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ABSTRACT 

Integrated Approaches to the Optimization of Process-Utility Systems. (December 2008) 

Nasser Ahmed Al-Azri, B. Eng. Sultan Qaboos University; 

M.S. Texas A&M University; 

M. Eng. Texas A&M University 

Chair of Advisory Committee: Dr. Mahmoud M. El-Halwagi 

 

The goal of this work is to develop a conceptual framework and computational tools for 

the optimization of utility systems in the process industries. The emphasis is devoted to 

the development of systematic design techniques aimed at identifying modifications to 

the process and the associated utility-systems to jointly optimize the process and the 

utility system. The following contributions describe the specific results of this work: 

• Development of shortcut methods for modeling and optimizing steam systems 

and basic thermodynamic cycles with the objective of using these methods in the 

optimization of combined heat and power. To enable efficient mathematical 

programming formulations, simple yet accurate correlations have been developed 

for the thermodynamic properties of steam in the utility system.  

• Optimization of multi-level steam system for combined process requirements and 

power cogeneration. A general procedure is developed to determine rigorous 

cogeneration targets and the optimal configuration of the system with the 

associated design and operating variables. 
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• Graph theory methods are also used to optimize the pipeline layout in the plant 

for the distributing the utilities.  

• Finally, because of the nonconvex nature of much of the developed optimization 

formulations, a global optimization method has also been suggested by using 

interval analysis and simulated annealing. 

 The techniques proposed in this work are compared to previous works and their 

applicabilities are presented in case studies. These techniques outperform previously 

suggested ones in terms of the accuracy, computational efficiency and/or optimality.      
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CHAPTER I 

INTRODUCTION1 

In the chemical process, the utility system is the heart of the process without which the 

whole process would be totally paralyzed.  Consequently, the design and construction of 

the utility system possess a major consideration. Furthermore, the utility system has a 

substantial impact on the environment, and the economics and capacity of the plant. 

These factors necessitate a design that is setup and evaluated very carefully.  

 Almost every single unit in a chemical plant requires energy to operate. The 

design of the utility system is a complicated task. The plant usually has different kinds of 

energy-driven units working at different loads and operation scheduling. The usage of 

energy may not be steady throughout the year or even the day and so the design of such 

a system needs a very careful planning that counts for all these variances. An optimum 

design is that which squares with the exact needs of a plant without shortage or excess. 

This scenario is almost impossible due to the high unpredictability involved in chemical 

plants. Risk management under uncertainties is an indispensable approach to alleviate 

any negative consequences. This will necessitate introducing standby units which will 

add to the cost.   

 Owing to the global calls for energy conservation and awareness on depletion of 

the natural resources, energy integration has proved being one of the most reliable 

solutions. Not only can energy integration save energy, it also contributes to 
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environmental preservation by reusing the energy that would contribute to pollution if 

not reused.  

 The energy needed by the process can be in the form of power, heating and 

cooling. These three components are the master players in the energy balance of the 

process. Since the most substantial cost of running a typical process is owed to the 

energy requirements, designers has recently started integrating and interchanging the 

energy components in its different forms so as to reduce the external needs.    

 There are many forms of energy integration; the most prevalent are heat and 

power. Heat integration was first proposed by Linnhof and Hindmarsh (1983) to who the 

advent of this concept is attributed. Heat integration is very fundamental to this work; it 

is the step preceding the design of the utility system. In heat integration, instead of 

purchasing cooling and heating utilities separately, the heating/cooling processes are 

carried out from within by exchanging heat between the process streams. The synthesis 

of heat exchange network (HEN) is a systematic procedure that achieves the optimum 

matching between the process streams. After the optimum has been achieved, the rest 

will be the minimum possible utility needed by the process. Also, due to safety and 

geographical constrains, integrating two streams may not be a viable solution and hence 

some streams will be excluded from the integration procedure or might be integrated as 

another separate group.  

 Energy integration may also involve heat streams. Heat is one kind of energy and 

it can be transformed into work, through steam turbines for instance. The idea of reusing 

heat in producing power has introduced a new concept in energy conservation, the so-
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called cogeneration. Cogeneration has recently gained tremendous attention especially in 

countries where energy resources are scarce. It allows production of power through 

shaft-work from waste heat. Through utilization of waste heat, cogeneration upgrades 

the plant efficiency to 90 % or more and electricity saving of 15-40 % (EDUCOGEN 

and INESTENE 2001) .  

 In addition to the economical benefit of cogeneration, it also has an 

environmental impact which is a lower emission of gases especially CO 2. 

 Cogeneration was first introduced in early 20th century. In spite of its relatively 

slow growth, it is a very promising alternative to the conventional systems both in terms 

of environmental protection as well as energy saving. In addition, the usually unexpected 

oil price crises have prompted governments, especially in the European Union, to seek 

efficient energy generation systems and hence promoting cogeneration as a substitute. 

 In 2001, the share of electricity produced by cogeneration in Europe was about 10%. A 

share of 18% is targeted by 2010. The belief in the achievement of this target is 

supported by the fact that three European countries, namely the Netherlands, Finland and 

Denmark had cogeneration as a share of national power production in 2001 of 40, 35 and 

50 % respectively (EDUCOGEN and INESTENE 2001).  

 The methods discussed in this work are all based on the thermodynamic 

properties of steam. Having accurate correlations of the steam properties can increase the 

programmability and the traceability of the procedure in optimizing and targeting utility 

systems. Moreover, using the thermodynamic correlations will help visualize the system 

more clearly on Mollier (T-s) diagram and will give more accessibility to checking on 
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the quality of the system at the utility outlet. The thermodynamic properties of steam 

will be developed for the operable range of the steam turbine within an acceptable 

accuracy compared to the customary correlations developed by ASME (IFC-ASME 

1967).  

 Integration lifts the concept of efficiency to a more process-centered paradigm. 

Instead of looking at the efficiency of each unit, the deficiencies (wastes) of the 

individual units could be utilized and used within the process in order to have a better 

overall efficiency of the whole process. Rankine cycle consists of four main blocks, 

namely a boiler, a steam turbine, a condenser and a pump. The overall efficiency of 

Rankine cycle is about 45% at best. A substantial loss is due to the heat discharged at the 

condenser. This heat can be reused by supplying it to the process and hence will be 

counted in the overall process efficiency.     

 When cogeneration is implemented, the steam is produced at high pressure 

levels, let down through different steam mains at lower pressure values while producing 

power during the expansion, and finally they are exported to the process. The essential 

purpose of the steam in this case is to satisfy the process requirement, having expanded 

the steam through the steam turbines, however, will alter the thermodynamic properties 

of the steam at the exit of the utility system. The alterations are due to the expansion and 

the mechanical deficiencies of the turbine. Consequently, deciding the right amount of 

steam to be produced in the boiler will become a hectic task. The steam quality required 

by the process will be the one at the exit of the utility. Thus, the steam in the boiler needs 
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to be produced so as to count for the alteration and deliver it at the exit of the utility just 

as required by the process.   

 Raissi (1994) developed the temperature-enthalpy (T-H) method. In this model, 

for any given inlet pressure, the heat load at the exit of the turbine is assumed constant. 

This assumption might be reasonable at low exit pressure values but it gets so unreliable 

at higher values. Moreover, the T-H model did not account for the variability of the 

turbine efficiency with the load. Mavromatis and Kokossis (1998) developed the turbine 

hardware model. It is an iterative procedure that helps estimating the mass requirement 

and accounts for efficiency variations. Although it is better than Raissi’s (1994), the 

error, as will be discussed in a later section, can reach 10%. Moreover, the procedure 

doesn’t give a direct check on the quality of the steam at the exit of the turbine.  

 Harell (2004) used the concept of extractable energy. A heat balance for the 

different mains is performed where the surplus hearers provide steam to the deficit ones 

wile power is being produced by the turbine while transferring the steam. Harell (2004) 

suggested a pinch diagram similar to the thermal one, in which the maximum extractable 

power is decided.  

 Targeting for the utility system takes place at definite pressure levels where the 

mass flow rates need to be identified. The pressure levels might not however be the 

optimal in terms of utilizing the system to generate heat and produce power. Moreover, 

deciding the pressure level should conform to the requirement of the steam needs by the 

process. Thus, optimizing the pressure levels needs evaluating the process requirements 

of steam at the different pressure levels. That task needs performing heat integration. 
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 Before the design of the utility system, minimum utility targets need to be 

determined using the pinch diagram. In the pinch diagram (El-Halwagi 2003) , for each 

hot streams the enthalpy exchange represented by equation (1.1.a) is calculated. In a 

heat-versus-temperature diagram, an arrow whose tail is located at supply temperature 

(Ts) and head at target temperature (Tt) is drawn with a slope equals to the product of the 

stream flowrate and the specific heat (f Cp). These arrows are then arranged in the 

ascending order of their target temperature i.e. by sliding the arrows vertically while 

maintaining their vertical position.   

aTTCfHC t
u

s
uupuu .1.1)(, −=  

bTTCfHC s
v

t
vvpvv .1.1)(, −=  

 In the same manner the cold streams are arranged by using equation1.b. For both 

types of streams, if two streams overlap in their horizontal span, the overlapping 

segments will be represented by a single segment extending from the lowest point in the 

bottom segment to the highest point in the top segment as shown in Figure 1.1.  
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Figure 1.1 Constructing a hot composite stream using superposition (Linnhoff and 

Hindmarsh 1983) 

 

 After both group of streams (hot and cold), are constructed, the cold stream 

composite will then be slid until it touches the hot composite at a point, without 

overlapping as shown in Figure 1.2. 

 Above the pinch point, no cooling utility should be used and below that point, no 

heating should be used.  The minimum heating utility is the one that will be counted for 

as the heat required by the process in the utility system.  

 The amount of heat at each level and the minimum temperature are determined 

from the grand composite curve (GCC) (Figure 1.3). The construction of this curve is 

described by El-Halwagi (2006).  
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t T1
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Figure 1.2 Thermal pinch diagram (Linnhoff and Hindmarsh 1983) 

 

 

Figure 1.3 The grand composite curve (Linnhoff et al. 1982) 
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 The steam requirement for the non-heating purposes is introduced to the problem 

after the integration of the heat exchangers. The steam requirement for the non-heating 

purposes may itself undergo an integration procedure using the mass exchange network. 

This network is, in many aspects, analogous to the thermal pinch (El-Halwagi 2006). 

 In order to optimize the steam levels, the necessary heat requirement at each 

level needs to be identified by using the grand composite curve (Smith 2005). The grand 

composite curve will serve as the source from which the constraint on the minimum heat 

requirement is established. Optimizing the steam mains is performed by using a mixed-

integer linear/nonlinear programming e.g. (Papoulias and Grossman 1983) and also 

exhaustive enumeration (Mavromatis and Kokossis 1998).  
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CHAPTER II 

PROBLEM STATEMENT  

The overall goal of this work is to develop a conceptual framework and computational 

tools for the optimization of utility systems in conjunction with the process. The 

emphasis is on the development of systematic design techniques aimed at identifying 

process and utility-systems modifications to jointly optimize the process and the utility 

system. In particular, systematic procedures will be developed to address the following 

issues:  

• Development of shortcut methods for modeling and optimizing steam systems 

and basic thermodynamic cycles with the objective of using these methods in 

overall optimization of the utility system and the process. In a single cycle, the 

attention will be paid to the power produced by the steam as well as the heat 

discharged by the condenser. Consequently, the heat will be regarded as a 

product instead of waste. The heat will be dictated by the process and the design 

will be to optimize the tradeoff between the fuel consumed at the boiler with the 

power produced by the turbine.    

• Optimization of multi-level steam system for combined process requirements and 

power cogeneration. The power produced by the steam turbine is a function of 

the mass flowrates, efficiency and the pressure ratio. For a given heat outlet at 

each steam main, the mass flow at the boiler needs to be determined so as to 

deliver the exact amount of heat required by the process. A general procedure 

will be developed which will be flexible so as to incorporate the steam 



 11

discharged by the reprocess, assign it to the proper steam main and then calculate 

the appropriate turbine size and boiler operation parameters.   

• Process synthesis of energy-induced systems (e.g., vapor-compression distillation 

networks). Once the targeting procedure has been developed, the design problem 

will broaden to include the process. The incorporation of the process in the 

optimization problem will necessitate optimizing the steam mains’ levels in the 

utility system. The optimization procedure will be outlined by the process 

requirement of steam on the grand composite curve as well as the requirement of 

steam for non-heating purposes. After the steam distribution destination has been 

established, an optimization procedure for the piping network will be presented.  

 Before tackling these issues, the steam thermodynamic properties will be used. 

Instead of using the steam tables, the correlation of the properties will be developed for 

the operable range of the steam turbine within an acceptable error compared to the 

commonly used ASME correlations (IFC-ASME 1967). 

 In addition to addressing these issues, a global optimization algorithm will be 

suggested. This algorithm will be based on interval analysis and heuristics.  
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CHAPTER III 

CORRELATIONS OF STEAM PROPERTIES 

Introduction 

The main parameters in the design of the utility system are the pressure of each level, 

mass flowrates and the number of turbines. Before determining these parameters, the 

optimum requirement of heat needs to be determined through heat integration. Steam has 

numerous uses in a chemical plant. Heating might be the leading function but its uses 

extend to other uses that include (Smith 2005):  

• team cracking and stripping; 

• cleaning vessels; 

• lowering the viscosity (to avoid solidification) using steam tracers; 

• direct heating of water using steam injection; 

• creation of vacuum in steam ejectors; 

• combustion processes to atomize fuel oil; 

• lowering NOx
 emission through reduction in the flame temperature; 

• injection into flares to assist the combustion; 

• power generation in steam turbines. 

 Not only is steam a cheap and available substance. It possesses other features that 

make it superior over other alternatives. In addition to its non-toxicity, it has a wide 

range of temperature (high critical temperature) and high heat content (high latent heat) 

which will result in less flowrate inside the heat exchanger. 
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 This fact is depicted in Table 3.1 where steam is compared to other common 

organic material. In these calculations, a simple heat pump cycle is assumed using 

isentropic turbine and compressor with the later having a pressure ratio of four.  

 

Table 3.1 Comparison of Steam Performance with Other Common Organic Material in a 

Simple Heat Pump 

Material 

Tc 

(oK) 

Pc 

(bar) 

Qcond      

(kJ/kg) 

QEvap      

(kJ/kg) 

Wnet     

(kJ/kg) 

Steam 674. 221.20 -1949. 1716. 233 

Ethylene 283. 50.97 -630. 244. 386.27 

Ethane 305. 48.71 -280. 221. 59.29 

Methane 191. 45.99 -349. 265. 83.86 

Methanol 513. 81.03 -722 667. 54.94 

  

 The heat loads in the steam heat exchangers are extraordinarily superb compared 

to the other materials’. Steam with its superior qualities makes it essential to a chemical 

plant like water to live species.  

 

The Importance of the Correlations 

In the utility system design, the steam correlations are needed for a very limited range. 

Customarily, designers refer to the steam tables or use complicated correlations. Simple 

correlations will make the optimization procedure faster and more robust.  
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 Other correlations in use are usually dependent on different variables and also 

valid for a wide range of pressure and temperature values than needed for a utility 

system. This feature has rendered them to be very complicated in order to stay accurate. 

In order to solve for some of the variables, the user will have to find a number of roots to 

the correlation and then validate one of the roots. This procedure would require 

additional computational effort to solving the original design problem. These 

disadvantages urge the need to develop the correlations presented herein. 

 Not only do the presented correlations void the need for the steam tables, they, in 

addition, are expressed directly in terms of the minimum possible independent variables 

with a very acceptable accuracy. 

 

Steam Properties Correlations  

According to Gibbs rule, the number of independent variables that must be fixed in order 

to establish the intensive state of a system is: 

F=2-π+N                                                                (3.1) 

where π is the number of phases, N is the number of chemical species and F is the 

degree of freedom of the system i.e. the number of independent variables that must be 

fixed. 

 Since steam which is virtually single-phase and single-substance is used here, at 

least two independent variables need to be known at a given state to determine the other 

variables. One variable that is already provided in the problem statement, is the head 
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pressure or more practically here, the saturation temperature. The additional variable will 

be either enthalpy or entropy.  

 In the case of properties on the saturation line, the saturation temperature will 

suffice in order to determine the required property. Inside the saturation region, however, 

the knowledge of at least one extensive property (specific volume, internal energy, 

enthalpy or entropy) and one intensive property (temperature or pressure) is needed. The 

extensive property is needed to determine the quality of the steam. The quality will then 

be used with the saturation line values of the required property at the given intensive 

property.  

 Computationally-efficient steam-table correlations are central to the effectiveness 

of any steam-system design and optimization procedure. Correlations of steam properties 

are developed and compared to the steam tables developed by ASME (IFC-ASME 

1967).  

 It is worth mentioning that these correlations fit the best in the operation range of 

steam turbines which is up to about 2000 psi and 1000 oF  of superheat.  

 Since only two independent variables at most are dealt with here, each 

correlation was performed by first correlating the dependent values with the first 

independent variable and for different constant values of the second independent 

variable. Then the correlation constants were correlated with the second independent 

variables. In most cases, different correlations were tested and then refined by 

comparing their sums of mean square and relative error with the ASME steam tables. 
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The correlation procedure was performed using Microsoft® Excel 2003 and Polymath® 

5.0.  

 

Enthalpy 

The enthalpy in the superheated region is expressed as a function of the saturation 

temperature of the steam main and the entropy. 

 )2.3(35.8172029.0 647.3 += sTh sat  

whereas h in Btu/lb, s in Btu/(lb.R) and Tsat in oF.  The relative error is about ± 0.7 % 

(Figure 3.1 and Figure 3.2), and is valid in the range between atmospheric pressure and 

2500 psi and a superheat of up to 1000 oF. 
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Figure 3.1 The absolute relative error of the enthalpy function at the different superheat 

temperatures 
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Figure 3.2 The absolute relative error of the enthalpy function at the different pressure 

values 

 

 This correlation performs better at high pressure values, above 100 psi. As will 

be shown in chapter VI, a correlation of the enthalpy as a function of the steam 

temperature and saturation temperature will prove useful in observing the effect of the 

inlet temperature on the specific power. This correlation is: 

73.9416843.00014.0

537.00002.0106
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 This correlation is valid for a pressure range between atmospheric and 2000 psi 

and a superheat of up to 1000 oF with a relative error less than ±2.0% (Figure 3.3). 
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Figure 3.3 The absolute relative error of the enthalpy as a function of steam temperature 

and saturation temperature, for different superheat temperature values 

 

 This correlation tends to have higher error at very low superheat temperature and 

too high temperature values. In the most practical region it maintains a relative error of 

±1.5%.  

 The saturated liquid enthalpy is expressed as a function of the saturation 

temperature (Tsat).  

)4.3(8982.87159.00005.0 2 ++= satsatf TTh  

whereas hf in Btu/lb and Tsat in oF.  This correlation is developed for a range of pressure 

between the atmospheric value and 2000 psi. The maximum relative error is ± 1.6% 

which is located at the atmospheric pressure and it is less than ±1.0 % elsewhere. 
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 The latent heat is calculated from: 

)5.3(69.9017319.00022.0 2 ++−= satsatfg TTh  

whereas hf in Btu/lb and Tsat in oF.  The maximum relative error is ± 2.7 % located at 

2000 psi and it is less than ±2.0% elsewhere.  

 The saturation vapor enthalpy is simply the sum of the saturation liquid and the 

latent heat. 

)6.3(5882.9104475.10017.0 2 ++−=+= satsatfgfg TThhh  

 Figure 3.4 shows the relative error of these correlations when compared to the 

steam tables. 
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Figure 3.4 The relative error of the correlations developed for the saturation enthalpies 

 

 

 



 20

Entropy  

One more important correlation is the entropy as a function of enthalpy. This correlation 

is very crucial. It is used to correct the entropy of the next steam main after the non-

isentropic expansion of steam. This correlation is given in equation (3.7). 

)7.3(
2029.0

35.817
2742.0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

satT
hs  

whereas s in Btu/(lb.R) and Tsat in oF.  This correlation is derived from equation 3.2 and 

it is suitable for the same range.  

 When the boiler condition is defined by the amount of superheat at a certain 

pressure, the following correlation is used:  

)8.3()7876.3)ln(5549.0( )0017.0exp(1001.0( satT
sat TTs +−=  

whereas s is the entropy of the superheat in Btu/(lb.R), T is the inlet temperature in oF 

and Tsat is the saturation temperature, corresponding with the inlet pressure, in oF . This 

correlation is developed for a range of pressure values up to 2500 psi with superheat 

temperature up to 1500 oF. The relative error of this correlation is about ±5% but mostly 

±3.5% (Figure 3.5 and Figure 3.6).  

 The saturation region of the entropy is important for determining the quality of 

steam at the exit of the turbine before it mixes with the streams coming into the steam 

main. The saturated liquid enthalpy is 

)9.3(052.00013.0 += satf Ts  

while the saturation latent region entropy is 

)10.3(9071.10023.0 +−= satfg Ts  
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Figure 3.5 The absolute relative error of the entropy as a function of steam temperature 

and saturation temperature at different pressure values 
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Figure 3.6 The absolute relative error of the entropy as a function of steam temperature 

and saturation temperature at different superheat temperatures 
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 The saturated vapor enthalpy is then obtained from the sum of the saturated 

liquid and the latent region entropies and is given by  

)11.3(9591.1001.0 +−=+= satfgfg Tsss  

 These correlations are valid for pressure values up to 2000 psi with a relative 

error of ±5.0% and less than 3.0±% in most of that range as shown in Figure 3.7. 
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Figure 3.7 The relative error of the entropy correlations at different pressure values 
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Temperature 

In the case of a single turbine optimization, the temperature at the exit of the turbine 

needs to be evaluated as a function of enthalpy and entropy, the following correlation is 

used for that purpose:  

5.32533.71176.391022.710

1267.25513.44575.37918.0
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 This correlation is valid for a superheat of up to 500 oF with a relative error less 

than ±5%. The complexity of this correlation will not entail any computational difficulty 

since it is only used to check the amount of superheat at the exit of a turbine before it is 

exported to the chemical process. Moreover, in almost all cases the amount of superheat 

required is limited, the range of validity (500 oF) is even exaggerated.  The error plot for 

different pressure values is given in Figure 3.8. 
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Figure 3.8 The absolute relative error for the temperature as a function of entropy and 

enthalpy at different pressure values 
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CHAPTER IV 

PROCESS INTEGRATION WITH POWER  

Introduction 

Due to the depletion and unpredictable price rise of the conventional energy resources, 

tremendous efforts on different frontiers have been devoted to regulate wise usage and 

saving of these resources. In this respect, process optimization and integration have 

proven indispensable. In this paper, the chemical process is integrated with the power 

cycle to save on the heating requirement and meanwhile simultaneously produce some 

power. Such an optimization is implemented on Rankine cycle coupled with a process 

that needs to be provided with heat at a certain pressure. 

 

Steam Usage in Chemical Plants 

Steam is one of if the mostly used commodities in the chemical plant. It is used for 

heating and non-heating purposes. It is used as a heating mean due to many advantages 

including its high latent heat content at a wide range op operating temperatures (Smith 

2005). The heating usage of steam can be directed, e.g. through live steam injection, or 

indirect e.g. through heat exchanger. Other uses of steam include reduction of partial 

pressure, lowering NOx emissions, assisting combustion and power generation. 

 Saving of steam takes different ways depending on how steam is used in the 

chemical process. After a non-heating usage of steam, steam can be recovered using 

mass integration. When steam is used for heating, the saving is achieved through heat 

integration and the grand composite curve (GCC). In heat integration, instead of 
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providing external cooling or refrigeration to the hot streams to be cooled and external 

cooling to the hot streams to be cold, the cold and hot streams are internally matched so 

as to allow the minimum possible amount of external heating and cooling (El-Halwagi 

2003; El-Halwagi 2006).  

 

The Utility System Optimization 

A huge portion of a plant’s operation cost comes from the energy consumed by the plant 

in both of its forms, heat and power. Moreover, a huge portion of an industrial country’s 

usage of energy is allocated to industrial energy-consuming industries such as refineries. 

A slight improvement in the performance of a single component e.g. a boiler can reap 

thousands of dollars of saving every year.  

 Optimizing the utility system is economically and environmentally beneficial. 

Papandreou and Shang (2008) used a multi-objective mixed integer linear programming 

(MILP) approach to optimize the chemical plant by setting up economic and 

environmental criteria in their objectives. They included binary variables to select the 

different design and operating conditions. Rodríguez-Toral et al. (2001) used a 

sequential quadratic programming to solve the same problem. They used an equation-

oriented optimization that involves the steam thermodynamic properties. Grossman 

(1985) and Papoulias and Grossman (1983) introduced a MINLP approach for the 

superstructure utility system optimization. Hul and Natori (1996) introduced a mixed-

integer approach for multi-period utility system. Maia and Qassim (1997) used simulated 

annealing which is a metaheuristic method to optimize a multi-period utility system. In 
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addition to environmental and economical concerns, cogeneration is another criterion 

that is included in the optimization of the utility system (Dhole and Linnhoff 1993; 

EDUCOGEN and INESTENE 2001). 

 Wilkendorf et al. (1998) introduced synthesis of the utility system by satisfying 

the process requirement at the minimal possible cost.   In Rankine cycle, attention is 

mainly paid to the expander (steam turbine) while the other three blocks in the cycle are 

viewed as supporting equipments. A more rewarding approach is to versify the uses of 

this cycle by taking advantage of the heat discharged from the condenser. This will 

significantly contribute to energy conservation and environmental thermal pollution. 

However, in such an approach, the lower pressure level has to be dictated to the cycle by 

an external party, a chemical process in this work. Consequently, energy production 

from the turbine side can be increased only by increasing the boiler pressure which is 

highly dependent on safety and economical factors. In this problem, for a given heat 

required by a process at a certain pressure level, the optimum high pressure level is 

sought. The change of this value with changes in other parameters of the optimization 

problem is further studied.  

 

The Heat Engine 

The principle of the heat engine is to produce power by passing high pressure steam 

through an expander, Figure 4.1.  

 The basic Rankine cycle is composed of the following thermodynamic processes 

that take place in a preodic manner: 
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• 1-2 Constant pressure heat addition in a boiler 

• 2-3 Isentropic expansion in a turbine 

• 3-4 Constant pressure heat rejection in a condenser 

• 4-1 Isentropic Compression in a pump 

 

 

Figure 4.1 Rankine power cycle 

 

 These four processes are better described with respect to Mollier (T-S) Diagram 

T-S (Figure 4.2). Fresh treated water is first fed to the boiler which is fueled by 

combustions gases or nuclear reactor and operates at a constant pressure. The boiler 

section with the superheated section is termed as steam generator (Process 1-2). The 

high pressure steam is then fed to the turbine (expander), the high pressure energy stored 

as high enthalpy is used to rotate the turbine blades and hence produce power (Process 2-

3). This process is ideally isentropic, but due to the mechanical deficiencies, the process 
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line deviates towards the left on the T-S diagram causing less enthalpy difference than 

the idea process. 

 

Figure 4.2 Mollier (T-s) diagram 

 

 At the exit of the turbine the working fluid can either superheated steam (back-

pressure turbine) or saturated steam (condensing turbine) with quality of 90% or more to 

avoid erosion of the turbine hardware. 

 The steam at the exit is then fed to a condenser (Process 3-4). In order to pump 

the steam back to the boiler, the steam is condensed and heat is discharged to the 

ambient in a condenser. At the exit of the condenser, the liquid is fed to a water pump 

(4-1) to elevate the pressure to the boiler’s level in order to start the process over.   

 

 



 30

Integrating the Heat Engine with the Process 

By investigating the Rankine cycle, in addition to the mechanical losses, a major loss in 

the overall cycle is the heat discharged to the ambient from the condenser. Work is input 

to the cycle in the pump and the boiler. Power is produced from the turbine and the rest 

is losses in the forms of heat in the condenser and mechanical losses in the turbine. In 

order to improve the overall efficiency of the cycle, the heat discharge to the ambient 

can instead be utilized by the chemical process as shown in Figure 4.3. 

 

 

Figure 4.3 Integrating the chemical process with the heat engine 

 

 Looking at the upper picture from an economic viewpoint, the heat discharged at 

the condenser is no longer a loss. This approach is not only viable to utilize that heat, a 

reverse approach can also be implemented, i.e. determining the cycle’s parameters as 
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dictated by the process requirement. This approach is practical when producing steam at 

high pressure and cogenerating power is more economical than producing steam at low 

pressure. 

 In this work, it is assumed that the boiler operates at relatively high pressure 

levels. The pressure of the boiler is set in conjugation with the process need in such a 

way that will optimize the tradeoff between the cost and the output of the process. 

 Instead of sticking to a specific equipment model, the approach is made open to 

be utilized by any real case problem. The cost and performance estimations can be 

incorporated either as a continuous function in terms of other parameters, e.g. cost of 

turbine as a function of its load, or as discrete integers e.g. a set of possibilities of 

different turbines at different costs. In the objective function of the formulation, the 

performance and cost are expressed using the thermodynamic properties (Figure 4.4) in 

order to define the optimal operation.  

