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ABSTRACT 
 

Steady Wave Drift Force on Basic Objects of Symmetry. 

 (August 2008) 

Anupam Gupta, B.Tech., Banaras Hindu University 

Chair of Advisory Committee: Dr. John M. Niedzwecki 

 

An exponential growth in the offshore industry has resulted in a corresponding increase in 

demand for quick, accurate, and implementable designs. With the increase in size of the 

structure relative to the wave amplitude, analysis should be performed using the diffraction 

theory. The steady wave drift force on a submerged body is a second-order quantity. With a 

potential flow assumption, the force arises from the diffraction and radiation of the waves 

from the interaction with the body. For a fixed body in waves the steady force is 

contributed from the wave diffraction effect alone. Numerical solutions for are generally 

needed for the computation of the steady drift force on submerged structures. In this study 

the steady wave drift forces on several fixed bodies of basic shapes are derived in closed 

form. The thesis addresses the steady drift forces on the following basic structures: a box, a 

vertical circular cylinder, a submerged horizontal cylinder, a bottom-seated horizontal half 

cylinder, a bottom-seated hemisphere, a submerged sphere, and an ellipsoid. The results 

developed demonstrate the importance of various independent non-dimensional parameters.  

 

  To achieve speed and accuracy of the analytical/numerical solutions for the second  
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order forces on the basic bodies with symmetry has been presented.  Mathematical 

formulation of the boundary value problem and its second order solution have been 

described using the different coordinates depending on the symmetry and nature of the 

object. Charts and formulas have been developed to provide solution for the second order 

wave forces on different basic structures like cylinder, sphere and ellipsoids. This study is 

helpful for a first pass estimate of the steady drift force where the translational and 

rotational contributions are neglected. The illustrative examples provide a sense of the 

accuracy and an approach to bound the results of complex geometries by approximating 

them as simpler geometries.  
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1. INTRODUCTION 

 1.1 Literature Review 

With increasing utilization of coastal and ocean areas, more recent research studies have 

focused upon optimizing the accuracy and speed in the analysis and design of offshore 

structures. It is necessary in the design of these structures to evaluate wave forces acting on 

them as accurately as possible. The Morison equation [4] is useful in estimating the wave 

forces acting on cylindrical structural element or ocean platforms whose characteristic 

dimension is much smaller than the incident wavelength. As the size of these dimension 

increase and approach to the order of the wavelength, the Morison type equation becomes 

less accurate and the diffraction theory is needed to more accurately estimate the wave 

forces.  

  

 A lot of research studies have been reported in the literature that deal with first and 

second order diffraction and radiation theory and drift forces; see for example Garrison and 

Rao [12] and Chakrabarti and Naftzger [6]. Most of the studies are numerical methods and 

their approach takes a lot of computational effort and time. A lot less research has been 

directed to develop efficient approaches that combine analytical and numerical procedures 

for estimating the wave forces on the offshore structures, in part, because of the 

mathematical complexity involved in calculation of forces. Although advances in this 

regard are reflected in the studies reported by Kim and Yue [16] and Newman [26]. Closed 

form solutions can be obtained for some basic shapes, which generally reflect the shape of 

many offshore structures. These results can be compiled to provide a convenient solution  

____________ 
This thesis follows the style of Applied Ocean Research.  
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for the engineers to get a preliminary assessment of the second order drift forces, and this is 

the focus of the research study. 

 

 Faltinsen [8] in his book provides an excellent discussion of  the second order 

nonlinear forces and their importance in several context of marine structures, and includes 

the design of mooring systems, thruster systems, analysis of offshore loading systems and  

evaluation of towing of large gravity platforms. He provides a detailed explanation of the 

different drift forces including both the theory and the examples which illustrate the 

importance of analysis of second order forces on the different bodies. 

 

 The earliest work on diffraction effect involved the solution of linear wave 

interaction with a vertical cylinder by MacCamy and Fuchs [20]. This was closely followed 

by the work of Havelock [14] who discussed the diffraction force acting on a submerged 

sphere under deepwater wave condition. His formulation did not consider the free surface 

boundary condition and consequently, the effects of the bottom boundary and free surface 

boundaries on the acting wave force cannot be evaluated. Garrison and Rao [12] and 

Chakrabarti and Naftzger [6] discussed the effect of the free surface on the acting wave 

force in the case of a bottom-seated hemisphere. Both research studies reported that the free 

surface boundary was negligible effect if the radius was less than half the water depth. In 

1975 Black [2] studied the diffraction force acting on a sphere whose center was fixed at 

the still water level. He developed a numerical solution using an axisymmetric Green's 

function and concluded that the bottom boundary has little effect on the wave force when 

water depth is larger than twice the sphere radius. This was also confirmed in a later study 

by Fenton [11]. The diffraction force acting on a fully submerged sphere in finite water 
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depth, where the bottom and free surface boundary conditions are both included is less well 

studied. Mizutani and Itawa [23] investigated the diffraction force on a submerged 

spherical structure and wave diffraction and concluded that the diameter and submergence 

affect the forces, and that the wave heights have very little effect on it. Zhao et al. [40] 

investigated the magnitude of the mean wave forces relative to the linear first order wave 

forces for a hemisphere floating in the free surface. They concluded that as the wave 

amplitude increases the effect of the second order forces relative to the first order forces 

increases. 

 

 Mauro [21] developed a formula based on the momentum conservation approach to 

calculate the drift forces on the two dimensional body in incident regular deep water waves 

for a fixed or floating bodies. He assumed no current and no body speed for his 

calculations. This formula was later on generalized by Longuet – Higgins and Prazdny [19] 

for a finite water depth by introducing a multiplicative factor. Newman [25] using same 

method calculated drift moment and forces on a slender body. Remery and Oortmerssen 

[35] extended the work of Mauro by giving formulas of drift forces for tankers and semi-

submersibles. Both the momentum and pressure integration approach for drift force 

calculations was summarized by Ogilvie [30].  

 

 Faltinsen and Michelsen [10] computed drift forces on floating structures by using 

the Green function approach, and showed their good agreement with the experimental data. 

Pinkster and Oortmerssen [32] and Pinkster [33] studied second order steady forces and 

low frequency second order forces using 3-D diffraction/radiation theory. Later 

Papanikolau and Zaraphonitis [31] derived the steady drift forces using the same technique. 
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Faltinsen and Loken [9] summarized the work of different researchers and produced 

comparison of the different model. Wu et al.[39]  presented the solution for the second 

order drift forces using the far field and near filed approach on a sphere in finite water 

depth. Their model only considered for the diffraction contribution to the drift force, 

however results obtained by them were in close agreement with the numerical solutions by 

Wang [38].  

 

 A formulation for second order drift forces on slow moving vehicles based on law 

of conservation of impulse over fluid domain was developed by Hermans and Sierevogel 

[15] .Their numerical investigations led them to conclude that the small first order forces at 

low frequencies can generate significant high second order forces 

 

 Several two dimensional approaches has been followed in literature for calculation 

of drift forces using diffraction theory. These include strip theory (Mathisen et al. [22]), 

macro-element (Kokkinowrachos and Zibell [17]), and source and sink method (Naftzger 

and Chakrabarti [4]). Among all of these two strip theory method is the oldest and has been 

used most extensively. In developing the two strip theory Matheisen et al. [22] improved 

strip theory approach by considering the opposed motion potentials due to interaction of 

pontoons. According to this theory radiation potential and the coefficients associated with it 

are calculated and total force is calculated using Haskinds Relations.  

 

 Skourup et al. [36] investigated non linear loads on fixed body due to waves and 

current using Potential theory and 3-D Boundary Element Method (BEM) and computed 
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second order oscillatory and steady forces on a vertical circular cylinder using time 

stepping procedures. Based upon their computation they concluded that the second order 

amplitude and the current have significant influence on the forces. Li and Williams [18] 

worked on the diffraction of the second order biochromatic waves by a semi-immersed 

horizontal rectangular cylinder. Analytical expressions for the velocity potentials in each 

region for first- order and second-order contributions were obtained using an eigen function 

expansion approach.  

