

attack that achieve superior stealth for H than the direct stealthy attack without the

*Part of the material in this chapter is reprinted with permission from A. Czarlin-
ska and D. Kundur, “Reliable Scalar-Visual Event-Detection in Wireless Visual Sen-
sor Networks,” in Proc. IEEE Consumer Communications & Networking Conference
Special Session on Image/Video Processing & Wireless Sensor Networks, Las Vegas,
Nevada, January 2008, pp. 660–664. c© 2008 IEEE.
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need for communication. Furthermore there exists a unique attack strategy in the

cross attack which results in a superior power-communication-detection metric than

the direct attack.

For the legitimate network, we employ the derived stealth condition to obtain

the best defense strategies. We show how the cross attack presents a greater challenge

for L than the direct attack in terms of attack detection for both the optimal and

sub-optimal versions of the detector in the Neyman-Pearson paradigm. We demon-

strate however how analysis of the attack enables use of these established detection

techniques and produces a detection performance that agrees with the predictions of

the stealth condition.

B. System Model

We consider two competing sensor networks deployed in a common environment.

Based on deployment and goals, each hostile node may attack one or more legitimate

sensors with some probability. For analytical tractability of the cross attack, we focus

on a subset of the cluster’s nodes. That is we focus on the case of two hostile nodes

h1 and h2 deployed in the vicinity of two legitimate sensors l1 and l2 as shown in

Figure 29.

As in the case of the direct stealthy attack, the data acquisition model of each

sensor is given by Eq. (4.1) and the resulting sensors decisions xi are modeled as

Bernoulli random variables with distribution Xi ∼ Bern(p). In this context, x de-

notes the decision vector received from the sensors by the cluster head as given in

Eq. (4.2).

xi = γ(oi) = I{oi≥Th} s.t p =

∫ ∞

Th

f0(α)dα (4.1)

Each hostile node hi may attack one or both of the legitimate sensors l1 and l2
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Fig. 29. Stealthy cross attack model.

with some probability. The realization of the attack of hostile node hi is denoted by

yi = [yi,1, yi,2] where yi,1 denotes the attack of hi on the legitimate sensor l1 and where

yi,2 denotes hi’s attack on the legitimate sensor l2 as given in Eqs. (4.3) and (4.4).

x = [x1, x2] xi ∈ {0, 1} (4.2)

y1 = [y1,1, y1,2] y1,i ∈ {0, 1} (4.3)

y2 = [y2,1, y2,2] y2,i ∈ {0, 1} (4.4)

More specifically, the cross attack enables each hostile node to choose one of four

possible attack vectors yi. That is, each hostile node hi may attack neither l1 nor l2,

attack l1 but not l2, attack l2 but not l1 or attack both l1 and l2. For each hostile

node hi, each of these four attack vectors is defined as shown in Eqs. (4.5) to (4.8).

a � [y1,1, y1,2] = [0, 0], ã � [y2,1, y2,2] = [0, 0] (4.5)

b � [y1,1, y1,2] = [0, 1], b̃ � [y2,1, y2,2] = [0, 1] (4.6)

c � [y1,1, y1,2] = [1, 0], c̃ � [y2,1, y2,2] = [1, 0] (4.7)

d � [y1,1, y1,2] = [1, 1], d̃ � [y2,1, y2,2] = [1, 1] (4.8)

To perpetrate a stealthy attack based on the possible attack vectors, each hostile
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node must thus assign an optimal attack probability to each possible attack vector

as shown in Eqs. (4.9) to (4.12). Thus the action set of hostile node h1 consists of

an assignment of attack probabilities q = [q1, q2, q3, q4] where Σ4
i=1qi = 1 as shown in

Eq. (4.14). Similarly, the action set of hostile node h2 consists of an assignment of

probabilities q̃ = [q̃1, q̃2, q̃3, q̃4] where Σ4
i=1q̃i = 1 as shown in Eq. (4.15).

Pr{a} � q1 Pr{ã} � q̃1 (4.9)

Pr{b} � q2 Pr{b̃} � q̃2 (4.10)

Pr{c} � q3 Pr{c̃} � q̃3 (4.11)

Pr{d} � q4 Pr{d̃} � q̃4 (4.12)

Σ4
i=1qi = 1 Σ4

i=1q̃i = 1 (4.13)

q = [q1, q2, q3, q4] (4.14)

q̃ = [q̃1, q̃2, q̃3, q̃4] (4.15)

The effect of the attack upon the decisions of the sensor nodes is modeled via

Eq. (4.16). In Eq. (4.16), X is the pristine data vector when the cross attack is not

present, Y1 is the attack vector of hostile node h1, Y2 is the attack vector of hostile

node h2 and ⊕ is modulo 2 addition.

Z = X ⊕ Y1 ⊕ Y2 (4.16)

Based on the attack model of Eq. (4.16) and the goal of the hostile network to

misguide the legitimate network while minimizing the chance of attack detection, we

obtain the requirement for stealth as given by definition 4. Importantly, the stealth

condition Sc for the cross attack defined in Eq. (4.17) depends on the probability p

of an event (which depends on the underlying threshold Th selection at the sensors),

as well as on the attack selections q and q̃ of each hostile nodes.
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Definition 4 The stealth condition Sc of the hostile sensor network H for the cross

attack is given by Eq. (4.17) where w is the weight of a vector and is defined as

w(ξ)
.
=

∑n
i=1 ξi for a vector ξ of length n.

Sc = Pr{w(Zp,q,q̃) = w(Xp)} (4.17)

The interactions between the two hostile nodes h1 and h2 with consequences

for the legitimate network L are modeled as a static non-cooperative game Gc as

given by definition 5. Importantly, the interaction between the hostile nodes in Gc is

non-cooperative in the game theoretic sense signifying that the hostile nodes do not

utilize any form of binding or enforceable contract between them in order to reach

the common stealth goal. Rather, each hostile node hi selects an action from its

action set Ai to achieve maximal stealth utility ui(p,q, q̃) while choosing this action

independently of the other hostile node.

Definition 5 The stealthy cross game is given by:

Gc = 〈Γ, A, U〉 = 〈{h1, h2}, {A1, A2}, {u1, u2}〉 (4.18)

A1 = {q : Σ4
i=1qi = 1} A2 = {q̃ : Σ4

i=1q̃i = 1} (4.19)

u1(p,q, q̃) = u2(p,q, q̃) = Pr{w(Zp,q,q̃) = w(Xp)} (4.20)

To solve the cross attack game and obtain the optimal actions of each hostile

node, we are looking for best response functions B1(q̃
∗) and B2(q

∗) where the notation

Ba(b) denotes the best response B of player a to the opponents best strategy b as

given by Eqs. (4.21) and (4.22) respectively.

B1(q̃
∗) = arg max q:Σ4

i=1qi=1 Pr{w(Zp,q,q̃) = w(Xp)} (4.21)

B2(q
∗) = arg max q̃:Σ4

i=1q̃i=1 Pr{w(Zp,q,q̃) = w(Xp)} (4.22)
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C. Stealthy Attack Results

In this section we analyze and solve the cross stealthy attack game Gc from definition

5. We begin by obtaining the stealth condition Sc from Eq. (4.17) and by defining the

notion of pure and mixed actions of the hostile nodes in the game Gc as they pertain

to the solution of the cross stealthy attack problem.

Definition 6 An action q of hostile node h1 where q = [q1, q2, q3, q4] is an assignment

of probabilities q1, q2, q3 and q4 such that Σ4
i=1qi = 1 and q1, q2, q3, q4 > 0. Similarly

an action q̃ of hostile node h2 is an assignment of probabilities q̃1, q̃2, q̃3 and q̃4 such

that Σ4
i=1q̃i = 1 and q̃1, q̃2, q̃3, q̃4 > 0.

Definition 7 A pure action qPk (or q̃Pk) is an assignment of probabilities q1, ..., q4

(or q̃1, ..., q̃4) such that the kth element carries probability 1 and the remaining ele-

ments carry probability 0. For instance, qP1 is the pure action vector [q1, q2, q3, q4] =

[1, 0, 0, 0] and q̃P3 is the pure action vector [q̃1, q̃2, q̃3, q̃4] = [0, 0, 1, 0].

Definition 8 A mixed action qM = [q1, q2, q3, q4] (or q̃M = [q̃1, q̃2, q̃3, q̃4]) is an as-

signment of probabilities that is not a pure action. For example, [q1, q2, q3, q4] =

[0.5, 0, 0.5, 0] is a mixed action as is [q̃1, q̃2, q̃3, q̃4] = [0.25, 0.25, 0.25, 0.25].

Example 1 An action q = [0.25, 0.75, 0, 0] signifies that hostile node h1 will actuate

according to strategy a as defined in Eq. (4.5) with probability 0.25 and according to

strategy b as defined in Eq. (4.6) with probability 0.75. This is thus a mixed strategy

on the part of h1.

We proceed to obtain the stealth condition Sc for the cross attack by expressing

it in terms of the underlying probabilities as shown in Eqs. (4.23) and (4.24) with the
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result of the simplification shown via Eq. (4.25) to Eq. (4.29).

Sc = Pr{w(Zp,q,q̃) = w(Xp)} = Pr{w(Xp) = w(Zp,q,q̃)|X = 00} · Pr{X = 00}

+Pr{w(Xp) = w(Zp,q,q̃)|X = 01} · Pr{X = 01}

+Pr{w(Xp) = w(Zp,q,q̃)|X = 10} · Pr{X = 10}

+Pr{w(Xp) = w(Zp,q,q̃)|X = 11} · Pr{X = 11}(4.23)

Sc = (q1q̃1 + q2q̃2 + q3q̃3 + q4q̃4) · (1 − p)2 + 2p(1 − p) ·

(q1q̃1 + q2q̃2 + q3q̃3 + q4q̃4 + q2q̃3 + q3q̃2 + q4q̃1 + q1q̃4) +

p2 · (q1q̃1 + q2q̃2 + q3q̃3 + q4q̃4) (4.24)

Sc = αβp + δp(α + γ) (4.25)

α = q1q̃1 + q2q̃2 + q3q̃3 + q4q̃4 (4.26)

γ = q2q̃3 + q3q̃2 + q4q̃1 + q1q̃4 (4.27)

βp = 1 − 2p+ 2p2 (4.28)

δp = 2p(1 − p) (4.29)

We note however that that the terms βp and δp obey the relationship βp + δp = 1

thus leading to the simplification shown in Eq. (4.30) where ui is the stealth utility

of each hostile node hi.

Sc = ui(p,q, q̃) = α + γ · δp δp ∈ [0, 0.5], i ∈ {1, 2} (4.30)

1. Attack Analysis

Based on the stealth condition Sc from Eq. (4.30) we set out to identify the optimal

actions of each hostile node that result in the maximization of the stealth condition.
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Proposition 1 The best response of a hostile node hi to a pure action of hostile node

hj in the stealthy cross attack game Gc is a matching pure action. That is,

B1(q̃Pk) = qPk

B2(qPk) = q̃Pk (4.31)

The four resulting pure action Nash equilibria are thus given by Eq. (4.32) where

the subscript N denotes a Nash equilibrium.

(qN, q̃N) = (qPk, q̃Pk) k ∈ {1, 2, 3, 4} (4.32)

The resulting utility ui for hostile node hi ∈ {1, 2} is given by Eq. (4.33)

ui(qN, q̃N) = 1 (4.33)

Proof 11 We note that the utilities for hostile nodes h1 and h2 given by u1 and

u2 from Eq. (4.30) can be re-written as shown in Eq. (4.34) and (4.35) where the

dependence on probability p is not emphasized explicitly in the notation.

u1(q, q̃) = q1(q̃1 + δpq̃4)

+ q2(q̃2 + δpq̃3)

+ q3(q̃3 + δpq̃2)

+ q4(q̃4 + δpq̃1) (4.34)

u2(q, q̃) = q̃1(q1 + δpq4)

+ q̃2(q2 + δpq3)

+ q̃3(q3 + δpq2)

+ q̃4(q4 + δpq1) (4.35)
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Based on Eq. (4.34), a pure strategy qPk by h1 results in utility u2 = q̃k +δpq̃m for

hostile node h2 where m ∈ {1, 2, 3, 4} excludes k ∈ {1, 2, 3, 4}. The proof is completed

by noticing that δp ∈ [0, 0.5]. Therefore given any pure action qPk, the best response

of node h2 is to match with a pure strategy of the same value of k. This results in a

utility of 1 for each player. Similarly based on Eq. (4.35), given any pure action q̃Pk,

node h1 faces a utility u1 = qk + δpqm where m ∈ {1, 2, 3, 4} excludes k ∈ {1, 2, 3, 4}.

Thus the best response of node h1 is to match the pure action with the same k.

Example 2 Suppose that node h1 plays with pure action qP2 = [0, 1, 0, 0]. Hostile

node h2 thus faces the following utility u2 = q̃1(0 + δp0) + q̃2(1 + δp0) + q̃3(0 + δp1) +

q̃4(0 + δp0) = q̃2 + δpq̃3. Since δp ∈ [0, 0.5], the unique best response choice is to set

q̃2 = 1. Given the choice of q̃2 = 1, hostile node h1 has no incentive to deviate from

its original strategy of q2 = 1 since it faces the utility u1 = q1(0 + δp0) + q2(1 + δp0) +

q3(0 + δp1) + q4(0 + δp0) = q2 + δpq3.

In general we can conclude that a choice of a pure strategy by one of the hostile

nodes induces a matching pure strategy in the second hostile node.

Proposition 2 A mixed strategy equilibrium exists in the stealthy cross attack game

Gc iff the following two conditions are satisfied:

1. Player 1 assigns equal probabilities qi = k to the non-zero components of his

action vector.

2. Player 2 assigns the same equal probabilities to his action vector as player 1.

This leads to the existence of multiple mixed equilibria with varying utilities ui < 1

for i ∈ {1, 2}.

Proof 12 Let I = {i ∈ {1, 2, 3, 4} : qi �= 0} and let k = 1/|I| where | · | denotes the
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cardinality of the set. Without loss of generality, assume that player 1 is hostile node

h1 and that player 2 is hostile node h2.

We begin by considering the case where |I| = 4, that is, there are no elements with

assigned probability of 0 in the action vector. In this case, the equal probability assign-

ment (requirement 1) results in the action vector of h1 given by qM = [q1, q2, q3, q4] =

[k, k, k, k] where k = 1/4. This assignment results in a utility for h2 given by

u2 = q̃1(k+ δpk)+ q̃2(k+ δpk)+ q̃3(k+ δpk)+ q̃5(k+ δpk) = k(1+ δp)(q̃1 + q̃2 + q̃3 + q̃4).

Since Σ4
1=1q̃i = 1, we note that any distribution of probabilities among the q̃i’s results

in a utility u2 = k(1 + δp) = 1/4 · (1 + δp). Thus h2 is indifferent between his/her mix

of probability assignments q̃M.

However we observe that only the mix q̃M = [1/4, 1/4, 1/4, 1/4] results in a

mixed Nash equilibrium. To see this, assume that at least one of the q̃i assignments

is larger than the others. For example, q̃1 is larger than the other components, say

q̃M = [1/2, 1/6, 1/6, 1/6]. Then by examining Eq. (4.34), it is easy to see that h1’s

best response is to alter its mix, setting q1 = 1 and q2 = 0, q3 = 0 and q4 = 0. This

action in turn induces h2’s best response q̃1 = 1. The only stable situation leading

to a mixed strategy Nash equilibrium is the one where player 2 matches the equal

distribution of player 1. If these conditions are not met, the situation degenerates to

a pure strategy Nash equilibrium. The proof for |I| = 3, 2 and 1 follows the same

methodology though the case of |I| = 3 deserves further mention due the interesting

role of δp.

For the |I| = 3 case, assume without loss of generality that q1 = q2 = q3 = 1/3

and that q4 = 0. The resulting utility u1 faced by node h1 is thus u2 = 1/3 · q̃1 + 1/3 ·

(1 + δp)q̃2 + 1/3 · (1 + δp)q̃3 + 1/3 · δpq̃4. If δp = 0, u2 = 1/3 · q̃1 + 1/3 · q̃2 + 1/3 · q̃3.

Thus player h2 is indifferent between allocations to q̃1, q̃2 and q̃3. An allocation of

q̃1 = q̃2 = q̃3 results in a mixed equilibrium. An allocation of q̃1 > q̃2 > q̃3 results in



96

a degeneration to a pure strategy involving q1 and q̃1. An allocation of q̃1 = q̃2 > q̃3

results in a degeneration to a mixed equilibrium involving equal mixing between q1

and q2 for h1 and q̃1 and q̃2 for h2. However an interesting development occurs when

δp �= 0 in u2 = 1/3 · q̃1 + 1/3 · (1 + δp)q̃2 + 1/3 · (1 + δp)q̃3 + 1/3 · δpq̃4. For any value

of δp ∈ [0, 0.5], 1/3 · (1 + δp)q̃i ≥ 1/3 · q̃i > 1/3 · δpq̃i. Therefore the node is only

indifferent between two and not three of the strategies. In this case h2 is indifferent

between q̃2 and q̃3. If h2 mixes among these actions with equal probability then this

case degenerates to |I| = 2, otherwise it degenerates to |I| = 1.

Summary of Results:

• Case |I| = 4. There is a unique mixed Nash strategy equilibrium at (qP, q̃P)

where qP = q̃P = [k, k, k, k] with k = 1/4. The associated relative stealth

utility ui = 1/4 · (1 + δp) for all i ∈ [1, 2].