 

 

Figure 4.4 The optimum utility design’s considerations 
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Applications 

One of the most utility-consuming units is the distillation column. In order to decrease 

the utilities required for the process, different ways are suggested as shown on Figure 

4.5. 

 

 

Figure 4.5 Proposed ways to save on the distillation utility requirements 

 

 The first method (Figure 4.5.a) is vapor compression. It is the most popular of the 

three. When applicable, the saving can be as low as one tenth of the conventional 

column (Sloley 2001). This method is feasible when the overhead vapor possesses the 

desirable thermodynamic features of a heat pump working fluid. This method, however, 

has the disadvantage of the overhead product getting contaminated by the lubricating oil 

of the compressor (Supranto et al. 1986). 
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 The second method (Figure 4.5.b) is called the bottom flash heat pump. This 

method is feasible when the bottom product has the thermodynamic characteristics 

needed for the working fluid of a heat pump. It is more applicable when the column is 

operated at high pressures in order to make expansion feasible (Supranto et al. 1986).  

 The third method is the mechanical closed cycle (Figure 4.5.c). This method 

requires a feasible pressure difference between the reboiler and the condenser in order to 

make installing a turbine a feasible solution. Despite the early advent of this type of 

integration, there is no systematic or reproducible model that could be located in 

literature.  

 The fact that distillation columns need enormous heat load makes integrating the 

steam turbine with the distillation column an attractive solution. The interaction in this 

case will not be as limited and circumstantial as the methods described above. Due to the 

high amount f heat required by the column, makes delivering it from the power cycle 

condenser less costly and more accessible.  

 

The Optimization Problem 

The developed correlations in addition to the cost and efficiency estimations can be used 

to solve a variety of optimization problems in steam turbine cycle. 

 The first case is on a process that requires heat to be delivered at pressure P2 with 

the minimum temperature be slightly above the saturation temperature and at P2. 

Available to the process, a boiler that can operate at a maximum pressure P1max and also 

a steam turbine to be purchased assuming that it operates at or below a maximum load 
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Mmax and has a maximum inlet temperature T1max. The formulation of the problem is 

given in Figure 4.6.  
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Figure 4.6 The optimization problem of integrating power with the process 
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The Equipment Performance 

A very case-dependent criterion in the optimization problem is the equipment 

performance. The wide variety of the different generic estimations may affect the final 

answer. A much better alternative is to use the actual prices of all possible choices. For 

the demonstration purpose, however, textbook cost estimation will be used along with a 

set of developed correlations of the thermodynamic properties that could be used with 

any optimization setup.    

 

Turbine Efficiency 

The steam turbine has a mechanical efficiency as well as isentropic efficiency (Figure 

4.7). The overall efficiency is the product of both. The mechanical efficiency is highly 

dependent on the turbine structure and manufacturing and it can be higher than 95% for 

the today’s steam turbine. The isentropic efficiency, however, is more dependent on the 

operation parameters. It exhibits a high sensitivity to the inlet pressure and steam load 

for example.  

 The turbine efficiency can be expressed in terms of the inlet pressure as well as 

the load (Evans Jr. 1971; Fronseca Jr. 2003). The efficiency is given as a function of the 

mass or power load and produced for a family of inlet pressure values.  

 These graphs correlate well with the following empirical equation: 

)1.4(
maxPbP

Pa
+

=η  
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where P is the power, Pmax is the maximum power at that inlet pressure and, a and b are 

functions of the inlet pressure. 

 Mavromatis and Kokossis (1998) established another correlation by modeling the 

steam turbine using Willan’s line and came up with the following correlation: 
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Figure 4.7 A typical performance chart (Evans Jr. 1971) 
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whereas M and Mmax (in lb/hr) are the mass flow and the maximum mass flow 

respectively, ∆his is the isentropic enthalpy difference (in Btu/lb) and, A and B are 

functions of the saturation temperature of the inlet pressure given in appendix A. It 

should be noted that the coefficient of this equation is changed to the American 

customary system here while it is used in different units in the original reference.  

 The A and B factors in equation (4.2) correlation change with the power output 

as explained in appendix A. This expression very closely matches the one given by (4.1). 

In this works, Mavromatis and Kokossis’ correlation is used without losing generality.  

 Most models suggest a generic form regardless of the manufacturer but there is a 

model that involves a parameter that requires to be estimated using experimental runs of 

a specific turbine (Varbanov et al. 2004). This model is given by the following equation:  

)3.4(
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η
η  

whereas m, ηmech and DHis are the mass flow rate, mechanical efficiency and isentropic 

enthalpy difference respectively. Wint and n are two parameters, given in appendix A, 

that are calculated in terms of the mass flowrate, isentropic enthalpy difference, 

saturation temperature difference, type of turbine (backpressure versus condensing) and 

a parameter L that needs to be defined by correlating the reading of the specific turbine. 

 

Boiler Efficiency 

The boiler efficiency is basically the heat delivered to the steam to the heat contained in 

the fuel. 
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 The typical boiler efficiency is somewhere between 75 to 80% and can reach to 

over 90%. The boiler efficiency depends on the material from which it is constructed and 

the fuel type in addition to the operating and ambient conditions. Due to the fuel cost, 

that is, with the maintenance cost, is much higher than the capital investment, a slight 

improvement in the boiler efficiency may result in substantial savings.  The evaluation 

of the boiler efficiency is more complicated than that of the steam turbine and the cost is 

more sensitive to the boiler efficiency. A common way to predict the boiler efficiency is 

the Power Test Code for Steam Generating Units developed by the American Society of 

Mechanical Engineers (ASME,1998).   

 

The Cost Function  

The generation cost is the sum of all costs of operations and materials during production. 

For the optimization problem, the generation cost of steam will be calculated using the 

following equation (Kumana and Associates 2003): 

Cg = Cf + Cw + C BFW + Cp + Ca + Cb + Cd + Ce + Cm                                (4.4) 

where 

Cf : Fuel cost ($/klb) 

Cw: Raw water supply cost($/klb)  

CBFW: Boiler feed water treatment cost including clarification, softening, and 

demineralization ($/klb) 

Cp: Feed water pumping power cost ($/klb) 

Ca: Combustion air fan power cost ($/klb) 
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Cb: Sewer charges for boiler blowdown ($/klb) 

Cd: Ash disposal cost ($/klb) 

Ce: Environmental emission control cost ($/klb) 

Cm: Maintenance materials and labor ($/klb) 

 In this work however, to maintain a traceable formulation, a consistent set of 

units will be used. Instead of $/klb for the operation cost, $/MMBtu of heat delivered by 

the boiler will be used.  

 The fuel cost contributes substantially to the generation cost. It contributes with 

over 90% of the generation cost. The fuel cost is calculated as 

Cf ($/hr)= af  Qb 10-6/ηb                                                 (4.5) 

where 

af : fuel cost ($/MMBtu) 

Qb: the amount of heat transferred to the steam at the boiler (Btu/hr) 

Qb= m (h1 – h1f) 

h1: enthalpy of steam at turbine inlet (Btu/lb) 

hf: enthalpy of boiler feedwater assumed at the saturated liquid point (Btu/lb) 

m: steam flowrate (lb/hr) 

ηb: overall boiler enthalpy  

 The maintenance cost of the boiler is about 30% of the fuel cost (Kumana and 

Associates 2003). In order to account for the increase in pressure, a flexible factor is 

introduced. 

Cg = 1.3 Fp Cf                                                                                   (4.6) 
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where Fp: a factor accounting for the increase in pressure. This factor can be unity if the 

increase in pressure is insensitive to the operation cost but sometimes there are 

additional costs incorporated with higher pressure values such as the minimum allowed 

concentrations of the water composition in the boiler which gets less and more costly to 

remove as the pressure values get higher (Branan 2002). 

 The electric power price ($/kWh) is 

Pe ($/hr)= aePt ηg /3413                                               (4.7) 

where 

ae: electrical power price ($/KWh) 

Pt: the turbine shaft power output (Btu/hr); Pt=m (h1 – h2a) 

h1 : enthalpy of steam at turbine inlet (Btu/lb) 

h2a: actual enthalpy at steam outlet (Btu/lb) 

ηg: generator efficiency  

 The capital costs of the equipment are the most unstable element of the 

formulation. This cost can be introduced as a function of other operation variables or as 

integers of a set of possible selections with their operation capacities. For the illustration 

purposes in this work, cost equations are improvised by comparing different cost 

estimations  (Seider et al. 2004), moreover, the most significant cost is assumed 

contributed by the turbine and the boiler. The variation in the pump cost between the 

different operation variables is insignificant. 

 The boiler is assumed a water-tube boiler fueled with oil or gas with the 

following cost estimation 
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Cboiler ($) =3 Np NT Qb
0.77

                                             (4.8) 

where 

Qb : The amount of heat transferred to the steam (Btu/hr)  

Np : a factor accounting for the operation pressure and is given by: 

Np=7×10-4 P1g+0.6; P1g is the gauge pressure (psig) of the boiler. 

NT: a factor accounting for the superheat temperature and is given by: 

NT=1.5×10-6 Tsh
2+1.13×10-3 Tsh+1; Tsh is the superheat temperature (oF).  

Tsh=T1-Tsat1 

 The turbine is assumed a non-condensing turbine with its cost equation derived 

the same way  

CTurbine($)=475 Pt
0.45                                               (4.9) 

where 

Pt: the turbine shaft power output (Btu/hr); Pt=m (h1 – h2a) 

 To find the optimum design of a grass root utility, the objective function will be 

expressed in terms of the annual cost. In this case, the annualized capital cost of the 

equipment will be used.  

The annual cost= 1.3 Fp Cf t +ACboiler + ACturbine –Pe t                    (4.10) 

where 

t: the annual operation time (hours/year) 

ACboiler=the annualized capital cost of the boiler ($/year) 

ACboiler= (Cboiler – salvage Price)/years of service  

ACturbine=the annualized capital cost of the turbine ($/year) 
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ACturbine= (Cturbine – salvage Price)/years of service  

 To determine the optimum operation parameters for some existing equipments 

and to confine the tradeoff between the electricity produced and the fuel consumed, the 

objective function will reduce to 

  The annual cost= 1.3 Fp Cf t  –Pe t                                       (4.11) 

 

Correlations of the Thermodynamic Properties 

To find the optimal values of the Rankine cycle parameters, the whole problem needs to 

be formulated and stated as an optimization problem with an objective function and 

constrains. Consequently, the steam tables usually used for thermodynamic cycle 

calculations will be replaced by mathematical equations.  

 The thermodynamic properties will be calculated from the correlations developed 

in chapter III. 

 In terms of the pressure, the saturation temperature will be calculated using the 

following correlation: 

)12.4(72.112 2289.0
1PTsat =  

whereas P1 is the pressure in psi and Tsat1 is the saturation temperature in oF. The relative 

error is ±1.87% and average relative error is 0.64%. 

 For a given pressure and temperature inlet, the entropy at the inlet of the turbine 

can be calculated from equation (3.8): 

 )8.3()7876.3)ln(5549.0( )0017.0exp(1001.0( satT
sat TTs +−=  
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whereas s is the entropy of the superheat in Btu/(lb.R), T is the inlet temperature in oF 

and Tsat is the saturation temperature, corresponding with the inlet pressure, in oF . As 

mentioned in chapter III, this correlation is developed for a range of pressure values up 

to 2500 psi with superheat temperature up to 1500 oF. The relative error of this 

correlation is ±3.5%.  

 The enthalpy is then obtained as a function of the saturation temperature of the 

steam main and the entropy as given in equation (3.2). 

 )2.3(35.8172029.0 647.3 += sTh sat  

whereas h in Btu/lb, s in Btu/(lb.R) and Tsat in oF.  The relative error is ± 0.6% and is 

valid in the range between atmospheric pressure and 2000 psi. 

 The turbine efficiency will be expressed using one of the above correlations or a 

better expression according to the data provided by the manufacturer. The isentropic 

efficiency at the outlet of the turbine will be expressed using the same equation of 

enthalpy but in terms of the exit saturation temperature and the inlet entropy. In terms of 

the turbine efficiency and the inlet enthalpy and the outlet isentropic enthalpy, the actual 

enthalpy will be 

)13.4()( ,211,2 isturbinea hhhh −−= η  

 The outlet temperature will be expressed in terms of the entropy and the 

enthalpy. Given the saturation temperature and actual enthalpy, equation (3.7) is used to 

find the entropy.  
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 In terms of the entropy and the enthalpy, the outlet temperature is found using 

equation (3.12): 

5.32533.71176.391022.710

1267.25513.44575.37918.0
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 This correlation is valid for a superheat of up to 500 oF with a relative error less 

than ±5%. 

 The boiler and condenser loads are assumed to be the latent heat added to the 

superheat. The saturated fluid enthalpy is calculated from equation (3.4).: 

 )4.3(8982.87159.00005.0 2 ++= satsatf TTh  

whereas hf in Btu/lb and Tsat in oF.  This correlation is developed for a range of pressure 

up to 2000 psi. The maximum relative error is less than ± 1.6%.  

 The mass flowrate will be expressed in terms of the heat required by the process, 

the actual enthalpy at the exit of the turbine and saturated fluid enthalpy of the exit 

pressure. 
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 The heat output of the boiler will be expressed in terms of the mass flowrate, the 

enthalpy at the inlet of the turbine and the saturated fluid enthalpy of the exit pressure.  

)15.4()( 11 fboiler hhmQ −=  
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 The above formulation gives a universally solvable optimization problem for the 

combined heat and power in a steam turbine.  An optimization software such as Lingo 

10.0 that is used in the following case studies can obtain the global solution of the 

problem. An incremental loop of pressure with a nested loop of superheat temperature 

can also be used in any programming language. The increment can be set reasonably 

such that the runtime is reasonable. A proof of convergence of this loop is given in 

appendix B.  

 

Case Study I 

A distillation column (Figure 4.8) requires 20 MMBtu/hr heat at 100 psi. The turbine 

used in the facility can operate at a maximum inlet temperature of 450 oF and maximum 

flowrate of 25,000 lb/hr. The boiler efficiency is 40% and it operates at a maximum 

pressure of 280 psi. The minimum superheat temperature at the exit of the turbine is 5 

oF. The power price is 0.05 $/kWh and the fuel price is 2.80 $/MMlb, the generator 

efficiency is 40%, the pressure factor in the generation cost is unity.  
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Figure 4.8 Integrating the distillation column with power  

 

 In order to determine the optimum working conditions, the isentropic efficiency 

of the turbine is estimated using Mavromatis and Kokossis (1998) model. Solving the 

problem can be either performed using a nonlinear programming technique to solve the 

optimization problem using a global solver like LingoTM 10.0 or it can also be solved by 

using an iterative algorithm that tests the optimization variables at reasonable 

increments.  

 The optimum solution of this problem is located at an inlet pressure of 202 psi 

and inlet superheat temperature of 54 oF with the superheat at the turbine exit 5.8 oF. The 

flow rate is 22,802 lb/hr. The turbine isentropic efficiency is 57 % and the maximum 

efficiency is estimated around 59%.  
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 Although the pressure factor is an assumed one, there is a clear tradeoff between 

power production and fuel consumption.  

 The developed optimization problem can be used for a wide range of 

applications. The applications are not only limited to operation parameters but also to 

equipment choices by establishing an MINLP that includes selecting the proper 

equipment along with the optimal operation parameters as shown in the next case study. 

 

Case Study II 

A chemical process that requires an amount of heat that is 20 MMBru/hr at 100 psi 

pressure; available selections of turbines and boilers are given as follows: 

 All turbines tolerate the maximum pressure of the boilers. The minimum 

superheat at the exit of the temperature should at least be 5 oF. The generator efficiency 

is 50%. The pressure factor is taken as unity. Other specifications are given by Table 4.1 

and Table 4.2. 

 

Table 4.1 Boilers’ Specifications in Case Study II 

 Fuel cost 

($/MMBtu) 

Efficiency Maximum operating 

pressure  (psi) 

Boiler 1 5.50 0.8 250 

Boiler 2 3.40 0.7 230 

Boiler 3 2.80 0.4 280 
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Table 4.2 Turbines’ Specifications in Case Study II 

 Maximum inlet 

temperature  (oF) 

Maximum steam 

load  (lb/hr) 

Turbine 1 500 25,000 

Turbine 2 450 25,000 

Turbine 3 600 30,000 

 

 

 This price equation is to account for the expense resulting from producing the 

same amount of heat at higher pressure values. The power price is 0.05 $/kWh.  

 The optimum of the nine possible combinations was found to be Boiler 2 and 

Turbine 3.  The inlet pressure is chosen to be 230 psi and a superheat of 60 oF at inlet 

and 5.2 oF at exit and flow rate of 22,811 lb/hr. The turbine isentropic efficiency is 59 % 

and its maximum efficiency is 63 %.  

Conclusion 

The inter-dependent nature of the Rankine cycle variables makes optimization a viable 

for design consideration. The most expensive term in the cost function is the fuel, the 

above examples show that the solution usually lean towards the boiler with the cost 

($/MMBtu) to efficiency ratio. 

 Other factors that can only be defined by the solution of the optimization 

problem are the optimum superheat temperature and flow rate. 
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CHAPTER V 

TARGETING OF THE UTILITY SYSTEM 

Introduction 

The chemical process usually requires steam at different pressure and temperature values 

for heating and non-heating purposes. In order to provide steam at the required 

condition, the designer has to decide whether to provide steam at the extreme condition 

and then let it down to the different levels or produce steams separately at different 

boilers. The second option is mostly viable if the capital cost involved is not very high 

and also when the steam quantities are not very high which is the case in small plants. 

 When the steam range is wide with relatively high quantities of steam required, it 

might be lucrative to produce steam at the extreme condition and then let it down to the 

lower pressure values through steam turbines. This process however requires an iterative 

procedure due to the interdependency of the variables to be determined by the designer. 

This chapter is meant to design a general procedure for targeting the utility system’s 

parameters.  

 

The Utility System  

The steam utility system (Figure 5.1) is mainly composed of boiler feedwater treatment, 

steam boilers and steam turbines. The boiler feedwater treatment is important in that it 

purifies the feedwater from any suspended solids, dissolved solids, dissolved salts and 

dissolved gases. These substances are very detrimental to the utility system as they may 

cause fouling in the boiler and corrosion in the turbines and piping system. The 
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feedwater treatment is a multi-unit system where the removal of the above substances is 

carried out.   

 

Process A Process B Process C

Cooling Water

HP

VHP

MP

LP

Boilers

Fuel

External Power

Power

Steam

 

Figure 5.1 A typical site utility system flowsheet 

 

 There are many types of steam boilers depending on the steam pressure, steam 

output and type of fuel (Smith, 2005). The highest pressure is the one used for power 

generation and it is 100 barg (about 1470 psi). The steam is normally distributed at a 

pressure between 10 and 40 barg with the lowest approaching 2 barg.  

 Steam turbines are categorized based on their output pressure. Back pressure 

turbines are those that outlet reusable steam while condensing turbines are the ones that 
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outlet condensate. Some turbines can also outlet or receive steam in their intermediate 

stages. 

 The placement of the steam turbines is a main issue in optimizing the 

performance of a utility system. Thermodynamic insights and understanding of the 

performance of the steam turbine is very essential.  

 Determining the operation conditions is somehow dependent on the steam 

requirement. Physical insight is also very helpful in discriminating the practical 

alternatives from the unviable ones. For example, it is always better to letdown pressure 

and produce energy at the highest possible pressure gab instead of passing steam through 

an intermediate pressure level  when steam is not needed at that level. It is also practical 

to import steam to the steam main whose pressure is equal or just below the steam 

pressure while importing heat required at a minimum temperature from a steam main 

whose temperature is just above that minimum temperature. Other issues need to be 

tested to locate the suitable operation conditions, this check will be done either through 

algorithms, solving optimization problems or by exhaustive enumeration when such a 

solution is practical, in the hope of finding out a general and consistent solution to 

similar problems.  

 As long as steam is needed at the exit pressure of the turbine, a back-pressure 

turbine will then be used. Moreover, the efficiency of steam is proportional with its 

flowrate load and so the size of the turbine must be selected accordingly.  

 For a given system of steam mains with heating and non-heating requirements at 

each level, the calculation of the optimum steam flowrates is not straightforward. The 
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potential for power cogeneration introduces additional complexity to the design 

procedure. The followings are the design challenges: 

• What are the optimum sources of steam (e.g., type of boiler, pressure and 

temperature of steam)? 

• Should turbines be placed among steam mains? Which steam main? What types 

of turbines (e.g., condensing, extraction)? At what capacities? 

 When steam turbines are used, their efficiencies are not determined beforehand. 

Indeed, the efficiency at each level is a function of the mass flowrate and the turbine 

capacity. On the other hand, the mass flowrate is a function of the heat required as well 

as the actual enthalpy at each level which is, in turn, a function of the efficiency. This 

mutual dependency necessitates developing an iterative procedure. 

 

Previous Work   

The procedure developed here is comparable to previous works in this field. Raissi 

(1994) developed the T-H model which was based on an observation by Salisbury and 

Schenectady (1942). They noticed that for fixed inlet conditions of a steam turbine: 

h@ exit conditions – h saturated water @ exit pressure   = Constant                       (5.1) 

 This enthalpy line is depicted in Figure 5.2. In this figure, the straight line shown 

on the right is the outlet of a steam turbine at different saturation temperature with the 

inlet condition assuming 1.65 Btu/lb.oF entropy and  500 oF inlet saturation temperature, 

assuming 70 % efficiency. The two arrows show the constant heat load assumption by 

Salisbury and Schenectady (1942) and the actual heat load.  



 53

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400 1600

Enthalpy (Btu/lb)

S
at

ur
at

io
n 

Te
m

pe
ra

tu
re

 (o F)

Actual Heat Load

Constant Heat Load Assumption

Saturation Curve

Inlet:
Ti

sat= 500 oF,  
si=1.65 Btu/lb.oF 
η=70%

Exit:
(se,Te

sat)

 

Figure 5.2 Steam loads for a given turbine inlet conditions 

 

 Using that observation, Raissi (1994) suggested the T-H model to calculate the 

shaftwork power output which was oversimplified but motivated an improvement 

introduced by Mavromatis and Kokossis (1998) in the so called Turbine Hardware 

model. Although the results of that technique are more realistic, initializing the mass 

flow rates for the first iteration is a cumbersome simulation procedure based on Raissi’s 

model. Their procedure iterates by correcting the losses through heat-energy balance 

equation. 

 Previous works have some limitations to their usability and applicability. Raissi’s 

(1994) approach is over simplified. Based on the observation of Salisbury and 

Schenectady (1942), Raissi (1994) assumed that the heat load is for a given exit 

temperature is the same regardless of the saturation temperature. The evaluation of this 

constant heat load is cumbersome, as for a given exit temperature, the load at different 
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saturation temperatures is calculated and the average is taken as the constant heat load 

with variation of ±4%. In that study, a constant factor ε which is the ratio of the specific 

power to the difference in the inlet and exit temperature difference is defined as shown 

in equation (5.2). 

)2.5()( sat
out

sat
in TTw −=ε  

 This constant is calculated by simulating a turbine with a given efficiency and 

plot its specific power output against different saturation temperature difference.  

 Mavromatis and Kokossis (1998) developed a better model. Their model is 

initiated by the results of Raissi (1994) and improves iteratively using heat and energy 

balance equation. They also assumed the incoming flow to the steam main as saturated 

vapor which is not always the case.  

 The algorithm developed in this work is based on correlations of thermodynamic 

properties. The main difficulty in such procedures is how to count for irreversibilities to 

calculate the outlet enthalpies after subtracting the delivered power. While in previous 

works (Mavromatis and Kokossis 1998) these losses were counted for by using heat-

energy balance, in this work correlations of entropies have proved very useful. 

Moreover, this work is applicable to more realistic problems with different pressure 

levels and heat is required or extracted to each level at a minimum temperature.   

 

Targeting by Using Steam Properties  

This work is mainly dependent on utilizing the concept of entropy and Gibbs rule in 

determining thermodynamic properties. This approach will furnish more accurate 
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estimation of the thermodynamic properties without the cumbersome simulation of 

determining the constants used in previous works. The isentropic efficiency can also be 

expressed as the change of enthalpies which are, in turn, expressed as functions of 

entropy and saturation temperatures.   

 Figure 5.3 shows a thermodynamic expansion on a T-S diagram. The step s1-s2’ 

shows an isentropic expansion. An isentropic process is an ideal case where thre is not 

any kind of irreversibilities such as mechanical friction and heat losses. Step s1-s2’ is a 

better representation of what happens in reality. The outlet of the expander (turbine) is 

shifted to the right which indicates increase of entropy (state of disorder) caused by 

losses. The isentropic efficiency is basically the ratio of the enthalpy difference of step 

s1-s2’ to that of step s1-s2. If the enthaly is expressed as a function of entropy, the  

efficiency will then be able to be embeded in the calculations of the output properties of 

the turbine.  

 The actual enthalpy is calculated from the knowledge of the isentropic enthalpies 

and efficiency.  

)3.5()( ,,1,1, cisentropiolisentropiclisentropiclactuall hhhh −−= −− η  

 

 The isentropic enthalpy will be calculated using equation (3.2). 

)2.3(35.8172029.0 647.3 += sTh sat  
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Figure 5.3 The T-s diagram of a thermodynamic cycle 

 

 At the boiler, for a given saturation temperature and steam temperature, the 

entropy can be obtained with the aid of steam tables or simply by using  (3.7).  At lower 

levels, with the knowledge of the enthalpy of the previous expansion zone, equation 

(3.3) can be used to find the entropy: 
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 The enthalpy here is the actual enthalpy at the exit of the turbine in the previous 

expansion zone or simply mean enthalpy if the steam main has some streams induced 

from the process. 

  In the case of induction, the enthalpy of the steam main’s outlet stream will be: 
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where Mz is the mass flowing through the previous zone and ml is the mass induced to 

the steam main (Figure 5.4).  

 It is very important to bear in mind that each zone has the same index of the 

outlet steam main. This is very important in tracing the algorithm as each zone has to be 

expressed relative to the neighboring steam mains or vice versa. Of course, in this case 

zone 1 is located between the boiler and the highest temperature steam main and it is a 

flat zone (has no expansion). 

 Figure 5.4 shows a schematic of the utility system layout. There is an expansion 

zone between two pressure levels. The number of steam mains usually does not exceed 

four. 

 

 

Figure 5.4 The expansion zone located between two pressure levels 
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 The isentropic efficiency is a function of the load and for fixed values of 

flowrates, it would be better to consider the highest efficiency assuming using turbines 

for which the calculated flowrate will be the full load. As pointed out in chapter IV, the 

efficiency correlation is different for different turbines. Without any loss of generality, 

the efficiency expression suggested by Mavromatis and Kokossis (1998) will be sued 

here.  

 This expression is based on Willan’s line that correlates the load to the power 

output. The isentropic efficiency depends on the turbine and the manufacturer. Different 

expressions are in the literature. The one used here is taken from Mavromatis and 

Kokossis (1998) and is explained in appendix A. 
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For full load efficiency, this equation will be 

)2.(11
max A

Mh
A

B is
is ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆

−=η  

where A and B are constants that are dependent on the turbine and are functions of the 

inlet saturation temperature. The flowrate is measured in lb/s. A good approximation, 

within 2%, is given by the following straight line segments (Mavromatis and Kokossis 

1998; Varbanov et al. 2004): 

A = a0 + a1 Tsat                                                       (A.3.a) 

B= a2 + a3 Tsat
                                                         (A.3.b) 

The values of these constants are given in appendix A.  
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Extracted Mass 

The steam can be either induced or extracted at a steam main i.e. exported for heating, 

the quantities are shown in the schematic diagram of the steam main in Figure 5.5. The 

calculation of the extracted steam is relatively easier than that of the induced steam for 

the extracted steam takes the properties of the source expansion zone while in the case of 

the induced steam the properties of the steam main properties are disturbed with the 

mixing of induced stream.  

 From the knowledge of the entropy of the previous steam main and the efficiency 

of the preceding zone, the input actual and isentropic enthalpies to the steam mains are 

calculated. The heat load will be the difference between the actual enthalpy and the 

saturated liquid at that level.  

 The (l) indicates the pressure level while (z) indicates the expansion zone. In the 

algorithm, the iteration loop could go from zone to zone and the level number is 

expressed in terms of the zone number or vice versa. In general, only the efficiency and 

the power produced are zone properties while other quantities are steam main properties. 

 The actual input enthalpy (hina(l)) and entropy (Sin(l))of steam main (l) are 

usually provided from the calculations of the previous steam main. The input isentropic 

enthalpy is calculated from equation (3.2). Then the efficiency which is a function of the 

difference in isentropic enthalpies is calculated. The actual enthalpy (which will serve as 

the input enthalpy for the next zone) is then calculated using the isentropic enthalpies 

and efficiency. The input entropy of the next zone is also calculated as a function of 

enthalpy and saturated temperature using equation (3.7). 
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Figure 5.5 A steam main at which steam is extracted 

 

Induced Mass 

In the case where there is induced stream (Figure 5.6), the calculation is different. When 

a stream is split, the sub-streams carry the same intensive properties as those of the main 

one while in mixing, the properties of the mixture take intermediate values of the 

properties of the united streams. 

