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ABSTRACT 

 

Essays in Applied Macroeconomics: Asymmetric Price Adjustment, Exchange Rate and 

Treatment Effect. (August 2008) 

Jingping Gu, B.A., Renmin University of China; M.A., Peking University 

Co-Chairs of Advisory Committee:  Dr. Dennis W. Jansen 
Dr. Qi Li 

 

This dissertation consists of three essays. Chapter II examines the possible 

asymmetric response of gasoline prices to crude oil price changes using an error 

correction model with GARCH errors. Recent papers have looked at this issue. Some of 

these papers estimate a form of error correction model, but none of them accounts for 

autoregressive heteroskedasticity in estimation and testing for asymmetry and none of 

them takes the response of crude oil price into consideration. We find that time-varying 

volatility of gasoline price disturbances is an important feature of the data, and when we 

allow for asymmetric GARCH errors and investigate the system wide impulse response 

function, we find evidence of asymmetric adjustment to crude oil price changes in 

weekly retail gasoline prices 

Chapter III discusses the relationship between fiscal deficit and exchange rate. 

Economic theory predicts that fiscal deficits can significantly affect real exchange rate 

movements, but existing empirical evidence reports only a weak impact of fiscal deficits 

on exchange rates.  Based on US dollar-based real exchange rates in G5 countries and a 

flexible varying coefficient model, we show that the previously documented weak 
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relationship between fiscal deficits and exchange rates may be the result of additive 

specifications, and that the relationship is stronger if we allow fiscal deficits to impact 

real exchange rates non-additively as well as nonlinearly.  We find that the speed of 

exchange rate adjustment toward equilibrium depends on the state of the fiscal deficit; a 

fiscal contraction in the US can lead to less persistence in the deviation of exchange rates 

from fundamentals, and faster mean reversion to the equilibrium.  

Chapter IV proposes a kernel method to deal with the nonparametric regression 

model with only discrete covariates as regressors. This new approach is based on 

recently developed least squares cross-validation kernel smoothing method. It can not 

only automatically smooth the irrelevant variables out of the nonparametric regression 

model, but also avoid the problem of loss of efficiency related to the traditional 

nonparametric frequency-based method and the problem of misspecification based on 

parametric model. 
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CHAPTER I 

 

INTRODUCTION 

 

Chapter II examines the possible asymmetric response of gasoline prices to 

positive and negative shocks of crude oil price. This topic has been investigated by many 

previous researchers. Bacon (1991) looked at the U.K.’s gasoline market and described 

the asymmetric adjustment as a “rockets and feathers” phenomenon.  Prices rise like a 

rocket and fall like a feather.  In Bacon’s work he found that the asymmetry was in the 

response of gasoline prices to crude oil price changes. 

 Recent papers have looked at this issue, including Borenstein, Cameron and 

Gilbert (1997), who find asymmetry in the response of retail gasoline prices to crude oil 

price changes, and Bachmeier and Griffin (2003), who find no evidence of asymmetry in 

both the response of wholesale and retail gasoline prices to crude oil price changes based 

on two-step Engle-Granger estimation procedure. These papers both estimate a form of 

error correction model, but neither accounts for autoregressive heteroskedasticity in 

estimation and testing for asymmetry and neither takes the response of crude oil price 

into consideration. 

Chapter II is based on bivariate VAR model and estimates both the retail gasoline 

price impulse response function (IRF) and the crude oil price IRF in a system context.  

For expository purposes we call these system-wide IRFs to distinguish them from the  

____________ 
This dissertation follows the style of Journal of Monetary Economics. 
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IRF presented in previous paper. Two broad classes of models that allow potential 

asymmetric responses are estimated in this part: the traditional error correction model 

followed the previous literature on this topic and standard threshold model specification. 

In addition, various specifications of heteroskedasticity are also considered in 

this chapter. In particular, we allow different asymmetric models for conditional 

volatility -- Exponential GARCH, GJR-GARCH, and logistic smooth transition GARCH 

-- to check whether the asymmetry conclusion is sensitive to the different choice of the 

conditional volatility model. 

We find that time-varying volatility of gasoline price disturbances is an important 

feature of the data, and when we allow for asymmetric GARCH errors and investigate 

the system wide impulse response function, we find evidence of asymmetric adjustment 

to crude oil price changes in weekly retail gasoline prices. 

Moreover, we suggest a signal extraction model based on consumer search which 

takes explicit account of both crude oil price volatility and retail gasoline price volatility. 

The model predicts positive correlation between crude oil price volatility and degree of 

asymmetry and negative correlation between retail gasoline price volatility and 

asymmetry. The empirical result supports the model's prediction. This explanation also 

reconciles the contrary theoretical conclusion in BCG (1997) and empirical evidence in 

Peltzman (2000) and Radchenko (2005). 

Chapter III investigates the relationship between fiscal deficit and real exchange 

rate determination. In previous literature, the effect of monetary policy on exchange 



 3

rates has been extensively explored, but not many serious attentions has been paid to 

empirically exploring the role of fiscal policy in foreign exchange markets.    

Economic theory predicts that fiscal deficits can significantly affect real 

exchange rate movements, but existing empirical evidence reports only a weak impact of 

fiscal deficits on exchange rates.  The early empirical work typically views fiscal policy 

as a separate tool from monetary policy and consider its stand-alone effects on exchange 

rates.  Recently, more and more theoretical works begin to underscored the potentially 

complex interaction between monetary and fiscal policies, which means if one allows for 

fiscal deficits to affect exchange rates as a state variable, non-additively and nonlinearly, 

fiscal policy variables play an important (and statistically significant) role in explaining 

the real exchange rate dynamic adjustments.  

In this chapter, based on US dollar-based real exchange rates in G5 countries and 

a flexible varying coefficient model, we show that the previously documented weak 

relationship between fiscal deficits and exchange rates may be the result of additive 

specifications, and that the relationship is stronger if we allow fiscal deficits to impact 

real exchange rates non-additively as well as nonlinearly.   

We find that the speed of exchange rate adjustment toward equilibrium depends 

on the state of the fiscal deficit, whether it is in contraction or expansion.  We find that a 

fiscal contraction in the US can lead to less persistence in the deviation of exchange rates 

from fundamentals, and faster mean reversion to the equilibrium.  

This research contributes to the literature in two important aspects. First, it fills 

the gap in the literature by allowing for a fiscal policy variable (the changes in fiscal 
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deficits) to act as a conditioning variable in modeling exchange rate movements.  

Second, it employs recently developed flexible varying coefficient in econometric 

analysis. This model appears to be particularly suitable for modeling fiscal deficits as a 

conditioning variable.  The idea that fiscal deficits may effectively work as a binding 

constraint on monetary policy can hardly be modeled by a parametric (linear or 

nonlinear) model. From this perspective, the method improves on the popular parametric 

nonlinear smooth transition models used in the real exchange rate mean reversion 

literature. In addition, the findings in this chapter lend support to the argument that there 

are stronger monetary policy impacts on exchange rates in the absence of fiscal deficits. 

Chapter IV proposes a kernel method to deal with the nonparametric regression 

model with only discrete covariates as regressors.  

The traditional parametric method suffers from misspecification. The traditional 

nonparametric way to deal with the discrete covariates is frequency-based method which 

splits the data into small “cells”. When the number of cells exceeds the sample size, this 

approach is infeasible. Furthermore, the tests on whether there exists significant 

treatment effects or not based on this frequency approach may lead to a loss of power.  

New approach proposed in this chapter is based on recently developed least 

squares cross-validation kernel smoothing method. It can not only automatically smooth 

the irrelevant variables out of the nonparametric regression model, but also avoid the 

problem of loss of efficiency related to the traditional nonparametric frequency based 

method and the problem of misspecification. 
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CHAPTER II 

 

EVIDENCE ON ASYMMETRIC GASOLINE PRICE RESPONSES FROM 

ERROR CORRECTION MODELS WITH GARCH ERRORS 

 

2.1 Introduction 

Many observers claim that gasoline prices rise quickly but decline slowly.  This 

issue of asymmetry in the response of gasoline prices to positive and negative shocks is 

one that has been investigated by previous researchers.  Bacon (1991) looked at the 

U.K.’s gasoline market and described the asymmetric adjustment as a “rockets and 

feathers” phenomenon.  Prices rise like a rocket and fall like a feather.  In Bacon’s work 

he found that the asymmetry was in the response of gasoline prices to crude oil price 

changes.  He claimed that when crude oil prices increased, gasoline price responded very 

quickly, but when crude oil prices decreased, gasoline prices were much slower to 

respond. 

Borenstein, Cameron and Gilbert (1997) (hereafter BCG) looked at the issue of 

asymmetry with an error correction model (or ECM).  They estimated an ECM for 

weekly and semimonthly retail gasoline prices, with crude oil prices as an explanatory 

variable.  They report strong evidence that gasoline prices respond asymmetrically to 

crude oil price changes, supporting the earlier findings by Bacon (1991). 
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Following up on BCG, Bachmeier and Griffin (2003) (hereafter BG) also use an 

ECM but with the two-step Engle-Granger estimation procedure instead of the less 

traditional approach used by BCG.  BG investigates both daily spot (wholesale) gasoline 

prices and retail gasoline prices to see their response to crude oil price changes.  BG 

report no evidence of asymmetry in the response of spot gasoline prices to crude oil 

price changes, and no evidence of asymmetry in the response of retail gasoline prices to 

crude oil price change if the two-step Engle-Granger estimation procedure is used for the 

ECM. BG claims BCG’s asymmetry evidence may rest on their nonstandard estimation 

approach. 

These papers provide differing conclusions regardng the retail gasoline price 

response to crude oil prices, based on different econometric model specifications and 

somewhat different data.  We look again at the possible asymmetry of retail gasoline 

prices response, in order to consider a broader array of econometric models including 

system-wide impulse response functions and various specifications of heteroskedasticity.  

It is well known that assumptions of homoskedasticity, when inappropriate, can cause 

misleading inference, and we find that prior tests for asymmetry are strongly influenced 

by the treatment of possible heteroskedasticity.   

Our paper investigates the system-wide retail gasoline price response instead of 

the univariate error correction model used in most previous research. The previous 
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literature generally estimates a dynamic model for the retail gasoline price response and 

considers the impact of a crude oil price shock without allowing for crude oil prices to 

exhibit a dynamic response to the shock itself nor to changes in the retail price.  This 

paper begins from the bivariate VAR model and estimates both the retail gasoline price 

impulse response function (IRF) and the crude oil price IRF in a system context.  For 

expository purposes we call these system-wide IRFs to distinguish them from the IRF 

presented in BCG’s paper. 

Our approach is to estimate two broad classes of models that allow potential 

asymmetric responses.  We focus on error correction models that are similar to those 

estimated by both BCG and BG.  These models explicitly allow for differential dynamic 

responses to shocks.  More specifically, the coefficients on explanatory variables 

including own-lags are allowed to vary depending on whether crude oil prices have 

increased or decreased.  We will estimate versions of these models that follow the BCG 

and BG framework, and also versions that are more in accord with standard threshold 

model specifications, where there is a single threshold variable affecting all right hand 

side coefficients.1  In all cases our estimation takes account of the presence of 

autoregressive conditional heteroskedasticity.  In particular, we allow different 

asymmetric models for conditional volatility -- Exponential GARCH, GJR-GARCH, and 

                                                 
1 Such threshold models are common in the literature.  Bradley and Jansen (2000) is just one example. 
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logistic smooth transition GARCH -- to check whether the asymmetry conclusion is 

sensitive to the different choice of the conditional volatility model. 

When considering these different models we focus on testing for asymmetric 

responses as indicated by different coefficients on positive and negative changes in 

crude oil prices.  We attempt to characterize the nature of the asymmetry, including the 

speed of adjustment to a disturbance (rockets versus feathers), the size of adjustment to a 

disturbance, the permanence of shocks, and the impact of the initial state.   

 Overall, we find evidence of asymmetry in the weekly retail gasoline prices 

response on the crude oil prices in both classes of models.  This asymmetry is both in the 

speed of adjustment to shocks and in the magnitude of adjustment.  Rising crude oil 

prices tend to cause somewhat more rapid responses of gasoline prices than falling crude 

oil prices.  Over comparable horizons, rising crude oil prices tends to cause a somewhat 

greater magnitude response of gasoline prices than falling crude oil prices.  In all models 

we find it is important to account for ARCH errors.2  

 

                                                 
2 In addition to the debate over the empirical facts on asymmetry, there is a debate over theoretical 
explanations, and a number of explanations have been offered.  Market concentration is a usual suspect.  
However, it is fair to say that a consensus is lacking.  Peltzman (2000) and Brown and Yucel (2000) note 
that it is difficult to find a model based on market concentration that will explain asymmetric downstream 
price adjustment to an upstream price change, although Borenstein and Shepard (2002) point to tacit 
collusion and margins increasing when expected future demand increases.  Johnson (2002) claims 
asymmetry is due to consumer search costs, and provides evidence supporting the search explanation over 
the oligopolistic behavior explanation from consumer gasoline and diesel markets.  However, Radchenko 
(2005) shows that asymmetry declines with volatility, and argues that this supports oligopolistic 
coordination explanations over search-based explanations. 
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2.2 Model Specification 

We investigate two sets of models.  The first is an asymmetric error correction 

model that was popular in the previous literature.  This model is often specified as a 

single-equation ECM, and for our purposes the key feature is that it is estimated 

assuming homoskedastic disturbances.  We will compare results for this model with a 

second set of models that are asymmetric error correction models with a version of 

heteroskedastic disturbances.   

2.2.1 Models with Homoskedastic Disturbances 

Our starting point is the basic mark-up model.  Obviously crude oil is a vital 

input into gasoline production, and crude oil prices are one of the most important cost 

factors affecting gasoline prices.  In fact, the cost of crude oil accounts for roughly half 

of the retail gasoline price. Therefore it is natural to begin our analysis with the 

following mark-up model, and one that has been is widely used in previous research. 

tt LPCLPG ⋅+= βα         (2.1) 

Here LPG is the log price of retail gasoline and LPC is the log price of crude oil.  

Both the log price of gasoline and the log price of crude oil appear to be I(1) processes, 

non-stationary in levels but stationary in differences.  Gasoline prices and crude oil 

prices also appear to be cointegrated.  When we test for cointegration between the log 
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spot gasoline price and the log spot crude oil price, and separately, between the log retail 

gasoline price and the log spot crude oil price, we cannot reject cointegration.   

Cointegration between LPG and LPC is consistent with using an ECM, the 

approach we take here and the approach used earlier by both BCG and BG.  We use a 

two-step estimation strategy to estimate the ECM.3 

Symmetric Error Correction Model 

Our starting point is a standard, symmetric ECM.  This model specifies that 

changes in the log price of gasoline is a function of lagged changes in the log price of 

gasoline, current and lagged changes in the log price of crude oil, and the lagged error 

correction term.  This specification assumes that crude oil prices are weakly exogenous 

to gasoline prices. 

ttt

n

j
jtj

m

i
itit LPCLPGLPGLPCLPG εϕλγβα +−+Δ+Δ+=Δ −−

=
−

=
− ∑∑ )( 11

10

  (2.2) 

We use this model as a point of departure, in order to compare to a model 

allowing asymmetry. 

Asymmetric Error Correction Model 

An asymmetric ECM can be specified in a variety of ways, but the model frequently 

used by researchers in this area, including BCG and BG, specify different coefficients 

for positive and negative lagged changes in gasoline prices and for positive and negative 

                                                 
3 We report the cointegration test results in Appendix Tables A1. 
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current and lagged changes in crude oil prices.  In what follows the superscript ‘+’ refers 

to a positive change and the superscript ‘-’ refers to a negative change.  A common 

asymmetric ECM specification is:  

ttt

jtj

n

j
jtjiti

m

i
itit

LPCLPG

LPGLPGLPCLPCLPG

εϕλ

γγββα

+−+

Δ+Δ+Δ+Δ+=Δ

−−

−
−

−

=

+
−

+−
−

−

=

+
−

+ ∑∑
)(

)()(

11

10   (2.3) 

Here ΔLPC+ = ΔLPC if ΔLPC > 0, and ΔLPC+ = 0 if ΔLPC < 0.  Similarly, 

ΔLPC- = ΔLPC if ΔLPC < 0, and ΔLPC- = 0 if ΔLPC > 0.  ΔLPG+ and ΔLPG- are 

defined analogously. 

