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ABSTRACT

Characterization of

Bending Stiffness and Spontaneous Buckling

of Alpha-Helices and Coiled Coils. (August 2008)

Sirish Kaushik Lakkaraju, B.En., University of Madras, India

Chair of Advisory Committee: Dr.Wonmuk Hwang

Elasticity of α-helices and coiled coils have often been described by a linear

response to local bending with bending stiffness (Kb) and persistence length (Lp)

describing their flexibility. However, we observed that the non-bonded forces along the

length of these structures are not screened at physiological conditions and introduce a

buckling instability. For α-helical systems of same composition, but different lengths,

this is identified by a drop in Kb for longer helices and the length where this drop is

triggered is referred to as the critical buckling length. When shorter than their critical

buckling length they behave linearly, and Kb calculated using normal mode analysis in

this regime is about (3.0− 3.4)× 10−28 Nm2 for α-helices with varying compositions,

and about (1.9 − 2.1) × 10−27 Nm2 for coiled coils with leucine zipper periodicity.

Beyond the critical buckling length, normal mode solutions turn imaginary, leading

to an eventual disappearance of bending modes. Investigations with one dimensional

(1-D) linear chains of beads (a simplistic representation of bio-filaments) show that

non-bonded forces have a reciprocal relation with the critical buckling length (no

buckling instability existed in the absence of non-bonded forces). Critical buckling

length is 115.3 ± 2.9 Å for α-helices and 695.1 ± 44.8 Å for coiled coils with leucine

zipper periodicity, which is much smaller than their Lp (∼ 800 Å for α-helices and

∼ 3000 Å for coiled coils).
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CHAPTER I

INTRODUCTION

Alpha-helices formed by a hydrogen bonding between i and (i+ 4)th amino acids [1]

and their supra molecular assemblies like coiled coils [2] have important mechanical

roles. For instance, vesicle bound soluble N-ethylmaleimide-sensitive factor (NSF)

attachment receptors (SNAREs) are α-helical proteins that are used to dock the vesi-

cles at the membrane [3]. Flexibility of the coiled coil neck in the kinesin motor

controls its stalling force and load bearing capacity [4], while tropomyosin’s sliding

on actin controls actin-myosin interactions towards muscle contraction [5]. Accurate

characterization of their mechanical properties through systematic studies of defor-

mation and structural dynamics is hence important towards building reliable models

that decipher macroscopic phenomena on a microscopic scale [6].

Most of the experimental [7] and computational [8] [9] studies in the past have

treated these structures as linearly elastic homogeneous rods [10]. This is based on the

observation that some of the common non-bonded interactions like hydrogen bonding

in α-helices and knob into hole packing [2] in coiled coils of varying compositions,

give these structures their stiffness [8] [11] [12] [13] [14] [15].

However, we observe that the intrinsic non-bonded interactions also introduce a

buckling instability that is characterized by the length of the system. On measuring

bending stiffness (Kb) of α-helices of different lengths, we see that there is a drop

in Kb for longer helices. Investigations reveal that this drop is due to the predom-

inance of non-bonded forces in longer systems. We call the length scale where this

predominance starts, the critical buckling length. Coiled coils and a one-dimensional

The journal model is IEEE Transactions on Automatic Control.
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(1-D) linear chains (built as a representative of filamentous proteins) also exhibit this

buckling instability.

In this work, we have determined Kb for α-helices and coiled coils of varying sizes

and compositions from the vibrational frequencies of their normal bending modes

using the wave theory of rods. We have also calculated their critical buckling length,

which is governed by the magnitude of non-bonded forces present in such systems. For

all calculations, we treat α-helices and coiled coils as flexible cylindrical rods. When

shorter than their critical buckling length and long enough to have a good aspect ratio

(typically lesser than 0.1), bending stiffness for α-helices of different compositions vary

in the range of (2.985−3.356)×10−28 Nm2 (in agreement with previous studies [8] [9]).

Bending stiffness for long coiled coils (longer than 160 Å and shorter than 700 Å)

with leucine zipper periodicity varies between (1.883 − 2.107) × 10−27Nm2. This

is higher than previous observed bending stiffnesses of coiled coils [9] [16], but we

attribute this to the tighter knob into hole packing [2] by the unbroken heptad repeat

sequence in a leucine zipper, which is uncommon in other coiled coils.

