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ABSTRACT 

 

 

Estimating Hurricane Outage and Damage Risk in Power Distribution Systems. 

(August 2008) 

Seung Ryong Han, B.S., KunKuk University at Seoul; 

M.S., Korea University at Seoul 

Chair of Advisory Committee: Dr. Seth Guikema 

 

Hurricanes have caused severe damage to the electric power system throughout 

the Gulf coast region of the U.S., and electric power is critical to post-hurricane disaster 

response as well as to long-term recovery for impacted areas. Managing hurricane risks 

and properly preparing for post-storm recovery efforts requires rigorous methods for 

estimating the number and location of power outages, customers without power, and 

damage to power distribution systems. This dissertation presents a statistical power 

outage prediction model, a statistical model for predicting the number of customers 

without power, statistical damage estimation models, and a physical damage estimation 

model for the gulf coast region of the U.S. The statistical models use negative binomial 

generalized additive regression models as well as negative binomial generalized linear 

regression models for estimating the number of power outages, customers without power, 

damaged poles and damaged transformers in each area of a utility company’s service 

area. The statistical models developed based on transformed data replace hurricane 

indicator variables, dummy variables, with physically measurable variables, enabling 

future predictions to be based on only well-understood characteristics of hurricanes. The 

physical damage estimation model provides reliable predictions of the number of 

damaged poles for future hurricanes by integrating fragility curves based on structural 
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reliability analysis with observed data through a Bayesian approach. The models were 

developed using data about power outages during nine hurricanes in three states served 

by a large, investor-owned utility company in the Gulf Coast region.  
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1. INTRODUCTION 

 

In recent years, hurricanes have caused severe power interruption throughout the 

Gulf Coast region of the U.S. For example, the central Gulf Coast region (Louisiana, 

Alabama, Mississippi, Florida and Georgia) has been significantly impacted recently by 

Hurricanes Danny (1997), Georges (1998), Hanna (2002), Isidore (2002), Frances 

(2004), Ivan (2004), Jeanne (2004), Cindy (2005), Dennis (2005), and Katrina (2005). In 

addition to causing considerable direct repair and restoration costs for utility companies, 

hurricane-related power outages and damage to power distribution systems may result in 

loss of services from a number of other critical infrastructure systems leading, in turn, to 

significant delays in post-storm recovery for the impacted region. 

Liu et al. (2005) developed the first rigorous statistical model for estimating 

power outage risk during hurricanes. They developed a generalized linear regression 

model for estimating the spatial distribution of power outages during hurricanes using 

power outage data from past hurricanes in the Carolinas. However, Liu et al. (2005) 

relied on the use of hurricane indicator variables. These are binary variables, one per 

hurricane, that indicate which hurricane a given outage was from. Without including 

these variables in the model, the models of Liu et al. (2005) did not fit the past outage 

data as well. These types of models can be used to predict the spatial distribution of 

power outages from a hurricane that is threatening a utility company’s service area. 

However, one must make assumptions about how to include the binary hurricane 

variables. For example, one could assume that the approaching hurricane is equally 

likely to be like each of the past hurricanes and thus average the effects of the indicator 

variables. However, because the hurricane indicator variables are not tied to measurable 

characteristics of hurricanes, it is difficult to know what aspects of hurricanes they are 

capturing. System managers may place more confidence in a model based on measurable 

characteristics of hurricanes, and such a model would help to improve the understanding 

of the impacts of hurricanes on electric power distribution systems.  

                                                 
 This dissertation follows the style of Journal of Structural Engineering. 
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Past research such as Liu et al. (2005) also focused on modeling only power 

outages, where a power outage is defined as the activation of a protective device. A 

single outage could affect few customers or it could affect hundreds of customers. 

However, the number of customers without power is more aligned with the methods 

utility companies use for pre-hurricane deployment of repair crews and materials. Also, 

it would be helpful to have direct estimates of the amount of actual damage (e.g., broken 

poles and transformers) to power distribution systems during hurricanes. Accurate and 

reliable customer outage predictions and damage predictions can help utility companies 

better manage the effects of hurricanes by providing estimates of the number of 

customers without power at a spatially detailed level and the amount of damage to poles 

and transformers in the distribution system at a spatially detailed level rather than 

estimates of only the number of power outages. This thesis develops, tests, and 

demonstrates models for estimating the spatial distribution of not only electric power 

outages but also the number of customers without power and the amount of damage 

during hurricanes using only measurable characteristics of hurricanes, the power system, 

local geography, and local climate.  

One other researcher took a different, i.e., non-regression, approach to estimating 

risk to power systems during hurricanes. The Caribbean Disaster Mitigation Project 

(1996) developed structural reliability models to estimate damage to power distribution 

system poles. The Caribbean Disaster Mitigation Project (1996) included hurricane 

simulation modeling together with a structural analysis of the poles in the power 

distribution system to account for the effects of hurricane-related wind. However, this 

study considered only flexural damage to poles under wind loads in their structural 

reliability model, not foundation failure. In this thesis, fragility curves for power 

distribution system poles considering foundation failure are developed.  In addition, this 

thesis combined the information provided by structural reliability methods with the 

information contained in actual failure data through a Bayesian approach. 

This study developed statistical models for predicting the number of power 

outages, customers without power, damaged poles and damaged transformers for 3.66 
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km (12,000 foot) by 2.44 km (8,000 foot) grid cells covering a company’s service area 

for an approaching hurricane while relying only on information that is measurable prior 

to the hurricane making landfall. These models were based on information about the 

hurricane, the power system, and the local climatology and geography. The data was 

supplied by a large, investor-owned utility company serving the Gulf Coast region. I 

used generalized linear models (GLMs) and generalized additive models (GAMs), a type 

of model appropriate for regression analysis of count data. However, GLMs and GAMs 

are based on the assumption that the explanatory variables are statistically independent 

of each other. Regression modeling based on highly correlated input data (i.e., collinear 

data) can lead to poor estimation of regression parameters, and the input data analyzed in 

this study are highly correlated. To avoid the collinearity problem, the data was 

transformed through principal components analysis (PCA) as will be discussed in detail 

below. The resulting models provide predictions of the number of outages, customers 

without power, damaged poles, and damaged transformers that can help a utility 

company better manage the effects of hurricanes by pre-positioning and deploying repair 

personnel and materials prior to a hurricane making landfall.  
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2. BACKGROUND† 

 

2.1 Generalized Linear Models 

A standard model for count data such as power outages is the Poisson 

generalized linear regression model. Let the vector of the n explanatory variables for 

grid cell i (i = 1,…,m) be given by [ ]niii xxx ,...,1
' =v  and the number of power outages in 

grid cell i be given by iy . A regression model based on the Poisson distribution for the 

counts conditional on the observed values of the explanatory variables specifies that the 

conditional mean of the counts is given by a continuous function, ( )ixr
v
,βμ , of the 

covariate values as specified in equation (2.1), where β
v  is the n x 1 vector of regression 

parameters (e.g., Cameron and Trivedi 1998). 

  [ ] ( )iii xxyE rvv ,| βμ=        (2.1) 

Conditional on '
ixv , the probability density function assumed for yi in a Poisson regression 

model is given, for non-negative integers iy , by: 

( )
!

|
i

y
i

ii y
e

xyf
ii μμ−

=
r        (2.2) 

We use the standard log link function to specify the conditional mean. That is, 

we assume that [ ] ( )β
vrv 'exp| iii xxyE = . This model is called a Poisson Generalized Linear 

Model (GLM) because it generalizes standard multivariate linear regression to 

incorporate a different conditional likelihood function for Poisson-distributed count data. 

It is a convenient and widely used model, but it is based on the assumption that the 

conditional mean and the conditional variance, given by ωi, of the count data are equal: 

( )βωμ
vr 'exp iii x==         (2.3) 

This strong assumption of a conditional variance equal to the conditional mean is not a 

valid assumption for some count data sets, including the outage data used in this study. 

                                                 
† This material is adapted from Han et al. (2008a, 2008b, 2008c) where this material is presented in a 
similar form. 
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In many cases, the data is overdispersed relative to the Poisson model, meaning that the 

conditional variance is greater than the conditional mean.  

One method for modeling overdispersed data is to use a negative binomial GLM. 

With a negative binomial GLM, the count data are assumed to follow a negative 

binomial probability density function conditional on '
ixv  and α, the overdispersion 

parameter, as shown in equation (2.4) 

 ( ) ( )
( ) ( )

iy

i

i
ii y

y
xyf ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Γ+Γ

+Γ
= −−

−

−

−

μα
μ

μα
α

α
α

α
α

11

1

1

1

1
,| r      (2.4) 

where ( )βμ
vr 'exp ii x=  as for the Poisson GLM (Cameron and Trivedi 1998). The variance 

of the count data under a negative binomial model is 2
iii αμμω += (e.g., Cameron and 

Trivedi 1998). This model can be derived in a number of ways, one of which is by 

starting with a Poisson GLM and adding a gamma-distributed random term with mean 1 

and variance α to the link function (Cameron and Trivedi 1998). This type of model was 

used in estimating power outages from hurricanes in the southeastern U.S. by Liu et al. 

(2005). Liu et al. (2008) extended this approach by using a Generalized Linear Mixed 

Model (GLMM) to examine the importance of spatial correlation in statistical power 

outage estimation models. Because Liu et al. (2008) showed that including spatial 

correlation through the GLMM framework did not significantly improve model fit, I 

used the simpler GLM modeling framework in this study. 

 

2.2 Generalized Additive Models 

As with a GLM, a GAM is composed of a random component, an additive 

component, and a link function. A GAM is different from a GLM in that an additive 

predictor replaces the linear predictor. That is, the linear form j j
j

xα β+ ∑  is replaced 

with the additive form ( )j j
j

f xα + ∑  where fi(xi) is a function that smoothes the jth 

component of X. More specifically, a GAM generally assumes that the response Y has a 
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distribution with the mean ],,[ 1 pXXYE LL=μ  linked to the predictor via a link 

function 

∑
=

+=
p

j
jj Xfg

1
)()( αμ        (2.5) 

where each jf  is a smoothing function of a specified class of functions estimated non-

parametrically (Hastie and Tibshirani 1990). While the nonparametric form of jf  makes 

the model more flexible, the additivity is retained and allows one to fit the model in 

much the same way as GLMs. This approach allows the form of the relationship between 

the explanatory variables and the measure of interest, here power outages during 

hurricanes, to be estimated directly from the data. 

 

2.3 Model Fitting and Measuring Goodness of Fit 

I used three different methods to compare fitted models for a data set. The first is 

the deviance of the fitted models, defined as (Cameron and Trivedi 1998): 

( )max2 log log fitteddeviance L L= − −       (2.6) 

where logLmax is the maximum log-likelihood achievable and logLfitted is the log-

likelihood of the fitted model. In comparing models, a lower deviance is preferred. A 

formal hypothesis test for comparing two models can also be defined based on the 

deviances of the models. A likelihood ratio test is a formal hypothesis test using the 

difference in deviance between two nested models. This difference in deviance is 

approximately χ2 distributed with the degrees of freedom equal to the number of 

parameters by which the models differ (e.g., Cameron and Trivedi 1998, Agresti 2002). 

While this provides a formal comparison of the models, it is only valid when the set of 

covariates, also referred to as explanatory variables, used in one model is a subset of the 

covariates included in the other model. 

The second and third methods used for comparing different models are based on 

pseudo-R2, measures of the fit of a GLM that are meant to provide similar insights as R2 

does in linear regression. There are different definitions of pseudo-R2, depending on 
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what one wishes to measure. One common psedo-R2 is R2
dev, a deviance-based pseudo-

R2. R2
dev is defined as (Cameron and Trivedi 1998): 

( )
( )

2 ˆ,
1

,dev

D y
R

D y y
μ

= −         (2.7) 

where ( )ˆ,D y μ  is the deviance of the fitted model and ( ),D y y  is the deviance of the 

intercept-only model. This pseudo-R2 thus measures the reduction in deviance achieved 

by including regression parameters. An alternate pseudo-R2 can be defined based on α, 

the overdispersion parameter of the model (e.g. Liu et al. 2005). This pseudo-R2, defined 

in equation (2.8), measures the reduction in variability above the Poisson model (i.e., the 

amount of variability not due to Poisson variability about the mean) due to the inclusion 

of regression parameters. 

2

0

1devR α
α

= −          (2.8) 

In equation (2.8), α is the overdispersion parameter for the fitted model and α0 is the 

overdispersion parameter for the intercept-only model. 

 

2.4 Principal Components Analysis 

One of the problems often encountered when fitting regression models to data is 

that the covariates may be correlated, violating one of the assumptions underlying 

regression modeling. High degrees of correlation lead to unstable estimates of regression 

parameters with standard regression approaches. This means that the parameter estimates 

are highly sensitive to the particular set of data used to fit the model, leading to potential 

problems with the predictive ability of the fitted model. There are two main approaches 

for overcoming this difficulty, changing the model used or transforming the data to 

remove correlation problems. In this study I used a data transformation method called 

Principal Components Analysis (PCA). 

A Principal Component Analysis (PCA) is a mathematical procedure that 

transforms the data set to a new orthogonal coordinate system such that the transformed 

data are mutually orthogonal. This means that the transformed data are not correlated. 
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The transformation can be done by decomposing the data matrix, xv , into its eigenvalues 

and eigenvectors. The eigenvalues are a measure of the variance of each of the elements 

of xv , and the eigenvectors are used to transform the data into orthogonal vectors. The 

results of a PCA are a vector of the eigenvalues, a matrix of the eigenvectors, and a 

matrix of the transformed data. The transformed data can then be used for fitting 

regression models. 

The PCA was done in the program R using the “prcomp” command which is 

done by a singular value decomposition of the standardized data to obtain principal 

components for the covariance matrix. The commands history and the results of the PCA 

are given in Appendix A where the eigenvectors are referred to as loadings. These 

loadings would are used to transform data into the principal components by taking a 

weighed linear combination of the original data, where the weights are given by the 

eigenvectors. This approach allowed me to overcome the problem of high degrees of 

correlation in the input data for my models. 

 



 9

3. DATA DESCRIPTION‡ 

 

The models developed in this thesis are based on data provided by a large, 

investor-owned utility company in the Gulf Coast region. This company serves much of 

the central Gulf Coast region, and the statistical models in this thesis are based on 

covering this service area with 3.66 km (12,000 foot) by 2.44 km (8,000 foot) grid cells. 

I have data from the utility’s service area in three Gulf Coast states, which I will refer to 

as States A, B, and C in order to protect the identity of the data provider. There are 6,681 

grid cells for State A, 602 grid cells for State B, and 7,330 grid cells for State C. I used 

data on outages during 5 hurricanes (Danny, Dennis, Georges, Ivan, and Katrina) in 

State A, during 3 hurricanes in State B (Dennis, Ivan, and Katrina), and during 8 

hurricanes in State C (Cindy, Dennis, Frances, Hanna, Isidore, Ivan, Jeanne, and 

Katrina).  

 

3.1 Hurricane Characteristic Data 

In order to capture the characteristics of the wind field during a given hurricane, I 

used estimates of the maximum 3-second gust wind speed and the length of time that the 

winds were above 20 m/s (44.7 miles per hour) for each grid cell based on the hurricane 

wind field model developed by Huang et al. (2001), the same model that was used in an 

earlier study of power outages during hurricanes in North and South Carolina (Liu et al. 

2005). In this hurricane wind field model, reconnaissance flight data is used to develop a 

gradient-level wind estimate model based on Georgiou’s wind field model (Georgiou 

1985) and the hurricane decay model of Vickery and Twisdale (1995). This model 

produces an estimate of the gradient-level wind speed throughout the duration of a 

hurricane at the center of each grid cell. This estimated wind speed was then converted 

to a “surface wind speed”, the wind speed estimated at a height of 10 m in an assumed 

open exposure location, by using a multiplicative gradient-to-surface conversion factor. 

                                                 
‡ The data used in this thesis is the same as that used in Han et al. (2008a, 2008b, 2008c). The description 
of the data given in this section is adapted from a combination of the data description sections of these 
three papers. 
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The gradient-to-surface conversion factor was taken to be 0.72 for sites more than 10 km 

from the coast, 0.80 for sites within 10 km from the coast, and 0.90 for sites adjacent to 

the sea as suggested by Rosowsky et al. (1999). I did not attempt to use different 

conversion factors based on records of local land cover types. I also did not correct for 

local topography effects because I did not have enough detailed information to include 

this in the model. Figure 3.1 shows the surface wind speeds on two sites as an example 

of comparison between estimated wind speeds by using the hurricane wind field model 

and measured wind speeds. The wind speeds of the left plot represent the wind on the 

site located right on the track of hurricanes, showing a vortex shape of hurricanes. The 

wind speeds of the right plot shows typical pattern of wind speeds during hurricanes, 

indicating when the hurricane made landfall.  

 

 
Figure 3.1. Surface wind speed comparison in State A for Hurricane Katrina.  

 

Based on the results of Liu et al. (2005), I initially included hurricane indicator 

variables in my statistical models. These variables are binary variables in the regression 

model signifying which hurricane a given outage is from, and these variables may 

capture additional features of the hurricane not captured with the wind speed variables. 

However, as discussed above, it would be preferable to be able to use measurable 

characteristics of hurricanes rather than binary hurricane indicator variables. One of the 

main advances in the model presented in this section is that it uses input variables that 

are measurable prior to a hurricane making landfall rather than hurricane indicator 
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variables while still providing fits to the outage data that equal or exceed those of a 

model that includes hurricane indicator variables. 

 

3.2 Fractional Soil Moisture Anomalies§  

I included additional variables that help to explain the variability of outages 

across a service area and between different hurricanes. One of these variables dealt with 

soil moisture levels. Soil moisture is thought to impact the stability of poles and trees, 

with highly saturated soil potentially increasing both the likelihood of poles being blown 

over and the likelihood of trees being blown onto poles and power lines during 

hurricanes. To account for this, I calculated fractional soil moisture anomalies at the time 

of hurricane landfall to represent the degree of soil saturation at different depths in the 

soil and included this information in the statistical model. 

Soil moisture was simulated for each of the grid cells using the Variable 

Infiltration Capacity (VIC) model. The VIC model is a semi-distributed hydrological 

model that is capable of representing subgrid-scale variations in vegetation, available 

water holding capacity, and infiltration capacity (Liang et al. 1994, 1996a, 1996b). The 

influence of variations in soil properties, topography, and vegetation within each grid 

cell are accounted for statistically by using a spatially varying infiltration capacity. VIC 

utilizes a soil-vegetation-atmosphere transfer scheme that accounts for the influence of 

vegetation and soil moisture on land-atmosphere moisture and energy fluxes and these 

fluxes are balanced over each grid cell (Andreadis et al. 2005). The model has been 

utilized in basin-scale hydrological modeling (Abdulla et al. 1996, Cherkauer and 

Lettenmaier 1999, Nijssen et al. 1997, and Wood et al. 1997), continental-scale 

simulations associated with the North American Land Data Assimilation System 

(NLDAS) (Maurer et al. 2002), and global-scale applications  Nijissen et al. (2001).  A 

thorough evaluation of VIC was undertaken as part of NLDAS and the results indicated 

that soil moisture is generally well simulated by the VIC model (Robock et al. 2003). 

                                                 
§ The soil moisture data used in this study was provided by Dr. Steven Quiring and his students from the 
Department of Geography. Creating this input to the statistical model was not part of the author’s Ph.D. 
research. 
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These findings are supported by a recent soil moisture model evaluation which 

demonstrated that the VIC model accurately simulated the wetting and drying of the soil 

(Meng and Quiring 2007). 

The VIC model was forced using station-based measurements of daily maximum 

and minimum temperature and precipitation. Daily 10 m wind speeds from 

NCEP/NCAR reanalysis were also used. Additional meteorological and radiative 

forcings such as vapor pressure, shortwave radiation, and net longwave radiation were 

derived using established relationships with maximum and minimum temperatures, daily 

temperature range, and precipitation. Soil characteristics were extracted from the Natural 

Resource Conservation Service’s State Soil Geographic Database (STATSGO). Land 

cover and vegetation parameters were derived using the global vegetation classification 

developed by Hansen et al. (2000). 

Soil moisture was simulated by VIC in three layers. In this study, the depth of the 

first soil layer is 10 cm, the depth of the second soil layer varied from 30 to 50 cm and 

the third soil layer varied from 40 to 60 cm. Total soil depth (sum of the three layers) 

was 1 m at all grid cells. Modeled soil moisture data were initially reported as a depth 

(mm) and then were converted to a percentage of total capacity (fractional soil moisture) 

for each layer. One advantage of expressing soil moisture as a fraction of total capacity 

is that it controls for spatial differences in layer depth, bulk density, particle density, and 

soil porosity, and allows soil moisture from different locations to be directly compared. 

VIC was run at 1/2 degree (latitude/longitude) resolution and then downscaled to the 

resolution of the utility company grid (12,000 ft by 8,000 ft) using an Inverse-Distance 

Weighting (IDW) algorithm (radius of influence = 100 km). For each hurricane, 

fractional soil moisture was calculated for the 7 days before landfall. 

 

3.3 Precipitation 

Long-term precipitation is one of the drivers in the distribution of plant 

communities over an area, and some types of plant communities may pose higher risks 

to power distribution lines during hurricanes. For example, some types of trees such as 
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pines may be more susceptible to being blown onto power lines during a hurricane than 

others, potentially increasing the risk of power outages. Unfortunately, geographically 

detailed data about the distribution of plant communities is not available for the three 

states under consideration. To help account for this source of spatial heterogeneity in 

outage risk associated with precipitation, I included two measures of long term 

precipitation – mean annual precipitation and a Standardized Precipitation Index.  

Mean annual precipitation (mm) was calculated for each of the grid cells based 

on daily precipitation data from 1915–2004. Daily precipitation data was acquired from 

the National Oceanic and Atmospheric Administration (NOAA) Cooperative Observer 

(COOP) network. Mean annual precipitation was calculated at each 1/2 degree grid cell 

and then downscaled to the utility company grid using an Inverse-Distance Weighting 

(IDW) algorithm (radius of influence = 100 km). Mean annual precipitation is thought to 

be related to the types of plants that would tend to grow in a given area. 

The Standardized Precipitation Index (SPI) provides a simple and versatile 

method for quantifying antecedent precipitation (McKee et al. 1993 and 1995). The SPI 

is a statistical measure of the deviation of precipitation from normal levels and it can be 

calculated for any time period of interest. The SPI is spatially invariant, meaning that the 

definition of SPI does not depend on spatial location, (Guttman 1998, Heim 2002, and 

Wu et al. 2007) and so values of the SPI can readily be compared across time and space. 

The SPI is influenced by the normalization procedure (e.g., a probability density 

function) that is used. The National Drought Mitigation Center (NDMC), Western 

Regional Climate Center (WRCC), and National Agricultural Decision Support System 

(NADSS) all use the two-parameter gamma probability density function (PDF) to 

calculate SPI.  However, there is little consensus about what normalization procedure is 

best. Guttman (1999) analyzed six different PDFs and determined that the Pearson Type 

III was the most appropriate PDF for calculating SPI. Therefore, this PDF was used to 

generate the SPI values for this study. 

SPI was calculated using monthly precipitation data (1915-2005) at each of the 

1/2 degree (latitude/longitude) grid cells described in the previous section. The SPI was 
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calculated for six different time periods (1, 2, 3, 6, 12, and 24-months). This provides a 

means to account for antecedent moisture conditions for a variety of pre-storm time 

frames, each based on deviations from long-term precipitation patterns. The SPI data 

was downscaled to the utility company grid using an Inverse-Distance Weighting (IDW) 

algorithm (radius of influence = 100 km). The SPI data was only utilized for the months 

during which hurricanes occurred. 

 

3.4 Land Cover 

I also used information about land cover and land use in out statistical outage 

models in order to try to capture differences in outage rates for different land uses. For 

example, commercial areas may have different outage rates than rural areas, even given 

equal values for the other explanatory variables. The land cover data I used is publicly 

available in the National Land Cover Database (NLCD) 2001 (NLCD 2001), which is 

available from the United States Geological Survey (USGS) Seamless website 

(http://seamless.usgs.gov/). The NLCD 2001 provides data with a resolution of 1 arc-

second (approximately 30 m) for each of 21 land cover classes. I categorized the 21 land 

cover classes into 8 aggregated classes according to starting numbers of the original 21 

classes. This yielded 8 coherent land covers types: water, developed (including 

residential, commercial, and industrial), barren, forest, scrub, grass, pasture, and wetland.  

Land cover and land use were obtained by using the program “ArcView”. One hundred 

points were generated in each grid cell and then matched with the land cover data 

available in USGS with ArcView using the “Join” command. Finally, I got land cover 

and land use percentage in each grid cell.  

 

3.5 Power System Data 

In addition to information discussed above, I included information about the 

power system obtained from the utility companies. This includes the number of 

transformers, poles, switches, customers, and the miles of overhead in each grid cell. In 
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addition, I was provided the miles of underground line in each grid cell for the State A 

and the number of poles in each grid cell for the States A and C.  

