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ABSTRACT

Treecodes for Potential and Force Approximations. (August 2008)

Kasthuri Srinivasan Kannan, B.Sc., University of Madras;

M.Sc., Indian Institute of Technology, Madras;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Vivek Sarin
Dr. Devanayagam Palaniappan

N -body problems encompass a variety of fields such as electrostatics, molecular

biology and astrophysics. If there are N particles in the system, the brute force al-

gorithm for these problems based on particle-particle interaction takes O(N2), which

is clearly expensive for large values of N . There have been some approximation algo-

rithms like the Barnes-Hut Method and the Fast Multipole Method (FMM) proposed

for these problems to reduce the complexity. However, the applicability of these al-

gorithms are limited to operators with analytic multipole expansions or restricted to

simulations involving low accuracy. The shortcoming of N -body treecodes are more

evident for particles in motion where the movement of the particles are not considered

when evaluating the potential. If the displacement of the particles are small, then

updating the multipole coefficients for all the nodes in the tree may not be required

for computing the potential to a reasonable accuracy. This study focuses on some of

the limitations of the existing approximation schemes and presents new algorithms

that can be used for N -body simulations to efficiently compute potentials and forces.

In the case of electrostatics, existing algorithms use Cartesian coordinates to eval-

uate the potentials of the form r−λ, where λ ≥ 1. The use of such coordinates to

separate the variables results in cumbersome expressions and does not exploit the
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inherent spherical symmetry found in these kernels. For such potentials, we provide

a new multipole expansion series and construct a method which is asymptotically

superior than the current treecodes. The advantage of this expansion series is further

demonstrated by an algorithm that can compute the forces to the desired accuracy.

For particles in motion, we introduce a new method in which we retain the multipole

coefficients when performing multipole updates (to the parent nodes) at every time

step. This results in considerable savings in time while maintaining the accuracy. We

further illustrate the efficiency of our algorithms through numerical experiments.
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CHAPTER I

INTRODUCTION: N -BODY SIMULATIONS

A. Introduction to N -body Simulations

N -body simulations have become very important in theoretical and experimental

analysis of complex physical systems. A typical N -body problem models physical

domains where there is a system of N particles (or bodies), each of which is influenced

by gravitational or electrostatic forces due to other particles. Simulation is an essential

aspect in areas such as astrophysics or molecular dynamics because the distance and

time scales involved makes observations and experiments difficult. It is easy to see

that many physical structures can be modelled as a system consisting of N bodies.

For example, in astrophysics, the solar system, star clusters and clusters of galaxies

can be represented as a collection of bodies in space. Therefore, N -body simulation

methods can be used to generate theoretical predictions about these systems that

can be validated and compared to the observed phenomena. In general, N -body

simulation methods try to capture the dynamics of the interacting bodies as close

as possible. These methods vary depending on the system being studied irrespective

of the fundamental similarities. For instance, although the underlying force law in

astrophysics (Newton’s Law of Universal Gravitation) is governed by same potential

function (Coulomb potential) used in the evaluation of long range electrostatic effects

in molecular dynamics, the methods employed in these areas are diverse. However,

most of the simulations that study the physical systems adhere to the principle of

Conservation of Energy as a measure to verify the effectiveness of the simulation.

Other physical principles such as Conservation of Angular Momentum are also used

The journal model is Journal of Computational Physics.
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to check the behavior of a N -body simulation.

In mathematical terms, a N -body problem is an initial value problem consisting

of each particle’s equation of motion. This can be expressed by a system of differential

equations where each particle’s initial conditions can be specified by its charge (or

mass), its initial position and initial velocity. In such systems, time is considered

as an independent variable and the physical quantities like the position, velocity and

the acceleration depend on time. Historically, N -body problems have been studied by

considering the two-body problem, three-body problem and many-body problem (or

N -body problem). The two-body problem and some special cases of the three body

problem have analytic solutions, however there is no general solution for the N -body

problem. Therefore, the solution of a general N -body problem (N > 2) is confined to

numerical methods of approximation where the system of differential equations which

describe particles motion, are discretized into difference equations and the calculation

of the trajectories are carried out at regular time intervals using integrators.

Computing force interactions in a N -body simulation is not hard in the sense

of computational complexity as it follows a second-order polynomial growth. The

naive brute force algorithm to compute the forces based on particle-particle interac-

tion is an O(N2) algorithm. There are various approximation algorithms with lower

complexity that have been proposed for these simulations. In the simulation of grav-

itational forces in astrophysics, Barnes-Hut algorithm [4] and its variants are used.

For electrostatic force simulations occurring in molecular dynamics (MD), particle-

mesh methods like P3M [10] and Ewald Summation techniques [9] are widely applied.

However, the total execution time for a simulation is largely dependent on the size

of the system rather than the small difference in the computational complexity of

these algorithms. A vast amount of CPU time is required for computing the force

interactions even if an O(N) algorithm is used for a modest number of time steps.
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Therefore, distributed algorithms have been extensively used in the area of N -body

simulations.

N -body simulations are challenging not only because of the intense computation

involved in evaluating the forces during time steps, but also due to the necessity in

conserving certain physical quantities like energy and momentum associated with the

system. There has been a rapid advance in the area of geometric numerical integra-

tion which addresses the later aspect in N -body simulations. For instance, several

symplectic integrators has been devised in the past decade as they are known for their

effectiveness in conserving the phase space geometry of Hamiltonian dynamics. We

now have considerable numerical schemes like symplectic Runge-Kutta methods and

symplectic Euler methods that have been specifically proposed to preserve the under-

lying topology of dynamical systems. However, the efficiency of a simulation (both in

terms of time and accuracy) is largely determined by its efficient way of computing

the interactions as much as it depends on using a conservative integrator. Even in

the case of symplectic integrators, it is already known that they are often implicit

and require more function evaluations and smaller time steps to produce the same

computational accuracy as compared to standard non-symplectic integrators. There-

fore, the importance of efficiently computing the interactions in simulations cannot

be undermined. In the following section, we will review some of the methods used for

computing the interactions in N -body simulations.

1. N -body Simulation Methods

Particle-Particle (PP): This is the simplest of all the methods. In general, this

method consists of the steps given in Algorithm 1. Although PP method is the most

straight-forward method for calculating the forces, there are some drawbacks other

than the O(N2) complexity for N particles. For instance, when the particles approach
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Algorithm 1 Particle-Particle Method

1: For each particle i, accumulate the interaction due to each particle j (i 6= j) by

directly computing the interaction F (i, j).

2: Integrate the equations of motion (using a suitable integrator).

3: Increment the time step.

each other, the force between them (and hence the acceleration) would become much

larger. Therefore, if we use a constant time step in the integration scheme for calcu-

lating the velocity and the position of a particle, the numerical overflow will result

in an erroneous simulation output. Thus, we may want to consider a numerical inte-

gration scheme that uses variable time steps, instead of a constant time step. Such a

scheme should automatically cut down the time step when the particles are near each

other and increase the time step when the particles are far away. In most astrophys-

ical simulations, a softening parameter (usually denoted by ε) is used to resolve this

issue. In spite of having a large computational complexity, PP method has a distinct

advantage of being easily parallelizable. Moreover, PP method can be very fast and

accurate for a small number of particles (typically < 1000) and since it has almost no

computational over-head in terms of accessing data structures, it used in conjunction

with other methods such as particle-mesh and treecodes.

Particle-Mesh (PM): The PM method approximates the force on a mesh by

treating it as a field. The system is discretized and finite difference approximations

are used for Laplacian operators. The mass (or charge) distribution of the particles

is used to assign the densities on the mesh. Force and potential interactions at

various particle positions are obtained by interpolations on the assigned densities.

The essential steps in a PM method are given in Algorithm 2. One of the basic type

of a PM method is the ‘Nearest-Grid-Point’ (NGP) method where the densities are
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Algorithm 2 Particle-Mesh Method

1: Define the densities on the mesh by assigning the values based on the charge or

mass distribution.

2: Use a Poisson solver on the mesh.

3: Compute the force field from the mesh-defined potential.

4: Use an interpolation scheme to find the forces on the mesh and assign the forces

to the particles.

5: Find the positions and the velocities of the particles by using an integration

scheme.

6: Increment the time counter and repeat the process.

allocated based on the sum of the magnitude of the charges or masses present in the

mesh surrounding the mesh point, divided by the total cell volume. This method is

not often used as there is a discontinuity among the forces so obtained.

The main advantage of using a PM method is the speed it offers. The computational

complexity of this method is O(N + Mp · log(Mp)), where Mp is the number of mesh

points. Another advantage of using this scheme is that integral transforms such as

the Fast Fourier Transform or the Wavelet Transform can be applied to speed up the

Poisson solver. Also, other numerical techniques such as the finite element method

or finite volume method can be used for solving the potential equation. However,

mesh-based methods have difficulties in handling non-uniform particle distributions.

They offer limited resolution and in such cases finer resolution should be selectively

made in the sub-regions to handle non-uniformity.

Particle-Particle/Particle-Mesh (P3M): This method resolves the issue of

limited resolution in the PM method. In this algorithm, PP method is used over

pairs of particles which are closely separated in the mesh spacing. To calculate the
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far-field forces, the inter-particle forces are broken down into two components: The

rapidly varying short range part and the slowly varying long range part. For the

short range interactions, PP method is used whereas PM is used to compute the long

range interactions.

In P3M, two meshes are used to compute the forces: a mesh for the PM method

that has the densities and a mesh that can be used to locate the pairs of neighboring

particles that contributes to the short range interaction. In general, the scheme works

as shown in Algorithm 3.

Algorithm 3 Particle-Particle/Particle-Mesh Method

1: Assign the densities to the first mesh and calculate the forces through the PM

method (solve for potentials, interpolate forces, increment momenta) for particles

that are well-separated.

2: Use the second mesh and find the forces through the PP method for nearby

particles.

3: Use integrators to get the position and velocity.

4: Increment the time step and repeat the process.

This method has been widely used in simulations where the forces are easily split

into long range and short range components. Moreover, Fourier Transform can be

used to reduce the computation time, however, the main disadvantage of this method

is that the direct summations can easily become a dominating factor.

Ewald Summation: In electrostatics, the Ewald summation method is exten-

sively used to compute the pairwise long range and short range interactions in periodic

systems. Just as in the P3M, this method works by dividing the lattice summation

into a short range part and a long range part. The long range-part is evaluated in a

fast converging Fourier representation and for short range interaction, PP method is
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applied. Finally the forces are summed up over all particles in the Fourier space and

a self-energy correction is applied. This method is mostly applied to the Gaussian

distribution and the accuracy of the method depends on the approximations made

both in the real space and Fourier space. The approximations are characterized by

the width of the Gaussian charge distribution, the cutoff-radius in the real space part

and the maximum wave number in the Fourier space part.

Treecodes: Treecodes hierarchically decompose the domain and approximate

the potential/force interactions through multipole expansions. They are highly suit-

able for non-uniform distributions and have no preferred geometry. They can be used

for periodic or non-periodic boundary conditions. Treecodes are particularly effective

for modelling astrophysical simulations where there could be collisions between the

galaxies. This dissertation discusses different types of treecodes for various physical

problems. In the next section, we will give an overview of the treecodes and describe

the Barnes-Hut method in detail which is often used in the simulation of astrophysical

problems.

2. Overview of the Treecodes

Treecodes use hierarchical data structures and they provide fast and accurate approx-

imations for the potentials, forces and other interaction laws in N -body simulations.

The fundamental idea behind these methods is the recognition that the combined

potential of a group of particles which are far away can be well-approximated by a

low-order multipole series expansion. In general, hierarchical schemes partition the

mass (or charge) distribution into a tree structure, where each node of the tree is a

representation of the matter within some spatial volume. In three dimensions, the

domain is recursively subdivided into eight equal sub-domains and this process is

carried out until each sub-domain has at most one element (See Figure 1). Then for
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First sub-division Second sub-divisionInitial domain

Fig. 1. Recursive division of the domain and oct-tree representation

each node in the tree, multipole moments (typically only up to quadrupole order) are

calculated and stored. This representation is used for approximating the interaction

law to the desired accuracy. Treecodes are quite popular because the asymptotic

scaling is usually O(N log N) or O(N). As opposed to the PP method that evaluates

the potential exactly, in treecodes there is a trade off between accuracy and compu-

tational cost, with higher accuracy demanding higher computational cost. Greengard

and Rokhlin proposed the Fast Multipole Method (FMM) [7] which is considered to

be the fastest contemporary treecode to solve potential evaluation problems involving

Coulomb potentials (potentials of the form r−1). Barnes-Hut [4] treecodes are used

for force calculations. Since our treecodes are similar to the Barnes-Hut treecode, we

will illustrate the fundamental idea behind this method.
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3. The Barnes-Hut Method

Barnes-Hut method is a force approximation technique introduced by Joshua Barnes

and Piet Hut in [4]. Like most hierarchical tree based methods, at every time step,

an oct-tree is constructed using the domain decomposition as illustrated in Figure 1.