• Case |I| = 3. If δp = 0 (which corresponds to the case of p = 0 or p = 1), there

are four mixed Nash strategy equilibria for this case where there is a single zero

component in an action vector. These are given by: qP = q̃P = [0, k, k, k],

qP = q̃P = [k, 0, k, k], qP = q̃P = [k, k, 0, k] and qP = q̃P = [k, k, k, 0] for

k = 1/3. If however δp �= 0, no mixed equilibria exist in this case. Indeed in

the presence of δp, the pure equilibria reduce to those for the case of |I| = 2.

In the case where the triplet does exist, the associated relative stealth utility

ui = 1/3 · (1 + 2/3 · δp) for all i ∈ [1, 2].

• Case |I| = 2. There are six mixed Nash strategy equilibria for this case with

two zero components in an action vector. These are given by qP = q̃P =

[k, 0, 0, k], qP = q̃P = [0, k, k, 0], qP = q̃P = [k, k, 0, 0], qP = q̃P = [0, 0, k, k],

qP = q̃P = [k, 0, k, 0] and qP = q̃P = [0, k, 0, k] with k = 1/2. Based on
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the structure of the stealth condition, the first two doublets result in a relative

stealth utility ui = 1/2 · (1 + δp) for all i ∈ [1, 2]. The remaining doublets result

in a relative stealth utility ui = 1/2 for all i ∈ [1, 2]. Thus the average utility

experienced by the hostile nodes while carrying out a doublet attack is given

by ūi = 1/2 · (1 + 1/3 · δp) for all i ∈ [1, 2].

• Case |I| = 1. This case is the pure strategy case. There are four pure strategy

Nash equilibria for this case of three zero components in an action vector. These

are given by qP = q̃P = [k, 0, 0, 0], qP = q̃P = [0, k, 0, 0], qP = q̃P = [0, 0, k, 0]

and qP = q̃P = [0, 0, 0, k] where k = 1. The associated relative stealth utility

ui = 1 for all i ∈ [1, 2].

Thus based on analysis of the stealth condition Sc we have obtained the optimal

actions of each hostile node which are chosen independently of the other hostile node.

In the next section we investigate the significance of these results for the hostile

network.

2. Attack Performance

In this section we investigate the performance implications of the optimal attack

strategies of each hostile node with special emphasis on the role of pure and mixed

actions and their effect on the stealth and power of the attack.

We begin by observing that unlike in the direct stealthy attack, the optimal choice

of each hostile node is not unique even if each node is restricted to the selection of only

pure equilibria. That is, based on the results of proposition 1, there are four possible

pure Nash equilibria given by (qN, q̃N) = (qPk, q̃Pk) for k ∈ {1, 2, 3, 4}. Based on

these pure equilibria, to maximize the stealth utility Sc the hostile nodes must attack

with the same attack vector. For the k = 1 pure equilibrium attack for instance, both
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Fig. 30. (a) Best response functions of h1 and h2 showing the emergence of two (out

of the possible four) pure equilibria. (b) Comparison of stealth Sc for various

strategy types.

hostile nodes must not attack l1 or l2. For the k = 4 pure equilibrium attack, both

hostile nodes must attack l1 and l2. This result is illustrated in Figure 30a which

depicts a sample case of the best response functions of hostile nodes h1 and h2. In

Figure 30a, the actions of hostile node h1 are set to q3 = q4 = 0, q1 = g and q2 = 1−g.

Thus h1 must select a parameter g ∈ [0, 1] to achieve the best stealth utility. Hostile

node h2 is utilizing actions q̃3 = q̃4 = 0, q̃1 = h and q̃2 = 1 − h. Thus h2 must select

a parameter h ∈ [0, 1] to maximize its stealth utility. As shown in Figure 30a, if h1

chooses g = 0, then h2’s optimal choice is to select h = 0 and if h1 chooses g = 1

then h2’s optimal choice is to select h = 1. These two cases of optimal selection lead

to the emergence of two of the four pure action Nash equilibria, namely the (q, q̃)

equilibrium where q = [1, 0, 0, 0] and q̃ = [1, 0, 0, 0] and the (q, q̃) equilibrium where

q = [0, 1, 0, 0] and q̃ = [0, 1, 0, 0].

This matching actions result stems directly from the requirement of maximizing

the stealth of the hostile network during the attack. However this result carries signif-

icant implications for the power of the attack Pa under the pure actions equilibrium
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which we state in remark 3.

Remark 3 The set of pure action equilibria given by (qN, q̃N) = (qPk, q̃Pk) for

k ∈ {1, 2, 3, 4} between hostile nodes h1 and h2 maximize the stealth Sc of the attack

achieving the maximal stealth of ui = 1 for i ∈ {1, 2}. However the resulting power

of the attack Pa stemming from the pure action equilibria yields Pa = 0. The pure

action equilibria of the hostile nodes in the cross stealthy attack thus correspond to the

case of interference for the hostile nodes and as such, they are an undesirable attack

condition.

To understand remark 3 we recall that each hostile node actuates in the vicinity

of a legitimate node to distort and alter the observation oi of sensor i regarding the

source O. In the case of the direct stealthy attack, each hostile node performs the

attack in the vicinity of a unique legitimate sensor. However in the cross stealthy

attack with pure action equilibria, two hostile nodes are both attacking the same

legitimate sensor(s). Each hostile node i thus not only senses the source O but also

the actuation created by the other hostile node j. Since the goal of each hostile

node is to flip the decision of the legitimate sensor (from 1 to 0 and vice versa),

each hostile node performs actuation designed to reverse xi based on the perceived

conditions. Thus while hostile node i attempts to flip the decision from a to b, hostile

node j attempts to flip the decision from b to a resulting in interference and a power

of attack Pa = 0. The resulting stealth utility of ui = 1 can thus be understood

as achieving stealth in the attack by effectively not attacking the decisions of the

legitimate network due to interference. From the perspective of the hostile network

H, the pure action equilibria should thus be avoided. The general trade-off between

stealth Sc and the power of the attack Pa will be further detailed in this section.

Next we wish to consider the role of mixed Nash equilibria in attaining stealth
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and a power of attack. As shown in Section C-1, mixed strategy equilibria are also

not unique. Indeed there are three categories or “types” of mixed equilibria: the

doublet, the triplet and the quadruplet (the fourth type of equilibrium is the pure

equilibrium but it is not a mixed equilibrium). The doublet category for instance

includes all the mixed equilibria where each hostile node mixes among two pure

actions. Importantly we note that in order to reach a mixed equilibrium of the doublet

type, each hostile node must utilize the same probability mix for its actions as shown

in proposition 2. As a counterexample, q = [1/2, 1/2, 0, 0] and q̃ = [1/2, 0, 1/2, 0]

is not a doublet equilibrium since each node is mixing among different pure actions

(although with equal probability). As a second counterexample, q = [1/2, 1/2, 0, 0]

and q̃ = [3/4, 1/4, 0, 0] is also not an equilibrium since the two nodes are not using the

same probability assignment although they are mixing among the same pure actions.

The stealth condition Sc of Eq. (4.30) predicts the relative level of stealth for

all mixed equilibria by equilibrium type as shown in Table II where the heading

“Strategy” shows a sample action of hostile node h1 that fits into the given “Strategy

Type”. We make an important observation regarding the levels of relative stealth

shown in Table II. We note that mixing among fewer strategies produces a higher

relative level of stealth Sc. Specifically, mixing among two strategies is better for

the attacker than mixing among three strategies. Mixing among three strategies is

in turn better than mixing among four strategies. We note that “mixing” with only

one strategy (i.e. employing a pure action) performs best in terms of stealth but

corresponds to Pa = 0 as discussed in remark 3. This result is depicted in Figure 30b

where the stealth Sc utilities are shown over the entire range of probability p of an

event. As can be seen from Figure 30b, the stealth utility improves with a decreased

level of mixing and this pattern is maintained over the entire range of probability p.

Next we wish to make an important observation regarding the role of the prob-
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Table II. Comparison of Stealth Condition for Strategy Types

Strategy Type Strategy Stealth

pure q1 = 1 1

doublet q1 = q2 = 1/2 (1/2)(1 + (1/3)δp)

triplet q1 = q2 = q3 = 1/3 (1/3)(1 + (2/3)δp)

quadruplet q1 = q2 = q3 = q4 = 1/4 (1/4)(1 + δp)

ability p of an event based on the probability density function of the underlying

phenomenon and based on the local sensor threshold Th. We observe that as shown

in Table II and in Figure 30b, the stealth Sc utility of each hostile node depends on

the parameter δp where δp = 2p(1 − p) from Eq. (4.29) and where δp ∈ [0, 0.5]. Since

δp achieves its maximal value of δp = 0.5 at p = 0.5, this is the best case scenario

for the hostile H network in terms of relative stealth and conversely the worst case

scenario for the legitimate L network. On the other hand, values of probability p that

are closest to p = 0 or p = 1 constitute the best case for the legitimate network. This

result is consistent with the direct stealthy attack where the local sensor threshold

Th was set so as to result in a small or large probability p as given in Algorithm 2.

Thus we note that the stealth condition Sc for the cross stealthy attack is consistent

for both the legitimate and the hostile network.

Finally we wish to determine the overall performance of the cross stealthy attack

in terms of both the resulting stealth Sc and in terms of the power of attack Pa for

the various strategy types. We begin by noting that under the cross attack model

of Eq. (4.16), legitimate sensor l1 makes a decision Z1 as given by Eq. (4.36) while
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legitimate sensor l2 makes a decision Z2 as given by Eq. (4.37).

Z1 = X1 ⊕ Y11 ⊕ Y21 = X1 ⊕ Ȳ1 (4.36)

Z2 = X2 ⊕ Y22 ⊕ Y12 = X2 ⊕ Ȳ2 (4.37)

To analyze the power of the attack Pa we wish to determine the resulting proba-

bility mass functions for Ȳ1 and Ȳ2 in Eqs. (4.36) and (4.37). We proceed by writing

Ȳ1 in terms of the probabilities of the underlying events as shown in Eq. (4.38) to

(4.41). The final probability mass function is given by Eqs. (4.42) and (4.43).

Pr{Ȳ1 = 1} = Pr{(a and c̃) or (a and d̃)

or (b and c̃) or (b and d̃)

or (c and ã) or (c and b̃)

or (d and ã) or (d and b̃)} (4.38)

Pr{Ȳ1 = 1} = Pr{(a and (c̃ or d̃))

or (b and (c̃ or d̃))

or (c and (ã or b̃))

or (d and (ã or b̃)) (4.39)

Pr{Ȳ1 = 1} = Pr{(a ∪ b) ∩ (c̃ ∪ d̃)} + Pr{(c ∪ d) ∩ (ã ∪ b̃)} (4.40)

Pr{Ȳ1 = 1} = Pr{a ∪ b} · Pr{c̃ ∪ d̃} + Pr{c ∪ d} · Pr{ã ∪ b̃} (4.41)

Pr{Ȳ1 = 1} � Q1 = (q1 + q2) · (q̃3 + q̃4) + (q3 + q4) · (q̃1 + q̃2) (4.42)
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Ȳ1 =




1 w.p Q1

0 w.p 1 −Q1

(4.43)

A similar analysis may be performed to obtain the probability mass function for

Ȳ2 which we show here in its entirety for completeness:

Pr{Ȳ2 = 1} = Pr{(a and b̃) or (a and d̃)

or (b and ã) or (b and c̃)

or (c and b̃) or (c and d̃)

or (d and ã) or (d and c̃)} (4.44)

Pr{Ȳ2 = 1} = Pr{(a and (b̃ or d̃))

or (b and (ã or c̃))

or (c and (b̃ or d̃))

or (d and (ã or c̃)) (4.45)

Pr{Ȳ2 = 1} = Pr{(a ∪ c) ∩ (b̃ ∪ d̃)} + Pr{(b ∪ d) ∩ (ã ∪ c̃)} (4.46)

Pr{Ȳ2 = 1} = Pr{a ∪ c} · Pr{b̃ ∪ d̃} + Pr{b ∪ d} · Pr{ã ∪ c̃} (4.47)

Pr{Ȳ2 = 1} � Q2 = (q1 + q3) · (q̃2 + q̃4) + (q2 + q4) · (q̃1 + q̃3) (4.48)

Ȳ2 =




1 w.p Q2

0 w.p 1 −Q2

(4.49)

The power of the cross stealthy attack based on these results is thus given by
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Table III. Comparison of the Expected Power of Attack E[Pa] for Strategy Types

Strategy Type Strategy E[Pa]

pure q1 = 1 0

doublet q1 = q2 = 1/2 1/3

triplet q1 = q2 = q3 = 1/3 2/5

quadruplet q1 = q2 = q3 = q4 = 1/4 1/2

Eqs. (4.50) and (4.51) where Pa(li) denotes the power of the attack by the hostile

network upon legitimate node li.

Pa(l1) = Q1 (4.50)

Pa(l2) = Q2 (4.51)

Based on Eqs. (4.50) and (4.51) and the list of all pure, doublet, triplet and

quadruplet equilibria as given in proposition 2, the average expected power of the

attack E[Pa] for each strategy type can be determined. The results are shown in

Table III where we observe that unlike in the case of the stealth Sc, the average

power of the attack increases with an increase in the mixing that the hostile nodes

perform. Thus by increasing the level of mixing, the hostile nodes are decreasing their

stealth while simultaneously increasing the power of the attack. It is thus not clear a

priori which alternative produces the better overall result for the hostile network.

To investigate this trade-off between the level of stealth Sc and the power of the

attack Pa, we employ the joint power-communication-detection PCD metric shown

in Eq. (4.52). We note that in the stealthy cross attack the hostile nodes do not

explicitly communicate with each other and hence the number of communications

utilized is zero. We also note that the probability of attack detection PD is related
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Fig. 31. Comparison of the average power-communication-detection PCD metric for

various strategy types over the range of probability p of an event for the cross

attack.

to the stealth condition Sc via the relationship PD = 1 − Sc where we recall that

the stealth condition is a relative measure of avoiding detection. We thus obtain the

PCD as experienced by legitimate sensors l1 and l2 as given in Eqs. (4.53) and (4.54).

PCD =
No. attacked nodes

(1 + No. communications) · (1 + PD)
(4.52)

PCDL1 =
Q1

1 · (1 + PD)
(4.53)

PCDL2 =
Q2

1 · (1 + PD)
(4.54)

The results of the PCD comparison are displayed in Figure 31 where the average

power-communication-detection metric is shown over the range of probability p for
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the various strategy types. As seen in Figure 31, when both the stealth and the power

of the attack are taken into account, the quadruplet strategy performs better than all

the other strategies over the entire range of probability p, followed by the triplets, the

doublets and finally the pure strategies. This result is very significant for the hostile

network in terms of optimal attack selection. As noted in proposition 2, the equilibria

for both the pure actions case and the mixed actions case are not unique. However

when the overall performance is considered via the PCD metric, the optimal choice

is that of a quadruplet. This is significant since there exists only one quadruplet

equilibrium, namely the (q, q̃) equilibrium where q = [1/4, 1/4, 1/4, 1/4] and where

q̃ = [1/4, 1/4, 1/4, 1/4]. Thus there exists a unique optimal solution that each hostile

node hi can implement to achieve the optimal stealth and power of attack trade-off.

This result is summarized in remark 4.

Remark 4 For the stealthy cross attack game, the unique optimal action of each hos-

tile node hi is to attack according to the quadruplet mix given by q = [1/4, 1/4, 1/4, 1/4]

for h1 and by q̃ = [1/4, 1/4, 1/4, 1/4] for h2 in order to achieve the best stealth Sc and

power of attack Pa trade-off.

3. Attack Implications

Analysis of the stealthy cross attack demonstrates that there exist multiple pure

and mixed strategy Nash equilibria for the hostile network and that these equilibria

achieve different levels of performance in terms of the stealth Sc, in terms of the power

of attack Pa and in terms of the joint power-communication-detection PCD metric.

Based on its deployment and goals, the hostile network may thus generate a strategy

priority list for the equilibria that it wishes to implement in order to achieve a desired

performance based on a given metric. To achieve the optimal PCD performance for
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instance, the hostile network prefers to implement the following equilibria listed in

order of decreasing PCD performance and thus decreasing attack preference: 1− the

unique quadruplet equilibrium, 2− a triplet equilibrium, 3− a doublet equilibrium

and 4− a pure equilibrium. Importantly, the order of the preference list changes

depending on the performance metric of interest.

In this section we wish to consider the coordination ramifications of a strategy

preference list (such as the PCD preference list) for hostile nodes that are deployed

in an environment for the purposes of a stealthy cross attack where each hostile node

makes decisions that are independent of the other hostile node. To facilitate the

exposition, we discuss the ramifications with respect to a 2D grid-based world and

discuss the implications for general deployments. Specifically, we initially interpret

the 2D world as being comprised of a grid where nodes (hostile or legitimate) are

placed at the nodes of the grid and where mobility occurs along the edges of the

grid. A sample scenario is illustrated in Figure 32 where two hostile nodes h1 and

h2 (marked by squares) are deployed in the vicinity of two legitimate nodes l1 and

l2 (marked by circles). In this context, the goal of the hostile nodes is to achieve a

stealthy cross attack at the next time step irrespective of the current configuration

(the current configuration of the four nodes may not be an equilibrium point for the

hostile network in terms of attack stealth or attack PCD). To simplify the exposition

we employ the following definitions and assumptions.