 

3.6 Summary of Data 

The explanatory variables used in my statistical model are as follows: 

• yi,Outages: Number of outages in grid cell i  

(State A : mean = 0.92, standard deviation = 3.60, minimum = 0, maximum = 156 

State B : mean = 12.78, standard deviation = 32.66, minimum = 0, maximum = 461 

State C : mean = 0.13, standard deviation = 0.85, minimum = 0, maximum = 32) 

• yi,Customers: Number of customers without power in grid cell i  

(State A : mean = 92.5, standard deviation = 537.69, minimum = 0, maximum = 

21,321 

State B : mean = 980, standard deviation = 3505.35, minimum = 0, maximum = 

40,725 

State C : mean = 0.54, standard deviation = 16.68, minimum = 0, maximum = 2,133) 

• xi,t: Number of transformers in grid cell i  

(State A : mean = 87.63, standard deviation = 145.69, minimum = 0, maximum = 

1,525 

State B : mean = 197.6, standard deviation = 271.87, minimum = 0, maximum = 

1,428 

State C : mean = 82.61, standard deviation = 175.94, minimum = 0, maximum = 

1,440) 

• xi,p: Number of poles in grid cell i  

(State A : mean = 234.9, standard deviation = 373.62, minimum = 1, maximum = 

4,311 

State C : mean = 170.8, standard deviation = 327.16, minimum = 0, maximum = 

3,852) 

• xi,o: Length of overhead line in grid cell i (in miles) 

(State A : mean = 8.58, standard deviation = 8.89, minimum = 0, maximum = 98.88 
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State B : mean = 12.69, standard deviation = 14.76, minimum = 0.12, maximum = 

86.14 

State C : mean = 20.52, standard deviation = 31.57, minimum = 0, maximum = 

231.23) 

• xi,u: Length of underground line in grid cell i (in miles) 

(State A : mean = 0.82, standard deviation = 3.67, minimum = 0, maximum = 58.29) 

• xi,s: Number of switches in grid cell i  

(State A : mean = 13.16, standard deviation = 28.42, minimum = 0, maximum = 447 

State B : mean = 45.07, standard deviation = 67.19, minimum = 0, maximum = 438 

State C : mean = 17.22, standard deviation = 39.12, minimum = 0, maximum = 482) 

• xi,c: Number of customers in grid cell i  

(State A : mean = 181.9, standard deviation = 559.62, minimum = 0, maximum = 

9,659 

State B : mean = 588.3, standard deviation = 1,026.42, minimum = 0, maximum = 

6,253 

State C : mean = 283.3, standard deviation = 869.96, minimum = 0, maximum = 

15,281) 

• xi,m: Maximum 3-second gust wind speed in m/s  

(State A : mean = 21.52, standard deviation = 12.28, minimum = 5.04, maximum = 

52.56 

State B : mean = 35.41, standard deviation = 9.63, minimum = 17.14, maximum = 

57.51 

State C : mean = 15.85, standard deviation = 6.88, minimum = 6.48, maximum = 

50.85) 

• xi,d: Duration of strong winds (length of time the wind speed was above 20 m/s) 

in minutes  

(State A : mean = 8.78, standard deviation = 8.83, minimum = 0, maximum = 41.83 

State B : mean = 15.8, standard deviation = 7.63, minimum = 0, maximum = 29.83 

State C : mean = 2.53, standard deviation = 5.41, minimum = 0, maximum = 26) 
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• xi,Cindy, xi,Dennis, xi,Frances, xi,Hanna, xi,Isidore, xiIvan, xi,Jeanne: Hurricane indicator 

variables that equal one if the outages occurred during the given hurricane and 

zero otherwise. Note that for outages occurring during Hurricane Katrina, all of 

the hurricane indicator variables are zero. 

• xi Time : Time since the last hurricane landfall in months 

(State A : mean = 23.6, standard deviation = 25.05, minimum = 1, maximum = 72 

State B : mean = 27.67, standard deviation = 31.57, minimum = 1, maximum = 72 

State C : mean = 10.38, standard deviation = 16.28, minimum = 0, maximum = 48) 

• xi Pressure : Central pressure deficit (∆P) in mb where ∆P = 1013 – Pc with Pc 

being the central pressure when the hurricane makes landfall 

(State A : mean = 60, standard deviation = 22.82, minimum = 24, maximum = 93 

State B : mean = 75.67, standard deviation = 12.26, minimum = 67, maximum = 93 

State C : mean = 50.5, standard deviation = 26.05, minimum = 10, maximum = 93) 

• xi RMW : Radius of maximum winds in km 

(State A : mean = 37.25, standard deviation = 4.98, minimum = 28.59, maximum = 

43.11 

State B : mean = 34.03, standard deviation = 3.85, minimum = 28.59, maximum = 

36.9 

State C : mean = 37.51, standard deviation = 4.94, minimum = 28.59, maximum = 

43.82) 

• xi FSM1 : Fractional soil moisture anomalies at a depth of 0 cm to 10 cm  

(State A : mean = 0.12, standard deviation = 0.04, minimum = -0.11, maximum = 

0.13 

State B : mean = 0.04, standard deviation = 0.02, minimum = -0.02, maximum = 0.1 

State C : mean = 0.02, standard deviation = 0.04, minimum = -0.15, maximum = 

0.16) 

• xi FSM2 : Fractional soil moisture anomalies at a depth of 10 cm to 40 cm  

(State A : mean = 0.01, standard deviation = 0.05, minimum = -0.18, maximum = 

0.13 
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State B : mean = 0.02, standard deviation = 0.03, minimum = -0.05, maximum = 

0.09 

State C : mean = 0.03, standard deviation = 0.05, minimum = -0.16, maximum = 

0.15) 

• xi FSM3 : Fractional soil moisture anomalies at a depth of 40 cm to 140 cm  

(State A : mean = 0.01, standard deviation = 0.05, minimum = -0.12, maximum = 

0.31 

State B : mean = 0.76, standard deviation = 0.03, minimum = -0.06, maximum = 

0.08 

State C : mean = 0.05, standard deviation = 0.09, minimum = -0.16, maximum = 0.4) 

• xi MAP : Mean annual precipitation in mm  

(State A : mean = 1,436, standard deviation = 63.82, minimum = 1,300, maximum = 

1,648 

State B : mean = 1,601, standard deviation = 63.76, minimum = 1,424, maximum = 

1,666 

State C : mean = 1,296, standard deviation = 94.73, minimum = 1,151, maximum = 

1,686) 

• xi SPI1 : Standardized Precipitation Index (1 month) 

(State A : mean = 0.61, standard deviation = 0.87, minimum = -1.9, maximum = 2.94 

State B : mean = 0.66, standard deviation = 0.27, minimum = 0.03, maximum = 1.31 

State C : mean = 1.28, standard deviation = 0.7, minimum = -0.76, maximum = 3.07) 

• xi SPI2 : Standardized Precipitation Index (2 months) 

(State A : mean = 0.92, standard deviation = 0.74, minimum = -2.01, maximum = 2.7 

State B : mean = 0.77, standard deviation = 0.29, minimum = 0.12, maximum = 1.24 

State C : mean = 1.23, standard deviation = 0.68, minimum = -1.08, maximum = 

3.07) 

• xi SPI3 : Standardized Precipitation Index (3 months) 

(State A : mean = 0.88, standard deviation = 0.66, minimum = -1.62, maximum = 

2.33 
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State B : mean = 0.76, standard deviation = 0.34, minimum = -0.1, maximum = 1.3 

State C : mean = 0.91, standard deviation = 0.65, minimum = -1.67, maximum = 

2.69) 

• xi SPI6 : Standardized Precipitation Index (6 months) 

(State A : mean = 0.64, standard deviation = 0.53, minimum = -0.88, maximum = 

2.02 

State B : mean = 1.19, standard deviation = 0.56, minimum = 0.15, maximum = 1.93 

State C : mean = 0.62, standard deviation = 0.75, minimum = -1.42, maximum = 

2.18) 

• xi SPI12 : Standardized Precipitation Index (12 months) 

(State A : mean = 0.64, standard deviation = 0.64, minimum = -1.09, maximum = 

1.93 

State B : mean = 1.08, standard deviation = 0.81, minimum = -0.22, maximum = 

2.25 

State C : mean = 0.06, standard deviation = 0.97, minimum = -1.83, maximum = 

2.14) 

• xi SPI24 : Standardized Precipitation Index (24 months) 

(State A : mean = 0.58, standard deviation = 0.31, minimum = -0.45, maximum = 

1.48 

State B : mean = 0.87, standard deviation = 0.14, minimum = 0.41, maximum = 1.18 

State C : mean = 0.18, standard deviation = 0.71, minimum = -2.13, maximum = 

1.51) 

• xi LC1 : Percentage of land cover in grid cell that is water 

(State A : mean = 2.35, standard deviation = 7.56, minimum = 0, maximum = 100 

State B : mean = 15.1, standard deviation = 27.35, minimum = 0, maximum = 100 

State C : mean = 1.78, standard deviation = 6.55, minimum = 0, maximum = 94) 

• xi LC2 : Percentage of land cover in grid cell that is developed (residential, 

commercial, and industrial combined) 

(State A : mean = 8.58, standard deviation = 13.72, minimum = 0, maximum = 100 
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State B : mean = 20.3, standard deviation = 22.37, minimum = 0, maximum = 100 

State C : mean = 13.65, standard deviation = 18.02, minimum = 0, maximum = 100) 

• xi LC3 : Percentage of land cover in grid cell that is barren 

(State A : mean = 0.46, standard deviation = 1.54, minimum = 0, maximum = 27 

State B : mean = 1.48, standard deviation = 3.1, minimum = 0, maximum = 31 

State C : mean = 0.58, standard deviation = 1.57, minimum = 0, maximum = 32) 

• xi LC4 : Percentage of land cover in grid cell that is forest 

(State A : mean = 51.48, standard deviation = 24.11, minimum = 0, maximum = 100 

State B : mean = 25.96, standard deviation = 19.59, minimum = 0, maximum = 84 

State C : mean = 46.61, standard deviation = 20.25, minimum = 0, maximum = 100) 

• xi LC5 : Percentage of land cover in grid cell that is scrub 

(State A : mean = 7.89, standard deviation = 7.45, minimum = 0, maximum = 64 

State B : mean = 7.66, standard deviation = 9.42, minimum = 0, maximum = 62 

State C : mean = 1.35, standard deviation = 2.24, minimum = 0, maximum = 24) 

• xi LC7 : Percentage of land cover in grid cell that is grass 

(State A : mean = 3.75, standard deviation = 5.17, minimum = 0, maximum = 84 

State B : mean = 3.55, standard deviation = 4.46, minimum = 0, maximum = 36 

State C : mean = 7.62, standard deviation = 6.2, minimum = 0, maximum = 52) 

• xi LC8 : Percentage of land cover in grid cell that is pasture 

(State A : mean = 16.03, standard deviation = 16.98, minimum = 0, maximum = 86 

State B : mean = 7.03, standard deviation = 11.61, minimum = 0, maximum = 69 

State C : mean = 19.19, standard deviation = 16.44, minimum = 0, maximum = 90) 

• xi LC9 : Percentage of land cover in grid cell that is wetland 

(State A : mean = 9.45, standard deviation = 13.44, minimum = 0, maximum = 90 

State B : mean = 18.92, standard deviation = 16.71, minimum = 0, maximum = 94 

State C : mean = 9.22, standard deviation = 12.26, minimum = 0, maximum = 96) 

• yi DPoles: Number of damaged poles in grid cell i 

(State A : mean = 108.5, standard deviation = 127, minimum = 0, maximum = 491) 

• yi DTransformers: Number of damaged transformers in grid cell i 
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(State A : mean = 43.7 standard deviation = 57, minimum = 0, maximum = 292) 

• xi SPole: Total number of poles for the grid cells used in the damage model  

(State A : mean = 30,192, standard deviation = 17,110, minimum = 1,066, maximum 

= 62,587) 

• xi STransformer: Total number of transformers for the grid cells used in the damage 

model 

(State A : mean = 10,256 standard deviation = 6,306, minimum = 196, maximum = 

21,993) 

 

In my model, each observation (e.g., each row in the data table) corresponds to a 

single grid cell during a single hurricane, and all grid cell-hurricane combinations were 

included. For example, for State A there are five hurricanes and 6,681 grid cells, 

meaning that my data table for this state has 33,405 rows. In the model, the hurricane 

indicator variable is treated as any other predictor. For example, the hurricane indicator 

variable xi,Danny equals one for outages that occurred during hurricane Danny and zero for 

outages that occurred during the other hurricanes. This essentially acts to shift the 

statistical model by a constant relative to the other hurricanes. The intercept of the 

statistical model is the expected value for Hurricane Katrina for a given set of values for 

the other explanatory variables because all of other hurricane indicator variables equal 

zero for Hurricane Katrina. 
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4. POWER OUTAGE PREDICTION MODEL** 

 

For each state, I fit a series of negative binomial GLMs with either hurricane 

indicator variables or an alternate set of hurricane descriptor variables, discussed in 

Section 4.3, that are measurable prior to landfall of a hurricane. While I started by fitting 

a Poisson GLM for each state, there were clear indications of overdispersion in the data 

set (e.g., the overdispersion parameters in the initial Poisson GLMs were significant), so 

I focused further model fitting efforts on negative binomial GLMs that explicitly account 

for this overdispersion. Also, I fit a series of negative binomial GAMs with the same 

alternate set of hurricane descriptor variables as I fit the negative binomial GLMs for 

State A. Negative binomial GLMs were used for accounting for non-linearity of the data. 

 

4.1 Handling Correlation in the Explanatory Variables 

As discussed above, a GLM is based on the assumption that the explanatory 

variables are statistically independent of one another. However, there is significant 

correlation between many of the variables in my data sets. In order to account this high 

degree of correlation between many of the variables, I used a PCA to transform the input 

data. 

I conducted the PCA using all of the covariates except for the hurricane indicator 

variables and the alternate hurricane descriptors. While I could have included these 

variables in the PCA, this would have produced two sets of principal components, one 

for the model based on hurricane indicator variables and one for the model based on the 

alternate hurricane descriptors. This would have complicated the comparison of the 

results from these two models. Instead, I chose to leave these variables out of the PCA. 

This yields a set of principal components based on the remaining covariates that are 

identical regardless of whether the hurricane indicator variables or the alternate 

hurricane descriptors are used. In addition, the other covariates accounted for the 

correlation problems in the data set. I then fit negative binomial GLMs based on the 

                                                 
** This section is adapted from Han et al. (2008a) and follows the text of that paper closely. 
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transformed covariates. Rather than using only a portion of the resulting transformed 

variables, I used all of them in the analysis, resulting in no loss of information in the set 

of explanatory variables used. In situations with a large number of explanatory variables, 

PCA can be useful for data reduction as well. PCA guarantees that the variables used in 

the regression are not collinear, yielding stable regression parameter estimates. However, 

it does make the interpretation of the model results more challenging relative to a model 

in which the data was not transformed with a PCA. This will be discussed below. 

 

4.2 Negative Binomial GLMs Using Hurricane Indicator Variables 

I first report the fits of negative binomial GLMs based on the hurricane indicator 

variables and the transformed covariates. The model for each of the three states was fit 

separately. I fit these models by starting with a model that included all of the 

transformed covariates and then iteratively removing the transformed covariate with the 

highest p-value until the p-values for all of the regression parameters were below 0.05. I 

formally compared the intermediate models using likelihood ratio tests with the null 

hypothesis that the difference in deviance for the two models was zero and the 

alternative hypothesis that the difference was different than zero. The full details of all of 

the model fits are given in the tables in Appendix B. I also used the two pseudo-R2 

described above. 

The best fitting model for State A based on hurricane indicator variables had a 

deviance of 18,891 on 33,380 degrees of freedom, a statistically significant improvement 

over the intercept-only model at a p-value less than 0.001. The pseudo-R2 values for the 

best-fitting model were 0.622 (R2
dev) and 0.843 (R2

α). Together, the deviance values, 

likelihood ratio test results, and pseudo-R2 values suggest that the best-fitting model fits 

the data well and that including the regression parameters helps to both reduce the 

deviance and explain more of the above-Poisson variability in the data set. In this model, 

the parameter values for the indicator variables for hurricanes Danny, Dennis, and 

Georges were -2.1, -0.94, and -1.3, all significant at a p-value less than 0.001. In this 

model, 21 of the 26 transformed covariates were statistically significant at a p-value less 
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than 0.01. The estimated overdispersion parameter value was 1.22 (significantly 

different from zero for p<0.01), suggesting that there is significant overdispersion in this 

data set. Recalling that the hurricane indicator variables act as shifts in the model 

intercept relative to Hurricane Katrina, these results suggest that there were fewer 

outages on average during hurricanes Danny, Dennis, and Georges than during 

Hurricane Katrina in this state. 

The best fitting model for State B based on hurricane indicator variables had a 

deviance of 1,898 on 1,789 degrees of freedom, a statistically significant improvement 

over the intercept-only model at a p-value less than 0.001. The pseudo-R2 values for the 

best-fitting model were 0.731 (R2
dev) and 0.817 (R2

α). These fit results suggest that the 

best fitting model for State B fits the data well and that including covariates helps to 

reduce the deviance and above-Poisson variability.  In this model, the parameter values 

for the indicator variables for Hurricanes Dennis and Ivan were –0.36 and 2.8, both 

significant at a p-value less than 0.02. In this model, 14 of the 24 transformed covariates 

were statistically significant at a p-value less than 0.01. The estimated overdispersion 

parameter value was 0.81 (significantly different from zero for p<0.01), suggesting that 

there is overdispersion in this data set. These results suggest that there were fewer 

outages on average during Hurricane Dennis than during Hurricane Katrina in this state 

but more outages during Hurricane Ivan than during Hurricane Katrina. The larger 

coefficient for the Ivan indicator variables shows that the effect of Hurricane Ivan on the 

number of outages was stronger in State B than in State A, both judged relative to the 

effects of Hurricane Katrina. 

The best fitting model for State C based on hurricane indicator variables had a 

deviance of 10,844 on 58,619 degrees of freedom, a statistically significant improvement 

over the intercept-only model at a p-value less than 0.001. The pseudo-R2 values for the 

best-fitting model were 0.617 (R2
dev) and 0.911 (R2

α). As with States A and B, these fit 

results suggest that the best fitting model for State C fits the data well and that including 

covariates helps to reduce the deviance and above-Poisson variability. In this model, the 

parameter values for the indicator variables for hurricanes Cindy, Frances, Isidore, Ivan, 
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and Jeanne were -0.82, 1.8, -0.90, 0.61, and 0.64, all significant at a p-value less than 

0.001. In this model, 15 of the 25 transformed covariates were statistically significant at 

a p-value less than 0.05. The estimated overdispersion parameter value was 2.45 

(significantly different from zero at p<0.01), suggesting that there is significant 

overdispersion in this data set. These results suggest that there were fewer outages on 

average during Hurricanes Cindy and Isidore than during Hurricane Katrina in this state 

but more outages during Hurricane Frances, Ivan, and Jeanne than during Hurricane 

Katrina. 

The models discussed in this section have all relied on the use of hurricane 

indicator variables as Liu et al. (2005) did. However, using these models for prediction 

would require plugging values into the hurricane indicator variables of the regression 

model for a certain hurricane. Yet these indicator variables are for past hurricanes, not 

future hurricanes. While one could assume that the approaching hurricane is like the 

average of the past hurricanes (e.g., run the model once for each of the past hurricanes 

and then average the predictions), it would be preferable for a prediction model to be 

based only on measurable characteristics of hurricanes. This would likely give decision-

makers greater confidence in the predictions, and it would allow the model to be used 

effectively for hurricanes that are not like the average of the previous hurricanes.  

 

4.3 Negative Binomial GLMs with Alternate Hurricane Descriptors 

To overcome the difficulties posed by using hurricane indicator variables in 

predictive models, I replaced the hurricane indicator variables with more directly 

measurable characteristics of hurricanes. My goal was to replace the indicator variables, 

which could not be measured for future hurricanes, with variables that could be 

measured for an approaching hurricane. I tried many different variables, but the ones that 

gave the best fits and statistical significance were the time between landfall of the 

hurricane being modeled and the time of the landfall of the previous hurricane (in 

months), the radius of the maximum winds at landfall (in km), and the central pressure 

difference at landfall (in mb). Each of these can be reasonably estimated as a hurricane is 
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approaching based on public data provided by the National Hurricane Center web page 

(www.nhc.noaa.gov/), making them useful covariates in a practical predictive model. I 

replaced the hurricane indicator variables with these parameters and refit the negative 

binomial GLMs using the principal components. I refer to the new set of hurricane 

variables as the alternate hurricane descriptors to distinguish them from the hurricane 

indicator variables. Tables in Appendix B give the regression parameter estimates and p-

values of power outage prediction models fitted by the negative binomial GLM using the 

principal components and alternate hurricane descriptors. 

The best fitting model for State A based on alternate hurricane descriptors had a 

deviance of 18,884 on 33,379 degrees of freedom, a statistically significant improvement 

over the intercept-only model at a p-value less than 0.05. The pseudo-R2 values for the 

best-fitting model were 0.632 (R2
dev) and 0.842 (R2

α). The results suggest that this model 

fits the data well and that the inclusion of the explanatory variables reduces the deviance 

and the above-Poisson variability relative to an intercept-only model. In this model, the 

parameter values for the alternative hurricane descriptors for Pressure (xPressure) and Time 

(xTime) were 0.03 and 0.02, both significant at a p-value less than 0.001, meaning that 

these new variables do improve the fit of the model. In this model, 23 of the 26 

transformed covariates were statistically significant at a p-value less than 0.05. The 

estimated overdispersion parameter value was 1.22 (different from zero at p<0.01), 

showing that there is significant overdispersion in this data set. Furthermore, this 

overdispersion parameter was the same as the best fitting model for this state based on 

hurricane indicator variables. This shows that the alternate hurricane descriptors are 

explaining at least as much of the above-Poisson variability in the data as the hurricane 

indicator variables, but in a different way, using measurable characteristics of a 

hurricane. Overall, the results for State A suggest that as central pressure difference 

increases and the time interval between hurricanes increases, there will be, on average 

(across grid cells), more outages during a hurricane. 

The best fitting model for State B based on alternate hurricane descriptors had a 

deviance of 1,876 on 1,787 degrees of freedom, a statistically significant improvement 
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over the intercept-only model at a p-value less than 0.05. The pseudo-R2 values for the 

best-fitting model were 0.732 (R2
dev) and 0.817 (R2

α). The results suggest that this model 

fits the data well and that the inclusion of the explanatory variables reduces the deviance 

and the above-Poisson variability relative to an intercept-only model. In this model, of 

the three alternate hurricane descriptors, only xTime was significant at a p-value less than 

0.001 with a parameter value of 0.03. In this model, 17 of the 24 transformed covariates 

were statistically significant at a p-value less than 0.05. The estimated overdispersion 

parameter value was 0.81 (different from zero at p<0.01), showing that there is 

significant overdispersion in this data. The estimated value of the overdispersion 

parameter was the same as for the best fitting model for State B based on hurricane 

indicator variables as it was for the State A model. The results for State B suggest that 

longer time intervals between hurricanes are associated with more outages, on average 

(across grid cells), during hurricanes. 

The best fitting model for State C based on alternative hurricane descriptors had 

a deviance of 16,642 on 33,378 degrees of freedom, a statistically significant 

improvement over the intercept-only model at a p-value less than 0.05. The pseudo-R2 

values for the best-fitting model were 0.611 (R2
dev) and 0.904 (R2

α). The results suggest 

that this model fits the data well and that the inclusion of the explanatory variables 

reduces the deviance and the above-Poisson variability relative to an intercept-only 

model. In this model, the parameter values for the alternative hurricane descriptors xTime 

and xRMW were 0.03 and -0.11, both significant at a p-value less than 0.001. In this model, 

19 of the 25 transformed covariates were statistically significant at a p-value less than 

0.05. The estimated overdispersion parameter value was 2.62 (different from zero at 

p<0.01), the highest among three states. This state also experienced few strong 

hurricanes during the period for which I have outage data, perhaps leading to higher 

variability in the number of outages, even once conditioned on the explanatory variables. 

Overall, the results for State C suggest that the longer time interval between hurricanes, 

the higher the number of outages, on average, during hurricanes. This agrees with the 

results for States A and B. In addition, the results for State C suggest that hurricanes 
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with smaller radii of the maximum wind tend to be associated with more power outages, 

on average. This may be because a small radius of maximum wind indicates that the 

hurricane has a “stiff” vortex shape and thus a conspicuous eye. This would tend to 

concentrate the energy of the vortex more tightly around the center, potentially leading 

to more damage near the center of the hurricane. However, this still must be treated with 

caution because this state experienced only weak hurricanes during the period for which 

I have data. Further analysis based on future storms may help to substantiate or refute 

this hypothesis. 