Once the tree is constructed the multipole moments are computed and stored for

each node in the tree and the force on a particle is computed by traversing down

the tree starting from the root node. At each node of the tree, a distance criteria is

applied to see if the node is distant enough for a force evaluation and if so, the force is

evaluated using the moments. If the criteria is not satisfied, the node is “expanded”

and the criteria is applied for its eight children. If there are no children for a node,

PP method is used. It can be seen that by this process, the number of interactions

computed is significantly smaller than the PP method. The complexity of this method

is O(N log N) as one may traverse at most the height of the tree for each particle.

Typically, in a simulation consisting of 106 particles, there could be around 1000

interactions per particle on an average making the algorithm significantly faster than

the PP method. The pesudocode for the Barnes-Hut method is given in Algorithm 4.

There are different distance criteria that can be applied for determining whether a

node is sufficiently far away from a particle for force evaluation. The simplest criterion

is based on the ratio of the dimension of the sub-domain and the distance from the

particle to the center of mass of the sub-domain. Given the distance of a point from

the center of mass of the sub-domain, r, and the dimension of the sub-domain, d, a

point is considered to be far away from a node if,

α >
d

r
, (1.1)
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Algorithm 4 Barnes-Hut Method

1: Construct the octree until there are at most 1 particle per leaf box.

2: Compute and store multipole moments (or the total mass) for each node in the

tree. For the leaf nodes compute them directly and for the parent nodes, translate

the moments (or the total mass) from its child.

3: for each particle do

4: Apply the distance criteria to the root of the tree and see if an interaction can

be computed. If not, go to the children of the node and apply the distance

criteria. If there are no children, compute the interactions directly.

5: end for

6: Add the interactions.

7: Use integrators to get the position and velocity.

8: Increment the time step and repeat the process.

where α is a specific user-defined constant. Smaller values of α lead to more accurate

force evaluation. Typically, α = 1 gives accelerations with errors around 1% [18].

In [19], Salmon & Warren showed that the above criterion for determining the ap-

plicability of the force calculation can introduce more errors when the center of mass

is near the edge of the sub-domain. They introduced various distance criteria which

avoid this problem. One of the criteria is

r >
d

α
+ δ,

where δ is the distance between the center of mass of the sub-domain and its geometric

center (see Figure 2). One can see that if the center of mass of the sub-domain is near

the geometric center, then δ becomes small and so this criteria is same as criteria (1.1).

This criteria has been found to perform well even when the center of mass is near the
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Center of mass

d

r

δ

r > d
α + δ

Fig. 2. Geometry of the distance criteria introduced by Salmon et al.

edge of the sub-domain.

B. Some Limitations of Treecodes

Although treecodes have proved to be of great advantage in reducing the compu-

tational complexity in N -body simulations, existing methods have a several short-

comings. One of the primary requirement in using a treecode is that the multipole

expansions should exist for the kernel function appearing in the interaction law. This

is because the applicability of these codes are limited to operators whose multipole ex-

pansions are available analytically. Although, there are kernel independent treecodes

available [31], their effectiveness in N -body simulations haven’t been studied yet. In

the case of potential evaluations, only few methods have been proposed for problems

where the Green’s function is of the form r−λ, λ ≥ 1 since constructing multipole

expansions are not straight-forward. It is well acknowledged that computing these

potentials is an important task in many fields like molecular dynamics [21], compu-

tational chemistry [20] and fluid mechanics [22]. Even through there have been some
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advances in computing these potentials, current methods employ Cartesian coordi-

nates to evaluate the interactions. The choice of spherical coordinates is essential

in these computations because the spherical harmonics basis functions can be em-

ployed for efficient computations. For radially symmetric functions like r−λ, λ ≥ 1,

the use of Cartesian coordinates to separate the variables usually results in cumber-

some expressions. Moreover, such a coordinate system does not exploit the inherent

spherical symmetry found in these kernels. Duan et al. [23] have proposed treecodes

in which multipole approximations are obtained using Taylor series in Cartesian coor-

dinates. Their scheme involves expensive computations (O(p6N log N) for a multipole

approximation degree p) to find the total potential energy of the system. Chowdhury

et al. [24] have used the addition theorem for ultraspherical polynomials in Cartesian

coordinates to find far field effects for these potentials. They develop necessary op-

erators needed for a single level multipole method. However, it is unclear how these

operators can be effectively used to compute the total potential at a point which

includes the near field effects as well.

In the simulations that study the movement of the particles, the shortcoming

of treecodes are quite apparent. For instance, typically in a treecode the oct-tree

and the multipole moments are re-constructed during every time step irrespective

of the distance travelled by the particles. The cost in computing these moments

increases with the accuracy and they naturally contribute a dominant share to the

overall execution time of the simulation. It may be necessary to compute all the

moments at every time step if the particles change their positions rapidly during the

time interval. However, in most simulations, the displacements are small, especially

in the simulation of collisionless systems with large number of particles (such as

the dynamical evolution of a galaxy or in the conformation of molecules). This is

because, in such systems, the movement is largely restricted by the average inter-
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particle distance, which is inversely proportional to the number of particles. Thus, if

there are large number of particles then they are bound to move only small distances

over time steps.

Intuitively, when there is a only a small change in the position of the particles,

there may not be a large difference in the computed potentials. Therefore, we can

retain the tree structure and re-use the moments computed at some earlier time

step for future time advances. In fact, the map that takes a particle’s location to

its multipole moment is a continuous map and hence the moment should vary a

little if there is only a little change in the position. Furthermore, in treecodes, a

node’s multipole moment will be used only for the evaluation points lying outside its

boundary. For a particle with a unit charge and displacement δρ, the difference in

the potential after the displacement, ∆P , can be shown to be,

∆P ∝ 1

r − ρ

(
δρ

r − ρ

)p+1

,

where r and ρ are the distances from the center of the node to the evaluation point

and the particle location, respectively and p is the multipole degree. If δρ � r and

the ratio ρ/r remains the same for an ancestor node NA, and its descendent ND, we

may expect the difference in the potential introduced by NA to be lesser than ND.

This is because the spatial extent of NA increases at least by a factor of two than

ND and
(

δρ
r−ρ

)p+1

decreases rapidly for a high multipole degree p. Consequently,

when the particles travel a small distance between time steps, the idea of re-using

the moments (especially for the ancestor nodes) and the tree, derived at an earlier

time step, looks compelling. The cost of constructing the tree is not as expensive as

computing the multipole moments but it can be carried out only when it is necessary.

This view has already been suggested by J.Makino [25] where the tree is constructed

once in every ten time steps, nevertheless the idea of updating only a few multipole
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moments remains unaddressed.

C. Scope of this Dissertation

The scope of this dissertation can be broadly classified into following three domains

often considered in N -body simulations: (i) Computing the potentials of the form

r−λ, (ii) Force evaluations in N -body simulations, (iii) Potential approximations in

particle simulations. We develop efficient treecodes that focus on the limitations

discussed in Section B. These treecodes are given in Chapters II, III and IV. In

Chapter II, we propose a new multipole expansion based treecode for computing the

potentials of the form r−λ where λ ≥ 1. We compare our method with the exist-

ing schemes and show that our’s is asymptotically superior. It can be seen that our

treecode addresses some of the issues examined in Section B. In Chapter III, we will

describe how this expansion series can be used to represent gravitational forces. We

use this representation in a treecode to compute the forces to the desired accuracy.

We also review some methods that are used for force approximations in N -body sim-

ulations and show how our tree code addresses the need for accuracy in astrophysical

problems. In Chapter IV, we establish an asymptotic bound for the difference in the

Coulomb potential when the particles are moving and illustrate the usefulness of this

bound by devising an algorithm that runs faster than a standard treecode used in

N -body simulations. We recall that the current procedures have a draw back that

multipole moments are computed at every time step during the simulation irrespec-

tive of particle’s displacements. We propose a scheme in this chapter that responds

to this issue by retaining the multipole moments computed at an earlier time step. In

all the chapters we illustrate the effectiveness of our treecodes with several numerical

experiments.
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CHAPTER II

A TREECODE FOR POTENTIALS OF THE FORM r−λ*

In this chapter we propose a multipole based treecode that uses spherical har-

monics to evaluate potentials of the form r−λ, where λ ≥ 1. The chapter is based on

the works presented in [1] and [2]. This treecode has several advantages over existing

Cartesian coordinate based expansion schemes discussed in Section B of Chapter I.

First, our algorithm has a complexity of O(p3N log N) for a small constant p, which

is faster than any known methods to solve this problem suitably. Second, the use

of spherical harmonics gives an analytic formula to compute multipole coefficients

efficiently. This analytic formula is a natural generalization of the multipole expan-

sion theorem for r−1 potential. Third, by using spherical coordinates (and spherical

harmonics), we make use of the spherical symmetry in r−λ kernels to precompute cer-

tain vectors that significantly reduce the time to compute multipole coefficients. And

finally, it is straightforward to modify an existing FMM implementation to evaluate

r−λ potentials using this approach.

The chapter is organized as follows: Section A discusses the multipole expansion

theorem for r−1 functions. Section B gives the multipole expansion theorem for r−λ

potentials based on the relationship between ultraspherical polynomials and Legendre

polynomials. Section C describes a treecode to compute r−λ interactions. Section D

analyzes the complexity of the algorithm and compares this method with existing

algorithms. Section E discusses implementation details and numerical experiments.

*Reprinted with permission from “A treecode for potentials of the form r−λ”
by Kasthuri Srinivasan and Vivek Sarin, 2007, International Journal of Computer
Mathematics, 84, 1249-1260, Copyright 2007 by Taylor and Francis.
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A. Multipole Expansion Theorem for r−1 Potential

This section describes the multipole expansion theorem from the classical FMM [7].

Let P and Q be points with spherical coordinates (ρ, α, β) and (r, θ, φ), respectively,

and γ be the angle subtended by them at the origin. If r′ is the Euclidean distance

between P and Q, then for ρ < r, the potential Φ(P ) at P due to a charge q at Q is

given by

Φ(P ) =
q

r′
=

∞∑
n=0

q · ρn

rn+1
Pn(cos γ), (2.1)

where Pn(cos γ) is the Legendre polynomial of degree n. We also have the addition

theorem for Legendre polynomials

Pn(cos γ) =
n∑

m=−n

Y −m
n (α, β)Y m

n (θ, φ), (2.2)

where Y m
n are the spherical harmonics given by

Y m
n (x, y) =

√
n− |m|
n + |m|

P |m|
n (cos x)eimy, (2.3)

in which Pm
n are the associated Legendre functions evaluated at cos x. Using (2.1)

and (2.2) we have the following theorem.

Theorem 1. Suppose that a charge of strength q is located at Q(ρ, α, β) with ρ < a.

At any point P (r, θ, φ) with r > a, the potential Φ(P ) is given by

Φ(P ) =
q

r′
=

∞∑
n=0

n∑
m=−n

Mm
n

rn+1
Y m

n (θ, φ), (2.4)

where Mm
n = qρnY −m

n (α, β).

If there are several charges {qi : i = 1, . . . k} in a disc of radius a centered

at Q with coordinates {(ρi, αi, βi) : i = 1, 2, . . . k} we can compute their combined

multipole moment at Q as Mm
n =

∑k
i=0 qiρ

n
i Y

−m
n (αi, βi). These coefficients can be
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used in (2.4) to compute the potential at P due to all the charges. Fig. 3 illustrates

the theorem given above for a cluster of charge particles Q1, Q2, Q3 and Q4. The

coefficients Mm
n are found using only the information on the particle locations and

the charge of the particles. No information on the point of evaluation is required to

compute the moment. This moment can be independently used for evaluating the

potential at a distant point P .

a

r

Mm
n

Q1(ρ1, α1, β1)

Q2(ρ2, α2, β2)

Q3(ρ3, α3, β3)

Q4(ρ4, α4, β4)

P (r, θ, φ)

Fig. 3. Multipole expansion for a cluster of charge particles
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B. Ultraspherical Polynomials

Ultraspherical polynomials (or Gegenbauer polynomials) are a higher dimensional

generalization of Legendre polynomials [27, 28]. Ultraspherical polynomials are eigen-

functions of the generalized angular momentum operator just as Legendre polynomials

are eigenfunctions of the angular momentum operator in three dimensions. Ultras-

pherical polynomials allow addition theorem using hyperspherical harmonics similar

to Legendre polynomials which allow addition theorem using spherical harmonics.