1. The actuation radius a.r of each hostile node hi is normalized to a.r = 1.

2. The sensing radius s.r of each legitimate sensor li is normalized to s.r = 1.

3. Each edge of a grid joining two node points is of normalized grid length g.l = 1.

4. Within a single time step, each hostile node hi traverses a distance equal to one
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Fig. 32. (a) Implementation of triplet (a, b, c) and (ã, b̃, c̃). (b) Implementation of

quadruplet (a, b, c, d) and (ã, b̃, c̃, d̃).

grid length, that is, a grid distance of g.l = 1.

These simplifying assumptions can be understood in relation to the scenarios

depicted in Figures 32a and 32b. In both Figures 32a and 32b, neither of the hostile

nodes h1 or h2 is currently in a location from which it can perpetrate an attack on

either of l1 or l2 based on the assumption that a.r = 1 and s.r = 1. Thus if none

of the hostile or legitimate nodes move, the hostile nodes are effectively in a position

to implement attack strategy a and ã from Eq. (4.9), that is, q = [1, 0, 0, 0] and

q̃ = [1, 0, 0, 0]. For the general case of legitimate and hostile node deployment in the

2D grid world, the hostile nodes require a mechanism for implementing the attack

equilibria on the priority list. We wish to investigate the implications stemming from

this need in terms of the required coordination among the hostile nodes.

Example 3 This example illustrates the representative coordination approach that
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Table IV. Output of Algorithm 4 for Example 3

Direction h1 h2

up b b

down c none

left b none

right c c

stay a a

Table V. Output of Algorithm 5 for Example 3

Action from Priority List h1 h2

quadruplet (a,b,c,d) not possible for h1 or h2 not possible for h2 or h1

quadruplet (a,b,c,d) move to next action move to next action

triplet (a,b,c) possible for h1 and h2 possible for h2 and h1

triplet (a,b,c) find prob assignment find prob assignment

may be utilized by the hostile nodes to enact a stealthy cross attack without active

communication during the attack. The example corresponds to the scenario depicted

in Figure 32a. Tables IV and V correspond to the outputs of Algorithms 4 and 5.
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Table VI. Output of Algorithm 6 for Example 3

h1 count h1 prob h2 count h2 prob

count(a) = 1 (stay), w.p 1/3 count(a) = 1 (stay) w.p 1/3

count(b) = 2 (up, right), w.p 1/6 each count(b) = 1 (up) w.p 1/3

count(c) = 2 (down, left), w.p 1/6 each count(c) = 1 (left) w.p 1/3

Table VII. Sample Priority List for PCD Metric

Preferred Category Preferred Action

quadruplet (a,b,c,d)

triplet (a,b,c), (a,b,d), (a,c,d), (b,c,d)

doublet (a,d), (b,c), (a,b), (a,c), (b,d), (c,d)

pure (a), (b), (c), (d)

To illustrate the key coordination issues for the hostile network H, we consider

a representative attack methodology for each hostile node hi which is summarized in

Algorithms 4, 6 and 5 and through Example 3 which explores the scenario of Figure

32a in terms of Algorithms 4, 6 and 5. In Algorithm 4, each hostile node hi associates

each direction of travel (up, down, left, right and stay at its current location) with a

resulting strategy. For instance in Figure 32a, traveling to the left enables hostile node

h1 to attack legitimate sensor l1 but not legitimate sensor l2, thus enacting attack

strategy c where q = [0, 0, 1, 0]. Importantly we note that use of Algorithm 4 allows

a hostile node hi to determine its own possible attack actions and that it requires

knowledge of the positions of the legitimate sensors l1 and l2. We observe that to

carry out an attack without explicit inter-node communication, each hostile node hi

must also know the position of the other hostile node hj . Such position knowledge
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allows the determination of the strategy set of the other hostile node by re-running

Algorithm 4 based on the location of the other hostile node. Thus after running

Algorithm 4, each hostile node possesses a list of associations between each direction

of movement and the resulting attack strategy for both h1 and h2 as shown in Table

V in Example 3.

Algorithm 4 should thus be applied by each hostile node to find its own actions

as well as the actions of the other hostile node and this procedure requires infor-

mation regarding the position of all four nodes. To plan an attack without explicit

communications, Algorithm 5 is applied by each hostile node following Algorithm 4.

Algorithm 5 enables each node to identify which of the equilibria from the priority

list can be implemented by both hostile nodes. This is illustrated in Table V as the

algorithm pertains to Example 3. Finally, each node runs Algorithm 6 to assign

a probability of moving in each of the five directions (up, down, left, right, stay).

Importantly, this assignment of probabilities implements the desired equilibrium as

shown in Table VI and Figure 32a. For the case of Example 3 of Figure 32a, the hos-

tile nodes are not both able to implement the quadruplet that is at the top of their

priority list from Table VII. They are both able to implement the second equilibrium

from the priority list, namely the triplet a, b, c and ã, b̃, c̃. Based on the analysis and

results from proposition 2, a mixed Nash equilibrium requires that each hostile node

hi mixes with equal probability of 1/3 among actions a, b and c in order to imple-

ment this triplet. Based on their current locations, each hostile node must thus move

with the probabilities prescribed in Table VI and Figure 32a. For comparison, Figure

32b depicts a sample scenario and an assignment of probabilities that enable H to

implement the quadruplet.

We now summarize the implications for hostile node coordination for the case of

a cross stealthy attack. First we conclude that it is indeed possible in principle for
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the hostile nodes to achieve a stealthy cross attack without explicit inter-node com-

munication. Such an attack can be achieved through node cooperation as illustrated

through the example Algorithms 4, 5 and 6. We note two important requirements

to achieve the attack under this scenario. First, each hostile node must know the

position of all the other nodes in the vicinity that either participate in the attack or

are affected by the attack (in this case the two legitimate nodes and the other hostile

node). Although we have assumed a grid-like world in the example, this position-

knowledge requirement also applies to non-grid models. Indeed this information is

required in order for each hostile node to compute its next position based on the po-

sitions of the other nodes and based on the attack radius and sensing radius models

(assumed here to be normalized to 1). The second observation is that to avoid com-

munication, the hostile nodes must share the same priority list (such as pre-loaded

in memory). Together with the location information, the priority list enables each

hostile node to determine which attack is implementable and which attack will ac-

tually be carried out based on the priority. We thus conclude that stealthy cross

attacks that do not require active inter-node communications are possible but that

they require knowledge of all node positions and the possession of priority lists.
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Algorithm 4 Find Possible Actions for Hostile Node hi

Require: Input.

hi knows the location of all other nodes including itself.

{List of Possible Directions: Dir = [up, down, left, right, stay]. Indexed by k.}

{List of Possible Actions: Act = [a, b, c, d, empty]. Indexed by m.}

Ensure: This algorithm associates each possible direction Dir(k) with the action

Act(m) resulting from that direction.

1: for Each member of the list Dir do

2: Compute new location of Hi

3: if No overlap with L1 and L2 and not outside world then

4: Classify action at new location

5: if Affect L1 and L2 then

6: Assign Dir(k)= Act(4) (action d)

7: else if Affect not L1 and L2 then

8: Assign Dir(k) = Act(3) (action c)

9: else if Affect L1 and not L2 then

10: Assign Dir(k) = Act(2) (action b)

11: else

12: Assign Dir(k) = Act(1) (action a)

13: end if

14: else

15: Direction results in overlap or outside world: Dir(k) = 5 (empty)

16: end if

17: end for
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Algorithm 5 Find Implementable Cross Stealthy Equilibrium for H

Require: Input:

1 - Strategy to implement (from Strategy Priority List)

2 - Direction-Action association list for h1 and h2 (Output of Algorithm 4).

Ensure: Achieve a deployment for H at the next time step that implements a stealthy

cross attack on L based on the Priority List without inter-node communication.

1: for each action k in the priority list do

2: if h1 and h2 can both implement action k then

3: Find assignment of probabilities for each direction of travel to implement

action k by running Algorithm 6. Deployment is complete.

4: else

5: Move to the next item k + 1 in the priority list

6: end if

7: end for
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Algorithm 6 Assign Probabilities to Actions of hi

Require: Input:

1- Implementable action for H (output of Algorithm 5)

2- Direction-Action association list for h1 and h2 (output of Algorithm 4).

Ensure: This algorithm assigns a probability of moving to each of the possible di-

rections Dir = [up, down, left, right, stay] such that an equilibrium is achieved.

1: For the equilibrium to be implemented (output of Algorithm 5):

2: for all non-empty directions in the list Dir do

3: Count number of directions that correspond to each Action j

4: if Dir(k) == Actionj then

5: countj = countj + 1

6: end if

7: end for

8: ProbDirk = 1/(No. Actions · countj) {Each action is assigned equal probability

to achieve equilibrium and all directions that implement each action are assigned

equal probability.}
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D. Secure Data Acquisition Results

In this section we investigate defense strategies for the legitimate sensor network L for

the case of a stealthy cross attack by the hostile network H. As modeled in Section B,

the cluster head receives decisions regarding an event from legitimate sensors that

may be attacked by hostile nodes deployed in the area. We show how game theoretic

analysis of the optimal attack and defense strategies from Section C enables the use

of established detection techniques to uncover the attack at the cluster head and to

mitigate the attack at the legitimate sensors.

1. Defense Analysis

Based on the model of Section B for the stealthy cross attack, the cluster head receives

decisions z1 and z2 regarding an event of interest in the environment from legitimate

sensors l1 and l2 where the random variables Z1 and Z2 are given in Eqs. (4.55) and

(4.56).

Z1 = X1 ⊕ Y11 ⊕ Y21 = X1 ⊕ Ȳ1 (4.55)

Z2 = X2 ⊕ Y22 ⊕ Y12 = X2 ⊕ Ȳ2 (4.56)

In Section C the probability mass functions for Ȳ1 and Ȳ2 were determined as

summarized in Eqs. (4.57) through (4.60).

Ȳ1 =




1 w.p Q1

0 w.p 1 −Q1

(4.57)

Q1 = (q1 + q2) · (q̃3 + q̃4) + (q3 + q4) · (q̃1 + q̃2) (4.58)
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Ȳ2 =




1 w.p Q2

0 w.p 1 −Q2

(4.59)

Q2 = (q1 + q3) · (q̃2 + q̃4) + (q2 + q4) · (q̃1 + q̃3) (4.60)

The cluster head thus receives a realization of the decision vector z = [z1z2] and

based on this information attempts to decide whether or not an attack has occurred.

The cluster head thus wishes to distinguish between hypothesis H0 and hypothesis

H1 given in Eqs. (4.61), (4.62) and (4.63).

H0 : normal operation,Zi ∼ Bern(p) (4.61)

H1 : attacked operation,Zi ∼ Bern(ri) (4.62)

ri = p+Qi − 2p ·Qi for i ∈ [1, 2] (4.63)

The optimal detector to distinguish between these two hypotheses based on

the Neyman-Pearson (NP) paradigm utilizes the likelihood ratio Λ(z1z2) given in

Eq. (4.64) where p is the probability of an event and f(z1, z2) is the probability mass

function of z1 and z2 given in Eqs. (4.65) and (4.66). The threshold T in Eq. (4.64)

is chosen based on Eq. (4.67) such that a desired probability of false alarm PFA = α

is achieved. Based on the chosen α in the NP paradigm, the maximal probability of

detection PD = β is obtained via Eq. (4.68).

Λ(z1z2) =
f(z1, z2)

pz1+z2(1 − p)2−z1−z2

H1
>
<
H0

T (4.64)
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f(z1, z2) =




r1r2 z1 = 1 z2 = 1

r1(1 − r2) z1 = 1 z2 = 0

(1 − r1)r2 z1 = 0 z2 = 1

(1 − r1)(1 − r2) z1 = 0 z2 = 0

(4.65)

f(z1, z2) = r1r2 · Iz1=1Iz2=1 + r1(1 − r2) · Iz1=1Iz2=0 +

(1 − r1)r2 · Iz1=0Iz2=1 + (1 − r1)(1 − r2)Iz1=0Iz2=0+ (4.66)

α = Pr{Λ(z1z2) > T |pz1+z2(1 − p)2−z1−z2}

=
∑

z1z2:Λ(z1z2)>T

pz1+z2(1 − p)2−z1−z2 (4.67)

β = Pr{Λ(z1z2) > T |f(z1, z2)}

=
∑

z1z2:Λ(z1z2)>T

f(z1, z2) (4.68)

Though optimal with respect to the NP paradigm, the detector of Eq. (4.64) is

not truly implementable for the legitimate network L without game theoretic analysis

of the opponent H due to missing information. Specifically, the detection statistic

Λ(z1z2) requires knowledge of the parameters r1 and r2 which in turn depend on

knowledge of Q1 and Q2 from Eqs. (4.58) and (4.60). Since Q1 and Q2 depend on

the attack actions q and q̃ of hostile nodes h1 and h2, they are generally unknown

without analysis. We also note that in certain applications, the cluster head may not

be able to distinguish among the two legitimate sensors l1 and l2. That is, the cluster

head may simply be aware of the total weight w ∈ {0, 1, 2} received from both sensors

but not distinguish which sensor sent which decision and thus not have access to z1

and z2 itself but rather have access to an overall weight w.



119

Motivated by these considerations, we examine a sub-optimal version of the

Neyman-Pearson detector which relies on the overall weight w instead of the indi-

vidual sensor decisions z1 and z2. We note that the transition from the use of the

detailed z1 and z2 information to the aggregate weight w information constitutes a

loss of information and results in a sub-optimal version of the NP detector. The

sub-optimal NP detector is given by Eq. (4.69) and is based on the detection statistic

Λ(w) where the probability mass function f(w) is given in Eqs. (4.70) and (4.71).

The threshold T in Eq. (4.69) is set based on a desired probability of false alarm α

from Eq. (4.72) and the resulting probability of detection is given by Eq. (4.73).

Λ(w) =
f(w)(

2
w

)
pw(1 − p)2−w

H1
>
<
H0

T (4.69)

f(w) =




r1r2 w = 2

r1(1 − r2) w = 1

(1 − r1)r2 w = 1

(1 − r1)(1 − r2) w = 0

(4.70)

f(w) = r1r2 · Iw=2 + r1(1 − r2) · Iw=1 +

(1 − r1)r2 · Iw=1 + (1 − r1)(1 − r2)Iw=0 (4.71)

α = Pr{Λ(w) > T |
(

2

w

)
pw(1 − p)2−w}

=
∑

w:Λ(w)>T

(
2

w

)
pw(1 − p)2−w (4.72)

β = Pr{Λ(w) > T |f(w)}

=
2∑

w=0
w:Λ(w)>T

f(w) (4.73)
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We make a key observation regarding the sub-optimal detector of Eq. (4.69).

Although the detection statistic Λ(w) no longer requires knowledge of the individual z1

and z2 sensor decisions, the underlying probability mass function f(w) still depends on

parameters r1 and r2 and thus on the attackers’ actions q and q̃. Thus analysis of the

attackers’ optimal attack strategies is required for attack detection. This is in contrast

with the case of the stealthy direct attack. In the stealthy direct attack, simplification

of the NP detector eliminates the need for the attack parameters though importantly,

the attack parameters are still required in order to determine the detector’s PFA-PD

performance. Thus we conclude that in the case of the stealthy cross attack, the

legitimate network L faces a more challenging detection scenario.

In the analysis of Section C, we showed that multiple optimal pure and mixed

equilibria exist for the hostile network H under the stealth Sc metric. However

we showed that the optimal attack strategies to maximize Sc are restricted to the

doublet class of mixed equilibria. Furthermore we showed that when the overall

power-communication-detection PCD metric is considered, there exists a unique op-

timal equilibrium for the attacker, namely the unique quadruplet equilibrium where

q = [1/4, 1/4, 1/4/, 1/4] and where q̃ = [1/4, 1/4, 1/4/, 1/4]. Such analysis thus en-

ables the legitimate network to predict the actions of the hostile network and to

utilize both the optimal and sub-optimal Neyman-Pearson detectors of Eqs. 4.64 and

4.69 for attack detection. Furthermore, based on the results of Section C, in order

to perform attack mitigation at the individual sensors, the legitimate network should

select a local sensor threshold Th that yields either a small or large probability p of

an event. This result is thus consistent with the mitigation strategies obtained for

the case of the stealthy direct attack.
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Table VIII. Ordering of Stealth Condition by Strategy Type

Strategy Type Relative Stealth Sc

pure 1

doublet (1/2)(1 + (1/3)δp)

triplet (1/3)(1 + (2/3)δp)

quadruplet (1/4)(1 + δp)

2. Defense Performance

In this section we wish to examine the performance of the defense strategies of the

legitimate sensor network L in the case of the stealthy cross attack by the hostile

network H. We show that the stealth condition Sc is consistent for both the legitimate

and the hostile networks in terms of attack detection at the cluster head. We also show

that as in the case of the stealthy direct attack, the legitimate network L may mitigate

the stealth of the attack through proper choice of the sensor decision threshold Th.

The analysis and results of Section C indicate that the hostile network H may

achieve several pure or mixed attack equilibria that can be classified into different

strategy types with varying (relative) levels of stealth Sc. Specifically as discussed in

Section C and recapped in Table VIII, the hostile network achieves a higher relative

level of stealth by implementing the pure equilibrium strategies. Second in terms of

achieving a maximal level of stealth are the doublet equilibria followed by the triplet

equilibria and finally the quadruplet equilibrium.