 

 Newman and Scalvounous [29], discussed a new panel program for computation of 

wave loads on large offshore structures using Greens identity. An integral equation was 

developed for the velocity potential on the body surface and was computed using the 

Green’s function. Integral Equations were solved using WAMIT. The integral equations 

were also discretized in N panels and developing a system of N complex linear algebraic 

equations with the same number of unknowns. For the convergence of the equation the 

panels were spaced near to the corner which showed that that a careful discretization can 

lead to the reasonable levels of engineering accuracy for the structures considered with less 

than 100 panels. Computational results were presented for the Catamaran Barge which 

revealed the importance of three dimensional effects on the resonant gap motions. Authors 

also recommended for future work which includes the implementation of a complete 

second order solution, including both the sum and difference frequency forces acting on a 

body in a spectrum of waves. Molin et al. [24], discussed the non linear wave interaction 

with a square cylinder. They validated the Boussinesq’s model against the WAMIT results 

for first order and second order. The results obtained were in fair agreement with the 

Boussinesq’s model. 
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 Newman and Lee [27] discussed the radiation problems with the exact geometries 

focusing on the use of B Splines. Instead of using explicit geometry they used the approach 

where B Splines are used to define geometry as well as the velocity potential. Three 

examples were presented of vertical cylinder, toroid and rectangular barge with moon pool. 

They showed that higher order solution is much more accurate and required less number of 

unknowns. Also when the draft in case of the barge was reduced corresponding wave 

number increased. Lee and Newman [28], described the development of the panel method 

in detail. They described the formulation of Boundary value problem, integral equation, 

Mean drift forces, fluid velocity leading to the panel method. They also reviewed the pFFT 

method and the second order forces. The use of B splines was discussed in the higher order 

panel method . Numerical example on FPSO showed the accuracy of second order forces. 

Also the pFFT method was proved to be faster but it was restricted to use with the low 

order panel method. Also they concluded that for the objects with planes of symmetry the 

computational domain may be reduced remarkably. 

 

 Bora [3] et al. presented analytical results to the wave diffraction and radiation 

problems using Legendre polynomial for a submerged sphere. He developed the analytical 

expressions for various hydrodynamic coefficients and exciting force. Velocity potential 

was expressed as a series of Legendre polynomial using the theory of infinite expansions. 

Using the analytical expressions numerical estimates for hydrodynamic coefficients and 

exciting forces are presented.  
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  1.2 Research Objective 

The objective of this research study is to develop a hybrid analytical and numerical 

procedure that allows a rapid evaluation of the second order drift forces. There are a variety 

of common shapes that are used in the design of offshore structures some of which can be 

used to approximate to more complex offshore structures. For example vertical cylindrical 

shape can be used to model monotower platforms or monocolumn wind turbine towers, 

spar platforms and similar surface piercing cylinders. Further, fully submerged ellipsoidal 

shapes can be used to model Autonomous Underwater Vehicles (AUVs) or even fish. Thus 

the second order mean drift forces on the ellipsoidal shapes can be calculated using the 

proposed methodology. The body shapes to be addressed include surface piercing vertical 

cylinder, submerged horizontal cylinder, bottom seated hemispherical and rectangular 

bodies and submerged spherical and ellipsoidal bodies. The wave are assumed to be regular 

with no current, however a study can be carried out to calculate the similar results in the 

current to account the forces generated due to the current. 
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2. MATHEMATICAL FORMULATION 

A brief summary of the first and the second order potential theory is provided in order to 

present the second order diffraction force equation within the context of radiation/ 

diffraction analysis. More detailed descriptions can be found for example in the book, 

“Hydrodynamics of Offshore Structure”, by S. K . Chakrabarti [4]. 

  

 The governing equation in this study is developed assuming the fluid to be inviscid, 

incompressible and irrotational and consequently the fluid velocity field may be 

represented as the gradient of the scalar potential, for e.g.φ (x,y,z,t) for Cartesian 

coordinate. Other coordinate systems will be utilized such as ellipsoidal, spherical, 

cylindrical depending up on the application. Once the velocity potential is known the steady 

drift forces on the fixed body can be computed. The velocity potential is computed by 

developing a boundary value problem using the usual assumptions of the 

radiation/diffraction theory. (Chakrabarti [4]). For the convenience of the solution the φ  is 

assumed to take the form of a power series with respect to a perturbation parameter. The 

index of the power series represents the order of the theory. First, second and higher order 

solutions are calculated by the researcher depending on the type of solution desired. After 

the estimation ofφ , first order forces and the second order forces can be calculated.  

  

 The steady drift force due to the incident wave on any symmetric body with respect 

to wave direction can be shown to be identically zero due the symmetry of the pressure 

distribution. Thus the contribution on the second-order drift force comes from the 

diffraction potential. 
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 The potential function can be expressed as the sum of scattered ( dφ ) and incident 

velocity potential (φ i). 

 = +d iφ φ φ                         (1) 

The total potential φ  is obtained by solving the Laplace equation, which in the Cartesian 

Coordinates is  

 

( )2

2 2 2

2 2 2

, 0

0

∇ =

∂ ∂ ∂
+ + =

∂ ∂ ∂

ix t

x y z

φ

φ φ φ

                  (2)

where, the spatial coordinates, x, y and z represents a point in the fluid where the potential 

is calculated at anytime t. 
 

    

           The boundary conditions consist of the dynamic and kinematic boundary conditions 

at free surface and bottom boundary condition. At the free surface elevation, η, the total 

dynamic pressure is equal to the atmospheric pressure which is constant, leading to the 

dynamic free surface condition  

22 21 0
2

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟+ + + + =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
g

t x y z
φ φ φ φη                 (3)

Similarly, the kinematic free surface boundary condition is given by 

0∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + − =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂t x x y y z z y
η φ η φ η φ η φ

                (4) 

the bottom boundary condition, can be derived based on the fact that the vertical velocity of 

water particle at the bottom surface is equal to zero assuming that the ocean floor is flat.  
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0∂
=

∂y
φ                               (5) 

Another boundary condition can be obtained by equating the normal component of the 

water particle velocity to the velocity of the body, since we have assumed the zero velocity 

for the body, the normal component of the water particle velocity will be equal to zero, 

which can be expressed mathematically as 

0∂
=

∂
φ
η

                   (6)   

Introducing eq (1), the body surface condition can be rewritten as  

∂ ∂
= −

∂ ∂
d iφ φ
η η

                   (7) 

Then as one move away from the body surface a distance R0, the scattered potential (φ s) 

decreases and eventually vanishes at infinity. This line of reasoning leads to the 

Sommerfield radiation condition,  

0 0
→∞

∂⎛ ⎞± =⎜ ⎟∂⎝ ⎠
dR

Lim R i
R

ς φ                   (8)

Solution of this nonlinear boundary value problem is complicated, so perturbation 

techniques are commonly employed to obtain a solution to this problem. Accordingly, a 

power series is introduced of the form  

1=
=∑

N
n

n
n

φ ε φ                    (9) 

where, the perturbation parameter ε is equal to the product of the wave number k and the 

wave amplitude, a and the symbol n represents an nth order approximation. Similarly 

utilizing water surface elevation, η, one obtains the perturbation equation 
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1=
= ∑

N
n

n
n

η ε η                   (10) 

  

 For this study, the focus will be upon the first and the second order forces and the 

approximation of higher order terms will be assumed to be negligible. Once the first and 

second order potentials are evaluated, dynamic pressure can be calculated using the 

Bernouli’s equation which can be expressed as 

21 ( )
2

∂
= + ∇

∂
p

t
φρ ρ φ                  (11)

where, ρ is density of ocean water and ∇φ  is the shorthand notation for the gradient. 

  

 On solving this boundary value problem, the velocity potential due to linear wave is 

obtained for a right-handed coordinate system located at the still water level which can be 

expressed as 

( ) ( ) { }cosh
, , , exp cos sin

2 cosh
+

= + −⎡ ⎤⎣ ⎦
k z dgHx y z t i i k x y t

kd
φ β β ω

ω
           (12) 

where g is the gravitational acceleration, H is wave height and here it is assumed to be 

twice the wave amplitude, ω is the circular wave frequency, d is the water depth, k is the 

wave number and β is the angle of direction of wave propagation.   