One can refer to [27] for a list of similarities between ultraspherical and Legendre

polynomials. Ultraspherical polynomials are also a generalization of Legendre poly-

nomials in terms of the underlying generating function. Thus, if x, y ∈ <, then

1

(1− 2xy + y2)λ/2
=

∞∑
n=0

Cλ
n(x)yn, (2.5)

where Cλ
n(x) is the ultraspherical polynomial of degree n. This generating function can

be used to expand r−λ using ultraspherical polynomials. Let P (r, θ, φ) and Q(ρ, α, β)

be points with spherical coordinates. Using (2.5) we have,

1

(r′)λ
=

1

rλ(1− 2uµ + µ2)λ/2
=

∞∑
n=0

ρn

rn+λ
Cλ

n(u), (2.6)

where µ = ρ/r and u = cos γ. There are addition theorems for ultraspherical poly-

nomials using hyperspherical harmonics which allow us to separate Cλ
n(u) in terms

of the coordinates. Instead, we use a relation that exists between ultraspherical and

Legendre polynomials [29], which allows us to use spherical harmonics in three di-

mensions. Let Pn(x) and Cλ
n(x) be Legendre and ultraspherical polynomials of degree

n, respectively. Then

Cλ
n(x) =

bn/2c∑
s=0

(λ)n−s(λ− 1/2)s

(3/2)n−ss!
(2n− 4s + 1)Pn−2s(x), (2.7)
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where (r)s = r(r + 1)(r + 2) . . . (r + s− 1). We define

Bλ
n,s =

(λ)n−s(λ− 1/2)s

(3/2)n−ss!
(2n− 4s + 1). (2.8)

We now derive an addition theorem for ultraspherical polynomials. The following

addition theorem is found in different form in many places [27, 28] but as far as we

know this specific form has not previously appeared.

Theorem 2. (Addition Theorem for Ultraspherical Polynomials) Let P and

Q be points with spherical coordinates (r, θ, φ) and (ρ, α, β), respectively, and let γ be

the angle subtended by them at the origin. Then

Cλ
n(cos γ) =

bn/2c∑
m=0

Bλ
n,mYn,m(θ, φ) ·Yn,m(α, β),

where YT
n,m(x, y) = [Y

−(n−2m)
n−2m (x, y), Y

−(n−2m)+1
n−2m (x, y), . . . , Y

(n−2m)
n−2m (x, y)] is a vector

of spherical harmonics of degree n− 2m.

Proof. The proof follows from (2.7), which relates ultraspherical polynomials and

Legendre polynomials, and the addition theorem for Legendre polynomials given

by (2.2).

Once we have an addition theorem for ultraspherical polynomials we can prove

the multipole expansion theorem for r−λ potentials.

Theorem 3. (Multipole Expansion) Suppose that k charges of strengths {qi,i =

1, . . . k} are located at the points {Qi = (ρi, αi, βi), i = 1, . . . , k}, with |ρi| < a. Then

for any point P = (r, θ, φ) with r > a, the potential Φ(P ) is given by

Φ(P ) =
∞∑

n=0

bn/2c∑
m=0

1

rn+λ
Mm

n ·Yn,m(θ, φ), (2.9)
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where

Mm
n =

k∑
i=1

qiρ
n
i B

λ
n,mYn,m(αi, βi). (2.10)

Furthermore, for any p ≥ 1,

|Φ(P )−
p∑

n=0

bn/2c∑
m=0

Mm
n

rn+λ
·Yn,m(θ, φ)| ≤ ABλ

rλ−1(r − a)

(a

r

)p+1

, (2.11)

where A =
∑k

i=1 |qi| and Bλ = max
0≤n≤p


bn/2c∑
m=0

|Bλ
n,m|

.

Proof. Suppose Φi(P ) is the potential at P due to qi at Qi. From (2.6) and Theorem 2,

we have

Φi(P ) =
∞∑

n=0

qiρ
n
i

rn+λ
Cλ

n(u)

=
∞∑

n=0

bn/2c∑
m=0

[
qiρ

n
i B

λ
n,mYn,m(αi, βi)

]
rn+λ

·Yn,m(θ, φ).

The moments in (2.10) are obtained by superposition.

We now prove the error bound. Note that for every u ∈ < with |u| ≤ 1, we have

|Pn(u)| ≤ 1. From (2.7) using the triangle inequality it can be seen that,

|Cλ
n(u)| ≤

bn/2c∑
m=0

|Bλ
n,m| ≤ max

0≤n≤p


bn/2c∑
m=0

|Bλ
n,m|

 = Bλ.

Now, for each qi located at Qi having |ρi| < a, we have,

|Φi(P )−
p∑

n=0

qiρ
n
n

rn+λ
Cλ

n(u)| = |
∞∑

n=p+1

qiρ
n
i

rn+λ
Cλ

n(u)|

≤ Bλqi

rλ

∞∑
n=p+1

(ρi

r

)n

≤ Bλ

rλ−1

qi

r − a

(a

r

)p+1

. (2.12)

The error bound (2.11) is obtained by superposition of error bounds for all the k
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charges.

C. A Treecode for r−λ Potentials

The treecode is similar to the one that was described in Chapter I (refer Sections 2

and 3), except that it differs in the way we compute the multipole moments. First, an

oct-tree representation of the domain is obtained by recursively sub-dividing it into

octants. This procedure is carried out until each domain has at most one particle.

After this process, for each node we compute the multipole series representation. We

do this using the relative position of the particle within the node with respect to its

geometric center. This is different from the Barnes-Hut treecode (see Algorithm 4)

where the multipole moments are computed using a child-parent translation operator

for the parent nodes and calculated directly for the leaf nodes. The use of transla-

tion operators, although saves time, causes additional errors. Since we are primarily

interested in the error aspect of these treecodes, we avoid the translations and focus

on “translation-free” treecodes here and in subsequent chapters.

Once the tree is constructed and the multipole moments are calculated, a distance

criteria called the multipole acceptance criterion (MAC) is applied to compute the

potential. Given the distance of a point from the center the sub-domain d, and the

dimension of the sub-domain r, a point is considered to be far away from a node if

the ratio d/r is greater than α, a user-defined constant. We note that this multipole

acceptance criteria is same as the initial distance criteria discussed in Chapter I,

Section 3. Thus, the Barnes-Hut method is applied for the potential computation

phase.
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D. Analysis of the Algorithm

1. Complexity

We now analyze the complexity of our algorithm. It can be seen from the multipole

expansion theorem that the complexity for computing the multipole coefficients at

each level of the tree is O(p3N), where N is the number of particles in the system

and p is the multipole degree. For uniform particle distributions there are log N

levels in the tree, and therefore, the total cost of computing the multipole coeffi-

cients is O(p3N log N). Similarly, the complexity for the potential evaluation phase is

O(p3N log N). Thus, the overall complexity for the algorithm is O(p3N log N). Since

we are using an oct-tree, the base of the logarithm is 8.

2. Comparisons with Other Methods

We now compare our treecode with two relevant methods for the potential evaluation

problem. Duan et al. [23] have proposed an algorithm which calculates the total

potential energy of a system for r−λ potentials. Their scheme can also be used to find

the potential at individual particles. Another pertinent method is due to Chowdhury

et al. [24]. They have developed single level translation operators for these potentials

to calculate far field interactions in particle systems.

We first consider Duan et al. approach. Their method can be summarized as follows:

Given N particles, a spatial tree representation of the domain containing the particles

is derived. In this phase, the domain is recursively divided into equal sub-domains

until there are at most specified number of particles in any box. The total potential

energy of the system can now be calculated by adding the potential energy of each

box. The potential energy of any box is evaluated either directly or computed using

multipole approximations. If a node is a leaf, then the energy of the box is calculated
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using particle-particle interactions. If not, the node is expanded to see whether the

multipole approximations can be used to find the energy for each of its sub-domain. If

a sub-domain A is sufficiently far away from another sub-domain B, then the multipole

approximation can be used to find the total potential of A due to all particles in B.

Otherwise, the node representing the sub-domain B is further expanded to check

whether the children are far away from A so that the approximations can be applied.

The procedure recursively proceeds starting from the root.

It can be seen that this cluster-cluster algorithm can be used to find the potential of

an individual particle by allowing a cluster to be composed of a single particle. The

resulting particle-cluster algorithm will scale to O(cN log N), where c depends on

the multipole approximation degree being used. The authors use multivariate Taylor

series expansion in Cartesian coordinates to find multipole approximations. Using

Cartesian coordinates, it takes O(p6) operations to find the interactions between two

clusters where p is the pre-specified multipole approximation degree. Therefore, their

algorithm has a complexity of O(p6N log N). This high cost for large values p is a

result of using Taylor series approximation in Cartesian coordinates. This can be

compared with the complexity of our approach where the spherical symmetry of r−λ

potentials when expressed in spherical coordinates lead to efficient computations.

Further, the decreasing nature of the indices in the Legendre polynomial’s relation

with the ultraspherical polynomial in (2.7), allows us to use the spherical harmonics

basis functions in three dimensions instead of computing vector of spherical harmonics

given in Theorem (2). Thus, computing O(p2) spherical harmonics for each particle

is enough to compute O(p3) multipole coefficients which is a significant reduction in

time for large particle systems. Another advantage in using our algorithm is that

an existing FMM implementation can be easily modified to compute r−λ potentials.
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Also, we note that, using our approach we can find the total potential of the system

by summing individual particle’s potential.

We now consider Chowdhury et al. [24]. The authors derive expressions for translation

operators for these potentials. These operators can be used to evaluate the far field

effects of the potential by combining with a single level translation scheme. A single

level translation based algorithm (usually called SLFMM to denote Single Level

Fast Multipole Method) using such operators was proposed in [30]. SLFMM works

in three phases. In the first phase, the domain consisting of N particles is grouped

into clusters and multipole coefficients are computed and stored for each cluster.

In the second phase, the multipole coefficients from each cluster are translated to

every other cluster by means of a translation operator and they are converted into

local coefficients. In the third phase, these local coefficients are used to find the

far field effects which are evaluated at each particle. The near field potentials are

computed directly. It can be seen that for an approximation degree p, the complexity

for SLFMM is,

Complexityslfmm = O

(
N2

K
+ K2 ∗ TransCost(p) + N ∗MultipoleCost(p)

)
,

where K denote the number of clusters, TransCost(p) denote the number of operations

per translation and MultipoleCost(p) is the cost for finding the multipole coefficients

in any cluster. The N2

K
term in the complexity is the number of direct interactions

computed. Minimizing the complexity with respect to the number of clusters, we find

the optimum number of clusters, Kopt, is given by,

Kopt =

[
N2

2 ∗ TransCost(p)

]1/3

.
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Therefore, the complexity of SLFMM with optimum choice of K is,

Complexityopt = O(N4/3 ∗ TransCost1/3(p) + N ∗MultipoleCost(p)). (2.13)

In case of [24], each translation operation costs O(p6) and the cost of finding the mul-

tipole coefficients is O(p3N). For N1/3 > p, if we consider the principal term in (2.13),

the complexity of SLFMM when used with operators given in [24], is O(p2N4/3). We

compare this with the complexity of our algorithm which is O(p3N log8 N). Since,

log8 N < N1/3/p for sufficiently large values of N , we see that our algorithm will

outperform SLFMM with translation operators defined by Chowdhury et al.

E. Numerical Experiments

The algorithm was coded in C++ programming language and the computations were

performed in double precision on a 2.4 GHz, 512 MB Intel P4 PC running Red Hat

9.0. The code first constructs the oct-tree and the multipole coefficients are calculated

along with the tree construction. Standard Template Library (STL) data structures

were used for efficient memory and time management for the dynamically adaptive

tree construction phase. For a given λ, the constants defined in (2.8) were precom-

puted and used in the potential evaluation phase to reduce the overall computation

time. Furthermore, for every point we compute only O(p2) spherical harmonics to

calculate O(p3) multipole coefficients. We conduct three experiments to study the

behavior of the treecode. In all the experiments, a direct summation code is the

benchmark for comparing errors and execution time. In the first experiment we use

the Coulomb potential (λ = 1) to study the dependence of the execution time on the

system size. In the second experiment we analyze the accuracy and the execution

time by varying the multipole degree and the MAC constant. For the third experi-
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ment, we use the London dispersion potential (λ = 6) to compare the accuracy with

the Coulomb potential. The parameters in the experiments are: multipole degree p,

MAC constant α, maximum number of particles in a leaf box s, and the total number

of particles in the system N . The magnitude of the charges are fixed at +1. Random

particle distributions on a cube of unit length are used for all the experiments. To

measure accuracy, we use the root mean square relative error (RMS) defined by

RMS =

√√√√ 1

N

∑
i

[
|Φtree(i)− Φdirect(i)

|Φdirect(i)|

]2

, (2.14)

where Φtree(i) is the potential for the ith particle obtained using the treecode and

Φdirect(i) is the potential of the ith particle computed using the direct summation

algorithm.

The Coulomb Potential (λ = 1)

Figure 4 shows the dependence of the execution time on the system size for the
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specified potential function. Here the system size varies from N = 103 to N = 105.

The multipole degree p is fixed at 2, the maximum number of particles in the leaf box

is 10 and the MAC constant is fixed at 1.4. We observe that the execution time of

the treecode is cp3N log N where c = 0.11, as determined from the slope of the curve

in Figure 4. Tree-based potential evaluation schemes are quite inefficient for small

number of particles because the overhead involved in manipulating and traversing

the tree data structure is fairly large. This is precisely the reason why the treecode

outperforms the execution time of the direct summation algorithm for N > 5000.