To assess the effectiveness of the stealth condition in selecting attack and de-

fense strategies, we wish to investigate the (absolute) stealth of the attack for the

various types of equilibria by considering the attack detection performance at the

cluster head. Figures 33a and 33b present a comparison of the PD-PFA probability
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Fig. 33. Comparison of the PD-PFA performance among pure strategies, doublets,

triplets and quadruplets for (a) p = 0.01. (b) p = 0.1.

of detection and false alarm performance between pure strategies, doublets, triplets

and quadruplets for the case of p = 0.01 and p = 0.1 respectively. As seen in these

figures, the performance of the optimal detector does indeed follow the predictions of

the stealth condition. That is, mixing with a quadruplet strategy produces a PD-PFA

performance which is best for detecting the attack and worst for maintaining stealth

as predicted by the stealth condition for both networks. Mixing among triplets pro-

duces a better PD-PFA performance than mixing among doublets. Mixing among

doublets in turn produces a better PD-PFA performance than playing with a pure

strategy. As in Section C we note however that playing with a pure strategy results

in a power of attack Pa = 0 and is thus undesirable for the hostile network based on

those grounds. The PD-PFA performance at the cluster head is thus consistent with

the predictions of the stealth condition Sc for both networks. These results thus also

indicate that the best strategy for the hostile network in terms of maximizing stealth

is the worst strategy for the legitimate network for attack detection and vice versa.

Similar detection results are displayed in Figures 34a and 34b where the PD-

PFA performance among strategies is displayed for the case of p = 0.3 and p = 0.4.
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Fig. 34. Comparison of the PD-PFA performance among pure strategies, doublets,

triplets and quadruplets for (a) p = 0.03. (b) p = 0.4.

We make two salient observations regarding these results. First we note that the

relative relationship among the various strategy types is preserved over the entire

range of probability p of an event. This is important since this relative relationship is

predicted by the stealth condition Sc as shown in the results of Figure 30b and Table

VIII. The second important observation stems from a comparison of the PD-PFA

curves in Figures 33a, 33b, 34a and 34b. We note that as the value of probability p

of an event increases from p ≈ 0 to p ≈ 0.5, the overall PD-PFA performance at the

cluster head decreases. This is consistent with the prediction of the stealth condition

from Section C and Table VIII. It is also consistent with the results obtained for the

case of the stealthy direct attack. Importantly we note that due to the symmetry

of the stealth condition with respect to p, we show the results corresponding to the

[0, 0.5] interval with the same results for 1− p corresponding to the [0.5, 1] interval.

We also wish to examine the PD-PFA performance of the attack for different

equilibria that fall within the same strategy type. Figure 35a depicts the PD-PFA

performance of the four possible pure strategies for both the case of p = 0.01 and the

case of p = 0.4. As can be seen from the figure, all pure strategy equilibria result
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Fig. 35. Comparison of the PD-PFA performance for p = 0.01 and p = 0.4 for (a)

different pure strategies. (b) different triplets strategies.

in the same PD-PFA performance at the cluster head and furthermore achieve the

same performance irrespective of the probability p. This result is consistent with the

prediction of the stealth condition from proposition 2 and Table VIII where the same

relative level of stealth Sc is assigned to all equilibria within the pure class. Figure

35b also illustrates this scenario for the case of triplets for p = 0.01 and p = 0.4

indicating that the predictive relationship is maintained. Finally we summarize the

stealth condition results for the stealthy cross attack in remark 5.

Remark 5 The stealth condition Sc of Eq. (4.17) is a relative measure of the hostile

network’s stealth in the cross attack and is a consistent measure for both the legitimate

and hostile networks in terms of the probability of detecting the attack such as under

the Neyman-Pearson paradigm.

3. Defense Implications

In this section we wish to investigate the implications of the stealthy cross attack

for the defending legitimate L network. We show that the performance of the sub-

optimal Neyman-Pearson detector follows closely that of the optimal Neyman-Pearson
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Fig. 36. Optimal vs. sub-optimal detectors for representative doublet mix (a) p = 0.1.

(b) p = 0.3.

detector and that either form of the detector may be utilized based on the needs of

the application. The legitimate network thus has at its disposal the necessary tools

to detect and mitigate the attack.

As discussed in Section D-1, in certain applications the cluster head of the legiti-

mate network may not be able to distinguish between the individual sensor decisions

z1 and z2 but may instead have access to the aggregate weight w of the decision

vector z = [z1z2]. In such cases the cluster head may need to utilize a sub-optimal

version of the detector as given in Eq. (4.69). Figures 36a and 36b depict the PD-PFA

performance of both the optimal and sub-optimal detectors based on the Neyman-

Pearson paradigm as given in Eqs. (4.64) and 4.69 for the case of doublet equilibria

for probabilities p = 0.1 and p = 0.3. As can be seen from the comparison, although

sub-optimal, the detector based on the aggregate w follows the performance of the

optimal detector closely. Figures 36a and 36b depict this comparison for the case of

a representative triplet equilibrium and for the case of the unique quadruplet equi-

librium for probability p = 0.3. As can be seen from these results, the sub-optimal

detector achieves the PD-PFA performance of the optimal detector for these cases.
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Fig. 37. Optimal vs. sub-optimal detectors for p = 0.3 and (a) triplet mix (b, c, d). (b)

quadruplet mix (a, b, c, d).

This result is also obtained for different equilibria within the triplet strategy type

and within the quadruplet strategy type over the range of probability p as shown in

Figures 38a and 38b. Based on these results we make the interesting observation

that not only are the doublet equilibria better for the hostile network H in terms

of higher (relative and absolute) stealth, they are also better for H in terms of a

discrepancy between the optimal and suboptimal detectors. That is, although the

sub-optimal detector follows the performance of the optimal detector closely for the

doublet equilibria, it occasionally deviates from the optimal performance. This is

generally not the case for the triplet and quadruplet equilibria where the sub-optimal

detector achieves the performance of the optimal detector.

Based on these results we observe that the optimal defense strategies of the legit-

imate network for the case of the cross attack parallel the optimal defense strategies

obtained for the direct attack. Specifically, it is optimal for the legitimate network L

to select the local sensor decision threshold Th such as to render the probability p of

an event small or large. This procedure for L in the case of the stealthy cross attack

is summarized in Algorithm 7 which is directly parallel to the defense Algorithm 2
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Fig. 38. Optimal vs. sub-optimal detectors for p = 0.1 and (a) triplet mix (a, b, c). (b)

quadruplet mix (a, b, c, d).

for the case of the direct attack.

E. Comparisons

In the previous sections we have derived the stealth condition Sc for the case of

the stealthy cross attack. We determined that this condition is consistent for both

the legitimate and hostile networks such that it can be utilized to obtain the opti-

mal defense and attack strategies. In this section we wish to compare the stealthy

cross attack to the case of the stealthy direct attack where each hostile node attacks

only one legitimate sensor directly and we wish to make this comparison for both

the case of inter-node communication and no communication. We show interesting

properties of these attacks and demonstrate that in terms of the stealth utility Sc,

the cross attack achieves a superior level of relative and absolute stealth than the

direct attack. We also demonstrate that for the case of a small subset of nodes,

the stealthy cross attack without active communication achieves a superior overall

power-communication-detection PCD metric compared with the direct attack and
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Algorithm 7 Defense Algorithm for Legitimate Network

Ensure: Max attack detection and power of defense given competing hostile network.

1: Given the probability density function (pdf) of the phenomenon, set the local

sensor threshold Th:

2: if events are expected to be common then

3: Set Th such that p (area under the pdf to the left of Th) is close to 1.

4: else

5: Set Th such that p is close to 0.

6: end if

7: Given information available to the cluster head:

8: Find optimal attack parameters q∗ and q̃∗ from Eq. (4.30).

9: if cluster head receives distinct z1, z2 sensor decisions then

10: Utilize detector of Eq. (4.64)

11: else

12: Utilize detector of Eq. (4.69)

13: end if
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compared with communication. Next we compare the stealthy cross attack to the

case of an uncoordinated attack where each hostile node may select a different attack

strategy which does not necessarily result in the optimal stealth equilibrium. These

results carry important implications for the design of attack and defense strategies.

1. Comparison with Stealthy Direct Attack and Communication

The direct and cross attack models for the hostile network differ in that the cross

attack model allows each hostile node to attack more than one legitimate sensor.

Conversely as a result of the cross attack, a single legitimate sensor may be attacked

by more than one hostile node. Given these two attack models, we wish to determine

if allowing cross attacks changes the existing equilibria of the game and if such changes

are advantageous or disadvantageous for the hostile network H. Specifically we wish

to understand if the cross attack improves the stealth of the attack or causes the

attack to be revealed with greater probability.

We begin our comparison with an examination of the stealthy cross attack Gc and

its resulting equilibria. We examine a representative case of a doublet equilibrium via

Eq. (4.74) which shows the stealth utility Sc in terms of a subset of actions of hostile

nodes h1 and h2. As shown in Eq. (4.74), we consider the case where hostile node

h1 must assign probabilities to its actions b and c while hostile node h2 must assign

probabilities to its actions b̃ and c̃. Eqs. (4.75) and (4.76) show the resulting stealth

utility for either of the hostile nodes if they choose to match their actions. That

is, Eq. (4.75) shows the utility resulting from both hostile nodes choosing matching

actions c and c̃ while Eq. (4.76) shows the utility resulting from both hostile nodes

choosing matching actions b and b̃. In both cases each hostile node achieves the
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Fig. 39. (a) Cross attack non-equilibrium: h1 plays c and h2 plays b. (b) Possible

locations of h2 to enact strategy c to match h1’s strategy c.

maximal (relative) stealth utility measure of Sc = 1.

Sc = u2(q2, q3, q̃2, q̃3) = q̃2(q2 + δpq3) + q̃3(q3 + δpq2) (4.74)

Sc = u2(q2 = 1, q3 = 0, q̃2 = 1, q̃3 = 0) = 1 ∀p (4.75)

Sc = u2(q2 = 0, q3 = 1, q̃2 = 0, q̃3 = 1) = 1 ∀p (4.76)

Next we examine this situation for the case of a mismatch between the actions

of the hostile nodes. As shown in Eqs. (4.77) and (4.78), if hostile node h1 chooses

action b while hostile node h2 chooses action c or vice versa, the stealth utility of

both nodes is decreased from 1 to δp ∈ [0, 1/2] where probability p depends on the

actions of the legitimate network L. Importantly we observe that this disadvantageous

mismatch in actions actually corresponds to the direct attack. As illustrated in Figure

39a, when each hostile node attacks only one legitimate node the action mismatch

is created. Thus we make two important conclusions. The first conclusion is that

actions that constituted an equilibrium in the direct attack may no longer constitute

an equilibrium in the cross attack. The second conclusion is that the cross attack
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Fig. 40. Comparison of the direct and cross attacks for doublet (b, c) for (a) p = 0.1.

(b) p = 0.45.

achieves a superior level of relative stealth than the direct attack.

Sc = u2(q2 = 1, q3 = 0, q̃2 = 0, q̃3 = 1) = δp ∈ [0, 1/2] (4.77)

Sc = u2(q2 = 0, q3 = 1, q̃2 = 1, q̃3 = 0) = δp ∈ [0, 1/2] (4.78)

Next we proceed to examine the stealth utility for the doublet case when both

hostile nodes mix their actions with equal probability based on Proposition 2. As

shown in Eq. (4.79), such a mix is an equilibrium for the hostile nodes in the case

of a cross attack and gives rise to a relative stealth of 1/2(1 + 1/3 · δp) ∈ [1/2, 7/12].

We note that this equilibrium point did not exist in the case of the direct attack.

The overall set of best response actions for hostile nodes h1 and h2 for this doublet

scenario is shown in Eq. (4.80).

Sc = u2(q2 = 1/2, q3 = 1/2, q̃2 = 1/2, q̃3 = 1/2) = 1/2(1 + 1/3 · δp) ∈ [1/2, 7/12]

(4.79)
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B1(q̃2, q̃3) =




q2 = q3 = 1/2 if q̃2 = q̃3 = 1/2

q2 = 1 if q̃2 = 1/2 + ε for ε > 0

q3 = 1 if q̃3 = 1/2 + ε for ε > 0

(4.80)

To further illustrate the difference between the stealthy direct and cross attacks

we obtain the absolute stealth of each attack at the cluster head in terms of the

PD-PFA performance. Figures 40a and 40b illustrate the results for the doublet pair

(b, c) and (b̃, c̃) for both the optimal and sub-optimal detectors at the cluster head.

As seen from these results, the cross attack achieves a worst PD-PFA performance

signifying that it is a better strategy for the attacker and is thus in agreement with

the prediction of the stealth condition Sc. Figure 41 illustrates this result for the case

of a triplet cross attack as compared to a direct one-to-one attack. We summarize

these results in remark 6.

Remark 6 The cross attack achieves a superior level of relative and absolute stealth

compared to the direct attack for hostile network H.

Importantly we observe that the above discussion encompassed only considera-

tions of stealth and that the power of the attack Pa was not jointly considered. To

consider both metrics, we employ the power-communication-detection PCD metric

shown in Eqs. (4.81) and (4.82) and recall that communication among the hostile

nodes may be accomplished via relatively simple algorithms such as Algorithm 3.

Thus based on the PCD metric we wish to compare the direct attack with the cross

attack for both the case of communication and for the case of no communication

among the hostile nodes.

PCD =
No. attacked nodes

(1 + No. communications) · (1 + PD)
(4.81)
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Fig. 41. Comparison of the direct and cross attacks for triplet (a, b, c) for p = 0.3.

PCDLi =
Qi

1 · (1 + PD)
(4.82)

The results of this comparison are shown in Table IX for the case of n = 2

nodes corresponding to the cross attack model where the results have been arranged

in order of decreasing PCD performance. As can be seen from the table, for the

case of very small node subsets, the direct attack benefits from the use of inter-node

communications as shown previously in Chapter III and Figure 27. As seen from the

table however, the cross attack quadruplet strategy achieves a higher PCD metric

without the use of communications. Thus we obtain the result that for very small

node subsets where two hostile nodes attack two legitimate nodes, it is advantageous

for the hostile network to employ the cross attack quadruplet and that the hostile

network does not need to employ inter-node communications to achieve this result.
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Table IX. PCD Metric for Direct vs. Cross and Comm. vs. No Comm. for n = 2

Attack Comm. PCD

direct no 0

direct yes 0.1

cross yes 0.195

cross no 0.39

2. Comparison with Uncoordinated Attacks

In the previous section we compared the stealthy cross attack with the stealthy direct

attack for the case of inter-node communication and for the case of no inter-node

communication. We observed that the cross attack results in advantageous levels of

stealth and power-communication-detection without the need for active communica-

tion. As noted in Section D-3 however, to achieve Nash equilibria in the cross attack

without communication, the hostile nodes require knowledge of common priority lists

as well as knowledge of all the nodes’ positions. In this section we wish to investigate

the implications of a mis-coordination on the part of the hostile nodes in achieving

the Nash equilibria.

The case of mis-coordination among the hostile nodes is illustrated in Figure 42a

in terms of the PD-PFA performance at the cluster head for p = 0.1. Specifically,

Figure 42a shows three types of deviation from the doublet equilibrium (q, q̃) where

q = [1/2, 1/2, 0, 0] and q̃ = [1/2, 1/2, 0, 0] corresponding to actions (a, b) and (ã, b̃).

As can be seen from Figure 42a, the worst PD-PFA performance from among the four

curves is achieved precisely by the doublet equilibrium and thus constitutes the best

case for H. When only one of the hostile nodes (h2 in this example) deviates from this

equilibrium by mixing with q̃ = [1/4, 1/4, 1/4, 1/4], the result is a loss of stealth for
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Fig. 42. PD-PFA when h2 deviates from optimal doublet mixing strategy for (a)

p = 0.1. (b) p = 0.4.

H. Although significant, this loss is not maximal since h2 has selected the quadruplet

mixture which is generally advantageous for H.

Next we examine the stealth outcome when hostile node h2 deviates from the

doublet equilibrium mix by mixing among all four alternatives but in a way that does

not correspond to the quadruplet equilibrium. Specifically, hostile node h2 mixes

using the strategy q̃ = [1/10, 2/10, 3/10, 4/10]. As can be seen from Figure 42a, this

larger deviation from the equilibrium results in a larger loss of stealth for H. Finally

we consider the case when both hostile nodes h1 and h2 deviate from the prescribed

doublet strategy. In this scenario hostile node h1 selects q = [3/4, 1/4, 0, 0] while

hostile node h2 selects q̃ = [1/10, 2/10, 3/10, 4/10] as before. As can be seen from the

figure, such mismatched selections result in the worst level of stealth for the hostile

network H. Similar results of coordination mismatch are illustrated in Figure 42b

but for the case where p = 0.4. We observe that the relationship between the four

curves is maintained but that the gap in performance among the four is decreased.

This is consistent with the finding that as the probability of an event p approaches

p ≈ 0.5, the detection performance of the legitimate network decreases. Thus from
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the perspective of the hostile network, all attack strategies are comparable since

the attack cannot be easily detected at the cluster head. Overall we observe that

coordination among the hostile nodes for arbitrary values of probability p is required

and that smaller deviations from the optimal actions produce a smaller loss in stealth.