In order to more directly compare the fits of the models based on the alternate 

hurricane descriptor variables with those of the models based on the hurricane indicator 

variables, I focus next on the models that use all available covariates, even if some of 

them had p-values above 0.05. These are called the saturated models. This is done so 

that the models are based on the same set of information. The deviances of the saturated 

models based on alternate hurricane descriptor variables for the three states are 18,883 

on 33,375 degrees of freedom, 1,899 on 1,779 degrees of freedom, and 10,782 on 58,611 

degrees of freedom respectively. The deviances of the saturated models based on 

hurricane indicator variables for the three states are 18,880 on 33,374 degrees of 

freedom, 1,899 on 1,779 degrees of freedom, and 10,843 on 58,607. I see that there is 

not much of a difference between the deviances for States A and B, indicating that for 

these two states the two types of models provide very similar fits to the data. The 

deviance for State C is lower (better) with the alternative hurricane descriptors than with 

the hurricane indicator variables, indicating that the model based on the alternate 

hurricane descriptors may provide a better fit to the data for this state. Using the 

alternative hurricane descriptors, which are relatively easy to obtain, I obtain a more 

useful model for predicting the number of outages while achieving at least an equivalent 

goodness of fit to the data. I also examined the residuals (raw, Pearson, and deviance) of 

the different models and checked for outliers in the predictions. The models based on 

both the hurricane indicator variables and the alternate hurricane descriptors both had 

some problems with outliers in the predictions for a few of the grid cells in the most 
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heavily urbanized areas. However, the use of the alternate hurricane descriptors rather 

than the hurricane indicator variables did not affect the degree to which there were 

outliers. Assessments of residuals also suggest that the overall fits of the models based 

on alternate hurricane indicators are at least as good as those based on hurricane 

indicator variables. 

 

4.4 Examples of Model Predictions and Overall Assessment of Predictive Accuracy 

To further examine how well the models fit the data, I provide typical examples 

of the model fits for Hurricane Katrina. Figures 4.1, 4.2, and 4.3 show both the predicted 

mean number of outages and the actual number of outages in each grid cell for portions 

of the three states for Hurricane Katrina. Note that the outage maps shown in these 

figures are based on interpolating between the grid-based outage numbers using inverse 

distance weighting in ArcINFO. The geographic pattern of model predictions is 

generally accurate except for overpredictions in the main urban areas, those areas with 

the highest number of actual and predicted outages shown on the maps. In these few grid 

cells there is a much higher amount of overhead line than in the other grid cells. It 

appears that the relationship between the amount of overhead line and the log of the 

mean number of outages expected in each grid cell is non-linear. A GLM cannot 

incorporate this non-linearity. This non-linearity will be discussed further below. The 

accuracy of the geographic pattern of model predictions is very similar for the models 

based on alternate hurricane descriptors and the models based on hurricane indicator 

variables.  
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Figure 4.1. Predicted number of outages (left plot) and actual number of outages (right 

plot) in State A during Hurricane Katrina.  

 

 

 
Figure 4.2. Predicted number of outages (above plot) and actual number of outages 

(below plot) in State B during Hurricane Katrina.  
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Figure 4.3. Predicted number of outages (left plot) and actual number of outages (right 

plot) in State C during Hurricane Katrina. 

 

To further test the predictive accuracy of the models, I also conducted hold-out 

analysis. I removed the data for a single hurricane (e.g., Katrina) from the data set, fit the 

model to the remaining data, used the fitted model to predict the number of outages in 

each grid cell during Hurricane Katrina, and then calculated the mean absolute error  

between the actual number of outages and the predicted number of outages (the MAE). I 

repeated this process for each of the hurricanes for each state. Dividing the MAE by the 

mean number of outages yields an estimate of the error in the predictions from the model. 

Tables 4.1, 4.2, and 4.3 show the results for State A, State B, and State C. Testing the 

predictive accuracy of the models that utilize the hurricane indicator variables is more 

challenging because it is not entirely clear how to treat the hurricane indicators when 

making predictions for a hurricane not in the fitting data set. I used the same hold-out 

method for the indicator-based models. For a given withheld hurricane, I first re-fit the 

indicator-based model excluding the indicator variable for the withheld hurricane. I then 

estimated the number of outages in each grid cell four times (once each per hurricane), 
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with a different indicator variable set equal to one each time. I then averaged across the 

four predictions to obtain the predictions for the withheld hurricane. These estimates 

where then used in calculating the MAE values for the indicator-based models. 

 

Table 4.1. Predictive accuracy of the statistical models for hold-out samples in State A. 

 Danny 
(1997) 

Georges
(1998) 

Ivan 
(2004) 

Dennis 
(2005) 

Katrina 
(2005) 

Actual number of Outages  627 1,075 13,568 4,840 10,105 
outagesμ  0.0938 0.1609 2.0308 0.7244 1.5125 

outages

variablesindicator HurricaneMAE
μ

 56.50 41.40 2.223 21.05 2.605 

outages

sdescriptor hurricane eAlternativMAE
μ

 8.560 15.35 1.000 13.57 4.707 

 

Table 4.2. Predictive accuracy of the statistical models for hold-out samples in State B. 

 Ivan 
(2004) 

Dennis 
(2005) 

Katrina 
(2005) 

Actual number of Outages 14,948 4,683 3,446 
outagesμ  24.83 7.779 5.724 

outages

variablesindicator HurricaneMAE
μ

 0.8782 18.84 21.16 

outages

sdescriptor hurricane eAlternativMAE
μ 0.8240 1.911 1.170 

 

Table 4.3. Predictive accuracy of the statistical models for hold-out samples in State C. 

 Hanna
(2002)

Isidore
(2002)

Francis
(2004)

Ivan
(2004)

Jeanne
(2004)

Cindy 
(2005) 

Dennis 
(2005) 

Katrina
(2005)

Actual number of Outages 253 143 2,951 1,843 648 255 1,027 518 
outagesμ  0.0345 0.0195 0.4026 0.2514 0.0884 0.0348 0.1401 0.0707

outages

variablesindicator HurricaneMAE
μ

 3.432 9.736 0.9469 1.645 2.006 7.361 2.632 2.949

outages

sdescriptor hurricane eAlternativMAE
μ

 7.332 2.676 1.047 2.886 2.455 2.520 1.378 5.377
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The earlier discussion of model fit showed that the indicator-based models and 

the models using the alternate hurricane descriptors yielded very similar fits to the full 

data set. However, the results in Table 4.1 and Table 4.2 show that the model based on 

the alternate hurricane descriptors generally provides more accurate predictions for 

hurricanes not in the fitting data set and that in some cases the difference in predictive 

accuracy is large. From Table 4.1 I see that the error as a fraction of the average number 

of outages varies from 2 times up to 57 times for the indicator-based model and from 

one time up to 14 times for the model based on the alternate hurricane descriptors. For 

Hurricanes Danny, Georges, and Dennis, the model using the alternate hurricane 

descriptors has a substantially lower prediction error than the indicator-based model. For 

Hurricanes Ivan, the prediction error is lower with the alternate hurricane descriptors, 

but the difference is not as great. Only for Hurricane Katrina is the error of the indicator-

based model lower, and in this case the difference is not high. Similar results are seen for 

State B. Even though the difference in predictive accuracy for State C is not large, the 

error as a fraction of the average number of outages for the model based on the alternate 

hurricane descriptors is less than the maximum error for the indicator-based model. 

Overall, the model based on the alternate hurricane descriptors, physically measurable 

characteristics of hurricanes, does seem to provide more accurate predictions for 

hurricanes not in the fitting data set than the model based on hurricane indicator 

variables together with the ad hoc assumption that a future hurricane is like the average 

of the past hurricanes. Being able to make outage predictions based on measurable 

characteristics of hurricanes does increase the accuracy of the predictions for hurricanes 

not in the fitting data set without a loss of fit to the past data. While these are not perfect 

predictions, this does provide a strong basis for making resource allocations, especially 

given the high degree of variability in the spatial distribution of outages during 

hurricanes. 

Overall, the results suggest that the outage model can provide the type and 

accuracy of information needed to help guide state-wide hurricane preparation. My 
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results show that for a strong hurricane such as Hurricane Katrina, the model is a good 

predictive model for those areas outside of the urban areas, and the hold-out analysis 

results suggest that the model accuracy is good for most hurricanes. However, within the 

main urban areas, the results of the model should be used with caution. The model is 

more useful in making comparisons between different portions of the state than for 

comparing precise outage estimates from small grid cells immediately adjacent to one 

another. This is appropriate given that the model is intended to help guide state-wide 

resource allocations rather than to provide very precise predictions for small, local areas.  

 

4.5 Relative Importance of Explanatory Variables 

In addition to their usefulness for predicting outages in future hurricanes the 

models can be used to understand the association between the explanatory variables and 

outages by examining the relative importance of the parameters. To evaluate the relative 

impacts of the different explanatory variables on the mean number of counts in a GLM, 

the relative rate of change in )(xμ  with respect to a unit change in xj can be written as, 

(Cameron and Trivedi 1998); 

j
j

j x
x

x
βμ

μ
δ =
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∂

⎟⎟
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⎝

⎛
=

)(
)(

1          (4.1) 

For discrete indicator variables such as the hurricane indicator variable, the 

interpretation of the derivative is more problematic because the variable can take on only 

two values, 0 and 1. However, I use the same formula as in Cameron and Trivedi (1998) 

for consistency. While the original explanatory variables have different units and 

variability, in the process of conducting the PCA, I standardized the data to have a mean 

of 0 and a standard deviation of 1, so that the meaning of a unit change is consistent 

across variables.  

The parameters δj must be back-calculated from the regression parameters of the 

models based on principal components. This is done by using the weightings (i.e., the 

eigenvectors) that result from the PCA to calculate the importance parameter for each of 

the original covariates as a weighted linear combination of the regression parameter 
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estimates for the principal components, just as the principal components were calculated 

as a linear combination of the original data. The end result is a set of parameters, δ, that 

provides an indication of the impacts of changes in each explanatory variable on the 

expected number of outages and thus is a measure of the relative importance of the 

different explanatory variables. For comparison purposes, I include the models based on 

both the hurricane indicator variables and the alternate hurricane descriptors in my 

analysis in this section. This can yield useful insights into the role of the hurricane 

indicator variables and which hurricanes were particularly problematic in terms of 

outages.  

Figures 4.4, 4.5, and 4.6 show the relative rate of change of the predicted mean 

number of outages with respect to changes in the different explanatory variables: 

transformers, poles, switches, miles of overhead line, miles of underground line, number 

of customers served, windspeed, duration of strong winds, FSMs, MAP, SPIs, and the 

land cover variables for each of the states. For example, for State A, if the amount of 

time that the winds were above 20 m/s in a grid cell increased by 1 minute with all other 

explanatory variables held constant, I would expect the number of outages to increase by 

approximately 0.5μ where μ is the number of outages that would have been predicted 

without the increase in the duration of strong winds. As shown in Figure 4.4, the relative 

impacts of the land cover variables, MAP, some of the FSMs, the miles of underground 

line, and the SPIs are lower than the other variables for State A. This indicates that these 

variables do not have a strong influence on the predicted number of power outages in the 

first state. Both the wind speed and duration of strong wind covariates have statistically 

significant and positive effects on the predicted number of outages. In Figure 4.5 I see 

that some of the FSM and SPI variables have a strong and statistically significant impact 

on the predicted number of outages for State B. The wind speed variable has a negative 

impact on the number of outages, the opposite of the case for State A. Figure 4.6 shows 

that windspeed has a positive impact on outages in State C but that the duration of strong 

winds does not have a substantial impact. Some of the SPI and FSM variables have a 

substantial impact while others do not. Looking across all three states, I see that the 
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variables that measure the number of overhead power system components in a grid cell 

(the transformer, switches, overhead, and poles variables) tend to have a positive impact. 

While the relative magnitudes of the impacts of these parameters vary across states, the 

general conclusion is that having more overhead components leads to higher numbers of 

outages during hurricanes, as would be expected. As with the models based on the 

hurricane indicator variables, the relative effects of the land cover, MAP, some of the 

FSMs and SPIs are smaller than the other variables in the models based on the alternate 

hurricane descriptors. In the models in which the hurricane indicator variables were 

replaced with the alternative hurricane descriptors, the relative effects of the other 

explanatory variables tend to increase. The alternate hurricane descriptors are 

statistically significant, and they do have some impact on the predictions, but this impact 

is not strong. The overall results are mixed for the wind speed variables. One would 

initially expect both wind speed and duration of strong winds to have a positive 

relationship to the number of outages. However, this is not the case. At least one of the 

wind speed variables has a positive relationship for each of the three states. However, 

the sign of the impact of the wind variables are not consistent across the states. This is 

likely due to the fact that the three states have experienced different types of hurricanes 

in the past. State A has been impacted by large, powerful hurricanes (e.g., Ivan and 

Katrina). The hurricanes that impacted State B during the period for which I have data 

have been relatively week. This may mean that outages in this state are caused more 

flooding or thunderstorms and less by strong wind than in other states. The positive 

effect of duration and negative effect of wind speed in State B supports such a 

conclusion. State C is an intermediate case. It was impacted by strong hurricanes during 

my data collection period, but more on the edges of these storms. 
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Figure 4.4. Relative effects of fixed effects, hurricane indicators and alternate hurricane 

descriptors of the final prediction models for State A. 
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Figure 4.5. Relative effects of fixed effects, hurricane indicators and alternate hurricane 

descriptors the final prediction models for State B. 
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Figure 4.6. Relative effects of fixed effects, hurricane indicators and alternate hurricane 

descriptors the final prediction models for State C. 

 

4.6 GAM Fitting Process 

GLMs such as those described in the section above assume that the systematic 

component of the model uses a linear link function. However, in many cases there can be 

considerable non-linearity in the relationship between log(μ) and the covariates. No 

accounting for such non-linearity is one possible cause of the over-predictions in the 

urban areas with the GLMs. In an effort to capture this non-linearity in the link function 

and to provide better predictions of power outages during hurricanes, I fit negative 

binomial GAMs to the data described in Section 3 using the program R. Specifically I 

used cubic regression splines as smoothing functions (Wood 2006). Figure 4.7 shows the 

fitted splines for the first four principal components, showing non-linearity in 

relationship between these principal components and the log of the mean number of 

power outages. For example, the first subplot indicates considerable nonlinearity in the 

relationship between the first principal component and the log of the mean number of 
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power outages. In contrast, GLMs such as those developed by Liu et al. (2005) and Han 

et al. (2008a) assume a linear relationship. I began with one single-term spline per 

explanatory variable and iteratively removed splines in order of decreasing p-value until 

I was left with only splines that were statistically significant at a 0.05 level before then 

testing the predictive accuracy of the models. Because I wanted to keep the models 

simple and to ease comparisons with Han et al. (2008a) where interactions among 

covariates were not included, I did not consider higher-order splines. I formally 

compared all of the models that were fit to the data on the basis of Generalized Cross 

Validated deviance (GCV) (Hastie and Tibshirani 1990), selecting the model with the 

lowest GCV as the best fit to the data.  

 
Figure 4.7. Fitted additive splines for 4 principal components. 
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I also repeated the hold-out sampling of the data that I did with the GLMs to test 

the predictive accuracy of the best-fitting GAM for hurricanes not included in the fitting 

data and to compare the predictive accuracy of this model with that of the best-fitting 

GLM from Han et al. (2008a). I divided the data into a fitting data set from which I 

removed one of the hurricanes and a validation set consisting of the data from the 

removed hurricane data. I fit a GAM containing the subset of the variables selected on 

the basis of the full data and then used these models to predict the number of outages of 

each grid cell in the validation set. By repeating this process for each hurricane, I was 

able to estimate the predictive accuracy of the models for data not included in the fitting 

data set. 

 

4.7 GAM Results 

Table 4.4 gives the model fit diagnostics for the negative binomial GAMs. For 

comparison purposes, the best fit negative binomial GLM from Han et al. (2008a) is also 

included in Table 4.4, and it had a deviance of 18,884 on 33,379 degrees of freedom. In 

Table 4.4, negative binomial GAM 0 represents the saturated model, the model with 

single-term splines of all PCA-transformed covariates included. Negative binomial 

GAM 5 includes only splines of the principal components with p-values below 0.05.  

From Table 4.4 I see that the deviance and AIC for the negative binomial GAMs 

are lower than those for the best-fit negative binomial GLM, suggesting that the GAMs 

fit the data better than the best-fit GLM. In addition, Table 4.4 shows that for the GAM 

models, all values of 2
αR , a pseudo-R2 based on the ovedispersion parameter α, are 

approximately 1 and are higher than the 2
αR  values for the best-fit negative binomial 

GLM. This suggests that the GAM models are accounting for more, and in fact nearly all, 

of the overdispersion. The variability that remains in the predicted counts is primarily 

due to the Poisson variability about the mean. Another diagnostic for comparison of 

models is the GCV of the regression model. While lower AIC and deviance values are 

generally preferable, I selected GCV as my primary criteria in comparing the fits of 

different negative binomial GAMs because of its advantages in terms of invariance 
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(Wahba 1990). Based on AIC and GCV, negative binomial GAM 4 gives the best-fit 

models to the data set. 

 

Table 4.4. Comparison between NB GLM and NB GAMs. 

Model Deviance 
Degrees 

of 
Freedom

AIC 2
αR  GCV Variables 

Excluded 

negative binomial 
GLM  18,884 33,379 53,154 0.8424 — RMW, PC 9, 

13, 26 
negative binomial 

GAM 0 15,276 33,311 49,395 0.9990 1.0028 None 

negative binomial 
GAM 1 15,276 33,311 49,395 0.9990 1.0028 PC 17 

negative binomial 
GAM 2 15,266 33,314 49,398 0.9990 1.0027 PC 17, 24 

negative binomial 
GAM 3 15,312 33,315 49,382 0.9990 1.0027 RMW, PC 17, 

24 
negative binomial 

GAM 4 15,280 33,319 49,395 0.9990 1.0026 RMW, PC 11, 
17, 24 

negative binomial 
GAM 5 15,281 33,319 49,396 0.9990 1.0026 RMW, PC 11, 

17, 24, 26 
 

Figure 4.8 shows the outage predictions from negative binomial GAM 4 for 

Hurricane Katrina. Comparing this map of predicted outages with the map of the actual 

number of outages (Figure 4.1), I see that the GAM predictions match the spatial 

distribution of outages much more closely than the GLM predictions do. Similar results 

are seen for the other four hurricanes, though they are not displayed for the sake of 

brevity. 
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Figure 4.8. Number of outages predicted with the GAM for Hurricane Katrina.  

 

As mentioned above, the negative binomial GLM of Han et al. (2008a) over-

estimated the number of outages substantially in some grid cells, and these over-

estimates influence the overall MSE for the GLM. In examining the grid cells 

corresponding to these outliers in detail, it was noticed that the grid cells were 

predominantly in areas with high amounts overhead line relative to other grid cells and 

that these seemed to be driving the overprediction for these areas. On the other hand, 

Figure 4.9 shows that the predicted number of outages grows approximately linearly 

(with associated variability) with the actual number of outages for the negative binomial 

GAM, suggesting that the GAM overcomes the over-estimation problem. Again, similar 

results are seen for the other hurricanes, but these results are not shown here for the sake 

of brevity. 
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Figure 4.9. Predicted number of outages vs. actual number of outages for the best fit 

negative binomial GAM for Hurricane Katrina.  

 

In order to check the predictive accuracy of the GAM, hold-out tests were 

performed for each hurricane and the averages of the absolute values of the difference 

between the actual number of outages and the predicted number of outages (referred to 

here as MAE for mean absolute error) were calculated. Table 4.5 shows the MAEs 

divided by the mean of the actual number of outages ( outagesμ ) for each hurricane for 

both the GLM and the GAM. Because the MAE gives more weight to large errors, I 

subdivided the MAE into 4 categories in terms of the actual number of outages in order 

to get a more complete picture of prediction accuracy for this model. The categorized 

outagesMAE μ  provides a measure of the relative prediction error for each outage range. 

For example, for Hurricane Katrina, the GLM outage predictions differ, on average 

across the grid cells, by 32% of the actual number of outages for grid cells with 0 to 1 

outages, 1.3 times for grid cells with 1 to 10 outages, 111 times for grid cells with 10 to 

50 outages, and 101 times for grid cells with over 50 outages and the GAM outage 
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predictions differ by 24% of the actual number of outages for grid cells with 0 to 1 

outages, 1 time for grid cells with 1 to 10 outages, 7 times for grid cells with 10 to 50 

outages, and 14 times for grid cells with over 50 outages. Note that these errors are all 

defined based on dividing the MAE by the average number of outages per grid cell for 

the hurricane (μoutages =  10,105/6,681). As discussed above, the GLM over-estimates 

outages for some grid cells. In addition, the predictive accuracy of the GLM is highly 

variable across hurricanes. For Hurricane Dennis the MAE of the GAM for 10 to 50 

outage range is approximately 1,113 times the actual number of the outage counts while 

for the GAM it is 10 times. The GAM on the other hand provides consistently low 

prediction errors than the GLM provides for all hurricanes. Overall, the results suggest 

that GAMs can provide much more accurate outage predictions than GLMs across a 

variety of types of hurricanes, including large, powerful hurricanes like Hurricanes 

Katrina and Ivan and smaller, weaker hurricanes like Hurricane Danny. While there is 

still error in the predictions, the results provide a much better basis for allocating repair 

crews among the different geographic portions of the service area. 

 

Table 4.5. Ratio of MAEs to the mean of the actual number of outages for Hold-Out 

sampling fitted by NB GLM and NB GAM. 

 Danny 
(1997) 

Georges
(1998) 

Ivan 
(2004) 

Dennis 
(2005) 

Katrina 
(2005) 

Actual number of Outages  627 1,075 13,568 4,840 10,105 
outagesμ  0.0938 0.1609 2.0308 0.7244 1.5125 

0 ~ 1 outages 7.111 1.068 0.0003 0.5287 0.3206 
1 ~ 10 outages 36.21 134.2 1.345 5.118 1.299 
10 ~ 50 outages 87.94 344.9 8.576 1,113 111.4 outages

GLMMAE
μ

 

50 ~ outages ― ― 35.55 ― 101.4 
0 ~ 1 outages 1.017 0.6564 0.0003 0.4079 0.2350 
1 ~ 10 outages 17.59 8.628 1.343 2.070 1.072 
10 ~ 50 outages 55.81 95.21 8.575 10.30 7.123 outages

GAMMAE
μ

 50 ~ outages ― ― 35.54 ― 14.76 
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5. CUSTOMERS OUT PREDICTION MODEL†† 

 

The models developed in the past (Liu et al. 2005) and in the previous sections of 

this thesis all focus on predicting the number of outages. However, predictions of the 

number of customers without power would be more closely aligned with the methods 

currently used for pre-hurricane planning in the utility company that provided the data 

from as well as in other utility companies. To address this gap, models were developed 

for predicting the number of customers without power in each grid cell in each of the 

three service areas. For brevity of terminology, these models are referred to as the 

customers out  models. 

In developing the customer models, I used a negative binomial GLM based on 

the same principal components as used in Han et al (2008a) and in the earlier sections of 

this thesis. These principal components consist of orthogonal transformations of the 

input data discussed in Sections 3 and 4. These models can account for both collinearity 

and overdispersion providing a good starting point for modeling the number of 

customers without power. The approach accounted for overdispersion and collinearity in 

order to obtain a better fit and more stable model estimates. The final suggested model is 

the negative binomial GLM based principal components and alternative hurricane 

descriptors (pressure difference, time between hurricanes, and radius to maximum 

winds) rather than the hurricane indicator variables of Liu et al. (2005). 

 

5.1 Fitting Negative Binomial GLMs 

For each state, I fit a series of negative binomial GLMs. For each model I further 

divided the fitting into a model based on the original data and a model based on a 

transformation of the data through a Principal Components Analysis (PCA).  

For all three states I first fit a negative binomial GLM with all covariates. I then 

iteratively reduced the parameter used in these models until I found a model with all 

parameter p-values below 0.05. I then used likelihood ratio tests to formally compare the 

                                                 
†† This section is adapted from Han et al. (2008c) and follows the text of that paper closely. 
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reduced and full models, in all cases showing that the reduced models provided fits that 

were either statistically indistinguishable from the full model or, in some cases, provided 

better fits given the parameters used. The full details of negative binomial GLMs with 

principal components for the State A, B, and C respectively are given in the tables in 

Appendix B. Also, I used Deviance and the pseudo-R2 based on α to provide to the best 

fit to the data.  

 

5.2 Negative Binomial GLMs Based on Principal Components with Alternate Hurricane 

Descriptors 

Negative binomial GLM customer models were first fitted based on the principal 

components and the hurricane indicator variables. The principal components with high 

p-values (larger than 0.05) were iteratively removed and model comparisons done with 

likelihood ratio tests. The deviances of the saturated models (model 0) with principal 

components are similar to the deviances of the saturated models with correlated 

variables, but there are slightly less covariates in the final model with principal 

components than in the final model with correlated variables for all 3 states (24 

covariates with principal components and 25 covariates with correlated variables for 

State A, 16 covariates with principal components and 18 covariates with correlated 

variables for State B, and 20 covariates with principal components and 23 covariates 

with correlated variables for State C). The final negative binomial GLMs using the 

principal components give more reliable and efficient fits than the final negative 

binomial GLMs using the original correlated data.  

I replaced the hurricane indicator variables with alternative hurricane descriptors 

and refit the negative binomial GLMs using the principal components. I refer to the new 

set of hurricane variables as the alternate hurricane descriptors to distinguish them from 

the hurricane indicator variables. The deviances of the saturated models for State A, 

State B, and State C are 16,641 on 33,375 degrees of freedom, 1,891 on 1,779 degrees of 

freedom, and 9,012 on 58,611 degrees of freedom respectively. Comparing the 

deviances of the saturated models with hurricane indicator variables for State A, State B, 
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and State C (16,641 on 33,374 degrees of freedom, 1,891 on 1,779 degrees of freedom, 

and 9,006 on 58,607), I see that the deviances are nearly identical. Negative binomial 

GLMs based on principal components and alternative hurricane descriptors provide the 

best models for estimating the number of customers without power in each of the grid 

cells. These models use only variables that are readily measurable for approaching 

hurricanes, and they provide a good fit to the data. 