  

 It can be further shown that the horizontal component of the velocity along the x 

direction is  
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( ) ( ) ( )cosh
, , , cos exp cos sin

2 cosh
cos

+
= − + −⎡ ⎤⎣ ⎦

=

k z dgkHu x y z t i k x y t
kd

ik

β β β ω
ω

φ β
          (13) 

and along the y direction is   

( ) ( ) ( )cosh
, , , sin exp cos sin

2 cosh
sin

+
= − + −⎡ ⎤⎣ ⎦

=

k z dgkHv x y z t i k x y t
kd

ik

β β β ω
ω

φ β
          (14) 

Similarly, vertical velocity component along the vertical z direction is  

{ }sinh ( )( , , ; ) exp cos sin
2 cosh

+
= + −⎡ ⎤⎣ ⎦

gkH k z dw x y z t i i k x y t
kd

β β ω
ω

                           (15)                

  

 The total pressure at a certain depth is the sum of the atmospheric pressure, the 

hydrostatic pressure and the dynamic pressure which is given by 

{ }cosh ( )( , , ; ) exp cos sin
2 cosh

+
= + −⎡ ⎤⎣ ⎦

gH k z dp x y z t i k x y t
kd

ρ β β ω
ω

                      (16)

  

 The second order forces are calculated using the Bernoulli equation and they have 

been found to have two main components ( jF ) denoted with the subscripts j (Chakrabarti 

and Gupta [5]). The first is mean drift force due to free surface effect, 1F  which is obtained 

by integrating the free surface elevation over the wavelength. It can be expressed as 

2
1

1
2 == ∫ r a

WL

F g n dlρ η                  (17)

where =r aη  wave surface elevation at the body surface, n is the surface direction normal, 

and WL is the waterline of the body in still water. The second contribution to the mean drift 
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force, 2F , arises from the velocity squared term in the Bernoulli’s equation and can be 

expressed as 

0

2
2

1

1
2 =

= ∑∫∫
N

j
jS

F u ndSρ                             (18)

where uj  represents the water particle velocity component along the N body coordinates 

and dS is the elemental area on the submerged part of the body surface up to the still water 

level, S0.The third component of the drift force, due to motion term is 

0

3 ' ∂=
∂∫∫

S

F X ndS
t
φρ                  (19) 

where again the integration is elevated over the body surface and X’ represents the 

translational body motion of inertia i.e surge, sway or heave. The fourth component of the 

mean drift force is due to rotation of body and can be expressed as 

4 3= ×F S F      (20) 

where S is the radius of the gyration corresponding to the surge or sway motion of the 

body. For additional discussion see for example, Chakrabarti (pp 260-262) [4]. 

 

 2.1 Surface Piercing Bodies 

2.1.1 Vertical Cylinder 

Vertical Cylinders are one of the most commonly used structural geometries found in the 

design of offshore structures. They may serve as the main structural components of steel 

caissons, wind turbine towers or jacket structures. A schematic of a vertical bottom founded 

cylinder is presented in Fig. 1. The origin of the cylindrical coordinate system is located at 
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the seabed and is aligned with the center line of the cylinder. At the outer surface of the 

cylindrical hull, r = a, the incident wave surface profile can be expressed in terms of Bessel 

functions of the first kind, Jn and Kronecker delta function, δ, specifically (Chakrabarti [4]). 

( ) ( ) ( )1

0
, , cos exp

2

∞
+

=

= −∑ n
n n

n

Hr t i J ka n i tη θ δ θ ω              (21)

It follows than that the mean drift force due to free surface effect can be expressed as 

( ) ( )
222

1
1

00

1 cos exp cos
2 4

∞
+

=

⎡ ⎤⎧ ⎫= −⎢ ⎥⎨ ⎬
⎩ ⎭⎢ ⎥⎣ ⎦
∑∫ n

n n
n

gaHF i J ka n i t d
πρ δ θ ω θ θ            (22)

However it is more convenient to introduce an alternate form of eq (22) which leads to a 

more compact dimensionless expression. The real part of velocity potential at the cylinder 

surface may be written in the terms of Fourier series expansion with coefficients, an and 

bn,that will later be defined  in terms of Bessel function  

( ) [ ]
0

2, , cos sin cos
2

∞

=

= = +∑ n n n
n

Hgr a t a t b t n
ka

φ θ δ ω ω θ
ω π

            (23)     

At the free surface wave profile at r=a can be expressed as 
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( ) [ ]
0

2, , sin cos cos
2

∞

=

= − +∑ n n n
n

Ha t a t b t n
ka

η θ δ ω ω θ
π

            (24)

Then the mean drift force due to free surface effect can now be alternatively expressed as 

[ ]

[ ]

2
1

2 2 2

00

0

1 cos
2

1 2 sin cos cos
2 2

sin cos cos cos

∞

=

∞

=

=

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= − +

∫

∑∫

∑

WL

n n n n
n

m m m m
m

F g dl

Hg a t b t n
ka

a t b t m d

π

ρ η θ

ρ δ ω δ ω θ
π

δ ω δ ω θ θ θ

           (25)

On separating out the time independent part from the above term and then simplifying the 

force term, the dimensionless mean drift force term can be expressed compactly as  

 
( )1 1 12

0

4 ∞

+ +
=

= +∑ n n n n
n

F a a b b
kaπ

                       (26) 

where,  

1
1 2

2

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

FF
Hg aρ

                                    (27) 

and ai and bi are defined as  
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A ka J ka Y ka

               (28)

where 'nJ and 'nY are the Bessel functions (Abramowitz and Stegun [1]). 

 

 Similarly for the velocity squared term, one can obtain the corresponding mean drift 

force component by first differentiating the potential function and then using the formula as 

described by eq (18) one can obtain the normalized drift force as follows 

2 2
2 ( )

2
= +∫∫ r

S

F u u dSθ
ρ   (29) 

where, 

∂
=
∂
∂

=
∂r

u

u
r

θ
φ
θ
φ

  (30) 

  

1 1
02

2 2
1 1

0
2

21
sinh 2

2 ( / 2)
( ) ( ) ( 1)

21
sinh 2 ( )

∞

+ +
=

∞

+ +
=

⎧ ⎫⎡ ⎤− +⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪= ⎨ ⎬
+ +⎪ ⎪⎡ ⎤⎪ ⎪+ +⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑

∑

n n n n
n

n n n n
n

kd a a b b
kd

g H aF
ka a a b b n n

kd
kd ka

ρ
π

 (31) 
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sinh 2
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( / 2) ( ) ( ) ( 1)

21
sinh 2 ( )

∞

+ +
=

∞

+ +
=

⎧ ⎫⎡ ⎤− +⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪= = ⎨ ⎬
+ +⎪ ⎪⎡ ⎤⎪ ⎪+ +⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑

∑

n n n n
n

n n n n
n

kd a a b b
kd

FF
g H a ka a a b b n n

kd
kd ka

ρ π
          (32)

Since there is no translation and rotational motion 3F = 4F =0.  

2.1.2 Rectangular Submerged Bodies 

Consider a rectangular box located in water depth d, submerged in the water depth D The 

box has length l, a width b, a height hand origin to the coordinate system is located at depth 

D below still water level as shown in Fig. 2. It has been assumed that the depth of 

submergence D is smaller than the height h to include the free surface effect. Also assume 

that the wave is traveling from –x to + x so that β = 0 and the potential function can be 

expressed as 

[ ]cosh ( )( , , ; ) exp
2 cosh

+
= −

H k z dx y z t g i kx t
kd

φ ρ ω
ω

             (33) 

and the wave profile on the front and back faces of the rectangular box at the SWL is 

( ) exp
2 2

⎡ ⎤⎛ ⎞= ± −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

H klt i tη ω                 (34) 

Thus the mean drift force due to free surface effect, taking due account of the sign of 

direction cosine of nx on the two faces of the box, is given by 
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Fig. 2. Definition sketch of a rectangular body 
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⎡ ⎤⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥= − − − +⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭⎣ ⎦

⎛ ⎞− −⎜ ⎟
⎝ ⎠

=

∫ r
WL

H kl H klF g n dl gb i t i t

H kl klF gb i t i t

kl t
HF gb

ρ η ρ ω ω

ρ ω ω

ω
ρ

2

2 2

2 sin cos
2 2 2

cos sin 2 sin cos
2 2 2 2

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − − −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎢ ⎥

⎢ ⎥⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + − + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

kl kl klt i t t

kl kl kl klt t i t t

ω ω ω

ω ω ω ω
         

(35) 

On simplifying the above equation and integrating real part of the force term over the 

whole domain the value of force comes out to be:  

{ }
2

1̀ 2sin sin(2 )
8

=
HF gb kl tρ ω                (36) 

which on averaging over one complete cycle one finds that 

1̀ 0=F                    (37) 

On differentiating the potential function with respect to the x, y and z one can obtain the 

water particle velocities in the respective direction. It should be noted that the velocity 

component along the y direction, u, is zero. The velocity squared components on a 

rectangular block on its front and back faces are given by 
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2 2
2

2 2

2 2

cosh ( )cos
2

( , , ; ) ( , , ; )
2 cosh

sinh ( )sin
2

⎡ ⎤⎛ ⎞+ ± − +⎜ ⎟⎢ ⎥⎝ ⎠⎛ ⎞ ⎢ ⎥+ = ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎛ ⎞+ ± −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

lk z d k t
gkHu x y z t w x y z t

kd lk z d k t

ω

ω
ω

          (38)