F. Chapter Summary

In this chapter we investigated the competing sensor networks scenario for the case of

a stealthy cross attack. In a stealthy cross attack, each hostile node may attack one

or more legitimate nodes with some probability, causing an incorrect decision at the

sensor. Unlike in the direct stealthy attack however, based on hostile node deployment

and goals, two hostile nodes may both attack the same legitimate node. To understand

the impact of the cross attack on reliable data collection, we investigated the stealth

and power of the attack with comparisons to the direct attack for both networks.

The stealthy cross attack is modeled via the interaction between the hostile nodes

in a static non-cooperative game. The stealth utility for this scenario is derived and

shown to be consistent for both the hostile and the legitimate networks. Based on

the stealth utility, the optimal attack and defense strategies are obtained for each

network. For the hostile network, we showed that in contrast with the direct attack,

multiple pure and mixed Nash equilibria exist. We showed that the pure equilibria

are not advantageous for the hostile network and indeed may be considered a form of

attack interference among the hostile nodes. We also showed that surprisingly there

exist strategies for the cross attack in terms of mixed equilibria that achieve superior

stealth for H than the direct stealthy attack without the need for communication.

Furthermore there exists a unique attack strategy among the mixed equilibria which

results in a superior power-communication-detection metric than the direct attack.
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Importantly for the hostile network, we also showed that to achieve the desired Nash

equilibrium in the cross attack based on coordination without communication, the

hostile nodes require knowledge of common priority lists as well as knowledge of all

the nodes’ positions. Deviations from the prescribed coordination result in a loss of

stealth.

For the legitimate network, we employed the derived stealth condition to obtain

the best defense strategies. We showed how analysis of the cross attack enables use

of established techniques to detect the attack such as through the Neyman-Pearson

paradigm. We also showed that the optimal detection and mitigation strategies ob-

tained for the stealthy direct attack apply to the stealthy cross attack and are thus

consistent.
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CHAPTER V

STEALTHY IMAGE NETWORK COMPETITION

A. Introduction and Motivation

The general popularity of mobile devices and the lure of innovative applications have

continued to drive research in the area of wireless multimedia. Indeed much focus has

been placed on the design of robust, efficient and secure schemes for delivering mul-

timedia content over error-prone wireless channels [98], [99]. Recent years have also

brought developments in another growing field of interest, that of wireless sensor net-

works. Originally envisioned as simple devices for distributed environmental sensing,

sensor networks have continued to evolve in complexity to include autonomous mo-

bility and actuation of elements in their surroundings [100], [101]. Visual-capability

additions are thus but a natural extension of this research [92], [102].

Emerging from these ideas, the nascent field of wireless image sensor networks

(WISNs) considers battery-operated wireless (untethered) nodes equipped with cam-

eras [92], [102]. Among other applications, it boasts importance to rapid-deployment

surveillance and monitoring [10]. As all ambitious research ideas, WISNs have many

significant challenges to overcome. The energy limitations already encountered in sen-

sor networks collecting scalar data such as temperature are only exacerbated when

nodes are deployed to collect, process and transmit visual data [103], [104]. The in-

creased size of visual data also strains storage buffers and places a further burden on

system design through increased transmission delay and bandwidth utilization [16].

Such challenges require innovative solutions tailored to the unique characteristics of

WISNs [92].

Among possible approaches, event driven WISNs have emerged as an intriguing
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design possibility suited for long term deployments in unattended environments. In

the event driven approach, camera nodes may be triggered by scalar sensors only when

the latter detect an event of interest in the surroundings. Alternative event driven

approaches consider cameras that acquire continuous input but which only transmit

an image frame if an event was captured [16], [50]. The event driven paradigm hence

aims to alleviate energy consumption and bandwidth use implicitly, via the local

selection of relevant image frames by the nodes. This approach may be viewed as

complementary to the joint optimization of video encoding and wireless transmission

power [99], [103], or to efforts at providing higher bandwidth channels [10] and allo-

cating their use fairly and efficiently [98]. Overall, WISN systems will undoubtedly

benefit from the incorporation of advances from the spectrum of these complementary

strategies.

Event acquisition and frame selection in the event driven paradigm may be ac-

complished through the use of scalar sensor decisions and the use of image processing

techniques at the camera nodes. At the camera nodes, many event driven WISN

paradigms rely on correct frame selection based on the definition of an event. For

surveillance nodes where unknown objects may or may not enter the camera’s field

of view, this definition may be largely motion-based, though in general the definition

is application-dependent [105], [106]. Based on the event definition, a camera node

should ideally achieve a high probability of event detection PD to guarantee that im-

portant frames are acquired and transmitted. The camera nodes should also achieve

an acceptably low probability of false alarm PFA to avoid the wasteful acquisition or

transmission of non-event frames. Event detection in WISNs must thus meet critical

accuracy and reliability requirements while minimizing complexity and energy con-

sumption. Though approaches based solely on image processing at the camera nodes

are possible, they are generally expensive in terms of the computation required to
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achieve an acceptable probability of error [103], [104].

In this work we show how collaborative approaches exploiting available scalar

decisions can be used in conjunction with low complexity image processing algorithms

to achieve reasonable performance despite the potential presence of a hostile network.

Based on the competing sensor networks scenario with stealthy direct or cross attacks,

we examine the event acquisition properties of WISNs deployed in unattended outdoor

environments for the purpose of collecting relevant surveillance data regarding an

event of interest [6], [43].

We consider a heterogeneous WISN comprised of sensors and untethered camera

nodes (battery operated nodes with wireless data transmission to the sink) [3]. The

camera nodes must operate reliably under significant resource constraints and may

thus require the use of lightweight image processing (LIP) algorithms to perform

event acquisition [7], [102]. Under the collaboration paradigm, camera nodes may

also receive supporting decisions about the presence or absence of an event from

distributed sensors [102], [16]. We wish to investigate the detection and false alarm

characteristics of such heterogeneous WISNs in uncertain environments where outdoor

conditions may present challenges for the camera LIP algorithms while occasional

faults and deliberate stealthy attacks may present a challenge for the supporting

sensors. In particular we wish to study the relative merits and limitations of the

following cases:

1. Lightweight Image Processing (LIP) approach: preliminary results from real-

world testbeds of low-power low-computation wireless camera nodes suggest

that LIP algorithms may achieve a probability of detection and false alarm

(PD-PFA) that may be acceptable for certain applications [7], [102]. Though we

do not set out to improve any particular LIP algorithm, in this work we wish to
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understand the underlying analytical properties of simple threshold based LIP

algorithms and examine their PD-PFA performance for a variety of real world

surveillance sequences. The overarching goal is thus to understand the limits

and suitability of LIP algorithms and to provide a framework for enhancing

their performance with sensors if required for a given application.

2. Sensor Decisions Approach: in unattended outdoor settings, sensors may be

prone to occasional errors due to faults or may experience stealthy direct or

cross attacks designed to avoid detection [6], [31], [43]. Although quality test-

ing may provide an estimate for the probability of a fault, an estimate for the

probability of an attack may not be generally available a priori. Without ver-

ification mechanisms, the reliability of the sensor decisions may thus not be

adequate for some applications despite node redundancy. We study and com-

pare the PD-PFA performance of different fault/attack verification mechanisms

at the cluster head for the case of occasional errors, attacks and stealthy at-

tacks. We also comment on the level of node redundancy (cluster size) required

to achieve a desired event acquisition performance under each scenario.

3. Combined Decisions Approach: camera nodes may rely on a combination of

decisions from the sensors and the LIP algorithm for event acquisition [7], [102],

[3]. We wish to study the characteristics of such combined decisions for various

levels of node redundancy to exploit the desirable qualities of both approaches

and avoid the degradation in performance that each method may experience in

certain settings.
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B. Literature and Recent Advances

For many applications, the viability of wireless image sensor networks (WISNs) de-

pends on the resolution of significant design issues centered around network reliabil-

ity [49], [107] longevity [22], [103] and security [108], [109]. The specific issues in-

clude energy-efficient capture of images as well as their processing and routing [110],

[102], [111], [112], economical network design relying on node heterogeneity with

sleep/wake-up cycles [113], [3], and the network’s robustness to attack and compro-

mise of privacy [114]. WISNs thus present a very wide range of timely challenges. In

this section we wish to briefly outline some recent advances most salient to the focus

of our work.

In [3] He et. al describe VigilNet, a prototype implementation of a heterogeneous

image sensor network for energy efficient surveillance missions. In the experimental

setup, 70 Mica2 motes are deployed to detect and track the passing of a vehicle while

triggering cameras. The authors demonstrate how a multi-tier sleep/wake-up system

consisting of motes and mote leaders called sentries can extend the lifetime of the

network. Importantly, a sentry decides whether an event of interest is occurring in the

environment by counting the number of “yes” votes it receives from the motes which

are utilizing magnetometer sensors. To accurately capture events, the probabilities

of false positives and false negatives are balanced by carefully selecting the detection

threshold (i.e. the number of “yes” votes required to declare that an event has

occurred, referred to by the authors as the Degree of Aggregation DoA). Importantly,

the DoA is selected experimentally and as the authors suggest, a framework with

adjustable sensitivity for this selection could largely improve the system’s detection

performance. In comparison, in our work we study a framework that enables the

cluster head (i.e. the sentry) to make optimal decisions based on sensor inputs with
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a flexible level of sensitivity.

Although heterogeneous multi-tier systems greatly improve the longevity of the

overall image network, practical designs must account for the substantial power con-

sumption of individual image-capture devices and of their image processing algorithms

which handle the acquired frames. Recent advances in CMOS imaging technology

have produced a new breed of low-power camera devices. Unfortunately these de-

vices are generally intended for higher-power hosts and are thus not suitable for

sensor networks. To address this issue, Rahimi et. al [7] present a seminal camera

device named Cyclops. Cyclops provides an electronic interface between a low-power

low-computation camera module based on CMOS imagers and a lightweight camera

host such as a mote. While providing a critical bridge and enabling use in visual

sensor networks, Cyclops still suffers from extreme constraints in its computational

power and processing delay, necessitating judicious use of its resources. For instance,

Cyclops’s complex programmable logic device (CPLD) can perform simple operations

on the frames at capture time, such as background subtraction and frame differenti-

ation. Performing such simple operations at capture time instead of post-processing

the frames greatly reduces the energy consumption and delay of the device. In our

work, we study how lightweight image processing (LIP) compatible with these ideas

can improve event detection performed by the cluster head and its associated sensors.

Importantly cyclops indeed possesses an asynchronous trigger input that can be con-

nected to sensors (such as a passive IR detector, microphone or magnetometer) to

trigger the camera and improve the overall system’s performance.

Upon deployment, the goal of a typical image network is to capture relevant

visual surveillance pertaining to an event of interest and to forward this surveillance

to a sink where further analysis might be performed. To capture relevant surveillance,

the network should generally exhibit a high probability of event detection PD (true
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positive) and a low probability of false alarm PFA (false positive). These probabilities

not only affect the relevance of the collected materials to the surveillance task, but

also have an impact on the network’s energy consumption and thus on its longevity.

Specifically, the erroneous identification of “non-event” frames as “significant” and

their subsequent processing and transmission through a (wireless) medium needlessly

drains the nodes’ battery resources and burdens the sink with non-content. On the

other hand, the omission of “event” frames may significantly compromise the quality

of the surveillance mission. The PD-PFA characteristics of the image network should

also ideally exhibit the highly desirable property of being adjustable based on the

requirements of the application (such as its surveillance or energy requirements).

The detection performance should also ideally exhibit some optimality in the sense

of being “the best” achievable performance given the practical challenges of WISNs.

Event acquisition challenges experiences by nodes in a WISN generally stem from

more than one source. The first such source originates from the hardware and energy

limitations of the camera nodes themselves [7]. Specifically, the camera nodes may

not have the capability of applying advanced image processing to the captured frames.

The processing delay (per frame) as well as the energy and memory utilization gen-

erally render such processing infeasible even when it is available at the camera nodes.

However lightweight image processing (LIP) is often feasible on such devices and pro-

vides very basic in situ analysis of the frames’ content. Unfortunately the practical

PD-PFA performance of LIP varies widely depending on the specific environmental

conditions (for example, lighting, size and speed of the moving object(s) and move-

ment of “background” objects such as trees). The performance of LIP for any given

arbitrary image sequence is consequently not truly predictable or controllable, and

thus not inherently “adjustable” to meet application requirements. Nevertheless,

real-world experiments with Cyclops based on a LIP algorithm have demonstrated
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an average PD ≈ 78% and a PFA ≈ 22% [7]. While this level of PD-PFA performance

may potentially be acceptable for certain applications, it is important to investigate

whether this performance can be improved through the use of collaborating sensors.

Exploiting the information collected by sensors might generally improve the PD-

PFA performance of heterogeneous WISNs. The use of sensors however introduces

two new sources of error that must be considered. The first such source comes from

occasional sensor faults or errors that occur with some small but non-zero probability

at each sensor. Aside from quality testing prior to deployment (which might be selec-

tive or altogether absent due to the large number of sensors), the general approach is

to employ sensor redundancy to reduce the chance of false reporting. Nevertheless it

is not always clear what level of redundancy (number of sensors) is required to achieve

a given PD-PFA performance, especially if the camera nodes are already performing

a basic level of detection via a LIP algorithm. The issue of redundancy becomes even

more salient when we consider the second possible source of sensor error, that is, er-

ror due to a persistent and distributed attack. In particular, WISNs are intended for

deployment in unattended and possibly hostile regions. In such scenarios, an oppo-

nent can clearly gain physical access to the sensors with the possibility of destroying

them, capturing them for reprograming purposes, or interfering with their readings

via actuator devices [49], [6]. Despite the possibility of tampering or error, the use

of sensors to achieve reliable and energy efficient image networks is highly enticing if

these issues can be resolved [92], [7].

C. System Model

We investigate the WISN event acquisition problem in uncertain environments where

the sensors are prone to either occasional faults or stealthy hostile attacks and where
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the camera devices perform very basic event detection using lightweight image pro-

cessing (LIP) algorithms with unpredictable performance due to varying conditions.

Specifically we wish to understand how the role of sensor redundancy changes if un-

certainty in the environment shifts from mere faults to hostile attacks. For instance

we wish to understand if LIP algorithms alone are sufficient in certain cases (such as

the case of a severe sensor attack) or if their performance should be augmented with

that of sensors.

In this section we wish to detail the specific system setup analyzed in this work.

As shown in Figure 43, a camera node has the capability of performing lightweight

image processing (detailed in Section D) to perform event acquisition. The camera

node may however also rely on input from one or more (error or attack-prone) sensors

regarding the presence or absence of an event of interest (shown in Figure 43 as binary

“yes/no” decisions). Information from the sensor(s) may be directly fed into the

camera or it may first pass through a cluster head (CH) where a form of attack/error

detection is performed. In that case, the camera node receives a decision about the

presence or absence of an event from the cluster head instead of directly from the

sensor(s).

Based on this setup, a camera node may receive information about the presence

or absence of an event from more than one source (i.e. from the sensor(s)/cluster head

and from its own frame processing). Since it is not known a priori which source will

be more reliable under a given setting, the camera node faces several possible meth-

ods of utilizing the received information. Specifically, the camera node must decide

which source to trust when the sources are in disagreement (i.e. one source reports an

event of interest while the other reports no event). As shown in Table X, one possible

approach to resolve a disagreement is for the camera to trust its lightweight image

processing (LIP) as the more “reliable” element which is not prone to attack. Indeed
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attack
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PD
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Fig. 43. Each camera node may employ lightweight image processing (LIP) to deter-

mine if an event of interest has occurred in a collected frame or it may rely

on decisions from the sensor(s)/cluster head (CH) or a combination of both

(CH & LIP).

such a strategy might be fruitful in favorable lighting and background-motion condi-

tions. Another obvious approach is for the camera node to trust the sensor/cluster

head decision (CH in Table X) and treat the LIP as the more volatile element. Fi-

nally the third approach listed in Table X instructs the camera to mark a frame as

an “event” if either of the two sources reports an event. This approach may prevent

the missed detection of certain events but could produce many false reports if at least

one of the sources experiences significant errors. Thus under arbitrary environmental

conditions, it is not clear which of the techniques will produce a better overall PD-

PFA performance (with PD as close to 1 as possible and PFA as close to 0 as possible)

and how sensor redundancy will affect this performance.

Based on the model of Table X and based on the sensor and optimal attack

Table X. Methods for Marking a Frame As an “Event” at Camera Node

Method Action for Marking Frame as an Event

LIP Mark based on Lightweight Image Processing (LIP)

CH Mark based on sensor(s) with/without Cluster Head (CH) detection

CH & LIP Mark if either LIP or CH detects an event
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models from Chapters III and IV, the competition between the two networks for

the case of visual event acquisition in unattended envrionments is summarized in

definition 9.

Definition 9 The stealthy competition between networks H and L for the case of

image networks is defined by the following network goals:

• H network: perpetrate stealthy (direct or cross) attack so as to misguide the

visual event acquisition of the legitimate network’s camera nodes.

• L network: achieve a desired PD-PFA visual event acquisition performance at

the camera nodes given lightweight image processing and the potential presence

of stealthy attacks on the sensors.

Finally we make an important note regarding the use of notation for the case of

attacks in competing image networks. In the case of image networks, we employ the

notation q in a very broad sense to denote the probability of a scalar sensor error.

This sensor error may be caused by occasional faults, attacks or stealthy direct or

cross attacks. In comparison, we previously employed the notation q to denote the

stealthy direct attack exclusively. In the broader case currently considered, the sensor

error could be the result of a variety of sources. We employ the familiar q notation

for simplicity and convenience while keeping in mind its broadened meaning.