Buckling instability due to the non-bonded forces is also seen in the 1-D linear

beads on a chain system. Persistence length from the worm like chain (WLC) model

calculations (thermal fluctuations of end atoms) also dropped beyond its critical buck-

ling length.

While buckling instability is an outcome of our calculations of bending stiffness

using frequencies of the normal bending modes of rods of different lengths, we corre-

late and compare these results with thermal fluctuation studies of 1-D linear chains

and force displacement analysis of coiled coils. The thesis is organized as follows:

Theory and Computational Methods section discuss the methodology behind using

these techniques for calculating bending stiffness. In the Results section, we ana-

lyze bending stiffness variation as a function of the length and subsequently calculate
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the critical buckling length of α-helices, coiled coils and 1-D linear chains. We then

conclude by discussing the relevance of these findings towards naturally occurring

α-helices and coiled coils.
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CHAPTER II

METHODOLOGY

In the Theory section, the various methods used for calculation of bending stiffnes

are discussed. Details of the computational steps involved are then discussed in the

Computational Steps section.

A. Theory

1. Normal Mode Analysis (NMA)

Normal modes represent different types of low frequency vibrational motion. In a

chain, these are seen as bending, stretching and torsion of a structure. When α-

helices, coiled coils and 1D linear chains are treated as cylindrical rods (Fig.1), the

frequencies of motion from NMA can be used to calculate the mechanical stiffness

coefficients using the wave equations of a thin rod. For a freely vibrating rod in a

linear elastic regime, the bending stiffness can be retrieved from the following relation,

K
(n)
b =

ρl(ω
(n))2

(k(n))4
(2.1)

where ρl is the mass per unit length (kg/m), K
(n)
b is the bending stiffness from

mode n (Nm2), ω(n) is the angular frequency of the n-th bending mode (obtained

from 2π×3×1010×f where f is bending frequency in cm−1), k(n) is the wave number

given by c(n)

L
such that c(1) = 4.7300, c(2) = 7.8532, c(3) = 10.9956, L is the length of

the rod [9] [17]. In an ideal linear elastic system, bending stiffness of any mode K
(n)
b

should be equal to each other and can be represented as Kb.

Intrinsically present non-bonded force (Fnb) however, introduce a buckling insta-

bility that is observed to be compressive. Incorporating this into the wave theory of
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rods, it can be shown that [18],

(ω(n))2L2 =
K

(n)
b (c(n))4

ρlL2
− Fnb(c

(n))4 (2.2)

In Eqn. 2.2, when Fnb ≥ K
(n)
b (k(n))2, ω(n) becomes imaginary, leading to two normal

mode solutions that increase and decrease exponentially with time. Since k(n) ∼ L−1,

for a given Fnb, there exists a critical buckling length (L(n)
c ),

L(n)
c = c(n)

√√√√K
(n)
b

Fnb

(2.3)

such that for L > L(n)
c , spontaneous buckling at mode n occurs. This is observed

by the decrease in “apparent” bending stiffness when Eqn. 2.1 is used to analyze the

data.

From Eqn. 2.2, there exists only a limited length scale determined by the condi-

tion K
(n)
b (k(n))2 > Fnb, where in the wave propogation is possible.

2. Thermal Motion Analysis (TMA)

We use a 1-D linear chain of beads (Fig.1(c)) because of its simple geomety and

because it is easier to control the non-bonded interactions between atoms. Persistence

length(Lp) of this chain can be from the end to end distances using the WLC model.

< R2 >= 2Lp(L+ Lp(e
−L
Lp − 1)) (2.4)

where < R2 > is the ensemble average of the square of end to end distance (Å2) and

L is the length of the chain (Å) [19]. By subjecting the chain to thermal undulations

at 300 K, we can determine its Lp from the distance between the end atoms using

the above relation. Lp is directly related to Kb,
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Lp =
Kb

kT
(2.5)

where k is the Boltzmann constant (Nm/K) and T is the temperature (K). Kb so

retrieved from Lp, is comparable to K
(n)
b measured using NMA, decreasing for 1-D

chains longer than their L(1)
c .