  

 Upon carrying out the integration of the velocity squared terms from the bottom (-

D) of the block to the still water level, and separating time independent term with the use of 

the linear wave dispersion equation 

2 tanh 2= gk kdω                  (39) 

one obtains 

{ }2

2

sinh 2 sinh 2 ( )
4 4 sinh 2

− −
=

kd k d Dgb HF
kd

ρ              (40)      

The nondimensional form is then 

{ }
2

sinh 2 sinh 2 ( )
2sinh 2
− −

=
kd k d D

F
kd

               (41) 

In deep water the force term reduces to 

2
[1 {cosh 2 sinh 2 }]

2
− −

=
kD kDF                (42) 

Since we have assumed that there is no translation or rotational motion so 3F = 4F = 0. So 

only velocity squared term contributes to the second order mean drift force.   
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 2.2 Bottom Mounted Submerged Bodies 

2.2.1 Bottom Mounted Horizontal Half Cylinder 

Let us consider a horizontal half-cylinder seated on the ocean bottom of radius a and length 

L in a water depth d. A possible application of this geometry is the buried ocean floor 

pipelines used for the transportation of crude oil from the production platform to shuttle 

tankers or shore. Again utilizing the cylindrical coordinate system with origin located at the 

center of the cylinder at the seabed, as shown in the definition sketch (Fig. 3) drift forces on 

the half cylinder are calculated. 

 

 Based on the linear diffraction theory the dynamic pressure at the surface of the 

cylinder, r = a, has the form,  

0

1 2( )( , ; ) cos exp( )
2 cosh !

∞

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑

n

n

gH ikar t n i t
kd n

φ θ θ ω
ω

            (43) 

which can be further simplified to a more compact form given as  

[ ]( , ; ) 2 cosh( sin ) exp( cos ) 1 exp( )= − −r t ka ika i tφ θ λ θ θ ω             (44) 

Since the structure has no interaction with the surface wave, the free surface component of 

the drift force,F1, can be neglected. 

 

 The radial, r, component of velocity is zero at r=a. The angular, θ, component of 

velocity can be expressed as  

cos sinh( sin )cos( cos )
( , ; ) exp( )

sin cosh( sin )sin( cos )
−⎡ ⎤

= −⎢ ⎥
⎣ ⎦

ka ka
u a t k i t

i ka kaθ

θ θ θ
θ λ ω

θ θ θ
           (45) 
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Since the normal velocity on the cylinder surface is zero, the only contribution to the 

velocity squared term on the 2-D half cylinder is 

 
 

 
  

Fig. 3 Definition sketch of a bottom mounted horizontal half 
cylinder 
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θ 

r 

L 
O 
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2
2

1 1 1
2 2

∂
= =

∂
p u

rθ
φρ ρ
θ

                (46) 

( )
2 2 2

22
2 2 2

cos sinh ( sin ) cos ( cos )1
2 sin cosh ( sin ) sin ( cos )

⎡ ⎤+
= = ⎢ ⎥

⎣ ⎦

ka ka
p u k

ka kaθ

θ θ θ
ρ λ

θ θ θ
            (47) 

Due to the symmetry of the cylindrical cross-section, horizontal surge drift force due to free 

surface effect and velocity-squared pressures are identically zero.  

2
2

0

1 cos ( ) 0
2

= =∫xF L u ad
π

θρ θ θ     (48) 

The vertical component of the drift force is given by 

2
2

0

1 sin ( )
2

= ∫yF L u ad
π

θρ θ θ                 (49) 

where, L is the length of the half cylinder  

2 2 2
2 2

0

2 sinh ( sin ) cos sin
sinh 2

2

⎛ ⎞ ⎡ ⎤= = −⎜ ⎟ ⎣ ⎦⎝ ⎠⎛ ⎞
⎜ ⎟
⎝ ⎠

∫y
y

F kaF ka d
kdHgL

π

θ θ θ θ
ρ

          (50) 

which reduces to 

2 0

2 ( ) ;          ( ) cosh(2 sin )sin
sinh 2 3

⎛ ⎞ ⎡ ⎤= + =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ∫y
kaF I ka I ka ka d

kd
π

θ θ θ
          (51) 

where, values of I’(ka) can be interpolated using Table 1 where values for I’(ka) are 

generated using the MATLAB code. Due to assumption of no translation and rotation 

motion, the translation and rotational component are identically zero i.e. 3F = 4F =0.  
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ka I’1(ka) I’2(ka, s0/a) I’2(ka, s0/a) I’2(ka, s0/a) I’2(ka, s0/a) 

  s/a=1 s/a=1.5 s/a=2 s/a=2.5 

0.1 2.0267 0.021637 0.032725 0.044142 0.056 

0.2 2.1078 0.058073 0.090012 0.12556 0.16615 

0.3 2.2458 0.075159 0.12118 0.1782 0.25137 

0.4 2.4452 0.070808 0.12035 0.1894 0.28917 

0.5 2.7124 0.056239 0.1019 0.17356 0.28953 

0.6 3.056 0.040324 0.078597 0.14602 0.26762 

0.7 3.4872 0.02707 0.057172 0.11645 0.23516 

0.8 4.0201 0.017382 0.039996 0.089602 0.19968 

0.9 4.672 0.010818 0.027232 0.067232 0.16547 

1 5.4644 0.0065826 0.018182 0.04953 0.13468 

1.1 6.4233 0.0039392 0.011965 0.035988 0.10813 

1.2 7.5807 0.0023278 0.0077869 0.025871 0.0859 

1.3 8.975 0.0013623 0.0050243 0.018443 0.067674 

1.4 10.653 0.0007912 0.0032196 0.013059 0.052958 

1.5 12.671 0.00045673 0.0020517 0.0091964 0.041215 

1.6 15.097 0.00026236 0.0013015 0.0064469 0.031932 

1.7 18.013 0.00015009 0.00082249 0.0045024 0.024646 

1.8 21.519 8.5578e-05 0.00051809 0.0031343 0.018962 

1.9 25.735 4.8654e-05 0.00032545 0.002176 0.014548 

Table 1 Values of Integrals I’1 (ka) and I2’(ka, s0/a) 
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ka I’1(ka) I’2(ka, s0/a) I’2(ka, s0/a) I’2(ka, s0/a) I’2(ka, s0/a) 

2 30.806 2.7594e-05 0.00020396 0.0015071 0.011136 

2.1 36.906 1.5616e005 0.00012755 0.0010416 0.0085061 

2.2 44.248 8.8215e-06 7.9626e-05 0.00071863 0.0064856 

2.3 53.085 4.9751e-06 4.9627e-05 0.00049499 0.0049371 

2.4 63.726 2.8017e-06 3.0886e-05 0.00034046 0.003753 

2.5 76.544 1.5757e-06 1.9197e-05 0.00023387 0.0028491 

2.6 91.989 8.8519e-07 1.1918e-05 0.00016046 0.0021605 

2.7 110.61 4.9674e-07 7.3914e-06 0.00010998 0.0016365 

2.8 133.05 2.7848e-07 4.5796e-06 7.531e-05 0.0012384 

2.9 160.12 1.5599e-07 2.8349e-06 5.1522e-05 0.00093637 

3 192.77 8.7301e-08 1.7535e-06 3.522e-05 0.00070741 

 

 

 

  

Table 1 continued 
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2.2.2 Bottom Mounted Hemisphere 

Consider a hemisphere mounted at the sea bed of radius a in water depth d as shown in Fig. 