Table I. Number of particles in the leaf box Vs execution time (in secs)

Number of Particles (N)

s 1× 103 5× 103 1× 104 2.5× 104 5× 104 7.5× 104 1× 105

10 0.3 2.3 6.2 16.8 42.2 70.8 97.5

25 0.1 1.9 4.3 16.5 34.2 53.8 82.1

50 0.1 1.9 4.0 13.6 34.3 52.8 73.3

Table I shows the execution time for varying system size where the number of particles

in the leaf box s equals 10, 25 and 50. We observe that the execution time decreases

as we increase s. Note that the tree height decreases when s is increased. Thus,

the time to use the MAC to evaluate the potential decreases. Although there will

be a slight increase in the time to evaluate direct interactions, this will be negligible

because the direct summation time is less for small number of particles (as Figure 4

shows). Hence, the over all execution time decreases. However, it is not advisable to

use a large value for the number of particles in the leaf box as this may increase the

execution time for direct evaluations substantially.

In Tables II and III, we vary the MAC constant α and plot the execution time and
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error as a function of the multipole degree p. The number of particles in the system

is fixed at 10, 000. The MAC constant ranges from α = 1.11 to α = 2.5 and the

maximum number of particles in the leaf box is fixed at 10.

Table II. Execution time (in secs) for the Coulomb potential

MAC Constant (α)

p 0.9 0.8 0.7 0.6 0.5 0.4

2 3.5 4.6 6.2 8.9 13.1 21.4

3 6.3 8.3 10.8 15.5 22.9 35.9

4 9.3 12.1 16.2 23.4 34.1 53.5

Table III. RMS error (in percentage) for the Coulomb potential

MAC Constant (α)

p 0.9 0.8 0.7 0.6 0.5 0.4

2 5.8× 10−2 3.6× 10−2 2.0× 10−2 9.2× 10−3 4.8× 10−3 2.2× 10−3

3 5.7× 10−2 3.5× 10−2 1.8× 10−2 5.6× 10−3 2.4× 10−3 8.0× 10−4

4 8.0× 10−3 4.3× 10−3 2.3× 10−3 1.0× 10−3 3.0× 10−4 1.0× 10−4

From Tables II and III, it can be observed that for a reasonable accuracy (10−2 to

10−3 % rms error), increasing the MAC constant is a better choice than increasing

the multipole degree. Even with MAC constant as high as 1.66 and multipole degree

2, the execution time is one third as that of the case when the multipole degree

is 4. Moreover, the increase in the execution time seems to vary linearly with the

MAC constant whereas it nearly doubles with the multipole degree. By increasing

the multipole degree we increase the computation time of the multipole coefficients

whereas increasing the MAC constant increases the time for the direct interactions.
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Therefore, in the overall computation time, if the time for the direct interactions in the

potential evaluation phase of the algorithm is very small compared to the time taken

to compute the multipole coefficients, one should increase the MAC constant to take

more direct interactions. This will not cause any dramatic increase in the execution

time (as time for direct interactions is small) and error will be reduced. On the other

hand, if the execution time for the direct interaction and multipole coefficients are

comparable, then increasing the multipole degree will be useful, because increasing

the MAC constant would increase the time for direct interactions even more, which

may be expensive for large systems.

The London Dispersion Potential (λ = 6)

We now analyze the accuracy for the London dispersion potential. As in Table III,

the number of particles in the system is fixed at 10, 000, the MAC constant varies

between 1.11 and 2.50 and the maximum number of particles in the leaf box is 10.

Table IV. RMS error (in percentage) for the London dispersion potential

MAC Constant (α)

p 0.9 0.8 0.7 0.6 0.5 0.4

2 6.4× 100 2.8× 100 1.0× 100 3.3× 10−1 7.1× 10−2 1.2× 10−2

3 5.9× 100 2.4× 100 8.8× 10−1 2.8× 10−1 5.7× 10−2 1.0× 10−2

4 4.0× 100 1.5× 100 4.4× 10−1 1.1× 10−1 1.7× 10−2 1.6× 10−3

We studied the execution time for this potential and noticed the behavior was

similar to the Coulomb potential (Table II). This is expected because the execution

time doesn’t directly depend on λ. We also observe an increase in the rms error

compared to the Coulomb potential (see Table IV). To understand this, observe that
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the relative error in potential at P (r, θ, φ) due to a particle at Qi(ρi, αi, βi) is,

|Φtree(r)− Φdirect(r)|
|Φdirect(r)|

≤
[

qiBλ

rλ−1(r − a)

(a

r

)p+1
] [ qi

rλ

]−1

(2.15)

=
Bλ

1− a
r

(a

r

)p+1

(2.16)

where ρi < a < r and a/r < 1. The above bound follows directly from (2.12). Note
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that a is the size of the largest box containing the particle that does not contain P .

This implies that a
r

is a constant that depends on MAC. Since the rms error defined

in (2.14) is the root mean square of the relative errors for all the particles, we can

expect an increase in the rms error as Bλ increases. In Figure 5, we plot the values

of Bλ as a function of λ.

We observe that λ and Bλ are related through the equation Bλ = abλ + c, where

a = 15.4, b = 1.30 and c = −17 (see Figure 5). This rapid increase in Bλ when

λ increases contributes to the growth in the rms error for the London dispersion
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potential. We see that for these potentials we have at least 10% increase in the error

compared to Table III. Therefore, we may require an increase in the multipole degree

or MAC constant to reduce the percentage rms error to 10−2. This will naturally

cause an increase in the execution time.
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CHAPTER III

AN ACCURATE FORCE CALCULATION ALGORITHM

In this chapter, we extend the treecode introduced in Chapter II to evaluate the

forces. This chapter is based on the work presented in [3].

A. Introduction to Force Approximations

Computing the force interaction between the particles is an integral part of almost

all N -body codes. For two particles of strengths q1 and q2, the force acting on q1 due

to q2, is given by the inverse square law,

~F =
q1q2

|r12|2
· r12

|r12|
, (3.1)

where | ~r12| is the distance between the particles. In this chapter, the constant of

proportionality (like the gravitational constant) is assumed to be 1. Even though the

above law is applicable to both gravitational and electrostatic interactions, the accu-

racy determines the algorithms to be used. The Barnes-Hut algorithm described in

Chapter I is an easy-to-code algorithm used in most astrophysical simulations where

lower accuracy is often preferred (around 1%) over reduced execution time. In as-

trophysical simulations, the force is approximated by a multipole series expansion

with respect to the center of mass. The first moments are large enough (since the

masses are all positive) to approximate the forces. Therefore, the monopole moment

and the first two moments in the multipole series provide enough accuracy. On the

other hand, in MD simulations, higher accuracy is needed because of the distance

and time scales involved are very different from astrophysical problems. Barnes-Hut

scheme can be adapted to MD simulations by adding more terms to the multipole

series. For electrostatic force simulations, however, the distribution of positive and
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negative charges impedes the numerical robustness of the Barnes-Hut algorithm [8].

Methods like Ewald Summation, particle-mesh based approaches like P3M and FMM

are preferred over Barnes-Hut algorithm for electrostatic problems.

In contrast, in the investigation of collisional astrophysical systems, namely star clus-

ters and galactic nuclei, there is a need for high accuracy. Such applications require

|δE/E| � 0.04N−1t/tcr where t and tcr are time parameters, |δE/E| is the relative

energy accuracy and N is the number of stars in the system [6]. For a system of

103 stars, this means an accuracy of 10−5. In order to achieve such high accuracy,

McMillan and Aarseth [5] use octupole terms in the multipole expansion which are

quite cumbersome to construct. Moreover, increased accuracy is needed for larger

systems in order to limit the cumulative errors on core-collapse time scales to accept-

able levels. To our knowledge there hasn’t been any work done which uses higher

order moments than octupoles.

In the case of electrostatic force interactions, particle-mesh algorithms like P3M

and Ewald Summation techniques compete with FMM [11], [12]. Despite the su-

perior asymptotic scaling of FMM when compared to former methods [O(N) versus

O(N log N)], FMM has some disadvantages. Apart from the obvious difficulty in

coding, FMM suffers from lack of energy conservation unless very high accuracy is

employed [13]. In addition, special considerations regarding the degree of force inter-

polation must be taken into account to conserve momentum. Pollock and Glosi [12]

discuss other advantages of P3M over FMM. Even in force interpolation methods used

in particle-mesh algorithms and Ewald Summation methods, a general statement of

accuracy seems to be difficult. The error analysis of force calculations in these meth-

ods are quite involved and they provide a fair comparison only if done at the same

level of accuracy. The discretization methods introduce new sources of errors in ad-
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dition to the ones originating from real and reciprocal space cutoffs. Furthermore,

investigation of errors during force evaluation depends on several parameters such as

mesh-size, interpolation orders and differentiation schemes. Deserno and Holm [14]

illustrate remarkable differences in accuracy for these methods.

In this chapter, we present a novel algorithm for accurate force calculations in N -body

problems. This algorithm combines the ease of the Barnes-Hut method with a very

high accuracy. Instead of using higher order moments, the algorithm uses additional

terms of a multipole series to increase the accuracy. Our method can effectively be

used in the calculation of star cluster interactions in which accuracy has been limited

by octupole moments. Unlike particle-mesh and Ewald Summation based methods,

our algorithm does not involve differentiation (either differentiation in Fourier space,

analytic differentiation or discrete differentiation) to calculate the forces. Forces are

directly computed through the series. This is especially useful where force interpola-

tion is affected by conservation laws. Further, it may be of interest to note that the

complexity of this algorithm is O(p3N log N) which is comparable to that of particle-

mesh algorithms that use Fast Fourier Transforms.

The chapter is organized as follows: Section B discusses the multipole expansions for

forces calculations. Section C describes the algorithm, analyzes its complexity and

discusses implementation issues. Section D presents numerical experiments.

B. An Expansion Theorem for Forces

We now present an overview of the central idea discussed in Chapter II, i.e., finding

the multipole expansion for r−λ potentials. The reader is advised to refer to that

chapter for further details. The key idea in computing the potentials of the form r−λ

is the use of ultraspherical polynomials in a manner analogous to the use of Legendre
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polynomials for the expansion of the Coulomb potential r−1. Ultraspherical polyno-

mials (or Gegenbauer polynomials) are generalizations of the Legendre polynomials

in terms of the underlying generating function. That is, if x, y ∈ <, then

1

(1− 2xy + y2)λ/2
=

∞∑
n=0

Cλ
n(x)yn, (3.2)

where Cλ
n(x) is a ultraspherical polynomial of degree n. They are also higher dimen-

sional generalizations of Legendre polynomials [16, 17] in the sense that ultraspherical

polynomials are eigenfunctions of the generalized angular momentum operator just

as Legendre polynomials are eigenfunctions of the angular momentum operator in

three dimensions. One can refer to [16] for a list of similarities between them. The

above generating function can be used to expand r−λ. Let P (r, θ, φ) and Q(ρ, α, β)

be points in spherical coordinate system and r′ be the Euclidean distance between

them. Using (3.2) we have,

1

(r′)λ
=

1

rλ(1− 2uµ + µ2)λ/2
=

∞∑
n=0

ρn

rn+λ
Cλ

n(u), (3.3)

where µ = ρ/r and u = cos γ. There are addition theorems for ultraspherical poly-

nomials using hyperspherical harmonics which allow us to separate Cλ
n(u) in terms of

the coordinates. Due to the complexity involved, we prefer to use a different relation

that exists between ultraspherical and Legendre polynomials [15] which allows us to

use spherical harmonics in three dimensions. Let Pn(x) and Cλ
n(x) be Legendre and

ultraspherical polynomials respectively, of degree, n. Then

Cλ
n(x) =

bn/2c∑
s=0

(λ)n−s(λ− 1/2)s

(3/2)n−ss!
(2n− 4s + 1)Pn−2s(x), (3.4)

where (p)s = p(p + 1)(p + 2) . . . (p + s− 1). We define

Bλ
n,s =

(λ)n−s(λ− 1/2)s

(3/2)n−ss!
(2n− 4s + 1). (3.5)
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Using (3.3) and (3.4), we derive the following multipole expansion theorem for r−λ

potentials.