 The induced stream is provided at a certain condition and is mixed with the inlet 

stream from the previous zone. The outlet enthalpy (of the mixed streams) from the 

steam main is calculated using equation (5.4) and the outlet entropy will be calculated 

using equation (3.7). Then the same procedure used in the extraction steam main will be 

followed i.e. finding the isentropic enthalpy difference and efficiency. The actual 

enthalpy and entropy of the inlet stream of the next steam main is also calculated. 

Hin,isentropic (l) = f (S(l-1), Tsat(l)) 

Hin,actual (l) = f (Hin,isentropic (l), Hout,isentropic (l-1), η(z)) 

Level (l),    T(l),    ∆H= Hin,actual (l) – Hf (l) 

Hout,isentropic (l) = Hin,actual (l) 

S (l) = f (Hin,actual (l), Tsat(l)) 

 

Q (l) , ml(l) 
H= Hin,actual (l) 

M(Z) 

M(Z+1)= M(z) – m(l)

m(l)
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Figure 5.6 A steam main at which steam is induced 

 

Non-Heating Steam Requirement 

The steam required by the process for non-heating purposes is usually demanded as a 

mass flows (mp) at certain pressure values. These values will be simply added to the 

steam exported to the process. If there is no steam main having the same pressure as the 

one required by the process, the steam will be taken from the steam main that has a 

pressure value just above the one required by the process.  

 

The Targeting Algorithm 

Before experiencing a practical case study, the reader may find the following account of 

the algorithm a little vague. It could be more tactical if this description is read in parallel 

with the following case study so as to have more sense of how the procedure works.  

Hin,isentropic (l) = f (S(l-1), Tsat(l)) 

Hin,actual (l) = f (Hin,isentropic (l), Hout,isentropic (l-1), η(z)) 

Level (l),    T(l),    ∆h=hin (l) – hf (l) 

hout,isentropic (l) = (hin,actual (l)*m(z)+hin(l)*m(l))/m(z+1) 

S (l) = f (Hin,actual (l), Tsat(l)) 

 

Q (l) , ml(l) 

M(Z) 

M(Z+1)= M(z) + m(l)

m(l)
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 The layout shown in Figure 5.7 should be referred to in order to understand how 

the indices of the different levels and zones interrelate.  

 

 

Figure 5.7 A typical utility system with four levels and three expansion zones 

 

 Figure 5.8 shows the main steps in the algorithm. After applying the integration 

techniques, the minimum heat requirements along with the hot streams conditions 

coming from the plant are input to the algorithm. Then these streams are allocated to the 

suitable steam main level. An initial guess of the mass flowrates coming out of the steam 

mains is estimated assuming isentropic expansions throughout the levels. Then the 

efficiency is corrected and better estimates of the mass flowrates are evaluated. Next, the 
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stopping criterion is checked to decide on terminating or looping. These steps are 

detailed in the following account. 
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Figure 5.8 Flow diagram of the algorithm of targeting the mass flow rates 
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Input 

The number of the pressure levels (L) = number of expansion zones (Z) 

The saturation temperature at each pressure level 

Tl : l∈[1,L] 

The process heat requirement with the minimum temperature for each requirement 

Qi,, Ti
min  

The mass flowrate and state of each heat stream discharged from the process: 

Mi, Pi, Ti 

The mass flowrates of the steam required by the process for non-heating purposes with 

the required pressure values: Mpi, Ppi 

The entropy of the steam produced in the boiler sl=s1. 

The amount of superheat to be used in the boiler, ∆Tsh 

 

Procedure 

Step 1: The incoming streams are distributed such that each stream will go to the steam 

main whose pressure is the same or just below the pressure of the stream. 

Step 2: The outgoing streams will be extracted from the steam mains whose saturation 

temperature is the same or just above the temperature of the outgoing stream.  

Step 3: The steam flowrates required by the process for non-heating purposes will taken 

from the steam main that has the same pressure value as the one required by the 

process or just above it. 
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Step 4: Find initial estimates of mass flowrates assuming isentropic expansions and a 

heat load which is the difference between the steam main isentropic enthalpy and 

saturated liquid enthalpy. Notice that in this initial step the incoming flows are 

being ignored and so the mass flowrate of the outgoing flows are calculated as if 

the incoming flows are inexistent.   
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Step 5: Calculate the steam passing by each zone using the equation: 
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 whereas mi
out is the mass flowrate of the steam leaving the steam main for the 

process,  mi
in is the mass flowrate of the steam leaving the process to the steam 

main and mp,I is the mass flowrate required by the process for non-heating 

purposes.   

Step 6: Correct the efficiency by using equation (A.2) or (A.3) if the maximum load is 

used. The procedure depends on wither mass is extracted or induced. 

Step 7: From the second iteration through convergence, the steps are repetitive in 

manner until they meet similar results in two consecutive iterations as described 

below.  
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Figure 5.9 Finding the thermodynamic properties of the different levels in a utility 

system 
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Step 5: Test the stopping criterion. 
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 When the algorithm terminates, the steam quality is checked at each turbine’s 

exit. If it falls below the allowed minimum, the superheat temperature or mass flow is 

increased in the boiler. The calculations for each zone are given in Figure 5.9.   

 

Case Study 

In a utility system with the following steam mains: 

P1=200 psi Tsat1=382 oF 

P2=100 psi Tsat2= 328 oF 

P3=40 psi Tsat3= 267 oF 

P4= 15 psi  Tsat4= 213 oF 

The following streams are coming from the process: 

m1=14,000 lb/hr  at P1 =60 psi and T1=318 oF (with superheat) h1=1189 Btu/lb 

m2=11,000 lb/hr  at P2 =110 psi and T2=335 oF as saturated vapor h2=1188 Btu/lb 

The followings are the streams needed by the process: 

Q1=10 MMBtu/hr at T1=250 oF 

Q2=30 MMBtu/hr at T2=300 oF 

Q3=20 MMBtu/hr at T3=370 oF 
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Q4=15 MMBtu/hr at T4=200 oF 

The process requires the following mass flowrates for the non-heating uses of steam: 

mp,1 =1000 lb/hr at 150 psi 

mp,2 =5000 lb/hr at 100 psi 

mp,3 =3000 lb/hr at 75 psi 

The steam quality at the exit of each turbine is not to fall below 0.9 and maximum mass 

flow rate is assumed i.e. equation (A.2) will be used for the efficiency.  

Step 1: The incoming streams will be distributed as follows: 

 m2=700 lb/hr  at P2 =110 psi and T2=335 oF will go to the second steam main. 

m1=500 lb/hr  at P1 =60 psi and T1=318 oF will go to the third steam main. 

Step 2: The outgoing streams will be distributed as follows: 

Q3=300,000 Btu/hr at T3=370 oF will be extracted from the first steam main 

Q2=500,000 Btu/hr at T2=300 oF will be extracted from the second steam main 

Q1=700,000 Btu/hr at T1=250 oF will be extracted from the third steam main 

Q4=400,000 Btu/hr at T4=200 oF will be extracted from the fourth steam main  

Step 3: The non-heating mass flowrates required by the process will be imported from 

the steam main that has the same pressure required by the process or just above it: 

mp,1 =1000 lb/hr at 150 psi from the first steam main 

mp,2 =5000 lb/hr at 100 psi from the second steam main 

mp,3 =3000 lb/hr at 75 psi from the second steam main 
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Step 4: (First Iteration) Find the initial estimates of the mass flowrates of the outgoing 

steam (Table 5.1) assuming isentropic expansion throughout the utility system while 

ignoring the incoming streams.  

 

Table 5.1 The Initial Estimates of the Mass Flowrates 

P 

(psi) 

Tsat 

(oF) 

S 

(Btu/lb.oF) 

h 

(Btu/lb) 

hf 

(Btu/lb) 

Q 

(MMBtu/hr) 

mout 

(lb/hr) 

200 382 1.5668 1216.0 355.33 10 23,248 

100 328 1.5668 1159.6 297.51 30 34,798 

40 267 1.5668 1096.0 235.69 20 11,619 

15 213 1.5668 1039.6 184.07 15 17,533 

 

Step 5: Calculate the steam passing by each zone (Table 5.2). 

 

Table 5.2 The First Iteration of the Mass Flowrates Passing by Each Zone 

Zone (zi) mz
in

  (lb/hr) mz
p

  (lb/hr) mz
out

  (lb/hr) Mz  (lb/hr) 

1 (boiler-200 psi) 0 6,000 23,248 71,198 

2 (200-100) 11,000 3,000 34,798 41,950 

3 (100-40) 14,000 0 11,619 15,152 

4 (40-15) 0 0 17,533 17,533 

 

Step 7: (Second iteration) Correct the efficiency by using equation (A.2). The procedure 

depends on whether mass is extracted or induced (Table 5.3). 
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Table 5.3 The Corrected Efficiencies after the First Iteration 

Zone 

T1
sat

 

(oF) 

T2
sat

 

(oF) 

Sz-1,out 

(Btu/lb.F) 

∆hs 

(Btu/lb) A B η 

Power 

(MMBtu/hr) 

2  (200-100) 382 328 1.5668 55.75 0.0965 1.2846 0.669 1.564 

3    (100-40) 328 267 1.5877 66.81 0.0614 1.2390 0.640 0.648 

4      (40-15) 267 213 1.6559 68.95 0.02175 1.1874 0.790 0.955 

 

Step 6: The steps descried in the above algorithm are performed to correct the mass 

flowrates as given in Table 5.4.  

 

Table 5.4 Recalculation of the New Mass Flowrates of the Second Iteration 

Zone/Level Zone 

T1
sat

 

(oF) 

T2
sat

 

(oF) 

Mz 

(lb/hr) η 

Sz,in 

(Btu/lb.F) 

1 R-VH 382 382 68,236 1 1.5668 

2 VH-H 382 328 38,998 0.660 1.5668 

3 H-M 328 267 13,027 0.613 1.5883 

4 M-L 267 213 16,236 0.787 1.6598 

 

 The algorithm will keep iterating until convergence. Table 5.5 shows the final 

results.  
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Table 5.5 The Final Result of the Case Study 

Zone/Level Zone 

T1
sat

 

(oF) 

mz
out

  

(lb/hr) 

Mz 

(lb/hr) η 

Power 

(MMBtu/hr) 

1 R-VH 382 23,239 68,130 1 0 

2 VH-H 382 33,952 38,891 0.660 1.431 

3 H-M 328 10,754 12,940 0.612 0.530 

4 M-L 267 16,185 16,185 0.787 0.886 

 

 The algorithm converges in the fourth iterations. The steam qualities, at the exit 

of each zone, are found to be 0.97414, 0.96196 and 0.96762 respectively. This algorithm 

is a very general one. in the next chapter, it will be used with the grand composite curve 

and then its accuracy will be compared with a previous work.   

 

Conclusion 

The algorithm developed here provides a consistent, general procedure for determining 

the mass flowrates and the efficiencies of the turbines used. This algorithm utilizes the 

relationship of the entropy with the enthalpy and the isentropic efficiency. Although the 

algorithm is initiated assuming 100% efficiency, it shows a very rapid convergence. It is 

superior to previous works in that it does not require cumbersome simulation for 

initiation, accurate and it can be traced easily which enhance its programmability.   
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CHAPTER VI 

OPTIMUM LEVELS OF STEAM MAINS 

Introduction 

When cogeneration is involved, locating the different steam mains at the optimum 

pressure levels becomes a very challenging problem. This is so because of the big 

number of variables and the different tradeoffs which that result in different possibilities 

of objective criteria, namely minimum fuel and maximum power. The complexity of this 

problem stems from its high nonlinearity. This problem reportedly was first investigated 

by Nisho (Nisho 1977; Nisho and Johnson 1979). An absolute global solution to this 

problem needs the solver to look into the hardware performance, process needs and 

accurate energy and mass balances. Due to its complexity, most of the approaches used 

follow exhaustive enumeration paths or relaxing some of the variables. 

 The early optimization approaches disregarded the variation in the pressure 

levels. Papoulias and Grossman (1983) used a mixed integer linear (MILP) approach to 

optimizing the utility system without accounting for the different levels. 

 A very important aspect of the cogeneration in the utility system is to provide 

specific amounts of heat required by the process at each level. In order to further the 

profitability, heat integration is first performed. The advent of heat integration is 

attributed to Linnhoff et al. (Hohman 1971; Linnhoff and Hindmarsh 1983; Umeda et al. 

1979). In heat integration, cold streams and hot streams are matched so as to minimize 

the external utilities. This is done by using the thermal pinch diagram. This technique 

however defines the minimum utility but a more suitable way of defining the optimum 
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pressure levels of the utility is the grand composite curve (GCC) (Smith 2005), the GCC 

was introduced by Morton and Linhoff (Morton and Linnhoff 1984)  which defines how 

much heat of the external utilities should be provided or extracted from which 

temperature range. Raissi (1994) developed the temperature enthalpy (T-H) model for 

the utility system. In that model, Raissi (1994) assumed a constant specific heat load at 

the turbine outlet, an assumption that can lead to up to 30% error (Mavromatis and 

Kokossis 1998). In optimizing the steam main level, Raissi defines two extremes, 

namely the minimum fuel requirement (MFR) and the minimum utilities cost (MUC). In 

the first case, the fuel consumption is minimized with no cogeneration. That case 

however may not insure a minimum utilities cost (accounting for power and heat) and 

hence the second case which involves cogeneration with additional fuel consumption. 

Raissi however did not give any rigorous optimization method of the steam mains’ 

pressure values. Mavromatis and Kokossis (1998) used the turbine hardware model for 

the targeting of the utility system. Their module is initiated by the T-H model and then 

an iterative procedure is followed. To optimize the steam levels, Mavromatis and 

Kokossis (1998) used the same approaching with exhaustive search. Shang and Kokossis 

(2004) used the pinch diagram. The same method is ued as in the cascade procedure in 

the GCC but by involving the steam main within the interval balance. The optimum 

location is assumed to be at one of the stream target or supply temperatures. This method 

apparently is exhaustive when a large number of streams are involved especially in the 

case of multiple steam mains. 
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 In this work, the grand composite curve is used with a mathematical algorithm to 

locate the optimum steam mains’ levels.  

 

Problem Statement 

After performing heat integration for a set of hot and cold streams, the minimum utilities 

are identified to be supplied by external sources. The thermal pinch is used to check the 

minimum heating and cooling utilities, this diagram however only matches the total heat 

required by the cold streams to the total heat to be recovered from the hot streams but it 

doesn’t specify how much heat is needed for each specific temperature range. The grand 

composite curve (GCC) is built by analyzing the heat deficit or surplice at each 

temperature interval (specified by the streams supply and target temperatures) and 

accordingly. The composition of the GCC is based on how much heat is needed or to be 

removed at each of the temperature intervals and so the temperatures to which the 

external utilities are allocated are known. For cogeneration to be incorporated, 

determining the location of the steam mains becomes a challenging task. The designer 

would have to do some tradeoffs among cost of fuel, power produced and capital. 

 In this work, a mathematical algorithm is used to locate the optimum location of 

the steam main based on the grand composite curve.         

 

Observations 

The power generation through steam turbines is a function of many parameters including 

the pressure difference, the superheat temperature, the turbine efficiency and the steam 
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load. Before trying to optimize the steam mains pressure values, the effect of these 

parameters is tested. Testing the relationship between these parameters and the amount 

of power generated from the turbine will help reduce the size of the optimization 

problem. In this investigation, the change of such parameters with the main pressure 

values is performed using the developed correlation of steam properties. 

 

The Effect of the Outlet Pressure Value  

The power produced by a stem turbine is proportional to the pressure difference across 

the turbine. 

 The specific power for a given isentropic efficiency between two steam mains is: 

P=η (h1-h2s) the isentropic enthalpy difference of the backpressure turbine can be 

calculated by using equation (3.2): 

)1.6()(2029.0 647.3
121 sTTh satsatis −=∆  

 and hence the specific power will be: 

)2.6(]2029.0[]2029.0[)(2029.0 1
647.3

12
647.3

1
647.3

121 satsatsatsat TsTssTTp ηηη +−=−=   

The right hand side form clearly shows that the change of the specific power for a 

turbine at given inlet condition, with the outlet pressure has a linear relationship, with 

the slope and the vertical-axis intercept given by the first and second square brackets, 

respectively.  

 This relationship is depicted in Figure 6.1. Using that equation, a family of lines 

for a group of inlet pressure values can be easily produced. It also helps calculate the 

outlet power for a given turbine and fixed boiler operation parameters. 
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Figure 6.1 The change of the specific power with the outlet saturation temperature (for 

Pin=100 psi (Tsat=327 oF), Tin=550 oF and  η=70%) 

 

The Change of the Specific Power with the Inlet Temperature  

Having a high superheat temperature at the turbine’s inlet increases the inlet enthalpy 

and consequently it also incresaes the power produced by the turbine.   

 By using the correlations of the thermodynamic properties of the saturated steam, 

the specific power for a given isentropic efficiency between two steam mains is P = η 

(h1-h2s). The isentropic enthalpy difference of backpressure turbine is calculated from      

         )2.3(35.8172029.0 647.3 += sTh sat  
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and also from (3.3) : 
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Substituting these equations in the expression will yield 
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 This relationship is linear (Figure 6.2) with the slope and the intercept with the 

vertical axis given by in the square brackets respectively.  

 

 

Figure 6.2 The change of the specific power with the inlet temperature (for 

Pin=100 psi,   Pout=50 psi and  η=70%) 
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Intermediate Steam Mains 

In a multi-steam mains utility, the steam is passed on from the boiler to the different 

steam mains through steam turbines. These turbines can have different arrangements, the 

same amount of steam can be passed on from the high pressure steam main (Figure 6.3) 

to the low pressure steam main either directly or through the medium pressure steam 

main.  

 

 

Figure 6.3 The different arrangement of steam turbines  

 

 The different arrangements were checked for different pressure values using the 

algorithm that will be discussed later on. Assuming a constant efficiency of the steam 

turbine, i.e. the efficiency does not change with load, both arrangements shown on 

Figure 6.3 will give similar results, this is due to the fact that the power change linearly 

with the outlet pressure and so the intermediate steam main will serve just like any 
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intermediate point on the path between the high pressure and the lower pressure mains.   

In reality, however, the efficiency is not constant. It is a function of the inlet pressure, 

the pressure difference and the mass flowrate. For a constant load (mass flow rate), 

different position of the intermediate pressure steam mains were tested, the deviation of 

the total power produced from each arrangement from the average is very small, 

provided that the pressure difference is wide enough to ensure feasibility. However, for a 

constant mass flow, having a number of intermediate turbines produces more power than 

having one single turbine that expands the steam from the high pressure steam main to 

the low pressure steam main. This is justified by the fact that for a constant load, the 

efficiency tends to increase by decreasing the steam inlet pressure. Given that, by letting 

the steam down through the intermediate turbines will improve the efficiency 

downwards provided that the difference in pressure between the steam mains is wide 

enough to maintain a less deviant isentropic enthalpy difference. This fact, however, 

does not absolutely impose this arrangement as the always feasible, simplicity of design, 

increase of power produced compared to the increase in capital cost investment 

associated with this arrangement, also plays an important role.  

 As will be discussed later, in optimizing the steam main levels, heat will always 

have to be supplied at each steam main and hence the same number of turbines will be 

needed; working either in parallel or in series. The optimization procedure, however, 

will assume operation in series. That decision should not endure in loss in generality 

since operation in parallel would entails nothing more than performing the same 

procedure for single expansion zones instead of doing it sequentially all at once.  
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Heat Integration 

In order to save energy, the first step is to perform heat integration by finding the 

optimum matching of the hot streams with the cold ones. The thermal pinch diagram is 

used to identify the most possible saving. The shape of the thermal pinch diagram is very 

important for the investigation.  A computer code is used here which takes in the supply 

temperature, target temperature and heat content and then produces the pinch diagram, 

grand composite curve and the pinch point and the minimum utilities required. 

 The perfect matching of the pinch diagram takes place when all streams, hot and 

cold, have normally distributed ranges with almost the same average with their heat 

content having the same average and are also normally distributed.  

 Figure 6.4 shows the thermal pinch diagram of 96 hot streams and 88 cold 

streams. The temperature of each set ranges from 5 degree to 400 degree with an average 

heat content of 225 unit heat per temperature degree. There is no single point for the 

pinch but the two curves meet in a straight line. Streams having that kind of distribution 

retain the ∫ -shaped curve; being almost perfectly parallel insures better integration 

potential, with the external utilities required being a small fraction of the integrated 

portion. 
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Figure 6.4 The thermal pinch diagram of normally distributed stream parameters 

 

 The construction of the pinch diagram is basically done by accumulating the 

amount of heat transferred between two temperature values for all streams, hence the 

similarity between the curve above with the accumulative distribution function. 

 Cogeneration is not always a viable option. This is because the power produced 

may not offset the capital and operation costs entailed by the incorporation of the 

cogeneration accessories. Accordingly, the temperature range, heat capacities and the 

amount of external utilities dictate whether or not cogeneration is feasible.  

 The scenario looks more promising to invest on cogeneration when the 

magnitude of the external duties required after integration is high enough and also the 

temperature range is wide enough. This situation is met when there is a divergence 



 82

between the two curves. This situation comes by when the hot and cold stream average 

ranges do not overlap and also when their average heat duties are reasonably different. 

For a group of streams that have fairly closer ranges, external utilities will be needed if 

the average hot streams heat load is smaller than that of the cold. When the temperature 

ranges of both streams overlap in a smaller range, the situation will call for more utilities 

to be supplied to the streams outside the overlap.  

 

Locating the Optimum Steam Levels 

Cogeneration usually entails additional fuel consumption. This is because generating 

steam at high pressure and expanding it to the required pressure values will involve 

additional fuel consumption. Expanding the steam beyond the pinch point will even add 

the cost due to the shift of the two streams in order to allow expansion across the pinch. 

 

 

Figure 6.5 Steam utility with cogeneration 
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 In Figure 6.5, the pinch diagram on the left does not involve any cogeneration 

unless an infinite number of mains are introduced which is an idealistic case. In order to 

involve cogeneration, the diagram on the right has the cold and hot composites split 

apart at the pinch in order to accommodate the limited number of mains. The more 

mains introduced, the smaller shifting is required at the pinch. The shape of the 

composite curves however, plays an important role (Raissi 1994; Smith 2005). As 

described before, if the cold and hot composite curves diverge around the pinch, the 

system can then easily accommodate a limited number of mains with a reasonable 

shifting of the composites at the pinch.  

 In Figure 6.5, steam is produced in the boiler at a very high pressure value and is 

then let down to the rest of the mains through steam turbines. The backward hatching 

implies the steam extracted from the hot composite to the mains, the gray area accounts 

for the power produced while the forward hatching implies the steam to be delivered to 

the cols composite from the mains. Since the shifting of the two composite curves is 

parallel, it is easily noticed that the amount of shifting at the pinch is the same as the 

increase the heating and the cooling utilities and hence the additional fuel consumption.   

 As mentioned before, the composite curve is not a robust tool for the selection of 

the utility levels. It shows the heating and cooling insufficiency without specifying at 

which temperature these utilities are to be delivered.  The grand composite curve will be 

used for this purpose. 
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Figure 6.6 Using the GCC to select the pressure mains 

 

 Figure 6.6 shows the grand composite curve of a process. Each segment of the 

curve represents a deficit or a surplus at each temperature interval. The parts with a 

negative slope indicate a surplus of heat while the ones with positive slope indicate a 

deficiency of heat. The grey areas are called pockets and are the locations where parts or 

whole of some adjacent intervals are integrated. The left hand side GCC only includes 

utilities at different pressure levels with no cogeneration while the one on the left 

includes cogeneration.  Above the pinch, steam is produced at the very high pressure 

level and then it is let down to the different steam mains while producing power and 

satisfying the process needs for heat. Below the pinch, the cooling fluid is let down to 

the different steam mains from the process. The coolant can be refrigerant, cooling water 

or even steam if cooling is required at relatively high temperature values. The hatched 
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areas indicate power production. No steam main will be used across the pocket unless 

the temperature range is wide enough to locate a steam main.  

 In order to optimize the steam mains’ locations, the targeting algorithm will be 

used in an exhaustive manner. Later on, the results will be compared to the area of the 

production potential to extract a less costly algorithm. The targeting algorithm is made 

very general. It can take multiples streams into and out of the steam main. Using the 

GCC will render each steam main either importing or exporting streams. Moreover, the 

inflows and the outflows will be taken as heat at the steam main temperature. The 

modified algorithm is shown in Figure 6.7. 

 Mavromatis and Kokossis (1998) developed a similar procedure to solve this 

problem. Their procedure is initiated with Raissi’s (1994) method and then runs 

iteratively. Unlike the algorithm presented here, which depends on mathematical 

correlations of steam thermodynamic properties, Mavromatis and Kokossis’ (1998) 

procedure is heavily dependent on heat and energy balance. In order to check the 

performance of both methods, a case study presented Mavromatis and Kokossis (1998) 

will be used. 
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Figure 6.7 The modified algorithm for targeting a utility system 

 

Case Study 

A utility system has four temperature levels, very high pressure (VHP), high pressure 

(HP), medium pressure (MP) and low pressure (LP) (Figure 6.8). The steam is produced 

at 500 oC (932 oF) and the pressure values are 90 bar (Tsat=578.0), 46 bar (Tsat=497.8), 

15.5 bar (Tsat=391.7) and 2.7 bar (Tsat=266.0). The process is discharging heat of 10.63 
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MW at the high pressure main and is in need for heat of 6.88 MW and 16.25 MW at the 

middle pressure and low pressure mains, respectively.  

 

 

Figure 6.8 Example on targeting a utility system 

 

 The targeting procedure will determine the mass flows needed to be produced at 

the boiler and distributed to the steam mains along with the power produced at each 

turbine in a way that conforms to the process’ heat requirement. This example is adopted 

from Mavromatis and Kokssis (1998). Table 6.1 shows the result of the proposed 

algorithm and the one suggested by Mavromatis and Kokossis (1998).   
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Table 6.1 A Comparison between the Proposed Method and a Previously Reported 

Method 

Expansion 

Zone 

Reported Method Proposed Method 

m 

(t/hr) 

η Power 

MW 

m 

(t/hr) 

η Power 

MW 

VHP-HP 18.0 0.53 0.52 19.3 0.53 0.53 

HP-MP 41.2 0.68 1.98 44.6 0.68 1.78 

MP-LP 28.6 0.74 1.87 31.0 0.74 1.75 

 

 In order to check the robustness of the two procedures, using the mass flowrates, 

thermodynamic calculations are performed using the steam tables (Çengel and Boles 

1999). The heat induced to the main or delivered to the process, from the steam tables 

calculations, is then compared to that given in the problem. 

 

Table 6.2 A Comparison Between the Errors in the Proposed Method Compared to the 

Previously Reported Method 

Process 

Heat 

(MW) 

Reported Method Proposed Method 

Heat 

(MW) 

% error Heat 

(MW) 

% error 

10.630 9.741 -8.36 10.630 0.00 

6.880 6.294 -8.52 6.844 -0.52 

16.250 14.784 -9.02 16.064 -1.14 
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 From Table 6.2,  the current algorithm shows a much better accuracy than the 

reported one. There is no absolute margin of tolerance here, the decision is almost 

entirely economical; for large amount of heat as is the case in large plants, even a small 

percentage in excess or deficit will have a significant impact on the process and the 

operation cost. Moreover, the error tends to increase towards the lower mains. This is 

due to the recursive nature of the calculations. The highest steam main’s estimations are 

dependent only on the input boiler’s condition while lower steam mains depend on the 

estimated values of the higher steam mains.   

 In addition to its accuracy, the sequential mathematical nature of the algorithm 

makes it more flexible with the different operation scenarios. An important aspect that 

the reported algorithms overlooked is the liquid content at the exit of the turbine. This 

algorithm can check the quality of the steam and if it is found to fall beyond the tolerated 

range, the algorithm sends a feedback to the boiler to alter the superheat temperature.  

 The same algorithm will be used to locate the optimum steam mains’ locations, 

initially in an exhaustive manner. The optimal mains locations were specified as the ones 

that would result in the highest power produced. The proposed algorithm is coded in 

MatlabTM, the run time was mainly passed on saturated temperature increment as well as 

the number of steam mains. For a four steam main utility system with a unit increment in 

the saturation temperature, the algorithm took a few minutes.  

 As discussed before, the power produced at each zone increases linearly with the 

superheat temperature at the inlet of the turbine, hence the superheat temperature was 
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chosen so the heat at each main is satisfied and the quality at the exit of each turbine exit 

is within the permissible limits.  

 

 

Figure 6.9 Tradeoff between load and pressure ratio 

 

 There are many factors that affect the turbine shaftwork; the mass flowrate, the 

pressure ratio, the isentropic efficiency, the mechanical efficiency and inlet conditions. 