As an alternative to equation (2.3), we can specify an asymmetric ECM within a 

standard threshold framework where the model switches between regimes depending on 

an indicator variable that switches value between zero and one depending on the 

relationship of the (single) threshold variable to a threshold value.  In comparison, 

equation (2.3) has multiple threshold variables or states, depending on the sign of current 

and lagged values of ΔLPC and ΔLPG. 

In our threshold asymmetric ECM, the threshold variable will be a lagged valued 

of LPG (or LPC), and the threshold level will be set at zero.  We can write this threshold 

asymmetric ECM as:  

tttjtj

n

j
dtjtj

iti

m

i
dtitit

LPCLPGLPGZILPG

LPCZILPCLPG

εϕλγγ

ββα

+−+Δ+⋅Δ

+Δ+⋅Δ+=Δ

−−−
−

=
−−

+

−
−

=
−−

+

∑

∑

)())((
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11
1

0   (2.4) 



 

 

12

Here I(Zt-d) is the indicator variable, with I(Zt-d) = 1 if Zt-d  > 0 and I(Zt-d) = 0 if 

Zt-d  < 0.  The variable Z is the threshold variable, either Z = ΔLPG or Z = ΔLPC.  The 

subscript d is called the delay parameter, and for our purposes d=0, 1, or 2. 

2.2.2 Models with GARCH Errors 

This section describes our preferred specifications.  It contains two points of 

departure from BCG and BG.  First, in those papers the symmetry or asymmetry 

discussion is based on results from a univariate ECM or threshold model, which 

necessarily ignores system-wide dynamics and feedback between retail prices and crude 

oil prices.  In constrast, we specify a bivariate vector ECM (VECM) and calculate IRFs 

for the system we estimate.  Second, previous work assumes homoskedastic 

disturbances, but we will test for and model versions of GARCH. 

A Bivariate VECM Model  

We consider a bivariate VECM model of the form,   

tC

G
t

tt

BZ
LPC
LPG

LA
LPC
LPG

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

−
−

ε
ε

1
1

)(      (2.5) 

Here ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)()(
)()(

)(
2221

1211

LALA
LALA

LA , where L is the lag operator, Z is the error 

correction term, and )',( 21 bbB =  is a 2x1 vector. The variance covariance matrix of 

tC

G
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε
ε

is given by: 
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⎟
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⎜
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⎛
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,,var
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       (2.6) 

We will test for autoregressive conditional heteroskedasticity in the disturbances 

in (2.5).  In results to be reported below, we find ARCH in the retail gasoline price 

innovations, but not in the crude oil price innovations.  We also find evidence that crude 

oil prices are weakly exogenous, that the error correction term does not enter the crude 

oil price equation, so b2 = 0.  

These empirical findings suggest a particular Cholesky decomposition and a 

particular specification of the ARCH structure of our model innovations.  In particular, 

we model the crude oil price residual Cε  as exogenous, so Cε  has a contemporaneous 

effect on Gε  but Gε  does not have a contemporaneous effect on Cε .  We can write this 

more explicitly as:  

tCtGt ηεπε += 1 ,        (2.7) 

where we suppose 1π  is constant and tη  is that part of the innovation in the gasoline 

price equation that is uniquely determined by the gasoline market.  Equation (2.7) 

specifies the contemporaneous correlation between Cε  and Gε  in a way consistent with 

our Cholesky decomposition.  Note that we can substitute equation (2.7) into the 

bivariate VECM model (2.5) to get, 

⎟⎟
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From equation (8) we can derive our crude oil price equation as: 

Cttttt ZbLPCLALPGLALPC ε+⋅+Δ⋅+Δ⋅=Δ −−− 12122121 )()(   (2.9) 

where we will eventually argue that 2)( ccCtVar σε = , a constant. 

We can also rewrite equation (2.9) to derive the crude oil price residual Cε  and 

substitute this into the gasoline price equation in the bivariate VECM model (2.8).  

Reorganizing, we obtain the following retail gasoline price equation: 

ttt

ttt

ZbLPCLALA
LPCLPGLALALPG

ηπ
ππ

+⋅+Δ⋅−+
Δ⋅+Δ⋅−=Δ

−−

−

11122112

1121111

))()((
))()((

   (2.10) 

Here contemporaneous crude oil prices enter as an explanatory variable, and the 

error term tη  is that part of the innovation in the retail gasoline price that is uniquely 

determined in the gasoline market.  We will assume that this is the term embodying the 

GARCH effects. 

We estimate equation (2.10) with its implicit decomposition of the gasoline price 

disturbance or innovation term.  This equation for gasoline prices is also the form used 

in much of the previous research, so it allows easy comparison of our results with the 

previous work.  

In estimating GARCH models, we specify an equation for the conditional mean 

and an equation for the conditional variance.  For the conditional mean we look at two 

versions, an asymmetric ECM and an asymmetric threshold ECM.  These are essentially 
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the models reported in equations (2.3) and (2.4) above, with the explicit assumption on 

the disturbance term. 

Asymmetric ECM: 
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Asymmetric Threshold ECM: 
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For each specification, we consider the impact of autoregressive conditional 

heteroskedasticity (ARCH) on our estimation results.  The standard LM test for ARCH 

indicates strong evidence for ARCH in residuals from both our asymmetric ECM 

models. We provide estimates of our asymmetric ECMs specified with asymmetric 

generalized autoregressive conditional heteroskedasticity (GARCH) errors. This means, 

in terms of equation (2.10), that the gasoline price residual tη  follows a GARCH 

process.  

We extend the above asymmetric ECMs to incorporate different asymmetric 

GARCH specifications.  In particular, we consider models with Exponential GARCH 

errors, GJR-GARCH errors, and Logistic Smooth Transition GARCH errors.   
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Asymmetric ECMs with Exponential GARCH Errors  

The EGARCH model was proposed by Nelson (1991), and can capture possible 

asymmetries in the response volatility response.4  Thus we specify the conditional mean 

as in the asymmetric ECM in equation (2.11) above or in the asymmetric threshold ECM 

in equation (2.12) above. For either model we specify an EGARCH model of the 

conditional variance as:  

kt
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This specification allows asymmetry in the response of the conditional variance 

to shocks.  For instance, large positive shocks will have a greater impact on the variance 

than negative shocks when φK is positive. 

Asymmetric ECMs with GJR - GARCH Errors  

Another popular asymmetric conditional variance specification is introduced by 

Glosten, Jagannathan, and Runkle (1993), so called GJR- GARCH. The conditional 

variance equation will be 
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Here kf  = 1 when 0>−ktε ; kf  = 0 when 0≤−ktε .  

                                                 
4 We also considered EGARCH-in-mean specifications, allowing the asymmetric volatility to directly 

impact the response of gasoline prices, but we found little evidence that time-varying volatility impacts the 
conditional mean. 
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Asymmetric ECMs with LST - GARCH Errors  

A final more generalized model also investigate the asymmetric response of 

conditional variance is Logistic Smooth Transition GARCH model (LST-GARCH) 

which has been introduced in Gonzalez and Rivera (1998) and Hagerud (1996). The 

conditional variance equation of LST-GARCH(p,q) has the following form. 
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Here F(.) is logistic transition function, 

)exp(1
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λε

ε , λ >0      (2.16) 

If lambda is quite large, the LST-GARCH specification converges to the GJR-

GARCH model.  That is, the LST-GARCH is actually a more general form of GJR-

GARCH model.5  

2.3 Estimation Methods and Diagnostic Tests 

We estimate the ECM models under homoskedasticity and also under various 

GARCH specifications.  Estimation is by quasi-maximum likelihood. We assume the 

residual tε  has a Student’s t distribution, to better capture the excess kurtosis in the data. 

We use the Optmum procedure in GAUSS 6. When we estimate the asymmetric models, 

we take the GARCH estimation results as starting values. The different types of 

                                                 
5 The Appendix has a graph of the logistic smooth transition function for different values of λ . It makes 
clear that the bigger is lambda, the faster the transition between regimes. 
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asymmetric GARCH models are estimated to provide evidence on how sensitive the 

results are to the specific model of heteroskedasticity.  

A variety of diagnostic tests are used to check that the asymmetric GARCH-type 

models are correctly specified. First, we examine Lagrange multiplier (LM) tests for 

autoregressive conditional heteroskedasticity (ARCH) in the residuals (Engle 1982).  

Second, we calculate the Ljung and Box (1979) Q statistics for the level and the square 

of the residuals, to examine possible serial correlation in the residuals. Third, we 

examine the ability of the models to deal with potential biases and identify potential 

misspecification of the conditional variance.  We calculated three tests proposed by 

Engle and Ng (1993) -- the Sign Bias Test, the Negative Size Bias Test and the Positive 

Size Bias Test.  We also calculate the joint test.  

For these tests we define the dummy variable −
−1tS  to be one when the residual 

1−tε  is negative and equals zero otherwise.  We define +
−1tS  to be one minus −

−1tS .  

Finally, we define 2
tv  as the squared normalized residuals.  The sign bias test, negative 

size bias test and positive bias test are based on the following regressions. 

ttt eSbav +⋅+= −
−1

2        (2.17a) 

tttt eSbav +⋅+= −
−
− 11

2 ε        (2.17b) 

tttt eSbav +⋅+= −
+
− 11

2 ε        (2.17c) 
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The sign bias test is based on the significance of the slope coefficient on −
−1tS  in 

(2.17a). The negative size bias test is based on the significance of the slope coefficient 

on 11 −
−
− ttS ε  in (2.17b). The positive size bias test is based on the significance test of the 

slope coefficient on 11 −
+
− ttS ε  in (2.17c).  Engle and Ng (1993) also propose a joint test 

based on regression 

ttttttt eSbSbSbav +⋅+⋅+⋅+= −
+
−−

−
−

−
− 11311211

2 εε     (2.18) 

The t-ratios for 1b , 2b  and 3b  corresponds to the sign bias, negative size and 

positive size bias tests, respectively.  The joint test is the LM test calculated as 2RT ⋅ .  If 

the variance model is correctly specified, all tests should be insignificant, which would 

indicate that the variables realized in the past but not included in the variance model 

have no power to predict the standardized residuals. 
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Figure 2.1: Retail Gasoline Price and Crude Oil Price (1/21/1991-2/13/2006) 
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2.4 Data 

Our retail price series is available from the U.S. Department of Energy 

website6 from 1990. We use the U.S. regular conventional retail gasoline prices and 

the West Texas Intermediate crude oil price. There are some holes in the data series 

so that we begin our sample from January 1991. Our data covers the period from 

January 21, 1991 to February 13, 2006, a total 787 observations. This data set is 

similar to the weekly data set used by BCG, but our series span a longer period. 

BCG’s weekly data sets cover the period from March 1986 to November 1992.  

Figure 2.1 (a) provides a graph of the log retail gasoline price (LRP) and the 

log crude oil price (LCP), weekly, from January 1991 through the middle of February 

2006.  Retail gasoline prices, after holding fairly steady from 1990 through 1997, 

exhibited some downward trend in 1998, followed by an upward trend to a new 

plateau of sorts by 2000, then increased volatility but an upward trend running 

through 2005.  Crude oil prices show more apparent volatility, including a more 

pronounced decline during 1997 – 1998, a more dramatic upward movement in 1999, 

and a fairly steady upward trend from 2002 through 2005.  For future reference, there 

seems to be a narrowing of the gap between these series after 2002. 

Figure 2.1 (b) and (c) provides graphs of the log difference of gasoline prices 

(DLRP) and crude oil prices (DLCP).  A noteworthy feature of both the gasoline 

price and the crude oil price date is the apparent increase in volatility.  For the data 

                                                 
6 http://www.eia.doe.gov/ 
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on differences in gasoline prices, volatility seems to have increased after 1997. For 

the data on difference in crude oil prices, the volatility seems to have increased since 

1996. 

Table 2.1: Data Description, Retail Gasoline Price and Crude Oil Price 
(Sample Period 1/21/1991 – 2/19/2006, weekly) 

 LRP LCP DLRP DLCP 
Mean 4.853 3.177 0.001 0.001 

Standard Deviation 0.233 0.377 0.018 0.049 
Skewness 1.188 0.820 1.365 -0.638 
Kurtosis 3.919 3.361 13.610 5.884 

Observations 787 787 786 786 
Note: LRP is log retail price of gasoline; LCP is log crude oil price; DLRPis difference in 
LRP; DLCP is difference in LCP. 
 

Table 2.1 summarizes some statistical features of the data.  The standard 

deviation of crude oil prices, in levels and differences, is higher than the standard 

deviation of retail gasoline prices.  The differenced data show exhibit fat tails, 

especially retail gasoline prices. 

2.5 Estimation Results 

We first examine the weekly data set for retail gasoline prices using the 

asymmetric ECM from the prior literature.  A variety of diagnostic tests are 

conducted, to check for possible misspecification of the models.  We then turn to our 

results for the asymmetric error correction models with GARCH errors.  We then 

estimate various types of asymmetric GARCH error models.  Finally, we present and 

analyze the impulse response functions of the ECM and threshold models.  

Table 2.2 presents our coefficient estimates for the asymmetric ECM for 

weekly retail gasoline prices in column headed ECM.  These are estimates for the 
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homoskedastic model.  Prior researchers have tested asymmetry with Wald tests of 

the hypothesis that the coefficients on the positive and negative price changes are 

equal.  We report results of tests for asymmetry in Table 2.3. The column headed 

“ECM” reports tests for equality of coefficients on explanatory variables DLCP, 

DLCP(-1), DLRP(-1), and DLRP(-2).  Note that equality of the coefficients on crude 

prices is not rejected, indicating no asymmetry in the adjustment of retail gasoline 

prices to crude oil price changes.  Only the coefficients on DLRP(-1) are found to be 

statistically significantly different for positive and negative values of DLRP(-1). 

 

Table 2.2:  Models for Retail Gasoline Prices 

   ECM ECM-EGARCH 
   Coefficient Std. Error Coefficient Std. Error 
     Mean Equation 
C  0.003 0.001  -0.001  0.001 
DLRP_P(-1)  0.234 0.044  0.355  0.043 
DLRP_N(-1)  0.601 0.075  0.441  0.063 
DLRP_P(-2)  0.069 0.044  0.124  0.044 
DLRP_N(-2)  0.077 0.072  0.214  0.060 
DLCP_P  0.076 0.020  0.055  0.011 
DLCP_N  0.071 0.017  0.031  0.011 
DLCP_P(-1)  0.140 0.020  0.111  0.011 
DLCP_N(-1)  0.089 0.018  0.060  0.011 
EC_P(-1)  -0.068 0.014  -0.032  0.011 
EC_N(-1)  0.003 0.016  -0.015  0.008 
     Variance Equation 
C       -0.585  0.145 

|εt-1|/(GARCHt-1)1/2    0.297  0.065 

(εt-1)/(GARCHt-1)1/2    0.075  0.039 

Ln(GARCHt-1)     0.961  0.013 
T-DIST. DOF       5.039  0.767 
R-squared  0.428   0.386   
S.E. of 
regression  0.013   0.014   
Log likelihood  2275.334   2531.968    
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Table 2.3:  Testing for Asymmetry 
Variables  ECM ECM-EGARCH 
DLCP F-stat. 0.025 1.695 
 p-value 0.875 0.193 
DLCP(-1) F-stat. 2.680 8.638 
 p-value 0.102 0.003 
DLRP(-1) F-stat. 14.091 1.004 
 p-value 0.000 0.317 
DLRP(-2) F-stat. 0.008 1.178 
 p-value 0.931 0.278 
Note: Wald tests of equivalent coefficients on positive and negative changes in 
price variables) 
 
 

However, we run a series of diagnostic tests on the ECM model.  Results of 

the ARCH test are reported in Table 2.4.  The first entry in Table 2.4, headed “Retail 

Gasoline Price Model: ECM” reports results of the ARCH test for our ECM model.  