4. Here we can utilize the spherical coordinates with origin at the center of the sphere at the 

sea bed. Based on the linear diffraction theory for a bottom-seated hemisphere the velocity 

potential at the surface of the cylinder, r = a, can be expressed in a closed form as long as 

the hemisphere is removed from the free surface with a d/a ratio of at least 1.5, so that its 

effects on the velocity potential can be ignored.  In this case the expression for the velocity 

potential becomes: 

2

2 2

cosh( )exp( )

1( , ; ) cosh( )exp( ) exp( )
2 cosh

sinh( )exp( )

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+

= + −

− −

r rY i X
a a

gH a iX a ar t i Y i X i t a
kd r R r r

Y a a iXY i X
R r r R

φ θ ω
ω

                (52) 

where, 

cos sin=X ka θ μ      sin sin=Y ka θ μ       sin=R ka μ                         (53)  

 After simplifying one can obtain the time independent term for the potential function by 

separating the real part which can be expressed as  

2

2 2

2cosh sinh sin( )
Re ( , ; )

cosh exp( )

⎡ ⎤⎛ ⎞
− − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥=

⎢ ⎥
− +⎢ ⎥
⎢ ⎥⎣ ⎦

YY Y X t
R

r t
X XY iX
R R

ω
φ θ λ             (54) 

where, 

 

Since the hemisphere is not having any interaction with the surface wave, the free surface 

term can be neglected in calculation of the drift forces 

/ (2 cosh )= gH kdλ ω
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Fig.4   Definition sketch of a bottom mounted hemisphere 
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The angular, θ, component of the velocity can be expressed as 

2

2 2

(2 2 )sinh cos( )
1( , , )

sin sin 2 cosh sin( ) sin

⎧ ⎫− + − +⎪ ⎪∂ ⎪ ⎪= = ⎨ ⎬⎡ ⎤∂ ⎪ ⎪− − −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

XX R Y X t
R

u r
Y Ya a Y Y X t t
R R

θ

ω
φ λθ μ

μ θ μ ω ω
         (55) 

Similarly,µ,the angular component of the velocity can be expressed as 

12

2 2

(2 2 )cosh sin( )
cot cot( , , )

2 sinh cos( ) sin

⎧ ⎫− − + − +⎪ ⎪∂ ⎪ ⎪= = ⎨ ⎬⎡ ⎤∂ ⎪ ⎪− − −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

XX R Y X t
R

u r
Y Xa a Y Y X t t
R R

μ

ω
μ φ λ μθ μ

μ ω ω
         (56) 

The vertical component of velocity squared component of the steady drift force is 

computed from as follows 

( )2 2 2 2
2

0 0

1 cos sin
2

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∫ ∫yF a u u d d
π π

θ μρ θ θ μ μ           (57) 

And the horizontal component is given by 

( )2 2 2 2
2

0 0

1 sin sin
2

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∫ ∫xF a u u d d
π π

θ μρ θ θ μ μ              (58) 

which on substituting the velocities the and simplifying the dimensionless expression for 

the total force can be calculated as  the follows  
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                     (59) 

Due to assumption of no translation and rotation motion, the translation and rotational 

component are identically zero i.e. 3F = 4F =0.  
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 2.3 Submerged Bodies 

2.3.1 Horizontal Cylinder 

Consider the rigid horizontal cylinder of radius, r=a, depicted in Fig. 5. The cylinder is 

located at a submergence depth of s0 in a water depth of d. Further assuming that the 

cylinder is rigidly constrained at elevation d-s0, the incident velocity potential in the 

cylinder coordinate can be expressed as 

( ) ( ) ( )0cosh sin
, ; exp cos

2 cosh
+

= −
kr sgHr t i ikr i t

kd
θ

φ θ θ ω
ω

            (60) 

The radial, r, component of velocity on the surface of the cylinder is, 

( )
( )

0

0

sin sinh sin
( , ; ) exp( cos )

cos cosh sin

+ +⎡ ⎤
= = −⎢ ⎥

+⎢ ⎥⎣ ⎦
r

k ka s
u r a t i ika i t

ik ka s

θ θ
θ λ θ ω

θ θ
           (61) 

where, 

2 cosh( )
=

gH
kd

λ
ω

 

The corresponding angular, θ, component of the velocity on the surface of the cylinder is 

( )
( )

0

0

sin sinh sin
( , ; ) exp( cos )

sin cosh sin

+ −⎡ ⎤
= = −⎢ ⎥

+⎢ ⎥⎣ ⎦

ka ka s
u r a t i ika i t

ika ka sθ

θ θ
θ λ θ ω

θ θ
          (62) 

In the cylindrical coordinates the velocity-squared term on the surface of the cylinder can 

be expressed as  
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  Fig.5 Definition sketch of a horizontal cylinder 
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and the time independent velocity-squared pressure then has the form 
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Due to the symmetry at the cylindrical cross-section, the horizontal component of the force 

is identically zero. The vertical component is obtained by evaluating the following integral 

2
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where L is the length of the cylinder, then introducing eq (36) and eq (37) using a slightly 

different scaling one obtains the following dimensionless expression 
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which can be further reduced to following compact form 
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where values of I’(ka) can be obtained from  Table 1 which is generated using the code for 

different values of ka and ratio of depth of submergence to the radius. For different values 

of ka or ratio of submergence depth to radius can be obtained by interpolating between the 



34 
 
 

 

rows or columns accordingly. Due to assumption of no translation and rotation motion, the 

translation and rotational component are identically zero i.e. 3F = 4F =0.  

2.3.2 Submerged Sphere 

Consider a submerged sphere of radius a in a sea of water depth d in submerged at a depth 

of s0. Again we can utilize the spherical coordinates with origin at the center of sphere and 

at a depth of s0 below still water level as shown in the definition sketch (Fig. 6). The 

potential in the spherical coordinates can be expressed as: 

 2
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where, X,Y and R can be expressed as  

cos sin=X ka θ μ      sin sin= +oY ks ka θ μ       2 2= +R X Y            (69) 

The operation similar to the case of the hemisphere was performed here to simplify the 

potential function further as 
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          (70)

where λ is defined earlier in the derivation of force for the horizontal cylinder. 
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Fig.6 Definition sketch of a sphere 
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 The time independent real part of the potential function can be obtained from the 

complex form by separating the real and imaginary form, which can be further used for the 

formulation of the forces, can be expressed as 
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The angular or θ, component of the velocity can be obtained from the potential as 
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Similarly the µ component of the velocity can be expressed as 
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Now, since the sphere has no interaction with the surface waves only the contribution from 

velocity squared component of the drift force adds toward total force. The force can be 

calculated using the following expressions 
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 Due to assumption of no translation and rotation motion, the translation and 

rotational component are identically zero i.e. 3F = 4F =0.  
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2.3.3 Submerged Ellipsoid 

Consider an ellipsoid of the major axis equal to a and the other axis as b and c (a>b>c), 

submerged in sea of water depth d at depth of s0. Here we can utilize the ellipsoidal 

coordinates (λ1 , λ2 , λ3 ) with origin at the center of the sphere at a depth of s0 below still 

water level in the direction of the vertical axis as described in the definition sketch (Fig. 7). 

To calculate the expression for the velocity in the ellipsoidal coordinates, potential function 

in Cartesian coordinates was used which was then differentiated in terms of ellipsoidal 

coordinates using the chain rule. The potential function used can be expressed in terms of 

the rectangular coordinates (x,y,z) can be expressed as  

( ) ( ) { }cosh
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2 cosh
+

= + −⎡ ⎤⎣ ⎦
k z dgHx y z t i i k x y t

kd
φ β β ω

ω
      (77) 

Assuming that the wave is travelling along the x –axis so that the direction of the 

wave propagation is equal to zero (β=0), the velocity potential can be simplified to the 

following form 

( ) ( ) [ ]cosh
, , , exp

2 cosh
+

= −
k z dgHx y z t i i kx t

kd
φ ω

ω             (78) 

Now to transfer the coordinates from the rectangular to the ellipsoidal coordinates 

following transformation equations were used (Punzo et al.[34]). 
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where, K and h are defined as follows 
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Fig.7 Definition sketch of an ellipsoid 
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Using the chain rule of the differentiation and with further simplification the λ1 component 

of the velocity along the major axis, u1 can be expressed in a compact and dimensionless 

form as  
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velocity component along the semi major axis or λ2  component of the velocity 
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Similarly, velocity component along the other minor axis or λ3 component of the velocity 
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The nondimensional velocity squared force is then obtained by integrating the summation 

of the squares over the whole surface. Different components of the force are given as 

1

2 2 2
2 1 2 3 1 2 3( )cos sin= + +∫∫∫F u u u d d dλ θ φ λ λ λ          (84) 

2

2 2 2
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3

2 2 2
2 1 2 3 1 2 3( )sin= + +∫∫∫F u u u d d dλ θ λ λ λ    (86) 

where, 
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  (87) 

The integration limits varies for λ1 from –a/2 to a/2, for λ2 from –b/2 to b/2 and for λ3 from 

–c/2 to c/2, covering the whole domain. On analyzing the force terms it has been found that 

the λ1 and λ2 component of the force have the even function in the integral which due to 

which on complete integration the force term reduces to zero due to the symmetry of the 

cross section in any given λ1- λ2 plane . So only λ3 component of the force contributes to the 

total velocity squared term. Since the ellipsoid is submerged in the water so there is no 

interaction with the surface wave due to which the free surface component of the drift force 

has no contribution. So velocity squared term is the only term contributing to the second 

order drift force. Due to assumption of no translation and rotation motion, the translation 

and rotational component are identically zero i.e. 3F = 4F =0.  
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3.  IMPLEMENTATION 

After solving the boundary value problem to obtain the velocity potential the main task is to 

calculate the forces by integrating over the surface. As described in Mathematical 

Formulation, drift forces are calculated using the different geometries using the properties 

of special function related to the different geometries. Since for some of the geometries it 

was difficult to calculate the exact closed form solution, a combined solution including 

analytical and numerical procedure was adopted to obtain the expression for such 

geometries. The integration for such geometries was carried out first by obtaining a simple 

form which can be evaluated using numerical integration by discretizing the geometry into 

small panels. Finally the curves for the drift forces are drawn as the function of ka for the 

geometries using the MATLAB.  