3. Steered Molecular Dynamics (SMD)

A cantilevered rod subjected to a transverse force, undergoes a displacement given

by the relation,

F = 3Kb
4y
L3

(2.6)

where F is the transverse force (pN), 4y is the vertical displacement (Å) and L is the

length of the rod (Å). For a rod of length L, Kb can thus be retrieved from the lateral

stiffness (k⊥) which is the slope of the force displacement curve (F vs 4y) plotted by

restraining one end of the rod and applying the transverse force at the free end using

the relation [17],

k⊥ =
F

4y =
3Kb

L3
(2.7)

B. Computational Methods

Simulations were carried out using CHARMM versions c3b1 and c34b1, where the

param19 force field was used. Visual Molecular Dynamics (VMD) [20] was used for

visualizations.
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(a)

(b)

(c)

Fig. 1. Cylindrical rod representation. Examples of α-helices, coiled coils and the 1-D

linear chains that are treated as flexible cylindrical rods for calculating bending

stiffness using the wave theory rods. (a) Poly-Alanine α-helix. (b) Coiled coil

with leucine zipper periodicity. (c) 1-D chain.

1. Alpha-helices

a. Helix construction

Alpha-helices of alanine, glycine, leucine and with compositions of helical segments

randomly chosen from a single α-helical chain of tropomyosin were constructed with

the following set of dihedral angles:

φ = −57◦,ψ = −47◦ and ω = 180◦

where φ, ψ and ω are the principal torsion angles describing the rotation about

N − Cα, Cα − C, and C − N axes, respectively [21]. This ω is different from ω(n),

which is the vibrational frequency of bending mode n.



8

b. NMA

1. Minimization : NMA needs a molecule to have the lowest energy conformation.

The helix is hence minimized with an initial 800 steps of Steepest Descent

(SD) and then a large number of Adopted Basis Newton Raphsons (ABNR)

minimization steps, with a predefined tolerance limit as the exit criteria. SD, the

simplest of all minimization procedures is used in moving the system towards

a minimum, removing the bad contacts and avoiding an unreasonably high

energy configuration. It is however inefficient for attaining a local minimum

and hence the number of steps are limited to 800. ABNR on the other hand,

calculates a residual gradient vector at each step by applying the Newtons

Raphsons algorithm on the subspace of the co-ordinate vector (spanned by the

displacement co-ordinates of the last positions). Minimization iterations end

when the Root Mean Square of the Gradient (GRMS) reaches the tolerance

limit. The helical structures remained intact with hydrogen bonding distance

between residues i and i+ 4 being about 2.03 Å after minimization.

2. Heating & Equilibration: In Molecular Dynamics, random velocities are initially

assigned from a Maxwell distribution to each of the atoms in the molecule. This

random assignment does not allocate correct velocities and the system is not at

thermodynamic equilibrium. To achieve this equilibrium, velocities are rescaled

over a number of steps till the total kinetic energy of the system becomes con-

stant. The rescaling of the velocities can be dictated by a temperature, since

the absolute temperature is related to the mean kinetic energy,

T =
2

2Nk

∑ mi|~vi|2
2

(2.8)

where N is the number of atoms, mi and vi are the mass and velocities of the i-th
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atom and k is the Boltzmann constant. Heating can thus be achieved in a ther-

modynamic equilibrium, by multiplying all atom velocities with
√

Tdesired

Tcurrent
[22].

Prior to retrieving the vibrational bending frequencies, the minimized α-helices

were thus heated from 0 to 100 K for a period of 50 ps. Equilibration was

then carried out for 20 ps at 100 K. Alpha-helices so heated and equilibrated

are further minimized following the procedure in 1 to ensure that the molecule

had a low energy conformation along with relaxed side chains. The hydrogen

bonding distance between i and i + 4 residues remained at about 2.03 Å, with

no notable deformation in the structure.

3. Vibrational Analysis : CHARMM subroutine VIBRA, was used for retrieving

the vibrational frequencies of the first 100 modes. Six lowest modes reported by

VIBRA are global translations and rotations along the center of mass and are

discarded [23]. The first bending mode hence occurs at mode 7 of the VIBRA

output.