Note that for lags one, two, or three, the test result is to strongly reject 

homoskedasticity. 

Table 2.5 reports the Ljung-Box Q statistic for the residuals of the ECM 

model, both the levels and the squares of the residuals.  We calculate the first 30 

estimated residual autocorrelations. The test statistic Q(30) is 56.28 for the level of 

the residuals, and 100.80 for the squared residuals. The Chi-square critical value at 

the 5% significance level is 43.77. Thus for the traditional ECM we can strong 

evidence of serial correlation in both level and squared residuals.  
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Table 2.4: ARCH LM Tests 

Retail Gasoline Price Model: ECM 
Lag 1 3 5 

F-statistics 19.519 21.955 15.683 
Obs.*R-squared 19.092 61.030 71.745 
p-value 0.000 0.000 0.000 

Retail Gasoline Price Model: ECM-EGARCH 
Lag 1 3 5 

F-statistics 0.030 0.213 0.323 
Obs.*R-squared 0.030 0.642 1.626 
p-value 0.862 0.887 0.899 

Crude Oil Price Model 
Lag 1 3 5 

F-statistics 3.262 1.046 1.250 
Obs.*R-squared 3.257 3.143 6.249 
p-value 0.071 0.371 0.284 

Retail Gasoline Price Model: Threshold ECM 
Lag 1 3 5 

F-statistics 28.432 20.637 15.369
Obs.*R-squared 27.503 57.637 70.440
p-value 0.000 0.000 0.000 

Retail Gasoline Price Model: Threshold ECM-EGARCH 
Lag 1 3 5 

F-statistics 0.160 0.207 0.368
Obs.*R-squared 0.160 0.623 1.349
p-value 0.690 0.892 0.930
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Table 2.5: Ljung-Box Q Statistics 
(Homoskedastic ECM versus ECM-EGARCH) 

 Levels of the residuals  Squares of the residuals 
ECM ECM-EGARCH  ECM ECM-EGARCH Lags 

  Q-Stat Prob Q-Stat Prob  Q-Stat Prob Q-Stat Prob 
1 0.34  0.56  0.14 0.71  19.19 0.00 0.03  0.86  
2 5.42  0.07  1.78 0.41  23.06 0.00 0.41  0.82  
3 19.59  0.00  5.42 0.14  69.26 0.00 0.65  0.89  
4 26.49  0.00  5.50 0.24  95.28 0.00 0.75  0.95  
5 27.38  0.00  7.05 0.22  96.26 0.00 1.62  0.90  
6 27.68  0.00  7.79 0.25  96.53 0.00 2.38  0.88  
7 28.32  0.00  8.77 0.27  97.14 0.00 3.05  0.88  
8 28.54  0.00  8.80 0.36  99.18 0.00 3.87  0.87  
9 32.51  0.00  9.72 0.37  99.21 0.00 3.99  0.91  

10 32.52  0.00  10.85 0.37  99.22 0.00 4.57  0.92  
11 34.04  0.00  11.40 0.41  99.30 0.00 5.31  0.92  
12 34.04  0.00  11.61 0.48  99.37 0.00 5.39  0.94  
13 35.70  0.00  14.39 0.35  99.38 0.00 5.67  0.96  
14 35.83  0.00  14.90 0.39  99.40 0.00 5.73  0.97  
15 36.60  0.00  15.03 0.45  99.40 0.00 6.12  0.98  
16 37.08  0.00  16.03 0.45  99.44 0.00 6.17  0.99  
17 37.47  0.00  16.03 0.52  99.64 0.00 6.22  0.99  
18 39.57  0.00  17.46 0.49  99.67 0.00 6.22  1.00  
19 42.36  0.00  19.60 0.42  99.76 0.00 6.24  1.00  
20 44.68  0.00  20.94 0.40  100.03 0.00 6.27  1.00  
21 44.68  0.00  21.10 0.45  100.04 0.00 7.05  1.00  
22 45.08  0.00  21.51 0.49  100.19 0.00 7.09  1.00  
23 45.10  0.00  22.00 0.52  100.21 0.00 7.12  1.00  
24 49.00  0.00  25.68 0.37  100.23 0.00 7.48  1.00  
25 50.16  0.00  27.13 0.35  100.24 0.00 7.61  1.00  
26 53.45  0.00  28.61 0.33  100.30 0.00 7.84  1.00  
27 54.00  0.00  28.97 0.36  100.34 0.00 8.25  1.00  
28 54.84  0.00  29.09 0.41  100.51 0.00 8.25  1.00  
29 56.26  0.00  31.15 0.36  100.77 0.00 9.11  1.00  
30 56.28  0.00  31.29 0.40  100.80 0.00 9.16  1.00  
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Figure 2.2: Residuals from the Traditional Homoskedastic ECM 

 

These diagnostic tests suggest that the traditional ECM is misspecified, so we 

turn to models allowing heteroskedasticity.  Estimation results are reported in Table 

2.2 under the column headed ECM-EGARCH.  For the ECM-EGARCH model, we 

report estimates for both the mean equation and the variance equation.  We specify 

that the conditional distribution of disturbances is a t-distribution and estimate the 

degrees of freedom as five.  We do this because the residuals from the homoskedastic 

ECM show strong kurtosis, as can be seen in Figure 2.2.   

For the ECM with EGARCH errors we cannot reject the null of no remaining 

ARCH, as can be seen in Table 2.4 under the heading “Retail Gasoline Price Model: 

ECM-EGARCH.”  The probability values are hugely greater than even ten percent 

for lags one, two, or three.  Further, we report results of the Ljung-Box Q statistic in 

Table 2.5 under the headings “ECM-EGARCH.”  We again calculate the first 30 

estimated residual autocorrelations, and the statistic Q(30) equals 31.29 for the level 

of the residuals and 9.16 for the squared residuals. The Chi square critical value for 



 

 

28

the 5% significance level is 43.77.  Thus for our ECM specification with EGARCH 

errors we find no serial correlation in the levels or squares of the residuals.  

We report asymmetry tests in Table 2.3.  Recall that when we conduct this 

test for the ECM with homoskedastic errors we can’t reject symmetry for the 

coefficients on crude oil price changes, a finding that is in accord with BG’s 

conclusion.  Note, however, that when we conduct this test for our ECM-EGARCH 

model we strongly reject the null of symmetry of the crude oil price coefficients.  

The probability value for this hypothesis test is 0.003.  Thus we find that allowing 

EGARCH errors is key for our asymmetry result, and that BG’s conclusion to the 

contrary is due to specifying homoskedastic errors. 

 

Table 2.6: Sign and Size Bias Tests 

Models   
Sign bias 

test 
Negative 

size bias test
Positive size 

bias test 
  

Joint test 
coef. -0.480 -15.544 -13.269 F stat. 1.504 

t stat. -2.054 -1.117 -1.270 
Chi 
square 4.512 

ECM- 
ARCH 

prob. 0.040 0.264 0.205 Prob. 0.212 
coef. -0.386 -2.139 -5.435 F stat. 1.081 

t stat. -1.617 -0.145 -0.517 
Chi 
square 3.242 

ECM- 
GARCH 

prob. 0.106 0.885 0.605 Prob. 0.356 
coef. -0.324 -9.208 -0.207 F stat. 0.558 

t stat. -1.176 -0.521 -0.017 
Chi 
square 1.675 

ECM- 
EGARCH 

prob. 0.240 0.603 0.986 Prob. 0.643 

 

We also calculate the sign and size bias tests for our ECM-EGARCH model, 

and report the results in Table 2.6.  We cannot reject the hypothesis that the residuals 
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from our ECM-EGARCH model have not sign bias, negative size bias, or positive 

size bias at even the ten percent significance level.  To compare this model with 

others, we also estimated an ECM-ARCH model and an ECM-GARCH model.  We 

do not report the model estimates here, but the diagnostic tests in Table 2.6 indicate 

that the ECM-ARCH model exhibits sign bias, and the ECM-GARCH model 

marginally rejects sign bias at the ten percent significance level.  The probability 

value is 0.106, providing some motivation for estimating asymmetric GARCH-type 

models. 

Table 2.7 reports estimation results for two other asymmetric GARCH type 

models – the GJR-GARCH and logistic smooth transition GARCH (LST-GARCH).  

We also include the EGARCH model results from Table 2 for ease of comparison.  

Notice that the estimates of the mean equation of these three models are quite close; 

the asymmetry conclusion is not sensitive to the different asymmetric conditional 

variance specifications.  In terms of the two new models, the parameter lambda in the 

LST-GARCH model is quite large, indicating a fast transition between the two 

regimes.  In this case the LST-GARCH model converges to the GJR-GARCH model.  

Finally, in the different models of the conditional variance the terms governing 

asymmetry are statistically significant, and all coefficients estimates indicate the 

asymmetry is such that positive shocks have bigger effects than negative shocks. 
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Table 2.7:  Models for Retail Gasoline Price: Asymmetric GARCH Type Models 
  ECM-EGARCH    ECM-GJR-GARCH    ECM-LST-GARCH 
  Coefficient Std. Error    Coefficient Std. Error    Coefficient Std. Error
 Mean Equation   Mean Equation   Mean Equation 
C -0.001 0.001    0.000 0.001    0.000 0.001 
DLRP_P(-1) 0.355 0.043   0.337 0.055   0.337 0.055 
DLRP_N(-1) 0.441 0.063   0.458 0.061   0.458 0.061 
DLRP_P(-2) 0.124 0.044   0.133 0.052   0.133 0.052 
DLRP_N(-2) 0.214 0.060   0.188 0.059   0.188 0.059 
DLCP_P 0.055 0.011   0.053 0.013   0.053 0.013 
DLCP_N 0.031 0.011   0.034 0.010   0.034 0.010 
DLCP_P(-1) 0.111 0.011   0.100 0.013   0.100 0.013 
DLCP_N(-1) 0.060 0.011   0.068 0.011   0.068 0.011 
EC_P(-1) -0.032 0.011   -0.033 0.009   -0.033 0.009 
EC_N(-1) -0.015 0.008    -0.013 0.009    -0.013 0.009 
 Variance Equation   Variance Equation   Variance Equation 
c -0.585 0.145  c 0.000 0.000  c 0.000 0.000 

|εt-1|/(GARCHt-1)1/2 0.297 0.065  εt-1
2 0.391 0.140  (1-F)εt-1

2 0.391 0.140 

(εt-1)/(GARCHt-1)1/2 0.075 0.039  GARCHt-1 0.402 0.050  GARCHt-1 0.402 0.050 

Ln(GARCHt-1) 0.961 0.013  f*εt-1
2 0.578 0.229  Fεt-1

2 0.578 0.227 
        lambda 41320 375059 
T-DIST. DOF 5.039 0.767    3.817 0.661   3.817 0.640 
Log likelihood 2531.968      2502.041      2502.041   

 



 

 

31

In order to better interpret their results, both BCG and BG provide a type of 

impulse response function.  These trace out the response of gasoline prices to a 

temporary one-period shock to crude oil prices, where crude oil prices are treated as 

exogenous and future values of crude oil prices do not respond to the shock to crude 

oil prices. We present this impulse response function in Figure 2.3 for the 

homoskedastic ECM model and the ECM-EGARCH model.  We graph the absolute 

value of the response to a negative and a positive shock to crude oil prices, in order 

to better see the possible asymmetric response to increases and decreases in crude oil 

prices.  It is readily apparent that the homoskedastic ECM is quite symmetric, while 

asymmetry is stronger for the ECM/EGARCH model, at least in terms of the 

difference between the response to a positive and a negative shock to the price of 

crude.  Thus the impact on gasoline prices of a positive shock to crude oil prices is 

greater in absolute value than the response of gasoline prices to a negative shock to 

crude oil prices.  Moreover, the difference persists over time, and hints at a rockets 

and feathers hypothesis, since crude prices rise faster than they fall in response to a 

crude shock.   

The impulse response function in Figure 2.3 illustrates the asymmetry in 

response to a crude oil shock.  However, these are not standard impulse response 

functions in that they hold crude oil prices constant after the shock.  We also present 

more standard impulse response functions that show the response of gasoline prices 

to crude oil prices shocks – and to gasoline price shocks – in a system context. These 
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impulse response functions obviously require us to model crude oil prices as well as 

gasoline prices. 

 

 
Figure 2.3: Impulse Response Function: BG and BCG Specifications 

 

Table 2.8:  Model for Crude Oil Price 

Dependent Variable:  DLCP  
Variable Coefficient Std.Error 
C 0.002 0.002 
DLRP(-1)  0.256 0.124 
DLRP(-2)  0.217 0.123 
DLRP(-3)  -0.304 0.112 
DLCP(-1)  -0.137 0.037 
DLCP(-2) -0.141 0.039 
    
R-squared  0.037  
S.E. of regression  0.048  
Log likelihood 1266.06   
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Figure 2.4:  Impulse Response Functions: System-Wide ECM-EGARCH 
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Table 2.8 shows the estimation results for the crude oil price equation. We 

found the error correction term was not significant when we estimate the crude oil 

price model, indicating that crude oil prices are weakly exogenous.  We conducted 

diagnostic ARCH LM tests, and report these results in Table 2.4 under the heading 

“Crude Oil Price Model.”  Note that we cannot reject the null hypothesis of no 

autoregressive conditional heteroskedasticity in the crude oil price model.  These 

empirical results support our assumption that the disturbance term in the crude oil 

price equation is homoskedastic.   

Figure 2.4 presents impulse response functions for our ECM-EGARCH 

model.  For nonlinear models the state of the world at the time of the shock is 

important. We picked April 15, 1991 as the day of the shock, a day near the 

beginning of our sample and not subject to extreme events.   

The top panel in Figure 2.4 illustrates the response of gasoline prices to a 

shock to gasoline prices. There is little evidence of asymmetry. Both a positive and a 

negative three standard error shock generates just over a five percent magnitude 

change in gasoline price for the first period. The impact of a positive shock increases 

close to ten percent at the fifth period. The impact of negative shock increases to over 

ten percent at the fifth period. The ‘rocket and feather’ effect does not exist in the 

gasoline response to a shock to gasoline prices. This type of gasoline price – to - 

gasoline price impulse response function was not investigated in BG and BCG. 
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The bottom panel in Figure 2.4 illustrates the response of gasoline prices to a 

shock to crude oil prices.  Here, unlike the impulse response function in Figure 2.3, 

crude oil prices are themselves allowed to respond to the shock.  Most important for 

our purposes, the impact of a crude oil price shock on gasoline prices shows a strong 

persistence for all shocks both positive and negative.  Indeed there is a tendency for 

the positive shock to have a bigger impact on gasoline prices. The positive three 

standard error shock generate gasoline price increases of 4.2 percent, but the negative 

three standard error shock generate gasoline price decreases of 2.3 percent until 

period 5. For the positive shock gasoline prices take 11 periods to increase 5 percent, 

while for the negative shock gasoline prices takes 22 periods to decrease 5 percent.  

Figure 2.5 presents confidence intervals for the impulse response functions.  