The complicated nature of the algorithm makes it very hard to determine which of these 

factors contributes the most to the optimum main selection. On the grand composite 

curve, the two main factors that make a clear tradeoff are the mass flowrate and the 

pressure ratio. On Figure 6.9, if the difference between the two steam mains is wide, the 

heat at the outlet of the turbine tends to get smaller until it reaches zero at the widest 

possible range i.e. between the highest pressure value and the pinch point. Likewise, 
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when the pressure range is small, the lower main will have a higher duty and hence more 

load to be delivered through the turbine that will increase the shaft work output. As the 

steam main is mover up, the mass flow required gets higher until it hits the higher 

pressure main at which the pressure difference is zero. The tradeoff between the mass 

flow and the pressure difference can be compared to the area of the rectangle formed by 

the heat load (width) and the pressure difference (height) as shown on Figure 6.9.   

 In order to check for any correlation between the area and the optimum power 

produced, the steam mains’ locations at which the area (the hatched rectangles in Figure 

6.9) is maximum, are compared to those at which the shaft work produced is maximum. 

A perfect match between the two sets has been found.  

 Raissi (1994) stated that the area is approximately linear with the power 

produced, i.e. the power can be estimated by multiplying the area by a constant, called 

the conversion factor (cf). This approximation however could predict an erroneous 

estimation of up to 30% of relative error as reported (Mavromatis and Kokossis 1998). 

 In order to establish a proper relationship between the area of the rectangle on the 

GCC and the turbine shaft work, the profile of both have been matched and compared. 

When the tow profiles are superimposed, their maximum values matches, i.e. the  
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maximum area of the rectangle and the maximum power are both located at the same 

saturation temperature and the two profiles start diverging gradually away from the 

maximum point.  

 Having established this observation, the exhaustive enumeration procedure can 

now be reduced down from running the iterative algorithm to locating the maximum area 

made by the steam mains on the grand composite curve. This procedure has been 

executed for different grand composite curves with a number of steam mains up to 

seven. The steam mains at which the area is maximum and the power is also maximum 

match invariably. Moreover, since the calculating the area is much simpler than 

calculating the power, retrieving the optimum steam mains by using the area search was 

much faster. 

 Visualizing the similitude between the area and the power profiles can be 

obtained in the case of two and three steam mains. Figure 6.10 and Figures 6.11.A to 

6.11.C show such profiles for two and three steam mains respectively. In both cases the 

highest saturation point is taken at the highest pressure level.    
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Figure 6.10 The area and power curves for different GCC scenarios 
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Figure 6.11.A The GCC for a three steam mains scenario 

 

 

Figure 6.11.B The power plot for a three steam mains scenario 
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Figure 6.11.C The area plot for a three steam mains scenario 

 

 The maximum point in Figure 6.11.B and Figure 6.11.C is located at Tsat2=300 

and Tsat3=280. 

 

Conclusion 

Optimizing the location of mains is considered a difficult task due to the 

interdependency of the many variables involved in the procedure. Establishing some 

observation has abated the difficulty of the task to optimizing the steam mains’ level to a 

number of turbines in series with a boiler producing steam at sufficiently high 

temperature. The effect of the high temperature was found to be linear on the turbine’s 
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shaft work. Moreover, turbines in series are observed to be more efficient from a 

thermodynamic view point. 

 The task of optimizing the steam mains level has also been reduced to only 

maximizing the area in the grand composite curve which has made the procedure 

computationally efficient.   
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CHAPTER VII 

OPTIMIZING THE PIPELINE STRUCTURE 

Introduction 

A very important aspect of chemical plant design is the involvement of the several 

networks of pipelines and other carriers. In most cases, the design of such networks has 

several possible layouts; and in most of these cases, there is one layout that is optimum 

in terms of the cost, safety and maintenance.  

 The complexity of identifying the optimum layout depends on the design 

specifications in the first place; the more parameters are involved, the more complex the 

problem is.  

 Alandi et al. (2007) developed a procedure that took account both the layout and 

the pipe size. Their procedure starts by identifying the possible alternatives and retaining 

the most inexpensive branches. Ito (1999) developed a genetic algorithm approach in 

planning interactive pipeline routs. The GA method is based on starting with an initial, 

presumably good, solution and then the algorithm alters that solution until it evolves to a 

better or best solution. Guirardello and Swaney (2005) developed a mixed-integer linear 

programming (MILP) model for a 3D problem considering all fitting pipes and fittings 

cost for the shortest path problem.   

 In this paper, a combinatorial method is used to find the optimum layout of a 

pipeline in a chemical plant using a uniform cross-sectional area.  
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Graph Theory 

Graph theory studies the pairwise relationship between nodes connected by arcs in a 

given network. This field has many applications in real life; it is useful whenever a given 

problem can be modeled as nodes and arcs, for example, in transportation, graph theory 

is used to design the shortest routes passing by a number of cities. Graph theory is used 

here to model a layout of pipeline network representing each pipe segment as an arc and 

the source and all consumption points as nodes. 

 

The Traveling Salesman Problem  

A classical problem in networks design is the traveling salesman problem (TSP). For a 

given network of nodes interconnected with arcs, it is required to find the shortest route 

that stops at each node only once and returns back to the first node as shown in Figure 

7.1. 

 

 

Figure 7.1 The traveling salesman problem 
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 The main objective of the traveling salesman problem is to minimize the distance 

(the cost) of the connecting route. T. For a number of nodes N with cost of cij for an arch 

connecting node (i) to node (j), the traveling salesman problem takes the following 

formulation (Figure 7.2)  (Winston 1994): 
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Figure 7.2 Formulating the traveling salesman problem 

 

 The variable xij is a binary one, it is true i.e. one if the arc connecting node i to 

node j is included in the solution of the problem and it is false i.e. zero, otherwise.  

 The third constraint is required to avoid having all cities connected by more than 

one route.  

 This formulation is valid when the number of nodes is relatively small, however, 

when the number of nodes is large (can be 100 and above) heuristics is more viable to 

solve the problem.  

 To ensure the robustness of this method, an example of such a network is solved 

by exhaustive enumeration and is then solved by this method for comparison.  
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 Figure 7.3 shows a plant where the circulation needs to take place through eight 

stations with the cost matrix given by Table 7.1. 

 

Table 7.1 The Cost Matrix of the Different Possible Routes  

Nodes 1 2 3 4 5 6 7 8 

1 0 14 6 17 26 M M M 

2 14 0 M 10 M M 24 M 

3 6 M 0 10 11 12 M M 

4 17 10 10 0 M 15 19 M 

5 26 M 11 M 0 9 M 12

6 M M 12 15 9 0 11 6 

7 M 24 M 19 M 11 0 14

8 M M M M 12 6 14 0 

 

 

 

Figure 7.3 Application of traveling salesman problem 
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 The gray areas represent obstacles through which the circulation line cannot pass 

while the solid lines represent all possible candidates for the circulation route.  

 With eight nodes, exhaustive enumeration requires testing a number of solutions 

equivalent to the factorial of eight (8!=40,320). Using MatLab, the best solution was 

found by following the route: 1-3-5-6-8-7-4-2-1 with an optimum cost of 89 units. Using 

the above-described formulation with Lingo, the same solution was retrieved, Figure 7.4, 

 

 

Figure 7.4 The optimum route using the traveling salesman problem 

 

Industrial Applications 

A dowtherm is being circulated across a number of heaters and is then recharged with 

heat in a furnace assuming. The nodes represent the process where heating take place, 

and each arc represents a tentative line connecting nodes. Fortunately, in most cases, the 
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number of nodes is not very big. For N heat exchangers, the costs are introduced as a 

matrix of size N×N, with cij=M when i=j, where M is a very large number and also cij=M 

when the arc connecting i and j, is not a realistic solution.  

 As a case study, Figure 7.5 shows a set of 20 heaters with a set of possible arcs. It 

is required to find the optimal route. Figure 7.6 shows the set of all possible routes. 

  

 

Figure 7.5 Set of 20 heaters 

 

 The grey areas are repressing obstacles that pipelines (arcs) cannot overlap.  
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Figure 7.6 Set of all possible routes interconnecting the heat exchangers 

 

 The distances between each pair of nodes are given in the cost matrix C in Table 

7.2 where M indicates an infinitely large number. The above formulation was solved by 

using LingoTM 10.0 . 
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Table 7.2 The Cost Matrix of the Possible Circulation Layout 

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 M 8 15 Μ Μ Μ Μ Μ Μ Μ 20 9 18 Μ Μ Μ Μ Μ Μ Μ

2 8 M 9 Μ 21 Μ Μ Μ Μ 18 Μ 7 Μ Μ Μ Μ Μ Μ Μ Μ

3 15 9 M 9 Μ 21 Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ

4 Μ Μ 9 M 10 Μ Μ Μ Μ 9 Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ

5 Μ 21 M 10 M 15 Μ Μ Μ 15 Μ 28 Μ Μ Μ Μ Μ Μ Μ Μ

6 Μ Μ 21 Μ 15 M 9 Μ Μ 10 Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ

7 Μ Μ Μ Μ Μ 9 M 11 14 19 Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ

8 Μ Μ Μ Μ Μ Μ 11 M 15 Μ Μ Μ Μ Μ Μ Μ Μ 8 Μ Μ

9 Μ Μ Μ Μ Μ Μ 14 15 M 21 Μ Μ Μ Μ 9 Μ 10 11 Μ Μ

10 Μ 18 Μ 9 15 10 19 Μ 21 M Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ

11 20 Μ Μ Μ Μ Μ Μ Μ Μ Μ M 12 Μ Μ 4 Μ Μ Μ Μ Μ

12 9 7 Μ Μ 28 Μ Μ Μ Μ Μ 12 M 17 9 Μ Μ Μ Μ Μ Μ

13 18 Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 17 M 8 Μ 6 Μ Μ Μ Μ

14 Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 9 8 M 8 12 13 Μ Μ Μ

15 Μ Μ Μ Μ Μ Μ Μ Μ 9 Μ 4 Μ Μ 8 M Μ 9 Μ Μ Μ

16 Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 6 12 Μ M 9 Μ Μ 8 

17 Μ Μ Μ Μ Μ Μ Μ Μ 10 Μ Μ Μ Μ 13 9 9 M 11 10 17

18 Μ Μ Μ Μ Μ Μ Μ 8 11 Μ Μ Μ Μ Μ Μ Μ 11 M 10 17

19 Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 10 10 M 12

20 Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ Μ 8 17 17 12 M
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 Using the above mixed integer linear programming; Figure 7.7 shows the optimal 

layout.  
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Figure 7.7 The minimum route connecting the 20 heaters 

 

 The minimum route passes by all nodes in the order 1-12-11-15-14-13-16-20-19-

17-9-18-8-7-6-10-5-4-3-2-1 with a total cost of 187 unit distance.  

 

The Shortest Path Problem through a Set of Nodes 

Another very frequent scenario is when the path is expected to start from a node and 

terminate at another passing by a given set of intermediate nodes.  If the problem only 
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requires the shortest path without having to pass by a set of nodes, then Dijkstra 

algorithm can be used (Winston 1994) and such a problem is usually easy to solve by 

inspection, but with the above requirement, a different approach is used. 

 To define the shortest path from node A to node B through a set of N nodes, the 

problem formulation is shown in the Figure 7.8.  
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Figure 7.8 Formulating the shortest path problem 

 

 As an example, the application of the shortest path problem can be applied in the 

case when the dowtherm circulation needs to be first assigned to a number of heaters 

with high temperature requirements. The flow will be directly assigned to the high-

temperature heaters and then the shortest path problem will be solved between the last of 

these heaters to the furnace passing by all other low-emperature heaters.   

 In the above network of 20 heaters, the dowtherm needs first to be assigned to 

high temperature heaters in the order 2, 12 then 3. The task now is to find the shortest 

path linking heater 3 to the furnace passing by all other heaters. 
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Figure 7.9 The shortest path through a set of heaters  

 

 The optimum path (Figure 7.9) will follow the heaters: 3-4-5-10-6-7-8-18-9-17-

19-20-16-13-14-15-11-1 with a total cost of 169. 

 

The Minimum Spanning Tree  

Another problem that can be solved using graph theory is the situation where the fluid is 

carried in a branching network to different destinations. Known algorithms for solving 

this problem are Kruskal’s algorithm and Prim’s algorithm (Cook et al. 1998). For a 

given network of N nodes, the minimum spanning tree (MST) is a group of n-1 arcs that 

connects all nodes of the network without creating a loop, Figure 7.10.  
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Figure 7.10 The minimum spanning tree 

 

 For a network of N nodes the following procedure is followed to determine the 

minimum spanning tree: 

 Step 1: Start from any node in the network, say node i, investigate all arcs 

connecting node i with the rest of the network and choose the arc with the lowest cost, 

call it arc ij connecting node i to node j. By now, a subset tree composed of two nodes, 

namely i and j has been built. 

 Step 2: Investigate the arcs connecting the existing tree with the rest of the nodes 

and select the arc with the lowest cost to be added to the existing tree. If the addition of 

that arc will create a loop, then move to the second lowest and so forth. 

 Step 3: Expand the existing tree by repeating step 2 until no more arcs can be 

added without creating a loop. At that stage, the minimum spanning tree has been 

attained.   

 By applying this procedure for the set of 20 consumption stations given in the 

previous example, the optimal solution shown in Figure 7.11 was obtained, with a total 

cost of 161 unit distance. 
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Figure 7.11 The minimum spanning tree for a set of 20 heat exchangers 

 

 The proof to the validity of this method is self-evident. The most inexpensive 

arcs are picked up in order, unless an inexpensive arc will create a cycle, until the 

spanning tree is complete. 

 

Conclusion 

To conclude, the use of combinatorial procedures in graph theory had proved very useful 

in the optimization of the pipeline network routing. Although these methods are limited 

in many other areas, the number of nodes in a chemical plant usually small enough that 

these methods are practical.  
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CHAPTER VIII 

HYBRID GLOBAL OPTIMIZATION ALGORITHM 

Introduction 

Interval arithmetic is a useful bounding technique that was initially invented to control 

bounding computing error (Boche 1963; Moore 1962; Moore 1965; Moore 1966). It is 

extensively used as a mean to control rounding errors (Kreinovich 2007; Moore 1966; 

Neumaier 1990) but their strength has also been exploited in controlling nonlinearities in 

an algorithmic manner (Neumaier 1990). Interval analysis can also be utilized to achieve 

the global solutions of the general MINLP’s (Vaidyanathan and El-Halwagi 1996). 

 Figure 8.1 shows a general procedure of how interval analysis is utilized in 

optimization. With its ability to control nonlinearity and nonconvexity, interval analysis 

has become a practical tool in global optimization (Byrne and Bogle 1995; Byrne and 

Bogle 1996; Vaidyanathan and El-Halwagi 1994; Vaidyanathan and El-Halwagi 1996).  

 In its simplest form, interval analysis standalone converges very slowly to the 

global solution. That fact necessitated reasonably bounded domain that included the 

global solution (Ratschek and Rokne 1991). 

 Newly developed techniques in global optimization, using interval analysis, 

focus on how to accelerate convergence using an auxiliary accelerator or a solver (Figure 

8.1).  Two important devices for accelerating convergence are: first for a function that is 

twice continuously differentiable, with the Hessian matrix inclusion exists, the boxes 

that contain local minimizers could be selected (Ratschek and Rokne 1991). The second 

important device is the monotonocity test which is conducted with the use of the 
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inclusion of the gradient of the objective function. In addition to these two tests, 

Vaidyanathan and El-Halwagi (1994; 1996) used the upper infeasibility test and the 

lower bound test along with the upper bound test as will be described in more details 

later on.   

 

List of Boxes

Call an auxiliary 
solver: evaluate 

the objective

Update Current 
Best Value

Update 
the list 

Stopping 
criterion met?

Retrieve 
Answer

Select a box

 

Figure 8.1 Global optimization using interval analysis 

 

 With its good performance yet non-guaranteed optimality, simulated annealing 

can also be invested as a tool in speeding up convergence. This method is a 

metaheuristic tool used to find near optimal solutions for an optimization problem. 

Simulated annealing surpasses other deterministic optima locators in that it tries to avoid 

being confined to local optima. This is achieved by relocating the current solution not 

just when a better one is found; but may also take place if an inferior solution is found. 
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However, the latter decision of relocation is dependent on a probability function that is 

dependent on the difference between the function value of the current iteration and the 

retained best value as will be described herein.   

 The advent of this technique is attributed to Kirkpatrick et al. (1983) from an 

earlier work by Metropolis et al. (1953). This technique is an imitation of another used in 

quantum mechanics. When the substance is at high temperature, it will be in a state of 

chaos or disorder and when it is gradually cooled down (annealed), it tends to reorganize 

itself in a crystalline structure at which the energy of the substance is at its lowest ranks 

(Laarhoven and Aarts 1988).   

 Despite its good performance, using simulated annealing requires problem-

specific decisions which effect the quality of the function and the execution time (Boche 

1963). These decisions are on the selection of the annealing (cooling) rate c, the number 

of iterations per temperature k and, the maximum and the minimum temperatures. 

Having too high or too low for any of these parameters might be very detrimental to 

either the final solution or the execution time. 

 The linear cooling schedule is the mostly used. However, logarithmic cooling 

schedule can also be found in the literature (SZU and Hartley 1987). 

 For the number of iterations per temperature, Lundy and Mees (1986) suggested 

using one iteration per temperature but to use a very slow cooling rate .i.e. increasing the 

number of temperatures tried. Connolly (1990) suggested using the opposite, that is one 

temperature with a number of iterations, yet the difficulty will still be which temperature 

to select.   
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 Dowsland (1995) suggested starting with a very high temperature and then 

cooling it rapidly when worse solutions are accepted at a certain probability. Rayward-

Smith et al. (1996) suggested this probability at 0.6.    

 The most critical decision when applying simulated annealing to continuous 

problems is defining the neighborhood criterion (Goldstein and Waterman 1988), which 

is usually a swap of two elements in the case of combinatorial problems. A normal 

selection of this function would be by slightly displacing the current point in one 

direction (Goffe et al. 1994). Another approach is to make the displacement in all 

directions (Bohachevsky et al. 1986). A more complicated way to determine the 

neighboring point is by adding the current one to a vector which is a product of a 

normally distributed random numbers and an n×n matrix that controls the step size 

distribution (Vanderbilt and Louie 1984). This method however can be computationally 

exhaustive when solving a high dimensionality problem. 

 Simulated annealing has reputedly proved to be a very efficient tool in global 

optimization (Cardoso et al. 1997; Choi et al. 1999). When simulated annealing is used, 

the search procedure has to be confined within the feasible domain and then proceeds by 

updating the objective function value using other auxiliary criteria.  

  In this work, simulated annealing is incorporated with interval analysis to speed 

up convergence by a faster upper bound update as well as detecting superior infeasible 

values of the objective functions and hence deleting them from the original search 

domain.  
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 Despite its simple algorithm, simulated annealing can retrieve the global 

optimum regardless of the complexity of the topography of the given function. 

Nevertheless, the algorithm parameters e.g. temperature schedule, maximum number of 

iterations and initial points, need to be very well-selected for a robust performance of the 

algorithm. 

 

Interval Analysis  

Vaidyanathan and El-Halwagi (1996) suggested an algorithm to solve a general 

nonconvex MINLP. For a given problem with minimum and maximum bounds on each 

of the n variables, the global solution is sought. The essence of that algorithm is to 

handle the box defined by the n intervals in the n-dimensional space by deleting the 

suboptimal. Their algorithm is based on an interval analysis method which depends on 

evaluating the inclusions of the objective functions, its first and second derivatives, and 

those of the constraints. Since the initial space can be very large and in absence of any 

criterion to schedule the next search, this procedure can be very time-consuming 

especially if a large number of local minima exists.  

 In order to speed up convergence to global solution and in order to escape local 

minima, a heuristic search method, namely Simulated Annealing (SA) is incorporated in 

the Interval Analysis Algorithm. Simulated annealing, if implemented properly, is very 

beneficial in escaping local minima as well as speeding up upper bound update. 

Moreover, instead of checking sub-boxes currently enlisted in the feasible space, 

whenever the upper bound is updated, the whole list is rechecked and non-promising 
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sub-boxes are removed immediately without conducting a separate iteration for each 

sub-box.    

 Before describing the heuristics to be incorporated with this method, a general 

description of interval analysis is presented. This method is intended for the general 

mixed-integer nonlinear problem with a given bounds for each of the n variable in the n-

dimensional space, problem (8.1).  
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 A very essential tool in this algorithm is the use of interval arithmetic. An 

interval (inequalities 8.1.c and 8.1.d) is expressed as Xi=[ai,bi] and will be denoted by a 

capital letter where a and b, a≤b,  are scalars bounding the range of the variable x, 

denoted by small letter. Interval analysis aims at determining the bounds of a given 

function using the given intervals of each of its variables. The interval bounding the 

given function is called the function inclusion. This inclusion is determined by some 

intuitive internal operators such us the ones used for the four basic operations.  

 For the two intervals X=[a,b] and Y=[c,d], the four basic operations are 

performed as follows: 

Addition 

X+Y=[a,b]+[c,d]=[a+c,b+d]                                                      (8.2.a) 
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Negation 

X-Y=X+(-Y)=[a,b]+[-d,-c]=[a-d,b-c]                                       (8.2.b) 

Multiplication 

X*Y=[a,b]*[c,d]=[min(ac,ad,bc,bd),max(ac,ad,bc,bd)]             (8.2.c) 

Division 

X/Y=[a,b]/[c,d]=[min(a/c,a/d,b/c,b/d),max(a/c,a/d,b/c,b/d)]       (8.2.d) 

0∉(Bohachevsky et al. 1986) if c is zero then  a/c =∞ if a is positive and -∞ if a is 

negative.  

 These operations are necessary in the evaluation of the function inclusion. The 

inclusion of a function for a given interval is an interval that bounds all possible values 

of that function. There are many methods for evaluating the inclusion of a function; their 

goodness and complexity depend on how accurate the inclusion is, as some methods like 

natural inclusion may sometime give an interval which is wider than the actual one. 

However it is the easiest and also is the most exact in many cases as described in the 

following section. 

 An inclusion of a function is said to be minimal if the function interval is the 

smallest possible for some given variables’ intervals and is said to be convergent if 

narrowing the variables’ intervals yields a better inclusion in terms of bounding the 

function’s values. 
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Inclusion Functions 

There is no single method that gives a guaranteed and exact inclusion for all functions. 

All methods depend on three main things: the topography of the function, the width of 

the variables’ intervals and the format in which the function is expressed. 

 

Natural Inclusion  

This inclusion is evaluated by replacing each real variable xi in the function by its 

interval and each operator by its interval counterpart (Jaulin et al. 2001; Ratschek and 

Rokne 1988). This method is the one described earlier for the four arithmetic operations. 

 This method is not always minimal, however minimality can be guaranteed for a 

continuous function in which, each variable appears only once. Note however, that the 

same function may take several forms and their inclusions may also vary accordingly.  

 

Centered Inclusion  

This method is suitable for small intervals. In this method, the function is expressed 

using the mean value theorem. For an interval [x] with m being the midpoint of that 

interval: F(x)=f(m)+gT(x) (x-m)  

where g is the gradient of f with respect to x.  

 Other methods are the Mixed Centered Inclusion and Taylor Inclusion which are 

based on the same concept of re-expressing the function using Taylor series. 

 For the purpose herein, any inclusion will serve the need except that a minimal 

inclusion will help speed up the convergence of the solution. However, as noted before 
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no method will guarantee minimality except the natural inclusion for a continuous 

function in which the variable appears only once. 

 

Optimality Tests 

There are several optimizations methods based on interval analysis; this one, however, is 

based on conducting four tests, if any sub-box of the feasible space fails one or more of 

these tests, that sub-box is removed from the space. 

 

The Upper-Bound Test 

Before conducting this test; an upper bound of the global minimum needs to be 

established. Initially, the upper bound, denoted here by upbd, is the objective function 

value of any feasible point. Each time a better value is found, the upper bound is updated 

to the new value. The updating process will continue until convergence is attained.   

 Consider a given box defined by the intervals {X1,X2,..Xn} has its function 

inclusion defined by the interval F({X1,X2,..Xn})=[LBX,UPX]. If 

LBX>upbd 

then, that box can be deleted for its known that the minimum value of the objective 

function in that box is no better than the upper bound. 

  

 

 

 



 119

The Infeasibility Test 

For each of the constraints pi (x)  i=1,..,m and a box defined by the intervals 

{X1,X2,..Xn}, Pi ({X1,X2,..Xn})=[LPi,UPi]  is the inclusion of that constraint for the given 

box. If 

LPi>0 for some i=1, 2… m 

then, the box can be deleted for its known that the constraint pi can never be satisfied by 

any point in that box. Of course, before applying this tests, all constraints must be 

presented in the standard form where they have to be less than or equal to zero. 

 

The Monotonicity Test 

Let gi(x) denote the gradient of the objective function with respect to the variable xi then 

for a given box defined by the intervals {X1,X2,..Xn}, Gi ({X1,X2,..Xn})=[LGi,UGi]  is 

the inclusion of that gradient function for the given box. If 

0∉[LGi,UGi] for all variables of a strictly feasible box then that box can be deleted 

except for its end points.  

 Note that this test necessitates strict optimality and a box that survive the deletion 

at the infeasibility test will only be tested if  the upper bound of all constraints’ 

inclusions is less than or equals to zero. i.e. UPi≤0 for all i=1,2,…m.  

 

The Nonconvexity Test 

Let hi(x) denote the Hessian of the objective function with respect to the variable xi then 

for a given box defined by the intervals {X1,X2,..Xn}, Hi ({X1,X2,..Xn})=[LHi,UHi]  is 
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the inclusion of the diagonal element of Hessian, i.e. the second derivative of the 

objective function with respect to xi for the given box. 

 If UHi< 0 for any of the variables of a strictly feasible box, then the interior of 

that interval is deleted because the function has to be positive semi-define over the entire 

box. Note that this test also requires strict optimality of a box.  

 

Interval Analysis Algorithm 

In the algorithm by Vaidyanathan and El-Halwagi (1996)(Vaidyanathan and El-Halwagi 

1996), the stopping criterion is reached when a box of a very small width is left at the 

end of the procedure. Initially, an upper bound and a lower bound is determined. Then 

the algorithm proceeds by selecting the box with the maximum width for investigation. 

The four tests are then conducted on the box. If any of the tests are failed, the box will be 

deleted otherwise the local optima of the unconstrained function over the box is 

evaluated. If that point is feasible, the box is split across the widest direction. However, 

if the box is infeasible at that point, the distrust region method will then be applied. The 

distrust region is to extend the infeasible point to an infeasible inner box by performing 

the following nested optimization problem: 

                                                         Max σ                                                         (8.3.a) 

s.t:  Pi([x-σ I, x+σ I]) >0  for some i=1,2,...,m                       (8.3.b) 

                                                           σ ≥ 0                                                            (8.3.c) 
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 The optimum point can even be obtained by gradually increasing σ until the 

constraint is satisfied. The expanded box from the infeasible point needs to be deleted. 

The deletion procedure will be described in a later section. 

 

Simulated Annealing (SA) 

Before describing the modified algorithm, a brief account of simulated annealing is 

presented here. Simulated annealing is a metaheuristic tool used to find near optimal 

solutions for an optimization problem. Simulated annealing surpasses other deterministic 

optima locators in that it tries to avoid being confined to local optima. This is achieved 

by relocating the current solution not just when a better one is found; but may also take 

place if an inferior solution is found. However, the latter decision of relocation is 

dependent on a random probability function that is dependent on the difference between 

the function value of the current iteration and the retained best value as will be described 

herein.   

 The advent of this technique is attributed to Kirkpatrick et al. (1983). This 

technique is an imitation of another technique used in quantum mechanics. When the 

substance is at high temperature, it will be in a state of chaos or disorder and when it is 

gradually cooled down (annealed), it tends to reorganize itself in a crystalline structure at 

which the energy of the substance is at its lowest ranks (Laarhoven and Aarts 1988).   
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Simulated Annealing in Optimization 

The concept of annealing in quantum mechanics can be exploited in optimization 

problems; however the design of the parameters is problem specific which is a feature 

that makes this technique an art more than a science.  

 Figure 8.2 shows the simulated annealing algorithm. The algorithm starts with a 

random or a predetermined point vc in the feasible space S. This point is initially 

designated as the current point and its corresponding function value is designated as the 

current function value fc. An initial temperature which is relatively high is also 

determined. This temperature will be decreased depending on an iteration index k 

initially set as 1. 

 For each temperature value, a number of iterations, kmax, is executed. A point in 

the feasible space in the neighborhood of the current point is selected and its 

corresponding function value is calculated. If the new value is better (less in the case of 

the minimization problem described in the algorithm of Figure 8.2), then it will replace 

the current value. If the new value is worse than the current then it has a chance to 

replace the current one if the exponential value of the difference between the two 

function values divided by the temperature i.e. exp((fc-fn)/T) is greater than a random 

between zero and unity. This value is the probability of accepting an inferior solution 

over a better one. 