  

 To develop the drift force formulas for the vertical cylinder, the potential function in 

the cylindrical coordinates was used and the exponential term was expanded using the 

infinite series of coefficients of the Bessel functions. Bessel functions are the special 

functions which are obtained when the Laplace equation is solved in the cylindrical 

coordinates. With the introduction of the Bessel Functions, it became easier to compute a 

closed form solution for drift force on a cylinder. Using the standard values of these 

functions graphs were plotted for the dimensionless force term for different values of 

perturbation parameter ka with an interval of ka=0.1. 

  

 Similarly the closed form formula for the rectangular body is also calculated. Free 

surface component is zero in the case of the box so it does not really matter where the 
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position of the box is with regards to the velocity potential. However, the velocity squared 

term reduces to a very simple closed form formula independent of ka which can be used to 

calculate the second order drift force. For the deep water it has been assumed that d>>D, 

due to which hyperbolic sine term containing the d reduces to 1 and a new version of the 

formula is obtained independent of d. 

 

 To decrease the complexity in the integration and evaluation of forces, cylindrical 

coordinates are introduced for analyzing horizontal cylinders. With the introduction of the 

cylindrical coordinates the computation of the integration over the domain becomes much 

simpler in the case of horizontal cylinder and half cylinder, leading to a compact form of 

the integral. Further the integral was solved using the numerical code, in which the whole 

surface was divided into the small strips subtending an angle of dθ=1º at the center. The 

integration was carried out using MATLAB. Finally a formula was developed in terms of 

the integrand I’(ka,s0/d) for cylinder and I’(ka) for half cylinder which can be obtained 

from the values given in the Table 1 for different ratios of submergence depth to the water 

depth. 

 

 As in the case of the horizontal cylinder, cylindrical coordinates are used in 

formulation of the drift forces on a half cylinder. The velocity squared term is integrated 

over the whole surface using the similar procedure of dividing the surface into small strips 

subtending an angle dθ=1º. The integration was done using the MATLAB code and the 

formula for the drift force was developed in terms of the integrand I’(ka) which can be 

obtained from Table 1 for different values of ka.   
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 Spherical coordinates are used in the formulation of the drift forces of hemisphere 

and sphere. The potential function is obtained in the spherical coordinates which is then 

differentiated to generate velocity components. The velocity squared term is further 

simplified and an integrand is obtained in terms of hyperbolic and trigonometric functions 

of ka, θ and µ. The integration is carried out over the surface of the hemisphere by dividing 

the whole surface into strips subtending angles of 1º at the centre. The graphs for the 

dimensionless force are developed for different values of ka which can be used to calculate 

the second order drift forces for a rigid hemisphere. In the case of the submerged sphere, 

again the spherical coordinates were used for the formulation of the drift forces. To 

calculate the velocity squared term the integration is carried out using the same technique. 

For the case of sphere, one can also calculate the forces by introducing the Legendre 

polynomial like Bessel function in vertical cylinder, but because of the complexity involved 

in their simplification this approach have not been carried out in this study. 
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 In the case of ellipsoid, the potential function in the cartesian coordinates is used 

which is then differentiated with respect to the ellipsoidal coordinates using MAPLE and 

the differentiation was also verified using hand calculations. Finally a simpler integrand 

was evaluated which was solved using the same technique as used for the sphere and 

cylinder by dividing the surface into small strips here of dλ1, dλ2 and dλ3, where dλis are of 

unit length. However, one can approach the solution by the introduction of the Lame 

functions which are the solutions of the Laplace equation in the ellipsoidal coordinate. 

Generally these functions are used in the electrostatics to calculate the potential around 

ellipsoidal source field. Punzo et.al [34]. In the similar fashion potential function around an 

ellipsoidal body can be calculated to derive the second order drift forces. But, due to the 

appearance of the singularity while integrating this approach is not used in this study and 

the other approach as defined before is preferred. 
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4.  STEADY DRIFT FORCE NUMERICAL EXAMPLES 
 

  4.1 Basic Body Geometries 

The graph showing the variation of drift force for vertical cylinder for different water 

depths has been shown in the Fig. 8. For the vertical cylinder it has been found that the free 

surface component is independent of water depth while the velocity squared term of the 

drift force is a weak function of water depth at lower values of ka. With the increase in the 

value of the ka, total drift force increases but the rate of increase of the total drift force 

decreases with the increase in the value of ka specially for ka≥1.5.The presence of Bessel 

function of the second kind in the velocity squared term explains the increase of the 

velocity squared term with the increase in the value of ka. 

 

 In the case of rectangular box, interestingly the mean of free surface component 

comes out to be zero. Also, it is interesting to note that the final non dimensional term for 

velocity squared component is independent of the geometry of the box and is dependent on 

the water depth only.  
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Fig.8 Steady drift force on a vertical cylinder 
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 In the case of the horizontal cylinder, the free surface component is not present as 

the body is submerged into the water however the velocity squared terms has a significant 

effect which should be accounted. The drift force peaks at intermediate ka values and after 

that non dimensional force term decreases drastically with the increase in the ka value as 

shown in Fig. 9. For depth, 3 times of the radius value the force is almost negligible for 

ka≥1. As expected the drift force decreases with the increase in the depth of submergence, 

which can be explained by the decrease in magnitude of the velocity as one moves down to 

the sea bed. Also as discussed in the derivation horizontal component of the drift force is 

equal to zero accounting for the symmetry of the shape. 

 

 Horizontal half cylinder also have no free surface effect as it is submerged 

completely in water and seated on the sea bed. The results as shown in Fig. 10 shows that 

velocity squared component is significant with the lower ka values and goes on decreasing 

with the higher values of ka. For lower water depths force is negligible for ka≥ 1.5. The 

results show a continuous increase in the force with the decrease in the water depth. 

 

 In the case of the bottom mounted hemisphere horizontal and vertical force peaks at 

an intermediate value (Fig. 11). The magnitude of the force has shown decreases with the 

increase in the water depth similar to other geometries. Because of the deep submergence in 

the water, the free surface effect is not applicable in this case also.  
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Fig.9 Steady drift force on a horizontal cylinder 
 



50 
 
 

 

 

 
 

  

Fig.10 Steady drift force on a horizontal half cylinder 
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Fig.11 Steady drift force on a hemisphere 
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 The velocity squared results for the sphere submerged in water with different water 

depths have been calculated keeping the ratio of depth of submergence to the radius as a 

constant parameter. The results showed (Fig. 12) that as the water depth increases the mean 

drift force decreases. Also, drift force peaks for intermediate value of ka showing almost 

similar trend as shown by hemisphere. The higher values of ka the force almost approaches 

to zero. Also it is seen that as the sphere comes closer to the surface the drift force increases 

as can be seen by the plot.  

  

 In the case of submerged ellipsoid the ratio of the different axial lengths (a,b,c) 

effects the drift force significantly. A sharp peak has been observed in the intermediate ka 

values as can be seen from Fig. 13. It can be seen from the result when any of the minor 

axis decreases in size with respect to measure axis or in other words ellipsoid squeezes and 

becomes more slender, drift force on the body decreases. Thus, one can conclude that the 

slender body faces less drift force which can explain the natural design of the body of the 

fish. 

  

 The results for equal axial length cannot be calculated because of the presence of 

the singularities in the velocity squared force term (eq(18)). . However, to check for the 

ellipsoid the axial length were made as close as possible to avoid singularity and it has been 

found that the results (Fig. 14) obtained are approaching to the results obtained for sphere. 

The convergence of the results has been shown in the Fig. 14. Lower values of the 

ellipsoids as compared to the sphere can be explained for the fact that the ellipsoid is 



53 
 
 

 

having lower surface area as compared to sphere as minor axes of the ellipsoid are smaller 

than sphere. 