These are empirical confidence intervals generated by Monte Carlo simulation with 

1,000 draws.  In order to facilitate presentation we illustrate these confidence 

intervals for a two standard error impulse to gasoline prices (the top panel) and crude 

oil prices (the bottom panel).  Note that, in the top panel, the confidence intervals 

easily overlap between positive and negative shocks.  However, in the bottom panel 

the confidence intervals do not overlap, at least at short horizons.  At the fifth period 

the confidence band for a positive shock ranges roughly over the interval .023 ~ .034, 

whereas for a negative shock the confidence band ranges roughly over the interval -

.009 ~ -.022.  
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Figure 2.5: Impulse Response Functions: System-Wide ECM-EGARCH 
(90% Confidence Bands) 
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Table 2.9: Model for Retail Gasoline Price: Threshold Models 
Threshold Variable DLCP  DLCP(-1)  DLRP(-1) 
  Threshold_ECM Threshold_Egarch  Threshold_ECM Threshold_Egarch  Threshold_ECM Threshold_Egarch 

 Coefficient 
Std. 
Error Coefficient 

Std. 
Error  Coefficient 

Std. 
Error Coefficient 

Std. 
Error  Coefficient 

Std. 
Error Coefficient 

Std. 
Error 

     Mean Equation      Mean Equation      Mean Equation 
DLRP(-1) 0.170  0.044 0.363 0.045  0.308 0.044  0.348 0.049  0.631 0.065 0.475 0.057  
DLRPG(-1)*Z 0.378  0.064 0.055 0.064  0.070 0.065  0.063 0.062  -0.408 0.090 -0.128 0.084  
DLRPG(-2) 0.271  0.050 0.192 0.046  -0.004 0.040  0.136 0.044  0.070 0.041 0.170 0.044  
DLRPG(-2)*Z -0.314  0.064 -0.046 0.062  0.196 0.064  0.077 0.060  -0.016 0.063 -0.036 0.062  
DLPC 0.072  0.017 0.031 0.011  0.064 0.015  0.029 0.010  0.042 0.014 0.031 0.008  
DLPC*Z 0.009  0.030 0.029 0.018  0.015 0.020  0.027 0.012  0.068 0.020 0.031 0.012  
DLPC(-1) 0.113  0.017 0.067 0.010  0.088 0.018  0.060 0.011  0.105 0.013 0.076 0.007  
DLPC(-1)*Z -0.015  0.022 0.023 0.013  0.042 0.032  0.049 0.018  0.017 0.022 0.021 0.013  
EC(-1) -0.038  0.011 -0.022 0.007  -0.072 0.011  -0.022 0.007  -0.027 0.011 -0.019 0.006  
EC(-1)*Z -0.009  0.016 -0.001 0.009  0.050 0.016  -0.006 0.009  -0.015 0.016 -0.003 0.009  
c 0.000  0.001 -0.001 0.000  0.000 0.001  -0.001 0.000  0.003 0.001 0.000 0.000  
      Variance Equation      Variance Equation      Variance Equation 
c   -0.754 0.177    -0.435 0.123    -0.814 0.182  

|εt-1|/(GARCHt-1)1/2  0.364 0.073    0.254 0.055    0.356 0.073  

(εt-1)/(GARCHt-1)1/2  0.079 0.043    0.068 0.034    0.092 0.045  
Ln(GARCHt-1)   0.948 0.016    0.973 0.011    0.941 0.017  
df     5.243 0.817      4.770 0.717      4.928 0.766  
R-squared 0.434   0.378   0.427  0.381   0.431  0.388  
S.E. of regression 0.013   0.014   0.013  0.014   0.013  0.014  
Log likelihood 2279.47    2529.76    2274.49   2533.10    2276.87   2531.33   
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Figure 2.6:  Impulse Response Functions: System-wide Threshold ECM-EGARCH 
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Figure 2.7:  Impulse Response Functions: System-wide Threshold ECM-EGARCH 
(90% confidence bands) 
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We conclude from these impulse response functions that the system-wide 

impacts of an impulse to crude prices is asymmetric, with a tendency for gasoline prices 

to respond more (in magnitude) to positive shocks and a tendency for gasoline prices to 

exhibit more persistence in response to positive shocks. 

We also estimate standard asymmetric threshold ECM models, with results 

reported in Table 2.9.  We report six sets of results.  We report results for three different 

choices of the threshold variable:  DLCP, DLCP(-1), and DLRP(-1).  For each choice of 

threshold variable, we report estimates of both a homoskedastic ECM model and an 

ECM-EGARCH model.  There are several things to note in this table.  First, the 

EGARCH models are preferred on statistical grounds to the homoskedastic models.  The 

homoskedastic models all fail an ARCH test.  The ECM-EGARCH models all have 

much higher likelihood values than their homoskedastic counterparts.7  Second, the 

interaction terms involving the threshold variables are not always, nor even mostly, 

significant, though there is usually at least one significant interaction term in each 

equation, especially each EGARCH specification.  Finally, the log likelihood values give 

us little reason to prefer one threshold variable over the other, although there is a slightly 

better fit when the threshold variable is the lag change in the gasoline price, DLRP(-1).   

Figure 2.6 presents impulse response functions for the model with the threshold 

variable as the lag of the crude oil price changes8, DLCP(-1).  The top panel shows the 

response of wholesale gasoline prices to a shock in the gasoline price equation.  There is 

                                                 
7 ARCH test statistics are reported in Appendix Tables 4(1). 
8 We present the model with threshold variable DLCP(-1) to facilitate a forecasting exercise we describe 
later in the text.  That model also fits in-sample slightly better than the alternatives.   
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little obvious asymmetry here.  The bottom panel in Figure 2.6 illustrates the response of 

gasoline prices to a shock to crude oil prices.  Here there is more evidence of 

asymmetry.  Positive shocks have a larger impact, especially large positive shocks.  The 

positive three-standard-error shock causes an increase in gasoline prices of 5.1% at 

period five, while the negative three-standard-error shock causes a decrease in gasoline 

prices of 3.1%.  For the positive shock gasoline price takes 8 periods to increase 6%, 

while for the negative shock gasoline price takes 21 periods to decrease 6%.  All crude 

shocks exhibit strong persistent effects on gasoline prices, with positive shocks 

exhibiting a somewhat greater magnitude of response than negative shocks. Thus the 

impulse response functions indicate a rockets and feathers type pattern in the response of 

gasoline prices to crude oil shocks similar to that documented by earlier researchers. 

One caveat to interpretations of the impulse response functions in Figure 2.6 is 

the wide confidence bands we find and illustrate in Figure 2.7.  The estimated impulse 

response functions for the threshold models are less precise, and hence the confidence 

bands overlap at all horizons. 

2.6 Prediction Tests and Forecasts 

An alternative method used in BG’s paper to choose between the symmetric and 

asymmetric model is based on an out-of-sample forecasting comparison.  BG find that 

their symmetric model gives better forecasts than their asymmetric model. We conduct a 

small out-of-sample forecast comparison based on our symmetric ECM and our 

asymmetric ECM-EGARCH models. We choose two forecasting horizons, one week 
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ahead and four weeks ahead.  Three models are examined here -- the symmetric model, 

the asymmetric ECM-EGARCH, and the asymmetric threshold ECM-EGARCH errors. 

We consider a variety of forecasting periods:  50 weeks, 100 weeks, 150 weeks, 

and 200 weeks.  Results are reported in Table 2.10.  We find for most cases that, no 

matter the forecasting horizon, the ECM-EGARCH model beats the symmetric model.  

For the one-step ahead forecast over 100 weeks, the sum of squared prediction errors of 

the symmetric model is 0.075, while for the ECM-EGARCH model it is 0.072.  The 

threshold ECM-EGARCH model also beats the symmetric model at the shorter horizon, 

but not at the longer horizon.  Comparing the two asymmetric models, the threshold 

ECM-EGARCH tends to beat the ECM-EGARCH at the one-week horizon, but not at 

the four-week horizon. 

 

Table 2.10: Forecast Comparison 
     (1) (2) ratio (3) ratio 

Horizon  
Forecast 
Periods  

Symmetric 
ECM  

ECM-
EGARCH (2)/(1) 

Threshold 
ECM- EGARCH (3)/(1) 

h=1 50 0.0656 0.0644 0.9819 0.0635  0.9687 
 100 0.0747 0.0716 0.9587 0.0726  0.9719 
 150 0.0864 0.0863 0.9985 0.0848  0.9810 
  200 0.0958 0.0961 1.0031 0.0945  0.9859 
h=4 50 0.0638 0.0622 0.9749 0.0645  1.0113 
 100 0.0729 0.0718 0.9848 0.0739  1.0138 
 150 0.0845 0.0840 0.9939 0.0866  1.0252 
  200 0.0939 0.0939 0.9990 0.0965  1.0271 

 

2.7 Further Discussion on Asymmetric Gasoline Price Response 

In this paper, we estimate the system wide gasoline price and crude oil price 

response system and produce the impulse response function based on this system. More 
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important, our analysis on system wide gasoline crude oil price response suggests a way 

to decompose the crude oil volatility and gasoline price volatility, and our empirical 

results support the idea that gasoline price volatility follows an EGARCH process. These 

empirical results and the characteristics of the data suggest that both crude oil price 

volatility and gasoline price volatility play an important role determining the asymmetric 

response of gasoline prices to crude oil prices. 

Many theoretical papers have discussed reasons for the asymmetry of gasoline 

price response. Some popular explanations include oligopoly theory, search costs, 

inventory management, and the behavior of markup over the business cycle.  BCG 

(1997) discuss several explanations for the apparent asymmetry. One is these is based on 

search theory, crude oil volatility, and a signal-extraction model. They argue that 

increased volatility of crude oil prices caused reduced consumer search in response to an 

increase in gasoline prices.  This reduced search leads to a temporary increase in market 

power for retail gasoline dealers, and an asymmetry in the response of retail gasoline 

prices to an increase in crude prices.   

Interestingly, Peltzman (2000) and Radchenko (2005) both report empirical 

evidence that the correlation between asymmetry and crude volatility is negative.  This 

evidence is contrary to the argument outlined in BCG.  We suggest a way to reconcile 

these discrepancies is to consider a signal extraction model that takes explicit account of 

both crude oil price volatility and retail gasoline price volatility.  That is, crude oil price 

volatility may lead to retail price volatility, but retail prices may be volatile for reasons 

other than just crude oil price volatility.  We present a simple signal extraction model in 
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the appendix to illustrate our arguments, and show that our model suggests the 

following.  First, the correlation between crude oil price volatility and asymmetry is 

indeed positive, as suggested by BCG.  Second, the correlation between retail gasoline 

price volatility (other than that caused by crude oil price volatility) and asymmetry is 

negative.  Because retail price volatility seems to have increased by more than crude oil 

price volatility in the second half of our sample, our model would suggest that 

asymmetry has declined for this reason.  Our model might also reconcile Peltzman’s 

empirical findings, because he looked at crude volatility and asymmetry, without 

controlling for retail price volatility.9 

2.8 Conclusion 

There is a debate in the literature concerning the existence and character of 

asymmetry in the response of gasoline prices to crude oil shocks.  Borenstein, Cameron 

and Gilbert (1997) claim that retail gasoline prices respond asymmetrically to crude oil 

price changes, while Bachmeier and Griffin (2003) find no evidence of asymmetry in 

both retail and wholesale gasoline prices if the two-step Engle-Granger estimation 

procedure is used. We also get this result.  That is, using the two-step Engle-Granger 

estimation procedure and assuming homoskedasticity, we can’t reject the hypothesis of a 

symmetric response of gasoline prices to a crude oil price shock.  However, we find that 

the homoskedastic ECM does not pass a battery of diagnostic tests.   

                                                 
9 In the appendix we also graph the markup of retail gasoline prices over crude oil prices.  Our signal 
extraction model predicts this would decrease with increased retail gasoline price volatility, and indeed 
this seems to be the case in the later part of our sample. 
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We estimate an ECM with EGARCH errors, as well as several other models 

allowing asymmetry in the conditional variance.  This model does pass our diagnostic 

tests, and our analysis of impulse response functions indicates substantial asymmetry in 

both magnitude of response, speed of response, and persistence.  Thus we conclude that 

asymmetry exists, and it requires estimation of an ECM with heteroskedastic errors in 

order to reliably detect this asymmetry.  Our impulse response functions allow us to 

characterize this asymmetry, and for our models including the many-state model of BCG 

and a standard two-state threshold model, we find impulse response function patterns 

that are consistent with Bacon’s rockets and feathers claim. That is, gasoline prices seem 

to rise more quickly in response to a positive crude oil price shock than they fall in 

response to an equivalent magnitude but negative crude oil price shock.  Moreover, we 

find that gasoline prices respond in somewhat larger magnitude to a positive crude oil 

price shock, and the response to a positive shock is somewhat more persistent. 
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CHAPTER III 

 

FISCAL DEFICITS AND EXCHANGE RATES 

 

3.1 Introduction 

The effect of monetary policy on exchange rates has been extensively explored 

(e.g., Eichenbaum and Evans, 1995; Almeida, Goodhart and Payne, 1998; Bonsar-Neal, 

Roley and Sellon, 2000; Andersen et al., 2003; Engel and West, 2005). Indeed, monetary 

fundamentals are typically considered to be among the most important economic factors  

driving exchange rate movements (as suggested, e.g., by the monetary model of 

exchange rate determination.)  In fact, some argue that foreign exchange market 

reactions to macroeconomic news lies in market participants’ anticipation of how the 

monetary authority will react to the news (Almeida, Goodhart, and Payne, 1998, p.406).  

Early theoretical works (e.g., Obstfeld, 1985; Frenkel and Razin, 1986; Devereux and 

Purvis, 1990) found that both monetary and fiscal policy could have substantial effects 

on floating exchange rates, although little serious attention has been paid to empirically 

exploring the role of fiscal policy in foreign exchange markets.  A notable exception is 

Chinn (1997), perhaps the first comprehensive empirical work on the topic, who 

documents the difficulties in finding evidence of the role of fiscal policy on exchange 

rates based on various additive model specifications.  Cheung, Chinn and Pascual (2005) 

also consider an additive regression model and find weak evidence that fiscal deficits 

may affect real exchange rate movements.  Nevertheless, the early empirical work 
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typically views fiscal policy as a separate tool from monetary policy and consider its 

stand-alone effects on exchange rates.   

Recently, the literature has underscored the potentially complex interaction 

between monetary and fiscal policies (Sargent, 1999; Dixit and Lambertini, 2003; 

Linnemann and Schabert, 2003; Schabert, 2004). These recent works exploit the fact that 

monetary policy may not be independent of the fiscal decisions of governments, which 

can be binding constraints on the effectiveness of monetary policy.  Moreover, the fiscal 

theory of price level (e.g., Leeper, 1991; Sims, 1994; Woodford, 1995; Canzoneri, 

Cumby, and Diba, 2001) emphasizes that fiscal policy alone can play a crucial role in 

affecting the price level and, potentially, both inflation and exchange rates.10   

Economic theory predicts that changes in fiscal deficits should have an important 

impact on foreign exchange rate movements, but existing empirical work only finds 

weak evidence supporting the theory.  This paper uses the G5 countries’ real exchange 

rate data to show that if one only allows for fiscal policy variables to enter an exchange 

rate regression model additively – even if nonlinearly -- then fiscal policy variables are 

not significant in explaining real exchange rate movements. However, if one allows for 

fiscal deficits to affect exchange rates non-additively and nonlinearly, fiscal policy 

variables play an important (and statistically significant) role in explaining the real 

exchange rate dynamic adjustments.  

                                                 
10 In particular, the fiscal theory of the price level argues that fiscal policy, rather than monetary policy, 
determines the general price level and inflation. Specifically, it views the government intertemporal 
budget constraint as an equilibrium condition where the price level adjusts to accommodate changes in 
fiscal conditions.   
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Our research contributes to the literature in two important aspects. First, it fills 

the gap in the literature by allowing for a fiscal policy variable (the changes in fiscal 

deficits) to act as a conditioning variable in modeling exchange rate movements.  This 

implicitly addresses the role of fiscal policy via its interactions with monetary policy.  

Essentially, “monetary policy can be constrained by fiscal policy if fiscal deficits grow 

large enough to require monetization of government debt” (Sargent, 1999, p.1463). The 

existing literature mostly considers the fiscal policy variables as direct information 

variables, which assume the role of fiscal policy as a policy tool separate from monetary 

policy. That approach, since it does not allow for the possible non-additive and nonlinear 

interaction between fiscal and monetary policy variables, may fail to reveal the impact of 

fiscal policy variables on the exchange rate determination. Second, we employ recently 

developed flexible varying coefficient model (Cai, Fan, Yao, 2000; Ahmad, Leelahanon 

and Li, 2005) in our econometric analysis. This model appears to be particularly suitable 

for modeling fiscal deficits as a conditioning variable.  The idea that fiscal deficits may 

effectively work as a binding constraint on monetary policy can hardly be modeled by a 

parametric (linear or nonlinear) model, as no theory has made an explicit suggestion 

about functional forms.  In this regard, our method improves on the popular parametric 

nonlinear smooth transition models used in the real exchange rate mean reversion 

literature (e.g., Michael, Nobay, and Peel, 1997; Taylor and Peel, 2000).  