 At each temperature value, a number of iterations kmax will be tried before the 

temperature is slightly decreased. The nested loop of iterations will be repeated for each 

temperature value until the lowest temperature is reached.    
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Figure 8.2 Simulated annealing algorithm 

 

 Notice that the difference between the function values is negative in this case and 

so the exponential function or the probability must be a positive fraction. We can notice 

that when the temperature is high, the probability of accepting an inferior objective value 

is higher than the case when the temperature is low i.e. at late stages of the runtime. This 

means that initially the algorithm tends to be less selective and it would accept 

significantly inferior values. This trick will allow the algorithm to survey the solution 

space at a wider range in the initial stages, as the temperature is decreased; the algorithm 

gets more selective in accepting inferior values of the objective function until the 
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temperature reaches almost zero, then inferior values will be accepted at an extremely 

low probability.  

 To allow the algorithm to locate a better value of the objective function, it is 

advised to decrease the temperature at a very low rate. 

 It can be proved that simulated annealing algorithm converges to the global 

optima (Laarhoven and Aarts, 1988), however achieving the global optima or reasonable 

near global-optima solution is dependent on the size of the problem as well as on the 

budget available i.e. time and cost of execution. For that matter, the intuitive practice of 

storing the best found objective value may not be commonly seen in simulated 

annealing, yet it is advisable if the problem size is small or if it is within the capacity of 

the available budget.  

 In addition to its simplicity, simulated annealing has some problem-specific 

parameters whose setting is left at the discretion of the programmer. Of these parameters 

is the initial temperature which ought to be high. The initial high temperature will 

prevent the algorithm from being prematurely entrapped in a local minima (Eglese 

1990).  The magnitude of this high temperature is, however, dependent on the available 

budget and the nature of the problem. Another issue is the rate at which the temperature 

is decreased or the so called “Temperature Scheduling.” There are different versions of 

this scheduling. Very classical versions are T=c T0 whereas c is usually between 0.8 and 

0.99, and T=T0/log(t+1) where To is the initial high temperature and t is an index that 

indicates the temperature change. 
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 Stopping criterion of each temperature and halting criterion of the whole 

algorithm are also left at the programmer’s discretion.  

 

Simulated Annealing in Interval Analysis 

In this work, simulated annealing is incorporated with interval analysis to speed up 

convergence by a faster upper bound update as well as detecting superior infeasible 

values of the objective functions and hence deleting them from the original search 

domain.  

 Despite its simple algorithm, simulated annealing can retrieve the global 

optimum regardless of the complexity of the topography of the given function. 

Nevertheless, the algorithm parameters e.g. temperature schedule, maximum number of 

iterations and initial points, need to be very well-selected for a robust performance of the 

algorithm. 

 

Defining the Neighborhood 

An additional complexity arises when applying this algorithm to a continuous function is 

the definition of the neighborhood and the determination of the initial point. This 

parameter should be chosen while considering the nature of the problem in hand as well 

as the mechanism of the algorithm. 

 In combinatorial problems, the neighborhood can be defined as loosely as any 

swap between any two vertices. The maximum number of iterations can then be 

determined based on the size of the graph being handled and also the annealing rate. For 
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a static annealing rate of the form Ti=cTi-1, the number of the different temperatures will 

be 

1
)log(

)/(log maxmin +=
c

TTn                                       (8.4) 

and the total number of iterations will be 

)5.8(. tureperTemperatotal NnN =  

 This number, in the case of combinatorial problems, can be set as a reasonable 

portion of the total number of possible swaps and the hope is set on the randomness that 

will lead to a new global optimum without exhaustively enumerating all possible swaps. 

 Unlike the case of combinatorial problems, with continuous variables, the 

number of possible searches can be unlimited. Moreover, the definition of the 

neighborhood has to be close enough to the current point so as not to miss out better 

solutions by making wider leaps.  The following function is a reasonable definition of a 

neighbor in the continuous space.  

( )1 (0,0..0, 1,0..0)i i perm permx x u uε+ = + = ±                             (8.6) 

whereas uperm is a random unit vector along one of the n axes in the n-dimensional space 

and ε is a very small number greater than zero. This function suggests that the next point 

is a slight displacement of the current point in one of the directions. Therefore, for a 

large feasible space, the selection of the initial point plays a very important role in 

retrieving the optimum point. If the initial point is far away from where the optimum is 

located, the total number of iterations might be exhausted before even getting closer to 

the optimum. This problem, however, cannot be cured by simply increasing the 
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maximum number of iterations and increasing the annealing rate since the space can still 

be large enough to miss out the global optimum in the absence of a hint that presumes 

the neighborhood of the global optimum. In addition to the technical difficulty, a 

computationally robust algorithm should as well be sought. Simulated annealing, after 

all, is a way to escape exhaustive enumerations and other time-consuming search 

techniques. 

 An attractive preclusion from using an exhaustively large number of iterations 

and also from diverging from the global optimum is to use a dynamic neighborhood 

function.  

 By decreasing the range of the leap as the temperature decreases, the search 

process will be allowed to perform an overall survey of promising points in the early 

stages of the algorithm. When the algorithm gets more selective in later stages, the width 

of the leap is minimal, hoping that the search process will be confined to the vicinity of 

the global optimum. 

 The suggested neighborhood function is a function of a dynamically decreasing 

ratio multiplied by a scalar which is a function of the average side of the box being 

searched. For a given box to be searched, defined by the intervals {[xL1, xR1], [xL2, 

xR2],.., [xLn, xRn]} This function is: 

5.00)0...0,1,0...0,0(
)7.8())((1
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S is the average side of the box being searched; it can be calculated as the average of the 

n sides of the box: 
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whereas di is the side length of the box in direction i, or in other words, the width of the 

interval of the variable i.β is a fractional number and so βS is the maximum allowable 

leap which will take place when the temperature is at the initial maximum value.  

 The choice of β depends on the size of the problem in hand. When tested on 

different problems of different initial boxes, the optimal b was found most of the time 

between 0.001 and 0.05. For the same number of iterations used, small values of β is 

best for small initial boxes. When large values of β is used with small boxes, the runtime 

tends to be longer  since the leap will then be wider and more likely to jump outside the 

box and hence the neighboring point will be rejected and another random neighbor is 

selected. Moreover, if β is too small for a large box, the number of iterations will be 

exhausted before survey the whole space and hence the final result will be too far from 

optimal.   

 Also, q is a fraction and p is zero at T=Tmax and increases by unity as T 

decreases. “q” is set in such away that allows a leap equivalent to βS at the maximum 

temperature and a leap that is within the required precision (δ) at the minimum 

temperature. This value of q is calculated by the following equations: 

).8.8(1
)log(

)/log( maxmin b
c
TTn +=  

whereas c is the annealing ratio which is about 0.80 to 0.95. 
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 The value “n” is basically the number of decrements needed to reach the 

minimum temperature and  “q” is then calculated from: 

).8.8(
/1
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 With this function, instead of feeding an initial point to start with, a box that 

defines the search domain needs to be provided to the algorithm. Moreover, the initial 

point will always be the center point of the box.  
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 Figure 8.3 and Figure 8.4 show the modified simulated annealing algorithm for a 

general unconstrained problem with an initial search domain defined by a box.    

 This algorithm is checked on different problems with different variables and 

initial box size. The simulated annealing algorithm used had Tmaximum=1 and Tminimum=10-

8 with a static cooling schedule Ti+1=0.8 Ti
 and a maximum number of iterations of 300 

per temperature. β is selected to be between 0.001 and 0.05.  

 In interval analysis with the continuing splitting of the initial box into small 

boxes, it might be computationally practical to set up the number of iterations relative to 

the volume of the sub-box being searched. This will allow a robust utilization of the 

computation time; the algorithm will then give more time to larger spaces to be searched 

and avoid spending superfluous number of iterations on smaller spaces.    
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Figure 8.3 The modified simulated annealing algorithm 
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Figure 8.4 Block diagram of the modified simulated annealing algorithm 

 

 In order to check the reliability of this neighborhood function, a test is conducted 

on the famous test problem, the so called six-hump camel back function: 
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This function has two global minimum namely: 

 f(-0.0898,0.7126) = f(0.0898,-0.7126) = -1.0316. 

 The simulated annealing algorithm used had Tmaximum=1 and Tminimum=10-8 with a 

static cooling schedule Ti+1=0.8 Ti
 and a maximum number of iterations of 300 per 

temperature. β is selected to be 0.05 and so the initial leap will be 0.05S.  

 With conventional algorithm, the global optimum could be easily retrieved using 

an initial point close enough to the global optimum (Figure 8.5). However, when the 

static neighborhood function was used with ε=0.01, the global optimum couldn’t be 

retrieved when the initial guess is more than 7 units away from the global optimum 

(Figure 8.6). However, with the dynamic neighborhood function, the optimum could be 

retrieved from as far as 200 units (Figure 8.7). These observations were recorded 

invariably for multiple runs of the algorithm.  

 As shown in Figure 8.7, the algorithm converges much faster to the global 

optimum when the neighborhood is made dynamic and wider leaps are allowed initially. 

In Figure 8.5, the initial point is (1,1) which is close enough to both (0.0898,-0.7126) 

and (-0.0898,0.7126) while in Figure 8.6, an initial guess of (7,7) was used. In Figure 8.7 

however, a box is fed to the algorithm defined on the x-axis with the interval [-100,300] 

and the same on the y-axis. The center of this square which served as the initial guess for 

the algorithm was the point (200,200). 
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Figure 8.5 The SA performance on the six-hump camel back function using an initial 

guess close to the global optimum 

 

 

Figure 8.6 The SA performance on the six-hump camel back function using an initial 

guess slightly far from the global optimum 
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Figure 8.7 The SA performance on the six-hump camel back function using a box with 

its center serving as an initial point is 200 units far from the global optimum 

 

 In all of the above plots, the function value is only plotted at the beginning of 

each temperature change. Only 20 consecutive acceptances of the new functions are 

allowed and a maximum of 1000 rejections is allowed. This is to allow diversification.  

 In interval analysis with the continuing splitting of the initial box into small 

boxes, it might be computationally practical to set up the number of iterations relative to 

the volume of the sub-box being searched. This will allow a robust utilization of the 

computation time; the algorithm will then give more time to larger spaces to be searched 

and avoid spending superfluous number of iterations on smaller spaces.    

 Simulated annealing with the proposed neighborhood function is compared with 

other solutions in the literature (Shang et al. 2007). The reported method (Table 8.1) is 

programmed in Fortran 95 for working on the windows XP system with Intel c1.7G CPU 
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and 256M RAM. The current work is programmed in Matlab on Windows XP system 

with Intel processor 1.79 GHz and 1.00 GB of RAM.  

 For these functions, simulated annealing with the proposed neighborhood 

function is about substantially faster than the reported results. It is worth-mentioning 

here that faster performance still obtained even when the initial point is not the center of 

the box where it happens to be the global minimum as in the second example.  

Moreover, when expanding the initial box up to ten times, simulated annealing still gives 

significantly faster results. The main drawback with simulated annealing will still be the 

fact that it is a metaheuristic method.  

 

Central Point Evaluation 

Simulated annealing will be used to find a good solution of the objective function inside 

a box and then will be compared to the upper bound. When the box is very small then it 

is computationally more feasible to, instead of using simulated annealing, the central 

point of the box is evaluated and treated the way a point by simulated annealing is 

treated. The time needed to evaluate the central point and splitting the box is much faster 

than applying simulated annealing.  
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Table 8.1 Comparing the Performance of Simulated Annealing with a Reported Method 
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Search Regions’ Bookkeeping       

Another subject that needs to be dealt with is the organization of the unsearched regions. 

In its initial shape, the feasible domain can be easily defined as a box in n-dimensional 

space with the initial n intervals. However, once the algorithm starts chopping off the 

suboptimal regions, the definition of the remaining part is not as easy. A handy 

expression is required not only to define that part but also to be computationally 

practical.  

 A practical way to express the remaining part of the box is to split it into smaller 

boxes. However, the splitting has to be efficient by minimizing the number of the 

resulting parts of the original. This is because each part will be listed as a sub-box in the 

search list. The resulting number of parts is a function of the dimension (variables) of the 

problem and hence the resulting number of parts can be substantial if the method is not 

selective enough. 

 The best way is to keep the resulting sub-boxes as large as possible to minimize 

the number of items in the list to be searched. This is done as shown in Figure 8.8. In 

each axis, the remaining part is divided on both sides of the chopped cube, the same is 

done to the next axis and so on. This will result in the creation of 2n elements to be 

added to the list. Although it seems massive to add 2n sub-boxes after every iteration, 

these sub-boxes will be directly investigated using the four tests before they are included 

in the list. If a sub-box fails any of the tests, it will not be included in the list. Moreover, 

the list will be updated each time the upper bound is updated.  
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Figure 8.8 Splitting the remaining space into 2n sub-boxes 

 

 The chopped sub-box is defined by the intervals, {XC1,XC2,..,XCn}, where Xci 

denotes the interval defining the side of the box in direction i. Each interval of the 

original box will have two subintervals, one on each side of the chopped interval (Figure 

8.9). 

Xi=[XLi,XCi,XRi]  

whereas XLi denotes the subinterval on the left of the chopped one and XRi denotes the 

subinterval on the left side.  The resulting 2n sub-boxes can be defined as follows: 
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Figure 8.9 Defining infeasible sub-boxes taken from the original box 

 

 On the right hand side of the equation, each X denotes an interval and each row 

defines a new sub-box to be investigated. In a matrix format, the 2n sub-boxes are 

expressed in two symmetrical matrices as shown in the left hand side of the above 

equation. The upper n×n matrix has its diagonal being the interval XRi for i=1,..n. Above 
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the diagonal, the whole original interval Xj for j=i+1…n is presented in each column j. 

While below the diagonal, the interval of the chopped sub-box Xcj for j=1,..i-1 is 

presented in each column j. 

 

Example 

To define the sub-boxes resulting from removing the sub-box Xc={[2,4],[5,8],[4,5]} 

from the parent-box X={[1,10], [1,10], [1,10]}, the following list is given:  

[1 , 2 ] [1 ,10] [1 ,10]
[2 , 4 ] [1, 5 ] [1,10]
[2 , 4 ] [5, 8] [ 1, 4]
[4,10] [1 ,10] [1 ,10]
[2 , 4 ] [8, 10 ] [1,10]
[2, 4] [5, 8] [ 5, 10]

CX X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 The matrix defines the resulting six boxes from removing a sub-box from the 

parent box in the 3D space. 

 

The Hybrid Algorithm  

The developed algorithm is based on using simulated annealing to search in the list of 

boxes. As the algorithm proceeds, tiny boxes will be produced to the splitting and there 

testing the central point of the box is more viable than conducting simulated annealing. 

Sometimes, the problem size suggests using the central method in lieu of simulated 

annealing throughout the whole procedure.  

 When integer variables are involved, the integrality requirement will be relaxed 

when the objective function is evaluated; either by simulated annealing or central point. 
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Then, if the point is feasible, the variable in the widest direction, if supposed to be 

integer, will be rounded to the nearest best integer and the new value of the objective 

function will be compared. If that point is, however, infeasible, it will be taken as to the 

distrust region subroutine to output an infeasible box. In the infeasible box, the integer 

side of the infeasible box will be expanded to the neighboring integers. So if the 

following infeasible box (811.a) with the variable xi as an integer, is being dealt with: 

).11.8(],...,,...,[ 11 axxxxxx RnLnRiLiRL  

The following box will be removed from the original one: 

 

⎣ ⎦ ⎡ ⎤ ).11.8(],...,,...,[ 11 bxxxxxx RnLnRiLiRL  

where ⎣.⎦ and ⎡.⎤ denote the floor and ceiling operators, respectively. 
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Figure 8.10 The hybrid algorithm using simulated annealing 

 

 The algorithm block diagram is shown in Figure 8.10. Updating the list is 

included as a black box and will be discussed in the next section.  

 The hybrid algorithm using simulated annealing runs as follows:  

1. Select the stopping criterion for the final maximum width of the objective 

function inclusion (ε) and the minimum length (γ) for the side of the interval for 

applying simulated annealing and distrust region.    
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2. Find a local minimum for the unconstrained problem using simulated annealing 

and use that point as the initial search point.  

3. Check the maximum width of the objective function inclusion in the list, if it is 

less than ε then STOP, otherwise select a box from the list. 

4. Check the total lengths of the box’s side, if it is greater than γ do, simulated 

annealing, otherwise evaluate the object function at the center of the box. 

5. Check the feasibility of that point. 

6. If the point is feasible, compare the objective function’s value with the upper 

bound. Update the upper bound if the new point is better. If an integer variable is 

involved and if the widest side is on an integer direction then the value in that 

direction will be rounded to the next integer that will give a better objective 

function, if none is feasible then the point will be regarded infeasible. 

7. If the point is feasible, then split the box across the widest direction at the 

feasible point. If that direction is integer, then round the point’s component in 

that direction to the nearest two integers. So if the feasible point component in 

the side [xiL xiR] is xi such that xiL ≤ xi ≤xiR, the box will be split at this direction 

with the two new boxes having the sides [xiL , floor(xi)] and [ceil(xi ), xiR] in the 

direction i.  

8. If the point is infeasible and if the maximum sides length is greater than δ, then 

the distrust region will be applied. The infeasible point will be expanded in all 

directions until the largest strictly infeasible box is obtained. A new set of boxes 

will result from removing this box from the original one as described before. The 
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integer directions will also be treated as described in equation (8.11.b). If the 

total sides’ length is less than δ, the box is split at that point as described before. 

 The new set of boxes will be tested before being added to the list. 

 

Interval Tests and Updating the List 

For each of the resulting boxes, the following procedure (Figure 8.11) is conducted to 

test each box: 

1. The upper bound test is first conducted. If the lower bound of the box LBX is 

larger than the upper bound then the whole box is deleted.  

2. If the upper bound test did not delete the box, the infeasibility test is then 

conducted. If the inclusion of any of the constraints is totally positive then the 

box is deemed strictly infeasible and so is deleted immediately.  

3. If the box is not strictly infeasible it will then be added to the list. 

4. If the box is strictly feasible, it will be qualified for the other two tests. 

5. In the monotonocity test, if zero is not included in any of the gradients 

inclusions, the objective function is tested at the boundaries of the box and 

compared to the current upper bound and then the whole box is deleted.  
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Figure 8.11 The optimality tests conducted on the new sub-boxes 

 

6. If the box survived the monotonoicity, the non-convexity test will then be 

conducted. If the inclusion of the Hessian diagonal is strictly negative for any of 

the variables then the objective function is tested at the boundaries of the box and 

compared to the current upper bound and then the whole box is deleted. 

The surviving boxes will be added to the list and the procedure will repeat. The 

population of the boxes in the list will increase and will also be updated when 

ever a better upper bound if found. The algorithm will continue until the boxes in 
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the list have a maximum range of objective function inclusion ε which is the 

error of the final optimum objective value.   

 

Accelerating the Search 

The chance of slow convergence and ridiculously lengthy runtime are very likely for 

many problems if they are directly fed to the algorithm. In order to overcome this 

situation, the algorithm can be accelerated by implementing preliminary breaking of the 

search domain before applying the proposed algorithm.  

 
 
 
 

 
 

Figure 8.12 Initial partitioning to accelerate the search 
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 A very efficient way to do that is by splitting the initial box into equally 

partitioned sub-boxes (Figure 8.a) and applying the four tests on them.  If the range of an 

integer variable is not too large, discretizing that range will help reduce the search 

domain (Figure 8.b).  

 Applying the four tests on these sub-boxes, after determining an upper bound, 

will help getting rid of all strictly infeasible portions as well as the strictly feasible ones 

that can be deleted using the nonconvexity test and the monotonocity test. This 

preparation can delete a huge portion of the initial search as will be discussed in some of 

the numerical examples.  

 For those boxes that survive the preparation step and are eligible to be fed to the 

proposed algorithm can have their central point evaluated and checked if feasible. These 

boxes are then sorted ascendingly starting from the lowest feasible central point upwards 

and so the box with the lowest feasible central point will be searched first. 

 
Numerical Examples 

In order to test the validity of the algorithm, numerical examples are presented herein. 

These examples were programmed in Matlab on Windows XP system with Intel 

processor 1.79 GHz and 1.00 GB of RAM.  

 

Example 1 

The following example (Cardoso et al. 1997; Kocis and Grossmann 1998) has two 

variables, one is integer and the other is continuous.   
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2

min 2

. . 1.25 0
1.6

0 1.6
{0,1}

x y

s t x y
x y

x
y

+

− − ≤
+ ≤
≤ ≤
=

 

 The initial box used in this example is relatively small. It is small enough that 

central point evaluation converges faster than when simulated annealing is used. 

Simulated annealing outperforms the central point method when the box is relatively 

large.  

 This problem has a local minima at (x,y)=(1.118,0) with an objective function 

value of 2.236. The global solution was found to be at (x, y) = (0.5, 1) with an objective 

value of 2. The computation time is 0.16 seconds without the acceleration step.  

 

Example 2 

This example is taken from (Floudas 1995; Kocis and Grossmann 1998) 

2
1

1 2

2

1

1

2

min 0.7 5( 0.5) 0.8

. . exp( 0.2) 0
1.1 1
1.2 0.2

0.2 1
2.22554 1

{0,1}

y x

s t x x
x y
x y

x
x

y

− + − +

− − − ≤
+ ≤ −
− ≤

≤ ≤
− ≤ ≤ −

=

 

 When solving this problem, central point evaluation is only allowed when the 

range of the objective function inclusion, or the total length of the box’s sides are less 
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than one. The initial upper bound used was f(x1,x2,y)=f(0.2.-1,0)=1.25. The global 

solution was found at f(x1,x2,y)=f(0.9419.-2.1,1)=1.0765. The computation time was 

0.73 seconds without the acceleration step. 

 

Example 3 

This example is taken from (Floudas et al. 1999). 

 

1 1
1 2 1 2

1
2 3 1 1 3

1 2 3

min 0.5 5

0.01 0.01 0.0005 1 0

1 , , 100

t t t t

t t t t t

t t t

− −

−

− −

+ + − ≤

≤ ≤

 

 The initial feasible point was selected at t= (1,1,1) and hence an initial upper 

bound f(t)=5.5. By setting the maximum width of the objective function inclusion at 

0.001, the global solution of the objective function is -83.256 at t = (  88.353, 7.6857, 

1.3161). The computation time was 47.1 seconds.  

 

Example 4 

The following problem is adopted from (Kocis and Grossmann 1998). 
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  The initial feasible point was selected at (x1,x2,x3,y1,y2,y3,y4)=(0,0,0,0,0,0,0) and 

hence an initial upper bound f(x,y)=20. By setting the maximum width of the objective 

function inclusion at 0.00001, the best answer was located at (x1,x2,x3,y1,y2,y3,y4)= (0.2, 

0.8, 1.9079, 1, 1, 0, 1) with an objective function value of 4.5796.      

 Using the acceleration step in this problem has reduced the searched domain to 

less than 15%. The computation time is 113.97 seconds.  

 

Conclusion 

A hybrid algorithm has been introduced for the global solution of MINLPs. The 

approach couples interval-based techniques with simulated annealing. Several interval 

arithmetic tools are used. These include interval-based tests for upper bound, feasibility, 

monotonicity, and non-convexity. Additionally, when an infeasible point is located, a 

distrust region approach is used to maximize the size the eliminated intervals. Simulated 
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annealing is used to accelerate the search by identifying near-optimal solutions that can 

be used to quickly update upper bounds used in eliminating search spaces. A 

neighboring function is used in the context of a revised simulated annealing algorithm. 

Also,  new interval decomposition and indexing techniques are introduced to keep track 

of the unsearched boxes. This hybrid algorithm provided a handy programmable 

algorithm that can solve the general non-convex mixed integer nonlinear problems.  The 

algorithm is however dependent on the topography of the feasible domain, the volume of 

the initial box and the number of variables and their type being integer or continuous.  
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CHAPTER IX 

CONCLUSIONS AND RECOMMNDATIONS 

Conclusions 

This work is aimed at introducing new methods to the design and analysis of the utility 

system. Employing the thermodynamic properties in the suggested approaches has 

proved very efficient and more accurate compared to the literature.  

 An optimization problem has been formulated to optimize the power cycle in 

conjunction with the chemical process. By involving an expression of the performance 

as well as the equipment cost, the problem is to solve for the best economic option by 

trading off the power produced with the fuel spent at the boiler. 

 The work in the literature on targeting the utility system tends to be off the 

required accuracy from an economic viewpoint. This deviation is in great part attributed 

to the interdependency of the involved variables.  A general algorithm has been 

developed using the thermodynamic properties’ correlations. This algorithm is made 

general enough to involve streams coming from the process and others sent to the 

process. The accuracy of this algorithm is much better than the literature work. 

 The next step was to optimize the pressure levels. Optimizing the pressure level 

is a cumbersome task. The developed algorithm was fast enough to run an exhaustive 

search for the optimum method. The maximum shaft work produced and the maximum 

area on the grand composite curve, were found to locate at the same pressure values. 

This observation has shifted the complexity of the problem from optimizing the 

formulated problem to optimizing the area on the grand composite curve. 



 153

 The pipeline layout has been optimized by employing the optimization 

techniques in graph theory. The major limitation of these techniques is the computational 

time but they are very efficient for small scale problems such as the case of the utility 

system.   

 The last part of this work was devoted to developing a global optimization 

technique using a heuristic method. Simulated annealing is a widely used heuristic 

method that is more common in integer problem. An approach has been developed to use 

that method in the case of the contentious problem. The approach has proven very 

efficient compared to the literature. An optimization algorithm has been developed to 

use simulated annealing for targeting global solution using interval analysis.   

 

Recommendations for Future Work 

A further advancement to this work is to incorporate the material management in the 

chemical process with the utilities. Many chemical substances can serve as working fluid 

in heating and refrigeration cycles. These substances could exist as products and 

byproducts in a chemical plant. Using the cooling/heating potential of these substances 

in conjunction with heat integration and power requirement of the chemical process will 

be a useful work in optimizing the plant economy.  

 The current work tackles the design problem of the utility system assuming 

steady operation. A further development is to solve the same problem for the case of 

unsteady operation and fluctuating process requirement of heat and power.   
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APPENDIX A 

TURBINE EFFICIENCY MODELS 

For a given turbine, the isentropic efficiency is a function of the flow load and hardware 

parameters provided by the manufacturer. This expression is based on Willan’s line that 

correlates the load to the power output. The isentropic efficiency is expressed by 

equation (A.1) (Mavromatis and Kokossis, 1998). 
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where A and B are constants dependent on the turbine and are functions of the inlet 

saturation temperature and the flowrate is measured in lb/hr. A good approximation, 

within 2%, is given by the following straight line segments (Mavromatis and Kokossis 

1998; Varbanov et al. 2004): 

A = a0 + a1 Tsat                                                         (A.3.a) 

B= a2 + a3 Tsat
                                                          (A.3.b) 
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Table A.1 The Regression Coefficients Used i=n the Isentropic Efficiency Equation  

 Back Pressure Turbines  Condensing Turbines 

 Wmax < 4.10 

MMBtu/s 

Wmax >  4.10 

MMBtu/s 

 Wmax <  5.12 

MMBtu/s 

Wmax > 5.12 

MMBtu/s 

a0 (Btu/s) -0.1518 -1.038755556 -0.115877778 -0.062488889 

a1 (Btu/s . oF-1 ) 0.00065 0.003461111 0.000555556 0.000777778 

a2 0.961977778 1.111644444 1.195233333 1.166466667 

a3 (oF-1) 0.000844444 0.000261111 0.000333333 0.000166667 

 

  The coefficients in Table A.1 are taken from Varbanov et. al (2004) and 

Mavromatis and Kokosis (1998). They exist in the SI units in those references but 

converted here into the American customary system for consistency with the other 

examples and quantities in this work.  

 Another expression of the isentropic efficiency developed by (Varbanov et al. 

2004) is: 
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with L is to be estimated by correlating the performance of each specific turbine. The 

 parameters a and b depends on the type pf pressure, maximum power load and 

the saturation temperature differences as Table B.1 (Smith 2005).  

a = a0 + a1 ∆Tsat                                                            (A.7.a) 

b= a2 + a3 ∆Tsat
                                                             (A.7.b) 

 

Table A.2 The Regression Coefficients Used in the Isentropic Efficiency Equation  

 Back Pressure Turbines  Condensing Turbines 

 Wmax < 2000 kW Wmax >2000 kW  Wmax < 2000 kW Wmax >2000 kW 

a0 (kW) 0 0 0 -463. 

a1 (kW/oC ) 1.08 4.23 0.662 3.53 

a2 1.097 1.155 1.191 1.220 

a3 (oC-1) 0.00172 0.000538 0.000759 0.000148 
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APPENDIX B 

PROOF OF CONVERGANCE 

The main problem that the algorithm is iterating on, is to determine the efficiency at the 

given flowrate. The convergence criterion is measured by comparing the output of two 

consecutive mass flowrates going to the process.  

 To prove the convergence, a single turbine is assumed and hence a single 

expansion zone of a process. This should not cause any lose of generality as will be 

explained later. 