The best fitting models for State A, State B, and State C had deviances of 16,642 

on 33,378 degrees of freedom, 1,891 on 1,787 degrees of freedom, and 9,012 on 58,613 

degrees of freedom respectively a statistically significant improvement over the 

intercept-only model for each state at a p-value less than 0.05. The deviances of the best 

fitting models based on alternate hurricane descriptors are similar to the deviances of the 

saturated models, but there is a decrease in the number of principal components in the 

final model for all 3 states (decreases of 3 covariates with principal components out of 

26 PCs for State A, 8 covariates with principal components out of 24 PCs for State B, 

and 2 covariates with principal components out of 25 PCs for State C). When a 

likelihood ratio test suggests that the saturated model and the final model are statistically 

indistinguishable, the preferred final model is the more parsimonious (simple) model. 

Besides checking the difference in deviance of the models through likelihood 

ratio tests, I checked the residual variability of the best fitting models for each state with 

the pseudo-R2 based on α. The α values give a sense of how much overdispersion there 

is in the data that my models do not explain. Higher α values indicate that there will 

likely be more variability beyond the Poisson variability about the mean value. However, 

the dispersion parameter α can vary based on the degrees of freedom for each state 

relatively. The pseudo-R2 based on α provides a measure of the reduction in above-

Poisson variability and thus is preferable. For the sake of comparison, the pseudo-R2 

values of the best-fitting models based on hurricane indicator variables for State A, State 

B, and State C were 0.391, 0.398, and 0.847 respectively. Similarly, the pseudo-R2 

values of the best-fitting models based on alternate hurricane descriptors for State A, 

State B, and State C were 0.390, 0.398, and 0.846 respectively. The results suggest that 
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this model fits the data well and that the inclusion of the explanatory variables reduces 

the deviance and the variability relative to an intercept-only model. Also, there is no 

change in residual variability when the hurricane indicator variables are replaced with 

the alternate hurricane descriptors.  

 

5.3 Examples of Model Prediction and Overall Assessment of Predictive Accuracy  

Figures 5.1, 5.2, and 5.3 provide examples of the fit of the customers out model 

for Hurricane Katrina in States A, B, and C. Note that the customer outage maps shown 

in these figures are based on interpolating between the grid-based customer outage 

numbers using inverse distance weighting in ArcINFO. The geographic pattern of the 

customer outage model is accurate outside of the main urban areas but the model 

overestimates the number of customers without power within the urban areas, just as 

with the power outage model of Section 4. However, with the customer model, the 

overprediction is more dramatic. In the urban areas, there is a much higher amount of 

overhead line than in the other grid cells. It appears that the relationship between the 

amount of overhead line and the log of the mean number of customers without power 

expected in each grid cell is non-linear. This non-linearity of the data set causes outliers 

which lie in the main urban areas. As an effort to remove outlier problem, I adjusted 

outliers in the predictions for a few of the grid cells in the most heavily urbanized areas, 

based on the principle that the predicted number of customers without power should be 

lower than the number of customers in the grid cells. When I tested the predictive 

accuracy of the models, I conducted hold-out analysis with the adjusted data set.  
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Figure 5.1. Predicted number of customers out (left plot) and actual number of customers 

out (right plot) in State A during Hurricane Katrina.   

 

 

 
Figure 5.2. Predicted number of customers out (above plot) and actual number of 

customers out (below plot) in State B during Hurricane Katrina. 



 50

 

  
Figure 5.3. Predicted number of customers out (left plot) and actual number of customers 

out (right plot) in State C during Hurricane Katrina. 

 

Table 5.1 shows the results of the hold-out analysis for State A. For this hold-out 

analysis, I first removed the data for a single hurricane (e.g., Katrina) from the data set, 

fit the model to the remaining data, used the fitted model to predict the number of 

customers without power in each grid cell during Hurricane Katrina, and then calculated 

the mean value of the absolute error between the actual number of customers without 

power and the predicted number of without power (the MAE). I repeated this process for 

each of the hurricanes for each state. Dividing the MAE by the mean number of 

customers without power yields an estimate of the relative error in the predictions from 

the model. These are typical of the results for the other states, which are not shown for 

brevity. Testing the predictive accuracy of the models that utilize the hurricane indicator 

variables is more challenging. The same hold-out analysis procedure is used in this 

section as was used in Section 4. That is, the predictions were setting each of the other 

hurricane indicator variables equal to one, and then these predictions were averaged. 

From Table 5.1 I see that the error in the estimates of the average number of customers 

without power varies from one to 14 times the average number of customers without 
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power. The results show that the models generally provide reasonably accurate 

predictions except for Hurricane Danny, the weakest hurricane in the data set. For 

Hurricanes Georges and Dennis, the model prediction errors in each grid cell are at most 

two times to the average number of customers out. For Hurricanes Ivan and Katrina, the 

prediction errors are around approximately equal to the average number of customers 

without power. The model based on the alternate hurricane descriptors does seem to 

provide similar predictions for hurricanes not in the fitting data set as the model based on 

hurricane indicator variables together with the ad hoc assumption that a future hurricane 

is like the average of the past hurricanes. Overall, the results suggest that the customers 

out prediction model can provide the type of information needed to help guide state-wide 

hurricane preparation. My results show that for a strong hurricane such as Hurricane 

Katrina and Ivan, the model is a good predictive model for those areas outside of the 

urban areas, and the hold-out analysis results suggest that the model accuracy is good for 

most hurricanes. The model is more useful in making comparisons between different 

portions of the state than for comparing precise customers out estimates from small grid 

cells immediately adjacent to one another. This is appropriate given that the model is 

intended to help guide state-wide resource allocations rather than to provide very precise 

predictions for small, local areas.  

 

Table 5.1. Predictive accuracy of the statistical models for hold-out samples in State A. 

 Danny 
(1997) 

Georges
(1998) 

Ivan 
(2004) 

Dennis 
(2005) 

Katrina 
(2005) 

Actual number of 
customers out  72,646 326,392 1,244,44

5 447,966 998,292

Out Customersμ  10.87 48.85 186.3 67.05 149.4 

Out Customers

variablesindicator  HurricaneMAE
μ

 9.162 2.237 0.9441 2.042 1.019 

Out Customers

sdescriptor hurricane eAlternativMAE
μ

 13.65 1.860 1.000 2.143 0.9336 
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5.4 Relative Importance of Explanatory Variables 

Figures 5.4, 5.5, and 5.6 show the relative rate of change of the predicted mean 

number of customers out with respect to changes in the different explanatory variables: 

transformers, poles, switches, miles of overhead line, miles of underground line, number 

of customers served, windspeed, duration of strong winds, FSMs, MAP, SPIs, and the 

land cover variables for each of the states for the models that include the hurricane 

indicator variables and alternate hurricane descriptors. As shown in Figure 5.4, the 

relative impacts of the land cover variables, MAP, some of the FSMs, and the miles of 

underground line are lower than the other variables. This indicates that these variables 

do not have a strong influence on the predicted number of customers without power in 

State A. As expected, the wind speed covariate has a statistically significant and positive 

effect on the predicted number of customers without power. This was the same case for 

State B and State C as shown in Figures 5.5 and 5.6. In Figures 5.4, 5.5, and 5.6, I see 

that some of the FSM and SPI variables have a strong and statistically significant impact 

on the predicted number of customers without power. Looking across all three states, I 

see that most of the variables that measure the amount of overhead power system 

components in a grid cell while the LC (land cover) covariate have not a statistically 

significant impact on the predicted number of customers without power. While the 

relative magnitudes of the impacts of these parameters vary across states, the general 

conclusion is that have more overhead components leads to higher numbers of customers 

out during hurricanes, as would be expected. 
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Figure 5.4. Relative effects of fixed effects, hurricane indicators and alternate hurricane 

descriptors of the final customers out prediction models for State A. 
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Figure 5.5. Relative effects of fixed effects, hurricane indicators and alternate hurricane 

descriptors of the final customers out prediction models for State B. 
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Figure 5.6. Relative effects of fixed effects, hurricane indicators and alternate hurricane 

descriptors of the final customers out prediction models for State C. 
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6. STATISTICAL DAMAGE ESTIMATION MODEL 

 

If possible, it would be helpful to have estimates of the amount of actual damage 

to power distribution systems during hurricanes. For example, estimates of the number 

of damaged poles and transformers at the grid cell level could enable a utility company 

to target pre-hurricane resource allocations to those areas most likely to experience high 

levels of damage. However, developing these damage estimates poses a significant 

research challenge. No rigorous statistical methods have been reported in the literature 

for this problem, and there has been only limited detailed damage data available in the 

past. However, the damage data provided for portions of the State A service area provide 

a starting point for developing statistical models for estimating damage to poles and 

transformers at the grid cell level. It should be emphasized that while this data provides a 

good starting point, it is imperative that more complete damage data be collected for 

future hurricanes if accurate statistical damage estimation models are to be developed. 

This section summarizes the models I have developed and discusses their limitations and 

application.  

 

6.1 Initial Damage Model Fit Results 

The data set provided for State A contains the number of poles and transformers 

damaged in past hurricanes for limited portions of the service area. This damage data is 

aggregated to much larger areas than the grid cells used in the customer outage model. 

These damage aggregation areas were irregularly shaped and overlapped a number of 

smaller grid cells. In some cases the larger data aggregation areas overlapped as many as 

224 small grid cells. Due to level of aggregation of the damage data, I assumed that the 

rate of damage of poles and transformers, given as the number of damaged poles or 

transformers divided by the total number of poles and transformers (treating each 

separately), was constant throughout the large grid cells. This allowed me to scale down 

to the smaller grid cells, making use of all of the detailed explanatory variables available 

at the level of the small grid cells. However, assuming that the damage rate is constant 
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across the aggregated area is a strong assumption. Better damage data is needed for 

future hurricanes to help overcome this limitation in the current model. The data was 

scaled down to smaller grid cells by first calculating the total number of poles and 

transformers in each of the data aggregation areas by summing over the smaller grid 

cells that were included in each of the larger damage aggregation areas. Then the rate of 

pole and transformer damage was calculated by dividing the total number of damaged 

poles or transformers by the total number of poles or transformers in the data 

aggregation areas. Then these two damage rates were assumed to be constant, and the 

number of damaged poles and transformers in each of the original grid cells was 

estimated by multiplying the pole or transformer damage rate by the number of poles or 

transformers in each of the smaller original grid cells. Negative binomial GLMs were 

then developed for predicting the rate of damaged poles and damaged transformers at the 

level of the small grid cells in the same way as they were for the customers out models. 

However, unlike the customers out prediction models, an offset (the number of poles or 

transformers in each grid cell) is included in the link function to estimate the mean 

number of poles and transformers damaged based on the estimated damage rates and the 

total number of poles or transformers in each grid cell. The predictions from the damage 

models are the number of poles and the number of transformers damaged in each of the 

small grid cells for State A. This leads to variability in the predictions that is not present 

in the original data set which included information only at the level of the larger data 

aggregation areas. This variability will be discussed further below. 

In the models for predicting the number of poles and transformers damaged, I 

found that there is considerable overdispersion in these data sets and that a Poisson GLM 

is not appropriate for predicting either the number of poles damaged or the number of 

transformers damaged. A negative binomial GLM is likely a better model. I fit the 

negative binomial GLM to the damage data. The deviances of the models with all 

covariates are 2,489 on 2,173 degrees of freedom for the damaged poles model and 

2,556 on 2,173 degrees of freedom for the damaged transformers model, suggesting that 

the models may fit the data. There is a remarkable decrease in deviance relative to the 
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Poisson GLM. This suggests that the negative binomial model accounts for the extra 

variability in the damage data better than the Poisson GLM does. However, these models 

were based on data without conducting a PCA. Some collinearity exists, and a PCA is 

needed to account for this. 

 

6.2 Negative Binomial Damage Model Fit Results 

I conducted a PCA using the covariates from the damage models and refit the 

negative binomial GLM to the transformed data. As with the customers out prediction 

models, the principal components with p-values larger than 0.05 were iteratively 

removed and model comparisons were done by likelihood ratio tests between the 

different negative binomial GLMs with principal components. The full details of all of 

the model fits are given in the tables in Appendix B. The deviances of the final models 

with principal components are approximately the same as the deviances of the final 

models with correlated variables. Also, comparing the deviances of the final models with 

hurricane indicator variables to the deviances of the final models with alternative 

hurricane descriptors, there is little difference between the deviances (2,487 on 2,181 

degrees of freedom for the pole damage estimation model and 2,557 on 2,181 degrees of 

freedom for the transformer estimation model). In addition, the number of covariates of 

the final model with principal components is approximately the same as the number of 

covariates of the final model with correlated variables for damaged poles (19 covariates 

with principal components and 20 covariates with correlated variables for the damaged 

poles estimation model and 20 covariates with principal components and 20 covariates 

with correlated variables for the damaged transformers estimation model). 

While the damage data provided for State A is the best power system damage 

data I have seen for hurricanes, there are still limitations due to the aggregation in the 

data and the limited geographic area covered by this data. Overall, the results from the 

models that I have fit to the limited damage data available suggest that it may be 

possible to obtain reasonably accurate estimates of damage to poles and transformers 

during hurricanes. It is hard to show the spatial distribution of damage prediction due to 
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limited data. Still, it would prove useful to conduct a trial run of this model fit based 

only on the available data on a limited scope in a future storm to see how well it predicts 

damage outside of the areas from which data was used to fit the model. One approach to 

gathering to this data would be to develop a statistically rigorous sampling plan under 

which a portion of the system elements in some or all of the grid cells were inspected 

after a hurricane. With proper sampling, the recorded damage data could be used to 

generalize to develop system-wide damage estimates for future hurricanes.  

 

6.3 Relative Importance of Explanatory Variables 

Figures 6.1 and 6.2 show the relative rate of change of the predicted mean 

number of damaged poles and transformers with respect to changes in the different 

explanatory variables: transformers, poles, switches, miles of overhead line, miles of 

underground line, number of customers served, windspeed, duration of strong winds, 

FSMs, MAP, SPIs, and the land cover variables for each of the states for the models that 

include the hurricane indicator variables and alternate hurricane descriptors.  

In examining the results from the damage models shown in Figures 6.1 and 6.2, 

the variables that have the strongest impact on the predicted amount of damage are the 

maximum gust wind speed (positive impact), FSM3 (fractional soil moisture in the 

deepest layer – negative impact), SPI1 (negative impact), SPI2 (positive impact), SPI3 

(negative impact), SPI12 (positive impact), and SPI24 (negative impact). Higher wind 

speeds tend to increase the amount of damage during hurricanes and higher soil moisture 

at the deepest layers tends to decrease the amount of damage according to this model. At 

the same time, the impacts of moisture availability are mixed depending on the time-

frame of interest. High values for the longest-term (24 month) moisture availability 

variable tend to decrease the amount of damage, while values for the shorter moisture 

availability variables are mixed. The implications of the moisture availability variables 

for different time frames is not clear, though it is clear that they are having a strong 

impact on the predicted amount of damage. 
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Figure 6.1. Relative effects of fixed effects, hurricane indicators and alternate hurricane 

descriptors of the final damaged pole prediction models for State A. 
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Figure 6.2. Relative effects of fixed effects, hurricane indicators and alternate hurricane 

descriptors of the final damaged transformer prediction models for State A. 
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7. PHYSICAL DAMAGE ESTIMATION MODEL 

 

This section focuses on the power distribution system because the vast majority 

of damage during hurricanes occurs in the distribution system. The models developed in 

this section predict the damage in the power distribution system. Unlike the statistical 

damage estimation models discussed in Section 6, physical damage estimation models 

need geometry, material properties, and loading conditions of the distribution system. 

Due to the limited amount of detailed data that is available about failures in the 

distribution system, plausible overhead power line structures which can represent the 

system were developed for use in this section by following the appropriate codes. These 

representative systems were then used as the basis for developing damage estimation 

models. Pole geometry and strength information were derived from the American 

National Standard Institute (ANSI) O5.1 (ANSI 2002). The National Electrical Safety 

Code (NESC 2007) establishes overload requirements (Rule 250) for the overhead lines 

in the power distribution system. Also, ACSE 7-05, “Minimum design loads for 

buildings and other structures” was considered as a reference standard so as to meet 

wind load provisions for buildings and other structures. Based on these codes, 

representative overhead power line structures were developed for the case study used by 

the damage estimation model. Then the damage on the power line structures was 

predicted by developing damage estimation models. Based on the damage estimation 

model, the number of damaged poles could be predicted for future hurricanes. 

There has been one previous published study that used structural reliability 

models to estimate damage to power distribution system poles, the Caribbean Disaster 

Mitigation Project (1996). The Caribbean Disaster Mitigation Project included hurricane 

hazard modeling that accounted for the effect of hurricane-related wind together with a 

structural analysis of the poles in the power distribution system. However, the structural 

analysis model used by the Caribbean Disaster Mitigation Project (1996) considered 

only flexural damage to poles under wind loads, not foundation failures. Foundation 

failure is a significant failure mode during hurricanes because the power distribution 
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system poles can fall by losing the resistance of the foundation due to wet soil conditions. 

Anecdotal evidence and pictures of hurricane damage suggest that foundation failures do 

cause at least some pole failures during hurricanes. In this study, fragility curves for 

utility poles in the power distribution system were developed by using structural 

reliability methods in combination with Bayesian updating based on limited observed 

damage information. These damage estimation models were used in conjunction with the 

hurricane wind field model to estimate pole damage in the distribution system.  

Due to the lack of the detailed data for the power distribution system, I can not 

consider all possible failure mechanisms. In particular, I have not included failures due 

to trees falling onto lines or poles and damage due to wind-blown debris due to a lack of 

data. Fortunately, damage data are available for a few hurricanes: Dennis (2004), Ivan 

(2005), and Katrina (2005). If the actual damage information can be integrated with the 

information from physical damage estimation models, this would provide better fragility 

estimates and a better understanding of the uncertainty inherent in physical damage 

estimation models. This integrated approach should also provide more reliable damage 

predictions for future events by integrating observed system performance with structural 

reliability models. Bayesian methods are appropriate for this integration process based 

on limited data. They produce updated prediction models for future events that account 

for both the structural reliability model and the observed data. This section develops 

both a structural reliability model for poles and a Bayesian approach for predicting the 

number of damaged poles based on both the physical damage estimation model and the 

observed data. Finally, fragility curves for the poles in a representative distribution 

system are presented and the number of damaged poles in the case study service area is 

predicted using these fragility curves. 
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7.1. Fragility of the Power Distribution System by Structural Reliability Methods 

7.1.1 Power distribution system failure 

In evaluating the reliability or probability of failure of a system, one must 

account for the fact that the system can often fail due to more than one failure 

mechanism. In other words, the probability of failure of the power distribution system 

can be defined by individual failure mechanisms such as trees falling on lines or poles, 

wind-born debris striking lines or poles, as well as severe wind causing pole failures 

directly. In this study only two failure mechanisms were considered: (1) flexural failure 

of poles due to wind and (2) foundation failure of poles due to wind. While the other 

failure modes (e.g. tree-induced failures) likely play a significant role in terms of overall 

system reliability, the focus of this section is on only direct wind-induced failures. I did 

not address other wind-induced failures such as trees and debris falling on or being 

blown into poles and lines due to high winds. I have also not addressed failures due to 

other hazards such as inland flooding or storm surge along the coast. The model 

developed in this section is an important first step in developing a model for estimating 

damage in power distribution systems during hurricanes, but future work is needed to 

develop a complete model. Future work can build from this starting point to include 

additional wind-induced failure modes and failure modes induced by other hurricane-

related hazards such as flooding and storm surge. With )( iEP  representing the 

probability of failure of the ith failure mechanism, the probabilities of the individual 

failure modes can be defined by  

)()( 1 VfailureflexuralPEP =  : conditional probability of a pole breaking due 

to a bending moment induced by wind speed V 

)()( 2 VfailurefoundationPEP =  : conditional probability that the soil that 

the pole is planted in loses strength given wind speed V 

Assuming that the two failure events are statistically independent, the 

probability of failure of the power distribution system is 

[ ]∏
=

−−=
n

i
ifs EPp

1

)(11        (7.1) 
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and the cumulative density function is 
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=

−=
n

i
isystem EPVfailF

1

)(1)(       (7.2) 

While the assumption of independence is not strictly speaking correct given that 

the formulation of the limit state functions involves common random variables, it 

facilitates the analysis for the prior which can be simply obtained. Furthermore, 

assumption of independence is really one of conditional independence here: the two 

failure modes are assumed to be conditionally independent given wind speed. While 

there may be still be sources of dependence (e.g., span length appearing in both failure 

mode equations, inducing a dependency), the assumption of conditional independence is 

a reasonable first approximation. For evaluating the probability of failure for the 

individual failure modes, first-order reliability methods (FORM) were used because the 

limit state function of each failure mechanism is linear and the random variables (e.g. 

modulus of rupture of poles, moment of resistance of soil, and span length of the 

distribution system) are uncorrelated. Specifically, the advanced first-order second-

moment (AFOSM) method was used in order to include non-Normal random variables.  

The limit state function is described in detail below. The AFOSM requires the 

determination of the design point (e.g. the point of minimum distance to the limit state 

function). Because some algorithms may fail to converge to find the design point, the 

improved HL-RF algorithm (Zhang and Der Kiureghian 1994) was used in this study. 

Using this AFOSM approach, the probability of failure of a single pole as a function of 

wind speed was estimated. The fragility of a power distribution system pole is defined in 

this section as the conditional probability of the pole failing given a specified 3-sec gust 

wind speed. Using the fragility developed for individual poles, the number of damaged 

poles affected by hurricane-related wind can be predicted by mapping pole locations 

which can facilitate simulation of the event for model evaluation. Then the predicted 

number of damaged poles is directly compared with the data provided by the utility 

company. 
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The limit state function for each of the individual failure modes for the 

reliability analysis is defined as 

WRXXXgxg n −== ),,,()( 21 LL       (7.3) 

where nXXX ,,, 21 LL are random variables, R is the resistance capacity for the 

individual failure mode and W is the wind load. The resistance capacity and geometry 

information of the power distribution system is obtained from the ANSI standard O5.1 

classification of pole structures. The wind load was calculated using wind pressure 

provision in NESC 2007 and the 3-sec gust wind speed obtained from the hurricane 

wind field model discussed in Section 3.  

Because of the limited amount of detailed data available about power 

distribution systems, plausible overhead power line structures were used to represent 

power distribution systems. From ANSI O5.1, three types of utility poles were 

considered for this study: Southern pine, Douglas-fir, and Western red cedar. A 34.5 kV 

transmission line and a 12.47 kV distribution line were used for each of pole types 

because the power distribution system is typically composed of 2 types of lines. Span 

length for the two types of lines and height for a utility pole were obtained from the 

Caribbean Disaster Mitigation Project (1996) where they used a mean span length of 144 

ft and a variance of 36.7 ft2 for 12.47 kV line, a mean of 341 ft and a variance of 85 ft2 

for 34.5 kV lines, and height of 45 ft. Based on the results of Keshavarzian and Priebe 

(2002) which says the effect of pole height variations between 45 ft and 60 ft, the range 

of heights generally used in power distribution systems, is negligible on the wind 

loading calculation, a 45 ft tall utility pole was used as a baseline structure for the 

reliability analysis. The utility pole is planted 6.5 ft deep in the ground following ANSI 

O5.1. The loading condition and dimension are shown Figure 7.1. Note that in 

developing the example system, design standards are being used to represent as-built 

conditions. This is a strong assumption. As-build conditions often differ substantially 

from design specifications, and there is often considerable variation in actual pole 

conditions throughout a large power distribution system. However, detailed information 

about as-built conditions is not available. In this section, I use design standards to 
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represent the actual system as an approximation. This is in line with the goal of the 

structural reliability model. This model is intended to provide a sound basis for the prior 

for the Bayesian analysis, not to provide a highly accurate, system-wide reliability model 

on its own. While creating an accurate, system-wide reliability model based on structural 

reliability analysis methods is desirable, the data needed to do this is currently not 

available. However, enough information is available to support the development of 

priors for a Bayesian analysis of pole reliability. 

 

  
Figure 7.1. Loading condition and dimension of a baseline structure. 

 

7.1.2. Flexural failure  

When a pole structure is subjected to a wind load, the wind pressure acts on the 

conductors and the pole, causing a base bending moment at the ground line of the pole. 

The inner fibers of the pole are compressed and the outer fibers are extended due to the 

base bending moment. If the tensile stress of the extended outer fiber exceeds the 

maximum rupture stress, then the pole will fail. The limit state function of the flexural 

failure mode is 
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where R=resistance capacity, W=wind load, rσ =mean modulus of rupture (MOR) of the 

pole, groundlineσ =tensile stress of the pole at groundline, M=bending moment at 

groundline, Z=modulus of section, and D=diameter of the pole at groundline. Table 7.1 
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shows the mean modulus of rupture (MOR) and the coefficient of variation (COV) for 3 

types of poles (ANSI O5.1 2002).  