Theorem 4. (Multipole Expansion for Potentials) [1] Suppose that k charges

of strengths {qi,i = 1, . . . k} are located at the points {Qi = (ρi, αi, βi), i = 1, . . . , k},

with |ρi| < a. Then for any point P = (r, θ, φ) with r > a, the potential Φ(P ) is given

by

Φ(P ) =
∞∑

n=0

bn/2c∑
m=0

1

rn+λ
Mm

n ·Yn,m(θ, φ), (3.6)

where

Mm
n =

k∑
i=1

qiρ
n
i B

λ
n,mYn,m(αi, βi)

and

YT
n,m(x, y) = [Y

−(n−2m)
n−2m (x, y), Y

−(n−2m)+1
n−2m (x, y), . . . , Y

(n−2m)
n−2m (x, y)]

is a vector of spherical harmonics of degree n− 2m. Furthermore, for any p ≥ 1,

|Φ(P )−
p∑

n=0

bn/2c∑
m=0

Mm
n

rn+λ
·Yn,m(θ, φ)| ≤ ABλ

rλ−1(r − a)

(a

r

)p+1

, (3.7)

where A =
∑k

i=1 |qi| and Bλ = max
0≤n≤p


bn/2c∑
m=0

|Bλ
n,m|

 .

The multipole expansion for force computations can now be deduced as a corol-

lary to the above theorem.

Corollary 5. (Multipole Expansion for Forces) Suppose that k particles of

strengths {qi, i = 1, . . . k} are located at the points whose position vectors are {ρi, i =

1, . . . , k} and let {Qi = (|ρi|, αi, βi), i = 1, . . . , k} denote their spherical coordinates

with |ρi| < a. Then, for any vector r with coordinates P = (|r|, θ, φ) and |r| > a, the
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force, F (P ), is given by

F (P ) =
∞∑

n=0

bn/2c∑
m=0

1

|r|n+3
[r ⊗Mm

n −Vm
n ] ·Yn,m(θ, φ) (3.8)

where

Mm
n =

k∑
i=1

qi|ρi|nB3
n,mYn,m(αi, βi) & Vm

n =
k∑

i=1

ρi ⊗
(
qi|ρi|nB3

n,mYn,m(αi, βi)
)
.

(3.9)

Here ⊗ denotes the outer-product. Furthermore, for any p ≥ 1, the approximation

F̂p(P ) =

p∑
n=0

bn/2c∑
m=0

1

|r|n+3
[r ⊗Mm

n −Vm
n ] ·Yn,m(θ, φ)

satisfies

‖F (P ) − F̂p(P )‖2 ≤
ABλ

|r|2(|r| − a)

(
a

|r|

)p+1

(|r|+ a),

where A and Bλ are as defined in (3.7).

Proof. For a particle of strength q1 having spherical coordinate (|ρ1|, α1, β1) with

|ρ1| < a, the force at any other particle of unit strength having coordinates (|r|, θ, φ)

with |r| > a, is given by (3.1). We note that r12 = r − ρ1 (See Fig. 6) and there-

fore (3.1) can be written as

F (P ) =
q1

|r12|3
r − q1

|r12|3
ρ1.

Using λ = 3 in (3.6) for 1/|r12|3, the proof follows through the superposition of

particles at {ρi, i = 1, . . . , k}. The error bound can be obtained from (3.7) along

with the triangle inequality |r12| ≤ |r|+ |ρ1| ≤ |r|+ a.

Fig. 7 illustrates the theorem given above for a cluster of particles (or bodies)

Q1, Q2, Q3 and Q4. The coefficients Mm
n and V m

n are found using only the information

on the locations and the strength (or mass) of the particles. No information on the
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q1(|ρ1|, α1, β1)

O

r12

r

P (|r|, θ, φ)

−ρ1

Fig. 6. Force acting on a point P. Note that r12 = r− ρ1

point of evaluation is required to compute the moments. These moments can be

independently used for evaluating the force at a distant point P .

C. A Tree Based Scheme for Force Computations

The treecode for the force computation is the same as the one used for computing

the potentials of the form r−λ which was discussed in Chapter I. For the sake of

completeness and in order to make this chapter stand-alone, we describe it again and

give its pseudo-code.

The treecode can be viewed as a variant of either Barnes-Hut algorithm [4] or

FMM [7] that uses only particle-cluster potential evaluations. The method works in

two phases: the tree construction phase and the potential computation phase. In the

tree construction phase, an oct-tree representation of the domain is computed. At

each step of this phase, if the domain contains more than one particle, it is recursively

divided into eight equal sub-domains. This process continues until each sub-domain

has at most one particle. The resulting tree is an unstructured oct-tree.

Each internal node in the tree computes and stores multipole series representation of
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a

r

Q1(ρ1, α1, β1)

Q2(ρ2, α2, β2)

Q3(ρ3, α3, β3)

Q4(ρ4, α4, β4)

P (r, θ, φ)

Mm
n &V m

n

Fig. 7. Multipole expansion for forces

the particles within its sub-domain. Note that we don’t have the means to compute

translations of multipole coefficients from child to parent nodes. At each level of the

tree we compute the multipole coefficients at every internal node directly from the

particles contained in that node. These coefficients are obtained using (3.9). Once the

tree has been constructed, the potential at a point is computed using the multipole

coefficients of a subset of the nodes in the tree. The sub-domains of these nodes do not

overlap, and cover the entire domain. Every such node must be sufficiently far away

from the point. A specific constant α is used to check if a node is far enough from

the evaluation point. Given the distance of a point from the center the sub-domain

d, and the dimension of the sub-domain r, a point is considered to be far away from
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a node if the multipole acceptance criterion (MAC) defined by,

MAC =
d

r
(3.10)

is greater than α. The algorithm proceeds by applying the MAC to the root of the tree

to determine whether an interaction can be computed; if not, the node is expanded

and the process is repeated for each of its eight children. If the node happens to be

a leaf, then the potential is calculated directly by using the particles in the node. In

order to improve the computational efficiency of the algorithm, the minimum number

of particles in any leaf box can be set to a constant s. The pseudocode describing the

algorithm is given at the end of this chapter in Algorithm 5.

D. Numerical Experiments

We conduct two experiments. In these tests, a direct summation code is the bench-

mark for comparing errors and execution time. For star-cluster applications, Mcmillan

and Aarseth [5] compares accuracies for a problem size of 103. They target median

force accuracy of 10−4 and achieve it using octupole moments for MAC < 0.5.

Table V and VI shows the error in the force F incurred by truncating expression (3.8)

after p terms. The error δF/F is defined by(
δF

F

)2

=
1

N

N∑
i=1

(
|Ftree − Fdirect|

Fscale

)2

,

where Fdirect is the force determined by direct summation, Ftree is the result returned

by the tree algorithm and Fscale =
∑

ij mi/(r
′
ij)

2 is a characteristic scale against which

accuracy is measured. Here mi’s are the masses and the sums are taken over all par-

ticles in the system. Table V compares MAC with accuracy for the system size

N = 103 in uniform random distribution and random positive masses between 0 and
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1. The maximum number of particles in leaf boxes were fixed at 10. For MAC = 0.9

we see that an accuracy of 10−5 is reached using multipole degree 2. Also, as MAC

decreases, the error reduces proportionally. For a typical MAC between 0.7 and 0.6

used in the Barnes-Hut algorithm, we have an order of magnitude reduction in the

error for increasing multipole degrees. In [5], for MAC < 0.3 the accuracy of the

octupole component of the force deteriorates markedly. In our case we see that dra-

matic reduction in the error is obtained as we increase the multipole degree. Also,

Mcmillan et al. require MAC < 0.5 for accurate computations. Since the amount of

direct computation is inversely proportional to MAC, it may be expensive to select

such small MAC for large systems.

Table VI and VII demonstrate the effect of MAC on accuracy and execution time

for 10000 particles in random uniform distribution. Each particle carries a random

positive or a negative charge. This test is carried out to verify the numerical robust-

ness and consistency of our approach for electrostatic force interactions. As before,

the multipole degree was allowed to vary between 2 and 4 and the number of particles

per leaf box was fixed at 10. Here we can see errors range between 10−6 and 10−7 and

they are smaller compared to Table V. In Table VII we see a rapid increase in the

execution time as we increase the multipole degree whereas the growth is smaller with

Table V. MAC Vs Error for 1000 particles of positive masses

MAC

Degree 0.9 0.8 0.7 0.6 0.5 0.4

2 2.8× 10−05 1.7× 10−05 1.0× 10−05 5.4× 10−06 2.6× 10−06 1.1× 10−06

3 2.2× 10−05 1.3× 10−05 8.1× 10−06 4.0× 10−06 1.4× 10−06 5.5× 10−07

4 1.0× 10−05 5.1× 10−06 2.3× 10−06 9.1× 10−07 3.0× 10−07 < 10−07
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Table VI. MAC Vs Error for 10000 particles of positive and negative charges

MAC

Degree 0.9 0.8 0.7 0.6 0.5 0.4

2 7.0× 10−06 4.5× 10−06 2.8× 10−06 1.5× 10−06 7.7× 10−07 3.3× 10−07

3 4.3× 10−06 2.5× 10−06 1.3× 10−06 6.6× 10−07 2.7× 10−07 < 10−07

4 2.8× 10−06 1.3× 10−06 6.7× 10−07 2.8× 10−07 < 10−07 < 10−07

Table VII. MAC Vs Execution time (in secs) for 10000 particles

MAC

Degree 0.9 0.8 0.7 0.6 0.5 0.4

2 4.3 5.7 7.7 11.0 16.3 25.5

3 7.7 10.1 13.7 19.6 28.9 45.4

4 12.0 15.7 21.1 30.1 44.4 69.6

respect to the MAC. In order to improve the accuracy for a small system size, it is

better to reduce the MAC than increasing the multipole degree. However, tree-based

force evaluation schemes are quite inefficient for small number of particles because

the overhead involved in manipulating and traversing the tree data structure is fairly

large. For N > 104, the treecode presented in this chapter is expected to outperform

direct summation algorithm in execution time.
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Algorithm 5 Force Calculation Algorithm for Particle Simulations

Require: Particles and their masses, multipole approximation degree, p, multipole

acceptance criteria α constant that defines MAC as shown in (3.10), maximum

number of particles in a leaf box, s.

Ensure: Particles with the corresponding forces acting on it.

// Construct oct-tree with leaf box having at most s particles.

1: MULTIPOLE-CALCULATION (p)

2: for each level in the oct-tree do

3: for each node in the level do

4: use (3.9) to find the multipole coefficients with respect to the box centers.

5: end for

6: end for

7: FORCE-COMPUTATION ()

8: for each particle do

9: initialize node to root.

10: if if MAC(particle, node) > α then

11: use (3.8) to find the far field forces Ffar.

12: else if node = leaf then

13: compute near field forces Fnear directly.

14: else

15: apply MAC to the children of the node recursively.

16: end if

17: end for

18: Total Force F = Fnear + Ffar.
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CHAPTER IV

A FAST TREECODE FOR PARTICLE SIMULATIONS

In this chapter, we propose a scheme in which we re-use the multipole moments

computed during a time step, for future time increments. The basic idea here is the

representation of the potential computed with respect to a new location L2 in terms of

the multipole moments at an old location L1 and the dipole moments at the mid-point

joining L1 and L2. We derive an analytic bound for the error in the potential when

the moments computed at L1 are re-used when the particle moves to L2. We derive

this result using a translated coordinate system in the mid-point joining L1 and L2.

This asymptotic bound when analyzed in the context of an oct-tree, provides us with

a treecode in which fewer updates to the multipole moments for the ancestor nodes

are sufficient to compute the potential to a good accuracy. Naturally, the resulting

treecode has a reduced execution time. The distinguishing feature of this algorithm

is that the accuracy is not compromised in the need for reduced computational cost

since the idea of computing fewer moments is based on the observation that the error

bound in computing the potential rapidly decreases as node’s spatial extent increases.

This algorithm can be used in astrophysical or molecular dynamics N -body solvers

where faster execution time per time step is a required to run large simulations.

Finally, we provide numerical experiments that show the efficiency of the treecode.

The chapter is organized as follows: Section A discusses the multipole expansion

theorems for r−1 functions. In Section B we prove a theorem that shows the potential

computed with respect to a new location L2 can be represented using the potential at

an old location L1 and the dipole moments at the mid-point joining L1 and L2. We

also derive an error bound for such an approximation. In Section C we discuss about

the error bound. Section D describes an algorithm to compute the potentials using
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the multipole moments that are retained during time steps. Section E discusses the

implementation issues.

A. The First Addition Theorem for Multipole Expansions

This section describes the multipole expansion theorems from the classical FMM [7].

The reader is directed to Chapter II, Section A for a discussion about the following

theorem. The proof of the First Addition Theorem for Multipole Expansions is given

in the appendix. We note that the theorem given in the appendix slightly varies from

the one given in this section. However, it is easy to see that both are equivalent.

The following theorem is also given in Chapter II (see Theorem 1). For the sake of

completeness, we again present it here.

Theorem 6. Suppose that a charge of strength q is located at Q(ρ, α, β) with ρ < a.

At any point P (r, ω, φ) with r > a, the potential Φ(P ) is given by

Φ(P ) =
q

r′
=

∞∑
n=0

n∑
m=−n

Mm
n

rn+1
Y m

n (ω, φ), (4.1)

where Mm
n = qρnY −m

n (α, β).

When we truncate the expansion (4.1) at n = p, we have the error bound for the

approximation as follows.