  

  As discussed with numerical examples use of these formulas and charts make 

calculation of drift forces very simple as compared to the time consuming numerical 

techniques. As most of the structures in offshore industry have these basic shapes as their 

components, designers can get a quick idea of the forces coming over structure, which will 

increase the speed and accuracy. 
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 Fig.12 a) Steady drift force on a sphere 

 b) Fmax values of sphere 
 

a) 

b) 
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Fig.13   a) Steady drift force on an ellipsoid with constant a and b 
    b) steady drift force on an ellipsoid with constant a and c 

 

a) 
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b) 

Fig. 13 continued 



 
 

 

 

 

 

 

 

 

 
Fig.14 Comparison of spherre and ellipsooid results 
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  4.2 Effect of Neglecting Translation and Rotation Contribution 

4.2.1 Barge 

To illustrate the mathematical formulation for the rectangular bodies, an example of a barge 

is presented here. The results obtained for the barge are compared with the results from 

Choi et al. [7]. The properties of the barge are defined in Table 2. The barge taken for the 

example is similar to the example used by Choi et al. [7]. The results are presented in Fig.  

15. The dimensionless drift force is plotted against the frequency ω.  

  

 Choi et al. [7] used four different discretization to analyze the structure using the 

HOBEM method (Higher Order Boundary Element Method) accounting for the free 

surface, velocity squared and motion terms. They found that the total force first increases 

suddenly at certain value frequency ω which is than almost constant for all higher values of 

frequency ω. 
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 Dispersion relationship, eq (39) is used to plot the force against frequency as force 

is the function of wave number, k, only as described in the mathematical formulation. The 

initial disturbance in the values can be accounted for the exact determination of the wave 

number, which requires iterations to reach the exact value. A graph of the ratio (ŕ) of the 

velocity squared term and free surface term (F1+F2) to the total force (F1+F2+F3+F4) is 

plotted against frequency ω. Since free surface effect is zero in case of rectangular bodies, 

the ratio p reduces as follows 

1 2

1 2 3 4

+
=

+ + +
F Fp

F F F F   
(88)

 

 

which is equivalent to: 

 

  

  

 Form the results it has been concluded that for lower value of frequency ratio of 

velocity squared term to  total force is very  small which increases and approaches towards 

total force for higher frequencies or lower period waves. So, it can be concluded that for the 

lower period waves, velocity squared term is the main contribution in total drift force.  

  

2

2 3 4+ +
F

F F F



60 
 
 

 

  

Property  Value 

Length  30 m 

Breadth   22 m 

Draft  1.5 m 

Water Depth  15 m 

Displacement  990 m3

Table 2 Properties for Barge Example 
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a) 

b) 

Fig.15  (a) Graph from Choi et al.[7] 
  (b) Validation of barge example with Choi et al. [7] 
  (c) Comparison of free surface and velocity squared component  
       with total force from Choi et al. [7]  



62 
 
 

 

 

 
 
 
 
 
  
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 15 continued 

p 

c) 
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 4.2.2 Sphere 

 To illustrate the importance of the velocity squared term a comparison has been made 

between velocities squared term and the total force using the example of a submerged 

sphere. The trend of results obtained for the sphere is in agreement with the one obtained 

by Wu.et.al [39] as shown in Fig. 16. The difference in values can be accounted because of 

assumption of no translation and rotational motion effect in analysis. A ratio of total force 

is shown in Fig.16 which shows that the velocity squared is the main component of the drift 

force and contributes to 60-80% of total force.  
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 4.3 Approximations Using Ellipsoidal Geometries  

 

        

  4.3.1 Autonomous Underwater Vehicle (AUV) 

To demonstrate the formulation for the ellipsoid, an example of the Autonomous 

Underwater vehicle (AUV) is taken which was published by Wang et al. [37].  The 

geometry has been described in the Table 3 and the geometry of the structure is described 

in Fig. 17. Since the calculation of the exact geometry is not possible, so the given AUV is 

approximated to an ellipsoid using the two approaches and an envelope is constructed. 

1) Equivalent Area Method 

The areas of the cross-sections of AUV as shown in the Fig. 17 were compared to the cross-

section of an equivalent ellipsoid to obtain the axial lengths keeping the major axis as the 

overall length of the AUV as shown in Fig. 17. The approximate area of the cross-sections 

is calculated by dividing the geometry as shown in Fig. 17.  

Horizontal Plane 

The approximate area for the cross-section along horizontal plane was calculated which is 

equal to 1458.54 cm2. Now this area can be equated to the area of ellipse (πab/4) to obtain 

the horizontal minor axial length. 

Longitudinal Plane 

The approximate area for the cross-section along vertical plane was calculated which is 

equal to 9040 cm2. Now this area can be equated to the area of ellipse (πac/4) to obtain the 

vertical minor axial length. 
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Since maximum dimension in direction of major axis is 200, we assume a=200 cm 

By equating the areas we get, b = 92.7 and  c= 57.56 cm  

So the ratio of the axial lengths is a:b:c=1:0.4635:0.2878 

2) Maximum Lengths 

According to this approach maximum lengths in both the cross-sections are taken as the 

axial lengths so a=200 cm, b =100 cm, c =60 cm and thus the ratio a:b:c=1:0.5:0.3. 

 

 Drift force acting on the geometry will lie within this envelope, thus giving us a 

range of drift force acting over the given geometry. It can be seen from the plot that the 

force peaks for intermediate values of ka similar to the sphere. Also for higher values of ka, 

the drift force is almost negligible. This example illustrates that how one can calculate the 

range of the drift force acting on a geometry that can be approximated as an ellipsoid. 

Similarly different shapes can be approximated into other geometries and results can be 

calculated faster and easily. 
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Property  Value 

Length(Body/Overall)  2/2 m 

Breadth (Body/Including Elevator)  1/1.6 m 

Height (Body/Including Vertical Fins)  0.6 /0.6 m 

Displacement  990 m3

Table 3 Properties for AUV Example 
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a) 
  

Fig.17 a) Description of AUV example (Wang et al.(49)) 
           b) Different areas of cross-section       
           c) Drift force on AUV 
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4.3.2 Fish  

To illustrate a real life example, an example of a fish body is considered which is 

approximated as an ellipsoid. The drift forces acting over body of different fishes have been 

shown in the graph (Fig. 18), which proves that slender body of a fish face very less load as 

compared to other structure. The fish body has been assumed as an ellipsoid with the major 

axes a=0.93L, b=0.195L and c=.112L, where L is the overall length of the fish. This is a 

reasonable assumption for the dimension for dorsal, lateral, and head aspect, but less 

accurate with tail aspect of fish.(Haslett[13]).  

  

 The different fishes considered for analysis with their respective overall lengths are 

given in Table 4. It can be concluded form the graph that the longest fish is having 

maximum force which is expected as the longest fish will have the maximum surface area 

for the same ratio of the axes. 
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Fish Length 

Cod 120 cm 

Haddock 60 cm 

Herring 30 cm 

Spart 15 cm 

Table 4 Overall Lengths of the Different Fishes (Haslett [13]) 
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Fig. 18 continued 
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                                           5. SUMMARY AND CONCLUSIONS 

 
The research study presented here was started with the basic geometries of the cylinder and 

hemisphere, the results of which were published in Chakrabrati and Gupta [5].This study 

was then extended to ellipsoidal and spherical bodies which are mainly the focus of the 

thesis. 

 

  Wave force on a body can be obtained using approaches depending on the type of 

fluid flow (viscous or inviscid), on the characteristic dimension of the structure relative to 

the wavelength. Morrison equation provides the empirical expressions for the wave force 

on the body which involves experimentally obtained drag and inertia coefficients. The 

validity of the Morrison equation is limited to the structures whose characteristic dimension 

is less than wavelength due to occurrence of diffraction and radiation effects. In this case it 

is recommended to use the diffraction theory which accounts for both incident and 

diffracted potential which is obtained by solving Laplace equation in the given boundary 

conditions. The solution of the Laplace equation can be of nth order. However, larger order 

terms generally have negligible effects so research is generally focuses up to second order 

forces. 

 

 Second order drift force which is the main focus of the study here, comprises of the 

free surface structure interaction, velocity squared component form the Bernoulli’s 

equation, translation and rotational term accounting for the motion of the structure. This 

work concentrates only on free surface and the velocity squared components. One can 

obtain the translational and rotational term if the motion of the structure is provided. 
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However, it has been shown by comparison with the total force that the velocity squared 

term is the main component and accounts for the 60-80% of the total force. For shorter 

period wave the contribution of the velocity squared term increases significantly. 