 

Table 7.1. Groundline strength for less than 50 feet long poles, used in unguyed, single-

pole structures only. 

MOR (<50ft) 
Species 

Mean (psi) COV 

Southern pine 10190 0.169 

Douglas-fir: Coastal 9620 0.135 

Western red cedar 6310 0.204 

 

For the calculation of force due to extreme wind loading, the NESC suggests the 

following equation (NESC 2007).  

AICGkVP fRFzhmi
2

/ )(00256.0=        (7.5) 

where P=wind load in pounds, V=3-s gust speed in m/s at 10m above ground, 

kz=velocity pressure exposure coefficient (Rule 250-2), GRF=gust response factor (Rule 

250C2), I=importance factor (Rule 252B), Cf=shape factor (Rule 252B), and 

A=projected wind area in ft2. Equation 7.5 is assumed herein to provide the actual 

(deterministic) wind force. This assumption, while not strictly speaking correct, 

facilitates the simple FORM analysis. All coefficients except wind speed V are assumed 

to be deterministic, but this might not be a problem if the uncertainty in the random 

variables that are considered in the limit state functions dominates in the wind load 

calculation. Moreover, because the purpose of the structural reliability model is to 

provide a solid prior for the final integrated model, not the final model itself, the 

assumption that equation (7.5) provides the wind force is an acceptable approximation. 

The values for the deterministic coefficients and factors for the pole and conductors are 

found in Table 7.2 (NESC 2007).  

Finally, the bending moment due to the wind load P for the baseline structure as 

shown in the right figure of Figure 7.1 is  
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In the final limit state function, rσ  and Lspan were treated as random variables shown in 

Table 7.1 and Section 7.1.1. 

 

Table 7.2. Parameter values for an extreme wind calculation (NESC Rule 250C). 

Extreme wind pressure on the pole Extreme wind pressure on the wires 

Kz structure = 1.0 (35ft<Height<50ft) 

GRF structure = 0.97 (35ft<Height<50ft) 

I = 1.0 for utility structures 

Cf = 1.0 for cylindrical structures 

Kz wire = 1.1 (35ft<Height<50ft) 

GRF wire = 0.88 (35ft<Height<50ft) 

I = 1.0 for utility structures 

Cf = 1.0 for cylindrical shapes 

 

7.1.3 Foundation failure  

Though a flexural failure is a primary failure mechanism for power distribution 

system poles, a foundation failure is also a critical failure mechanism for power 

distribution system poles. In order to find out how well the power distribution system 

can withstand extreme winds, we must consider the resistance of the foundation that the 

pole is planted in. It is known that a pole pivots about a point below ground level 

(Wareing 2005). A foundation failure is defined in this section to occur if the moment at 

a pivot point 2h  below under the ground is greater than the moment of the resistance 

of the foundation where h is the depth to which the pole is planted. The pivot point has 

zero stress assuming that the stress distribution is linear. The limit state function of the 

foundation failure mode is 

pivotpivotg MkDhMMWRxg @

3

@ 10
)( −=−=−=     (7.7) 

where 
10

3kDhM g = = moment of resistance of the soil/foundation (Wareing 2005), 

M@pivot=moment at pivot point, k=maximum rupturing intensity in lb/ft2/ft, D=average 

diameter of pole below ground level in ft, and h=depth of planting in ft. The relation for 
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Mg given by Wareing (2005) assumes that a pole will pivot about some point below 

ground level and the stress distribution of the soil under the ground is linear with depth. 

The maximum rupturing intensity k was set at 2000 lb/ft2/ft for average soil (Wareing 

2005). Phoon et al. (1995) suggested that 0.32 is an appropriate value for the coefficient 

of variation (COV) of k for clay soil as an example of soil. The bending moment due to 

the wind load P for the baseline structure is 
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where Phorrizontal reaction = reaction force of the soil, which can be calculated analytically.  

 

7.2. Fragility of the Power Distribution System Using Bayesian Approach 

There are many approaches for estimating the probability of failure of various 

structures. One approach estimates the probability of failure through statistical methods 

like those used in Section 6 based on past failure data. However, estimating the 

probability of failure using the past data is quite difficult, especially for infrastructure 

systems for which little failure data is available. Another approach is based on structural 

reliability analyses such as first-order reliability methods (FORM) discussed above and 

second-order reliability methods (SORM). If the behavior of the structures being 

modeled is complex, it may not be possible to express the limit state functions in closed-

form in such cases. Another approach for estimating the probability of failure is to use 

Monte Carlo simulation. It could be fairly simple to estimate the probability of failure 

for a certain structure but it would be computationally burdensome to repeat the 

simulation for a large number of grid cells such as the 6,000 grid cells in State A used in 

this study. Because it is necessary to estimate the probability of failure for state-wide 

areas, more reliable data-based and analytical approaches should be considered for 

estimating the probability of failure. The Bayesian approach is suitable for this kind of 

problem in which analytical results and limited data can be integrated.  
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The Bayesian approach is based on Bayes’ theorem (e.g., Gelman et al. 2003). 

Bayesian probability theory starts from a prior probability distribution representing the 

initial information about a parameter. This is multiplied by the likelihood function based 

on the observed data and then normalized by the total probability of the data. The 

resulting posterior distribution is the conditional probability distribution for the uncertain 

quantity given the observed data. This is shown in equation (7.9). 

prior
datatheofyprobabilittotal

likelihoodposterior =     (7.9) 

The Bayesian approach can be used for predicting the number of damaged poles 

by updating the probability of pole failure estimated with the structural reliability model 

with the observed damage data for poles in the power distribution system. The 

formulation is defined as 
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=     (7.10) 

The parameter p is the probability of failure of a power distribution system pole given 

observed data consisting of f failed poles out of t poles under a wind speed of V. 

Considering p as the frequency of pole failure, )( Vpf  represents the prior probability 

density function of the probability of failure for poles under wind loads. The structural 

reliability model provides this prior. In estimating the posterior probability mass 

function (PMF) for the number of damaged poles in a given grid cell, a beta distribution 

is an appropriate prior as long as pole failures are assumed to be conditionally 

independent given wind speed. Pole failures are discrete, non-negative counts, and, 

barring additional information that could be used as additional conditioning variables, 

the probability of failure can reasonably be assumed to be constant across all poles. I 

will use the binomial PMF as my likelihood function. A convenient prior for the 

parameter p conditioned on wind speed is the beta distribution. This distribution is 

constrained to the (0, 1) interval, as are probabilities. The beta distribution is also highly 

flexible in its ability to model differing degrees of information and accuracy in the prior. 



 70

Finally, using the beta-binomial pair is also mathematically convenient because they 

form a conjugate pair, allowing the Bayesian updating to be done analytically. 

Raiffa and Schlaifer (2000) show the general form of the Bayesian updating for 

conjugate prior-likelihood pairs. Conjugate priors allow Bayesian updating to be done 

analytically in a simple manner. A beta prior with a binomial likelihood is a conjugate 

prior-likelihood pair that is attractive for this problem.  With a beta prior with parameters 

f and t and binomial likelihood for the observed data consisting of f ' failures in t ′ trials, 

the posterior distribution is also a beta distribution with parameters f ', t ′, f, and t, which 

are f failed poles out of t poles obtained from the structural reliability model. As shown 

by Raiffa and Schlaifer (2000), the posterior is given by  

)1''()1'( )1(
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The mean and variance of the posterior beta distribution are 
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This process produces the mean frequency of pole failure given a wind speed as well as 

the full PDF for the future frequency of pole failure given a wind speed. This updated 

fragility curve for the power distribution system given wind speeds can be used to 

predict the number of damaged poles under wind speeds for future hurricanes. 

 A key challenge in using Bayesian updating in this situation is selecting a prior 

based on the structural reliability model results. The structural reliability model provides 

an estimate of the mean probability of failure, not an estimate of the uncertainty (e.g., the 

variance). In order to compose a prior for a specific grid cell based on the results of the 

structural reliability model, an assumption must be made about the variance of the beta 

distribution used as the prior. I assumed that the prior mean is known from the structural 

reliability model. I also assumed that this mean is equal to the unknown number of failed 

poles, f, divided by the known total number of poles, t, in the grid cell. I estimated f by 

multiplying the mean from the structural reliability model for the estimated wind speed 

at the grid cell by the total number of poles in the grid cell. I then assumed that the prior 
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is a beta distribution with α = f and β = (t–f). The mean and variance of this beta prior 

are given by equations (7.13) and (7.14). 

t
fmean = ,          (7.13) 
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Note that there are strong assumptions about the variance of the prior that are implicit in 

this approach. Specifically, using the approach outlined above implicitly assumes that 

the variance of the prior as a function of the two known parameters, the mean failure 

probability from the structural reliability model (µ) and the total number of poles (t) in 

the grid cell, is given by equation (7.15) 
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Equation (7.15) shows that I have implicitly assumed that as the prior mean increases, 

the prior variance increases and that the prior variance is lower for a given wind speed 

(and thus for a given prior mean) for grid cells with more poles. While these are strong 

assumptions, I will show below that with the data used in this dissertation, there is not a 

strong relationship between the prior variance and the prior mean due to relatively small 

variations in the mean. 

In order to check the adequacy of the assumption made about the variance of 

prior distributions, Figures 7.2 and 7.3 give plots of the mean and variance of the priors 

and the posteriors respectively. In Figure 7.2, there is no clear pattern between the mean 

and the variance of the prior for the 3 hurricanes. This suggests that the implicit 

assumptions made about the variance of priors, e.g., that the variance of the prior 

increases with the mean of the prior and decreases with increases in the number of poles 

in the grid cell, do not significantly influence the posteriors in unintended ways. If there 

had been a clear trend between mean and variance in Figure 7.2, this would have 

suggested that the implicit assumptions about the variance might have unintended 

influence on the posteriors.  
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Figure 7.3 suggests that the posterior variance increases with the posterior mean 

for Hurricane Ivan. Figure 7.3 also shows that there is considerable uncertainty in the 

posteriors for the higher failure rates. The points in Figure 7.3 with posterior mean 

values above 0.1 are from the observed data for one of the sampling areas in which 

damage data was collected for Hurricane Ivan, and these data points are investigated 

further in Figures 7.8 and 7.9. Based on the results of the mean and variance plot, I could 

conclude that the prior distribution, a beta distribution with the assumptions discussed 

above, is acceptable because the variance of the prior does not increase with the mean of 

the prior for my data set. For other data sets, one must carefully investigate the 

relationship between the prior mean and the prior variance to make sure that the 

assumptions implicit in this type of prior are not influencing the prior in unintended 

ways. 
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Figure 7.3. Mean and variance of posteriors for 3 hurricanes. 

 

Based on the Bayesian model with the assumptions about the prior discussed 

above, the overall Bayesian updating process I used for a given type of pole and span 

length (to be discussed further below) was: 

1. I used the structural reliability model to estimate the probability of pole 

failure in each grid cell based on the estimated wind speed in that grid cell. 

2. I used the mean failure probability from the structural reliability model to 

estimate the mean number of pole failures in each grid cell by multiplying the 

mean probability by the number of poles in the grid cell. 

3. I estimated the parameters of the beta prior distribution (α and β) using the 

approach discussed above. 

4. I updated the prior found in the third step with the observed failure data based 

on Equation 7.11. This gave the posterior for the number of failed poles in a 

gird cell for the estimated wind speed in that grid cell. 

5. I used Equation 7.12 to estimate the posterior mean fraction of poles failed 

and the variance of the posterior in each grid cell with the parameters of the 

beta prior distribution (t and f) and the observed failure data (t ' and f '). 
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6. I fit the posterior fragility curve to the posterior mean fraction of poles failed 

with a normal CDF estimating the mean and the variance of the posterior 

fragility curve.  

7. Based on the posterior mean fraction failed and the variance of the posterior, 

the lower and upper bounds were also calculated with 95 % asymptotic 

confidence using the following equation:  

( ) ( )varianceposterior 1.96meanposteriorintervalConfidence ±= . (7.16) 

 

7.3. Physical Damage Estimation Model Results 

Fragilities as a function of wind speeds were evaluated using the AFOSM 

reliability method.  Figure 7.4 shows fragility curves for 3 types of poles for both types 

of line systems (e.g. both span lengths). The dotted lines represent 12.47 kV distribution 

systems (short span length) and the solid lines represent 34.5 kV transmission systems 

(long span length) for the 3 types of poles. Overall, the fragility curves for 12.47 kV line 

are located to the right in the figure, which means that the probability of failure for 12.47 

kV line is lower than the probability of failure for 34.5 kV line. In other words, the 

probability of failure of the power distribution system is governed by the span length of 

the system, not the types of poles. This makes sense. Longer span lengths for a given 

number of poles allow a longer length of line per pole, increasing the effective loading 

per pole. However, there are still differences, even given a span length. 

With the fragility curves, the number of damaged poles can be estimated for each 

of the distribution systems (e.g. 3 types of poles for both types of line systems). The 

number of damaged poles is calculated by multiplying the probability of failure of a 

power distribution system pole for the wind speed experienced in a grid cell (from the 

structural reliability model) and the total number of poles in the grid cell together.  

Figures 7.5, 7.6, and 7.7 show the number of damaged poles from structural reliability 

analysis and observed number of damaged poles for the 5 areas in State A in which 

damage data was collected for Hurricane Dennis, Ivan, and Katrina respectively. Note 

that this is a limited data set, and the areas for which damage information was collected 
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are not necessarily representative of the entire service area. However, this is the only 

damage data available from the utility that provided the data for this analysis. The 

thicker line represents the number of observed damaged poles during each of the 

hurricanes and the thinner lines represent the number of damaged poles predicted if the 

power distribution system were to be entirely composed of on one type of (identical) 

pole and span length. These figures show that the number of damaged poles from the 

observed data differs substantially for the three hurricanes even though all of the 

hurricanes were Category 3 hurricanes when they made a landfall. For Hurricane Dennis 

and Hurricane Ivan, the observed number of damaged poles is not in between the 

expected number of damaged poles estimated by fragility curves for the pole types and 

line systems used while it is for Hurricane Katrina. Overall, the observed number of 

damaged poles is not within the range predicted by the structural reliability model for the 

6 pole-span length combinations. These results suggest that the physical damage 

estimation model alone does not provide enough accuracy for predicting the number of 

damaged poles. Integrating the fragility curves based on the structural reliability analysis 

with the observed data is needed for improving the accuracy of the physical damage 

estimation models for future hurricanes.  
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Figure 7.4. Fragility curves given wind speeds for various pole types by structural 

reliability analysis. 
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Figure 7.5. The number of damaged poles from structural reliability analysis and 

observed data for Hurricane Dennis. 
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Figure 7.6. The number of damaged poles from structural reliability analysis and 

observed data for Hurricane Ivan. 
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Figure 7.7. The number of damaged poles from structural reliability analysis and 

observed data for Hurricane Katrina. 
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As mentioned in Section 7.3, Bayesian updating provides a way to integrate the 

results of the structural reliability model with the observed data. Using the Bayesian 

approach with conjugate pairs, the priors based on the fragility curves from the structural 

reliability analysis were updated with the observed data. For priors for Southern Pine 

poles, the main type of utility pole used in the service area of the utility company that 

provided the data for this thesis, the results for 12.47 kV line and 34.5 kV line are shown 

in Figures 7.8 and 7.9 respectively. In Figures 7.8 and 7.9, points are the posterior mean 

probability of failure for 3 hurricanes (one point per grid cell), the dotted lines are the 

priors for Southern Pine poles (12.47 kV in Figure 7.8 and 34.5 kV in Figure 7.9) based 

on the structural reliability model, , and the solid line is a smoothed fit (a normal CDF 

fit) of the mean probability of failure from the posterior distribution. Based on the mean 

and variance of posterior distributions, the lower and upper bounds were also calculated 

with 95 % asymptotic confidence coefficients (e.g., a student’s t distribution was used to 

estimate the 95% confidence interval using the posterior mean and variance) and 

presented in Figures 7.8 and 7.9. The “fraction failed” measure used on y axis represents 

the percentage of failed poles in a grid cell that the model estimates will fail. The 

number of pole failures for each type of pole was calculated by assuming all of the poles 

are identical. If additional information about poles (e.g., the fraction of poles and failed 

poles with different geometries, sizes, transformer attachments, etc.) were available, this 

information could be used to refine these estimates. However, this data is not available. 

After updating with the observed data, the updated number of pole failures is valid 

subject to the assumption that all poles are identical. Again, if more information on the 

distribution system becomes available, particularly information about the fraction of the 

total poles that are of the different pole types, the fragility for each pole type could be 

developed and used to more accurately estimate the total number of damaged poles. 

Overall, the posterior mean probability of failure for Hurricane Ivan, the pink points, is 

higher than the mean probability of failure for Hurricane Dennis and Hurricane Katrina 

because the observed damage for Hurricane Ivan is much more severe than for the other 

hurricanes. The one clump of dots for Ivan above the rest is from one of areas in which 
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damage data was collected for Hurricane Ivan. Even though the area did not experience 

high wind speeds, the damage in the area is higher than the other areas. It is not clear 

why this is the case, but this warrants further investigation in the future. The observed 

data are available for only relatively low wind speeds (i.e., winds no greater than 110 

mph in my data set) so that the lower and upper bounds are available only for the limited 

wind range. If I assume that the probability of failure has the same pattern for wind 

speeds stronger than those experienced in Hurricanes Dennis, Ivan, and Katrina, I could 

extend the probability of failure to the higher wind speeds. However, as with any 

probably model, one must be cautious about using the results beyond the range of 

conditions for which the model was developed. At the same time, extending the results 

to higher wind speeds may prove useful, and if more damage data for higher wind 

speeds are collected during future hurricanes, uncertainty in the model predictions for 

the higher wind speeds can be reduced by simply updating the model with the additional 

damage data. Figure 7.10 shows the updated and extended fragility curve for Southern 

Pine and the 12.47 kV line together with the original fragility curve used as the prior. 

Again note that the posterior fragility curve given in Figure 7.10 should be used with 

caution above wind speeds of approximately 110 mph. 
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Figure 7.8. Mean fraction failed of poles for 3 Hurricanes, prior fragility curve and 

posterior fragility curve for Southern Pine, 12.47 kV distribution line. 



 80

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 20 40 60 80 100 120

3-sec gust wind speed (mph)

Fr
ac

tio
n 

fa
ile

d

DENNIS IVAN KATRINA Prior_SP,34.5kv
Posterior_SP,34.5kv Upper Bound Lower Bound  

Figure 7.9. Mean fraction failed of poles for 3 Hurricanes, prior fragility curve and 

posterior fragility curve for Southern Pine, 34.5 kV distribution line. 
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Figure 7.10. Prior fragility curve, posterior fragility curve, and its confidence intervals 

for Southern Pine, 12.47 kV distribution line. 
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In order to determine whether or not the informative prior based on structural 

reliability models adds value to the analysis, I used three priors, a beta(0.1, 0.1), a beta 

(1, 1), and a beta(10, 10), and updated them with the observed damage data. These three 

priors range from non-informative for the beta(0.1, 0.1) and beta(1, 1) distributions to 

mildly informative with a mean of 0.5 for the beta(10, 10) distribution. If the prior based 

on the structural reliability model adds value to the analysis, the posterior based on this 

prior should be substantially different from the posteriors based on the other priors. If the 

posteriors were very similar, it would be a clear indication that the model-based prior is 

not adding value to the analysis.  

Figure 7.11 shows the prior fragility curve using the structural reliability model 

for a 12.47 kV line with Southern Pine poles, its posterior fragility curve, and the 

posterior fragility curves with the three other priors. There is large difference between 

the posterior fragility curve with the structural reliability model and the posterior 

fragility curves with three priors. Figure 7.11 also shows that the posterior obtained by 

updating from the model-based prior exhibits substantially more spread than the 

posteriors found by updating from the other priors. That is, there is considerably more 

uncertainty in the posterior using the model-based prior than in the other posteriors using 

the other priors. Given that the posteriors were all based on the same data and the same 

likelihood, this means that the mode-based prior is having less of an influence on the 

posterior than the other priors. Essentially, it is a ‘weaker’ prior in the sense that it 

contains less information (e.g., has higher entropy) than the other priors. This suggests 

that the model-based prior is likely a more accurate reflection of the degree of 

uncertainty than the other priors. The prior based on the structural reliability model is 

adding value to the analysis by more accurately reflecting the prior uncertainty. 
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Figure 7.11. Posterior fragility curves with structural reliability prior for Southern Pine, 

12.47 kV distribution line and three priors, beta(0.1, 0.1), beta(1, 1), and beta(10, 10). 

 

Figure 7.12 shows the updated and extended posterior fragility curves for 12.47 

kV and 34.5 kV distribution lines with Southern Pine poles together with the original 

fragility curves used as priors. These fragility curves are meant to represent the types of 

lines and poles used in the service area of the case study area. Figure 7.12 shows that the 

two updated fragility curves are closer than the priors. This reinforces the discussion of 

Figure 7.11 above. The data is driving the posteriors to a large degree, indicating that the 

model-based priors contain considerable uncertainty.   
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Figure 7.12. Prior fragility curve and posterior fragility curves for Southern Pine, two 

distribution lines. 

 

With the updated fragility curves shown in Figure 7.12, I can estimate the 

number of damaged poles for a given wind speed. In this study, the number of damaged 

poles can be calculated by multiplying the probability of failure for a given wind speed 

by the total number of poles in each grid cell. The model developed in this section is an 

innovative approach for integrating Bayesian updating with structural reliability analysis 

for estimating the reliably of power utility poles during hurricanes and accurately 

predicting damage to the power distribution system during hurricanes. Finally, the 

updated fragility curves shown in Figure 7.12 can provide the basis for a data-based 

approach for predicting the number of damaged poles during hurricanes.  

The damage estimation models developed in this dissertation are not perfectly 

accurate for predicting the damage in the power distribution system. However, the 

models can provide a good starting point even though the models do not consider all 

possible failure modes (e.g. tree-induced failure) and detailed information of a power 

distribution system (e.g. the age of power distribution system poles and the proportions 

of failures caused by different failure modes in the actual system). A useful extension of 
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the damage estimation model is to consider the detailed information of the power 

distribution system if the data is available and various other priors as well as the prior 

developed based on the structural reliability model. Also, damage for other power 

distribution system structures such as a concrete pole and a transmission tower could be 

considered in future.  
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8. SUMMARY AND CONCLUSIONS 

 

8.1 Summary 

 The goals of this dissertation are to develop models which are useful for 

managing power outage risks and to enable proper preparation for pre-storm planning. 

The models developed in this study provide a basis for managing the effects of 

hurricanes before they make landfall, and for restoring electric power after a hurricane. 

The power outage prediction models estimate the number of outages expected to be 

caused in the Gulf Coast region by an incoming hurricane. The customers out prediction 

models estimate the number of customers without power. The statistical damage 

estimation models are used for predicting the number of damaged poles and damaged 

transformers based on the past data for hurricanes at the limited area. The physical 

damage estimation model can estimate the probability of failure of a power distribution 

system pole given a wind speed. By adopting Bayesian approach, it is possible to more 

reliably estimate damage to the power distribution system than based on either a 

structural reliability model or observed data alone, integrating the fragility curves based 

on the structural reliability model with the observed data. 

 

8.2 Conclusions 

For accurately estimating the spatial distribution of power outages, customers 

without power, and damage in the power distribution system during an approaching 

hurricane based only on measurable characteristics of hurricanes, statistical and physical 

models were developed. These models can directly help utility companies improve their 

post-hurricane response through improved pre-hurricane planning. The statistical models 

developed are based on negative binomial GLMs and negative binomial GAMs in 

combination with principal components analysis to account for both collinearity and 

overdispersion in the data sets used. Previous work for predicting power outages used 

binary variables representing particular hurricanes in order to achieve a good fit to the 

past data. To use these models for predicting power outage risk and damage during 
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future hurricanes, one must implicitly assume that an approaching hurricane is similar to 

the average of the past hurricanes. The model developed in this study replaces these 

binary variables with physically measurable variables, enabling future predictions to be 

based on only well-understood characteristics of hurricanes.  

Through the use of GAMs, this study has improved the accuracy of models for 

estimating the spatial distribution of power outages during an approaching hurricane. 

This will in turn help utility companies improve their post-hurricane response through 

improved pre-hurricane allocation of repair crews to different portions of the service 

area. Furthermore, it has shown that semi-parametric GAMs can provide substantially 

improved accuracy in power outage estimates relative to GLMs.  

This study also involved using the Bayesian approach for predicting the number 

of damaged poles with the physical damage estimation model. This Bayesian approach 

was used in updating the probability that poles fail based on structural reliability analysis 

together with actual damage data for poles in the power distribution system. This 

integrated model presents an innovative approach for predicting damage to the power 

distribution system poles during hurricanes. Finally, fragility curves for representative 

distribution system poles are presented and the number of damaged poles is predicted 

using the probability of failure from the updated damage estimation models. 

The major research contributions of this thesis are: 

• Using the alternative hurricane descriptors, which are relatively easy to obtain, I 

obtained more useful prediction models. 