 For a given single expansion zone, the steam is produced at the boiler at a given 

fixed enthalpy. The efficiency is then calculated as a function of the mass flowrate and 

the isentropic efficiency. However, that mass flowrate has to conform to the prescribed 

heat flow at the exit of the expansion zone. This makes the mass flowrate the most 

convenient variable for checking convergence. Before proofing convergence, the mass 

flowrate is expressed in a recursive function that performs fixed-point iterations. 

 Although the Mavromatis and Kokossis (1998) model is used here, the same 

procedure should work on other models. 
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 For a single expansion zone, the mass flowrate passing the expansion zone, M is 

the same as the mass flowrate discharged to the process, m.  

 

 Equation (B.1) is recursively dependent on (B.2) and (B.3).  Equation (B.1) can 

be expressed in terms of the other two. The following equation is obtained for such 

substitutions where all the subscripts are removed for simplicity and since a single 

expansion zone is used. 
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 Before proving, the absolute value of the derivative of g(mi) with respect to mi
 

needs to be shown, denoted by g’(mi) is less than or equal to a number K which is a less 

than unity i.e.:  
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Simplifying this equation: 
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Since A<BQ, it is now easy to notice that g’(mi)≤ K <1. 

 Having proved that fact, the convergence of the algorithm is now ready for 

provig .Recall that the algorithm of the single expansion zone works on the fixed-point 

iteration given in (B.4): 
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 Assume there is a solution of (B.4) which is s=g(s), using the mean value 

theorem of differential calculus, there is a value t between s and m such that: 

)()(')()( smtgsgmg −=−   

 Since g(s) =s and from equation (4), m1= g(m0), m2=g(m1) ,m3=g(m2) 

…mn=g(mn-1): 

|mn-s|=|g(mn-1)- g(s)| = |g’(t)| |mn-1 – s| 

But g’(t1) ≤ K  |mn-s| ≤ K |mn-1 – s|=K |g’(t1)| |mn-2 – s| ≤ K2 |mn-2 – s|… ≤ Kn |m0-s| 

 Since K<1, Kn  0 as n ∞ which means |mn-s| 0 as n ∞ and that concludes 

the proof of the convergence of the algorithm for a single expansion zone.  
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APPENDIX C 

MATLAB CODES 

Code No. Description 
1 Finding the optimum steam turbine inlet conditions (Chapter IV) 

 
2 The very general utility system targeting (Chapter V) 

 
3 This code is to perform targeting the utility system using the GCC 

(Chapter VI) 
 

4 To perform an exhaustive search in order to locate the optimum pressure 
levels using the iterative algorithm with the thermodynamic properties 
(Chapter VI) 
 

5 To perform an exhaustive search in order to locate the optimum pressure 
levels using the area on the GCC (Chapter VI) 
 

6 To produce the mass exchange pinch diagram 
 

7 The same as Code 6 but it also consider external lean stream calculations 
 

8 To produce the material recycle pinch diagram 
 

9 To produce the thermal pinch diagram and the grand composite curve 
 

10 The Code of Example 1 in Chapter VIII 
 

 

 

 

 

 

 

 



 167

Code 1 

%Refer to Chapter IV of the Dissertation, This Code is used 
%to find the optimum steam turbine's inlet conditions for a 
%given process heat requirement. In the cost analysis a 
%cost index of (470/400) is assumed for 2008, The index 
%will affect the cost but not the %optimal selection of 
%variables 
format short g 
%The Heat and pressure requirement of the process 
Q=20e6; 
P2=100; 
Ts2=117.42*P2^0.2289; 
hf2=0.0005*Ts2^2+0.7159*Ts2+8.8982; 
bestcost=inf; 
i=1; 
results=zeros(1,7); 
T1=0; 
%Turbine Specifications 
mmax=25000; %Max flowrate 
T1max=450; %Max inlet temperature 
%Boiler specifications 
etab=0.4; %effciency 
af=2.8; %cost of fuel, $/MMBtu; 
P1max=280; %Max pressure 
for P1=P2+1:P1max; 
    Ts1=117.42*P1^0.2289; 
    for T1=Ts1:T1max; 
        hf1=0.0005*Ts1^2+0.7159*Ts1+8.8982; 
        As=-0.5549*log(Ts1)+3.7876; 
        Bs=0.1001*exp(0.0017*Ts1); 
        s1=As*T1^Bs; 
        h1=0.2029*Ts1*(s1^3.647)+817.35; 
        h2s=0.2029*Ts2*(s1^3.647)+817.35; 
        eta1=1; 
        eta2=999; 
        while abs(eta1-eta2)>0.0001 
            h2a=h1-eta1*(h1-h2s); 
            m=Q/(h2a-hf2); %lb/hr 
            Pt=(h1-h2a)*m;%btu/hr 
            A=-0.1518+0.00065*Ts1; 
            B=0.961977778+0.000844444*Ts1; 
            DHs=h1-h2s; 
            etamax=(1/B)*(1-(3.41214e6*A/(DHs*(mmax)))); 
            eta2=eta1; 
            eta1=(6/5)*etamax*(1-(mmax/(6*m)));  
        end 
        s2=((h2a-817.35)/(0.2029*Ts2))^0.2742; 
        As=-0.7918*s2^3+3.4575*s2^2-4.5513*s2+2.1267; 
        Bs=710.22*s2^3-3910.6*s2^2+7117.3*s2-3253.5; 
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        T2=(h2a-Bs)/As; 
        if T2<Ts2 
            continue 
        end 
        %calculation parameters 
        ae=0.05; %price of electricity in $*KW.hr 
        etag=0.4; %the effciency of the electrical     
     %generator 
         %cost calculations and converstions  
         Qb=(h1-hf1)*m; %btu/hr 
         Cf=af*Qb*1e-6/etab; %fuel cost ($/hr) 
         Fp=1; 
         Pt=(h1-h2a)*m; %turbine shaft work (btu/hr) 
         Pe=ae*Pt*etag/3413; %power price ($/hr) 
         P1g=P1-14.667; %boiler gague pressure (psig) 
         nP=7E-4*P1g+0.6; %The factor accounting for the      
     %pressure in the boiler cost, 
         Tsh=T1-Ts1; %the superheat temperature in (F); 
         nT=-1.54E-6*Tsh^2+1.3E-3*Tsh+1; %The factor    
     %accounting for the superheat temperature in the 
     %boiler cost, 
         Cboiler=3*Qb^0.77*nP*nT; %boiler cost ($) 
         Cturbine=475*Pt^0.45;%Turbine cost($) 
           
annualcost=(470/400)*(Cboiler+Cturbine)/10+1.3*Fp*Cf*8000-
Pe*8000; 
 
 
        if annualcost<bestcost && T2-Ts2<30 && T2-Ts2>5 && 
m<mmax 
            bestcost=annualcost; 
            best_P=P1; 
            results(i,:)=[P1 T1-Ts1 m T2-Ts2 etamax eta1 
bestcost]; 
            i=i+1; 
            wk1write('newresult.xls',results,1,2); 
             
        end 
    end 
end 
%To output a table with the following columns: 
%[inlet_pressure inlet_superheat mass_flow outlet_superheat 
%max_effciency best_cost]  
results 
%To output the grand best cost 
Bestcost 
 
Code 2 
%the number of expansion zones 
n=input('How many headers do you have?  n='); 
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s=input('What is the entropy at the boilers exit?  s=');  
Tsat=input('Insert the Tsat vector Tsat=[Tsat1 
Tsat2...Tsatn] Tsat='); 
P=input('Insert the pressure vector P=[P1 P2...Pn] P='); 
%insert the streams coming into the system with their mass 
%flowrates 
%(lb/hr)and  
Nc=input('How many process streams are input to the utility   
Nc='); 
if Nc>0 
    mc=input('Insert the mass flow rate vector of the input 
streams mc=[mc1 mc2..]   mc='); 
    Tc=input('Insert the Temperature vector of the input 
streams Tc=[Tc1 Tc2..]   Tc='); 
    Pc=input('Insert the Pressure vector of the input 
streams Pc=[Pc1 Pc2..]   Pc='); 
    hin=input('Insert the enthalpy vector of the input 
streams hin=[hin1 hin2.. ]  hin='); 
end 
%The steam required for non-heating purposes  
Np=input('How many non-heating process stream requirements 
Np='); 
if Np>0 
    mc=input('Insert the mass flow required by the process 
mp=[mp1 mp2..]   mp='); 
    Pp=input('Insert the Pressure vector of the non-heating 
steam requirements Pp=[Pp1 Pp2..]   Pp='); 
end 
%Insert the heats (Btu/hr)required by the process  
Nh=input('How many hot streams are needed for the process   
Nh='); 
if Nh>0 
    Q=input('Insert the heat Btu/hr required for each 
process  Q='); 
    Th=input('Insert the minimum temperature (F) for each 
stream  Th='); 
end 
format short g 
% The saturation properties at each header 
for i=1:n 
    h(i)=0.2029*Tsat(i)*s^3.647+817.35; 
    hf(i)=0.0005*(Tsat(i))^2+0.7159*Tsat(i)+8.8982; 
    hfg(i)=-0.0022*(Tsat(i))^2+0.7319*Tsat(i)+901.69; 
    hg(i)=hf(i)+hfg(i); 
    sf(i)=0.0013*Tsat(i)+0.052; 
    sfg(i)=-0.0024*Tsat(i)+1.9071; 
    sg(i)=sf(i)+sfg(i);     
end   
%Establish the mass in each header  
M=zeros(1,n); 
m_in=zeros(1,n); 
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m_out=zeros(1,n);  
%determine the streams to be introduced to each header 
Mh_in=zeros(1,n); 
for j=1:Nc 
    for i=1:n 
        if Pc(j)>=P(i)  
            m_in(i)=m_in(i)+mc(j); 
            Mh_in(i)=Mh_in(i)+mc(j)*hin(j); 
            break; 
        end 
    end 
end 
mp_out=zeros(1,n); 
for j=1:Np 
    for i=1:n-1 
        if Pp(j)<=P(i)&& Pp(j)>=P(i+1) 
            mp_out(i)=mp_out(i)+mp(j); 
            break; 
        end 
    end 
end 
for i=1:n 
    if m_in(i)==0 
        h_in(i)=0; 
    else 
        h_in(i)=Mh_in(i)/m_in(i); 
    end 
    %Initial mass out 
end 
h_in 
for j=1:Nh 
    for i=n:-1:1 
        if Th(j)<=Tsat(i)  
            mh(j)=Q(j)/(h(j)-hf(j));  
            m_out(i)=m_out(i)+mh(j); 
            break; 
        end 
    end 
end 
mh 
m_out 
for i=1:n 
    for j=i:n 
        M(i)=M(i)+(m_out(j)+mp_out(j)-m_in(j)); 
    end  
end  
M 
Xz=zeros(1,n-1); 
% Find the initial mass flow rates 
for i=1:n 
Ha_in(i)=h(i); 
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H_out(i)=(M(i)*Ha_in(i)+h_in(i)*m_in(i))/(M(i)+m_in(i));  
end 
Ha_in 
H_out 
m_out 
M 
eta(1)=1; 
Mb=M; 
for k=1:20 
    for i=1:n 
        if i==1 
            Ha_in(i)=0.2029*Tsat(i)*s^3.647+817.35; 
        else 
            S_out(i-1)=((H_out(i-1)-817.35)/(0.2029*Tsat(i-
1)))^0.2724; 
            hzsin(i)=0.2029*(Tsat(i-1))*(S_out(i-
1))^3.647+817.35; 
            if S_out(i-1)>=sg(i) 
                hzsout(i)=0.2029*(Tsat(i))*(S_out(i-
1))^3.647+817.35; 
            else 
                x=(S_out(i-1)-sf(i))/sfg(i); 
                hzsout(i)=hf(i)+x*hfg(i); 
            end 
            Dh(i)=0.2029*(Tsat(i-1)-Tsat(i))*(S_out(i-
1))^3.647; 
            A(i)=-0.1518+0.00065*Tsat(i-1); 
            B(i)=0.961977778+0.000844444*Tsat(i-1); 
            eta(i)=(1-(3414430*A(i)/(Dh(i)*M(i))))/B(i); 
            Ha_in(i)=H_out(i-1)-eta(i)*Dh(i); 
            Xz(i-1)=(Ha_in(i)-hf(i))/hfg(i);%the quality at 
%the exit of each turbine 
        end 
        
H_out(i)=(M(i)*Ha_in(i)+h_in(i)*m_in(i))/(M(i)+m_in(i));  
    end 
    m_out=zeros(1,n);  
    for j=1:Nh 
        for i=n:-1:1 
            if Th(j)<=Tsat(i)  
                mh(j)=Q(j)/(H_out(i)-hf(i)); 
                m_out(i)=m_out(i)+mh(j); 
                break; 
            end 
        end 
    end 
    M=zeros(1,n); 
    for i=1:n 
        for j=i:n 
            M(i)=M(i)+(m_out(j)+mp_out(j)-m_in(j)); 
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        end  
    end    
end    
% Output effciencies 
eta 
%output Mass flowrates 
M 
%Output the power produced at each zone 
for i=2:n %the first zone is excluded (between the boiler 
and the first header where power is zero) 
    E(i)=M(i)*eta(i)*Dh(i); 
end 
E 
 
Code 3 
%This code is used to perform targeting using the GCC.  
s=input('Enter the entropy at the exit of the highest 
pressure main?  s=');  
Tsat=input('Insert the saturation temperature at each main 
starting from the highest in the format, Tsat=[Tsat1 
Tsat2...Tsatn] Tsat='); 
Qout=input('Insert the heat to be provided to the process, 
Qout=[Qout,1 Qout,2...Qout,n] Qout='); 
Qin=input('Insert the heat to be fed from the process to 
the mains, Qin=[Qin,1 Qin,2...Qin,n] Qin='); 
 
n=size(Tsat,2); 
for i=1:n 
    h(i)=0.2029*Tsat(i)*s^3.647+817.35; 
    hf(i)=0.0005*(Tsat(i))^2+0.7159*Tsat(i)+8.8982; 
    hfg(i)=-0.0022*(Tsat(i))^2+0.7319*Tsat(i)+901.69; 
    hg(i)=hf(i)+hfg(i); 
    sf(i)=0.0013*Tsat(i)+0.0493; 
    sfg(i)=-0.0024*Tsat(i)+1.916; 
    sg(i)=sf(i)+sfg(i);     
end   
 
%Establish the mass in each header  
M=zeros(1,n); 
m_in=zeros(1,n); 
m_out=zeros(1,n);  
%determine the streams to be introduced to each header 
Mh_in=zeros(1,n); 
for i=1:n 
    if Qin(i)>0 
        m_in(i)=Qin(i)/(hfg(i));  
        h_in(i)=hg(i); 
    else 
        h_in(i)=0; 
    end 
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end 
 
%initial isentropic guess for the mass flow to the process 
for i=1:n 
    m_out(i)=Qout(i)/(h(i)-hf(i)); 
end 
 
for i=1:n 
    for j=i:n 
        M(i)=M(i)+(m_out(j)-m_in(j)); 
    end  
end  
 
Xz=zeros(1,n-1); 
% Find the initial mass flow rates 
for i=1:n 
    Ha_in(i)=h(i); 
    
H_out(i)=(M(i)*Ha_in(i)+h_in(i)*m_in(i))/(M(i)+m_in(i)); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
eta(1)=1; 
Mb=M; 
for k=1:20 
     
    for i=1:n 
        if i==1 
            Ha_in(i)=0.2029*Tsat(i)*s^3.647+817.35; 
        else 
   
            S_out(i-1)=((H_out(i-1)-817.35)/(0.2029*Tsat(i-
1)))^0.2724; 
            hzsin(i)=0.2029*(Tsat(i-1))*(S_out(i-
1))^3.647+817.35; 
            if S_out(i-1)>=sg(i) 
                hzsout(i)=0.2029*(Tsat(i))*(S_out(i-
1))^3.647+817.35; 
            else 
                x=(S_out(i-1)-sf(i))/sfg(i); 
                hzsout(i)=hf(i)+x*hfg(i); 
            end 
            Dh(i)=0.2029*(Tsat(i-1)-Tsat(i))*(S_out(i-
1))^3.647; 
            A(i)=-0.1518+0.00065*Tsat(i-1); 
            B(i)=0.961977778+0.000844444*Tsat(i-1); 
            eta(i)=(1-(3414430*A(i)/(Dh(i)*M(i))))/B(i); 
            Ha_in(i)=H_out(i-1)-eta(i)*Dh(i); 
            Xz(i-1)=(Ha_in(i)-hf(i))/hfg(i);%the quality at  
        %the exit of each turbine 
        end 
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H_out(i)=(M(i)*Ha_in(i)+h_in(i)*m_in(i))/(M(i)+m_in(i));  
    end 
     
    m_out=zeros(1,n);  
    for i=1:n 
         
        m_out(i)=Qout(i)/(H_out(i)-hf(i)); 
         
    end 
    M=zeros(1,n); 
    for i=1:n 
        for j=i:n 
            M(i)=M(i)+(m_out(j)-m_in(j)); 
        end  
    end  
     
end    
     
% Out put efficiencies 
eta 
%output Mass flowrates 
M 
%Output the power produced at each zone 
for i=2:n %the first zone is excluded (between the boiler 
and the first header where power is zero) 
    E(i)=M(i)*eta(i)*Dh(i); 
end 
E 
 
Code 4 
function[]=blevel() 
%The input is the matrix from the grand composite curve. 
%The first column is the temperature The second column is 
%the heat to be transferred per interval The third column 
%is the accumulation of heat i.e. the point of Q 
%corresponding with the value of T on the GCCC 
g=[ 260 0 0 ; 
 280 20 20 ; 
 290 5 25 ; 
 300 13 38 ; 
 320 4 42 ; 
 322 15 57 ; 
 330 10 67 ; 
 335 15 82 ; 
 340 20 102 ]; 
A=size(g,2); 
T=transpose(g(:,1)); 
Q=1e6*transpose(g(2:A,2)); 
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format short g; 
Tsat=zeros(1,2); 
bestTsat=zeros(1,2); 
Tp=g(1,1); 
Tsat(1)=g(1,A); 
Etotalmax=0; 
qq=1; 
Emax=0; 
Mf=zeros(30,6); 
N=1; 
%The following nested loops are to perform an exhaustive 
%search for a four level utility. 
for i=Tsat(1):-1:Tp 
    Tsat(2)=i; 
    for j=Tsat(2):-1:Tp 
        Tsat(3)=j; 
         
        for k=Tsat(3):-1:Tp 
             
            Tsat(4)=k; 
             
            QQ=duty(Tsat,T,Q); 
            [E,Etotal,ETA,MM]=Epower(QQ,Tsat); 
            Mf(N,:)=[Tsat(1,1) Tsat(1,2) (Tsat(1,1)-
Tsat(1,2))*QQ(1,2) Etotal MM(1,2) ETA(1,2)]; 
            if Etotal>Emax 
                Emax=Etotal; 
                Tmax=Tsat; 
            end 
            N=N+1; 
             
        end 
    end 
end 
Emax 
Tmax 
Mf 
function [QQ]=duty(Tss,T,Q) 
N=size(Tss);n=N(1,2); 
Ts=zeros(1,n); 
for k=1:n 
    Ts(k)=Tss(n-k+1); 
end 
M=size(T);m=M(1,2); 
Qs=zeros(1,n); 
for i=1:n 
    Qs(i)=0; 
    Ts(i); 
    for j=1:m 
         
        T(j); 
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        if Ts(i)>T(j) &&Ts(i)>T(j+1) 
             
            Qs(i)=Qs(i)+ Q(j); 
        elseif Ts(i)>T(j) &&Ts(i)<=T(j+1) 
            Qs(i)=Qs(i)+ (Q(j)/(T(j+1)-T(j)))*(Ts(i)-T(j)); 
            break 
        end 
    end 
end 
QQs=zeros(1,n); 
for k=1:n 
    if k==1 
        QQs(k)=Qs(k); 
    else 
        QQs(k)=Qs(k)-Qs(k-1); 
    end 
end 
 
QQ=zeros(1,n); 
for k=1:n 
    QQ(k)=QQs(n-k+1); 
end 
 
function[E,Etotal,ETA,MM]=Epower(Q,Tsat) 
%This function is used to determine the mass flowrates 
%required at the boiler and then distributed to the 
%different headers according to the heat requirement 
 
n=size(Tsat,2); %the number of headers   
 
%Setup the steam condition at the boiler 
T1=1000; 
s=(-
0.5549*log(Tsat(1))+3.7876)*T1^(0.1001*exp(0.0017*Tsat(1)))
;%entropy at boiler's exit 
 
%initially, since the exit enthalpy, mass flow and 
%efficiency are functions of each other, an iterative 
%procedure is followed, the %enthalpy values are initiated 
%by assuming isentropic expansion throughout the %utility 
%system  
for i=1:n 
    h(i)=0.2029*Tsat(i)*s^3.647+817.35; 
    hf(i)=0.0005*(Tsat(i))^2+0.7159*Tsat(i)+8.8982; 
    hfg(i)=-0.0022*(Tsat(i))^2+0.7319*Tsat(i)+901.69; 
end   
 
%Establish the mass in each header  
M=zeros(1,n); 
m_out=zeros(1,n);  
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%The initial guess of the mass flowrates  
for j=1:n 
    m_out(j)=Q(j)/(h(j)-hf(j));   
end 
 
%The initial guess of the mass flow rates through each 
%expansion zone 
for i=1:n 
    for j=i:n 
        M(i)=M(i)+m_out(j); 
    end  
end  
 
% The initial enthalpies 
for i=1:n 
    Ha_in(i)=h(i); 
    H_out(i)=Ha_in(i);  
end 
 
%Now, the iterative procedure starts with isentropic 
%expansion (effciency=1), the mass is corrected and then 
%the %effciency is updated and so on 
eta(1)=1; 
Mb=M; 
for k=1:20 
    for i=1:n 
        if i==1 
            Ha_in(i)=0.2029*Tsat(i)*s^3.647+817.35; 
        else 
            S_out(i-1)=((H_out(i-1)-817.35)/(0.2029*Tsat(i-
1)))^0.2724; 
            hzsin(i)=0.2029*(Tsat(i-1))*(S_out(i-
1))^3.647+817.35; 
            hzsout(i)=0.2029*(Tsat(i))*(S_out(i-
1))^3.647+817.35; 
            Dh(i)=0.2029*(Tsat(i-1)-Tsat(i))*(S_out(i-
1))^3.647; 
            A(i)=-0.1518+0.00065*Tsat(i-1); 
            B(i)=0.961977778+0.000844444*Tsat(i-1); 
            eta(i)=(1-(3414430*A(i)/(Dh(i)*M(i))))/B(i); 
            Ha_in(i)=H_out(i-1)-eta(i)*Dh(i); 
        end 
        H_out(i)=Ha_in(i);   
    end 
 
    m_out=zeros(1,n);  
  %Correct the mass flow to the headers.  
    for j=1:n 
        m_out(j)=Q(j)/(H_out(j)-hf(j));   
    end 
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%Update the mass flow through each expansion zone 
    M=zeros(1,n); 
    for i=1:n 
        for j=i:n 
            M(i)=M(i)+m_out(j); 
        end  
    end    
end    
 
%Calculate the resulting power values.  
   for i=1:n-1 
       E(i)=eta(i+1)*Dh(i+1)*M(i+1); 
   end 
 
   Etotal=0; 
   for i=1:n-1 
       if abs(E(i))==E(i) 
           Etotal=Etotal+E(i); 
       end 
   end 
   Etotal; 
   ETA=eta; 
   MM=M; 
 
Code 5 
%This code works the same as Code 4 except that it uses 
%the area to locate the optimal power. The input is the 
%matrix from the grand composite curve. The first column is 
%the temperature. The second column is the heat to be 
%transferred per interval The third column is the 
%accumulation of heat i.e. the point of Q corresponding 
%with the value of T on the GCCC 
g=[ 260 0 0 ; 
 280 20 20 ; 
 290 5 25 ; 
 300 13 38 ; 
 320 4 42 ; 
 322 15 57 ; 
 330 10 67 ; 
 335 15 82 ; 
 340 20 102 ]; 
A=size(g,2); 
T=transpose(g(:,1)); 
Q=1e6*transpose(g(2:A,2)); 
 
format short g; 
Tsat=zeros(1,2); 
bestTsat=zeros(1,2); 
Tp=g(1,1); 
Tsat(1)=g(1,A); 
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Etotalmax=0; 
qq=1; 
Emax=0; 
Mf=zeros(30,6); 
N=1; 
%The following nested loops are to perform an exhaustive 
%search for a four 
%level utility. 
for i=Tsat(1):-1:Tp 
    Tsat(2)=i; 
    for j=Tsat(2):-1:Tp 
        Tsat(3)=j; 
         
        for k=Tsat(3):-1:Tp 
             
             [Qsat]=points(g(:,1),g(:,3),Tsat); 
                    Area=0; 
                    for i=1:size(Tsat,2)-1 
                        Area =Area+(Tsat(i)-            
Tsat(i+1))*Qsat(i+1); 
                    end 
                    if Area>maxArea 
                        maxArea=Area; 
                        maxTsat=Tsat; 
                    end 
        end 
    end 
end 
Emax 
Tmax 
Mf 
function [QQ]=duty(Tss,T,Q) 
N=size(Tss);n=N(1,2); 
Ts=zeros(1,n); 
for k=1:n 
    Ts(k)=Tss(n-k+1); 
end 
M=size(T);m=M(1,2); 
Qs=zeros(1,n); 
for i=1:n 
    Qs(i)=0; 
    Ts(i); 
    for j=1:m 
         
        T(j); 
 
        if Ts(i)>T(j) &&Ts(i)>T(j+1) 
             
            Qs(i)=Qs(i)+ Q(j); 
        elseif Ts(i)>T(j) &&Ts(i)<=T(j+1) 
            Qs(i)=Qs(i)+ (Q(j)/(T(j+1)-T(j)))*(Ts(i)-T(j)); 
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            break 
        end 
    end 
end 
QQs=zeros(1,n); 
for k=1:n 
    if k==1 
        QQs(k)=Qs(k); 
    else 
        QQs(k)=Qs(k)-Qs(k-1); 
    end 
end 
 
QQ=zeros(1,n); 
for k=1:n 
    QQ(k)=QQs(n-k+1); 
end 
 
 
 
Code 6 
 
%This function is used to establish the Mass exchange pinch 
%diagram, the input arguments are two matrices, the Rich 
%stream Matrix (Rd) consists of n rows that represents the 
%number of streams and three columns representing flowrate, 
%supply composition and Target composition respectively. 
%The other matrix is the Lean stream matrix that is 
%composed of m rows representing the number of lean streams 
%and 6 columns representing flowrate, supply composition, 
%target composition, m, epsilon and b, respectively. The 
%last three are the equilibrium equation %parameters that 
%are used to fit the lean stream compositions on the rich 
%stream scale. 
function[Nr,Ns,Yp,ExCapacity,ExternalMSA]=exmass(Rd,Sd)The 
first step is define the lean stream loads and transform 
the composition to fit on the rich stream scale.  
Ls=zeros(size(Sd,1),1); 
ys=zeros(size(Sd,1),2); 
Ms=zeros(size(Sd,1),3); 
for i=1:size(Sd,1) 
    Ls(i)=Sd(i,1)*(Sd(i,3)-Sd(i,2)); 
    
ys(i,:)=[(Sd(i,2)+Sd(i,5))*Sd(i,4)+Sd(i,6),(Sd(i,3)+Sd(i,5)
)*Sd(i,4)+Sd(i,6)]; 
    Ms(i,:)=[Ls(i)/(ys(i,2)-ys(i,1))  ys(i,:)]; 
end 
 
%Arrange the streams by segments to be more easily 
%manipulated 
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[gr,gs]=curve(Rd,Ms); 
%The same range of compositions is used for the 
%convenience of plotting the pinch diagram and determining 
%the External MSA needed %and the excess capacity of the 
%lean streams. 
m=size(gr,1); 
n=size(gs,1); 
Ymin=min(gr(1,1),gs(1,1)); 
Ymax=max(gr(m,1),gs(n,1)); 
if Ymin<gr(1,1) 
    gr=[Ymin 0;gr]; 
end 
if Ymin<gs(1,1) 
    gs=[Ymin 0;gs]; 
end 
m=size(gr,1); 
n=size(gs,1); 
if Ymax>gr(m,1) 
    gr=[gr; Ymax 0]; 
end 
if Ymax>gs(n,1) 
    gs=[gs; Ymax 0]; 
end 
 
% “Drawing the lines” 
%This subroutine "Stream" is used to connect the points in 
%the different segments and keep them in one continuous 
%line 
qs=stream(gs); 
qr=stream(gr); 
 
%For convenience, the composition vector is defined 
%separately from the input matrices 
Yr=gr(:,1);Ys=gs(:,1); 
%This subroutine "pinch" is used to determine the pinch 
%point and match the rich and lean streams on the pinch 
%diagram 
[Ns,Nr,Yp,ExCapacity,ExternalMSA]=pinch(Yr,Ys,qr,qs); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is used to connect the points of the given 
%segments  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function[q]=stream(g) 
%Given is a matrix of two columns, the left column is the 
%composition and the right one is the Load required for 
%each two consecutive compositions in the first column, of 
%course the first load required will be zero 
n=size(g,1); 
q=zeros(n,1); 
q(1)=0; 
for i=2:n 
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    q(i)=q(i-1)+g(i,2); 
end 
%%%%%%%%%%%%%%%%%%%% 
%This function is used to establish the load requirement 
%per composition segment in order to establish the heat 
%pinch diagram 
 
function[gr,gs]=curve(Rd,Sd) 
format short g 
%For the Rich stream 
%Establish the composition column that has all possible 
%values 
Concenr=[Rd(:,2);Rd(:,3)]; 
%Eliminate the repeated Composition values 
Concenr=sortrows(Concenr,1); 
j=2; 
while (j<=size(Concenr,1)) 
    if Concenr(j,1)==Concenr(j-1,1) 
        Concenr(j,:)=[]; 
    else 
        j=j+1; 
    end 
end 
%Establish the column needed to plot the line on the pinch 
%diagram 
gr=zeros(size(Concenr,1),2); 
gr(1,:)=[Concenr(1) 0]; 
for i=2:size(Concenr,1) 
    for j=1:size(Rd,1) 
        if Rd(j,2)>=Concenr(i)&& Rd(j,3)<=Concenr(i-1) 
            gr(i,2)=gr(i,2)+ Rd(j,1)*(Concenr(i)-Concenr(i-
1)); 
        end 
    end 
    gr(i,:)=[Concenr(i) gr(i,2)]; 
end 
 
%%%%%%%%%%%%%%%%%% 
%The same is done for the lean stream 
%Establish the composition column that has all possible 
%values 
Concenc=[Sd(:,2);Sd(:,3)]; 
%Eliminate the repeated composition values 
Concenc=sortrows(Concenc,1); 
j=2; 
while (j<=size(Concenc,1)) 
    if Concenc(j,1)==Concenc(j-1,1) 
        Concenc(j,:)=[]; 
    else 
        j=j+1; 
    end 
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end 
%Establish the column needed to plot the line on the pinch 
%diagram 
gs=zeros(size(Concenc,1),2); 
gs(1,:)=[Concenc(1) 0]; 
for i=2:size(Concenc,1) 
    for j=1:size(Sd,1) 
        if Sd(j,2)<=Concenc(i-1)&& Sd(j,3)>=Concenc(i) 
            gs(i,2)=gs(i,2)+Sd(j,1)*(Concenc(i)-Concenc(i-
1)); 
        end 
    end 
    gs(i,:)=[Concenc(i) gs(i,2)]; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is used to determine the pinch point and put 
%the rich and lean streams in a plottable format on the 
%pinch diagram 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function[Ns,Nr,Yp,ExCapacity,ExternalMSA]=pinch(Yr,Ys,qr,qs
,DT) 
h=size(qr,1); 
c=size(qs,1); 
%The basic idea of determining the pinch point is to plot 
%both streams starting from L=0 on the vertical axis, then 
%we shift the lean stream to a position that touches the 
%rich stream at one single point. Firstly, both streams are 
%plotted starting from L=0 (on the horizontal axis), then 
%each composition value in Yr and Ys vectors will have the 
%corresponding q value on both streams (because the pinch 
%point must correspond to at least one value of Y in Yr 
%and/or Ys), Then at each Y, we find the corresponding q in 
%the Lean stream minus the corresponding q in rich stream, 
%the shift will be the maximum difference. 
 