 

 Numerical techniques available for the solution of the second order wave forces 

generally require complex computations, due to which a need of quicker estimates arises as 

emphasized by Newman [29] and Faltinsen [9]. The analytical and hybrid of analytical and 

numerical methods developed here provides a much simple analysis. Laplace Equation is 

solved and the velocity potential is obtained in different coordinates system due to which 

the expression of force can be obtained in terms of special functions like Bessel function 

and integrands which are easy to calculate. Also with certain examples it has been shown 

how one can attempt to bound the actual results by approximating the complex structure 

into simpler geometries greatly simplifying the problem in to have quick estimates of 

second order forces. 

 

  From the study it has been concluded that the velocity squared component and the 

free surface component forms the major part of the second order drift force in the case of 

the sphere and barge. Also, studies shows that the complex structure can be approximated 

into simpler geometries to get quick first pass estimates of second order analysis. 
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APPENDIX 1 

SYMBOLS 

   

Symbol Meaning 
φ  Total scalar potential 

1F  Free Surface component of Second order Drift force 

2F  Velocity Squared component of Second order Drift force 

3F  Translation component of Second order Drift force 

4F  Rotation  component of Second order Drift force 

1rη  first order wave surface elevation 

jη  local normal 

3F Motion component of Second order Drift force 

4F  Rotation component of Second order Drift force 
a radius of body, axial length along major axes (in case of ellipsoid) 
b axial length along minor horizontal axes (in case of ellipsoid), Breath of the 

box 
c axial length along minor vertical axes (in case of ellipsoid) 
d water depth 
φ

d Total diffracted potential 

Fix Horizontal Component of Force 
Fiy Vertical Component of Force 
g acceleration due to gravity 
H wave Height 
φ

i 
Total incident potential 

Jn Bessel function of first kind 
k wave number 
L length of Cylinder 
p Dynamic Pressure 
R0 Distance away from the body 
R ( )2 2X Y+  

R’ Radius of Gyration 
s0 Depth Of Submergence 
So Body Surface Area 
u Horizontal water particle velocity 
ui Velocity component along ith  coordinate 
ur Radial component of velocity 
uθ Angular,θ component of Velocity 
uμ Angular,μ component of Velocity 
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v Vertical water particle velocity 
w water particle velocity in z direction 
X’ Translation Motion of Body 
X Defined in text according to geometry 
Y Defined in text according to geometry 
Yn Bessel function of second kind 
β direction of wave propagation 
ε perturbation parameter=ka 
η Free Surface Elevation 
λi Axes in Ellipsoidal coordinates 
ρ Density of water 
ς eigenvalues for the Somerfield condition 
ω angular velocity 
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APPENDIX 2 

MATLAB CODE 

 
Code for Ellipsoid (Fish) 

 
%% Velocity Squared term for ellipsoid 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Anupam Gupta%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% Input Variables: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
clc 
clear all 
H=200;            % Wave Height, cm 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%% Three axes %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
L=[100 60 30 15];     % overall lenghth of the fish, cm 
  
for p=1:1:4 
a=0.93*L(p);          % major longitudinal axes, cm         
b=0.193*L(p);         % horizontal minor axes, cm 
c=0.112*L(p);         % vertical axes, cm 
  
%%%%%%%%%%%%%%Calculations %%%%%%%%%% 
h=(a^2-b^2)^(0.5); 
K=(a^2-c^2)^(0.5); 
d=2*a;               % water depth 
s=1.5*a;             % depth of submergence 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
dpsi=1; 
dmu=1; 
dv=1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
j=1; 
  
for ka= 0.01:0.01:3; 
     
k=ka/(H/2); 
kd=k*d; 
  
    F=0; 
    for psi=0.1:1:a 
        for mu= 0.1:1:b 
            for v= 0.1:1:c 
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z=((psi^2-K^2)*(mu^2-K^2)*(K^2-v^2))^0.5/K/(h^2-K^2)^0.5; 
  
A= (sinh(k*(s+d)))^0.5/cosh(kd)*(mu^2-K^2)*(K^2-v^2)*psi/K^2/(h^2-K^2)/z;   
%% psi compnenet of velocity 
  
B= (sinh(k*(s+d)))^0.5/cosh(kd)*(psi^2-K^2)*(K^2-v^2)*mu/K^2/(h^2-K^2)/z;   
%% mu compnenet of velocity 
  
C= (sinh(k*(s+d)))^0.5/cosh(kd)*(mu^2-K^2)*(K^2-psi^2)*v/K^2/(h^2-K^2)/z;   
%% v compnenet of velocity 
  
D=((A^2+B^2+C^2))*v/(v^2+psi^2+mu^2)^(0.5)*psi/(psi^2+mu^2)^(0.5)*dpsi*dm
u*dv; 
  
  
F=(F+D); 
           end 
        end 
    end 
     F1(j,p)=abs(real(F))/a/(H/2)^2; 
     FR(j,1)=F1(j,p); 
     Ka(j,1)=ka; 
     j=j+1; 
  
end 
    
  
 plot(Ka,FR) 
    title(‘Drift Force for Fish’); 
    xlabel(‘ka’); 
    ylabel(‘F’); 
    grid on; 
    hold on; 
  
  
end 
     
   Legend(L,’Cod’,’Haddock’,’Harring’,’Spart’); 
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Code for Sphere 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% Code for Calculation of Second order drift forces on sphere%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Anupam Gupta%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clc 
clear all 
  
%Input Variables 
a=50;                                   %radius 
g=32.1;                                 %gravity 
H=2;                                    %wave Height 
w=1;                                    %2*pi/T 
d=200;                                  %water depth 
F=0;                                    %initialization of Force 
dx=1*pi/180;                            %delta theta                                    
dy=1*pi/180;                            %delta mu 
rho=1940;                               %Density  
%j=1;                                   %initialization for elements of 
F1 vector 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%Numerical Integration %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for t=1:1:30 
   Ka(t,1)=t/10; 
end 
  
r=[3,4,5,6]; 
for i=1:1:4 
d=r(i)*a;                               % water depth 
dth=1*pi/180;                           % delta theta 
s=1.5*a; 
j=1; 
for ka=0.1:0.1:3                       % Loop for different values of ka 
    k=ka/a;                            % calculation of k 
    kd=k*d;                            % calculation of kd 
    ks=ka/a*s; 
for x=1:10:180;                        % Integration with respect to 
theta 
for y=1:10:360;                        % integration with respect to mu 
x=x*pi/180; 
y=y*pi/180;                            % conversion to radians 
C1=rho*g^2*H^2/16/w^2/(cosh(kd))^2;    % constant value squared 
C2=cos(x)*(sin(y))^2*dx*dy;            % Multiplying Factor for pressure 
component 
C=C1*C2; 
X1=ka*cos(x)*sin(y); 
Y1=ka*sin(x)*sin(y)+ks; 
R1=(X1^2+Y1^2)^(0.5); 
X1d=ka*cos(x)*cos(y); 
Y1d=ka*sin(x)*cos(y); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Int1t= 4*X1^2*(sinh(Y1))^2;  % First term of integration 
Int2t=(2*Y1*cosh(Y1)-sinh(Y1))^2; % Second Term of Integration 
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uth=C*(Int1t+Int2t);         % Total theta component 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
end                                     % End of y loop 
end                                     % end of x loop 
F=(uth);                                % Force 
F1(j,i)=F;                              % final force normalized 
FR(j,1)=F1(j,i); 
  
j=j+1;                                  % increament of j 
end 
plot(Ka,FR) 
    title(‘Drift Force for Sphere’); 
    xlabel(‘ka’); 
    ylabel(‘F’); 
    grid on; 
    hold on; 
end 
  
Legend(r,’Depth/radius=3’,’Depth/radius=4’,’Depth/radius=5’,’Depth/radius
=6’); 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Code For Barge 
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%%%%%%%%%%%%%%%%%%%%% Velcoity Squared Term for Barge %%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Anupam Gupta %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
i=1;                            % initiation of loop for vector 
d=15;                           % water depth 
D=1.5;                          % Draft 
k=0.008375;                     % Initial approximation of k 
for w=0.01:0.01:10 
     
    k=w^2/10/tanh(k*d);         % Dispersion relationship 
    F(i,1)=(sinh(2*k*d)-sinh(2*k*(d-D)))/2/cosh(2*k*d); 
    W(i,1)=w;                   % Frequency  
    i=i+1; 
end 
plot(W,F) 
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