• By developing the customers out prediction model, I could provide risk measures 

more closely aligned with the methods currently used for pre-hurricane planning 

in utility companies.  

• By developing the statistical damage estimation model, I could make it enable a 

utility company to estimate the amount of actual damage in their service areas 

during hurricanes.  

• Fitting negative binomial GAMs to the data provided better predictions of power 

outages during hurricanes, capturing non-linearity of the data set. 
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• The physical damage estimation model produced updated prediction models for 

future events by integrating Bayesian updating with structural reliability analysis 

to reliably predict damage to the power distribution system during hurricanes, 

providing a data-based tool for predicting the number of damaged poles in 

certain wind speeds before hurricane landfall. 

 

These statistical models and physical models can provide a basis for improving 

pre-hurricane planning for post-hurricane response, and it can provide a basis for future 

research to further improve hurricane risk estimation models for hurricane-prone areas. 

The models developed both (a) provide grid-cell level estimates of power outages, 

customers without power, damaged poles and transformers for future hurricanes and (b) 

provide insight into which parameters most strongly affect the predictions from the 

models. These models can provide valuable information for pre-hurricane planning 

within the particular large investor-owned utility company in the Gulf Coast region, and 

they also yield more general insights into factors that most influence hurricane risks in 

the Gulf Coast region of the U.S. during hurricanes. By quantifying where the impacts of 

the hurricane are likely to be the worst, the results of the models can help managers 

decide how many crews and how much extra material to have on hand before a hurricane 

makes landfall, where to position crews and material to enable the fastest possible 

response after the hurricane, and how the distribution line should be installed based on 

the expected hurricane seasonal losses of poles. The damaged estimation models can be 

used to evaluate insurance needs. The models can also be used to examine a number of 

potentially ‘worst case’ scenarios by running the model with a particularly strong 

hurricane (past or hypothetical) and an assumed track. This would provide an estimate of 

how bad things might be in a future hurricane, providing a case against which current 

response plans could be tested. 
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APPENDIX A  

― The commands history in the program R for the PCA 
data<-read.table('regressiondata.txt',header=TRUE)   

summary(data) 

attach(data) 

library(MASS) 

PCA1<-

prcomp(~Transformer+Pole+Switch+Overhead+Underground+Customer+Windspeed+Duration+FSM1+F

SM2+FSM3+MAP+SPI1+SPI2+SPI3+SPI6+SPI12+SPI24+LC1+LC2+LC3+LC4+LC5+LC7+LC8+LC9,

scale=TRUE) 

summary(PCA1)  

write.table(PCA1$x,file="PC.txt",sep=",",row.names=FALSE,col.names=TRUE)
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Table A.1. Variable loadings of principal components for the State A 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26

Transformer 0.400 -0.032 0.013 -0.017 0.006 -0.020 -0.009 0.007 0.019 -0.024 0.011 0.118 -0.013 -0.008 -0.017 0.202 -0.029 -0.139 -0.014 -0.022 -0.076 0.200 0.031 0.151 -0.831 0.000

Pole 0.386 -0.032 0.014 0.003 0.008 -0.027 -0.009 0.014 0.033 -0.053 -0.015 0.313 0.017 -0.010 -0.019 0.174 -0.032 -0.143 -0.009 -0.015 -0.075 0.176 0.012 0.659 0.472 0.000

Switch 0.392 -0.034 0.017 -0.032 0.008 -0.006 -0.029 0.035 0.019 0.007 -0.003 0.017 0.000 0.010 -0.020 0.131 -0.076 0.373 0.039 0.070 0.278 -0.760 -0.102 0.065 -0.036 0.000

Overhead 0.389 -0.027 0.012 -0.028 -0.001 -0.033 0.012 -0.043 0.007 -0.038 0.050 0.001 -0.030 0.002 -0.048 0.356 0.005 -0.531 0.064 0.047 -0.002 -0.053 -0.006 -0.600 0.243 0.000

Underground 0.242 -0.027 0.009 -0.069 -0.008 0.063 -0.024 0.041 -0.042 0.162 0.107 -0.898 -0.108 0.021 -0.001 -0.026 0.028 -0.086 -0.014 -0.005 -0.029 0.067 -0.003 0.233 0.056 0.000

Customer 0.386 -0.038 0.021 -0.023 0.015 -0.014 -0.045 0.059 0.024 0.027 -0.020 0.004 -0.007 0.005 0.004 0.009 -0.125 0.672 -0.108 -0.071 -0.166 0.435 0.057 -0.339 0.148 0.000

Windspeed -0.007 -0.249 -0.399 0.106 0.074 0.207 -0.283 -0.049 -0.068 -0.235 0.035 -0.003 -0.070 0.283 -0.073 -0.025 -0.009 0.019 -0.099 0.658 0.045 0.105 -0.168 0.005 -0.008 0.000

Duration 0.008 -0.251 -0.462 0.063 0.025 0.152 -0.187 -0.026 -0.070 -0.152 0.037 0.009 -0.052 0.220 -0.046 0.044 0.244 -0.008 -0.149 -0.693 0.100 -0.053 0.034 -0.014 0.009 0.000

FSM1 -0.015 -0.311 -0.226 -0.086 0.140 0.028 0.216 -0.166 0.319 0.205 -0.056 0.004 0.020 -0.209 0.396 0.160 0.480 0.119 0.306 0.144 -0.085 0.011 0.100 0.008 0.003 0.000

FSM2 -0.024 -0.376 -0.189 -0.049 -0.098 -0.216 0.171 0.065 -0.033 0.073 -0.027 -0.012 0.007 -0.253 0.303 -0.059 -0.471 -0.097 -0.174 -0.026 0.524 0.161 -0.028 -0.008 0.006 0.000

FSM3 -0.031 -0.300 0.063 0.018 -0.275 -0.279 -0.059 0.181 -0.404 -0.147 0.008 -0.014 0.008 -0.417 -0.010 0.058 0.299 0.031 -0.275 0.063 -0.346 -0.119 -0.218 -0.002 -0.002 0.000

MAP 0.001 -0.016 -0.065 0.099 0.606 0.157 0.276 0.173 0.132 -0.376 0.035 -0.056 -0.212 -0.432 -0.248 -0.075 -0.101 -0.013 -0.080 -0.029 -0.073 -0.050 0.034 -0.004 0.000 0.000

SPI1 -0.040 -0.362 -0.056 -0.070 0.039 -0.059 0.215 -0.071 0.293 0.325 -0.053 0.029 0.102 0.218 -0.277 -0.103 -0.290 -0.067 -0.069 -0.093 -0.425 -0.127 -0.404 -0.006 -0.011 0.000

SPI2 -0.049 -0.405 0.197 -0.023 -0.002 -0.092 0.084 0.069 -0.003 0.088 -0.026 0.004 0.069 0.177 -0.347 0.001 0.073 -0.006 -0.185 0.135 0.047 -0.077 0.737 0.009 0.003 0.000

SPI3 -0.042 -0.332 0.382 0.029 0.053 0.029 -0.050 0.033 -0.072 -0.053 0.007 -0.007 0.038 -0.009 -0.370 0.033 0.201 0.070 0.451 -0.076 0.398 0.239 -0.342 0.001 -0.003 0.000

SPI6 -0.032 -0.337 0.253 0.094 0.037 0.128 -0.178 0.005 -0.162 -0.279 0.045 -0.021 -0.127 0.118 0.408 -0.062 -0.358 -0.024 0.410 -0.110 -0.327 -0.126 0.160 0.005 -0.002 0.000

SPI12 -0.022 -0.110 0.520 0.079 0.195 0.218 0.021 -0.095 0.168 -0.039 -0.025 0.010 -0.070 0.200 0.359 0.074 0.182 -0.036 -0.566 -0.015 0.113 0.008 -0.197 -0.012 0.003 0.000

SPI24 -0.001 0.081 -0.078 0.158 0.159 -0.377 0.408 0.540 -0.136 -0.073 0.008 -0.017 -0.057 0.487 0.173 0.058 0.135 0.020 0.102 0.031 0.010 0.028 -0.085 0.000 -0.003 0.000

LC1 0.002 -0.019 -0.026 0.079 -0.072 0.510 0.326 0.058 -0.432 0.413 0.356 0.183 -0.232 -0.031 -0.015 0.050 -0.019 0.028 0.001 0.029 -0.004 0.003 0.000 -0.008 0.004 0.204

LC2 0.371 -0.035 0.021 0.021 -0.014 -0.013 -0.010 0.037 0.029 0.002 -0.053 0.108 0.051 -0.009 0.076 -0.783 0.215 -0.172 0.033 0.017 0.039 -0.035 0.005 -0.078 -0.002 0.369

LC3 0.000 -0.013 -0.005 -0.150 -0.350 0.373 0.276 0.239 0.210 -0.383 0.220 -0.080 0.576 0.006 0.030 0.038 -0.012 0.015 -0.004 0.007 -0.010 0.011 -0.004 -0.003 -0.001 0.041

LC4 -0.135 0.015 0.000 -0.602 0.292 -0.090 -0.141 0.028 -0.145 -0.036 -0.012 -0.008 0.104 0.061 0.026 0.202 -0.052 0.028 -0.028 -0.007 -0.018 0.012 -0.024 0.024 0.002 0.649

LC5 -0.088 -0.019 0.027 0.233 -0.011 -0.209 -0.360 0.254 0.410 0.137 0.672 0.055 -0.069 -0.093 0.011 0.053 -0.007 0.005 -0.010 -0.004 0.004 -0.007 0.015 -0.001 0.000 0.201

LC7 -0.061 -0.011 0.021 -0.257 -0.458 0.091 0.076 0.190 0.333 -0.168 -0.208 0.032 -0.676 0.037 -0.077 0.029 0.025 0.014 0.021 0.008 0.015 0.009 -0.007 0.002 0.002 0.139

LC8 -0.013 0.025 -0.002 0.411 -0.168 -0.229 0.316 -0.553 0.008 -0.270 0.079 -0.122 -0.038 0.060 -0.075 0.125 -0.038 0.106 -0.002 -0.011 0.003 0.014 0.009 0.039 -0.002 0.457

LC9 -0.049 0.005 -0.026 0.480 -0.034 0.216 -0.182 0.336 0.085 0.203 -0.541 -0.078 0.174 -0.123 -0.001 0.206 -0.071 -0.034 0.017 -0.010 -0.016 -0.008 0.021 -0.008 -0.001 0.362
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Table A.2. Variable loadings of principal components for the State B 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24

Transformer 0.337 0.167 -0.222 -0.061 -0.010 0.003 0.007 -0.013 0.040 -0.017 0.003 0.030 -0.039 -0.015 -0.137 -0.027 0.001 0.385 -0.099 0.002 0.044 0.788 -0.011 0.000

Overhead 0.333 0.157 -0.228 -0.090 -0.020 0.015 -0.001 -0.021 0.038 -0.032 0.000 -0.016 -0.045 0.023 -0.095 -0.094 -0.448 0.505 -0.177 0.016 0.011 -0.539 0.038 0.000

Switch 0.330 0.161 -0.219 -0.062 -0.007 0.032 0.002 -0.020 0.028 -0.022 0.018 0.013 -0.049 0.013 -0.321 -0.060 -0.387 -0.740 0.010 0.013 0.019 0.057 -0.002 0.000

Customer 0.323 0.173 -0.219 -0.010 0.008 0.017 0.028 -0.018 0.029 -0.049 -0.013 0.112 -0.062 -0.079 -0.358 0.151 0.716 0.002 0.204 -0.053 -0.059 -0.279 -0.014 0.000

Windspeed 0.126 0.210 0.409 -0.231 0.010 -0.028 -0.022 -0.161 0.019 -0.066 -0.119 -0.032 -0.119 0.158 0.038 0.336 0.037 -0.065 -0.408 -0.578 0.064 -0.012 -0.090 0.000

Duration 0.063 0.294 0.337 -0.044 -0.126 -0.028 -0.049 -0.288 -0.015 -0.034 -0.098 -0.012 0.168 -0.244 -0.026 0.512 -0.146 0.044 0.190 0.509 -0.030 0.019 0.099 0.000

FSM1 -0.177 0.348 -0.004 0.022 -0.246 0.002 -0.064 0.066 0.021 -0.022 -0.049 0.113 0.289 -0.089 -0.038 -0.249 0.083 -0.048 -0.370 0.048 -0.668 0.005 -0.115 0.000

FSM2 -0.163 0.283 -0.066 0.139 -0.360 0.035 -0.119 0.261 0.058 -0.068 -0.031 0.032 0.433 -0.263 -0.049 -0.025 -0.060 0.027 0.166 -0.351 0.481 -0.014 0.027 0.000

FSM3 0.154 -0.248 0.046 -0.082 0.301 0.090 -0.028 0.486 0.102 -0.140 -0.130 0.205 0.510 0.316 -0.088 0.300 -0.043 0.011 -0.067 0.084 -0.082 0.007 0.060 0.000

MAP 0.229 0.002 0.337 -0.201 -0.199 -0.101 0.069 0.124 -0.017 -0.015 0.269 -0.581 0.214 0.226 -0.117 -0.304 0.179 -0.014 -0.051 0.220 0.153 -0.024 -0.059 0.000

SPI1 -0.140 0.251 0.016 -0.174 0.210 0.089 -0.048 0.582 0.129 -0.083 -0.016 -0.160 -0.419 -0.352 0.068 0.074 0.065 -0.054 -0.241 0.222 0.108 -0.015 0.088 0.000

SPI2 0.124 -0.052 0.275 -0.397 0.393 0.023 0.045 -0.159 -0.030 0.002 -0.198 0.249 0.203 -0.430 0.000 -0.465 0.024 0.003 0.094 -0.044 0.089 -0.010 -0.037 0.000

SPI3 0.211 -0.322 0.069 -0.016 -0.077 0.017 -0.069 0.169 0.052 -0.031 0.109 -0.358 -0.020 -0.428 -0.007 0.165 -0.156 0.056 0.298 -0.350 -0.458 0.040 -0.040 0.000

SPI6 0.159 -0.359 -0.058 0.166 -0.176 0.011 -0.022 -0.027 -0.003 -0.015 -0.069 0.073 0.033 -0.290 0.014 0.120 0.050 -0.048 -0.372 0.198 0.212 -0.043 -0.666 0.000

SPI12 0.187 -0.341 0.009 0.117 -0.251 -0.007 -0.036 -0.096 -0.011 -0.009 -0.066 0.048 0.042 -0.222 0.020 -0.036 0.130 -0.086 -0.412 0.028 0.066 -0.006 0.709 0.000

SPI24 0.139 -0.111 0.224 -0.147 -0.490 0.020 -0.200 0.191 0.162 -0.181 -0.411 0.266 -0.335 0.216 0.067 -0.189 -0.021 0.018 0.267 0.082 -0.041 0.012 -0.044 0.000

LC1 0.079 0.061 0.337 0.478 0.129 0.155 0.002 0.082 -0.285 -0.254 0.093 0.097 -0.123 -0.010 -0.229 -0.124 -0.060 0.062 -0.002 -0.020 -0.011 0.013 0.002 -0.588

LC2 0.319 0.160 -0.220 -0.057 -0.006 0.014 0.036 0.002 0.016 0.018 -0.031 -0.058 0.129 0.022 0.729 0.017 0.103 -0.135 0.064 0.015 -0.015 -0.027 -0.011 -0.481

LC3 0.084 0.052 0.212 0.293 0.039 0.251 0.265 -0.013 0.690 0.485 -0.051 0.004 -0.007 0.008 -0.045 -0.062 -0.010 0.014 0.005 -0.011 -0.001 -0.008 0.000 -0.067

LC4 -0.155 -0.112 -0.037 -0.405 -0.267 -0.110 0.365 0.173 -0.235 0.458 0.040 0.177 -0.035 -0.035 -0.217 0.147 -0.054 0.039 -0.009 -0.013 -0.005 0.005 0.010 -0.421

LC5 -0.235 -0.075 -0.219 -0.076 0.013 0.287 0.238 -0.178 0.032 -0.242 -0.609 -0.455 0.069 0.031 -0.170 0.001 0.016 0.016 -0.024 0.003 0.003 0.019 0.004 -0.203

LC7 -0.153 -0.100 -0.041 -0.290 -0.150 0.386 0.196 -0.173 0.318 -0.475 0.513 0.196 -0.004 -0.021 0.018 0.044 -0.005 0.004 -0.009 0.013 0.010 0.009 0.001 -0.096

LC8 -0.095 -0.073 -0.068 -0.196 0.044 0.366 -0.767 -0.135 0.037 0.308 0.080 -0.087 0.029 0.061 -0.130 0.011 0.046 0.019 -0.039 0.030 0.034 -0.002 -0.008 -0.250

LC9 -0.152 -0.074 -0.073 -0.028 0.104 -0.710 -0.182 -0.097 0.466 -0.187 0.004 -0.025 0.013 -0.028 -0.157 -0.001 -0.014 0.007 -0.030 0.005 0.017 0.000 0.003 -0.359
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Table A.3. Variable loadings of principal components for the State C 

 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25

Transformer 0.387 -0.142 0.017 -0.016 0.008 -0.028 0.063 -0.026 0.001 -0.004 0.049 -0.026 0.095 -0.144 0.006 -0.069 0.035 -0.004 -0.306 0.144 0.047 0.021 -0.039 -0.816 0.000

Pole 0.361 -0.137 0.029 -0.026 0.023 -0.007 0.098 -0.036 -0.014 -0.014 0.077 -0.036 0.170 -0.165 0.018 0.573 -0.379 0.024 0.165 -0.481 -0.201 -0.031 0.003 0.036 0.000

Switch 0.377 -0.139 0.016 -0.017 0.007 -0.030 0.057 -0.021 0.010 0.001 0.039 -0.005 0.092 -0.157 0.004 -0.167 0.093 -0.052 0.776 0.357 0.165 0.007 0.003 0.050 0.000

Overhead 0.383 -0.139 0.016 -0.011 0.012 -0.013 0.066 0.002 -0.006 0.002 0.028 -0.008 0.088 -0.092 0.005 0.156 -0.126 -0.041 -0.497 0.463 0.233 0.026 0.020 0.504 0.000

Customer 0.368 -0.138 0.017 -0.039 0.014 -0.041 0.063 -0.034 0.024 0.008 0.039 -0.039 0.051 -0.154 -0.003 -0.538 0.380 0.070 -0.164 -0.457 -0.239 -0.032 0.018 0.270 0.000

Windspeed 0.099 0.282 -0.312 -0.101 0.212 -0.082 0.003 -0.162 -0.140 0.281 -0.013 0.036 0.199 0.170 0.121 -0.419 -0.578 -0.036 -0.002 -0.094 0.146 -0.013 -0.018 -0.002 0.000

Duration 0.050 0.231 -0.262 -0.110 0.348 -0.135 0.013 -0.198 -0.145 0.389 0.023 -0.047 0.142 0.051 -0.438 0.304 0.445 -0.028 0.001 0.038 -0.032 0.013 -0.027 0.000 0.000

FSM1 0.064 0.075 -0.144 -0.281 -0.519 0.217 -0.026 -0.066 -0.163 0.352 -0.025 0.066 -0.328 -0.229 0.085 0.074 0.079 0.000 0.002 -0.176 0.332 0.300 -0.062 0.000 0.000

FSM2 0.066 0.167 -0.277 -0.353 -0.455 0.157 0.030 -0.040 -0.030 -0.072 0.018 -0.068 0.141 0.109 0.008 0.011 -0.010 0.107 0.001 0.279 -0.514 -0.354 0.100 0.001 0.000

FSM3 0.084 0.277 -0.143 -0.189 -0.155 0.017 0.004 0.035 0.173 -0.578 -0.036 -0.010 0.369 0.183 -0.149 0.032 0.133 -0.216 -0.007 -0.201 0.369 0.164 -0.095 0.001 0.000

MAP 0.103 0.087 0.008 0.417 -0.111 0.246 -0.197 -0.160 -0.253 -0.063 -0.370 0.616 0.205 -0.083 -0.134 -0.006 0.016 0.037 -0.006 0.018 -0.108 0.039 0.059 0.000 0.000

SPI1 0.136 0.250 -0.366 0.150 0.187 0.025 -0.034 0.119 0.088 -0.172 -0.039 0.088 -0.402 -0.274 0.170 0.086 0.085 -0.120 -0.012 -0.080 0.199 -0.561 0.091 -0.016 0.000

SPI2 0.161 0.366 -0.023 0.100 0.053 -0.024 0.013 0.152 0.117 -0.092 0.050 -0.051 -0.327 -0.166 -0.191 -0.071 -0.162 -0.396 0.000 0.124 -0.428 0.466 0.014 0.012 0.000

SPI3 0.134 0.365 0.227 0.074 -0.052 -0.015 0.011 0.115 0.075 -0.050 0.039 -0.069 -0.129 -0.078 -0.350 -0.058 -0.137 0.647 0.018 0.021 0.087 -0.094 -0.398 0.016 0.000

SPI6 0.087 0.342 0.404 -0.061 -0.051 -0.088 0.027 0.016 0.010 0.074 0.047 -0.019 0.032 0.019 -0.033 0.006 0.012 0.113 0.000 -0.045 0.145 -0.027 0.805 -0.041 0.000

SPI12 0.054 0.217 0.540 -0.027 -0.160 -0.046 0.018 -0.038 -0.075 0.226 0.014 0.041 0.068 0.061 0.026 -0.008 0.030 -0.529 -0.019 -0.036 0.009 -0.393 -0.350 0.010 0.000

SPI24 0.102 0.356 0.097 -0.036 0.165 -0.107 0.027 -0.083 -0.034 -0.046 -0.032 0.076 0.079 0.050 0.735 0.163 0.251 0.212 0.008 0.084 -0.136 0.235 -0.177 0.015 0.000

LC1 -0.003 -0.019 -0.022 -0.063 -0.053 -0.311 -0.620 0.178 -0.417 -0.141 0.482 0.084 0.042 -0.098 0.001 -0.004 -0.002 0.003 -0.007 0.002 -0.010 -0.001 -0.011 0.012 -0.185

LC2 0.339 -0.116 0.012 -0.020 0.018 0.020 -0.050 0.041 0.002 0.004 -0.110 0.102 -0.364 0.664 -0.029 0.057 0.028 0.016 0.037 -0.048 -0.002 0.003 0.010 -0.020 -0.510

LC3 0.011 -0.009 -0.103 0.036 -0.136 -0.379 0.078 0.667 -0.169 0.159 -0.522 -0.121 0.166 -0.040 0.029 0.021 0.024 0.001 0.008 -0.022 -0.008 0.009 0.001 -0.009 -0.044

LC4 -0.106 0.096 -0.154 0.478 -0.309 -0.170 0.102 -0.195 0.273 0.151 0.159 -0.174 0.209 -0.152 0.062 0.007 0.029 -0.009 -0.014 0.004 0.028 0.008 0.010 0.011 -0.574

LC5 -0.042 0.042 0.013 0.187 -0.023 0.035 0.446 -0.169 -0.721 -0.299 0.018 -0.316 -0.123 0.018 -0.019 -0.031 0.010 -0.023 0.005 -0.003 0.035 -0.001 0.014 0.003 -0.064

LC7 -0.159 -0.036 -0.014 -0.237 0.016 -0.259 0.553 0.130 0.006 -0.045 0.258 0.640 -0.029 -0.095 -0.070 -0.024 -0.020 0.025 -0.011 0.018 -0.020 -0.002 -0.020 -0.001 -0.176

LC8 -0.092 0.063 0.094 -0.183 0.306 0.639 0.014 0.339 -0.078 0.059 0.042 -0.074 0.218 -0.211 0.028 -0.040 0.013 -0.015 -0.007 0.011 0.003 0.007 -0.004 -0.001 -0.466

LC9 -0.111 -0.049 0.140 -0.397 0.115 -0.264 -0.152 -0.404 0.023 -0.199 -0.478 -0.058 -0.108 -0.338 -0.062 -0.025 -0.100 0.002 -0.013 0.041 -0.038 -0.025 -0.012 0.006 -0.350
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Table A.4. Variable loadings of principal components for damage estimation models provided by the State A 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26

Transformer 0.374 -0.088 0.062 -0.043 0.028 -0.006 0.023 -0.024 -0.002 0.057 0.061 -0.084 -0.045 0.027 0.029 0.202 -0.035 -0.036 -0.167 0.011 0.065 0.295 0.143 0.366 -0.714 -0.001

Pole 0.361 -0.086 0.053 -0.023 0.023 -0.004 0.035 -0.034 -0.012 0.132 0.150 -0.275 -0.158 0.043 0.015 0.153 -0.043 -0.025 -0.154 0.010 -0.005 0.103 0.242 0.404 0.657 0.000

Switch 0.376 -0.081 0.037 -0.037 0.030 0.008 0.010 -0.018 -0.013 0.001 0.033 -0.056 -0.026 0.015 0.007 0.046 -0.201 -0.096 0.171 0.013 -0.062 -0.858 0.060 -0.005 -0.135 0.001

Overhead 0.372 -0.077 0.058 -0.046 -0.006 0.004 0.004 -0.042 -0.006 0.022 0.051 0.012 -0.009 0.009 0.042 0.361 0.070 0.022 -0.456 0.028 -0.072 0.063 -0.339 -0.608 0.065 0.001