2. Coiled coils

a. Coiled coil construction

Coiled coils of different lengths were constructed using leucine zipper sequence period-

icity. Naturally occurring leucine zipper has 31 residues per chain with Arginine (not

a part of the heptad repeats) as the first residue [24]. We used the 28 residues (un-

broken heptad repeats) that follow Arginine as the leucine zipper period (residues per

chain in a single letter format:MKQLEDKVEELLSKNYHLENEVARLKKL). With

leucine zipper periods as the sequence of a single α-helical chain, two stranded parallel

coiled coil rods were built using a C program provided by Offer [25]. Two parallel

α-helices of such leucine zipper periodicity with an axial translation of 1.495 Å were
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intertwined with a relative orientation of 210o, to form a super helix with a major

helical radius of 4.7 Å and a pitch of 144 Å [25]. Backbone of the coiled coil built

this way aligned well with the backbone of a naturally occurring crystal structure of

leucine zipper (Root Mean Square Deviation (RMSD) 0.01 Å). This crystal structure

is downloaded from the Protein Data Bank (PDB code:2ZTA). The side chains how-

ever, had an RMSD of about 1.1 Å. To have a good knob into hole packing, the side

chains co-ordinates in the long rods built using the C code, were replaced by those

from the crystal structure.

We determined Kb of straight coiled coils without the inherent bend found in

some of the naturally occurring coiled coils [26] since the equations from the wave

theory of rods (Eqn. 2.1, Eqn. 2.2) used to determine the bending stiffness are not

well described for bent cylindrical rods [18]. Determining Kb by considering slightly

bent coiled coils as straight cylinders [9] introduce length driven errors and lead to

an under estimation of the actual value. Despite considering limited cases of straight

coiled coils with leucine zipper periodicity, bending stiffness and critical buckling

length thus calculated can be considered a generic estimate for naturally occurring

coiled coils. For instance, the backbone of a coiled coil with 101 residues of leucine

zipper periodicity per chain has an RMSD of 0.1 Å with the backbone chain of an

actin bundling cortexillin (101 residues per chain) [27], showing a good geometric

resemblance. Bending stiffness calculated for these structures are similar (K
(1)
b '

1.759× 10−27 Nm2 for cortexillin, versus 1.683× 10−27 Nm2 for leucine zipper coiled

coil of the same size).

For all coiled coils simulations, the analytical continuum solvent potential (ACE2) [28]

was used to incorporate the solvent effects on atoms in the structure. The constants

used in this technique are SEPS = 80 (dielectric constant of the solvent), IEPS = 1

(dielectric constant of the protein) and ALPHA = 1.3 (a factor that controls the width



11

of the Gaussian density distributions describing the volumes occupied by individual

atoms). Without ACE2 providing the solvent environment, strong electrostatic in-

teractions between the charged side chains across the hydrophilic face of a coiled coil

in vacuum would denature the structure.

Length of a Coiled Coil. We calculated the length of the 2 stranded coiled coils

in the following way. CHARMM command, COOR HELIX determines the helical

axis for a given set of atoms. The output also defines the beginning and end positions

for this helical axis vector. Using this, we first define two points at the N terminus

of the coiled coil from the begin position vectors of the helical axes for the first 10

Cα atoms in each of the two α-helical chains of the coiled coil (call them b1 and b2

for chain 1 and 2, respectively). We then define two points at the C-terminal of the

coiled coil from the end position vectors of the helical axes for last 10 Cα atoms at

the C-terminal of each chain (call them e1 and e2 for chain 1 and 2, respectively).

Defining the lines connecting b1 & b2 as b1b2 and e1 & e2 as e1e2, the length of the

coiled coil is then calculated as the distance between the midpoints of b1b2 and e1e2

(Fig.2).

b. NMA

1. Minimization : Coiled coils are subjected to a two step minimization process.

First, the side chains are allowed to relax using the minimization technique dis-

cussed in α-helices (Ref. α-helices NMA step. 1), after harmonically restraining

the backbone chain (Cα-C-N atoms) with a mass weighed force constant of 5

kcal/molÅ2. Subsequently, the harmonic constraints are removed and the whole

structure is again minimized using the same α-helix minimization procedure

(Ref. α-helices NMA step. 1).
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Fig. 2. Calculation of the length of a coiled coil. Shown here is an 80.48 Å coiled

coil with leucine zipper periodicity. The little black lines along the individual

α-helical chains represent the helical axes of the first and last 10 Cα atoms in

that chain. The exaggerated black spots represent the points obtained using

COOR HELIX command that give us the start and end positions of the helical

axis. The length of the coiled coil, L is thus the length of the dashed line

joining the midpoints of b1b2 and e1e2.