The rest of this paper is organized as follows: Section 2 discusses the relationship 

between exchange rates and fiscal policy, Section 3 presents econometric methodology; 
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Section 4 describes the data and empirical results; and finally, Section 5 concludes the 

paper. 

3.2 Real Exchange Rates, Fundamentals and Fiscal Policy 

3.2.1 Exchange Rates and Fundamentals 

The basic relationship between exchange rate and fundamentals is often based on 

the Purchasing Power Parity (PPP).  The PPP assumes 

t

t
t P

PE
*

=          (3.1) 

where tE  is the nominal exchange rate measured by the units of foreign currency per 

unit of domestic currency. tP  is the price level of the home country, and *
tP  is the price 

level of the foreign country. Using lower case letters to represent the log level of the 

variables, PPP can also be represented as follows:  

  ttt ppe −= *         (3.2) 

The deviation from the PPP or the relative price fundamental pp −* is defined as  

)( *
tttt ppez −−= , which is termed the real exchange rate, has been a subject of 

numerous earlier studies (e.g., Michael, Nobay, and Peel, 1997; Taylor and Peel, 2000; 

Taylor 2002). 

Other studies have also used the monetary fundamental in exchange rate 

determination.  In this case, the parity is usually expressed as  

)()( **
ttttt yymme −−−=        (3.3) 
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where tm is the log of the money supply of the home county, ty  is the log of real income 

of the home country, and ** , tt ym  represent the same variables of the foreign country.  

Hence, the deviation from the monetary fundamental can be defined as 

)]*()*[( yymmez tt −−−−= , which is also used to double check the robustness of the 

main analysis based on the real exchange rate as determined by the price fundamentals. 

3.2.2  Fiscal Policy and Real Exchange Rates 

Compared with the literature on monetary policy and exchange rates, relatively 

few works emphasize the effect of fiscal policy.  The earlier works (e.g., Obstfeld, 1985; 

Frenkel and Razin, 1986; Devereux and Purvis, 1990) typically focus on the potential 

effects of fiscal policy on real exchange rate as real shock or the national income account 

identity. Specifically, government expenditure may change the gap between national 

savings and investments. Hence, an expansionary fiscal policy through either an increase 

in government expenditure or a tax cut in the domestic country will decrease national 

savings, which reduces the supply for the domestic currency and could drive up the real 

exchange rate.  Analogously, an expansionary fiscal policy abroad could reduce the 

foreign country's savings and drive up the interest rate of the foreign country in the 

setting of a small open economy. A higher interest rate thus will reduce the investment 

of the country, which increases the gap between national savings and investments and 

raises the supply of domestic currency. Then, the real exchange rate might fall. These 

works, however, emphasize the additively separable effect of fiscal policy on 

macroeconomic variables and exchange rates, and such additively separable effect is 

usually expressed as a linear regression model.  As we mentioned earlier, additive 
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models often fail to detect the important role that fiscal deficits (or surplus) can play in 

the real exchange rate dynamic adjustments. 

 The recent fiscal theory of price level tends to re-emphasize the importance of 

fiscal policy in the place of monetary policy in the determination of price level and 

exchange rates. In the traditional monetary economics, the price level cannot be 

determined uniquely in the equilibrium. More than one inflation path could exist with 

the equilibrium condition even though the nominal quantity of money is given. In the 

fiscal theory of price level (e.g., Leeper, 1991; Sims, 1994; Woodford, 1995; Canzoneri, 

Cumby, and Diba, 2001), the intertemporal government budget constraint just holds 

under the equilibrium condition. The equilibrium price level is determined by the 

government fiscal policy. Some researchers (e.g., Dupor, 2000; Daniel, 2001) extend the 

fiscal theory of price level to the open economy. After carefully tailoring the models, it 

can lead to the uniqueness of the price level and exchange rates. However, somewhat 

similar to the earlier works on fiscal policy as a real shock, these works also tend to 

focus more on additively separable effects of fiscal policy on exchange rates than on the 

effects of the interactions between monetary and fiscal policies. 

  Recently, many researchers (Sargent, 1999; Dixit and Lambertini, 2003; 

Linnemann and Schabert, 2003; Schabert, 2004) have underscored the potentially 

complex interactions between monetary and fiscal policies. Although specific 

implications from these models may be different, they all emphasize the role of fiscal 

policy as a conditioning information variable indicating the binding constraint of 

monetary policy actions.  As clearly pointed out by Sargent (1999), the administrative 
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independence of central banks does not by itself imply that monetary policy is 

independent of the fiscal decisions of governments. As an aspect of the “unpleasant 

monetarist arithmetic”, if fiscal policy is managed to create a permanent stream of 

deficits, it follows arithmetically that monetary policy must supply a permanent stream 

of seigniorage sufficient to make up the budge shortfall. In this extreme case, monetary 

policy would not be capable of influencing the time path of domestic inflation and thus 

may not affect the exchange rate. Certainly, in the bilateral exchange rate, monetary 

policy and fiscal policy in both countries could matter, though one might dominate the 

other.   

3.3 Econometric Methodology 

Many earlier works (Michael, Nobay, and Peel, 1997; Taylor and Peel, 2000) 

model the nonlinear adjustment of the exchange rate deviation from the fundamentals 

using a smooth transition autoregressive (STAR) model: 

tdtjt

p

j
jjt

p

j
jt uzzzz ++= −−

=
−

=
∑∑ ],[

1

*

1
θφαα      (3.4) 

where ],[ dtz −θφ  is a smooth parametric transition function (e.g., exponential or logistic 

functions), which determines the degree of the mean reversion. Note that to simplify the 

notation, we use tz  to represent the demeaned exchange rate deviation from the 

fundamentals. The underlying premise is that there exists a certain nonlinear adjustment 

process pushing exchange rates returning to the fundamentals in the long run, and the 

adjustment speed depends on how far the exchange rate is away from the prediction of 

the fundamentals.  
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In this paper we choose a flexible functional form, the semiparametric varying 

coefficient model, which nests the STAR model as a special case and is given by: 

tdtdttt ussXz += −− ),( *'β        (3.5) 

where ),....,,,1( 21
'

ktttt zzzX −−−= . dts −  and *
dts −  are state variables, dts −  is fiscal 

deficits of the home country, and *
dts −  is fiscal deficits of the foreign country.  

Note that equation (3.5) can be motivated by the recent literature on the 

interdependence of monetary and fiscal policy. Specifically, based on equation (3.2), we 

can see that when monetary policy in the domestic or the foreign country (or both) is 

adjusted in the earlier periods (at time t-j) to influence the future path of inflation (at 

time t), it certainly affects the future real exchange rate (at time t). Such influence of 

monetary policy in the future real exchange rate can be reflected as the dynamic 

adjustment of real exchange rate over time in equation (3.5). In this context, it should be 

obvious why fiscal deficits are used as the conditioning variables in the equation, as they 

implicitly reflect their role of potential constraints on the monetary policy in the 

domestic and foreign countries. It is also interesting to contrast the motivation here with 

that of many earlier works motivating nonlinear dynamic adjustment.  The earlier works 

(e.g., Michael, Nobay, and Peel, 1997; Taylor and Peel, 2000) motivate the nonlinear 

dynamic adjustment based on commodity arbitrage, and existence of transaction costs 

may render arbitrage infeasible with small deviations.   These works emphasize the 

market-driven mechanism in driving the adjustment. By contrast, our motivation focuses 

on the monetary policy impact on exchange rates via affecting inflation and the existence 

of fiscal deficits as the constraint on the monetary policy effectiveness.   
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We will also consider the following benchmark linear regression model: 

tdtdt

k

j
jjtt usszz ++++= −−

=
−∑ **'

1
γγβα  t=1,…,n  (3.6) 

Similar to Jansen et al. (2007), we use the Generalized Likelihood Ratio (GLR) 

test suggested in Cai, Fan and Yao (2000) to conduct model specification tests. 

Specifically, we conduct model specification test between linear model and varying 

coefficient model. The linear model is the null hypothesis and the varying coefficient 

model is the alternative hypothesis.  The GLR test is calculated from the sums of 

squared residual based on linear model and smooth coefficient model. 
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where tû is the residual from the null hypothesis linear model, and tu~  is the residual 

from the alternative smooth coefficient model. If the GLR statistics is big, we will reject 

the null hypothesis of linear model. 

In Cai, Fan and Yao (2000), a nonparametric bootstrap process is proposed to 

evaluate the p-value of the test. Since the nonparametric estimation is always consistent 

under both null and alternative hypotheses, we bootstrap the centralized residuals from 

the nonparametric varying coefficient model instead of the linear model. Let *
tu  

represent the centralized bootstrap errors based the residual of the vary coefficient 

model. *
tu  follows the ‘wild’ bootstrap distribution conditions (see Li and Wang (1998) 
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for more details). Then we can bootstrap the p-value of GLR test according to the 

following steps: 

Step 1: For t = 1; …, n, centralize the residuals based on smooth coefficient 

model, generate *
tu  according to the ‘wild’ bootstrap distribution conditions, and 

compute **'* ),(ˆ
tdtdttt ussXz += −−β , where ),....,,,1( 21

'
ktttt zzzX −−−= for .,...,1 nt =  

based on bootstrap residual *
tu . 

Step 2: Obtain the least square estimator of using the bootstrap *
tz  
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Then compute the bootstrap OLS residual by *
0

**
,0

ˆ'ˆ βttt Xzu −= . 

 Step 3: Compute the kernel smoothing estimator of varying coefficient model 

),(ˆ **
dtdt ss −−β based on the bootstrap *

tz  
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Here ),( *
ttt ssS =   and )(•hK  is the product kernel. Then compute the 

bootstrap varying coefficient residual by ),(ˆˆ **'**
dtdtttt ssXzu −−−= β  

Step 4: Compute the bootstrap GLR statistics by 
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Step 5: Repeat steps 1- 4 1000 times, and obtain the empirical distribution of the 

*
nGLR  statistics. Find the critical value according to the bootstrap distribution of *

nGLR  

statistics. We use *
,αnGLR  to represent the α  percentile of the empirical distribution. If if 

*
,αnn GLRGLR > , the null hypothesis is rejected at the significance level α .  

3.4 Empirical Results 

3.4.1 Data 

In this paper, we consider US dollar-based exchange rate of G5 countries – U.K., 

Canada, Italy, France, and Japan. Because Germany experienced the reunification in 

1990 that accompanied with substantial increase in fiscal deficits, there obviously exists 

a structure break in the German data. Furthermore, the monthly data for the German 

fiscal deficit, which may give us relatively more observations, is not available. 

Therefore, we decide not to include German here because we cannot conduct meaningful 

analysis using only the quarterly data (only about 60 observations either before or after 

the presumed break in 1990). 

Most of the monthly and quarterly data for US, UK, Canada, Italy, France and 

Japan are obtained from Datastream.  Specifically, Datastream is the source for the 

monthly exchange rate ( tE ), consumer price index ( tP ), real, seasonally adjusted gross 

domestic product ( tY ). 4M  is used for United Kingdom, while 1M is used for all the 

other countries. The government deficit ( tFD ) of United Kingdom is from the website 

of national statistics of U.K. The government deficit of Japan and part of the other Japan 
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data are obtained from the OECD Main Economic Indicators. The government deficit 

data of all the other countries are from Datastream. 

Also, the monthly data of Japan’s government deficit is not available and the 

quarterly data of France is too short (less than 50 observations). Hence, we focus on 

bilateral US dollar-based exchange rates for the two sets of the four countries for both 

monthly and quarterly data. The monthly data covers the period from January 1975 to 

December 2006 for Canadian dollar, from May 1994 to December 2006 for French 

Franc, from January 1987 to December 2006 for Italian lira, from April 1984 to 

December 2006 for British pound.  The quarterly data covers the period from 1975:1 to 

2006:4 for Canadian dollar, from 1980q1 to 2006q4 for Japanese yen, from 1987q1 to 

2006q4 from Italian lira, and from 1982q3 to 2006q4 from British Pound. 

All the data is converted by taking logs. The fiscal deficit data is normalized by 

GDP. The state variables ts  and *
ts here are the U.S. and the other country's change of 

the relative government deficit to GDP (change of the log difference between 

government deficit and GDP), i.e., 

)()(
1

1

−

−−=
t

t

t

t
t GDP

FD
GDP
FD

s  

The US government deficit (normalized by GDP) is approximately from -2.5 to 

2.5 percent (positive number represents government surplus, negative represents 

government deficit). Canadian deficits are lower than U.S., about -1.5 to +1.5 percent. 

France, Italy and U.K. are all higher than U.S. Italy is highest which is from -15 percent 

to over 40 percent.  Figure 3.1 plots quarterly US fiscal deficits and real exchange rates. 
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Figure 3.1: Real Exchange Rate and Fiscal Deficit of U.S. (Quarterly data) 

 

 

3.4.2 Model Specification Tests 

We consider five real exchange rates: Canadian dollar, Italy lira, French franc, 

British pound and Japanese yen. We estimate the model using the real exchange rate as 
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tz  as described by equation (5). To determine the lag, here we apply Hurvich, Simonoff 

and Tsai’s (1998) nonparametric version of corrected Akaike information criterion 

(AICc) due to its impressive finite-sample properties. Specifically, we simultaneously 

choose the lag of the fiscal policy variable and the lags of the real exchange rate variable 

using the nonparametric kernel method.  For monthly data, we allow the maximum lag 

value d up to 7 for the fiscal policy variable, as the impact of the fiscal policy variable 

could last for more than half a year, and chose the value of d (among d=1,2,…,7) that 

minimizes the corrected AIC criteria. We also allow the real exchange rate to have either 

a single lag or the combinations of two different lags, with the maximum lag of up to 3. 

The number of cases considered along this dimension is also 7. Hence, we totally 

consider 49 (=7x7) cases. We estimate all of the combinations using nonparametric 

kernel method and choose the one with the smallest AIC. For the quarterly data, we 

allow the maximum lag up to 5 for the fiscal policy variable and the same maximum lag 

for the real exchange rate. The results of lag length selection of various models are 

reported in Table 3.1. For example, for the Canadian exchange rate model with monthly 

data, we select d=2, j=1 and j=2, which results in the 

model tttttttttt usszsszssz +++= −−−−−−−− ),(),(),( *
2222

*
2211

*
220 βββ . 

Given the selected lags, we test the null hypothesis of linear models against the 

alternative of more flexible varying coefficient models. In Table 3.2, the bootstrap 

critical values, GLR statistics and p-values are reported. 
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Table 3.1: Lag Length Determination of the Real Exchange Rate Models 
Country Differences of the Real Exchange Rates Real Exchange Rates 
  Quarterly Data Monthly Data Quarterly Data Monthly Data 
 j d j d j d j d 
Canada 1 1 1 3 1,2 2 1,2 2 
Italy 1 3 1 4 1 3 1,2 1 
France - - 1 4 - - 1,2 3 
Japan 1 3 - - 1 1 - - 
UK 1 2 1 3 1 2 1 1 

Note: table 3.1 reports selected lag values j and d in 

tdtdtjt

k

j
dtdtt usszssz ++= −−−

=
−− ∑ ),(),( *

1
1

*
0 ββ based on the corrected AIC criterion.  For example, 

for the France exchange rate model with monthly data, we select d=3, j=1 and j=2, which results 
in the model tttttttttt usszsszssz +++= −−−−−−−− ),(),(),( *

3322
*

3311
*

330 βββ . 
 