D. Analysis for Event Acquisition

In this section we wish to examine the visual event acquisition process at the camera

nodes. We begin with an examination of the characteristics of real-world surveillance

sequences and proceed to analyze the properties of a representative threshold-based

visual detector. Finally we obtain the practical PD-PFA performance of the detector
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Fig. 44. Frame Seq. 1: indoor test conditions with constant lighting and no back-

ground changes.

and compare it with existing results from practical implementations of image sensor

networks.

1. Image Sequence Characteristics

In the spirit of lightweight image processing (LIP) [7], [115], [116], we consider a

relatively simple and general event acquisition algorithm (i.e. the approach is not

tailored to the detection of any specific type of object). Examination of the proposed

algorithm is intended to provide more insights into the properties of simple visual

algorithms and serve as an illustration of their performance in the context of energy

and computation-limited camera nodes. To assess this generic algorithm for WISNs

we consider its properties in analytic form and obtain the algorithm’s PD-PFA per-

formance for surveillance sequences under varying conditions. The real-world image

sequences used in our testing are shown in Figures 44, 45, 46, and 47. The characteris-

tics of these sequences are important in understanding the suitability of the proposed

algorithm for event acquisition in WISNs. We thus describe the test sequences prior

to outlining the visual event acquisition algorithm.

The sequence of Figure 44 is an idealized indoor test where the lighting and

background conditions do not change appreciably over time. The only significant

change comes from the event of interest in the form of a test subject entering the
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Fig. 45. Frame Seq. 2: outdoor variable lighting due to clouds. The light intensity

changes by 70% between frames. Additional background movement due to

shrub.

Fig. 46. Frame Seq. 3: changing outdoor light and background (swaying trees). The

subject temporarily disappears behind a tree.

camera’s field of view. The dominant source of noise in this case is internal camera

noise and flicker. The sequence of Figure 45 shows outdoor parking-lot surveillance

on a windy day, where the event of interest is the passing of an unidentified car. The

event acquisition task in this sequence is complicated by the presence of a nearby

shrub which experiences significant swaying of its branches over time. Furthermore

the background lighting changes visibly with cloud movement. The sequence of Figure

46 also experiences changes due to swaying trees and variable light conditions. The

event of interest is the appearance and movement of a test subject which temporarily

disappears behind a tree in frames 4c and 4e. Finally Figure 47 shows a truncation



151

E
xp

e
ct

e
d 

N
o

rm
a

l V
a

lu
e

(a) (b)

Fig. 47. (a) Frame Seq. 4a showing Seq. 2 modified to remove the shrub. (b) Frame

Seq. 4b showing Seq. 3 modified to remove the swaying trees.

of the sequences of Figures 45 and 46 where the camera’s field of view now excludes

the shrub and trees.

Statistical analysis of the image sequences in Figures 45 and 46 (such as Levine’s

Test and the t-test) reveal that the mean and standard deviation are not reliable

indicators of an event of interest occurring even after various (DCT domain) filtering

mechanisms are employed. This can be seen intuitively from the fact that the subjects

of interest (person walking and car driving-by) do not occupy a much larger percent

of a frame’s pixels than the other randomly moving objects (shrub and trees). Hence

the mean and variance of the frames do change based on the appearance of the

subject, but these differences are not statistically distinguishable. In essence, the

pixels corresponding to the person and car are getting dwarfed by the presence of

many shrub and tree pixels which are also changing over time. Truncating the frames

as shown in Figure 47 to exclude the vegetation does indeed improve the statistical

difference between an event and non-event frame. However for the general WISN

deployment case (with cameras facing in various directions), we do not wish to select

an event acquisition technique which relies on the truncated assumption. Based on the

observed statistical similarity of event and non-event frames, we wish to determine



152

an event detector suitable for WISNs. In addition to its generality (detection not

tailored to a specific type of object) and good detection performance, the chosen

event detector should be implementable in the simple WISN devices. In addition to

their hardware and general processing limitations, WISNs process a large volume of

surveillance frames which must in turn be transmitted wirelessly to the sink if they

contain an event of interest. Analysis of frames at the small block or pixel level may

consequently not always be suitable or possible.

Instead we seek a simple form for the detector where a single frame statistic is

compared to a threshold in order to determine the presence or absence of an event.

However as discussed, event and non-event frames from real-world surveillance se-

quences have similar statistics. Furthermore it can be shown (Appendix B) that a

difference image D = B − A computed from two consecutive frames A and B is

not perfectly Gaussian but rather contains significant outliers (this is shown for both

event and non-event frames). An optimal non-parametric (robust) detector is thus

more appropriate for this case of statistical similarity and presence of outliers. How-

ever we show that a simple chi-squared detector (relying on a comparison of a frame

statistic to a threshold) is equivalent in form to the robust detector and can thus

be used in WISNs. Furthermore, through the use of composite hypothesis testing,

we show that the chi-squared detector can be made uniformly most powerful (UMP)

through proper threshold selection. The UMP property signifies that the detector

achieves a probability of detection PD higher or equal to the detection of all other

detectors given the worst-case scenario probability of false alarm PFA. In other words,

no detector performs better given the same probability of false alarm.
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2. Lightweight Image Processing for Event Acquisition

The simple algorithm we selected is based on difference images, similar to the tech-

niques found in the image change detection literature [117]. We describe this detector,

which we refer to as the “chi-squared” detector, as an adaptation of the detector pro-

posed by Aach and Kaup [105], [118], where we use entire difference frames instead

of blocks. We now overview the basics of the technique. In essence, a difference

image D = B−A between two consecutive frames A and B reveals all the pixels that

have changed between these frames containing both relevant and irrelevant changes

(such as the tree swaying). The Mean Squared Error (MSE) of the difference image

is computed as the relevant statistic, and it is compared to a theoretically-obtained

robust threshold T . We now present the specific details of this detector.

In Aach and Kaup [105], [118] (and in Radke et al. [117]), the difference image D

is computed and divided into smaller blocks. Importantly, each pixel of the difference

image is modeled as a Gaussian random variable with 0 mean and variance σ2
i , where

i = 0 corresponds to a non-event frame and i = 1 corresponds to an event frame.

In order to conserve computational energy, in this work we use the entire difference

image instead of parsing the image to determine salient blocks. The resulting detector

hypothesis test can be summarized as:

H0 : no event, Dk ∼ N (0, σ2
0) ∀k (5.1)

H1 : event, Dk ∼ N (0, σ2
1) ∀k (5.2)

with σ2
0 < σ2

1 and where Dk is the kth difference pixel in D = B−A. Since the entire

difference image is utilized in the detection, instead of considering individual pixels
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we may consider a new random variable defined as:

X =

n∑
k=1

D2
k = σ2

j

n∑
k=1

D2
k

σ2
j

= σ2
jY, for j ∈ {0, 1} (5.3)

where Y has distribution chi-squared with n degrees of freedom and where n is the

total number of pixels in the difference frame. The new detection hypothesis test is

thus given by:

H0 : X ∼ 1

σ2
0

fχ2,n

(
x

σ2
0

)
(5.4)

H1 : X ∼ 1

σ2
1

fχ2,n

(
x

σ2
1

)
(5.5)

where fχ2,n(x) is the probability density function (pdf) of the chi-squared distribution

with n degrees of freedom. Significantly, the hypothesis test to distinguish between an

event and non-event is given by the comparison of a single statistic (x) to a threshold

T as shown in Eqs. (5.6) and (5.7), where σ2
0 is the variance of a null frame, f−1

χ2,n is

the inverse chi-squared distribution and α is the desired probability of false alarm.

x
H1
>
<
H0

T (5.6)

T = σ2
0f

−1
χ2,n(1 − α) (5.7)

3. Lightweight Event Acquisition Properties

In this section we wish to analyze some of the properties of the simple chi-squared

detector of Eqs. (5.6) and (5.7) and examine its practical performance on the surveil-

lance test sequences. We begin by showing that the simple chi-squared detector can

be made uniformly most powerful (UMP) [96]. To achieve this we show that if there

exists a real positive number γ, such that σ2
0 < γ and σ2

1 > γ, where the actual σ2
0 , σ

2
1

are unknown, then there exists a UMP detector where a realization x from Eq. (5.3)
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is compared to a threshold T , such that the probability of false alarm PFA = α is

given by:

α = sup
σ2
0<γ

∫ ∞

T

1

σ2
0

fχ2,n

(
x

σ2
0

)
dx (5.8)

Suppose there exists a γ > 0, such that σ2
0 < γ and σ2

1 > γ in Eqs. (5.4) and

(5.5). Then there exists a UMP test of the form

x
H1
>
<
H0

γf−1
χ2,n(1 − α) (5.9)

for false alarm rate not exceeding α. This is a composite hypothesis test in which

the parameters for the null and alternate hypotheses are unknown, but the regions

for these parameters are divided by a threshold γ. The proposition says that if

the parameter space is divided as thus, then a test that compares the actual x in

Eq. (5.3) to a threshold, achieves optimal detection when the worst case false alarm

is considered (the use of sup in Eq. (5.8)).

If we can show that the likelihood ratio is monotonically increasing in x for

σ2
1 > σ2

0 , then the UMP test of the form in Eq. (5.9) follows from a theorem on

composite hypothesis testing [96]. It can easily be shown that the log-likelihood ratio

is given by

1

2

(
1

σ2
0

− 1

σ2
1

)
x+

n

2
ln

(
σ2

0

σ2
1

)
.

Since σ2
1 > σ2

0 , this ratio is strictly increasing in x. To show that T is as given

on the left side of Eq. (5.9), we note that the probability of false alarm is given by

1− fχ2,n(T/σ2
0) by applying an integration change of variable in Eq. (5.8). To get the

sup in Eq. (5.8), it suffices to set σ2
0 = γ.

Having established that the simple detector of Eq. (5.6) and (5.7) can be made

uniformly most powerful, we next show that the form of the detector is equivalent to
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that of a robust (non-parametric) detector. This is an important property given that

the statistical similarity of event and non-event frames along with difference-frame

distributions that are not quite Gaussian render H1 and H0 almost indistinguishable

when the entire frame is used. Thus we would like to maximize the event detection

assuming that σ2
1 ≈ σ2

0 rather than assuming that the statistics are significantly

different. This can be re-phrased as

max
∂β

∂σ2
1

|σ2
1=σ2

0
(5.10)

where β = Pr{declare H1 | H1 occurs} is the probability of detection.

The test

x
H1
>
<
H0

T (5.11)

maximizes Eq. (5.10) for a false alarm rate not exceeding α, i.e. T is chosen so that

α >

∫ ∞

T

1

σ2
0

fχ2,n

(
x

σ2
0

)
dx. (5.12)

By the proof of the Neyman-Pearson lemma [96], the optimal test can be shown

to be of the form

∂ 1

σ2
1

fχ2,n

(
x

σ2
1

)
∂σ2

1

∣∣∣
σ2
1=σ2

0

1
σ2
0
fχ2,n

(
x
σ2
0

) H1
>
<
H0

T̃ , (5.13)

which is equivalent to

x− nσ2
0

2σ4
0

H1
>
<
H0

T̃ . (5.14)

Letting T = 2σ4
0T̃ + nσ2

0 finishes the proof.

In summary, given the actual statistics of the difference image, a non-parametric

(robust) detector is appropriate to perform event detection. However the simple
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chi-squared detector is equivalent in form to the robust detector and can be made

uniformly most powerful through threshold selection. The simple image difference

test may thus be used at the camera nodes with acceptable performance within its

class of algorithm complexity.

4. Lightweight Event Acquisition Performance

Given these desirable properties, we would like to examine how the visual event acqui-

sition algorithm performs on the real-world surveillance sequences described in Sec-

tion 1. Table XI shows the performance results obtained for these sequences arranged

in order of decreasing performance. We make several key observations regarding these

results. The first observation is that the median performance result (corresponding

to Seq. 2 is quite similar to the results obtained in [7] despite differences in the form

of the exact LIP algorithm that is utilized (in [7] the average reported PD = 0.78

compared with our PD = 0.87 and the average reported PFA = 0.22 compared with

our PFA = 0.26). This result is encouraging in that Seq 2 corresponds to an unknown

object moving in difficult outdoor conditions with significant lighting changes and

the presence of extraneous motion. Thus despite their simple nature, LIP algorithms

for event acquisition do hold some promise. The second observation from Table XI is

that the actual PD-PFA performance varies greatly depending on the specific image

sequence. It is thus very difficult to guarantee a given level of performance in the

camera node for an arbitrary sequence.

If we classify the image sequences into broad categories based on their char-

acteristics, a coarse level of performance prediction may be possible. For instance,

sequences with minimal levels of extraneous motion achieve a better overall perfor-

mance than sequences afflicted with such motion. Sequences where an object occupies

a larger portion of the overall frame (such as a car rather than a person) also show
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Table XI. Event Detection Based on Lightweight Image Processing (LIP) Organized

in Order of Decreasing Detection Performance PD

Image Sequence Description PD PFA

Seq. 1 Indoor walking 1.0 0.13

Seq. 4a Outdoor car (no trees) 0.98 0.17

Seq. 2 Outdoor car (with trees) 0.87 0.26

Seq. 4b Outdoor walking (no trees) 0.50 0.03

Seq. 3 Outdoor walking (with trees) 0.05 0.23

improved PD-PFA performance1. Though intuitive, these observations do not pro-

vide much assistance for the general WISN case where camera nodes may encounter

conditions that vary appreciably over time. We thus seek a collaborative approach

between camera nodes equipped with LIP algorithms and sensors to help capture the

value of visual detection while addressing the large variability in its performance.

E. Performance and Comparisons

As discussed in Section D, lightweight image processing (LIP) may offer a suitable PD-

PFA performance for event acquisition in WISNs. This performance however exhibits

significant variability depending on the conditions experienced during image capture.

To exploit the potential of LIP algorithms while reducing their variability, we wish

to augment the event acquisition process with sensors. Sensors however are prone to

occasional faults or deliberate stealthy attacks as studied in Chapters III and IV. We

may thus consider a variety of methods at the camera nodes for exploiting the sensor

1This conclusion extends to real-world sequences with multiple moving objects.
Indeed the presence of multiple moving objects tends to improve motion-based de-
tection. The single moving object may thus be viewed as a worst-case scenario in
certain cases.
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decisions and the LIP algorithm to improve reliability as discussed in Section C. In

this section we wish to explore the implications of utilizing a cluster head fault/attack

detector mechanism before making the sensor decisions available to the camera nodes.

Based on this input, the camera nodes may trust the sensor decisions, the LIP decision

or rely on a combination of both. For perspective, we wish to compare this scenario

with the case where sensor decisions are made available directly to the camera nodes

without a cluster head fault/attack detection mechanisms.

1. Direct Sensor Decisions Approach

In this section we focus on the PD-PFA performance of a camera node augmented with

a single sensor decision that is made directly available to the camera node as depicted

in Figure 48. Thus to perform event acquisition under this scenario, a camera node

has access to two sources of information regarding the possible occurrence of an event.

As shown in Figure 48, if there is disagreement between the two sources regarding

the presence of an event, the camera node may trust the lightweight image processing

(LIP) over the potentially faulty or attack-prone sensor. Alternatively, the camera

node may trust the sensor decision (SN) in lieu of the variability-prone LIP algorithm

or may take the “safe” strategy of declaring an event if either of the sources reports

an event.

PD =
No.(event|event frame)

No.(total frames)
(5.15)

PFA =
No.(event|non-event frame)

No.(total frames)
(5.16)

Figures 49 and 50 show the simulation results obtained for this scenario where

we use the notation IM to denote (lightweight) image processing, SN to denote the

sensor decisions and “sensor & IM” to denote use of the combination. Figure 49a

depicts the results obtained for the image sequence of Figure 46 where an unidentified
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Fig. 48. For event acquisition, each camera node may utilize lightweight image process-

ing (LIP), a sensor decision (SN), or rely on both to determine the presence

or absence of an event.

individual walks through an environment with substantial background movement and

is periodically obscured due to the presence of trees. Figure 49b shows the results for

a truncated version of this sequence corresponding to Figure 47b where the camera’s

field of view largely excludes the trees. Figure 50a shows the results for the image

sequence of Figure 45 where the passing of an unknown vehicle is captured in the

presence of significant background variability. Finally Figure 50b shows the results

obtained for a truncated version of the passing car and corresponds to the image

sequence depicted in Figure 47a. Importantly, the horizontal axes in Figures 49 and

50 correspond to the probability q of sensor error (due to attack or fault) and the

vertical axes correspond to the probability of detection PD. The resulting probability

of false alarm for the sensor αs is also shown in the figures for each PD segment along

with the probability of false alarm for the LIP algorithm αIM . These probabilities

are obtained experimentally based on Eqs. (5.15) and (5.16) where No. denotes the

number of frames where a certain type of decision was made.

Based on Figures 49 and 50 we confirm that the PD-PFA performance of the

lightweight image processing exhibits great variability from sequence to sequence.

As expected, this performance tends to improve for image sequences with better
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Fig. 49. Probability of detection PD vs. probability of sensor error q for the LIP, SN

and SN & LIP approaches for sequence (a) walk with trees from Figure 46.

(b) walk without trees from Figure 47b.

characteristics (such as less background variability). The level of improvement itself

however experiences variability as can be seen by comparing Figures 49a and 49b with

Figures 50a and 50b. We also note the inherent result that the probability of detection

PD and the probability of false alarm PFA for the image processing algorithm remain

constant over the entire range of q. This is fully expected since the visual algorithm

at the camera node is independent of the sensor readings. The lack of predictability

and control in the LIP algorithm for an arbitrary sequence is a visible disadvantage.