The coiled coils were then heated and equilibrated followed by a second mini-

mization as with α-helices. However, no significant difference in the backbone

(RMSD ' 0.008 Å, measured for a 80.3 Å coiled coil) and the side chain ori-

entation (RMSD 1.1 Å) is observed before and after the heat cycle. Also,

bending stiffness (K
(1)
b ) of structures that were just minimized, and that of

structures subjected to heating, equilibration and a second minimization after

the initial minimization were similar (1.152 × 10−27 Nm2, for only minimized

and 1.178× 10−27 Nm2 for minimized, heat and re-minimized coiled coil of 80.3

Å). Further, coiled coils that were energy minimized only, without a heat cycle,

have a good side chain packing and alignment (RMSD of the side chains 0.5 Å)

with the structures predicted using the SCWRL package [29]. Hence, we report

NMA results of structures that were simply minimized till they reached a low

energy conformation.
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2. Vibrational Analysis: Vibrational bending frequencies were then retrieved using

the VIBRA command mentioned in α-helices NMA step 3.

c. SMD

1. Minimization: The same steps of minimization are applied here, as discussed in

coiled coils NMA step 1.

2. Heating: The coiled coil rods were heated from 0 to 300 K for 30 ps, by increasing

the temperature at a rate of 10 K every 1 ps (a tolerance window of ±10 K).

During heating, the backbone heavy atoms of the individual α-helices were

harmonically constrained with a mass weighed force constant of 5kcal/molÅ2 to

prevent thermal unwinding. Subsequently, the heat cycle continued for another

230 ps at 300 K.

3. Equilibration: After heating, the harmonic restraints were taken off, and the

coiled coil rods were equilibrated at 300K for another 500ps, with tolerance

limits of ±10 K.

4. Force Dynamics: The first four N terminal Cα atoms of coiled coils aligned

parallel to the x-axis (using COOR ORIE) are restrained and point forces were

applied along the y-axis at the C terminal Cα atom. For a 162.35 Å coiled coil,

point force of 3,4,5 and 6 pN were each applied to the equilibrated structures

for 2ns. For a 244.82 Å coiled coil, 0.5, 1, 1.5 and 2 pN point forces were each

applied to the equilibrated structures for 4 ns. Subsequently, the time averaged

displacement of the cantilevered rods is measured and force displacement curves

are plotted.
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3. 1D chain model

1-D linear chains of varying lengths containing beads(atoms) of same mass (mass of

a carbon atom), zero charge, uniform bond strength, same van der Waals potential

and radius were built for NMA and TMA analysis.

a. NMA

Same steps as that applied for NMA of α-helices were followed for the 1-D chain.

Minimization is needed for the structures to attain an equilibrium distance between

the beads (bond length between the atoms) for cases of a non-zero van der Waal’s

potential in each bead (atom). For instance, in a 1-D chain with linear bond strength

of 4000 kcal/mol, angular bond strength of 400 kcal/mol rad2 and a non-bonded

potential of -440 kcal/mol at a van-der Waals radius of 2 Å between atoms, the bond

length reduced from 1 Åto about 0.993 Åafter minimization.

b. TMA

1. Minimization: Same minimization treatment as applied for α-helices (Ref.α-

helix minimization procedure).

2. Heating & Equilibration: 1D chains were heated from 0 K to 300 K in 60 ps by

increasing the temperature by 5 K every 1 ps. The heat cycle is continued for

another 40 ps at 300 K(tolerance of ±5 K). This was followed by another 400

ps of equilibration at 300K(tolerance limits of ±5 K).

3. Production run: 1D chains so heated and equilibrated, were subjected to sev-

eral hundred nanoseconds of production run at 300K using Langevin Dynamics

which mimics the viscous aspect of a solvent by incorporating a frictional coeffi-

cient usually set to 50 ps−1. Importantly, Langevin dynamics allow controlling



15

the temperature of the system like a thermostat [30] maintaining the 1-D chain

at 300 K with a tolerance of ±5 K. Motion of the chain due to thermal undula-

tions is a random process such that the time averaged distance vector between

the end atoms should be zero. The time scale over which this condition is sat-

isfied, increases as the length of the chain increases. Once the time averaged

distance vector between the end atoms is zero, the average of the square of the

distance vector between the end atoms in time is obtained for Lp measurements.