For any p ≥ 1, ∣∣∣∣∣Φ(P )−
p∑

n=0

n∑
m=−n

Mm
n

rn+1
Y m

n (ω, φ)

∣∣∣∣∣ ≤
(

q

r − ρ

)(ρ

r

)p+1

. (4.2)

Remark 1. If there are several charges {qi : i = 0, 1, . . . k} around Q with spherical

coordinates {(ρi, αi, βi) : i = 1, 2, . . . k}, we can superpose them at Q and the resulting

multipole moment at Q would be Mm
n =

∑k
i=0 qiρ

n
i Y

−m
n (αi, βi).
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We denote the moment vector

M =
[
M0

0 , M−1
1 , M0

1 , M1
1 , . . . ,M−n

n , . . . ,Mn
n , . . .

]
,

where
[
M0

0 , M−1
1 , M0

1 , M1
1 , . . . ,M−n

n , . . . ,Mn
n , . . .

]
is a vector of multipole coefficients

whose entries {M j
i : i = 1, . . . ,∞; 0 ≤ |j| ≤ i} are defined in Theorem 6. Also, let

Mp be the vector M truncated at n = p.

Suppose we have a vector of multipole moments M evaluated with respect to a point

Q around which the charges are located. We can then find the moments with respect

to an arbitrary point O by translating M to O. Formally,

Theorem 7. Let M be a vector of multipole moments evaluated with respect to Q

around which charges of strengths q1, . . . qN are located within a distance of ξ. Also,

let P and Q have coordinates (r, ω, φ) and (ρ, α, β), respectively, with respect to an

arbitrary point O. If r > ρ + ξ, the potential Φ(P ) can be expanded as,

Φ(P ) =
∞∑

j=0

j∑
k=−j

T k
j (M)

rj+1
Y k

j (ω, φ), (4.3)

where

T k
j (M) =

j∑
n=0

n∑
m=−n

Mk−m
j−n · i|k|−|m|−|k−m| · Am

n · Ak−m
j−n · ρn · Y −m

n (α, β)

Ak
j

, (4.4)

with Am
n defined by

Am
n =

(−1)n√
(n−m)! · (n + m)!

.

Furthermore, for p ≥ 1∣∣∣∣∣Φ(P )−
p∑

j=0

j∑
k=−j

T k
j (M)

rj+1
Y k

j (ω, φ)

∣∣∣∣∣ ≤
( ∑N

i=1 qi

r − (ρ + ξ)

)(
ρ + ξ

r

)p+1

.

The reader is advised to refer [7] for a proof of these theorems. We note that (4.3)
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can be written as an inner product of two vectors as,

Φ(P ) = 〈Tρ,α,βM,R〉,

where the (r, s)th entry of the matrix Tρ,α,β = (T s
r ) with r = j2 +j+k, s = n2 +n+m

and the indices as specified in (4.3) and (4.4), is defined by,

T s
r =

i|k|−|m|−|k−m| · Ak−m
j−n · Am

n · ρj−n · Y −(k−m)
j−n (α, β)

Ak
j

, (4.5)

and the (j, k)th entry of the evaluation point vector R = (Rk
j ) is given by,

Rk
j =

Y k
j (ω, φ)

rj+1
. (4.6)

B. An Expansion Theorem for a Particle in Motion

In this section we derive a theorem that essentially states that when a particle moves

from location L1 to L2, the potential computed with respect to L2 can be represented

using the multipole moments at L1 and the dipole moments at the mid-point joining

L1 and L2. We also give an analytic bound for the error in approximating the potential

by truncating the dipole moments.

Consider a particle with a unit charge at location L1 moving to a location L2

during the simulation. Let M be the mid-point joining L1 and L2 and P be the

evaluation point. Also, let (δρ, δα, δβ) and (δρ′, δα′, δβ′) be the spherical coordinates

of L1 and L2, respectively, with respect to the coordinate system at O translated to

M (See Figure 8) and (rmid, ζ, η) be the coordinates of P in that system. We then

have the following result.

Theorem 8. Let (ρ, α, β) and (ρ1, α1, β1) be the coordinates of M and L1, respectively,

and (r, θ, %) be the coordinate of P, all with respect to O. Then, for any α < 1, the
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M(ρ, α, β)

rmid

r1

r2

δρ/2

δρ/2

L1(δρ, δα, δβ)

L2(δρ′, δα′, δβ′)

O
x

y

z

P (r, ω, φ)

Fig. 8. Movement of a particle from location L1 to L2

potential at P with respect to L2, ΦL2(P ), when ρ1

r
< α and δρ

rmid
< α, is given by,

ΦL2(P ) = 〈O,R〉+ 〈D,Rmid〉 (4.7)

where the moment O = (Ok
j ) and the dipole moment D = (Dk

j ), with j ≥ 0 and

0 ≤ |k| ≤ j, are defined as,

Ok
j = ρj

1Y
−k
j (α1, β1) (4.8)

and

Dk
j =

 −2(δρ)jY −k
j (δα, δβ) if j is odd;

0 if j is even.
(4.9)

Here Rmid and R are the evaluation point vectors with respect to M and O, respec-

tively, whose entries are defined in (4.6).

Furthermore, for any odd number p′ ≥ 1, we have the error for the approximation
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with truncated dipole moment Dp′ (where j ≤ p′),

Φ̂L2(P ) = 〈O,R〉+ 〈Dp′ ,Rmid〉

as

|ΦL2(P )− Φ̂L2(P )| ≤ 2

rmid

·

(
δρ

rmid

)p′+3

1−
(

δρ
rmid

)2 . (4.10)

Proof. Let |L1P | = r1, |L2P | = r2. Then we have,

ΦL2(P ) =
1

r2

=
1

r1

+

(
1

r2

− 1

r1

)
Writing this in terms of multipole expansions,

ΦL2(P ) = 〈O,R〉+
∞∑

j=0

j∑
k=−j

(M
′k
j −Mk

j )

rj+1
mid

Y k
j (ζ, η), (4.11)

where

Mk
j = (δρ)j Y −k

j (δα, δβ) , (4.12)

M
′k
j = (δρ′)

j
Y −k

j (δα′, δβ′) .

Note that

δρ′ = δρ,

δα′ = π − δα,

δβ′ =


π + δβ if δβ < 0;

−π + δβ if δβ > 0;

0 if δβ = δβ′ = 0.
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Therefore for the associated Legendre functions and the exponentials we have,

P
|k|
j (cos δα′) =

 −P
|k|
j (cos δα) if j + |k| is odd;

P
|k|
j (cos δα) if j + |k| is even,

e−ikδβ′
=

 −e−ikδβ if k is odd;

e−ikδβ if k is even.

From (2.3), this implies,

Y −k
j (δα′, δβ′) =

 −Y −k
j (δα, δβ) if j is odd;

Y −k
j (δα, δβ) if j is even.

And so,

M
′k
j −Mk

j = Dk
j = (δρ)j [Y −k

j (δα′, δβ′)− Y −k
j (δα, δβ)

]
=

 −2(δρ)jY −k
j (δα, δβ) if j is odd;

0 if j is even.
(4.13)

Thus we have the result (4.7) from (4.11). We will now prove the error bound. Note

that,

ΦL2(P ) =
∞∑

j=0

j∑
k=−j

M
′k
j

rj+1
mid

Y k
j (ζ, η)

and

〈O,R〉 =
∞∑

j=0

j∑
k=−j

Ok
j

rj+1
Y k

j (θ, %) =
∞∑

j=0

j∑
k=−j

Mk
j

rj+1
mid

Y k
j (ζ, η)
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and therefore,

|ΦL2(P )− Φ̂L2(P )| =

∣∣∣∣∣
∞∑

j=0

j∑
k=−j

(M
′k
j −Mk

j )

rj+1
mid

Y k
j (ζ, η)−

p′∑
j=0

j∑
k=−j

Dk
j

rj+1
mid

Y k
j (ζ, η)

∣∣∣∣∣ ,
=

∣∣∣∣∣
∞∑

j=0

j∑
k=−j

Dk
j

rj+1
mid

Y k
j (ζ, η)−

p′∑
j=0

j∑
k=−j

Dk
j

rj+1
mid

Y k
j (ζ, η)

∣∣∣∣∣ ,
=

∣∣∣∣∣
∞∑

j=p′+1

j∑
k=−j

Dk
j

rj+1
mid

Y k
j (ζ, η)

∣∣∣∣∣ . (4.14)

We know from (4.13) that, if j is even, then Dk
j = 0 and when j is odd (4.14) is same

as,

|ΦL2(P )− Φ̂L2(P )| ≤

∣∣∣∣∣∣∣
∞∑

n=d p′
2
e

2n+1∑
m=−(2n+1)

2(δρ)2n+1Y −m
2n+1(δα, δβ)

r2n+2
mid

Y m
2n+1(ζ, η)

∣∣∣∣∣∣∣ ,
in which case we have replaced j = 2n + 1. Also, we have the inequality,∣∣∣∣∣∣

2n+1∑
m=−(2n+1)

Y −m
2n+1(δα, δβ)Y m

2n+1(ζ, η)

∣∣∣∣∣∣ = |P2n+1(cos χ)| ≤ 1,

where χ is the angle between L1MP and P2n+1(cos χ) is the Legendre polynomial of

degree 2n + 1 (for instance, see [17] for the above inequality). Thus, when p′ is odd,

|ΦL2(P )− Φ̂L2(P )| ≤ 2

rmid

∞∑
n=d p′

2
e

(
δρ

rmid

)2n+1

=
2 · δρ
r2
mid

 ∞∑
n=0

(
δρ

rmid

)2n

−
b p′

2
c∑

n=0

(
δρ

rmid

)2n

 ,

=
2 · δρ
r2
mid

 1

1−
(

δρ
rmid

)2 −
1−

(
δρ

rmid

)p′+2

1−
(

δρ
rmid

)2

 ,

=
2

rmid

·

(
δρ

rmid

)p′+3

1−
(

δρ
rmid

)2 .
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This theorem immediately gives us the following corollary for the total error

bound for the potential approximation at L2.

Corollary 9. Let Op and Dp′ be the moments obtained by truncating the moments

O and D defined in (4.8) and (4.9) at j = p and j = p′, respectively. Also, let p′ ≤ p,

be an odd positive integer. If δρ
rmid

≤ 1√
3
, the total error bound for the approximate

potential at L2,

ˆ̂
ΦL2(P ) = 〈Op,R〉+ 〈Dp′ ,Rmid〉, (4.15)

is given by,

|ΦL2(P )− ˆ̂
ΦL2(P )| ≤ E1 + E2 (4.16)

where

E1 =
1

r − (ρ + δρ
2
)

(
ρ

r
+

δρ

2r

)p+1

,

and

E2 =
1

r − ρ

(
δρ

r − ρ

)p′+1

.

Proof. If δρ
rmid

≤ 1√
3
, then,

1−
(

δρ

rmid

)2

≥ 2

(
δρ

rmid

)2

.

Consequently, the error bound (4.10) satisfies,

|ΦL2(P )− Φ̂L2(P )| ≤ 1

rmid

·
(

δρ

rmid

)p′+1

.

Also, for the truncated multipole expansions, we have the error bound defined by (4.2).

i.e, ∣∣∣∣∣
∞∑

j=0

j∑
k=−j

Ok
j

rj+1
Y k

j (θ, %)−
p∑

j=0

j∑
k=−j

Ok
j

rj+1
Y k

j (θ, %)

∣∣∣∣∣ ≤
(

1

r − ρ1

)(ρ1

r

)p+1

.
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Thus, the bound in (4.16) can now be readily obtained by using the above two bounds

in the triangle inequality,

|ΦL2(P )− ˆ̂
ΦL2(P )| ≤ |ΦL2(P )− Φ̂L2(P )|+ |Φ̂L2(P )− ˆ̂

ΦL2(P )|

and noting that ρ1 ≤ ρ + δρ
2

and r − ρ ≤ rmid.

C. Discussion

The corollary essentially means that, when δρ � r−ρ, the bound (4.16) is dominated

by the first term than the second term, i.e, E1 much larger than E2. In particular, if

δρ

r
<

ρ

r

(
1− ρ

r

)
the error bound is dominated by E1. In Barnes-Hut type treecodes, the criteria for

approximation satisfies ρ
r

< α, which is usually assigned a value of 0.7. Choosing the

negative of this value as a lower bound for −ρ
r
, we have

δρ

r
< 0.3 ·

(ρ

r

)
and since ρ

r
can be as large as 0.7, δρ

r
could attain a maximum value of 0.21 while E2

remains lesser than E1. Further, we infer an important point from (4.16) - that for a

given p′, E2 approaches zero rapidly as r increases. This when viewed in the context

of an oct-tree means the following: when the movement of the particle is small, the

error obtained by the approximation (4.15) is dominated by truncating the moment

O as the nodes get closer to the root (as against truncating the dipole moment D).

We will illustrate this point in detail in the Multipole Updating Phase in the next

section.