 

Table 3.2: Testing the Null of a Linear Model (using Real Exchange Rates) 

tdtdt

k

j
jjtt usszzH ++++= −−

=
−∑ **'

1
0 : γγβα  v.s. tdtdttt ussXzH += −− ),(: *'

1 β  

(a) Test results using monthly data 
country Period Obs. Critical Value GLR Prob. 
  (Monthly)   1% 5% 10% 20%     
Canada 01/1975-12/2006 384 0.263 0.234 0.217 0.205 0.286 0.005 
France 05/1994-12/2006 152 0.303 0.243 0.225 0.207 0.214 0.155 
Italy 01/1987-12/2006 240 0.231 0.198 0.180 0.160 0.296 0.000 
UK 04/1984-12/2006 273 0.276 0.242 0.225 0.205 0.230 0.090 

 
(b) Test results using quarterly data 
country Period Obv. Critical Value GLR Prob. 
  (Quarterly)   1% 5% 10% 20%     
Canada 1975q1-2006q4 128 0.475 0.403 0.373 0.336 0.488 0.010 
Italy 1987q1-2006q4 80 0.540 0.445 0.399 0.349 0.451 0.048 
Japan 1973q1-2006q4 136 0.423 0.370 0.343 0.312 0.348 0.088 
UK 1988q1-2006q4 76 0.541 0.473 0.416 0.377 0.500 0.038 

 

 

In the case of monthly data, the linear regression model is rejected at the 1 

percent level for Canada and Italy, and at the 10 percent level for U.K. The nonlinearity 

results are also strong for quarterly data. The GLR statistics show that we reject linear 
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models at the 5 percent level for Canada, Italy and UK, and at the 10 percent for Japan. 

Therefore, we reject linear regression models in favor of the varying coefficient models. 

We will use the varying coefficient model in the econometric analysis in the remaining 

part of this paper. We would also like to mention that, when we estimate linear 

regression models, in almost all the cases considered, we find that the coefficients of 

government fiscal deficit variables are not significantly different from zero, which would 

lead one to reach an incorrect conclusion that the fiscal policy variables do not affect the 

exchange rates movements (based on misspecified linear regression models).  However, 

from the GLR testing results, we know that fiscal policy variables significantly affect 

exchange rates in an non-additive and nonlinear way. 

 

 

Table 3.3: GLR Tests on Insignificance of the Intercept Terms 

0),(: *
00 =−− dtdt ssH β  versus 0),(: *

01 ≠−− dtdt ssH β  

(a) Test results using monthly data 
country Period Obs. Critical Value GLR Prob. 
  (Monthly)   1% 5% 10% 20%     
Canada 01/1975-12/2006 384 0.171 0.139 0.127 0.108 0.061 0.880 
France 05/1994-12/2006 152 0.245 0.179 0.155 0.126 0.058 0.863 
Italy 01/1987-12/2006 240 0.176 0.133 0.111 0.097 0.076 0.440 
UK 04/1984-12/2006 273 0.254 0.219 0.203 0.175 0.085 0.893 

 
 
 (b) Test results using quarterly data 
country Period Obs. Critical Value GLR Prob. 
  (Quarterly)   1% 5% 10% 20%     
Canada 1975q1-2006q4 128 0.561 0.370 0.300 0.245 0.085 0.955 
Italy 1987q1-2006q4 80 0.576 0.500 0.441 0.365 0.177 0.780 
Japan 1973q1-2006q4 136 0.399 0.340 0.309 0.278 0.286 0.178 
UK 1988q1-2006q4 76 0.442 0.334 0.293 0.243 0.093 0.948 
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We further conduct separate tests for testing the null hypothesis that 

),( *
0 dtdt ss −−β =0.  Under this null hypothesis, the fiscal policy variables do not affect 

exchange rates in an additive separable fashion.  The testing results are reported in Table 

3.3. Table 3.3 shows that we cannot reject the null hypothesis of ),( *
0 dtdt ss −−β =0 for all 

the real exchange rates and for either monthly or quarterly data. These results suggest 

that the additively separable response of the real exchange rate to the fiscal deficits 

(i.e., ),( *
0 dtdt ss −−β ) is insignificant using either monthly or quarterly data. The results of 

Table 3.2 and Table 3.3 together suggest that the fiscal deficits serve as state variables 

which affect the exchange rates through their interactions with lagged values of real 

exchange rates (for example, tz depends on ),( *
1 dtdtjt ssz −−− β  for some positive integer j 

and d). 

3.4.3 Real Exchange Rate Adjustment 

In order to explore the dynamics of the real exchange rate adjustment, we plot the 

dynamic response coefficient ),( *
1 dtdt ss −−β (or the sum of ),( *

1 dtdt ss −−β and 

),( *
2 dtdt ss −−β , in the case of multiple coefficients), which is a nonparametric function of 

domestic government deficit dts −  and foreign government deficit *
dts − . We do not plot the 

estimated ),( *
0 dtdt ss −−β , as it is found to be not significantly different from zero. 
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Model: tdtdttdtdttdtdtt usszsszssz +++= −−−−−−−− ),(),(),( *
22

*
11

*
0 βββ  

 
3.2 (a) Canada 

 
 

3.2(b) Italy 

 
Figure 3.2:  Exchange Rate Dynamic Adjustment Coefficients (Quarterly data) 



 

 

64

 

 

3.2(c) Japan 

 
 

3.2(d) UK 

 
Figure 3.2. (Continued) 
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Model: tdtdttdtdttdtdtt usszsszssz +++= −−−−−−−− ),(),(),( *
22

*
11

*
0 βββ  

3.3 (a) Canada 

 
 

3.3 (b) Italy 

 
Figure 3.3:  Exchange Rate Dynamic Adjustment Coefficients (Monthly data) 
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3.3 (c) France 

 
 

3.3 (d) UK 

 
Figure 3.3. (Continued) 
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Following the earlier works on mean reversion using the parametric nonlinear 

models, we first check the mean reverting property in the varying coefficient model.  For 

example, as shown in Figures 3.2 and 3.3, the dynamic response coefficient (or the sum 

of these coefficients in the case of multiple lags) is less than one except some extreme 

points, indicating the global stability of the estimation.  In other words, the figures 

indicate the mean reversion of the real exchange rates while the speed of such reversion 

tends to be low.  The sum of the coefficients for the quarterly data is generally lower 

than that for the monthly data, indicating clearer evidence for mean reversion. Similar 

conclusions also apply to other cases to be considered. 

In order to better understand the 2-dimensional exchange rate response 

coefficients curve ),( *
1 dtdt ss −−β + ),( *

2 dtdt ss −−β  as shown in Figure 3.2, we fix one 

variable and look at the marginal effect of the other variable. When Canada experiences 

fiscal expansion in the earlier period (fix *
dts − <0), the speed of mean reversion is faster 

when the US experiences a fiscal contraction (i.e., dts − >0, a decrease in the US fiscal 

deficits) compared to a US fiscal expansion ( dts − <0).  However, when Canada 

experiences fiscal contraction in the earlier period (fix *
dts − >0), the speed of mean 

reversion becomes slower as the US moves from the fiscal expansion to the fiscal 

contraction. On the other hand, when the US experiences a fiscal expansion (fix dts − <0), 

the exchange rate response coefficients are not much affected, regardless of the fiscal 

expansion or contraction in Canada. This might imply that the US fiscal policy is more 

important than Canadian fiscal policy in determining the bilateral exchange rate. Finally, 
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when US experiences a fiscal contraction (fix dts − >0), the speed of mean reversion 

becomes faster as Canada moves from fiscal expansion to contraction (i.e., from *
dts − <0 

to *
dts − >0). 

In the case of Italy, the lira exchange rate adjustment is also affected by 

interactions between the two countries’ fiscal policy variables. When the US experiences 

a fiscal expansion in the earlier period (fix dts − <0), the speed of mean reversion is faster 

when Italy experiences a fiscal contraction ( *
dts − >0), compared with a fiscal expansion in 

Italy.  However, if the US experiences a fiscal contraction instead, the speed of mean 

reversion becomes slower when Italy moves from the fiscal expansion to the fiscal 

contraction.  On the other hand, when Italy experiences fiscal expansion (fix dts − <0), the 

exchange rate response coefficients are not much affected, regardless of the fiscal 

expansion or contraction in the US. 

The dynamic response coefficients are lower when Japan moves from fiscal 

expansion to fiscal contraction, regardless of fiscal contraction or expansion in the US. 

In this sense, the case of Japan is similar to that of Italy.  In the case of UK, the most 

noticeable pattern is that when the UK experiences fiscal contraction, the British pound 

exchange rate dynamic response coefficient is lower (i.e., the speed of mean reversion is 

faster) when the US also experiences the fiscal contraction compared to the fiscal 

expansion. In summary, for Canadian and the UK real exchange rates, the US fiscal 

contraction is presumably the more dominant of the two countries involved in the 

bilateral exchange rate. When US fiscal contraction is cooperated with fiscal contraction 
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or fiscal expansion in the other country, it can lead to a lower dynamic response 

coefficient and a faster speed of mean reversion of the bilateral real exchange rate. The 

reason why there is more pronounced nonlinear effect of Italian fiscal deficits than the 

US fiscal deficits on the lira exchange rate may lie in the fact that Italian fiscal deficits as 

percentage of GDP are far greater than that of the US and is the highest among G-7 

countries. As for Japan, it is well known for its less exposure to external influence.  

The results for the monthly data (Figure 3.3) largely confirm that the interactions 

of fiscal polices in the two countries affect the exchange rate response coefficients, 

although the nonlinear patterns may be somewhat different in some cases from those for 

quarterly data. It is likely that economic factors and the relative importance of the two 

countries in contributing these factors may weigh differently in driving real exchange 

rate adjustments at different frequencies. The nonlinear effect of fiscal deficits on the 

Canadian dollar dynamic response for the monthly data is not as clear as for the 

quarterly data.  Italy still has a lower dynamic response coefficient when it experiences 

moderate but not large fiscal contraction in the earlier period when the US experiences 

fiscal expansion. Also, when Italy is in fiscal expansion, some moderate (but not large) 

fiscal contraction in the US will lead to a lower response coefficient. The French Franc 

has a lower dynamic response coefficient when France experiences fiscal contraction 

and particularly when the US    also experiences fiscal expansion. Similarly, the British 

pound exchange rate dynamic response coefficient is lower and thus it has a faster speed 

of mean reversion when the UK experiences the fiscal contraction. Hence, the basic 

conclusion mostly remains that a country’s fiscal contraction, if cooperated with certain 
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fiscal policy in the other country, can lead to a lower dynamic response coefficient and a 

faster speed of mean reversion of the bilateral real exchange rate.  

 

 
Table 3.4: Testing the Null of a Linear Model (using Deviations from the Monetary 
Fundamental) 

tdtdt

k

j
jjtmtm usszzH ++++= −−

=
−∑ **'
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,,0 : γγβα  versus tdtdtttm ussXzH += −− ),(: *'

,1 β  

 (a) Test results using monthly data 
country Period Obs. Critical Value GLR Prob. 
  (Monthly)   1% 5% 10% 20%     
Canada 01/1975-12/2006 384 0.268 0.238 0.228 0.214 0.324 0.000 
France 05/1994-12/2006 152 0.322 0.260 0.235 0.213 0.658 0.000 
Italy 01/1987-12/2006 240 0.211 0.186 0.174 0.158 0.472 0.000 
UK 04/1984-12/2006 273 0.308 0.275 0.253 0.230 0.318 0.003 
 
 
(b) Test results using quarterly data 
country Period Obs. Critical Value GLR Prob. 
  (Quarterly)   1% 5% 10% 20%     
Canada 1975q1-2006q4 128 0.503 0.440 0.395 0.355 0.341 0.240 
Italy 1987q1-2006q4 80 0.769 0.583 0.483 0.404 0.628 0.030 
Japan 1980q1-2006q4 108 0.689 0.620 0.585 0.517 0.621 0.050 
UK 1982q3-2006q4 98 0.424 0.362 0.333 0.298 0.358 0.053 

 

 
 
3.4.4 Robustness Checks 

As a robustness check, we replace the real exchange rate tz by another variable 

which can be obtained the same way as tz  except that we replace the price fundamental 

with the monetary fundamental. We use tmz ,  to denote this new dependent variable and 

repeat the analysis using tmz , . In Table 3.4, the GLR statistics indicate rejection of the 

linearity at the 1 percent level for all the four currencies with monthly data, and at the 10 
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percent level for all currencies except for Canada for the quarterly data.  The dynamic 

response coefficient functions are reported in Figure 3.4 for quarterly data and Figure 3.5 

for monthly data.  Figure 3.4 is quite similar to Figure 3.2 based on the price 

fundamental and thus the basic inference remains the same. Perhaps, the only slight 

difference lies in the case of British Pound,   where fiscal contraction in the US 

combined with fiscal expansion (rather than fiscal contraction) in the UK in the earlier 

period coincides with the lower response coefficient and faster speed of mean reversion. 

For the monthly data, similar to Figure 3.3(a), the fiscal policy effect on Canadian 

exchange rate (Figure 3.5(a)) does not have a clear pattern. For other three currencies 

(Italy, France and UK), when they experience fiscal contraction in the earlier period 

( *
dts − >0), the exchange rate response coefficient is generally lower, particularly when the 

US experience fiscal expansion or loosely increase in fiscal deficits ( dts − <0). Overall, 

the basic conclusion remains the same that the role of fiscal expansion in US is likely to 

cause decreasing bilateral exchange rate response coefficients and increasing the speed 

of exchange rate mean reversion, except for Italy whose fiscal deficit (relative to GDP) 

is a magnitude larger than that of US. 



 

 

72

 

tdtdttmdtdttmdtdttmdtdttm usszsszsszssz ++++= −−−−−−−−−−− ),(),(),(),( *
33,

*
22,

*
11,

*
0, ββββ

 
3.4 (a) Canada 

 
 

3.4 (b) Italy 

 
Figure 3.4:  Exchange Rate Dynamic Adjustment Coefficients (Quarterly data, 

Monetary Fundamental)



 

 

73

 

 
3.4 (c) Japan 

 
 

3.4 (d) UK 

 
Figure 3.4. (Continued) 
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3.5 (a) Canada 

 
 

3.5 (b) Italy 

 
Figure 3.5:  Exchange Rate Dynamic Adjustment Coefficients (Monthly data, 

Monetary Fundamental) 
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3.5 (c) France 

 
 

3.5 (d) UK 

 
Figure 3.5. (Continued) 
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3.6 (a) Canada 

 

 
3.6 (b) Italy 

 
Figure 3.6:  Exchange Rate Dynamic Adjustment Coefficients (Quarterly data, first 

differences)
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3.6 (c) Japan 

 
 

3.6 (d) U.K. 

 
Figure 3.6. (Continued) 
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Table 3.5: Testing the Null of a Linear Model (using Differences of Real Exchange 
Rates) 

tdtdt

k

j
jjtt usszzH +++Δ+=Δ −−
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1
0 : γγβα  versus tdtdttt ussXzH +Δ=Δ −− ),(: *'

1 β  

where ),...,,1( 1
'

kttt zzX −− ΔΔ=Δ . 
3.5(a) Test results using monthly data 

country Period Obs. 
  

Critical Value  GLR Prob. 
  (Monthly)   1% 5% 10% 20%     
Canada 01/1975-12/2006 384 0.184 0.164 0.156 0.146 0.226 0.000 
France 05/1994-12/2006 152 0.252 0.216 0.201 0.181 0.287 0.003 
Italy 01/1987-12/2006 240 0.204 0.180 0.168 0.153 0.206 0.010 
UK 04/1984-12/2006 273 0.399 0.315 0.258 0.220 0.301 0.060 

 
 
3.5(b) Test results using quarterly data 

country Period Obs. 
  

Critical Value  GLR Prob. 
  (Quarterly)   1% 5% 10% 20%     
Canada 1975q1-2006q4 128 0.343 0.297 0.273 0.243 0.454 0.000 
Italy 1987q1-2006q4 80 0.542 0.444 0.394 0.338 0.642 0.000 
Japan 1973q1-2006q4 136 0.407 0.371 0.339 0.304 0.451 0.003 
UK 1988q1-2006q4 76 0.741 0.429 0.357 0.307 0.354 0.118 

 

 

As additional robustness check, we also repeat the analysis using tzΔ , the first 

difference of the variable tz , which is clearly stationary. By contrast, the variable tz  

appears to be highly persistent.  In Table 3.5, the GLR statistics indicate rejection of the 

linearity at the conventional significance level for all the four currencies for both 

monthly and quarterly data, with the exception that the linearity null cannot be rejected 

for UK at the 10% level for the quarterly data (with a p-value of 0.118). The estimated 

dynamic response coefficient functions for tzΔ  using the quarterly data are plotted in 
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Figure 3.6. Specifically, when the US moves from fiscal expansion to fiscal contraction, 

the Canadian dollar exchange rate responds less to changes in the earlier period’s 

deviation.  Also, when Italy moves from fiscal expansion to fiscal contraction, the Italian 

lira exchange rate responds less to changes in the earlier period’s deviation. The UK has 

the noticeably lower response coefficient when both the UK and the US have fiscal 

contractions. Japan, however, has the lower response coefficient when the US is close to 

the balanced budget while Japan is in the fiscal expansion.  Overall, the general 

conclusion from Figure 3.6 is in line with the basic findings reported above.  