The root mean square of the center of mass vector for the linear chain over the

complete time scale of the production run varies linearly with time, confirming

that the chain follows a diffusion path.
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CHAPTER III

RESULTS

In this chapter, we discuss the results of the NMA, TMA and SMD tests on α-helices,

coiled coils and 1-D chains and their significance.

A. Results

1. Bending stiffness curve

We determined the bending stiffness of α-helices, coiled coils and 1-D linear chains

of different lengths, and plotted K
(n)
b as a function of their length. Ideally, if these

structures were homogeneous and linearly elastic, the curve tracing K
(n)
b at various

lengths (bending stiffness curve) should be a horizontal line. However, K
(n)
b calculated

using NMA,TMA or SMD for all of the above mentioned structures is a constant only

for a limited length scale. Very short structures, for example α helices with lengths

between 30 and 70 Å have a high aspect ratio (a practical limit of 1/10 is defined by

Go [31]) and hence do not satisfy the basic requirement of the wave theory of rods.

Also, energy contribution due to van der Waals and other non-bonded interactions

between the end atoms of the structure are non-trivial for short helices. Hence, the

calculated K
(n)
b is smaller (by about 20%) than that for longer structures. The drop in

K
(n)
b for longer lengths however, is attributed to the effect of non-bonded interactions

that persist along the length of the structure. The point along the bending stiffness

curve, where this drop in K
(n)
b is triggered, is identified as the critical buckling length

(L(n)
c ) and its characterization is discussed in the next section (X-Y plots). Discussed

below is the bending stiffness curve for each of the mentioned structures.
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a. Alpha-helix

K
(n)
b for various lengths is calculated by plugging the characteristic vibrational fre-

quencies of the n-th bending mode into Eqn. 2.1. When the aspect ratio is greater

than 0.1 (short helices 30∼70 Å), K
(n)
b is smaller (2.219×10−28−2.779×10−28 Nm2).

In the horizontal phase of the bending stiffness curve for poly-alanine (70∼100 Å for

K
(1)
b , 70∼215 Å for K

(2)
b and 70∼295 Å for K

(3)
b ), K

(1)
b ((2.985− 3.013)× 10−28Nm2),

K
(2)
b ((3.107− 3.210)× 10−28 Nm2)& K

(3)
b ((3.243− 3.401)× 10(−28)Nm2) are similar

and in agreement with previous computational studies [8] [9]. Hence, NMA is a reli-

able technique for retrieving bending stiffness of a structure and within the horizontal

phase, bending stiffness can be calculated using vibrational frequencies from any of

the bending modes. As expected, the point along the curve, where bending stiffness

drops, identified as L(n)
c , increased for higher modes (L(1)

c ' 100 Å, L(2)
c ' 190 Å

& L(3)
c ' 310 Å). L(n)

c from these curves are an estimate and for a more accurate

characterization we use Eqn. 2.2 (Ref. Sec. 2).

Discussed below are the effects of amino acid composition, backbone hydrogen

bonding, surrounding medium and the cut-off distance on the stiffness of an α-helix.

Bending stiffness curves are plotted by varying each of these parameters.

1. Amino acid composition -K
(1)
b from different lengths of α-helices built of varying

compositions like poly-alanine (highest helix forming propensity), poly-glycine

(no side chain), poly-leucine and with sequences from tropomyosin show that

bending stiffness is relatively independent of sequence composition of an α-

helix (Fig.3(a)). This is in agreement with earlier computational [8], [9] and

experimental [23] studies that point towards hydrogen bonding controlling the

bending stiffness of an α-helix.

2. Backbone hydrogen bond strength - The hydrogen bond strength for a 50 residue
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poly-alanine α-helix was changed by controlling the electrostatic force between

the O− and the H+ atoms in the backbone chain’s C=O and N-H network.

From Fig.3(b), bending stiffness varies proportionally with the hydrogen bond

strength. Hence, hydrogen bonding indeed controls the bending stiffness of an

α-helix [12]. Interestingly, when the electrostatic force between the O− and H+

atoms is made zero (retaining the van der Waal’s interactions), bending stiffness

is non-zero (K
(1)
b ' 1.441 × 10−28Nm2). The structure did not experience

any denaturation on minimization, and the length of the hydrogen bond was

about 2.3 Å (under normal hydrogen bonding this is about 2.03 Å). This shows

that apart from electrostatic interactions, van der Waal’s interactions between

O− and H+ atoms in the hydrogen bonding and the non-bonded interactions

between other atoms also contribute significantly towards the stiffness of an

α-helix.