However the constancy of the LIP performance over the range of q is a clear advantage

as can be seen by comparing the SN and SN & LIP curves in Figures 49 and 50.

Specifically, the PD-PFA performance of the single sensor is excellent for a small

probability of error q. However if this probability of error is caused by an attack, it

may become arbitrarily large and dramatically decrease the event acquisition perfor-

mance (the performance decreases linearly with increasing q). Indeed in this setup the

sensor does not perform a fault/attack detection and therefore an attacker need not

be stealthy in the attack, but rather choose any implementable probability of attack

q. The combined SN & LIP approach however inherits the best of both approaches;
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Fig. 50. Probability of detection PD vs. probability of sensor error q for the LIP, SN

and SN & LIP approaches for sequence (a) car with trees from Figure 45. (b)

car without trees from Figure 47a.

the good performance of the sensor given a small q and the invariance of the LIP

approach over the range of q. Thus we observe that the PD-PFA performance of the

combined approach is always better than or equal to the best performance from among

the other two methods. Specifically, for a fixed probability of false alarm PFA, the

probability of detection PD of the combined approach is described by Eq. (5.17). It is

important to note that the probability of false alarm of the sensor αs varies depending

on q. Thus for a direct comparison of PD with the LIP, we have to locate the point

on the SN & LIP curve where αs ≈ αIM in order to obtain the result of Eq. (5.17) (as

can be seen from the figures however, the SN & LIP curves lie above the LIP curve

for all values of q).

PDcombined
≥ max(PDLIP

, PDSN
) (5.17)

Since combining the LIP with a single sensor decision without cluster head check-

ing improves the performance in uncertain environments, it is important to determine

if including cluster head checking and increasing the number of sensors results in a

justifiably improved level of performance. Indeed the performance achieved with the

“direct sensor approach” may be sufficient for certain applications.



163

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of Attack 
(a)

q

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

IM
n=1
n=2
n=5
n=10
n=20
n=40

walk with trees 

p
IM

 = 0.92, p
s
 = 0.01, α = 0.29 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of Attack 
(b)

q

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

IM
n=1
n=2
n=5
n=10
n=20
n=40

walk with trees 

p
IM

 = 0.92, p
s
 = 0.1, α = 0.29 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of Attack 
(c)

q

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

IM
n=1
n=2
n=5
n=10
n=20
n=40

walk with trees 

p
IM

 = 0.92, p
s
 = 0.4, α = 0.29 

Fig. 51. PD v.s. q for walking with trees from Figure 46. (a) ps = 0.01. (b) ps = 0.1.

(c) ps = 0.4.

2. Cluster Head Aided Event Acquisition

In this section we wish to investigate the role of cluster head (CH) checking based on

the detectors presented in Chapters III and IV, as well as the role of sensor redundancy

n in improving the PD-PFA performance in uncertain environments.

We begin by comparing the relative performance of the LIP algorithm with the

performance of the CH detector (based on decisions from n sensors). Figure 51 shows

the event acquisition performance of multiple sensors with cluster head detection and

corresponds to the image sequence of an individual walking with the presence of trees.

As before the horizontal axis represents the probability of attack q while the vertical

axis corresponds to the probability of detection PD. The probability of detection PD
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Fig. 52. PD v.s. q for walking without trees from Figure 47b. (a) ps = 0.01. (b)

ps = 0.1. (c) ps = 0.33.

of the LIP algorithm for each sequence is also shown in the figures for comparison

and all probabilities are determined experimentally from Eqs. (5.15) and (5.16). As

before, the notation IM denotes the image processing (LIP) based performance. The

number of sensors n reporting their decisions to the cluster head is varied from n = 1

to n = 40.

In assessing the relative performance of the LIP algorithm and the CH detector

with n sensors in Figures 51-52 we maintain the same probability of false alarm α.

That is, we set αs = αIM � α. In contrast, in Section E-1 a single sensor was used

instead of a CH detector. Thus the probability of false alarm αs was not adjustable

but rather varied with the attack parameter q.

Figure 52 corresponds to the image sequence of the individual without the back-
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Fig. 53. PD v.s. q for car with trees from Figure 45 (a) ps = 0.01. (b) ps = 0.1. (c)

ps = 0.44.

ground trees. Furthermore we use the notation ps to denote the probability p of an

event as witnessed by a sensor (the subscript s is used to emphasize that this proba-

bility corresponds to the conditions experienced by the sensor). We use the notation

pIM to denote the probability that a frame in a given image sequence contains an

event. In Section E-1, ps was implicitly set to pIM , however in this section we relax

this constraint to investigate the role of the probability of an event at a sensor ps as

well as the role of cluster size n.

The first key point is that use of the CH detector fundamentally changes the

relationship between the probability of detection PD and the probability of sensor

error q. Specifically, use of the CH detector eliminates the linear decrease in sensor

performance with increasing q. Indeed the sensors achieve a better detection perfor-
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Fig. 54. PD v.s. q for car without trees from Figure 47a (a) ps = 0.01. (b) ps = 0.1.

(c) ps = 0.44.

mance for higher values of q which also results in a relatively good PD over a much

wider range of q. This result is an inherent outcome of the properties of detectors

which perform better when there is a significant difference between the hypotheses (in

this case the values of probabilities ps and q). Use of the detector will thus increase

the detection performance for the case of unstealthy attacks (i.e. attacks with a large

probability q relative to the cluster size n). This is in contrast with the results of

Section E-1 where an increase in q degraded the detection performance.

Figure 53 corresponds to the car sequences with the presence of trees while Figure

54 corresponds to the car sequence without background trees. Unfortunately use of

the detector alone (without LIP) for the case of very small q (such as due to stealthy

attacks or occasional errors) may not be sufficient, and as evidenced in the plots of
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Figures 51-54, may necessitate the use of a higher value of n.

The second key observation is that choosing a threshold Th that results in a

smaller probability of event ps results in a better sensor performance (in accordance

with the results of Chapters III and IV). Indeed for a small value of ps, it may

be possible to obtain the desired PD-PFA performance with a smaller number of

sensors n. As can be seen by comparing parts a, b, and c of Figures 51-54, choosing

ps = 0.01 (part a) offers a better performance than setting ps = 0.1 (part b). Thus

in general we do not wish to set ps = pIM (part c) since pIM may be arbitrarily large

depending on the image sequence. Finally we observe that for certain values of ps and

n, the lightweight image processing algorithm (LIP) still achieves a better detection

performance for certain values of q than the CH detector.

Based on these results we now wish to investigate the performance of a camera

decision that is based on combining the CH detector with the LIP algorithm. Figure

55a shows the PD v.s. q performance for the image sequence of an individual walking

in the presence of trees (from Figure 46) while Figure 55b depicts this performance for

the truncated walking sequence (from Figure 47b). Figure 56a shows the performance

for the image sequence of a vehicle in the presence of trees (from Figure 45) while

Figure 56b depicts this performance for the truncated car sequence (from Figure 47a).

In Figures 55a, 55b, 56a and 56b, the dashed lines represent the performance

based on the CH detector alone while the solid lines represent the performance of

the combined decisions. As can be seen from these figures, the combined decisions

achieve a better (or equal) detection performance PD (for the same probability of

α) than the CH decisions or the LIP decisions alone. This is consistent with the

results obtained in Section E-1 (where a single sensor decision was utilized without

CH detection). However by utilizing the CH detector, we avoid the degradation of

the detection performance for large q while by utilizing the LIP algorithm we avoid
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Fig. 55. (a) PD v.s. q for walking sequence with tree from Figure 46 for ps = 0.01. (b)

PD v.s. q for walking sequence without tree from Figure 47b for ps = 0.33.
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Fig. 56. PD v.s. q for car sequence with tree from Figure 45 for (a) ps = 0.01. (b)

ps = 0.44.

the degradation of detection for small q. Thus based on the selection of a suitably

small ps and/or the selection of a suitably large cluster size n, we are able to adjust

the PD-PFA performance to suit the application requirements over the entire range

of error q due to error or attack.

F. Chapter Summary

Wireless image sensor networks (WISNs) consisting of untethered camera nodes and

sensors may be deployed in a variety of unattended and possibly hostile environments
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to obtain surveillance data. In such settings, the WISN nodes must perform reliable

event acquisition to limit the energy, computation and delay drains associated with

forwarding large volumes of image data wirelessly to a sink node.

In this work we investigated the event acquisition properties of WISNs that em-

ploy various techniques at the camera nodes to distinguish between event and non-

event frames in uncertain environments that may include stealthy attacks. These tech-

niques include lightweight image processing, decisions from n sensors with/without

cluster head fault and attack detection, and a combination approach relying on both

image processing and sensor decisions. In closing, we summarize the resulting prop-

erties and observations for event acquisition in WISNs:

1. Lightweight Image Processing (LIP) Approach in Uncertain Environments:

a. LIP algorithms are generally compatible with low-power, low-complexity

camera nodes [7]. Indeed analysis demonstrates that simple LIP algorithms

(such as based on the comparison of a single frame statistic to a threshold)

have the same form as robust and UMP detectors which motivates their

use.

b. The typical probabilities of detection and false alarm obtained in our ex-

periments were consistent with the average probabilities reported in the

literature with our PD = 0.87 and our PFA = 0.26.

c. While achieving an average PD-PFA performance that may be suitable

for some applications, the LIP algorithm exhibited large variability in its

performance from sequence to sequence depending on environmental con-

ditions. LIP algorithms alone thus may not offer the level of performance

control and flexibility required in many applications.

2. Sensor Decisions Approach in Uncertain Environments:
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a. Sensors deployed in unattended outdoor environments may be prone to

occasional faults or deliberate attacks that may be carried out in a stealthy

manner (i.e. such as to avoid detection). Although quality testing may

provide an estimate for the probability of a fault, an estimate for the

probability of an attack may not be generally available a priori. Without

verification mechanisms, the reliability of the sensor decisions may not be

adequate for some applications.

b. An optimal Neyman-Pearson (NP) fault/attack detector based on the com-

parison of a single statistic to a threshold can be implemented at the cluster

head to verify the sensor decisions. Based on the results of Chapter III, a

detector where the comparison threshold is based on the average expected

weight (i.e. the count or degree of aggregation) can also be implemented.

This detector follows the performance of the NP detector closely, especially

for small values of the probability of an event p.

c. For the case of stealthy attacks, use of a cluster head (CH) detector forces

the attacker to select a smaller probability of attack q, especially for a

larger cluster size n. This has the dual effect of rendering attacks more

rare but also harder to detect despite the ability to predict the optimal

attack parameter as given in the analysis of Chapter III. The attacker can

also improve the stealth and power of the attack by applying a stealthy

cross attack strategy as analyzed in Chapter IV. Such strategies by the

attacker necessitate the use of verification mechanisms at the cluster head

including the use of LIP algorithms.

3. Combined LIP and Sensor Approach:

a. For the case of no cluster head attack/fault verification, combining a single
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sensor decision with a decision based on a LIP algorithm does provide an

improved event acquisition performance. Specifically, for a fixed probabil-

ity of false alarm, the combined decision achieves a probability of detection

PD higher than or equal to the PD of LIP and SN over the entire range of

the probability of sensor error q. Although better than LIP or SN alone,

the detection performance does decrease with increasing q, which without

cluster head detection, may be arbitrarily large depending on the attacker.

b. Combining decisions from n sensors with cluster head verification and LIP

decisions provides the best overall performance over the entire range of

attack probability q. Specifically, by utilizing the CH detector we avoid

the degradation of the detection performance for large q while by utilizing

the LIP algorithm we avoid degradation of detection for small q.

c. Choosing a sensor threshold Th that results in a smaller probability of

event ps (depending on the underlying sensor technology) results in a better

sensor performance and allows the use of a smaller cluster size n to achieve

the desired PD-PFA performance.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this work we investigate the data collection process in a sensor network at the

physical layer for the case of competing sensor networks. The networks are deployed in

a common environment where one of the networks is hostile and perpetrates the attack

in a distributed manner. In comparison with previous studies, we explicitly model

the attack as an active competition between the two sensor networks. In addressing

the problem we overcome the challenges that arise from the pervasive nature of the

attack, the possibility of tampering during data acquisition prior to encryption and

the lack of prior knowledge regarding the characteristics of the attack. We investigate

the competing networks scenario for both the case of a direct stealthy attack and the

case of a stealthy cross attack in scalar and image sensor networks.

In the direct stealthy attack each hostile node may attack a legitimate node

with some probability chosen such that the overall stealth of the hostile network is

maintained. The persistence and pervasiveness of the attack throughout the cluster

causes incorrect individual sensor decisions as well as errors in the collective decision at

the cluster head. The competitive interaction between the two networks is modeled

as a game G where we derive a stealth condition S and show its consistency and

relevance for both the hostile and the legitimate network in terms of attack detection

and mitigation. For the hostile network H we show how the stealth condition can

be utilized to select the optimal attack parameter for cases where the cluster size n

and the sensor threshold Th of the legitimate network L may not be known. For the

legitimate network L we show how the stealth condition yields the optimal defense
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parameters in terms of n and Th and how this analysis enables the use of established

detection tools such as the Neyman-Pearson paradigm. In general, the optimal attack

parameter decreases with increasing cluster size n and with decreasing probability

of an event p. While this improves attack mitigation by restricting the power of

the attack Pa, it also makes the attack less detectable at the cluster head and thus

presents a detection-mitigation trade-off for the legitimate network.

Importantly the direct stealthy attack does not require active communication

among the hostile nodes during the attack but rather depends on a level of coordi-

nation which we quantify. Compared with the active communications case, we show

that the stealthy direct attack achieves a higher power of attack Pa and a higher

power-communication-detection PCD metric for certain cases. Importantly, the di-

rect stealthy attack exhibits a constancy in the power of attack Pa with respect to

the cluster size n that may be mistaken for inherent sensor faults and is thus highly

desirable for stealth.

Finally we note the role that encryption plays in the competing networks scenario.

Forward encryption between the sensors and the sink cannot protect against a hostile

attack due to its occurrence during data collection. Based on the role of the sensor

threshold Th in the stealth game, it is the backward encryption between the sink and

the sensors that plays a role in attack mitigation and discovery.

In a stealthy cross attack, each hostile node may attack one or more legitimate

nodes with some probability, causing an incorrect decision at the sensor and an incor-

rect overall decision at the cluster head. Unlike in the direct stealthy attack however,

based on hostile node deployment and goals, two hostile nodes may both attack the

same legitimate node. The stealthy cross attack is modeled via the interaction be-

tween the hostile nodes in a static non-cooperative game Gc. The stealth utility Sc

for this scenario is derived and shown to be consistent for both the hostile and the
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legitimate networks. Based on the stealth utility, the optimal attack and defense

strategies are obtained for each network.

For the hostile network, we show that in contrast with the direct attack, mul-

tiple pure and mixed Nash equilibria exist. The resulting pure equilibria are not

advantageous for the hostile network and indeed may be considered a form of attack

interference among the hostile nodes. Surprisingly, there exist strategies for the cross

attack in terms of mixed equilibria that achieve superior stealth for H than the di-

rect stealthy attack without the need for communication. Furthermore there exists a

unique attack strategy among the mixed equilibria which results in a superior power-

communication-detection PCD metric than the direct attack. Importantly for the

hostile network, to achieve the desired Nash equilibrium in the cross attack based

on coordination without communication, the hostile nodes require knowledge of com-

mon priority lists as well as knowledge of all the nodes’ positions. Deviation from the

prescribed coordination results in a loss of stealth.

For the legitimate network, we employed the derived stealth condition Sc to ob-

tain the best defense strategies. We show how analysis of the cross attack enables use

of established techniques to detect the attack such as through the Neyman-Pearson

paradigm. Importantly, the optimal detection and mitigation strategies obtained for

the stealthy direct attack apply to the stealthy cross attack and are thus consistent.

In addition to scalar data acquisition, sensor networks may be deployed in a

variety of unattended and possibly hostile environments to obtain visual surveillance

data. Such wireless image sensor networks (WISNs) may consist of untethered camera

nodes and sensors where the latter may be prone to stealthy direct or cross attacks.

In such settings, the WISN nodes must perform reliable event acquisition to limit the

energy, computation and delay drains associated with forwarding large volumes of im-

age data wirelessly to a sink node. For the case of such WISNs, we investigate event
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acquisition properties based on various techniques at the camera nodes to distinguish

between event and non-event frames during hostile distributed attacks. These tech-

niques include lightweight image processing (LIP), decisions from n sensors with or

without cluster head attack detection, and a combination approach relying on both

image processing and sensor decisions.

Interestingly we confirm that simple LIP algorithms based on the comparison

of a single frame statistic to a threshold have the same form as robust and UMP

detectors which motivates the use of such LIP algorithms. Importantly, while achiev-

ing an average PD-PFA performance that may be suitable for some applications, LIP

algorithms generally exhibit large variability in their performance from sequence to

sequence depending on environmental conditions. LIP algorithms alone thus may not

offer the level of control and flexibility required in many applications.

On the other hand, sensor decisions (SN) may be prone not only to occasional

errors but rather to pervasive stealthy attacks. In the case of such stealthy attacks,

increasing the cluster size n reduces the power of the attack but renders attack detec-

tion more challenging and thus constitutes a trade-off for the legitimate network L.