Underground 0.268 -0.052 0.020 -0.065 0.014 -0.005 -0.035 0.043 0.016 -0.320 -0.284 0.682 0.402 -0.061 0.039 0.024 0.047 0.035 -0.120 0.011 -0.002 0.001 0.123 0.208 0.157 0.000

Customer 0.367 -0.086 0.033 -0.045 0.045 0.014 0.007 0.007 -0.021 -0.065 -0.017 0.012 0.041 0.023 0.014 -0.095 -0.426 -0.173 0.628 -0.043 0.052 0.385 -0.154 -0.219 0.077 0.000

Windspeed -0.054 -0.277 -0.191 0.095 0.139 -0.016 0.286 -0.088 -0.586 -0.004 0.015 -0.010 0.031 -0.395 0.022 0.221 0.016 0.423 0.164 0.003 -0.072 0.007 0.057 -0.013 -0.008 0.000

Duration -0.006 -0.253 -0.406 0.008 -0.033 -0.060 -0.046 0.017 -0.143 -0.141 0.102 -0.088 0.058 -0.345 -0.028 -0.240 -0.014 -0.572 -0.230 0.243 0.291 -0.007 -0.028 -0.016 0.009 0.000

FSM1 0.018 0.014 -0.434 0.044 0.303 0.126 0.089 -0.143 0.179 0.158 -0.084 0.070 -0.065 0.056 0.343 -0.211 -0.341 0.185 -0.239 -0.399 0.118 -0.033 -0.209 0.099 0.006 0.000

FSM2 0.031 -0.026 -0.486 -0.034 0.156 0.109 -0.127 -0.023 0.264 -0.001 0.091 0.032 -0.014 0.101 -0.016 0.014 -0.036 0.096 0.057 0.424 -0.533 0.087 0.331 -0.147 -0.039 0.000

FSM3 0.100 0.216 -0.355 -0.090 -0.150 -0.029 -0.142 0.183 0.164 -0.190 0.277 -0.043 0.076 -0.018 -0.417 0.190 -0.035 0.354 0.067 -0.136 0.464 -0.033 0.081 -0.059 0.009 0.000

MAP -0.025 -0.166 0.127 0.204 0.447 0.191 -0.072 -0.342 0.198 0.311 -0.163 0.084 0.066 -0.109 -0.572 0.066 0.061 -0.072 0.031 0.040 0.162 -0.009 -0.012 -0.011 0.016 0.000

SPI1 0.096 0.249 -0.335 -0.025 0.096 -0.106 0.302 -0.002 -0.161 0.161 -0.198 0.043 -0.004 0.274 -0.007 0.190 0.409 -0.374 0.166 -0.307 0.039 0.007 0.228 -0.131 0.002 0.000

SPI2 0.086 0.396 -0.105 0.050 0.056 -0.044 0.234 -0.004 -0.304 0.025 -0.139 0.022 -0.023 0.320 -0.218 -0.089 -0.151 0.078 -0.086 0.519 0.057 -0.021 -0.378 0.197 0.016 0.000

SPI3 0.084 0.418 0.092 0.101 0.021 0.009 0.044 0.015 -0.194 -0.101 0.095 -0.042 0.055 -0.285 -0.356 -0.224 -0.274 -0.126 -0.247 -0.344 -0.412 0.057 0.166 -0.067 -0.034 0.000

SPI6 0.087 0.365 -0.045 0.142 0.235 0.195 -0.177 -0.032 0.094 -0.136 0.289 -0.004 0.039 -0.328 0.219 0.200 0.329 -0.124 0.223 0.010 -0.126 -0.021 -0.395 0.241 0.019 0.000

SPI12 0.033 0.349 0.226 0.198 0.233 0.177 0.008 -0.135 -0.085 -0.084 0.072 0.017 -0.038 -0.049 0.353 -0.063 -0.073 0.054 -0.051 0.245 0.400 0.009 0.468 -0.283 -0.006 0.000

SPI24 -0.093 -0.251 0.000 0.201 0.129 0.320 -0.196 -0.108 -0.328 -0.414 0.306 0.061 -0.069 0.533 -0.093 -0.001 0.026 -0.085 -0.047 -0.182 -0.035 -0.003 -0.018 0.025 -0.007 0.000

LC1 -0.006 -0.012 -0.034 0.463 0.057 -0.463 -0.201 -0.074 0.019 -0.009 -0.053 -0.319 0.565 0.156 0.110 0.081 -0.067 0.034 -0.013 -0.021 -0.039 -0.005 0.000 0.003 0.001 -0.214

LC2 0.365 -0.081 0.019 0.004 0.020 0.007 0.019 -0.007 -0.011 0.000 0.036 -0.079 -0.061 0.001 -0.052 -0.604 0.461 0.256 0.032 -0.020 0.002 0.018 -0.031 -0.071 -0.029 -0.440

LC3 0.012 -0.026 0.006 0.325 0.088 -0.607 -0.016 -0.045 0.091 -0.070 0.189 0.395 -0.551 -0.032 -0.038 0.023 -0.031 -0.016 0.028 0.003 -0.003 0.004 -0.003 0.001 0.000 -0.034

LC4 -0.150 0.060 0.034 -0.414 0.392 -0.098 -0.334 0.207 -0.173 -0.069 -0.203 -0.047 -0.158 -0.027 -0.001 0.192 -0.132 -0.062 -0.036 -0.013 0.018 -0.007 0.014 0.011 0.013 -0.566

LC5 -0.128 0.029 0.080 -0.403 0.029 -0.164 0.192 -0.338 -0.028 0.250 0.602 0.236 0.316 0.088 0.028 -0.036 -0.060 -0.063 0.006 0.024 0.005 -0.010 0.000 0.007 0.005 -0.192

LC7 -0.094 -0.059 0.087 -0.117 0.199 -0.080 0.566 -0.162 0.359 -0.596 -0.065 -0.257 -0.010 -0.013 -0.059 0.068 0.001 -0.019 -0.020 0.013 -0.020 -0.002 -0.023 0.010 0.001 -0.096

LC8 -0.028 0.096 -0.126 0.147 -0.541 0.218 -0.025 -0.505 0.026 -0.040 -0.165 0.068 -0.151 -0.074 0.012 0.192 -0.113 -0.061 0.040 0.000 -0.006 0.003 0.012 0.041 0.006 -0.487

LC9 -0.071 -0.104 0.044 0.351 -0.016 0.268 0.367 0.581 0.136 0.182 0.190 0.158 0.072 0.008 -0.010 0.115 -0.116 -0.103 -0.026 0.037 0.004 -0.008 0.004 0.003 0.005 -0.395
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APPENDIX B 

― The commands history in the program R for the saturated model fitting of negative 

binomial GLMs 
data<-read.table('regressiondata.txt',header=TRUE)   

summary(data) 

attach(data) 

library(MASS) 

NBPCA<-

glm.nb(Outage~Pressure+Time+RMW+PC1+PC2+PC3+PC4+PC5+PC6+PC7+PC8+PC9+PC10+PC11+

PC12+PC13+PC14+PC15+PC16+PC17+PC18+PC19+PC20+PC21+PC22+PC23+PC24+PC25+PC26,dat

a=data) 

summary(NBPCA) 
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Table B.1. Regression parameter estimates and p-values (second line of each cell) of power outage prediction models fitted by the 
negative binomial GLM for State A. 

Model Intercept Transformer Pole Switch Overhead Underground Customer Hurricane
Danny

Hurricane
Dennis

Hurricane 
Georges 

Hurricane
Ivan Windspeed Duration FSM1 FSM2 FSM3 MAP

0 18.6467 
0.1328 

-0.0004 
0.2786 

0.0005 
0.0002 

0.0073  
<.0001 

0.1425
<.0001

-0.0302 
<.0001 

-0.0010
<.0001

-2.0729
<.0001

-0.8812
<.0001

-1.2453 
<.0001 

0.1346
0.3723

0.0153 
<.0001 

0.0654
<.0001

0.8842
0.2742

1.4866
0.0321

-3.6997
<.0001

-0.0003
0.2148

1 -0.1805 
0.8112 

-0.0004 
0.2897 

0.0005 
0.0002 

0.0073  
<.0001 

0.1424
<.0001

-0.0302 
<.0001 

-0.0010
<.0001

-2.1530
<.0001

-0.8166
<.0001

-1.2543 
<.0001 NA 0.0142 

<.0001 
0.0637
<.0001 NA 1.9264

0.0002
-3.7292
<.0001 NA 

2 -0.1632 
0.8288 NA 0.0004 

0.0001 
0.0073  
<.0001 

0.1396
<.0001

-0.0309 
<.0001 

-0.0010
<.0001

-2.1534
<.0001

-0.8168
<.0001

-1.2532 
<.0001 NA 0.0143 

<.0001 
0.0636
<.0001 NA 1.9062

0.0002
-3.7128
<.0001 NA 

 

MAP SPI1 SPI2 SPI3 SPI6 SPI12 SPI24 LC1 LC2 LC3 LC4 LC5 LC7 LC8 LC9 Dispersion 
Parameter D.F Deviance

-0.0003 
0.2148 

-0.2705 
<.0001 

0.0509
0.5176

0.4025
<.0001

-0.1603
0.0152

0.1341
0.0743

-0.2974
0.0002

-0.2144
0.0838

-0.2087
0.0925

-0.1852 
0.1358 

-0.2109 
0.0891 

-0.2126
0.0865

-0.2168
0.0807

-0.2120
0.0875

-0.2111
0.0888

1.2239 
0.0292 33374 18880.06

NA -0.2467 
<.0001 NA 0.4491

<.0001
-0.1057
0.0380 NA -0.2397

<.0001
-0.0293
0.0002

-0.0237
0.0021 NA -0.0259 

0.0006 
-0.0274
0.0004

-0.0317
0.0002

-0.0269
0.0004

-0.0257
0.0007

1.2247 
0.0292 33380 18883.70

NA -0.2449 
<.0001 NA 0.4485

<.0001
-0.1049
0.0393 NA -0.2379

<.0001
-0.0295
0.0002

-0.0239
0.0019 NA -0.0260 

0.0006 
-0.0275
0.0004

-0.0318
0.0002

-0.0270
0.0003

-0.0258
0.0007

1.2226 
0.0291 33381 18896.95

 
Table B.2. Model comparisons by likelihood ratio tests for the negative binomial GLM  

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 3.14 5 0.6784 Models 0 and 1 are statistically 
indistinguishable 

0 to 2 16.83 6 0.0099 Model 0 outperforms Model 2 

Null to 1 32468 25 0 Model 1 outperforms Null 
Model 
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Table B.3. Regression parameter estimates and p-values (second line of each cell) of power outage prediction models fitted by the 
negative binomial GLM with principal components for State A. 

Model Intercept Hurricane 
Danny 

Hurricane 
Dennis 

Hurricane
Georges

Hurricane
Ivan PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

0 -0.7811 
<.0001 

-2.0729 
<.0001 

-0.8812 
<.0001 

-1.2453
<.0001

0.1346
0.3722

0.3982
<.0001

-0.2007
<.0001

-0.2154
<.0001

0.0193
0.0368

0.0702
<.0001

0.1800
<.0001

-0.1811 
<.0001 

-0.1658
<.0001

-0.0031
0.8730

-0.2495
<.0001

0.0823
<.0001

0.1488
<.0001

1 -0.7159 
<.0001 

-2.1368 
<.0001 

-0.9362 
<.0001 

-1.3093
<.0001 NA 0.3984

<.0001
-0.2003
<.0001

-0.2372
<.0001 NA 0.0671

<.0001
0.1656
<.0001

-0.1696 
<.0001 

-0.1568
<.0001 NA -0.2410

<.0001
0.0819
<.0001

0.1502
<.0001

 

PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 Dispersion 
Parameter D.F Deviance

-0.0075 
0.6142 

0.1560
<.0001

-0.1240
<.0001

0.5176
<.0001

0.2762
<.0001

-0.9559
<.0001

0.1319
0.0047

-0.1616
<.0001

0.5595 
<.0001 

-0.3273 
<.0001 

-0.0179
0.8133

-0.4901
<.0001

0.3582
<.0001

-7.8450
0.0887

1.2239 
0.0292 33374 18880.07

NA 0.1604
<.0001

-0.1191
<.0001

0.5173
<.0001

0.2730
<.0001

-0.9579
<.0001

0.1358
0.0023

-0.1736
<.0001

0.5469 
<.0001 

-0.3361 
<.0001 NA -0.4897

<.0001
0.3705
<.0001 NA 1.2234 

0.0292 33380 18891.46

 
Table B.4. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components  

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 11.39 6 0.0770 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 32485 26 0 Model 1 outperforms Null 
Model 
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Table B.5. Regression parameter estimates and p-values (second line of each cell) of power outage prediction models fitted by the 
negative binomial GLM with principal components and alternative hurricane descriptors for State A. 

Model Intercept Pressure Time RMW PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

0 -3.6630  
<.0001 

0.0330 
<.0001 

0.0158 
<.0001 

-0.0076 
0.6775 

0.3993
<.0001

-0.1810
<.0001

-0.1997
<.0001

0.0191
0.0380

0.0717
<.0001

0.1791
<.0001

-0.1738
<.0001

-0.1614
<.0001

0.0030 
0.8761 

-0.2385
<.0001

0.0817
<.0001

0.1492
<.0001

-0.0036
0.8094

1 -4.0528 
<.0001 

0.0349 
<.0001 

0.0155 
<.0001 NA 0.3994

<.0001
-0.1803
<.0001

-0.1995
<.0001

0.0196
0.0312

0.0712
<.0001

0.1761
<.0001

-0.1727
<.0001

-0.1579
<.0001 NA -0.2398

<.0001
0.0818
<.0001

0.1485
<.0001 NA 

2 -4.1003 
<.0001 

0.0357 
<.0001 

0.0154 
<.0001 NA 0.3995

<.0001
-0.1777
<.0001

-0.1999
<.0001

0.0195
0.0322

0.0702
<.0001

0.1694
<.0001

-0.1653
<.0001

-0.1504
<.0001 NA -0.2383

<.0001
0.0815
<.0001

0.1480
<.0001 NA 

 

PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 Dispersion 
Parameter D.F Deviance

0.1431
<.0001

-0.1458
<.0001

0.5159
<.0001

0.2728
<.0001

-0.9548
<.0001

0.1612
0.0003

-0.1827
<.0001

0.5821 
<.0001 

-0.3049 
<.0001 

-0.1139
0.0706

-0.4860
<.0001

0.3599
<.0001

-7.8402
0.0888

1.2244 
0.0292 33375 18882.60

0.1416
<.0001

-0.1486
<.0001

0.5148
<.0001

0.2680
<.0001

-0.9545
<.0001

0.1655
0.0001

-0.1828
<.0001

0.5866 
<.0001 

-0.3032 
<.0001 

-0.1178
0.0555

-0.4860
<.0001

0.3592
<.0001 NA 1.2247 

0.0292 33379 18884.26

0.1440
<.0001

-0.1453
<.0001

0.5190
<.0001

0.2753
<.0001

-0.9553
<.0001

0.1748
<.0001

-0.1898
<.0001

0.5922 
<.0001 

-0.3065 
<.0001 NA -0.4849

<.0001
0.3599
<.0001 NA 1.2236 

0.0292 33380 18894.18

 
Table B.6. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components and alternative 
hurricane descriptors  

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 1.66 4 0.7980 Models 0 and 1 are statistically 
indistinguishable 

0 to 2 11.58 5 0.0410 Model 0 outperforms Model 2 

Null to 1 32468 25 0 Model 1 outperforms Null 
Model 
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Table B.7. Regression parameter estimates and p-values (second line of each cell) of power outage prediction models fitted by the 
negative binomial GLM for State B. 

Model Intercept Transformer Switch Overhead Customer Hurricane
Dennis

Hurricane
Ivan Windspeed Duration FSM1 FSM2 FSM3 MAP SPI1 SPI2 SPI3

0 -4.4153 
0.9411 

0.0035 
<.0001 

0.0042 
0.0021 

0.0507 
<.0001 

-0.0005
<.0001

0.1001
0.7583

2.2195
0.0217

-0.0323
0.0077 

0.0858
<.0001

-0.2472 
0.9726 

-8.3381 
0.0879 

-7.9990
0.0703

0.0008
0.5439

0.6525
0.1552

0.1154
0.8482

0.9927
0.0280

1 -2.3418 
<.0001 

0.0035 
<.0001 

0.0043 
0.0017 

0.0514 
<.0001 

-0.0005
<.0001 NA 1.5050

<.0001
-0.0328
0.0040 

0.0928
<.0001 NA -9.6441 

<.0001 
-6.0298
0.0017 NA 0.6968

0.0048 NA 1.0037
<.0001

 

SPI6 SPI12 SPI24 LC1 LC2 LC3 LC4 LC5 LC7 LC8 LC9 Dispersion
Parameter D.F Deviance

-0.4846
0.5261

0.9391
0.0460

-0.7270
0.4858

0.0133
0.9822

0.0039
0.9948

0.0454 
0.9395 

0.0104
0.9862

0.0070
0.9907

-0.0045
0.9940

0.0114
0.9848

0.0111
0.9851

0.8020 
0.0438 1779 1899.13

-1.0213
0.0312

0.8755
0.0032 NA 0.0093

<.0001 NA 0.0403 
<.0001 

0.0066
0.0184 NA NA 0.0072

0.0345
0.0073
0.0059

0.8056 
0.0438 1787 1897.93

 
Table B.8. Model comparisons by likelihood ratio tests for the negative binomial GLM 

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 1.2 8 0.9966 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 5194 18 0 Model 1 outperforms Null 
Model 
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Table B.9. Regression parameter estimates and p-values (second line of each cell) of power outage prediction models fitted by the 
negative binomial GLM with principal components for State B. 

Model Intercept Hurricane 
Dennis 

Hurricane 
Ivan PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14

0 0.3454 
0.2185 

0.1000 
0.7587 

2.2200 
0.0217 

0.6373 
<.0001 

0.1242
0.4632

-0.0899
0.0420

-0.0129
0.8880

-0.1504
0.0009

-0.0184
0.5336

-0.0353
0.3939

-0.2305
0.2616

0.0571 
0.3795 

0.0825
0.1291

0.0694
0.1797

-0.2552
0.0084

-0.1517
0.1843

-0.4965
0.0418

1 0.3178 
<.0001 

-0.3557 
0.0138 

2.7776 
<.0001 

0.6890 
<.0001 NA -0.0899

<.0001 NA -0.1504
<.0001 NA NA -0.4604

<.0001 NA 0.1166
0.0009 NA -0.1372

0.0208 NA -0.6997
<.0001

 

PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 Dispersion 
Parameter D.F Deviance

-0.2255
<.0001

-0.0431
0.6550

-0.8625
<.0001

0.5579
<.0001

-0.2895 
0.1829 

0.5033
0.0022

-0.1668
0.5538

0.5460
0.0059

0.8229
0.0495

-0.4636
0.9867

0.8020 
0.0438 1779 1899.13

-0.2174
<.0001 NA -0.8234

<.0001
0.5255
<.0001

-0.4526 
0.0009 

0.5493
0.0004 NA 0.5333

0.0069
0.8675
0.0352 NA 0.8104 

0.0440 1789 1898.33

 
Table B.10. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components  

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 0.8 10 0.9999 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 5163 16 0 Model 1 outperforms Null 
Model 
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Table B.11. Regression parameter estimates and p-values (second line of each cell) of power outage prediction models fitted by the 
negative binomial GLM with principal components and alternative hurricane descriptors for State B. 

Model Intercept Pressure Time RMW PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

0 -0.4320 
0.8129 

0.0080 
0.6542 

0.0342 
0.0713 

0.0000 
0.0000 

0.6373
<.0001

0.1242
0.4632

-0.0899
0.0420

-0.0129
0.8880

-0.1504
0.0009

-0.0184
0.5336

-0.0353
0.3939

-0.2305
0.2616

0.0571 
0.3795 

0.0825
0.1291

0.0694
0.1797

-0.2552
0.0084

-0.1517
0.1843

1 0.2053 
0.0098 NA 0.0331 

<.0001 NA 0.6395
<.0001

0.1141
0.0001

-0.1046
<.0001 NA -0.1585

<.0001 NA NA -0.1680
<.0001

0.0655 
0.0348 

0.0718
0.0425

0.0887
0.0268

-0.3059
<.0001

-0.1846
0.0014

 

PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 Dispersion 
Parameter D.F Deviance

-0.4965
0.0418

-0.2255
<.0001

-0.0431
0.6550

-0.8625
<.0001

0.5579
<.0001

-0.2895 
0.1829 

0.5033
0.0022

-0.1668
0.5538

0.5460
0.0059

0.8229
0.0495

-0.4636
0.9867

0.8020 
0.0438 1779 1899.13

-0.4731
<.0001

-0.2315
<.0001 NA -0.8565

<.0001
0.5664
<.0001

-0.2771 
0.0421 

0.4902
0.0017 NA 0.5624

0.0043 NA NA 0.8097 
0.0440 1787 1895.71

 
Table B.12. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components and alternative 
hurricane descriptors 

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 3.42 8 0. 9053 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 5170 18 0 Model 1 outperforms Null 
Model 
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Table B.13. Regression parameter estimates and p-values (second line of each cell) of power outage prediction models fitted by the 
negative binomial GLM for State C. 

Model Intercept Transformer Pole Switch Overhead Customer Hurricane
Cindy 

Hurricane
Dennis

Hurricane
Frances

Hurricane 
Hanna

Hurricane
Isidore 

Hurricane
Ivan 

Hurricane
Jeanne Windspeed Duration FSM1 FSM2

0 10.2560 
0.6895 

0.0003 
0.3762 

0.0008 
<.0001 

-0.0010 
0.1608 

0.0286
<.0001

-0.0002
<.0001

-1.0152
<.0001

-0.0497
0.6818

1.8215
<.0001

-0.5056
0.0374

-0.9249
<.0001 

0.8020
0.0014

0.6847
0.0065

0.0843 
<.0001 

-0.0044
0.3933

4.7225
0.0006

-6.0042
<.0001

1 -7.2597 
<.0001 NA 0.0007 

<.0001 NA 0.0291
<.0001

-0.0002
<.0001

-0.9896
<.0001 NA 1.8580

<.0001
-0.5309  
0.0180

-0.9126 
<.0001 

0.8454
<.0001

0.6875 
0.0019

0.0806 
<.0001 NA 4.3918

0.0009
-5.9223 
<.0001

2 -7.2739 
<.0001 NA 0.0008 

<.0001 NA 0.0289
<.0001

-0.0002
<.0001

-0.9916
<.0001 NA 1.8894

<.0001
-0.4944
0.0267

-0.8726
<.0001 

-0.8726
<.0001

0.7196 
0.0011

0.0806 
<.0001 NA 4.4035

0.0009
-5.9560
<.0001

 

FSM3 FSM3 MAP SPI1 SPI2 SPI3 SPI6 SPI12 SPI24 LC1 LC2 LC3 LC4 LC5 LC7 LC8 LC9 Dispersion
Parameter D.F Deviance

0.9858 
0.1461 

0.9858 
0.1461 

0.0018 
<.0001 

0.4746 
<.0001 

-0.5462
<.0001

0.1286
0.3660

0.0269
0.8511

0.4755
<.0001

-0.5558
<.0001

-0.1708
0.5058

-0.1770
0.4904

-0.2001 
0.4363 

-0.1845 
0.4721 

-0.1718
0.5034

-0.2031
0.4291

-0.1881
0.4636

-0.1759
0.4932

2.4338 
0.0975 58607 10843.42

1.0369 
0.1023 

1.0369 
0.1023 

0.0018 
<.0001 

0.4692 
<.0001 

-0.5773
<.0001

0.1588 
0.0973 NA 0.4785

<.0001
-0.5500 
<.0001 NA NA -0.0219 

0.1384 
-0.0085 
<.0001 NA -0.0278 

<.0001
-0.0124 
<.0001 NA 2.4279 

0.0972 58616 10858.99

1.0475 
0.0988 

1.0475 
0.0988 

0.0018 
<.0001 

0.4580 
<.0001 

-0.5727
<.0001

0.1523 
0.1113 NA 0.4947

<.0001
-0.5476
<.0001 NA NA NA -0.0083 

<.0001 NA -0.0285
<.0001

-0.0121
<.0001 NA 2.4252 

0.0972 58617 10864.94

 
Table B.14. Model comparisons by likelihood ratio tests for the negative binomial GLM  

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 15.57 9 0.0764 Models 0 and 1 are statistically 
indistinguishable 

0 to 2 21.52 10 0.0177 Model 0 outperforms Model 2 

Null to 1 17507 23 0 Model 1 outperforms Null 
Model 

 



 

 

105

Table B.15. Regression parameter estimates and p-values (second line of each cell) of power outage prediction models fitted by the 
negative binomial GLM with principal components for State C. 