3. Surrounding medium - RDIE is a distance dielectric algorithm, which incor-

porates the permittivity of the surrounding medium (dielectric constant) into

energy calculations between two atoms. By setting the dielectric constant(ε)

to 80, we artificially create an environment of water between the atoms of the

α-helix. α-helices are observed to be softer in RDIE. K
(2)
b for poly-alanine α

-helices between 70 and 100 Å in RDIE is about (3.107− 3.210)× 10−28 Nm2,

whereas in vacuum its about (5.109 − 5.606) × 10−28 Nm2 (Fig.3(c)). This is

due to the fact that water reduces the electrostatic interactions and hence the

hydrogen bonding force between atoms in the helix, making the α-helix less

stiff.

4. Cut-off distance for non-bonded interactions - Bending stiffness curves from

varying the hydrogen bond strength and surrounding medium show that non-
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bonded interactions play an important role in controlling the stiffness of α-

helices. Typically, interactions between atoms greater than 12 Å away are

treated negligible and not considered in energy calculations. However, we de-

cided to consider the interactions between all atoms by increasing this cut

off distance to infinity and see its effect on K
(n)
b at varying lengths of poly-

Alanine α-helix. While bending stiffness (K
(1)
b & K

(2)
b ) from the infinite cut-

off calculations are comparable to that calculated when cut-off is 12 Å in the

horizontal region (K
(2)
b ' (3.104 − 3.115) × 10−28 Nm2 for infinite cut-off,

K
(2)
b ' (3.107− 3.210)× 10−28 Nm2 for a cut-off of 12 Å), the drop in bending

stiffness triggered for shorter helices (L(1)
c ' 50 Å, L(2)

c ' 100 Å) in the infinite

cut-off criteria (Fig.3(d)). In a bent rod, there are more non-bonded interac-

tions, than in a straight one, as the proximity between non-neighbors increases.

In longer rods, there are more such non-bonded interactions, and these intro-

duce a buckling instability. Since with an infinite cut-off distance, we consider

more such non-bonded interactions, L(n)
c is shorter than that calculated with a

cut-off distance of 12 Å.

b. Coiled coils

K
(n)
b of coiled coils with leucine zipper periodicity calculated using NMA or SMD,

is higher than previously observed bending stiffness for coiled coils [9] [16]. This

is because the close packing of apolar side chains, the intrahelical and interhelical

interactions between side chains and a strong adherence of the leucine zipper sequence

to the heptad pattern [24] make these coiled coils stiffer than those with non-heptad

inserts in their sequence that were considered in those previous studies.
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Fig. 3. Bending stiffness of α-helices. K
(n)
b is the bending stiffness at the n-th bending

mode and L is the length of the helix. (a) Alpha helices are relatively inde-

pendent of their sequence composition. Considered here are helices composed

of alanine, glycine, leucine and of sequences from a single helical chain in a

two stranded tropomyosin molecule in RDIE. (b) Hydrogen bonding controls

the stiffness of an α-helix. Even with a zero electrostatic force between the

O− & H+ atoms, K
(n)
b is about 1.441 × 10−28 Nm2, indicating that the van

der Waals interactions between these atoms and the non-bonded interactions

between other atoms also contribute significantly towards the stiffness of the

helix. Black dotted line shows the normal hydrogen bond strength. Region to

the left of this signifies a stronger bond while weaker bonds lie to the right. (c)

Alpha helices are softer in water simulating environment RDIE. (d) Typically, a

cut-off distance of 12 Å is used in simulations, since interactions between atoms

more than 12 Å away are considered negligible. When this cut-off distance is

turned off and non-bonded interactions between all atoms are considered, L(n)
c

is shorter (∼ 50 Å for n=1, compared to ∼ 100 Å with a 12 Å cut off).
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1. NMA: For coiled coils with leucine zipper periodicity, in the rise phase of the

bending stiffness curve, K
(1)
b is seen to increase from 0.928 × 10−27 Nm2 for a

rod of 39.702 Å (size of naturally occurring leucine zipper) to 1.887 × 10−27

Nm2 for a rod of 162.360 Å. This is also marked as the start of the horizontal

phase, where K
(1)
b is seen to vary in the range of (1.887− 2.103)× 10−27 Nm2.