3.5. Conclusions 

We investigate dynamic adjustment of dollar-based bilateral real exchange rates 

of G5 countries (Canada, Italy, France, Japan and the United Kingdom). We find 

statistically significant evidence of nonlinear real exchange rate adjustments due to 

changes in the fiscal deficit for both monthly and quarterly data.  A country’s fiscal 

contraction, when appropriately cooperated with certain fiscal policy in the other 

country, can lead to a faster speed of mean reversion for bilateral real exchange rates. 

Our results lend support to the argument that monetary authorities can effectively 

influence exchange rates only when they are supported by contractionary fiscal policies.  

Noteworthy, assuming  PPP holds, our findings are generally consistent with the 

evidence in Catao and Terrones (2005) that inflation is nonlinearly dependent on fiscal 

deficits based on a panel data spanning 107 countries and 1960-2001.  Our findings are 

also broadly in line with Andersen et al. (2003) and Ehrmann and Fratzscher (2005), 

who report asymmetric response of exchange rate responses to macroeconomic 
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fundamentals during different economic environments. 

Finally, the results of this paper have some important implications for future 

research. It has been documented, mostly based on parametric additive regression 

models, that commonly used fundamental variables such as inflation, money supply, and 

interest rates have only weak impacts on the determination of exchange rates (mostly 

based on parametric additive linear models). Our study suggests that allowing for non-

additive nonlinear effects of fiscal policy may provide a new avenue in examining the 

relationship between exchange rate and fiscal and monetary policy variables. It might 

also shed more light on other issues such as the documented stronger response of US 

monetary policy to inflation expectations in the post-1980 period (Boivin and Giannoni, 

2006), during which fiscal deficits increased dramatically. In sum, this study, together 

with Jansen et al. (2007),  strongly suggests the importance of modeling fiscal deficits as 

conditioning variables (in  a non-additive nonlinear manner), rather than direct 

information variables (in an  additive linear or nonlinear manner), in empirical analysis 

of monetary policy and the related issues. 
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CHAPTER IV 

 

ESTIMATING AVERAGE TREATMENT EFFECTS WITH DISCRETE 

COVARIATES 

 

4.1 Introduction 

Many researchers work on how to estimate the average treatment effects. This 

technique has been widely applied in labor economics, education and macroeconomics. 

For example, Ichino and Winter-Ebmer (1998) estimate the local average treatment 

effect to access the long-run human capital loss during the World War II. Lechner (1999) 

estimates treatment effects to evaluate the job training program in East Germany after 

unification. In macroeconomics, the macroeconomics policy can also be viewed as 

"treatment" such as dollarization (Edwards and  Magendzo (2003)), foreign exchange 

intervention (Galati, Melick and Micu (2005)), inflation targeting (Lin and Ye (2007)). 

Previous parametric works include the method of instrument variable, propensity 

score matching method (Rosenbaum and Rubin, 1983) or covariates matching method 

(Rubin, 1980). The disadvantages of the parametric way are obvious. The 

misspecification of the parametric index model such as Logit or Probit model will 

impact the magnitude of the treatment effect significantly or even lead to the wrong sign 

of the estimation. So, recent years, more and more researchers begin to investigate the 

nonparametric way to deal with this topic.  
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Many nonparametric estimations deal with the case with continuous variables. In 

practice, sometimes we need to deal with the case with many discrete variables or only 

discrete variables in our econometric model. For example, in the economics of education 

area, many studies look at the impact of treatments such as the impact of charter schools 

attendance (or private school attendance, etc.) on student performance. The left hand 

side variable is a measure of student performance. The right hand side explanatory 

variables include indicators for type of school (0/1 charter/not charter); student mover 

(0/1 moved schools or not); indicators for various student characteristics (e.g. special 

education, gender, race or ethnicity, economically disadvantaged). In macroeconomics 

area, as the examples we just mentioned above, the left hand side could be measures of 

macroeconomic performance such as output, growth rate, inflation, etc. The right hand 

side explanatory variables could include policy treatment variable and other indicators 

for different countries characteristics (e.g. exchange rate regime dummy, openness 

dummy, regional dummy, trade agreement dummy, independence dummy, etc.). 

The traditional nonparametric way to deal with the discrete covariates is 

frequency-based method which splits the data into small “cells”. The first disadvantage 

related to this approach is when the number of cells exceeds the sample size, this sample 

splitting is infeasible. Furthermore, the tests on whether there exists significant treatment 

effects or not based on this frequency approach will lead to a loss of power. This is 

another disadvantage related to the traditional method.  

In this paper, we propose a kernel method to deal with the scenario with only 

discrete covariates. This new approach is based on recently developed least squares 
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cross-validation kernel smoothing method. It can not only automatically smooth the 

irrelevant variables out of the nonparametric regression model, but also avoid the 

problem of loss of efficiency related to the traditional nonparametric frequency based 

method. 

The structure of this chapter will be as follows. We construct the nonparametric 

estimator of average treatment effects in section 4.2. The asymptotic distribution of the 

proposed estimator is discussed here. In section 4.3, we report the Monte Carlo 

simulation results. From mean squared error based on new method and traditional 

frequency-based method, we can find the kernel method performs better than the 

traditional method. Main steps of proof are included in appendix.  

4.2 Estimating Average Treatment Effects with Discrete Covariates 

4.2.1 The Construction of the Estimator 

The construction of the estimator follows the same steps as Li et al. (2007). We 

also follow the same notation as in Li et al. (2007).  

We use a dummy variable t  to denote an individual has been treated or not. If an 

individual i  received a treatment, 1=it . If an individual i  does not received a 

treatment, 0=it . So, { }1,0∈it , for i = 1,…, n. We use iy  to denote the outcome of each 

individual i . For each individual i , if this individual has been treated, the outcome will 

be )1(iy , otherwise the outcome will be )0(iy . Then, a general way to represent the 

outcome will be )( ii ty . For, )1(iy  and )0(iy , we couldn’t observe both of them at the 

same time. Then, we write 
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)0()1()1( iiiii ytyty −+= .       (4.1) 

We are interested in the average treatment effect which is defined as: 

[ ])0()1( ii yyE −=τ .        (4.2) 

ix  represents a series of pre-treatment variables, say q variables. So, ix  is a vector with 

dimension q×1 . As we mentioned above, for each individual i , if he is treated, we 

observe the outcome )1(iy , otherwise we observe the outcome )0(iy . we couldn’t 

observe )1(iy  and )0(iy  at the same time. Without more assumptions, according to 

equation (4.2), we couldn’t estimate the average treatment effect τ  consistently. 

One important assumption we need here is ‘unconfoundedness condition’ which 

has been discussed in Rosenbaum and Rubin (1983). The ‘unconfoundedness condition’ 

is stated as:  

Assumption (A1) (Unfoundedness): 

Conditional on ix , the treatment indicator it  is independent of the potential 

outcome. 

Let )(xτ  denote the average treatment effect conditional on x . This conditional 

treatment effect can be written as, 

[ ]xxyyEx iii =−= |)0()1()(τ       (4.3) 

According to Assumption (A1), it  is independent of the potential outcome, we 

can rewrite the equation (4.3) as 

[ ] [ ]xxtyExxtyEx iiiiii ==−=== ,0|,1|)(τ .    (4.4) 
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Now, if we can consistently estimate the two terms on the right hand side of 

equation (4.4), we can estimate the conditional treatment effect )(xτ . For these two 

terms, [ ]xxtyE iii == ,1|  and [ ]xxtyE iii == ,0| , we can estimate both of them based on 

nonparametric methods. Then, based on Assumption (A1), we can easily calculate the 

average treatment effect by 

[ ])( ixE ττ = .         (4.5) 

We use ( )ii txg ,  to represent right hand term in equation (4.4), [ ]iii txyE ,| . So, 

we have, 

( ) iiii utxgy += ,         (4.6) 

The conditional expectation of iu  is zero, [ ] 0,| =iii txuE . 

Let ( )ixg 0  denotes ( )0, =ii txg , and ( )ixg1  denotes ( )1, =ii txg . We can 

transform the equation (4.6) as following, 

( ) ( ) ( )[ ] iiiiii utxgxgxgy +−+= 010       (4.7) 

( ) ( ) iiii utxxg ++= τ0  

where ( ) ( ) ( )iii xgxgx 01 −=τ . 

According to equation (4.7), we have,  

( ) ( )
( )ii

iii
i xt

xty
x

|var
|,cov

=τ        (4.8) 

Since it  equals to either 0 or 1, so the conditional mean of it  will be,  

( ) ( ) [ ]iiiii xtExtx ||1Pr ≡==μ       (4.9) 

Then, the average treatment effect can be written as, 



 

 

86

 

[ ] ( )
( )⎭

⎬
⎫

⎩
⎨
⎧ −

==
ii

iii
i xt

ytExE
|var

)( μττ .      (4.10) 

Now, we can use nonparametric technique to estimate the average treatment 

effects base on equation (4.10). Different from the case in Li et al. (2007), we’ll focus on 

the case with discrete covariates only. 

4.2.2 Nonparametric Estimator of Average Treatment Effects 

Let sx  represent the s-th component of x . Suppose sx  is a discrete covariates 

with sc  different categories. We give different values to different categories. So, sx  

takes the value from { } ),...,1,2(1,...,1,0 kscc ss =≥− . 

For unordered regressors, we propose using the following kernel function which 

is based on Aitchison and Aitken’s (1976) 

sis

s
ssis

xX
otherwise

when
xxl

=

⎩
⎨
⎧

=
.,

,1
),,(

λ
λ      (4.11) 

When 0=sλ , the kernel function ),,( ssis xxl λ  will change to the standard 

indicator function. When 1=sλ , the kernel function ),,( ssis xxl λ  will change to the 

uniform weight function. So, [ ]1,0∈sλ  for all s=1,…,r. 

For ordered regressors, we propose using the following kernel function, 

.
,

.,
,1

),,(
,

sis

sis
xX

s
ssis xX

xX
if
if

xxl
tti ≠

=

⎩
⎨
⎧

= −λ
λ       (4.12) 
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Same as the unordered case, when 0=sλ , the kernel function ),,( ssis xxl λ  will 

change to the standard indicator function. When 1=sλ , the kernel function ),,( ssis xxl λ  

will change to the uniform weight function. So, [ ]1,0∈sλ  for all s=1,…,r. 

Based on equation (4.11) and (4.12), we can construct the following product 

kernel function,  

),,,(),,(
1

ssis

r

s
i xxlxxL λλ

=
∏=        (4.13) 

When 0≠sλ , we can see the summation of the kernel weight function does not 

equal to one. Since this kernel weight function shows up in both the numerator and 

denominator of the nonparametric estimator, we can multiply the kernel function in both 

numerator and denominator by same non-zero constant number at the same time. So, this 

summation does not equal to one will not affect the following nonparametric estimation 

of )(xμ  in equation (4.15). 

For any Dx∈ , where D is the range of x, we can obtain the probability function 

of )(xp  based on the following equation, 

( ) ( )∑
=

=
n

i
i xXL

n
xp

1
,,1ˆ λ ,       (4.14) 

For conditional expectation of it , we can estimate ( )xxtEx ii == |)(μ  based on 

the following equation (4.15) 

 
( )
)(ˆ

,,
)(ˆ 1

1

xp
xxLtn

x
n

i ii∑=
−

=
λ

μ        (4.15) 
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Now we discuss some special cases. If 0=sλ  for all s=1,…,r, the kernel function 

changes to the indicator function, the new estimator proposed here will change back to 

the frequency-based estimator with discrete covariates which has been discussed in 

previous literature. If 1=sλ  for some s, the kernel function will change to the uniform 

weight function, then the new estimator propose in equation (4.15) will be unrelated to 

sx . In this scenario, the regressor sx  is an “irrelevant” regressor and it will be 

automatically smoothed out from the nonparametric model. 

 Based on least squares cross-validation method with discrete covariates, we find 

the optimal ( )sλλλ ,....,, 21  to minimize the following target function 

( ) ( )[ ]∑
=

−−=
n

i
iii xttCV

1

2ˆλ ,       (4.16) 

where ( )
( )

( )ii

n

ijj jij
ii xp

xxLtn
xt

−

≠=
−

−

∑
=

ˆ

,,
ˆ ,1

1 λ
      (4.17) 

( )ii xt−̂  is the leave-one-out kernel estimator of ( )ii xtE | , and 

 ( )ii xp−ˆ = ( )∑ ≠=

n

ijj jij xxLt
n ,1

,,1 λ       (4.18) 

( )ii xp−ˆ  is the leave-one-out estimator of ( )ixp .  

Let ( )rλλλ ˆ,....,ˆ,ˆ
21  represent the optimal ( )sλλλ ,....,, 21  which minimize the 

equation (4.16) 

 We use sx−  to denote x  without sx , i.e. ( )rsss xxxxx ,...,,..., 111 +−− = , and use 

( )ss DD−  to denote the support of ( )ss xx− .  
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 We call ( )xg  a constant function with respect to sx  if  

 ( ) ( )ssss xzgxxg −− = ,,  for all sss Dzx ∈,  and all ss Dx −− ∈ . 

The equation above means when sx  changes, ( )•g  does not change at all. That is 

sx  is an “irrelevant” variable and it should be removed from the econometric model. In 

this section, we want all the variables are relevant variables here. Thus, ( )xg  is not a 

constant function with respect to sx  for all s=1,…, r. So, we need the following 

assumptions to get the results. 

Assumption (A2) 

 (i). { }n
iiii tyx 1,, =  are independent and identically distributed as { }tyx ,, . Letting D 

denote the support of x , then ( ) ∞<∈ xgDxmax . 

 (ii). [ ]xxyE ii =|2  is bounded on Dx∈ . 

Assumption (A3) The only values of ( )rλλλ ,....,, 21  that make  

( ) ( ) ( ) ( )[ ] ( ){ } 0,, 2
=−∑∑ ∈∈ DzDx

zxLztxtxpxp λ  is 0=sλ  for all s=1,…, r. 

 Assumption (A2).(i) is quite standard. Assumption (A2).(ii) implies that ( )xt  is 

not a constant function for any component ss Dx ∈ . 

 The following result is proved by Li et al (2006). 

Lemma 2.1 Under assumptions (A2).(i) and (A2).(ii), we have  

( )1ˆ −= nOpsλ  for s=1,…, r. 

Lemma 2.1 shows that the least squares cross-validation method selected 

smoothing parameters converge to zero at a fast rate of 1−n . 
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Define ( )iii XtEt |ˆˆ ≡  which denote the kernel estimate of ( )ii XtE | . We have 

i

n

j xxj
i p

Ltn
t ji

ˆ
ˆ 1 ,,

1∑ =
−

=
λ

,       (4.19) 

where ∑ =
−=

n

j xxi ji
Lnp

1 ,,
1ˆ λ  is a kernel estimator of ( )iXp . 

 Based on the results above, we can have the following estimator of average 

treatment effect, τ , by 

( )
( )∑

= −
−

=
n

i ii

iii

tt
ytt

n 1 ˆ1ˆ
ˆ1τ̂ .        (4.20) 

Select optimal ( )rλλλ ˆ,....,ˆ,ˆ
21  based on the least squares cross-validation method. 

The asymptotic distribution of estimated average treatment effect, τ̂ , is given by 

the following theorem. 

Theorem 4.2.1 Under assumptions (A1) to (A2), we have  

( ) ( )VNn ,0ˆ →−ττ  in distribution, 

where ( ) ( )( )i
ii

ii xtV τ
μμ
μ var

1
var +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

= . 