%Find qs in the cold stream that corresponds with the Y in 
%the Yr vector 
 
for i=1:h 
    for j=2:c 
        if Yr(i)>=Ys(j-1)&& Yr(i)<=Ys(j) 
            qs2h(i,:)=[Yr(i) ((qs(j)-qs(j-1))/(Ys(j)-Ys(j-
1)+eps))*Yr(i)+(qs(j)-Ys(j)*((qs(j)-qs(j-1))/(Ys(j)-Ys(j-
1)+eps)))]; 
       break 
        end 
    end 
end 
%Find qr in the rich stream that corresponds with the Y in 
%the Ys vector 
for i=1:c 
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    for j=2:h 
        if Ys(i)>=Yr(j-1)&& Ys(i)<=Yr(j) 
            qr2c(i,:)=[Ys(i) ((qr(j)-qr(j-1))/(Yr(j)-Yr(j-
1)+eps))*Ys(i)+(qr(j)-Yr(j)*((qr(j)-qr(j-1))/(Yr(j)-Yr(j-
1)+eps)))]; 
            break 
        end 
    end 
end 
 
Nh=[qs2h(:,1) qr qs2h(:,2) ]; 
Nc=[qr2c(:,1) qr2c(:,2) qs]; 
 
 
%Establish a matrix that will include the difference in q 
%of both streams at each composition value in Ys and Yr 
%vectors 
Diff=zeros(h+c,2); 
for i=1:h 
    Diff(i,:)=[Yr(i), qs2h(i,2)-qr(i)]; 
end 
 
for j=1:c 
    Diff(j+h,:)=[Ys(j), qs(j)-qr2c(j,2)]; 
end 
 
%sort the rows of the difference matrix to determine the 
%pinch point, 
mDiff= sortrows(Diff,2); 
inc=abs(mDiff(1,2)); %The increment required to shift the 
%cold stream to the right and hence to establish the pinch 
%point 
%”The pinch point” 
Yp=mDiff(1,1); 
%Shifting the cold stream 
for i=1:c 
    qs(i)=qs(i)+inc; 
end 
%These two matrices redefine the hot and cold stream on the 
%pinch diagram 
Nr=[Yr qr]; 
Ns=[Ys qs]; 
if Nr(1,2)==Nr(2,2) 
    Nr(1,:)=[]; 
end 
if Ns(1,2)==Ns(2,2) 
    Ns(1,:)=[]; 
end 
if Nr(size(Nr,1),2)==Nr(size(Nr,1)-1,2) 
    Nr(size(Nr,1),:)=[]; 
end 
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if Ns(size(Ns,1),2)==Ns(size(Ns,1)-1,2) 
    Ns(size(Ns,1),:)=[]; 
end 
%display of the basic information, the pinch point, the 
%excess capacity of the process lean stream and the 
%external MSA required The excess capacity and the external 
%MSA, respectively... 
ExCapacity=Ns(size(Ns,1),2)-Nr(size(Nr,1),2); 
ExternalMSA=Ns(1,2)-Nr(1,2); 
plot(Nr(:,1),Nr(:,2),'-r',Ns(:,1),Ns(:,2),'-
b','LineWidth',2) 
title('Mass Exchange Pinch Diagram','FontSize',15)  
xlabel('Composition (Y)','FontSize',13)  
ylabel('Mass Exchanged (M)','FontSize',13) 
legend('Rich Stream','Lean Stream',2);  
grid on 
xx=xlim; 
yy=ylim; 
text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+3*(yy(2)-
yy(1))/20,['Yp=', num2str(Yp)],'FontSize',9) 
text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+2*(yy(2) yy(1))/20, 
['Lean Excess Cap.=', num2str(ExCapacity)],'FontSize',9) 
text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+(yy(2)-yy(1))/20, 
['External MSA req.=', num2str(ExternalMSA)],'FontSize',9) 
 
Code 7 
%this function is used to establish the Mass exchange pinch 
%diagram, the input arguments are two matrices, the Rich 
%stream Matrix (Rd) consists of n rows that represents the 
%number of streams and three columns representing flowrate, 
%supply composition and Target composition respectively. 
%The other matrix is the Lean stream matrix that is 
%composed of m rows representing the number of lean streams 
%and 6 columns representing flowrate, supply composition, 
%target composition, m, epsilon and b, respectively. The 
%last three are the equilibrium equation parameters that 
%are used to fit the lean stream compositions on the rich 
%stream scale. 
 
function[Nr,Ns,Yp,ExCapacity,ExternalMSA]=external(Rd,Sd,Ex
s) 
%The first step is define the lean stream loads and 
%transform the composition to fit on the rich stream scale.  
Ls=zeros(size(Sd,1),1); 
ys=zeros(size(Sd,1),2); 
Ms=zeros(size(Sd,1),3); 
for i=1:size(Sd,1) 
    Ls(i)=Sd(i,1)*(Sd(i,3)-Sd(i,2)); 
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ys(i,:)=[(Sd(i,2)+Sd(i,5))*Sd(i,4)+Sd(i,6),(Sd(i,3)+Sd(i,5)
)*Sd(i,4)+Sd(i,6)]; 
    Ms(i,:)=[(Ls(i)+eps)/(ys(i,2)-ys(i,1)+eps)  ys(i,:)]; 
end 
%Arrange the streams by segments to be more easily 
%manipulated 
[gr,gs]=curve(Rd,Ms); 
%The same range of compositions is used for the 
%convenience of plotting the pinch diagram and determining 
%the External MSA needed and the excess capacity of the 
%lean streams. 
m=size(gr,1); 
n=size(gs,1); 
Ymin=min(gr(1,1),gs(1,1)); 
Ymax=max(gr(m,1),gs(n,1)); 
if Ymin<gr(1,1) 
    gr=[Ymin 0;gr]; 
end 
if Ymin<gs(1,1) 
    gs=[Ymin 0;gs]; 
end 
m=size(gr,1); 
n=size(gs,1); 
if Ymax>gr(m,1) 
    gr=[gr; Ymax 0]; 
end 
if Ymax>gs(n,1) 
    gs=[gs; Ymax 0]; 
end 
 
% Drawing the lines 
%This subroutine "Stream" is used to connect the points in 
%the different segments and keep them in one continuous 
%line 
qs=stream(gs); 
qr=stream(gr); 
 
%For convenience, the composition vector is defined 
%separately from the input matrices 
Yr=gr(:,1);Ys=gs(:,1); 
%This subroutine "pinch" is used to determine the pinch 
point and match 
%the rich and lean streams on the pinch diagram 
[Ns,Nr,Yp,ExCapacity,ExternalMSA]=pinch(Yr,Ys,qr,qs); 
if Sd==[0 0 0 0 0 0] 
    Ns=[]; 
    FY=Nr(size(Nr,1),1); 
    FL=Nr(size(Nr,1),2); 
    Next=[]; 
else 
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    FY=Ns(1,1); 
    FL=Ns(1,2); 
    Next=Ns(1,:); 
end 
%Using the External MSA's 
 
Ex=zeros(size(Exs,1),3); 
%Establishing the Y values using the equilibrium data 
for i=1:size(Exs,1) 
    Ex(i,:)=[(Exs(i,1)+Exs(i,4))*Exs(i,3)+Exs(i,5), 
(Exs(i,2)+Exs(i,4))*Exs(i,3)+Exs(i,5), 
(Exs(i,6)+eps)/(Exs(i,2)-Exs(i,1)+eps)]; 
end 
Exs=[Exs Ex]; 
j=1; 
%Delete the unfeasibile external stream 
while (j<=size(Exs,1)) 
    if Exs(j,7)>=FY; 
         Exs(j,:)=[]; 
    else 
        j=j+1; 
    end 
end 
 
%initiate the cost 
cost=0; 
%Using external streams will continue as long as we have 
%feasible streams and a portion of the rich streams that 
%need to be covered 
 
while(FL~=0 && size(Exs,1)~=0) 
 Exs=sortrows(Exs,9); 
 %selecting the suitable target value of the external 
stream 
        if (FY-Exs(1,7))<(Exs(1,8)-Exs(1,7)) 
            nys=Exs(1,7); 
            nyt=FY; 
        else 
            nys=Exs(1,7); 
            nyt=Exs(1,8); 
        end 
     %selecting the appropriate Load value for the external 
stream composition    
    if nys<=Nr(1,1) 
   
        nLs=0; 
    else 
        for i=2:size(Nr,1) 
            if nys>Nr(i-1,1)&&nys<=Nr(i,1) 
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                nLs=((Nr(i,2)-Nr(i-1,2)+eps)/(Nr(i,1)-Nr(i-
1,1)+eps))*nys+(Nr(i,2)-((Nr(i,2)-Nr(i-1,2)+eps)/(Nr(i,1)-
Nr(i-1,1)+eps))*Nr(i,1)); 
                break; 
            end 
        end 
    end 
     % calculate the cost 
    addedcost=(FL-nLs)*Exs(1,9); 
    cost=cost+addedcost; 
     
    %Redefine the lowest point on the lean stream 
    Next=[Next;nys nLs;nyt FL];  
    Next=sortrows(Next,1); 
    FY=Next(1,1); 
    FL=Next(1,2); 
    
    %Remove the no longer feasible streams 
     
    j=1; 
    while (j<=size(Exs,1)) 
        if Exs(j,7)>=FY; 
            Exs(j,:)=[]; 
        else 
            j=j+1; 
        end 
    end 
     
end 
%Delete the repeated rows, the repetition results from 
%adding the last point again to the matrix, if we removed 
%it then it will be hard to connect the lines when no 
%process stream exists. 
j=2; 
while (j<=size(Next,1)) 
    if Next(j,1)==Next(j-1,1) 
        Next=[]; 
    else 
        j=j+1; 
    end 
end 
figure(1) 
if size (Next,1)==0 
    disp('*There is no external lean streams provided or 
none of the given is feasible!*');  
elseif size(Ns,1)==0 
    Externalused=Next(size(Next,1),2)-Next(1,2); 
    plot(Nr(:,1),Nr(:,2),'-r',Next(:,1),Next(:,2),'-
g','LineWidth',2) 
    title('Mass Exchange Pinch Diagram','FontSize',15)  
    xlabel('Composition (Y)','FontSize',13)  
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    ylabel('Mass Exchanged (M)','FontSize',13) 
    legend('Rich Stream','External Lean',2);  
    grid on 
    xx=xlim; 
    yy=ylim; 
    text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+2*(yy(2)-
yy(1))/20,['cost/unit time=', num2str(cost)],'FontSize',9) 
    text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+(yy(2)-
yy(1))/20,['External MSA used=', 
num2str(Externalused)],'FontSize',9) 
     
else 
     
    Externalused=Next(size(Next,1),2)-Next(1,2); 
    plot(Nr(:,1),Nr(:,2),'-r',Ns(:,1),Ns(:,2),'-
b',Next(:,1),Next(:,2),'-g','LineWidth',2) 
    title('Mass Exchange Pinch Diagram','FontSize',15)  
    xlabel('Composition (Y)','FontSize',13)  
    ylabel('Mass Exchanged (M)','FontSize',13) 
    legend('Rich Stream','Process Lean','External Lean',2);  
    grid on 
    xx=xlim; 
    yy=ylim; 
     
    text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+2*(yy(2)-
yy(1))/20,['cost/unit time=', num2str(cost)],'FontSize',9) 
    text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+(yy(2)-
yy(1))/20,['External MSA used=', 
num2str(Externalused)],'FontSize',9) 
end 
 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is used to connect the points of the given 
%segments  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function[q]=stream(g) 
%Given is a matrix of two columns, the left column is the 
%composition and the right one is the Load required for 
%each two consecutive compositions in the first column, of 
%course the first load required will be zero 
n=size(g,1); 
q=zeros(n,1); 
q(1)=0; 
for i=2:n 
    q(i)=q(i-1)+g(i,2); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is used to establish the load requirement 
%per composition segment in order to establish the heat 
%pinch diagram 
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function[gr,gs]=curve(Rd,Sd) 
format short g 
%For the Rich stream 
%Establish the composition column that has all possible 
%values 
Concenr=[Rd(:,2);Rd(:,3)]; 
%Eliminate the repeated Composition values 
Concenr=sortrows(Concenr,1); 
j=2; 
while (j<=size(Concenr,1)) 
    if Concenr(j,1)==Concenr(j-1,1) 
        Concenr(j,:)=[]; 
    else 
        j=j+1; 
    end 
end 
%Establish the column needed to plot the line on the pinch 
diagram 
gr=zeros(size(Concenr,1),2); 
gr(1,:)=[Concenr(1) 0]; 
for i=2:size(Concenr,1) 
    for j=1:size(Rd,1) 
        if Rd(j,2)>=Concenr(i)&& Rd(j,3)<=Concenr(i-1) 
            gr(i,2)=gr(i,2)+ Rd(j,1)*(Concenr(i)-Concenr(i-
1)); 
        end 
    end 
    gr(i,:)=[Concenr(i) gr(i,2)]; 
end 
 
%%%%%%%%%%%%%%%% 
%The same is done for the lean stream 
%Establish the composition column that has all possible 
%values 
Concenc=[Sd(:,2);Sd(:,3)]; 
%Eliminate the repeated composition values 
Concenc=sortrows(Concenc,1); 
j=2; 
while (j<=size(Concenc,1)) 
    if Concenc(j,1)==Concenc(j-1,1) 
        Concenc(j,:)=[]; 
    else 
        j=j+1; 
    end 
end 
%Establish the column needed to plot the line on the pinch 
%diagram 
gs=zeros(size(Concenc,1),2); 
gs(1,:)=[Concenc(1) 0]; 
for i=2:size(Concenc,1) 
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    for j=1:size(Sd,1) 
        if Sd(j,2)<=Concenc(i-1)&& Sd(j,3)>=Concenc(i) 
            gs(i,2)=gs(i,2)+Sd(j,1)*(Concenc(i)-Concenc(i-
1)); 
        end 
    end 
    gs(i,:)=[Concenc(i) gs(i,2)]; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is used to determine the pinch point and put 
%the rich and lean streams in a plottable format on the 
%pinch diagram 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function[Ns,Nr,Yp,ExCapacity,ExternalMSA]=pinch(Yr,Ys,qr,qs
,DT) 
r=size(qr,1); 
s=size(qs,1); 
%The basic idea of determining the pinch point is to plot 
%both streams starting from L=0 on the vertical axis, then 
%we shift the lean stream to a position that touches the 
%rich stream at one single point. Firstly, both streams are 
%plotted starting from L=0 (on the horizontal axis), then 
%each composition value in Yr and Ys vectors will have the 
%corresponding q value on both streams (because the pinch 
%point must correspond to at least one value of Y in Yr 
%and/or Ys), Then at each Y, we find the corresponding q in 
%the Lean stream minus the corresponding q in rich stream, 
%the shift will be the maximum difference. 
 
%Find qs in the cold stream that corresponds with the Y in 
%the Yr vector 
 
for i=1:r 
    for j=2:s 
        if Yr(i)>=Ys(j-1)&& Yr(i)<=Ys(j) 
            qs2r(i,:)=[Yr(i) ((qs(j)-qs(j-1))/(Ys(j)-Ys(j-
1)+eps))*Yr(i)+(qs(j)-Ys(j)*((qs(j)-qs(j-1))/(Ys(j)-Ys(j-
1)+eps)))]; 
       break 
        end 
    end 
end 
%Find qr in the rich stream that corresponds with the Y in 
the Ys vector 
for i=1:s 
    for j=2:r 
        if Ys(i)>=Yr(j-1)&& Ys(i)<=Yr(j) 
            qr2s(i,:)=[Ys(i) ((qr(j)-qr(j-1))/(Yr(j)-Yr(j-
1)+eps))*Ys(i)+(qr(j)-Yr(j)*((qr(j)-qr(j-1))/(Yr(j)-Yr(j-
1)+eps)))]; 
            break 
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        end 
    end 
end 
 
Nh=[qs2r(:,1) qr qs2r(:,2) ]; 
Nc=[qr2s(:,1) qr2s(:,2) qs]; 
 
 
%Establish a matrix that will include the difference in q 
%of both streams at each composition value in Ys and Yr 
%vectors 
Diff=zeros(r+s,2); 
for i=1:r 
    Diff(i,:)=[Yr(i), qs2r(i,2)-qr(i)]; 
end 
 
for j=1:s 
    Diff(j+r,:)=[Ys(j), qs(j)-qr2s(j,2)]; 
end 
 
%sort the rows of the difference matrix to determine the 
%pinch point, 
mDiff= sortrows(Diff,2); 
inc=abs(mDiff(1,2)); %The increment required to shift the 
%cold stream to the right and hence to establish the pinch 
%point 
%The pinch point Y value 
Yp=mDiff(1,1); 
%Shifting the cold stream 
for i=1:s 
    qs(i)=qs(i)+inc; 
end 
%These two matrices redefine the hot and cold stream on the 
%pinch diagram 
Nr=[Yr qr]; 
Ns=[Ys qs]; 
%unfortunately, even if we have no lean stream, we will 
%still have one 
%point in the lean stream matrix. This point results from 
%the epsilon we added in the equation matching formula and 
%so this point will always be close to the zero load where 
%the Rich stream starts, and to avoid Ns-based calculation 
%errors, we redefine 
%Ns as an empty matrix. 
if size(Ns,1)<2 
    Ns=[]; 
else 
    %to find the pinch point 
    MM=[Nr;Ns]; 
    for i=1:size(MM,1) 
        if MM(i,1)==Yp 



 193

            Lp=MM(i,2); 
        end 
    end 
end 
 
if Nr(1,2)==Nr(2,2) 
    Nr(1,:)=[]; 
end 
if Nr(size(Nr,1),2)==Nr(size(Nr,1)-1,2) 
    Nr(size(Nr,1),:)=[]; 
end 
if size(Ns,1)>1 
    if size(Ns,1)>1 && (Ns(1,2)==Ns(2,2)) 
        Ns(1,:)=[]; 
    end 
     
    if size(Ns,1)>1 && (Ns(size(Ns,1),2)==Ns(size(Ns,1)-
1,2)) 
        Ns(size(Ns,1),:)=[]; 
    end 
end 
 
 
%display of the basic information, the pinch point, the 
%excess capacity of the process lean stream and the 
%external MSA required  The excess capacity and the 
%external MSA, respectively... 
ExCapacity=Ns(size(Ns,1),2)-Nr(size(Nr,1),2); 
ExternalMSA=Ns(1,2)-Nr(1,2); 
figure(2) 
plot(Nr(:,1),Nr(:,2),'-r',Ns(:,1),Ns(:,2),'-
b','LineWidth',2) 
title('Mass Exchange Pinch Diagram','FontSize',15)  
xlabel('Composition (Y)','FontSize',13)  
ylabel('Mass Exchanged (M)','FontSize',13) 
legend('Rich Stream','Lean Stream',2);  
grid on 
xx=xlim; 
yy=ylim; 
 
if size(Ns,1)<2; 
    text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+3*(yy(2)-
yy(1))/20,['No Pinch Point Available'],'FontSize',9) 
     
else 
    text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+3*(yy(2)-
yy(1))/20,['Pinch point=(', 
num2str(Yp),',',num2str(Lp),')'],'FontSize',9) 
end 
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text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+2*(yy(2)-
yy(1))/20,['Lean Excess Cap.=', 
num2str(ExCapacity)],'FontSize',9) 
text(xx(1)+(xx(2)-xx(1))/1.7,yy(1)+(yy(2)-
yy(1))/20,['External MSA req.=', 
num2str(ExternalMSA)],'FontSize',9) 
 
Code 8 
function[Mr,Mk,Lp,minFresh,minWaste]=matrecm(sink,source) 
format short g 
%Arrange the sink and source input arguments based 
%ascendingly based on the maximum inlet mass fraction 
sink=sortrows(sink,2); 
source=sortrows(source,2); 
%Prepare the two matrices that will hold the sink and 
%source points on the graph.  
 
gk=zeros(size(sink,1)+1,2); 
gr=zeros(size(source,1)+1,2); 
m=size(gk,1); 
n=size(gr,1); 
for i=2:m; 
 
    gk(i,:)=[gk(i-1,1)+sink(i-1,1)*sink(i-1,2),  sink(i-
1,1)]; 
end 
 
for i=2:n; 
    gr(i,:)=[gr(i-1,1)+source(i-1,1)*source(i-1,2),  
source(i-1,1)]; 
end 
%The same range of Loads is used for the convenience of 
%plotting the pinch diagram and determining the minimum 
%required utilities 
 
Lmin=min(gk(1,1),gr(1,1)); 
Lmax=max(gk(m,1),gr(n,1)); 
if Lmin<gk(1,1) 
    gk=[Lmin 0;gk]; 
end 
if Lmin<gr(1,1) 
    gr=[Lmin 0;gr]; 
end 
m=size(gk,1); 
n=size(gr,1); 
if Lmax>gk(m,1) 
    gk=[gk; Lmax 0]; 
end 
if Lmax>gr(n,1) 
    gr=[gr; Lmax 0]; 
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end 
%This subroutine "Stream" is used to connect the points in 
the different 
%segments and keep them in one continuous line 
qr=stream(gr); 
qk=stream(gk); 
 
%For conveince, the Load vector is defined separately from 
%the input matrices 
Lk=gk(:,1);Lr=gr(:,1); 
%This subroutine "pinch" is used to determine the pinch 
%point and redefines the sink and source streams point on 
%the pinch diagram 
 
[Mr,Mk,Lp,minFresh,minWaste]=pinch(Lk,Lr,qk,qr); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is used to connect the points of the given 
%segments  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function[q]=stream(g) 
%Given is a matrix of two columns, the left column is the 
%Load and the right one is the flowrate associated with the 
%difference of each two consecutive loads in the first 
%column, of course the first flowrate will be zero 
n=size(g,1); 
q=zeros(n,1); 
q(1)=0; 
for i=2:n 
    q(i)=q(i-1)+g(i,2); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is used to determine the pinch point and put 
%the hot and cold streams line in a plottable format on the 
%pinch diagram 
%%%%%%%%%%%%%%%%%%%%%%% 
function[Mr,Mk,Lp,minFresh,minWaste]=pinch(Lk,Lr,qk,qr) 
k=size(qk,1); 
r=size(qr,1); 
%The basic idea of determining the pinch point is to plot 
%both streams starting from Flowrate=0, then we shift the 
%source stream to the left to a position that touches the 
%hot stream at one single point. Firstly, both streams are 
%plotted starting from flowrate (q)=0 (on the horizontal 
%axes), then each Load value in Lk and Lr vectors will have 
%the corresponding q value on both streams (because the 
%pinch point must correspond to at least one value of L in 
%Lk and/or Lr), Then at each L, we find the corresponding q 
%in the source stream minus the corresponding q in sink 
%stream, the shift will be the maximum difference. Find qr 
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%in the source stream that corresponds with the L in the Lk 
%vector 
 
 
for i=1:k 
    for j=2:r 
        if Lk(i)>=Lr(j-1)&& Lk(i)<=Lr(j) 
            qr2k(i,:)=[Lk(i) ((qr(j)-qr(j-1))/(Lr(j)-Lr(j-
1)+eps))*Lk(i)+(qr(j)-Lr(j)*((qr(j)-qr(j-1))/(Lr(j)-Lr(j-
1)+eps)))]; 
       break 
        end 
    end 
end 
%Find qk in the hot stream that corresponds with the T in 
the Lr vector 
for i=1:r 
    for j=2:k 
        if Lr(i)>=Lk(j-1)&& Lr(i)<=Lk(j) 
            qk2r(i,:)=[Lr(i) ((qk(j)-qk(j-1))/(Lk(j)-Lk(j-
1)+eps))*Lr(i)+(qk(j)-Lk(j)*((qk(j)-qk(j-1))/(Lk(j)-Lk(j-
1)+eps)))]; 
            break 
        end 
    end 
end 
 
Nh=[qr2k(:,1) qk qr2k(:,2) ]; 
Nc=[qk2r(:,1) qk2r(:,2) qr]; 
 
 
%Establish a matrix that will include the difference in q 
%of both streams at each Temperature value in Lr and Lk 
%vectors 
Diff=zeros(k+r,2); 
for i=1:k 
    Diff(i,:)=[Lk(i), qr2k(i,2)-qk(i)]; 
end 
 
for j=1:r 
    Diff(j+k,:)=[Lr(j), qr(j)-qk2r(j,2)]; 
end 
%sort the rows of the difference matrix to determine the 
pinch point, 
mDiff= sortrows(Diff,2); 
inc=abs(mDiff(1,2)); %The increment required to shift the 
%source stream to the right and hence to establish the 
%pinch point 
%The pinch point 
Lp=mDiff(1,1); 
%Shifting the source stream 
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for i=1:r 
    qr(i)=qr(i)+inc; 
end 
%These two matrices redefine the sink and source stream on 
%the pinch diagram 
Mk=[Lk qk]; 
Mr=[Lr qr]; 
if Mk(1,2)==Mk(2,2) 
    Mk(1,:)=[]; 
end 
if Mr(1,2)==Mr(2,2) 
    Mr(1,:)=[]; 
end 
if Mk(size(Mk,1),2)==Mk(size(Mk,1)-1,2) 
    Mk(size(Mk,1),:)=[]; 
end 
if Mr(size(Mr,1),2)==Mr(size(Mr,1)-1,2) 
    Mr(size(Mr,1),:)=[]; 
end 
%display of the basic information, the pinch point, the 
%minimum Fresh and the minimum waste.  The minimum utility 
%requirements 
minFresh=Mr(1,2)-Mk(1,2); 
minWaste=Mr(size(Mr,1),2)-Mk(size(Mk,1),2); 
plot(Mk(:,2),Mk(:,1),'-g',Mr(:,2),Mr(:,1),'-
m','LineWidth',2) 
title('Material Recycle Pinch Diagram','FontSize',14)  
xlabel('Flowrate (Q)','FontSize',13)  
ylabel('Load (L)','FontSize',13) 
legend('Sink','Source',2);  
grid on 
xx=xlim; 
yy=ylim; 
text(xx(1)+(xx(2)-xx(1))/1.5,yy(1)+3*(yy(2)-
yy(1))/20,['Load at Pinch=', num2str(Lp)],'FontSize',9) 
text(xx(1)+(xx(2)-xx(1))/1.5,yy(1)+2*(yy(2)-yy(1))/20,['min 
Fresh=', num2str(minFresh)],'FontSize',9) 
text(xx(1)+(xx(2)-xx(1))/1.5,yy(1)+(yy(2)-yy(1))/20,['min 
Waste=', num2str(minWaste)],'FontSize',9) 
 