We note that in the approximation (4.15), the use of the dipole moment is con-
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sidered at M whereas the moment O is used with respect to O. We could equally con-

sider the approximation using the dipole moment translated to O, namely, Tρ,α,βDp′ ,

where the entries of Tρ,α,β are defined in (4.5). The difference should be small, since

〈Tρ,α,βDp′ ,R〉 and 〈Dp′ ,Rmid〉 converge to the same limit as p′ approaches infinity.

Similarly, instead of using the moment O, we can translate the moment M = (Mk
j )

given in (4.12) to O for approximating the potential, i.e., use Tρ,α,βMp in the place

of Op, where Mp is the truncated moment M with j ≤ p. Note that if the moments

M and D are both truncated at j = p′, the translated moment Tρ,α,β(Mp′ + Dp′) is

same as the multipole moment for the particle at location L2 computed with respect

to M and then translated to O (without the use of any dipole moment). Thus, we can

think of the vector Tρ,α,β(Mp + Dp′) as just a change in the first (p′ +1)2 coefficients

of the moment Tρ,α,βMp, obtained by directly computing the multipole coefficients

for the particle at L2 with respect to M and translating it to O without using any

dipole moment. Moreover, computing the translation can be avoided by computing

(p′ + 1)2 coefficients with respect to O instead of M .

Finally, we also note that the analysis can be extended to several particles with

varying charge strengths just by superimposing the moments. In this case, the error

bound (4.16) will have a scaling factor which will have the sum of the magnitudes of

the charge strengths.

D. A Fast Treecode for Particle Simulations

The error bound derived in Section B can be applied to a treecode to accelerate

the time to compute the potentials. Since the bound given in (4.16) shows that

as the distance to the evaluation point increases the error bound is dominated E1

than E2, recomputing the entire multipole moments for all the nodes in the tree can
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be carried out only when the particles move sufficient distances. Otherwise, fewer

moment updates can be made for the nodes in the tree depending on the height

of the node. We propose one such algorithm in this section. This algorithm can

be viewed as a variant of the Barnes-Hut treecode [4] or FMM [7] that uses only

particle-cluster potential evaluations. An important aspect of this treecode is that it

can be used in the existing implementations of FMM or the Barnes-Hut algorithm

with little modification. In general, for a given time step, the method works in three

phases: the tree construction phase, the multipole updating phase and the potential

computation phase, however, the tree is reconstructed only on certain time steps.

Tree Construction Phase: In this phase, a spatial tree representation of the

domain is derived as given in Chapter I Section 3 except that the decomposition of

the space is continued until each sub-domain has at most s particles instead of one

particle. To determine the time step during which the tree needs to be reconstructed,

we use the formula suggested in [25], i.e., if n is the number density of the system

and l is the length of a leaf cell Lc containing nL particles, the ratio between the

time interval when the tree is reconstructed, ∆ttree, and the step size of the time

integration, ∆t, should obey,

∆ttree

∆t
=

l

n−1/3
,

' n
1/3
L ,

since l3n = nL. Therefore, we can consider reconstructing the tree based on the

average number of particles present in the leaf nodes. Thus, if there are TL number

of leaf nodes, the ratio between the tree reconstruction and interval for the time

integration is given by,

∆ttree

∆t
=

[
1

TL

∑
Lc

nL

]1/3

. (4.17)
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Hence, in our algorithm, at every time step when the tree is reconstructed, we de-

termine the next reconstruction time step based on (4.17). Also, during the tree

construction, for each node, we store the level, L, which is defined to be the difference

between the height of the tree and the depth of the node from the root. We note

that if n is the number density of the system, then n−1/3 gives the average inter-

particle distance and so if the particles cover large distances during time steps, the

tree construction has to be carried out often.

Potential Computation Phase: This is done exactly as in the Barnes-Hut scheme

discussed in Chapter II Section C (by applying the multipole acceptance criterion to

the node or each of its eight children, starting from the root). This phase is performed

at each time step of the simulation.

Multipole Updating Phase: During the time steps the tree is reconstructed, the

truncated multipole moments Op are computed and stored for all the nodes in the

tree directly from the particles with respect to the geometric center of the node. Note

that we can equally compute the moments for the parent nodes from the child nodes

using the translation operator. An essential aspect of this algorithm is re-using some

of the coefficients of the moments Op during the time steps the tree is retained. The

key idea in doing this is as follows:

Consider a particle Q in a cell C and a sphere SC circumscribing C such that the

multipole expansion of C is valid only outside SC . Let ν be the radius of SC (see

Fig. 9). Also, for the given particle in the cell C, let FC(ρ) = E2(ρ)
E1(ρ)

denote the ratio of

the errors E2 and E1 defined in (4.16) treated as a function of ρ. If p = p′, ρ
r

= α < 1
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and δρ � r, then,

FC(ρ) =
E2(ρ)

E1(ρ)
=

1

r − ρ

(
δρ

r − ρ

)p+1

·
(

r − ρ− δρ

2

)(
2r

2ρ + δρ

)p+1

,

≈ 1

r − ρ

(
δρ

r − ρ

)p+1

· (r − ρ)

(
r

ρ

)p+1

,

=

(
1

ρ

)p+1

·
(

δρ

1− α

)p+1

.

Since FC(ρ) compares the error obtained using the dipole moment with the error in

using the standard multipole moment, it can be construed as a relative error bound

for Q in the cell C having a displacement of δρ. Note that for a given α and δρ, FC(ρ)

remains constant on a sphere of radius ρ. Therefore, for p > 2, the average relative

error bound for C, AV GC , can be given by,

AV GC =
3

4πν3

∫ ν

δρ

4πρ2 · FC(ρ)dρ,

=
3

p− 2
·
(

δρ

1− α

)p+1

· 1

νp+1

[(
ν

δρ

)p−2

− 1

]
,

= O

(
1

νp+1

[
ν

δρ

]p−2
)

, (4.18)

assuming ν � δρ. Let us now consider an ancestor cell A of the cell C which contains

Q. Let γ be the radius of the sphere SA circumscribing A such that the multipole

expansion of A is valid only outside the sphere SA (see Fig. 9). Further, let C be the

dth descendent of A. Since 2dν = γ, from (4.18) we have,

AV GA = O

(
1

γp+1

[
γ

δρ

]p−2
)

=
1

8d
·O

(
1

νp+1

[
ν

δρ

]p−2
)

=
1

8d
· AV GC .

Therefore, the average relative error for an ancestor cell is much lesser than the

descendent cell when the particle moves a small distance. In other words, in general,

if the relative error bound FC(ρ) is small for a particle in a cell C, it should be much
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CA

O

O′

ρ

SC

SA

γ

ν

Q

Fig. 9. Cell C and its ancestor cell A containing a particle Q.

smaller when considered with respect to an ancestor cell A of C. Even though the total

error depends on the evaluation point and the particle location, it is reasonable to

expect that the cumulative errors for the ancestor nodes to be lesser than the errors for

the descendent nodes for the particles near the center of the cells, when the multipole

acceptance criteria is satisfied. This observation along with the approximation given

in (4.15) means that fewer dipole moment coefficients are required for the ancestor

nodes than the descendent nodes during the time steps the tree is retained. That is,

p′ can be decreased for the ancestor nodes as the dipole moments Dp′ are computed

for the particle in the new location. From the discussion in Section C following the

error bound, computing the dipole moments Dp′ is same as replacing the (p′ + 1)2

coefficients of Op with the moments computed at the new location with respect to the

center of the cell. Thus, in our algorithm, we reduce p′ by a factor of two for the parent

compared to its children. Hence, at any time step t after the tree construction phase,

the moment for a node at level L is computed by replacing the first (p′+1)2 coefficients



59

of the multipole moment Op with the new moment Ot
p′ where p′ = bp/2L+1c and

Ot
p′ is the moment computed directly from the particles. Figure 10 illustrates the

multipole updating phase for a particle where the multipole degree p is fixed at 4.

This illustration assumes the simulation is run for several time steps ti, i = 0, 1, . . .

P
v1

v2

v3

v3v2v1 v2v1 v3

During

During ti = ttree

C1

C2

C3

O

p′ = 2

p′ = 1

p′ = 0

p = 4

(p = p′ = 4)

ti != ttree

– Updated Coefficients

– Retained Coefficients

LA1A2

A3

Fig. 10. Illustration of multipole updating phase for a particle with p = 4.

and ttree denotes the time at which the tree is reconstructed. The particle P is in

the leaf box L having center C1 and has three ancestor boxes A1, A2 and A3 with

centers C2, C3 and O, respectively. The multipole vectors with respect to the centers

are denoted by v1, v2 and v3. The ancestor box A3 (or the root node) does not have a

multipole vector because it cannot be used to compute potentials as all the particles
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lie within it. Since p = 4, we have 25 multipole coefficients in the moment vectors. If

ti = ttree then all the coefficients of the moment vectors have to be updated. When

ti 6= ttree, we have p′ = 2, 1 and 0 for the boxes L, A1 and A2, respectively. And

therefore 9, 4 and 1 coefficient(s) are updated correspondingly in the existing vectors

v1, v2 and v3.

The pseudocode for the algorithm is given at the last page of this chapter in

Algorithm 6. We have implemented the treecode in a simulation. The details of the

numerical experiments and the results are discussed in Section E.

E. Numerical Experiments

A simulation that uses the proposed treecode was implemented in C++ programming

language and the computations were performed in double precision on a 2.4 GHz,

512 MB Intel P4 PC running Fedora 2.0. Standard Template Library (STL) data

structures were used for efficient memory and time management for the dynamically

adaptive tree construction phase. The constants that appear in spherical harmonics

and Associated Legendre polynomials such as factorials and normalization factors

were precomputed and used to reduce the overall computation time. The simulation is

carried out for several time steps ti, i = 0, 1, . . . , k (k being a parameter) during which

the potentials are evaluated at every step. Initially at t0, the code first constructs

the oct-tree and computes the multipole moments for all the nodes in the tree. After

this initial tree construction phase, at every time step ti, a random displacement δρi

is introduced for all the particles in the leaf nodes. This displacement is fixed at

one half of the radius of the farthest leaf node (based on [5]). At any particular tree

construction step, the subsequent time step at which the tree should be reconstructed

is determined using the formula (4.17). For all the time steps during which the tree is
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preserved, some of the coefficients of the multipole moments that are determined at

the nearest tree construction time step, are replaced (if required) by the new moments

that are computed. (as described in Multipole Updating Phase in Section D).

We conduct three experiments to study the behavior of our treecode T . In all

the experiments, our treecode is compared with a standard treecode S in which the

multipole updates are carried out for all the nodes at every time step. Typically, in

a treecode, translation operators are used to update the multipoles for the parent

nodes while they are directly calculated for the leaf node particles. However, we have

avoided the use of these operators as they produce additional errors in evaluating

the potential. Thus, in our standard treecode S, the moments are updated for all

the nodes using the particles contained in them. We also use a direct summation

routine as a benchmark for comparing the errors. In these experiments, a random

uniform particle distribution on a cube of length 1000 is used. All the particles carry

a unit charge. The maximum number of particles allowed in a leaf box is fixed at

one hundredth of the total number of particles. A random run in between the tree

reconstruction time step is chosen and the results are detailed.

The parameters in the experiments are: multipole acceptance criteria constant,

α, total number of particles in the system, N , multipole truncation degree during the

tree construction time, p, and the multipole degree used during every time step when

the tree is retained, p′ . In the experiments, we study the errors resulting from the

treecodes T and S by varying these parameters. To measure the error, we use the

maximum percentage relative error (PRE) for a treecode C defined by

PREC = 100 ∗max
i

[
|Φtree(i)− Φdirect(i)|

|Φdirect(i)|

]
,

where Φtree(i) is the potential for the ith particle obtained using the treecode and

Φdirect(i) is the potential of the ith particle computed using the direct summation
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algorithm. The cost for computing the multipole moments (in seconds) are also

reported for these experiments.

Table VIII shows the errors and the time spent in updating the multipole mo-

ments for different choices of the MAC constant α. Note that α determines when

an interaction can be computed and thus it is directly related to the error in the

treecode. For this experiment, the values of α were fixed at 0.90, 0.80 and 0.70 and

the multipole degree during the tree construction time was chosen to be 3. The num-

ber of particles N was determined at 8192 for this experiment. The average height

of the tree was 4 and the trees were constructed approximately once in every four

time steps. We observe that the accuracy is more or less the same in our treecode

although we have only updated very few nodes as opposed to the treecode S in which

all the nodes were updated. Since we reduce the multipole truncation degree for the

nodes by a factor of two for a unit increase in the node level, only the farthest leaf

nodes were updated (nodes with level 0) with new moments. These moments were

truncated with multipole degree p′ = b3/2c = 1. Consequently, there is a reduction

in the computation time. The savings in the execution time would increase as we

increase α because the direct interaction time increases for the nodes that doesn’t

satisfy the multipole acceptance criteria at any level. In general, astrophysical simu-

lations require around 1% accuracy and this result indicates that one may obtain at

least 40 − 50% savings per time step in the multipole computation phase. We note

that the time reported here is for computing the multipole moments which doesn’t

reduce with α.