Model Intercept Hurricane 
Cindy 

Hurricane 
Dennis 

Hurricane
Frances

Hurricane
Hanna

Hurricane
Isidore

Hurricane
Ivan 

Hurricane
Jeanne PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

0 -3.9582 
<.0001 

-1.0152 
<.0001 

-0.0498 
0.6817 

1.8215
<.0001

-0.5056
0.0374

-0.9249
<.0001

0.8020
0.0014

0.6847
0.0065

0.4834
<.0001

-0.0530
0.0454

0.0292 
0.5529 

0.0562
0.0411

0.0298
0.4468

-0.0310
0.2218

-0.1222
<.0001

-0.1834
<.0001

-0.2172
<.0001

1 -4.0207 
<.0001 

-0.8241 
<.0001 NA 1.8441

<.0001 NA -0.8972
<.0001

0.6093
<.0001

0.6406
<.0001

0.4984
<.0001 NA NA NA NA NA -0.1243

<.0001
-0.2039
<.0001

-0.2265
<.0001

 

PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 Dispersion 
Parameter D.F Deviance

0.2318 
<.0001 

-0.0951 
0.0002 

0.1199 
0.0003 

0.0899
0.0233

-0.0336
0.3473

-0.1152
0.0683

0.1495
<.0001

-0.6133
<.0001

-0.2730
0.0126

-0.4367
<.0001

0.0655 
0.1886 

-0.8205
<.0001

-0.4400
<.0001

-0.1216
0.3693

0.3457
<.0001

6.4397
0.4774

2.4338 
0.0975 58607 10843.42

0.2209 
<.0001 

-0.0986 
<.0001 

0.1146 
0.0003 

0.1372
<.0001 NA NA 0.1537

<.0001
-0.5934
<.0001

-0.1989
0.0107

-0.4350
<.0001 NA -0.8990

<.0001
-0.4385
<.0001 NA 0.3154

0.0002 NA 2.4466 
0.0973 58619 10844.04

 
Table B.16. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components  

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 0.62 12 1 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 17454 20 0 Model 1 outperforms Null 
Model 
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Table B.17. Regression parameter estimates and p-values (second line of each cell) of power outage prediction models fitted by the 
negative binomial GLM with principal components and alternative hurricane descriptors for State C. 

Model Intercept Pressure Time RMW PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

0 -0.7634 
0.4704 

0.0036  
0.4569 

0.0344  
<.0001 

-0.0962 
<.0001 

0.5446
<.0001

0.1424
<.0001

-0.1535
<.0001

-0.0513
0.0466

0.1274
<.0001

-0.1132 
<.0001

-0.1115
<.0001

-0.2638
<.0001

-0.2474 
<.0001 

0.2129
<.0001

-0.1120
<.0001

0.1893
<.0001

0.0046
0.9014

1 -0.1817 
0.4609 NA 0.0306  

<.0001 
-0.1056 
<.0001 

0.5434
<.0001

0.1413
<.0001

-0.1425
<.0001

-0.0508
0.0143

0.1303
<.0001

-0.1159
<.0001

-0.1107
<.0001

-0.2648
<.0001

-0.2492 
<.0001 

0.2270
<.0001

-0.1102
<.0001

0.1905
<.0001 NA

 

PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 Dispersion 
Parameter D.F Deviance

-0.1171
0.0005

0.4255
<.0001

0.2060
<.0001

-0.6180
<.0001

-0.0965
0.2454

-0.4438
<.0001

0.1329 
0.0078 

-0.7151
<.0001

-0.1050
0.2789

0.5223
<.0001

0.3307
0.0002

6.2503
0.4936

2.6130 
0.1018 58611 10782.40

-0.1216
<.0001

0.4286
<.0001

0.2025
<.0001

-0.6235
<.0001 NA -0.4387

<.0001
0.1231 
0.0111 

-0.7430
<.0001 NA 0.5018

<.0001
0.3328
0.0002 NA 2.6223 

0.1019 58616 10773.90

 
Table B.18. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components and alternative 
hurricane descriptors 

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 8.50 5 0.1307 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 16906 23 0 Model 1 outperforms Null 
Model 
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Table B.19. Regression parameter estimates and p-values (second line of each cell) of customers out prediction models fitted by the 
negative binomial GLM with principal components for State A 

Model Intercept Hurricane 
Danny 

Hurricane 
Dennis 

Hurricane
Georges

Hurricane
Ivan PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

0 2.8561 
<.0001 

-1.7949 
<.0001 

-0.8918 
<.0001 

-0.4089
0.0106

0.3154
0.2938

0.8181
<.0001

-0.3689
<.0001

-0.2672
<.0001

0.1039
<.0001

-0.0387
0.1288

0.3443
<.0001

-0.1983 
<.0001 

-0.2052
<.0001

0.0351
0.3231

-0.3838
<.0001

0.2269
<.0001

0.3144
0.0006

1 2.9617 
<.0001 

-1.9056 
<.0001 

-0.9951 
<.0001 

-0.3993
0.0032 NA 0.8146

<.0001
-0.3861
<.0001

-0.3238
<.0001

0.1098
<.0001

-0.0527
0.0186

0.3099
<.0001

-0.1956 
<.0001 

-0.1793
<.0001 NA -0.3945

<.0001
0.2309
<.0001

0.3115
<.0001

 

PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 Dispersion 
Parameter D.F Deviance

-0.1241 
0.0001 

0.2723
<.0001

-0.1217
0.0126

0.8244
<.0001

0.5283
<.0001

-1.6372
<.0001

0.0607
0.4476

0.2995
0.0008

0.9909
<.0001

-1.2541 
<.0001 

-0.5616
0.0001

-0.5261
0.0020

3.1802
<.0001

-13.3615
0.1744

17.2218
0.2179 33374 16641.46

-0.1289 
<.0001 

0.2682
<.0001

-0.1195
0.0109

0.8134
<.0001

0.4870
<.0001

-1.6416
<.0001 NA 0.3027

0.0007
0.9534
<.0001

-1.2803 
<.0001 

-0.4681
0.0005

-0.5273
0.0017

3.1508
<.0001 NA 17.2275

0.2180 33378 16642.08

 
Table B.20. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components  

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 0.62 4 0.9608 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 8541 26 0 Model 1 outperforms Null 
Model 
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Table B.21. Regression parameter estimates and p-values (second line of each cell) of customers out prediction models fitted by the 
negative binomial GLM with principal components and alternative hurricane descriptors for State A 

Model Intercept Pressure Time RMW PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

0 -5.6783 
0.0001 

0.0570 
<.0001 

0.0183 
<.0001 

0.1110 
0.0002 

0.8280
<.0001

-0.2579
<.0001

-0.1570
0.0020

0.0995
<.0001

-0.0207
0.4131

0.3191
<.0001

-0.1392
<.0001

-0.1765
<.0001

0.0799 
0.0207 

-0.3119
<.0001

0.2137
<.0001

0.3084
<.0001

-0.0845
0.0080

1 -4.6673 
0.0009 

0.0516 
<.0001 

0.0227 
<.0001 

0.0898 
0.0014 

0.8262
<.0001

-0.2553
<.0001

-0.1106
0.0124

0.1045
<.0001 NA 0.3587

<.0001
-0.1602
<.0001

-0.2089
<.0001

0.1092 
0.0007 

-0.3170
<.0001

0.2118
<.0001

0.3148
<.0001

-0.0905
0.0041

 

PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 Dispersion 
Parameter D.F Deviance

0.2217
<.0001

-0.2424
<.0001

0.8398
<.0001

0.5607
<.0001

-1.6194
<.0001

0.1563
0.0433

0.1818
0.0326

1.1242
<.0001

-1.1152 
<.0001 

-1.0035
<.0001

-0.5440
0.0017

3.2671
<.0001

-13.2646
0.1792

17.2569
0.2183 33375 16641.40

0.2255
<.0001

-0.2233
<.0001

0.8460
<.0001

0.6025
<.0001

-1.6132
<.0001 NA 0.1856

0.0292
1.1305
<.0001

-1.0950 
<.0001 

-1.0102
<.0001

-0.5211
0.0023

3.2732
<.0001 NA 17.2638

0.2184 33378 16642.40

 
Table B.22. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components and alternative 
hurricane descriptors 

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 1 3 0.8013 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 8511 26 0 Model 1 outperforms Null 
Model 
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Table B.23. Regression parameter estimates and p-values (second line of each cell) of customers out prediction models fitted by the 
negative binomial GLM with principal components for State B 

Model Intercept Hurricane 
Dennis 

Hurricane 
Ivan PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14

0 4.9687 
<.0001 

-1.2182 
0.1110 

0.8776 
0.7117 

0.8430 
<.0001 

0.2972
0.4703

-0.1201
0.2747

-0.2798
0.2026

-0.1839
0.0935

-0.1541
0.0351

0.1029
0.2989

-0.6821
0.1578

-0.0125 
0.9338 

0.1834
0.1645

-0.6943
<.0001

0.4313
0.0627

-0.1098
0.7001

-0.5604
0.3562

1 4.4521 
<.0001 

-1.3833 
0.0002 

2.6464 
<.0001 

0.9476 
<.0001 NA -0.1918

0.0002
-0.1034
0.0313

-0.2373
<.0001

-0.1675
0.0135 NA -0.9359

<.0001 NA 0.2980
0.0002

-0.6471
<.0001

0.5653
<.0001 NA -1.0038

<.0001

 

PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 Dispersion 
Parameter D.F Deviance

-0.5134
0.0001

0.2013
0.4303

-2.2484
<.0001

1.3420
<.0001

-1.1597 
0.0395 

0.5732
0.1400

1.7136
0.0023

-1.2936
0.0219

0.1192
0.8867

43.7555
0.5115

6.0183 
0.2064 1779 1890.62

-0.4350
0.0011 NA -2.1735

<.0001
1.3090
<.0001

-1.4093 
<.0001 NA 2.0308

<.0001
-1.3711
0.0137 NA NA 6.0567 

0.2076 1787 1890.80

 
Table B.24. Model comparison by likelihood ratio for the negative binomial GLM with principal components 

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 0.18 8 1 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 1220 18 0 Model 1 outperforms Null 
Model 
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Table B.25. Regression parameter estimates and p-values (second line of each cell) of customers out prediction models fitted by the 
negative binomial GLM with principal components and alternative hurricane descriptors for State B 

Model Intercept Pressure Time RMW PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

0 -0.5107 
0.9066 

0.0586 
0.1657 

0.0338 
0.4630 

0.0000 
0.0000 

0.8430
<.0001

0.2972
0.4703

-0.1201
0.2748

-0.2798
0.2027

-0.1839
0.0935

-0.1541
0.0351

0.1029
0.2989

-0.6821
0.1578

-0.0125 
0.9338 

0.1834
0.1645

-0.6943
<.0001

0.4313
0.0627

-0.1098
0.7001

1 -2.6530 
0.0421 

0.0757 
<.0001 

0.0650 
<.0001 NA 0.9476

<.0001 NA -0.1918
0.0002

-0.1034
0.0313

-0.2373
<.0001

-0.1675
0.0135 NA -0.9359

<.0001 NA 0.2980
0.0002

-0.6471
<.0001

0.5653
<.0001 NA 

 

PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 Dispersion 
Parameter D.F Deviance

-0.5604
0.3562

-0.5134
0.0001

0.2013
0.4303

-2.2484
<.0001

1.3420
<.0001

-1.1597 
0.0395 

0.5732
0.1400

1.7136
0.0023

-1.2936
0.0219

0.1192
0.8867

43.7555
0.5115

6.0183 
0.2064 1779 1890.54

-1.0038
<.0001

-0.4350
0.0011 NA -2.1735

<.0001
1.3090
<.0001

-1.4093 
<.0001 NA 2.0308

<.0001
-1.3711
0.0137 NA NA 6.0567 

0.2076 1787 1890.80

 
Table B.26. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components and alternative 
hurricane descriptors 

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 0.27 8 1 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 1200 18 0 Model 1 outperforms Null 
Model 
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Table B.27. Regression parameter estimates and p-values (second line of each cell) of customers out prediction models fitted by the 
negative binomial GLM with principal components for State C 

Model Intercept Hurricane 
Cindy 

Hurricane 
Dennis 

Hurricane
Frances

Hurricane
Hanna

Hurricane
Isidore

Hurricane
Ivan 

Hurricane
Jeanne PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

0 -3.3545 
<.0001 

-1.2774 
<.0001 

-0.7539 
<.0001 

1.1710
<.0001

1.1225
<.0001

-0.3681
0.1066

-0.4522
0.1279

-0.0866
0.7704

0.7086
<.0001

0.0771
0.0097

-0.0744 
0.2019 

-0.1145
<.0001

0.0616
0.1760

-0.0341
0.2507

-0.1582
<.0001

-0.3529
<.0001

-0.1488
<.0001

0.1740
0.0004

1 -3.5512 
<.0001 

-1.2517 
<.0001 

-0.7810 
<.0001 

1.6089
<.0001

1.6193
<.0001 NA -0.2370

0.0192 NA 0.7163
<.0001

0.1102
<.0001 NA -0.1434

<.0001 NA NA -0.1564
<.0001

-0.3526
<.0001

-0.1431
<.0001

0.1758
<.0001

 

PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 Dispersion 
Parameter D.F Deviance

-0.0837 
0.0079 

0.1279 
0.0006 

0.1995
<.0001

-0.1028
0.0178

0.2051
0.0027

0.3814
<.0001

-0.8615
<.0001

-0.5790
<.0001

-0.6898
<.0001

0.3398 
<.0001 

-0.5201
<.0001

0.2113
0.0730

0.7199
<.0001

0.6474
<.0001

-3.7056
0.7420

10.3729
0.2763 58607 9006.01

-0.0669 
0.0249 

0.1035 
0.0043 

0.2894
<.0001 NA 0.1841

0.0003
0.3553
<.0001

-0.8537
<.0001

-0.7334
<.0001

-0.6893
<.0001

0.3276 
<.0001 

-0.5257
<.0001 NA 0.6525

<.0001
0.6737
<.0001 NA 10.3721

0.2761 58615 9019.75

 
Table B.28. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components  

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 13.74 8 0.0888 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 20237 24 0 Model 1 outperforms Null 
Model 
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Table B.29. Regression parameter estimates and p-values (second line of each cell) of customers out prediction models fitted by the 
negative binomial GLM with principal components and alternative hurricane descriptors for State C 

Model Intercept Pressure Time RMW PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

0 3.3640 
0.0072 

-0.0150 
0.0073 0.0417 <.0001 -0.1723

<.0001
0.7039
<.0001

0.0515
0.0085

-0.2346
<.0001

-0.1336
<.0001

0.0843
0.0089

-0.0025
0.9242

-0.1764
<.0001

-0.3929 
<.0001 

-0.1832
<.0001

0.1760
<.0001

-0.1115
0.0002

0.1629
<.0001

0.0862
0.0353

1 3.3864 
0.0059 

-0.0151 
0.0065 0.0418 <.0001 -0.1728

<.0001
0.7040
<.0001

0.0515
0.0085

-0.2349
<.0001

-0.1341
<.0001

0.0840
0.0089 NA -0.1769

<.0001
-0.3935 
<.0001 

-0.1831
<.0001

0.1758
<.0001

-0.1114
0.0002

0.1627
<.0001

0.0864
0.0338

 

PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 Dispersion 
Parameter D.F Deviance

-0.2143
<.0001

0.2777
<.0001

0.3925
<.0001

-0.8897
<.0001

-0.3459
0.0004

-0.6988
<.0001

0.3613 
<.0001 

-0.5100
<.0001

0.3206
0.0040

0.8623
<.0001

0.6252
<.0001

-5.1540
0.6475

10.4552
0.2786 58611 9011.68

-0.2142
<.0001

0.2777
<.0001

0.3925
<.0001

-0.8899
<.0001

-0.3474
0.0004

-0.6994
<.0001

0.3606 
<.0001 

-0.5119
<.0001

0.3189
0.0041

0.8624
<.0001

0.6254
<.0001 NA 10.4557

0.2786 58613 9011.65

 
Table B.30. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components and alternative 
hurricane descriptors 

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 0.03 2 0.9851 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 20089 26 0 Model 1 outperforms Null 
Model 
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Table B.31. Regression parameter estimates and p-values (second line of each cell) of damaged pole estimation models fitted by the 
negative binomial GLM with principal components for State A 

Model Intercept Hurricane 
Dennis 

Hurricane 
Ivan PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

0 -6.7831 
<.0001 

-2.9295 
<.0001 

4.5204 
<.0001 

-0.0383 
<.0001 

0.3533
<.0001

0.4286
<.0001

0.3568
<.0001

0.6025
<.0001

0.0011
0.9436

0.6869
<.0001

-0.3823
<.0001

-0.6047 
<.0001 

0.2812 
<.0001 

-0.4088
<.0001

0.0327
0.1512

-0.1653
<.0001

1 -6.7504 
<.0001 

-2.9599 
<.0001 

4.4636 
<.0001 

-0.0382 
<.0001 

0.3474
<.0001

0.4192
<.0001

0.3544
<.0001

0.6020
<.0001 NA 0.6853

<.0001
-0.3801
<.0001

-0.6009 
<.0001 

0.2785 
<.0001 

-0.4099
<.0001 NA -0.1661

<.0001

2 -6.7585 
<.0001 

-2.9548 
<.0001 

4.4844 
<.0001 

-0.0383 
<.0001 

0.3517
<.0001

0.4225
<.0001

0.3546
<.0001

0.6010
<.0001 NA 0.6886

<.0001
-0.3806
<.0001

-0.6034 
<.0001 

0.2808 
<.0001 

-0.4174
<.0001 NA -0.1662

<.0001

 

PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 Dispersion 
Parameter D.F Deviance

-0.0155
0.7929

0.9198
<.0001

-0.0344
0.4818

-0.2400
<.0001

0.9298
<.0001

0.2885
<.0001

2.1946
<.0001

1.0273 
<.0001 

0.0270
0.7824

0.0239
0.8451

0.3684
0.0066

0.0914
0.5659

4.2791
0.6034

0.5606 
0.0181 2173 2489.38

NA 0.9181
<.0001 NA -0.2363

<.0001
0.9354
<.0001

0.2911
<.0001

2.2039
<.0001

1.0315 
<.0001 NA NA 0.3646

0.0070 NA NA 0.5622 
0.0181 2181 2486.95

NA 0.9198
<.0001 NA -0.2365

<.0001
0.9312
<.0001

0.2813
<.0001

2.2038
<.0001

1.0371 
<.0001 NA NA NA NA NA 0.5631 

0.0181 2182 2491.02

 
Table B32. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components  

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 2.43 8 0.9649 Models 0 and 1 are statistically 
indistinguishable 

0 to 2 1.64 9 0.9901 Models 0 and 2 are statistically 
indistinguishable 

Null to 1 353.54 20 0 Model 1 outperforms Null Model
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Table B.33. Regression parameter estimates and p-values (second line of each cell) of damaged pole estimation models fitted by the 
negative binomial GLM with principal components and alternative hurricane descriptors for State A 

Model Intercept Pressure Time RMW PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

0 -21.2502 
<.0001 

0.1543 
<.0001 

0.1202 
<.0001 

0.0000 
<.0001 

-0.0383
<.0001

0.3533
<.0001

0.4286
<.0001

0.3568
<.0001

0.6025
<.0001

0.0011
0.9436

0.6869
<.0001

-0.3823
<.0001

-0.6047 
<.0001 

0.2812
<.0001

-0.4088
<.0001

0.0327
0.1512

1 -21.3121 
<.0001 

0.1553 
<.0001 

0.1197 
<.0001 

0.0000 
<.0001 

-0.0382
<.0001

0.3474
<.0001

0.4192
<.0001

0.3544
<.0001

0.6020
<.0001 NA 0.6853

<.0001
-0.3801
<.0001

-0.6009 
<.0001 

0.2785
<.0001

-0.4099
<.0001 NA

 

PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 Dispersion 
Parameter D.F Deviance

-0.1653
<.0001

-0.0155
0.7929

0.9198
<.0001

-0.0344
0.4818

-0.2400
<.0001

0.9298
<.0001

0.2885
<.0001

2.1946
<.0001

1.0273 
<.0001 

0.0270
0.7824

0.0239
0.8451

0.3684
0.0066

0.0914
0.5659

4.2791
0.6034

0.5606 
0.0181 2173 2489.38

-0.1661
<.0001 NA 0.9181

<.0001 NA -0.2363
<.0001

0.9354
<.0001

0.2911
<.0001

2.2039
<.0001

1.0315 
<.0001 NA NA 0.3646

0.0070 NA NA 0.5622 
0.0181 2181 2486.95

 
Table B.34. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components and alternative 
hurricane descriptors 

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 2.43 8 0.9649 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 353.54 20 0 Model 1 outperforms Null 
Model 
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Table B.35. Regression parameter estimates and p-values (second line of each cell) of damaged transformer estimation models fitted by 
the negative binomial GLM with principal components for State A 

Model Intercept Hurricane 
Dennis 

Hurricane 
Ivan PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

0 -6.1642 
<.0001 

-2.2920 
<.0001 

3.7386 
<.0001 

-0.0133 
0.1864 

0.2961 
<.0001

0.4754 
<.0001

0.3714
<.0001

0.5087 
<.0001

0.0163
0.4008

0.6039 
<.0001

-0.3213
<.0001

-0.2441 
<.0001 

0.2090 
<.0001 

-0.4163
<.0001

0.0570
0.0284

-0.1683
<.0001

1 -6.0901 
<.0001 

-2.4810 
<.0001 

3.7353 
<.0001 NA 0.3204 

<.0001
0.4682 
<.0001

0.3769
<.0001

0.5216 
<.0001 NA 0.6256 

<.0001
-0.3279
<.0001

-0.2532 
<.0001 

0.2186 
<.0001 

-0.4366
<.0001

0.0661
0.0121

-0.1803
<.0001

2 -6.0910 
<.0001 

-2.4567 
<.0001 

3.7137 
<.0001 NA 0.3133 

<.0001
0.4654 
<.0001

0.3714
<.0001

0.5174 
<.0001 NA 0.6221 

<.0001
-0.3230
<.0001

-0.2473 
<.0001 

0.2132 
<.0001 

-0.4341
<.0001 NA -0.1775

<.0001

 

PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 Dispersion 
Parameter D.F Deviance

-0.0824
0.2122

0.8877
<.0001

-0.3837
<.0001

-0.3617
<.0001

0.3881
<.0001

-0.0729
0.2603

1.9180
<.0001

0.9563 
<.0001 

0.0055
0.9591

0.7834
<.0001

-0.0307
0.8402

-0.1738
0.3185

-1.3852
0.8831

0.7135 
0.0228 2173 2556.11

NA 0.9341
<.0001

-0.3722
<.0001

-0.3474
<.0001

0.4229
<.0001 NA 1.9979

<.0001
1.0273 
<.0001 NA 0.7852

<.0001 NA NA NA 0.7151 
0.0228 2181 2556.91

NA 0.9293
<.0001

-0.3674
<.0001

-0.3577
<.0001

0.4237
<.0001 NA 1.9871

<.0001
1.0150 
<.0001 NA 0.7940

<.0001 NA NA NA 0.71651
0.0228 2182 2560.36

 
Table B.36. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components  

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 0.8 8 0.9992 Models 0 and 1 are statistically 
indistinguishable 

0 to 2 4.25 9 0.8942 Models 0 and 2 are statistically 
indistinguishable 

Null to 1 271.53 20 0 Model 1 outperforms Null 
Model 
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Table B.37. Regression parameter estimates and p-values (second line of each cell) of damaged transformer estimation models fitted by 
the negative binomial GLM with principal components and alternative hurricane descriptors for State A 

Model Intercept Pressure Time RMW PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14

0 -17.5913 
<.0001 

0.1218 
<.0001 

0.0973 
<.0001 

0.0000 
<.0001 

-0.0133
0.1864

0.2961
<.0001

0.4754
<.0001

0.3714
<.0001

0.5087
<.0001

0.0163
0.4008

0.6039
<.0001

-0.3213
<.0001

-0.2441 
<.0001 

0.2090
<.0001

-0.4163
<.0001

0.0570
0.0284

-0.1683
<.0001

-0.0824
0.2122

1 -18.2926 
<.0001 

0.1301 
<.0001 

0.1003 
<.0001 

0.0000 
<.0001 NA 0.3204

<.0001
0.4682
<.0001

0.3769
<.0001

0.5216
<.0001 NA 0.6256

<.0001
-0.3279
<.0001

-0.2532 
<.0001 

0.2186
<.0001

-0.4366
<.0001

0.0661
0.0121

-0.1803
<.0001 NA 

 

PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 Dispersion 
Parameter D.F Deviance

0.8877
<.0001

-0.3837
<.0001

-0.3617
<.0001

0.3881
<.0001

-0.0729
0.2603

1.9180
<.0001

0.9563 
<.0001 

0.0055
0.9591

0.7834
<.0001

-0.0307
0.8402

-0.1738
0.3185

-1.3852
0.8831

0.7135 
0.0228 2173 2556.11

0.9341
<.0001

-0.3722
<.0001

-0.3474
<.0001

0.4229
<.0001 NA 1.9979

<.0001
1.0273 
<.0001 NA 0.7852

<.0001 NA NA NA 0.7151 
0.0228 2181 2556.91

 
Table B.38. Model comparisons by likelihood ratio tests for the negative binomial GLM with principal components and alternative 
hurricane descriptors 

Model comparison Likelihood Ratio 
Test Statistic Degrees of Freedom Likelihood Ratio 

Test p-value Conclusion 

0 to 1 0.8 8 0.9992 Models 0 and 1 are statistically 
indistinguishable 

Null to 1 271.53 20 0 Model 1 outperforms Null 
Model 
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