Code 9 
function[Mh,Mc,cascade,Tp,minHeat,minCool]=heatinteg(Hh,Hc,
DT) 
 
%Arrange the streams by segments to be more easily 
%manipulated 
[gh,gc]=curve(Hh,Hc); 
% The same range of Temperatures is used for the 
%convenience of plotting the pinch diagram and determining 
%the minimum required utilities 
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m=size(gh,1); 
n=size(gc,1); 
%First of all, we need to adjust the Cold stream 
temperature by adding DT 
%so aas to have all the calculation on the hot temperature 
scale. 
for i=1:size(gc,1) 
    gc(i,1)=gc(i,1)+DT; 
end 
Tmin=min(gh(1,1),gc(1,1)); 
Tmax=max(gh(m,1),gc(n,1)); 
if Tmin<gh(1,1) 
    gh=[Tmin 0;gh]; 
end 
if Tmin<gc(1,1) 
    gc=[Tmin 0;gc]; 
end 
m=size(gh,1); 
n=size(gc,1); 
if Tmax>gh(m,1) 
    gh=[gh; Tmax 0]; 
end 
if Tmax>gc(n,1) 
    gc=[gc; Tmax 0]; 
end 
 
% Drawing the lines This subroutine "Stream" is used to 
%connect the points in the different segments and keep them 
%in one continuous line 
qc=stream(gc); 
qh=stream(gh); 
 
%For conveince, the temperature vector is defined seprately 
%from the input matrices 
Th=gh(:,1);Tc=gc(:,1); 
%This subroutine "pinch" is used to determine the pinch 
%point and redefines the hot and cold streams point on the 
%pinch diagram 
[Mc,Mh,cascade,Tp,minHeat,minCool]=pinch(Th,Tc,qh,qc,DT); 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is used to connect the points of the given 
%segments  
%%%%%%%%%%%%%%%%%%%%%%%%%% 
function[q]=stream(g) 
%Given is a matrix of two columns, the left column is the 
%temperature and the right one is the heat required for 
%each two consecutive temperatures in the first column, of 
%course the first heat required will be zero 
n=size(g,1); 
q=zeros(n,1); 
q(1)=0; 
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for i=2:n 
    q(i)=q(i-1)+g(i,2); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is used to establish the heat requirement 
%per temperature segment in order to establish the heat 
%pinch diagram 
function[gh,gc]=curve(Hh,Hc) 
format short g 
%For the hot stream 
%Establish the temperature column that has all possible 
%values 
Temph=[Hh(:,2);Hh(:,3)]; 
%Eliminate the repeated Temperature values 
Temph=sortrows(Temph,1); 
j=2; 
while (j<=size(Temph,1)) 
    if Temph(j,1)==Temph(j-1,1) 
        Temph(j,:)=[]; 
    else 
        j=j+1; 
    end 
end 
%Establish the column needed to plot the line on the pinch 
%diagram 
gh=zeros(size(Temph,1),2); 
gh(1,:)=[Temph(1) 0]; 
for i=2:size(Temph,1) 
    for j=1:size(Hh,1) 
        if Hh(j,2)>=Temph(i)&& Hh(j,3)<=Temph(i-1) 
            gh(i,2)=gh(i,2)+ Hh(j,1)*(Temph(i)-Temph(i-1)); 
        end 
    end 
    gh(i,:)=[Temph(i) gh(i,2)]; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
%The same is done for the cold stream Establish the 
%temperature column that has all possible values 
Tempc=[Hc(:,2);Hc(:,3)]; 
%Eliminate the repeated Temperature values 
Tempc=sortrows(Tempc,1); 
j=2; 
while (j<=size(Tempc,1)) 
    if Tempc(j,1)==Tempc(j-1,1) 
        Tempc(j,:)=[]; 
    else 
        j=j+1; 
    end 
end 
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%Establish the column needed to plot the line on the pinch 
diagram 
gc=zeros(size(Tempc,1),2); 
gc(1,:)=[Tempc(1) 0]; 
for i=2:size(Tempc,1) 
    for j=1:size(Hc,1) 
        if Hc(j,2)<=Tempc(i-1)&& Hc(j,3)>=Tempc(i) 
            gc(i,2)=gc(i,2)+Hc(j,1)*(Tempc(i)-Tempc(i-1)); 
        end 
    end 
    gc(i,:)=[Tempc(i) gc(i,2)]; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This function is used to determine the pinch point and put 
%the hot and cold streams line in a plottable format on the 
%pinch diagram 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function[Mc,Mh,cascade,Tp,minHeat,minCool]=pinch(Th,Tc,qh,q
c,DT) 
h=size(qh,1); 
c=size(qc,1); 
%The basic idea of determining the pinch point is to plot 
%both streams starting from Q=0, then we shift the cold 
%stream to the right to a position that touches the hot 
%stream at one single point. Firstly, both streams are 
%plotted starting from q=0 (on the horizontal axes), then 
%each temperature value in Th and Tc vectors will have the 
%corresponding q value on both streams (because the pinch 
%point must correspond to at least one value of T in Th 
%and/or Tc), Then at each T, we find the corresponding q in 
%the cold stream minus the corresponding q in hot stream, 
%the shift will be the maximum difference. Find qc in the 
%cold stream that corresponds with the T in the Th vector 
 
%To plot on the same graph, we need to adjust the cold 
%temperatures by adding DT to be plotted on the hot 
%temperature scale 
z=size(Tc,1); 
 
 
for i=1:h 
    for j=2:c 
        if Th(i)>=Tc(j-1)&& Th(i)<=Tc(j) 
            qc2h(i,:)=[Th(i) ((qc(j)-qc(j-1))/(Tc(j)-Tc(j-
1)+eps))*Th(i)+(qc(j)-Tc(j)*((qc(j)-qc(j-1))/(Tc(j)-Tc(j-
1)+eps)))]; 
       break 
        end 
    end 
end 
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%Find qh in the hot stream that corresponds with the T in 
the Tc vector 
for i=1:c 
    for j=2:h 
        if Tc(i)>=Th(j-1)&& Tc(i)<=Th(j) 
            qh2c(i,:)=[Tc(i) ((qh(j)-qh(j-1))/(Th(j)-Th(j-
1)+eps))*Tc(i)+(qh(j)-Th(j)*((qh(j)-qh(j-1))/(Th(j)-Th(j-
1)+eps)))]; 
            break 
        end 
    end 
end 
 
Nh=[qc2h(:,1) qh qc2h(:,2) ]; 
Nc=[qh2c(:,1) qh2c(:,2) qc]; 
 
 
%Establish a matrix that will include the difference in q 
%of both streams at each Temperature value in Tc and Th 
%vectors 
Diff=zeros(h+c,2); 
for i=1:h 
    Diff(i,:)=[Th(i), qc2h(i,2)-qh(i)]; 
end 
 
for j=1:c 
    Diff(j+h,:)=[Tc(j), qc(j)-qh2c(j,2)]; 
end 
 
%sort the rows of the difference matrix to determine the 
%pinch point, 
mDiff= sortrows(Diff,2); 
inc=abs(mDiff(1,2)); %The increment required to shift the 
%cold stream to the right and hence to establish the pinch 
%point The pinch point 
Tp=mDiff(1,1); 
%Shifting the cold stream 
for i=1:c 
    qc(i)=qc(i)+inc; 
end 
%These two matrices redefine the hot and cold stream on the 
%pinch diagram 
Mh=[Th qh]; 
Mc=[Tc qc]; 
if Mh(1,2)==Mh(2,2) 
    Mh(1,:)=[]; 
end 
if Mc(1,2)==Mc(2,2) 
    Mc(1,:)=[]; 
end 
if Mh(size(Mh,1),2)==Mh(size(Mh,1)-1,2) 
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    Mh(size(Mh,1),:)=[]; 
end 
if Mc(size(Mc,1),2)==Mc(size(Mc,1)-1,2) 
    Mc(size(Mc,1),:)=[]; 
end 
%display of the basic information, the pinch point, the 
%minimum heating 
%utilities and the minimum cooling utilities requirements.  
%The minimum utilty requirements 
 
minHeat=Mc(size(Mc,1),2)-Mh(size(Mh,1),2); 
minCool=Mc(1,2)-Mh(1,2); 
figure(1) 
plot(Mh(:,1),Mh(:,2),'-r',Mc(:,1),Mc(:,2),'-
b','LineWidth',2) 
title('Thermal Pinch Diagram','FontSize',15)  
xlabel('Hot Temperature (T)','FontSize',13)  
ylabel('Heat Exchanged (Q)','FontSize',13) 
legend('Hot Stream','Cold Stream',2);  
grid on 
xx=xlim; 
yy=ylim; 
text(xx(1)+(xx(2)-xx(1))/1.5,yy(1)+3*(yy(2)-
yy(1))/20,['Tp=', num2str(Tp)],'FontSize',9) 
text(xx(1)+(xx(2)-xx(1))/1.5,yy(1)+2*(yy(2)-
yy(1))/20,['QH,min=', num2str(minHeat)],'FontSize',9) 
text(xx(1)+(xx(2)-xx(1))/1.5,yy(1)+(yy(2)-
yy(1))/20,['QC,min=', num2str(minCool)],'FontSize',9) 
set(gcf,'position',[200 200 650 500]) 
%%%%%%%%%%%%%%%%%%%%%% 
%Building the Grand Composite Cuve (GCC) 
%Establish the Matrix that will have alll Q values at each 
Temperature 
Temp_=zeros(size(Nh,1)+size(Mc,1),3); 
Temp_=[Nh;Nc]; 
Temp_=sortrows(Temp_,1); 
 
j=2; 
while (j<=size(Temp_,1)) 
    if Temp_(j,1)==Temp_(j-1,1) 
        Temp_(j,:)=[]; 
    else 
        j=j+1; 
    end 
end 
%Rearrange the Matrix so as to put the temperature column 
%in a descending order 
s=size(Temp_,1); 
interval=zeros(size(Temp_,1),3); 
for k=1:s 
    interval(k,:)=Temp_(s-k+1,:); 
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end 
 
%Establish the Cascade matrix that does the temperature 
%balance at each stage 
cascade=zeros(size(interval,1),2); 
cascade(:,1)=interval(:,1); 
for i=2:size(cascade,1) 
    cascade(i,2)=cascade(i-1,2)+(interval(i-1,2)-
interval(i,2))-(interval(i-1,3)-interval(i,3)); 
end 
%The cascade is now balanced by introducing the heat 
%utility that will 
%offset the deficiency 
if min(cascade(:,2))>=0 
    disp('No External Heating Duties is Required') 
    addheat=0; 
else 
addheat=abs(min(cascade(:,2))); 
end 
 
for i=1:size(cascade,1) 
    cascade(i,2)=cascade(i,2)+addheat; 
    cascade(i,1)=cascade(i,1)-DT/2; 
end 
 
figure(2) 
plot(cascade(:,2),cascade(:,1),'-k','LineWidth',2) 
title('Grand Composite Curve','FontSize',15)  
xlabel('Enthalpy (Q)','FontSize',13)  
ylabel('(T+t)/2','FontSize',13) 
grid on 
xx=xlim; 
yy=ylim; 
text(xx(1)+(xx(2)-xx(1))/1.5,yy(1)+3*(yy(2)-
yy(1))/20,['Tp=', num2str(Tp)],'FontSize',9) 
text(xx(1)+(xx(2)-xx(1))/1.5,yy(1)+2*(yy(2)-
yy(1))/20,['QH,min=', num2str(minHeat)],'FontSize',9) 
text(xx(1)+(xx(2)-xx(1))/1.5,yy(1)+(yy(2)-
yy(1))/20,['QC,min=', num2str(minCool)],'FontSize',9) 
 
Code 10 
function[FinalOB]=example1() 
time1=clock; 
upbd=3.2;%initially any feasible point serves as an upper 
%bound. 
bestp=[1.6,0];%initial best point 
dictionary1=[0 1.6 0 1 0 4.2 4.2 2.6];%initial box, for n 
variables, it will have 2n+4 columns: 
%(2 bounds x intervals)+ (2 bounds for inclusion) + 
%inclusion range +total sides' width = 2n+4  



 204

%Initially the search is done in the whole given box 
maxdiff1=4.2;%The maximum initial inclusion range on the 
%objective function 
while maxdiff1>0.0001;%The maximum allowed range in the 
%final list of function inclusion 
    dictionary=dictionary1; %dictionary one is used to 
%temporally save the sub-bthe lower of the function 
%inclusion.  
    dictionary1(:,:)=[];%Empty dictionary1  
    A=size(dictionary); 
    w=A(1,1); 
    for k=1:w; %run the algorithm for the w sub-boxes in 
%the list. 
        newlist=[]; %newlist is used to hold new subboxes 
%at each iteration, emptied after sub-boxes added to the 
%list.  
        box=dictionary(k,1:4); %A box is selected for 
%simulated annealing, 
        if dictionary(k,7)<5 ||dictionary(k,8)<5 %Apply 
%central point evaluation if inclusion range or max-width 
%are less than a minimum 
            for i=2:2:4 
                p(i/2)=(box(1,i-1)+box(1,i))/2; %The 
%candidate point is the central point of a small box 
            end 
            obf=2*p(1)+p(2); %directly evaluate the 
%objective function in this case 
        else 
            [p,obf]=annealing(box); %if the sub-box is big 
%enough then SA is better than central evaluation 
        end 
        %Check the feasibility  
        maxlength=-inf; 
        for i=2:2:4 % to determine if the widest side is an 
%integer 
            length=box(1,i)-box(1,i-1); 
            if length>maxlength 
                maxlength=length; 
                maxi=i/2; 
            end 
        end 
         
    if maxi==2; %the second variable in the box is the 
%integer  
        [p,obf]=bestint(p); % A function that evaluates the 
%best objective functiob value on both sides of the integer 
    end 
        [maxcons,c]=feasibility_check(p);%the constraint 
%with the maximum value is determined, c indicates which 
%constrain that has the maximum value 
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        if (maxcons)<1e-8; %which means the point is 
%feasible given the maximum constraint is negative  
            
           
            if obf<upbd %update the upper bound if the 
%objective function value is feasible. 
                bestp=p; 
                upbd=obf;   
            end 
 
            [bi_box]=halfcut(box); %If the point is 
%feasible, the box is siplit at the feasible point across 
%the widest side  
            
[newlist,maxdiff1,upbd,bestp]=inclusion(bi_box,upbd,bestp); 
%Test the resulting two boxes 
             
        end 
        if maxcons>=1e-8 %if the SA output is infeasible, 
        %the distrust region is applied 
        
            [infBox]=distrust(box,p,c); %the distrust    
        %region starts at point p. 
            %If the infeasible box turned out to be an    
        %extremely small box, 
            %then bisecting the box into two parts is     
        %computationally better than 
            %siplitting it into 2n.  
            BB=0;  
            for j=2:2:4 
                avgint=(infBox(1,j)+infBox(1,j-1))/2; 
                if abs(avgint-box(1,j))<0.1 || abs(avgint-
box(1,j-1))<0.1 
                    BB=1; %BB is an index used to mark an 
%infeasable box to bisected rather than siplitting into 2n 
%sub-boxes 
                     
                end 
            end 
            if BB==0 %the default index for an infeasible 
      %box that will undergo siplitting 
      %into 2n sub-boxes  
                      new_dictionary= newdict(infBox,box);  
                      %This will produce 2n sub-boxes by          
      %removing an infeasible box from the       
      %original mother box 
                
[newlist,maxdiff1,upbd,bestp]=inclusion(new_dictionary,upbd
,bestp); 
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            else %i.e when B=1 
                [cutbox]=halfcut(box); %To bisect the box 
      %at the central point across the 
          %widest side 
                
[newlist,maxdiff1,upbd,bestp]=inclusion(cutbox,upbd,bestp); 
                 
            end 
             
        end 
        dictionary1=[dictionary1;newlist]; %dictionary1 is 
%a temporary matrix used to store sub-boxes resulting from 
%sipliting and bisecting of each iteration before they are 
%added to the main list 
         
         
    end 
   
[dictionary1,maxdiff1,upbd,bestp]=inclusion(dictionary1(:,1
:4),upbd,bestp); %Before adding the sub-boxes, they are 
%filtered on the hope of removing sub-boxes in case  a new 
%update of the upper bound has taken place recently 
    maxdiff1=max(dictionary1(:,7)); %checking the maximum 
%range of the function inclusions in the list  
 
end 
 
%Final output 
Best_value=upbd 
Best_point=bestp 
time2=clock; 
RunTime=etime(time2,time1) 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
function[minimum,fval]=annealing(box) 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
A=size(box); 
n=0.5*A(1,2);%the dimension of the box 
volume=0; %To determine the total number of sides lenth 
for i=2:2:2*n 
    volume=volume+(box(1,i)-box(1,i-1)); 
end 
si=(volume)/n; %the average side width of the box, this 
%will be used in the neighborhood dynamic scheduling. 
p=zeros(1,2); 
%The initial point will be the center of the cube. 
for i=2:2:2*n 
        p(i/2)=(box(1,i)+box(1,i-1))/2; 
end 
results=zeros(1,2); % This is needed to tabulate the 
results to observe the performance of the algorithm. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Tinit = 1;        % initial temp 
minT = 1e-8;         % stopping temp 
cool = 0.85;        % annealing schedule 
minF = -Inf; 
max_consec_rejections = 1000; %maximum consective 
rejections allowed 
max_try = 300; %maximum iterations per temperature 
max_success = 20; %maximum consective acceptance allowed 
k = 1;    
tempchange=(log(minT/Tinit)/log(cool))+1; %The number of 
%temperature decrements 
EPS=0.001; %The range of the final displacement needed to 
%determine a nighbouring point 
beta=001; %the fraction of the average box side for the 
%first leap 
factor=(beta*EPS/si)^(1/tempchange); %This is a fraction 
%multiplied by itself each time the temperature changes,  
 
%this will cause a change in the leap from beta*S in the 
%begining to Epslon at the end 
% The foloowings are used to initiate the counters 
itry = 0; 
success = 0; 
finished = 0; 
consec = 0; 
T = Tinit; %Initial temperature set to Tinit 
lpp=0; %The power of the fraction used to decrease the 
%leap, initially zero anad increases by unity at each 
%temperature change. 
initenergy =2*p(1)+p(2); %initial funcrtion evaluation for 
%the initial point 
oldenergy = initenergy; 
 
total = 0; 
index=1; 
while ~finished; 
    itry = itry+1; % just an iteration counter 
    current = p;  
    % % Stop / decrement T criteria 
    if itry >= max_try || success >= max_success; 
        if T < minT || consec >= max_consec_rejections; 
            finished = 1; 
            total = total + itry; 
            break; 
        else 
            T = cool*T;  % decrease T according to cooling 
    %schedule  
            lpp=lpp+1; 
            total = total + itry; 
            itry = 1; 
            success = 1; 



 208

        end 
    end 
     
    newp(1)=-1;  
    while 
(newp(1)<box(1,1)||newp(1)>box(1,2)||newp(2)<box(1,3)||newp
(2)>box(1,4)) %to confine the neighbourhood selection 
         
    
newp=p+(randperm(length(p))==length(p))*randn*si/500*factor
^lpp;  
%the dynamic neighbourhood function 
         
    end 
     
     
    newenergy=2*newp(1)+newp(2); 
    if (oldenergy-newenergy > 1e-6) 
        p = newp; 
        oldenergy = newenergy; 
        success = success+1; 
        consec = 0;    
    else 
        if (rand < exp( (oldenergy-newenergy)/(k*T) )); 
            p= newp; 
            oldenergy = newenergy; 
            success = success+1; 
             
        else 
            consec = consec+1; 
        end 
    end 
end 
minimum = p; 
fval = oldenergy; 
 
%%%%%%%%%%%%%%%%%%%% 
%This function is to determine the best function value if 
%the longest side is integer 
function[p,obf]=bestint(p); 
        pi=[p(1) floor(p(2)); p(1) ceil(p(2))]; 
        obf=inf; 
       for i=1:2 
           f=2*pi(1,i)+pi(2,i); 
           if f<obf 
               obf=f; 
               p=pi(i,:); 
           end 
       end         
%%%%%%%%%%%%%%%%%%%%%%%%%% 
function[wc,c]=feasibility_check(p); 
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%A point (y1,y2,x1,x2,x3,x4,x5) is tested if feasible 
x=p(1);y=p(2); 
 
P(1)=1.25-x^2-y; 
P(2)=x+y-1.6; 
wc=max(P); 
for i=1:2 %To determine which constraint has the maximum 
%value 
    if wc==P(i); 
        c=i; 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [xp]=bisect(point,box) %used to bisect (siplit is 
%more correct) the box at a feasible point 
A=size(box); 
n=A(1,2)/2; 
maxlength=0; 
for i=2:2:2*n 
    length=box(1,i)-box(1,i-1); 
    if length>maxlength 
        maxlength=length; 
        maxi=i; 
    end 
end 
xp=zeros(2,2*n); 
for i=2:2:2*n 
    if i==maxi && i==4 %if the variable of the longest side 
%is supposed to be an integer then its value is rounded to 
%the neighbouring integers 
        xp(1,i-1:i)=[box(1,i-1) floor(point(i/2))]; 
        xp(2,i-1:i)=[ceil(point(i/2))   box(1,i)]; 
    elseif i==maxi  
        xp(1,i-1:i)=[box(1,i-1) point(i/2)]; 
        xp(2,i-1:i)=[point(i/2)   box(1,i)]; 
    else 
        xp(1,i-1:i)=box(1,i-1:i); 
        xp(2,i-1:i)=box(1,i-1:i);  
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%% 
function[infbox]=distrust(sbox,p,c);  
%This function is used to extend an infeasible point in all 
%directions to create an infeasible box within the search 
%domain 
 
infbox=[p(1) p(1) p(2) p(2)]; %the initial infeasible box 
is basically the infeasible point 
Eps=0.05; %The extention in a direction 
for i=1:4 
    exbox=infbox; 
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    Pc=1; 
    while  max(Pc)>0.0001 && ((exbox(1,i)>sbox(1,i) && 
mod(i,2)==1) || (exbox(1,i)<sbox(1,i) && mod(i,2)==0))  
% this while statement is only performed if the so %far 
%infeasible  box is still strictly infeasible and within 
%the original box 
         
        if mod(i,2)==1 
            exbox(i)=exbox(i)-Eps; 
        elseif mod(i,2)==0 
            exbox(i)=exbox(i)+Eps; 
        end 
        xL=exbox(1,1);xR=exbox(1,2);yL=exbox(1,3); 
yR=exbox(1,4); %the new bigger box 
    
        Pc(1)=1.25-xR^2-yR; %testing the lower bounds of 
%the constraints inclusion which (one or more) should be 
%positive for a strictly infeasible box 
        Pc(2)=xL+yL-1.6; 
 
         
        if max(Pc)>0.0001 && ((exbox(1,i)>=sbox(1,i) && 
mod(i,2)==1) || (exbox(1,i)<=sbox(1,i) && mod(i,2)==0)) 
            infbox=exbox; %the new bigger infeasible box is 
%set as such only if it is strictly infeasible 
        end 
    end 
end 
infbox=[infbox(1,1) infbox(1,2) floor(infbox(1,3)) 
ceil(infbox(1,4))]; %The final infeasible box with 
%additional rounding to the near integers for the integer 
%intervals 
 
 
%%%%%%%%%%%%%%%%%%%%%%%% 
 
function[newlist,maxdiff,upbd,bestp]=inclusion(list,upbd,be
stp); 
%This is the main function used to filter unquialified 
%suboptimal sub-boxes  
A=size(list); 
n=A(1,1); 
M=n;  
A=size(list); 
n=A(1,1); 
F=zeros(n,3); 
diff=zeros(n,2); 
for i=1:n 
    xL=list(i,1);xR=list(i,2); 
    yL=list(i,3);yR=list(i,4); 
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    %The inclusion of the objective function. 
 
        
    
    F(i,2)=2*xL+yL; 
    F(i,3)=2*xR+yR; 
    Fmin=F(i,2);Fmax=F(i,3); 
     
    F(i,1)=i; 
     diff(i,1)=i; 
    diff(i,2)=F(i,3)-F(i,2); 
    %The inclusion of the Constraints; 
    P1(i,2)=1.25-xR^2-yR; 
    P1(i,3)=1.25-xL^2-yL; 
    P1(i,1)=i; 
     
    P2(i,2)=xL+yL-1.6; 
    P2(i,3)=xR+yR-1.6; 
    P2(i,1)=i; 
    
end 
maxdiff=max(diff(:,2)); 
newlist=[list  F(:,2:3) diff(:,2)]; 
i=1; 
M=n; %This M is needed to direct the search to the right 
%box, a for loop would skip a box each time a box is 
%deleted because once a book is deleted, the lsit will move 
%one row upwards and that would cause missing the next box 
%in order 
while i<=M 
 %for each of the boxes in the list, the four tests are 
conducted 
    if (P1(i,2)>1e-4) ||(P2(i,2)>1e-4)  
        newlist(i,:)=[]; %The box is deleted if it is 
%strictly infeasible 
        F(i,:)=[]; 
        P1(i,:)=[]; P2(i,:)=[];  
        M=M-1; 
    elseif F(i,2)>upbd 
         newlist(i,:)=[]; %If the lower bound of the 
%function inclusion is more than the upper bound then the 
%box is also deleted 
        F(i,:)=[]; 
        P1(i,:)=[];P2(i,:)=[];  
 
        M=M-1; 
 
    else 
        i=i+1; 
    end 
end 
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%Add the volume of each of the sub-boxes 
A=size(newlist); 
n=A(1,1); 
vol=zeros(n,1); 
for i=1:n 
    vol(i,1)=0; 
    for j=2:2:4 
        vol(i,1)=vol(i,1)+(newlist(i,j)-newlist(i,j-1)); 
%The sum of the sides' length is added as a column in the 
%list  
    end 
end 
newlist=[newlist vol]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [D] = newdict(removed,whole) %This function is 
%used to remove an infeasible box from within a larger box 
format short g 
A=size(whole); 
n=A(1,2)/2; 
for i=2:2:2*n 
    X(i/2,:)=[whole(1,i-1) whole(1,i)]; 
    c(i/2,:)=[removed(1,i-1) removed(1,i)]; 
end 
%In each direction we will have center, right and left 
%interval, the center is the one that is taken out and the 
%surrounding will be added to the list 
for i=1:n 
    L(i,:)=[X(i,1) c(i,1)]; 
    R(i,:)=[c(i,2) X(i,2)]; 
end 
% Arranging the dictionary 
 
D=zeros(2*n,2*n); 
for i=1:n 
    for j=1:n 
        if j>i 
            D(i,2*j-1:2*j)=X(j,:); 
        elseif j==i 
            D(i,2*j-1:2*j)=L(j,:); 
        else 
            D(i,2*j-1:2*j)=c(j,:); 
        end 
    end 
end 
for i=n+1:2*n 
    for j=1:n 
        if j>i-n 
            D(i,2*j-1:2*j)=X(j,:); 
        elseif j==i-n 
            D(i,2*j-1:2*j)=R(j,:); 
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        else 
            D(i,2*j-1:2*j)=c(j,:); 
        end 
    end 
end 
D; 
%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [cutbox]=halfcut(box) %This function is used to 
%bisect a box at the central point across the widest side 
 format short g 
A=size(box); 
n=A(1,2)/2; 
maxL=-inf; 
for i=2:2:2*n %To determine the widest side 
    length=box(1,i)-box(1,i-1); 
    if length>maxL 
        maxL=length; 
        ind=i; 
    end 
end 
for j=2:2:2*n 
    if j==ind && j==4 %if the widest is the integer then 
%the bounds will be rounded to the near integers 
        midpoint=(box(1,j)+box(1,j-1))/2; 
        cutbox(1,j-1:j)=[box(1,j-1)  floor(midpoint)]; 
        cutbox(2,j-1:j)=[ceil(midpoint)  box(1,j)]; 
    elseif j==ind  
        midpoint=(box(1,j)+box(1,j-1))/2; 
        cutbox(1,j-1:j)=[box(1,j-1)  midpoint]; 
        cutbox(2,j-1:j)=[midpoint  box(1,j)]; 
    else 
 
        cutbox(1,j-1:j)=box(1,j-1:j); 
        cutbox(2,j-1:j)=box(1,j-1:j); 
    end 
end 
cutbox; 
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