We show that when decisions from the n sensors are combined with attack detection

at the cluster head and with LIP decisions, the complementary characteristics of the

LIP and SN techniques result in a superior event acquisition performance. Specifi-

cally, use of the cluster head detector prevents performance degradation for the case

of a large probability of sensor error while use of the LIP algorithm prevents per-

formance degradation in the regime of a small probability of sensor error. Overall,

cluster head detection along with cluster size n and threshold Th selection allow the

legitimate network L to achieve a desired PD-PFA event acquisition performance in

uncertain environments.
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B. Future Work

In this work we investigate a new and insidious form of attack on sensor network

data at the physical layer of collection. The attack affects a sensor node prior to the

encryption, encoding and verification processes. As such it necessitates the study of

attack and defense mechanisms presented in this work. Without suitable detection

and mitigation schemes, the effects of the attack can be particularly detrimental to

rapid-deployment untethered visual sensor networks. For such untethered networks

(battery-operated with wireless-transmission), it may be fruitful to couple the study

of actuation attacks with other known sensor network security attacks. Such a study

might be particularly insightful when actuation attacks are considered jointly with

radio-jamming denial of service attacks. Indeed the stealthy actuation attack might

be considered a form of denial of service, where the attack affects the sensing rather

than the transmission activities. Joint jamming and actuation strategies could be

analyzed to yield trade-offs between the effectiveness of the attack, the utilized energy

and the resulting attack stealth. Such analysis would help to guide future sensor

network architecture and security design to most effectively secure the network given

available resources.

In terms of attack modeling, we note that the current abstraction captures the ef-

fects of the attack upon the decisions of the scalar sensors. The alteration of decisions

through actuation is modeled as a binary symmetric channel where the probability

of altering a decision from 0 → 1 is the same as the probability of altering a decision

from 1 → 0. Such a model is useful in the current study where we do not wish to

restrict the analysis to a specific type of actuator. Given knowledge of the charac-

teristics of a specific type of actuator, a binary asymmetric channel model could be

adopted and yield further insights.
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Further extensions of this work may consider an alternative interpretation of the

hostile network. Instead of interpreting the hostile network as a foreign entity, we

may interpret the hostile network as formed from a set of malicious nodes inside

the legitimate network. This is a common scenario investigated by sensor network

security researchers. In such a scenario, a node belonging to the legitimate network

becomes malicious when it is captured and reprogrammed by an outside entity for

nefarious purposes. When several such nodes are captured, they may form a hostile

sub-network within the legitimate network based on their programming. If active

communication among the subverted nodes is not allowed, the hostile nodes may

require a framework for distributed attack coordination without prior knowledge of

the defense systems at the cluster head and without prior knowledge regarding other

hostile nodes. Specifically, a given malicious node may not know a priori if a given

neighboring node inside the network is also malicious and will participate in the

attack. The framework developed in this work may serve as a starting point in the

analysis of attack and defense strategies for this scenario.
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APPENDIX A

STEALTHY DIRECT ATTACK ANALYSIS

1. Non-negativity of Terms Outside Log in Proof of Theorem 2

The terms with q solely in the exponent can never be negative. The term (1 −

q)n(1−q) > 0 since q ≤ 1. Now suppose that 2p = min{2p, 2(1 − p)}, which implies

p ≤ 1/2. Then 1− p− q/2 ≥ 1− 2p ≥ 0 since p ≤ 1/2, and p− q/2 ≥ 0 since q ≤ 2p.

On the other hand, supposed that 2(1−p) = min{2p, 2(1−p)}, which implies p ≥ 1/2.

Then 1 − p− q/2 ≥ 0 since q ≤ 2(1 − p), and p− q/2 ≥ 2p− 1 ≥ 0 since p ≥ 1/2.

2. Non-positivity of Log Term in Proof of Theorem 2

We show that the argument inside ln, α(q) = (4(p−q/2)(1−p−q/2))/((1−q)2) ≤ 1,

in the well-defined interval, hence showing that the ln term is always non-positive.

∂α(q)

∂q
= −2(1 − 2p)2

(1 − q)3
(A.1)

Eq. (A.1) is always non-positive, so α(q) is monotonically decreasing. The largest

value α(q) takes is at q = 0, and this value is 4p(1 − p) ≤ 1 since p = 0.5 yields the

maximum value of 1.

3. Uncoordinated Attack Analysis

In this appendix we discuss the background analysis for the uncoordinated stealthy

direct attack game. A methodology for determining the Nash equilibria of a game is
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via the best response function shown in Eq. (A.2).

Bi(a−i) = {ai ∈ Ai : ui(ai, a−i) ≥ ui(a
′
i, a−i)} (A.2)

for all a′i ∈ Ai

The action profile a∗ is a Nash equilibrium of a strategic game iff every player’s action

is a best response to the other players’ actions, that is, a∗i ∈ Bi(a
∗
−i) for every player

i. For the case of an uncoordinated stealthy direct game we obtain the following best

response functions.

Bi(qj) = 0 if qj ≤ Tp (A.3)

Bi(qj) = 1 if qj ≥ Tp

Tp = 1/βp (A.4)

βp ∈ [1, 1.5]

Via the intersection of the two best response functions, there are two Nash equilibria

given by:

(q1,N , q2,N) = {(0, 0), (1, 1)} (A.5)

The utilities achievable at these Nash equilibria are given by:

πi(0, 0) = 1 (A.6)

πi(1, 1) = βp − 1 (A.7)

Proof 13

∂πi(q1, q2)

∂qi
= βpqj − 1 (A.8)

qj =
1

βp



199

Thus (qi, qj) = (1/βp, 1/βp) is a point of interest since we note that both players

are indifferent among the set of actions available to them. Specifically, all actions

qi ∈ [0, 1] result in the same utility which is independent of that action and depends

only on the value of βp. By examining Figure 23, we see that this point corresponds to

the saddle point of the manifold. As we will show, this point represents an important

threshold that influences a node’s optimal response.

π1(q1,
1

βp
) = 1 + βp(

1
βp

)q1 − 1
βp

− q1

= 1 − 1
βp

= π1(
1
βp

) (A.9)

To understand what happens away from this point, we examine the utility π1 for a

fixed p and q2. Let q̃2 = 1/βp + ε where ε > 0. Then:

π1(q1, q̃2) = 1 + βp(
1

βp

+ ε)q1 − q1 − (
1

βp

+ ε)

= 1 − (
1

βp

+ ε) + (βpε)q1 (A.10)

It is easy to see that for any q̂1 > q1, π1(q̂1) > π1(q1) since βp ∈ [1, 1.5] and ε > 0.

Thus the function is strictly increasing in q1 with the maximum occurring at the edge of

the interval [0, 1], namely at q1 = 1, yielding the utility π1(q1 = 1) = 1−(1/βp+ε)+βpε.

Therefore we conclude that B1(q2) = 1 iff q2 > 1/βp.

In summary, the best response of q1 to q̃2 = 1/βp + ε for ε > 0 is to actuate with

q1 = 1. Now we consider the next iteration and we determine the best response of q̃2

to q1 = 1. Node 2’s utility is given by:

π2(q1, q2) = 1 − (q1 + q2) + βpq1q2

π2(1, q̃2) = q̃2(βp − 1) (A.11)
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The maximum of this function is achieved by setting q̃2 = 1, giving a maximal utility

of πi(1, 1) = βp − 1. Thus the pure Nash equilibrium is given by:

(q1,N , q2,N) = (1, 1) (A.12)

ui(1, 1) = βp − 1 (A.13)

Similarly if we let q̃2 = 1/βp − ε where ε > 0. Then:

π1(q1, q̃2) = 1 + βp(
1

βp

− ε)q1 − q1 − (
1

βp

− ε)

= 1 − (βpε)q1 − (
1

βp

− ε) (A.14)

This function is strictly decreasing with q1 since βp ∈ [1, 1.5] and since ε > 0 with

the minimum occurring at the left end point of the interval [0, 1], namely at q1 = 0.

This results in the maximum utility π1(q1 = 0) = 1 − (1/βp − ε).

Therefore we have determined that the best response of q1 to q2 = (1/βp) − ε for

ε > 0 is to set q1 = 0. We now iterate the best response procedure to find the optimal

response of q2 to q1 = 0. The utility of node 2 π2 is given by:

π2(q1, q2) = π2(q1, q2) = 1 − (q1 + q2) + βpq1q2

π2(0, q̃2) = 1 − q2 (A.15)

This utility is maximized by choosing q2 = 0. Therefore (q1,N , q2,N ) = (0, 0) is

another equilibrium point of the game and yield the utility πi = 1 to each of the

players.

In summary we conclude that Bi(qj) = 0 iff qj < 1/βp and that Bi(qj) = 1 iff

qj > 1/βp.
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APPENDIX B

STEALTHY IMAGE SENSOR NETWORK ANALYSIS

In this appendix we analyze in greater detail the statistics of a representative image

sequence, that is Seq. 2 from Figure 45, showing a moving car with trees. As pointed

out in Aach and Kaup [105], [118], the difference pixels Di generally do not obey a

normal distribution model though this assumption is commonly made. To investigate

the possible distribution of the difference pixels, we make use of a typical q-q plot as

shown in Figure 57 for the moving car sequence.

The q-q plot is used to test whether a set of samples are empirically Gaussian.

The Gaussian assumption is rejected if the q-q plot returns a set of points that lie

far off the straight line. As shown in Figures. 57a and 57b, this is indeed the case

for the car sequence under both hypotheses. The points lying off the main line may

either indicate the presence of massive outliers in the data (the difference pixels), or

may indicate that the distribution is not Gaussian. We thus call upon the use of

histograms to provide further clues regarding the pixel distribution. The histograms

for the difference images under the two hypotheses are shown in Figure 58a and 58b.

These histograms show that the distributions are most likely bell-shaped as can

be confirmed through the use of Mardia statistics [119]. Based on the q-q plots and the

histograms, we thus approximate the difference pixels as Gaussian. We note however

that this assumption tends to fail for event frames (alternative hypothesis) where

regions of interest that undergo change have a different distribution than regions of

no change. Hence strictly speaking the Gaussian assumption only holds for certain

non-event frames and certain regions of an event frame. It is nevertheless a helpful

approximation that leads to a non-parametric (robust) detector.



202

E
xp

ec
te

d 
N

or
m

al
 V

al
u

e

E
xp

ec
te

d 
N

or
m

al
 V

al
u

e

Observed Value Observed Value

(a) (b)

Fig. 57. Test for normality of difference images or q-q plot (car sequence) under (a)

H0. (b) H1.

In addition to the distribution assumption, we also consider the assumption that

σ2
1 > σ2

0 . Indeed this assumption is imperfect since in order for every difference

pixel in an event frame to have σ2
1, the object would have to move across the entire

frame, thus covering all pixels. In Aach and Kaup [105], [118], smaller blocks are

assumed to mitigate this flaw. However through our use of entire difference frames,

this assumption does not hold. To mitigate this issue we can assume that the effect

of a small movement can be distributed across all pixels by decreasing σ2
1. This

assumption is more realistic since if we use the entire frame to estimate σ2
1, then the

estimate of σ2
1 will mostly be of the non-moving regions. Thus the variance will be

decreased to σ2
1 ≈ σ2

0, leading to the use of a robust (non-parametric) detector.
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Fig. 58. Difference image histogram (car sequence) under (a) H0. (b) H1.
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APPENDIX C

SENSOR AND ACTUATOR TECHNOLOGIES

The functionality and envisioned capabilities of individual sensor nodes and of sensor

networks as a whole continue to broaden with advances in various micro technolo-

gies [100], [92]. Indeed sensor nodes are increasingly acquiring robot-like qualities

through the addition of various actuation functionalities and robotic devices are in-

creasingly shrinking in size to resemble nodes. For instance, tiny flying robots the

size of a penny (3 centimeters wingspan and weighting 60 milligrams not including

the battery [12]) are envisioned for remote aerial surveillance and data acquisition.

Other robotic/sensor-like devices are being tested for aquatic environments and land

applications.

In the scope of this work, actuation in sensor networks is defined broadly as the

ability of a node to act upon, change or influence its environment using limited energy.

The latter requirement is in contrast with more traditional robotic actuation where

the robot typically has access to a much larger battery or wired source of energy. The

small size (especially height) of the node and of its components further restricts the

type and range of actuation that it may perform, in contrast with much larger robots.

The energy and size limitations imply that sensor nodes should employ distributed

actuation to limit energy use while having a global effect on the environment.

In the context of hostile distributed sensor networks, actuation to perturb the

data acquisition of nearby sensors may include magnetic, acoustic, motion-based,

light-based and particle dispersion-based actuation and may include mobility to tra-

verse a given landscape to re-shape the topology of the environment. Such actuation

may be particularly detrimental to the data acquisition of binary sensors where a
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local decision threshold is utilized. If this threshold can be guess-estimated or cap-

tured from the sensor nodes, it may be utilized to the hostile network’s advantage.

For instance, based on the knowledge of such a threshold and based on its own local

readings, each hostile node can determine if the neighboring sensor should report a 1

or 0 and thus actuate to effectively flip this decision. When several hostile nodes are

acting upon a single sensor, they may utilize a timing protocol to ensure that each

hostile node actuates in the manner that will flip the sensor’s decision.

Although not the central focus of this work, other important forms of actuation in

sensor networks include mobility [35], [36]. We thus briefly overview some interesting

results from the sensor network mobility literature as well as from the related fields

of sensor network coverage and deployment. Importantly this brief overview of a

large and growing sensor network field is not intended to be exhaustive but rather

illustrative. In [120] the authors explore how mobility can be used by a sensor network

as a type of actuation to repair its own coverage (called self-repair). In [121] the

authors examine how mobile nodes can migrate to areas of high energy (solar for

example) to charge themselves and then charge other starving nodes. In [122] and [35]

the authors discuss how mobility can specifically help sensor network security by

detecting misbehaving nodes. In [123] the authors introduce the idea of parasitic

mobility where nodes are able to catch a ride on any moving object and dislodge

from it using an actuator. Hence adding actuation in the form of mobility to sensor

networks significantly expands their autonomy and fault-tolerance.

The exact definition of sensor network coverage varies depending on the specific

application and on the toolsets used to address it. Generally speaking however, cov-

erage is a measure of how well the sensor network covers or observes all the points

of a physically distributed phenomenon. In [124], [125], [126] and [127] the authors

formulate the Best and Worst case coverage scenarios by calculating a path of Max-
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imum Support and Maximum Breach for an object moving through the sensor field.

References [128], [129], [23], [24] and [130] present other key results in coverage. In

reference [26] the authors use percolation theory to study the sensor network density

required to achieve detection of a target with probability 1 almost surely. In [27]

the authors consider the problem of coverage in the face of uncertainty in the sensor

locations. In [131] the authors provide local algorithms for location discovery and

coverage. This research is critical for understanding how a hostile entity might find

a path of least detection through the environment and how a hostile network might

“cover” the legitimate nodes in the face of uncertainty of their locations.

In [28] the authors formulate exposure as a measure of how well an object moving

on an arbitrary path can be observed by the sensor network over a period of time.

The authors present an efficient algorithm for finding minimal exposure paths for

the object to move along, which also simultaneously provides information about the

worst case coverage of the sensor network. Simulation results show that for generally

sparse fields with a random uniform spatial deployment, there exist many minimal

exposure paths. The authors also present a generalized sensing model of interest to

the study of actuation.

References [132] and [133] provide an approach that allows a stealthy traverse

through an unknown environment that contains dynamic objects and an observer.

The key is to exploit the dynamic objects in the environment as they become known

and use their shadow as cover to move undetected from an initial location to a target

location. The observer is assumed to have infinite observational range in all direc-

tions. The traversing robots are assumed to also have omni-directional sensing but

for finite ranges. Simulations and implementation results show that 100% stealth can

be achieved at a tradeoff of taking a route which is 86% efficient compared with a

direct route which is 100% efficient but only 36% stealthy.
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A number of pioneering works have proposed mobility as a type of active defense

against the actuation attack of radio jamming. In [134] the authors study both the

feasibility of launching jamming attacks and the challenges associated with detecting

such attacks. Of particular interest is their observation that a single type of mea-

surement usually does not suffice to correctly detect the attack. This correlates with

our findings that without adequate side information (model of the attack or its pa-

rameters), detection is challenging and that involved protocols may not be most cost

effective for the detection level they produce. In [135] the authors argue that mobil-

ity is advantageous to network operations and show how spatial escape strategies can

prevent a mobile jammer from partitioning the network. Although similar in spirit

to our work from [36], the proposed mobility model requires some computation and

further requires that the operational goals of the network be first expressed in terms

of potential functions. Mobility of nodes ensues as a result of these potential forces

and the associated network dynamics. Furthermore [135] focuses on attacking nodes

that are concentrated in a specific region rather than distributed throughout the en-

tire space as in our studies. In [136] the authors propose a mapping protocol which

uses loose group semantics, eager eavesdropping, supremacy of local information and

robustness to packet loss to detect jammed regions in real-time. This work once again

focuses exclusively on jamming attacks - specifically on a subset of highly localized

attacking nodes, and requires the use of a protocol to actively detect the attack.

These works suggest that including actuation abilities in sensor networks signif-

icantly expands their functionality, autonomy and fault-tolerance. Importantly these

works also suggest that at the same time, adding actuation abilities to a network that

is hostile poses an increased challenge for security and reliable data acquisition. These

observations motivate the need to study the competing sensor networks scenario for

data acquisition which is the focus of this work.
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