 The proof of Theorem 4.2.1 is given in the appendix. 

4.3 Monte Carlo Simulations 

In this section we conduct some simulations to investigate the finite sample 

property of the proposed test. 

We generate data and design the Monte Carlo simulation according to the 

following steps: 

First, the outcome of treatment effect is generated by 
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( ) ( ) iiiii txxgy ετ ++= 0  

( ) iiiii txxx ετααα ++++= 22110      (4.21) 

where 1x  is an irrelevant discrete variable. It takes four possible value {0, 1, 2, 3} with 

probability, [ ] 2.001 ==xP , [ ] 3.011 ==xP , [ ] 2.021 ==xP  and [ ] 3.031 ==xP . Let 2x  

is a relevant discrete variable. It takes three possible value {0, 1, 2} with probability, 

[ ] 4.001 ==xP , [ ] 2.011 ==xP  and [ ] 4.021 ==xP . 

 Since 1x  is an irrelevant variable and 2x  is a relevant variable, we use 

( ) ( )ττααα ,2/1,0,2/1,,, '
21 =o , and standard deviation of ε  takes value, 2/1=εσ . 

 Second, the Probit model used for estimating the propensity score is give by 

 ,)( 2
2322110 iiiii xxxT ηββββ ++++=      (4.22) 

 
( )

otherwise
Tif

t i
i

5.0
0
1 >Φ

⎩
⎨
⎧

=         (4.23) 

Where ( )•Φ  is a standard normal cumulative distribution function. 

 Since 1x  is an irrelevant variable and 2x  is a relevant variable, we use 

( ) ( )2/1,2/1,0,1,,, '
321 −=ββββ o , and standard deviation of η  takes value, 1=ησ . 

 Here τ  could equal to different values. In this section, we choose τ  equals to {1, 

2, 3}. For each value of τ , we do simulation according to the following steps: 

1. Draw { }21 , xx  randomly from {0, 1, 2, 3} and {0, 1, 2} respectively with 

probability mentioned above. Draw { }εη,  randomly from Normal distribution 

with standard deviation 2/1=εσ  and 1=ησ  respectively. Sample size is n. 
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2. Calculate y according to equation (4.21). Calculate t according to equation (4.22) 

and (4.23). 

3. Calculate it̂  based on equation (4.19); calculate τ̂  based on equation (4.20). 

i

n

j xxj
i p

Ltn
t ji

ˆ
ˆ 1 ,,

1∑ =
−

=
λ

 

( )
( )∑

= −
−

=
n

i ii

iii

tt
ytt

n 1 ˆ1ˆ
ˆ1τ̂  

4. Compute freqτ̂  with 0=λ . 

5. Repeat the above step 1 to 4 1000 times and get 1000 τ̂  and freqτ̂  

6. Calculate mean squared error of τ̂  and freqτ̂  

( )∑
=

−=
M

j
jM

MSE
1

2ˆ1ˆ_ τττ  

( )∑
=

−=
M

j
jfreqfreq M

MSE
1

2
,ˆ1ˆ_ τττ . 

For each λ , we use Brent method and Newton method for line search and 

maximize the CV function based on least squares cross-validation.  

We do simulation based on different sample size n=100, 200, 400. The 

simulation results are reported in table 4.1. In this table, we compare the results based on 

nonparametric least squares cross-validation kernel method and traditional frequency 

based method. We can see the mean squared error based on kernel method is always 

smaller than the mean squared error based on frequency method. Mean squared error 

decreases when sample size n increases. 
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In figure 4.1, we report the histogram of 1λ  and 2λ  with sample size n=100, 200, 

400. We know 1x  is the irrelevant variable, the bandwidth of 1x , 1λ , is close to 1, which 

means 1x  variable is smoothing out from the nonparametric regression model. 2x  is 

relevant variable, the bandwidth of 2x , 2λ , is very small and it decreases when sample 

size n increases. The simulation results are consistent with theoretical prediction. 

 

 

Table 4.1: MSE of Kernel and Frequency Estimators: Average Treatment Effects 

 N=100 N=200 N=400 
τ  τ̂_MSE  freqMSE τ̂_  τ̂_MSE  freqMSE τ̂_  τ̂_MSE  freqMSE τ̂_  

1 0.1704 0.2119 0.0960 0.1575 0.0355 0.0809 
2 0.1354 0.1634 0.0824 0.1470 0.0315 0.0804 
3 0.1104 0.1356 0.0714 0.1400 0.0280 0.0801 
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Figure 4.1: Histogram of 1λ  and 2λ  
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4.4 Conclusion 

In chapter IV, a kernel method to deal with the nonparametric regression model 

with only discrete covariates is proposed.  

The traditional parametric method suffers from misspecification. The traditional 

nonparametric way to deal with the discrete covariates is frequency-based method which 

splits the data into small “cells”. When the number of cells exceeds the sample size, this 

sample splitting approach is infeasible. Furthermore, the tests on whether there exists 

significant treatment effects or not based on this frequency approach may lead to a loss 

of power.  

This new approach proposed in this chapter is based on recently developed least 

squares cross-validation kernel smoothing method. It can automatically detect the 

irrelevant variables and smooth them out of the nonparametric regression model. At the 

same time, it can also avoid the problem of loss of efficiency related to the traditional 

nonparametric frequency based method. 

In this chapter, we construct the nonparametric estimator of average treatment 

effects based on kernel smoothing method and get the asymptotic distribution of the 

proposed estimator. According to the results of Monte Carlo simulation, mean squared 

errors based on new method are always smaller than the mean squared errors based on 

traditional frequency-based method. The kernel method performs better than the 

traditional method.  
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CHAPTER V 

 

SUMMARY AND CONCLUSIONS 

 

There is a debate in the literature concerning the existence and character of 

asymmetry in the response of gasoline prices to crude oil shocks.  Borenstein, Cameron 

and Gilbert (1997) claim that retail gasoline prices respond asymmetrically to crude oil 

price changes, while Bachmeier and Griffin (2003) find no evidence of asymmetry in 

both retail and wholesale gasoline prices if the two-step Engle-Granger estimation 

procedure is used. We also get this result.  That is, using the two-step Engle-Granger 

estimation procedure and assuming homoskedasticity, we can’t reject the hypothesis of a 

symmetric response of gasoline prices to a crude oil price shock.  However, we find that 

the homoskedastic ECM does not pass a battery of diagnostic tests.   

We estimate an ECM with EGARCH errors, as well as several other models 

allowing asymmetry in the conditional variance.  This model does pass our diagnostic 

tests, and our analysis of impulse response functions indicates substantial asymmetry in 

both magnitude of response, speed of response, and persistence.  Thus we conclude that 

asymmetry exists, and it requires estimation of an ECM with heteroskedastic errors in 

order to reliably detect this asymmetry. 

Moreover, we suggest a signal extraction model based on consumer search which 

takes explicit account of both crude oil price volatility and retail gasoline price volatility. 

The model predicts positive correlation between crude oil price volatility and degree of 
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asymmetry and negative correlation between retail gasoline price volatility and 

asymmetry. The empirical result supports the model's prediction. This explanation also 

reconciles the contrary theoretical conclusion in BCG (1997) and empirical evidence in 

Peltzman (2000) and Radchenko (2005). 

In chapter III, I investigate dynamic adjustment of dollar-based bilateral real 

exchange rates of G5 countries (Canada, Italy, France, Japan and the United Kingdom). 

We find statistically significant evidence of nonlinear real exchange rate adjustments due 

to changes in the fiscal deficit for both monthly and quarterly data.  A country’s fiscal 

contraction, when appropriately cooperated with certain fiscal policy in the other 

country, can lead to a faster speed of mean reversion for bilateral real exchange rates. 

Our results lend support to the argument that monetary authorities can effectively 

influence exchange rates only when they are supported by contractionary fiscal policies.  

This research contributes to the literature in two important aspects. First, it fills 

the gap in the literature by allowing for a fiscal policy variable (the changes in fiscal 

deficits) to act as a conditioning variable in modeling exchange rate movements.  

Second, it employs recently developed flexible varying coefficient in econometric 

analysis. This model appears to be particularly suitable for modeling fiscal deficits as a 

conditioning variable.  The idea that fiscal deficits may effectively work as a binding 

constraint on monetary policy can hardly be modeled by a parametric (linear or 

nonlinear) model. From this perspective, the method improves on the popular parametric 

nonlinear smooth transition models used in the real exchange rate mean reversion 

literature. 



 

 

98

 

The results of this chapter have some important implications for future research. 

It has been documented, mostly based on parametric additive regression models, that 

commonly used fundamental variables such as inflation, money supply, and interest rates 

have only weak impacts on the determination of exchange rates (mostly based on 

parametric additive linear models). 

In chapter IV, I propose a kernel method to deal with the nonparametric 

regression model with only discrete covariates. This new approach is based on recently 

developed least squares cross-validation kernel smoothing method. It can automatically 

detect the irrelevant variables and smooth them out of the nonparametric regression 

model. At the same time, it can also avoid the problem of loss of efficiency related to the 

traditional nonparametric frequency based method. 

In this chapter, we construct the nonparametric estimator of average treatment 

effects based on kernel smoothing method and get the asymptotic distribution of the 

proposed estimator. According to the results of Monte Carlo simulation, mean squared 

errors based on new method are always smaller than the mean squared errors based on 

traditional frequency-based method. The kernel method performs better than the 

traditional method. 
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APPENDIX A 

 

 
Note:Horizontal axis has values of ε; vertical axis values of F(λ,ε) 

Figure A1: Logistic Smooth Transition Function for Different Values of λ 
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Figure A2: Mark-up Between Gasoline Price and Crude Oil Price 
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Table A1: Cointegration Analysis on Log of Retail Gasoline Price and Crude Oil 
Price 
(Sample: weekly, 01/21/1991-02/13/2006) 
Unrestricted Cointegration Rank Test (Trace)  

Hypothesized  Trace 0.05  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

None *  0.062059  55.67441  25.87211  0.0000 
At most 1  0.007101  5.573179  12.51798  0.5163 

 **MacKinnon-Haug-Michelis (1999) p-values  
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APPENDIX B 

 

A signal-extraction model of consumer search in the retail gasoline market 

Let cp  denote the crude oil price and igp ,  the gasoline price of gas station i.  Let 

igz ,  be the specific factor related to gas station i.  When a consumer shops at gas station 

i, the gasoline price of this station, igp , , is observable.  Upon seeing this price, the 

consumer decides whether or not to search another gas station.  

 We model the price of gas at station i as consisting of a markup over the 

crude price and an idiosyncratic station – specific component: 

igcig zpp ,, += α  

where 

),(~ 2σcc pNp  and ),0(~ 2
, τNz ig . 

We assume that the crude price and the station-specific idiosyncratic shock are 

i.i.d. normal. 

The consumer's search rule is as follows. When consumers observe that the 

gasoline price igp ,  has changed, they attribute this price change either to a cost change -- 

a crude oil price shock -- or an idiosyncratic change at specific to gas station i, igz , .  If a 

consumer thinks a gasoline price change is due to a crude oil shock, they consider this an 

aggregate shock that is the same for every gas station, so that the gasoline price would 

change proportionally to crude oil prices for every gas station.  In such a case, 

consumers would not search in response to the observed change in gas prices.  If, on the 
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other hand, a consumer thinks a gasoline price change is due to the idiosyncratic shock 

specific to gas station i, igz , , he will choose to search the next gas station.  In this case, 

the consumers decide whether they will keep searching or not, according to the expected 

relative change between gasoline price and crude oil price, )( , cig ppE α− . 

In the above model, we have the following expressions for the variance of 

gasoline prices, and for the covariance between gasoline prices and crude oil prices: 
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In this case, the mean and variance of igp ,  and cp  will be: 
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For the consumers, the gasoline price igp ,  is observable when they reach the gas 

station i, but the crude oil price is unobservable. When the consumers observe the 

change of gasoline price, they will form an expectation of how much the change comes 

from the crude oil price shock and how much from the idiosyncratic shock to a particular 

station.  From a standard information extraction procedure, we have, 
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In this case, the expected markup will be, 
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where 222

22

τσα
σαφ
+

= . 

Note the importance of the variance terms.  When 2σ  increase, φ  increases, so 

φ−1  decreases.  The markup will decrease, ceteris paribus.  Then consumers will tend 

not to search. When 2τ  increases, φ  decreases, and φ−1  increases.  The markup will 

increase, ceteris paribus.  In this case consumers will tend to keep searching.  Further, 

when search behavior increases, the degree of asymmetry in response to crude shocks 

will decrease.  

From our empirical work, both gasoline price and crude oil price volatility 

increased in recent years, and the gasoline price volatility increased more than the crude 

oil price.  This is consistent with the above signal extraction model. 
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APPENDIX C 

 

Proof of Theorem 4.2.1 

From the definition of ),,(),,( 1 sisjs
r
sij xxLxxL λλ =Π= , it is easy to see that 

( )1

1
)(1ˆ)(1),,( −

=

+==⎟
⎠

⎞
⎜
⎝

⎛
+== ∑ nOxxOxxxxL pij

r

s
spijij λλ ,   (C1) 

where we have used ( )1ˆ −= nOpsλ  by Theorem 4.2.1 of Li, Ouyang and Racine 

(2006).  

Given that (18), we immediately have 

( )1~ˆ −+= nOtt pii .        (C2) 

Where ∑∑ ===
j ijijj ji xxxxtt )(1/)(1~  is the frequency-based estimator of 

)|( ii xtE . 

In this appendix we will use the tilde notation to denote a frequency-based 

nonparametric estimator. For example, the frequency-based average treatment effects 

estimator is obtained from τ̂  by replacing it̂  by it
~ , i.e., 

∑
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ytt

n 1 )~1(~
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Recall that ( ) ( )iiiii XtEXt ||1Pr ≡==μ . 
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Define ( )iiiiii XtEttv |−≡−= μ  so that iii vt += μ  and ( ) 0| =ii XvE . From 

∑∑ ===
j ijijj ji xxxxtt )(1/)(1~ , 

∑∑∑∑ ==+====
j ijijj jjj ijijj ji xxxxvxxxx )(1/)(1)()(1/)(1~ μμμ , 

We obtain,  

iii vt ~~~ += μ          (C5) 

Where ∑∑ ===
j ijijj ji xxxx )(1/)(1~ μμ  and 

∑∑ ===
j ijijj ji xxxxvv )(1/)(1~ . From ( ) 0|~ =ii XvE  it is easy to show that 

( ).~ 1−= nOv pi . 

Also note that )1( iiiw μμ −= , )~1(~~
iii ttw −= . 

We further define some intermediate quantities: 
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By adding and subtracting terms we obtain 

)()()~(~ ττττττττ −+−+−=− (( .      (C8) 

Substituting the following identity 
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into ττ −~ , and note that ( ).~ 1−=− nOww pii , we obtain 
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Note that [ ] iiiiii ppp ~/~~~~ μμμμ −=− , and 0)(1)(~~~
1

1 ≡−−=− ∑ =
−

ij
n

j jiiii xxnpp μμμμ , 

we obtain 

0~ =− μμi .         (C11) 

Using iii vt ~~~ += μ , we have 

)~~(~ 22
iiiiii ttww −−−=− μμ  

[ ])~(1)~( iiii tt +−−= μμ  

[ ]iiiiiii vv ~)~(21)~~( −−+−−−= μμμμμ     (C12) 

[ ]iii vv ~21~ −−−= μ , 

since 0~ =− μμi  by (C11). 

 Combining (C10), (C11) and (C12), and note that ( ).~ 1−= nOv pi , we get 
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n
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into equation (C13), we get, 
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with ( )iiii utxz ,,= . 

 Define ( )iiji zHEH |= , then we have (since ( ) 0| =jj xvE ) 
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 Replace ( ) jjjjjjjjjj uvgutgy +++=++= μττ 00  in (33) and note that 

( ) 0| =jj xvE , we obtain 
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 where in the last equality we used 
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Hence, by the U-statistic H-decomposition we have 
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 Next, we consider nJ 2 . Using (C11) we have 
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