In Table IX, we vary the number of particles N and report the time for the

multipole updates and the errors for a specific value of α and p. The MAC constant

α in the system is fixed at 0.90 and the multipole degree p is 4. N ranges from 512

to 32768. The average height of the tree H is also shown. In Table X, the time and
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Table VIII. Error and the time for multipole updates for the treecodes varying α

N = 8192

α PRET PRES TimeT TimeS

0.90 1.273 0.898 0.83 1.65

0.80 0.785 0.362 0.83 1.65

0.70 0.209 0.094 0.83 1.65

the errors are given as a function of p. Here, N is fixed at 8192 and α = 0.90.

Table IX. Error and the time for multipole updates for treecodes varying N

α = 0.90, p = 4

N H PRET PRES TimeT TimeS

512 3 0.463 0.213 0.59 0.81

1024 4 0.692 0.431 0.76 1.13

4098 4 0.651 0.692 0.94 1.42

8192 4 0.834 0.643 1.23 1.89

32768 6 0.837 0.656 1.84 4.62

From Table IX, it can be observed that for a reasonable accuracy of 1%, the

time for performing the multipole updates in our treecode is almost 33% lesser than

the standard treecode S when the average tree height is 4. When the average tree

height is 3, the time difference is not much and we have more than 50% savings when

the average height of the tree has increased to 6. Notice that the number of levels

that require updates depends on the multipole degree p and in our case the updates

are done for level 0 and 1. Thus, when H is 3, only the children of the root did

not have any updates and so the savings is less. For H = 6, we have four levels
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Table X. Error and the time for multipole updates for treecodes varying p

N = 8192, α = 0.90

p PRET PRES TimeT TimeS

4 0.873 0.598 1.19 1.83

5 0.544 0.145 2.13 3.52

6 0.115 0.062 3.34 5.35

7 0.093 0.011 5.12 8.27

that did not have any fresh computation of the multipoles during the time the tree

is preserved. Since, computing only a few moments has a considerable advantage,

the savings in time for N = 32768 is large. In Table X, it can be seen that with the

increase in the multipole degree p, we have a large improvement in the time during

the multipole computation phase. And the accuracy almost remains the same in both

codes. Note that the time to compute multipole moments of degree p is proportional

to p2. And thus we have a good savings in the time in our code. This is especially

useful for molecular dynamics simulations where accuracy cannot be compromised in

the need for faster evaluation of the potentials and could be equally applied in the

simulation of star clusters where the accuracy requirement is presently limited by

octopole moments [6].
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Algorithm 6 Treecode for Fast Potential Approximations

Require: Particles and their charge strengths, multipole approximation degree, p,

multipole acceptance criteria, α, and maximum number of time steps, k.

Ensure: Potential acting on each particle during each time step ti, i = 0, . . . , k.

// ttree is the tree construction time step. Initially, ttree = t0.

// If ttree > tk, we set ttree = tk

1: for i = 0, 1, . . . , k do

2: if ti = ttree then

3: Construct oct-tree T.

4: for each node N in T do

5: Compute the level of of the node N , Nl = Height(T )−Depth(N).

6: Compute the multipole vector of degree p with respect to the center of N .

7: end for

8: Use (4.17) to calculate the next tree construction time step, ttree = ttree +

d∆ttree

∆t
e.

9: else

10: for each node N in T do

11: Compute the multipole vector of degree p′ = bp/2Nl+1c using the new

locations.

12: Update (p′ + 1)2 coefficients of the existing multipole vector with the

computed moment vector.

13: end for

14: end if

15: Evaluate the potential on each particle using α as described in Section C.

16: Update the change in the location for each particle by computing the forces.

17: end for
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CHAPTER V

CONCLUSION AND FUTURE DIRECTIONS

A. Conclusion

This dissertation was aimed at answering some important questions that arise in

N -body simulations, particularly in potential approximation and force evaluation of

individual particles. We saw in Chapter I about the limitations of the current meth-

ods when it comes to efficiently evaluating the potentials of the form r−λ or when

the particles are in motion. In Chapters II, III and IV, we proposed treecodes that

addressed these limitations and we provided a different representation for the po-

tentials and forces based on the relationship between Ultraspherical and Legendre

polynomials. Specifically, in Chapter II, a new multipole expansion based treecode

for computing the potentials of the form r−λ was introduced and this expansion theo-

rem was used to represent gravitational forces in Chapter III. We also compared our

method with the existing schemes and showed that our treecode was asymptotically

superior than the compared methods. Moreover, the force representation in Chap-

ter III was used in a treecode to compute accurate force interactions between the

particles. Further, the advantage of our treecode was illustrated by surveying some

of the methods that are used for accurate description of the forces. In Chapter IV,

we presented an efficient treecode in which we updated the node’s moments based on

the particle’s movement. This was based on an asymptotic bound for the error in the

potential when particles move in the system. This bound provided us the reason for

retaining the oct-tree and performing fewer multipole updates to the parent nodes

whose centers are far away from the leaf node centers. A remarkable characteristic

of this treecode was that the accuracy was not compromised in the need for reduced
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computational cost. Further, we demonstrated the efficiency of our treecodes using

several numerical experiments.

B. Future Directions

There are several ways to extend the present work. For example, the multipole ex-

pansion theorem for r−λ potentials introduced in Chapter II would allow addition

theorems that could translate the moments from one location to another. The Fast

Multipole Method uses these translations to reduce the complexity from O(N log N)

to O(N) for the Coulomb potential. A similar strategy could be devised for r−λ

potentials using spherical coordinates. Of course, these addition theorems can be

devised for the multipole expansion theorem for the forces described in Chapter III.

Although the performance of the treecodes in Chapter II and Chapter III were im-

pressive, it would be interesting to see the results of these codes when augmented

with a symplectic integrator in a real simulations. Furthermore, the execution of

these codes on various distributions such as the Plummer model, which is widely

used in astrophysics, could be studied. The scope for further research based on the

results in Chapter IV is enormous. For instance, when a particle exceeds the leaf box

dimension one can increase the multipole acceptance criteria and still maintain the

same accuracy without re-computing the multipole coefficients for all the nodes in

the tree. This can be accomplished using the asymptotic bound we derived. Such a

method will be really useful since computing the moments for all the nodes in the

tree is an expensive operation. However, increasing the multipole acceptance crite-

ria will increase the execution time as well. An analysis about the tradeoff will be

worth pursuing. Another interesting application of our bound in Chapter IV will be

in the simulations that use the translation operators. Typically, the multipole mo-
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ments are translated between the child and the parent nodes. We have avoided the

use of such operators as they result in increased errors. Even though, such operators

produce additional errors, they reduce the computational cost to a large extant and

in general, astrophysical simulations tolerate much larger errors (around 1%) than we

have considered. Accordingly, the use of our bound in conjunction with the schemes

that use the translations can be analyzed. More importantly, it will be highly bene-

ficial to examine the performance of our method in astrophysical simulations, where

Barnes-Hut and its variants are highly popular.
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APPENDIX A

PROOF FOR THE FIRST ADDITION THEOREM

The proofs for the following lemmas can be found in [26].

Let f(r) = 1
r

and for θ, φ ∈ <, the spherical harmonics of degree n, Y m
n (θ, φ) be

defined as follows:

Y m
n (θ, φ) =

√
n− |m|
n + |m|

P |m|
n (cos θ)eimφ.

Lemma 10.

Y 0
n (θ, φ)

rn+1
= A0

n ·
∂nf(r)

∂zn
.

For m > 0, we have

Y m
n (θ, φ)

rn+1
= Am

n ·
(

∂

∂x
+ i

∂

∂y

)m(
∂

∂z

)n−m

f(r),

and

Y −m
n (θ, φ)

rn+1
= Am

n ·
(

∂

∂x
− i

∂

∂y

)m(
∂

∂z

)n−m

f(r),

where

Am
n =

(−1)n√
(n−m)! · (n + m)!

.

The operators ∂+,∂−,∂z are defined as follows:

∂+ =
∂

∂x
+ i

∂

∂y

∂− =
∂

∂x
− i

∂

∂y

and

∂z =
∂

∂z
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Lemma 11. If ζ is a harmonic function, then

∂+∂−(ζ) = −∂2
z (ζ)

Theorem 12. (First Addition Theorem for Multipole Expansions) Let Q =

(ρ, α, β) be the center of expansion of an arbitrary spherical harmonic of negative

degree. Let the point P = (r, θ, φ), with r > ρ and P −Q = (r′, θ′, φ′). Then

Y m′

n′ (θ′, φ′)

r′n′+1
=

∞∑
n=0

n∑
m=−n

Jm′
m · Am

n · Am′

n′ · ρn · Y −m
n (α, β)

Am+m′

n+n′

·
Y m+m′

n+n′ (θ, φ)

rn+n′+1
,

where

Jm′

m =

 (−1)min(|m′|,|m|) m′ ·m < 0

1 m′ ·m ≥ 0

Proof. From (2.1), (2.2) and Lemma 10 we have,

1

‖P −Q‖
=

1

r′
=

∞∑
n=0

ρn

rn+1
· Pn(cos γ)

=
∞∑

n=0

n∑
m=−n

[ρn · Y −m
n (α, β)] · Y m

n (θ, φ)

rn+1

=
∞∑

n=0

(
0∑

m=−n

ρn · Y −m
n (α, β) · Am

n · ∂|m|
− ∂n−|m|

z

(
1

r

))
+

∞∑
n=0

(
n∑

m=1

ρn · Y −m
n (α, β) · Am

n · ∂m
+ ∂n−m

z

(
1

r

))
. (A.1)

We will now consider three cases.

Case I: m′ = 0. From Lemma 10,

Y 0
n′(θ′, φ′)

r′n′+1
= A0

n′ · ∂n′

z

(
1

r′

)
. (A.2)



75

Combining (A.1) and (A.2), we obtain

Y 0
n′(θ′, φ′)

r′n′+1
=

∞∑
n=0

(
0∑

m=−n

ρn · Y −m
n (α, β) · A0

n′ · Am
n · ∂|m|

− ∂n+n′−|m|
z

(
1

r

))
+

∞∑
n=0

(
n∑

m=1

ρn · Y −m
n (α, β) · A0

n′ · Am
n · ∂m

+ ∂n+n′−m
z

(
1

r

))

=
∞∑

n=0

n∑
m=−n

(
ρn · Y m

n (α, β) · A0
n′ · Am

n

Am
n+n′

)
·
Y m

n+n′(θ, φ)

rn+n′+1
,

where the final inequality was obtained by another application of Lemma 10.

Case II: m′ < 0. Using Lemma 10 again,

Y m′

n′ (θ′, φ′)

r′n′+1
= Am′

n′ · ∂|m
′|

− ∂n′−|m′|
z

(
1

r′

)
=

∞∑
n=0

(
0∑

m=−n

ρn · Y −m
n (α, β) · Am′

n′ · Am
n · ∂|m

′|+|m|
− ∂n+n′−|m|−|m′|

z

(
1

r

))
+

∞∑
n=0

(
n∑

m=1

ρn · Y −m
n (α, β) · Am′

n′ · Am
n · ∂|m

′|
− ∂m

+ ∂n+n′−m−|m′|
z

(
1

r

))

=
∞∑

n=0

n∑
m=−n

(
Jm′

m · ρn · Y −m
n (α, β) · Am′

n′ · Am
n

Am+m′

n+n′

)
·
Y m+m′

n+n′ (θ, φ)

rn+n′+1
,

where

Jm′

m =

 (−1)min(|m′|,m) m > 0

1 m ≤ 0

In the last inequality, for the terms with m > 0, Lemma 11 was used to annihilate

the operators ∂− and ∂+.
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Case III: m′ > 0. From Lemma 10,

Y m′

n′ (θ′, φ′)

r′n′+1
= Am′

n′ · ∂m′

+ ∂n′−m′

z

(
1

r′

)
=

∞∑
n=0

(
0∑

m=−n

ρn · Y −m
n (α, β) · Am′

n′ · Am
n · ∂m′

+ ∂
|m|
− ∂n+n′−|m|−m′

z

(
1

r

))
+

∞∑
n=0

(
n∑

m=1

ρn · Y −m
n (α, β) · Am′

n′ · Am
n · ∂m+m′

+ ∂n+n′−m−m′

z

(
1

r

))

=
∞∑

n=0

n∑
m=−n

(
Jm′

m · ρn · Y −m
n (α, β) · Am′

n′ · Am
n

Am+m′

n+n′

)
·
Y m+m′

n+n′ (θ, φ)

rn+n′+1
,

where

Jm′

m =

 (−1)min(m′,|m|) m ≥ 0

1 m < 0

Just as in Case II, we have used Lemma A.2, to annihilate the less frequent operators

among ∂− and ∂+.
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