The longest coiled coil considered is 326.38 Å, which has a K
(1)
b ' 1.890 ×

10−27 Nm2 & K
(2)
b ' 1.947 × 10−27 Nm2(Fig.4). The VIBRA command in

CHARMM used to retrieve the vibrational frequencies of the bending modes

for K
(n)
b calculation failed for longer helices due to the number of atoms involved

(a 326.38 Å coiled coil has 4988 atoms). Despite not seeing a drop in K
(n)
b for

the lengths considered, we attempted to determine an estimate of L(1)
c using

Eqn. 2.2 (Ref. Sec. 2). L(1)
c for these coiled coils is about 695 Å (detailed

discussion in the next section Ref. Sec. 2).

To see how this value of K
(n)
b compares with other coiled coils, we considered

the myosin-S2 domain and cortexillin. K
(1)
b of cortexillin, a naturally occurring

actin bundling protein of 145.81 Å is about 1.759 × 10−27 Nm2. Myosin S2,

being an unstable coiled coil is a bent rod. To minimize errors associated with

length calculations, and since the equations from wave theory of rods (Eqn. 2.1,

Eqn. 2.2) are not described well for bent rods, we used the sequence of myosin

S2 (from the PDB:1NKN) to construct a straight coiled coil using Offer’s code.

K
(1)
b of this rod is calculated to be about 1.024×10−27 Nm2. Previously, a study

estimated Young’s modulus of a hardened transmembrane coiled coil involved in

signaling a ligand binding to be about 3× 1010 J/m3 (K
(1)
b ' 1.245× 10−27Nm2

when the major helix radius is 5 Å [32]). These values of K
(n)
b all lie in the rise

phase of the bending stiffness curve (Fig. 4), indicating that the technique of
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calculating K
(n)
b using NMA by itself is accurate. It is the length scale of the

rods that introduces the measured difference in K
(n)
b .

As already seen with α-helices, shorter coiled coils have a smaller measured K
(n)
b

due to the problems associated with a high aspect ratio and the end atoms non-

bonded interactions. Also, a cylindrical description of helical rods suffers from

errors associated with length estimations. The deviation of the measured length

from the true length of the cylindrical rods minimizes as the rods become longer.

Since, cylindrical description for helical coiled coils is towards application of

wave theory of rods for calculating mechanical properties, there is no “right”

way of determining true length of such systems. As this error cannot be avoided,

it is better to consider longer rods for calculations (within the L(n)
c limit).

2. SMD:

Slope of the force displacement curve for a 162.36 Å coiled coils is about 0.0862

pN/Å. K
(1)
b calculated using Eqn. 2.7 is about (1.229±0.231)×10−27 Nm2. For

a 244.82 Å coiled coil, the slope is 0.03496 pN/Å, which translates to a K
(1)
b of

(1.221 ± 0.301) × 10−27 Nm2. This is less than K
(1)
b calculated using NMA by

about 35% (1.887× 10−27 Nm2 for 162.36 Å coiled coil and 1.999× 10−27 Nm2

for 244.82 Å coiled coil). Difference of about 35% between K
(1)
b from NMA and

SMD which was also observed in an earlier study that characterized bending

stiffness of myosin S2 rod domain [9] could be due to the errors related to the

estimation of an equilibrium position of the C-terminal tip upon displacement

by the transverse force. Also, the applied forces could be greater than what the

coiled coils can sustain as a homogeneous rod, thus making them appear softer

than they actually are. More data points and longer simulations could elucidate

this further.
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Fig. 4. Bending stiffness of coiled coils. (a) K
(n)
b is the bending stiffness at mode n. lzp

stands for coiled coils with leucine zipper periodicity, S2 represents the stiffness

of myosin S2 rod domain, built as a straight rod using sequence information

from PDB:1NKN. Cortexillin is an actin bundling coiled coil with 101 residues

per chain. (b) Force displacement curve for a 163 Å leucine zipper coiled coil.

From the slope of (0.086± 0.007) pN/Å, K
(1)
b ' (1.229± 0.231)× 10−27 Nm2.

c. 1-D chain model

Bending stiffness of a 1D linear chain of beads (atoms) is calculated using both NMA

and TMA. Since the charge of the individual beads is set to 0, the only non-bonded

forces that exist are those due to Lennard-Jones potential(VLJ) between the beads

separated by a distance r,

VLJ(r) = ε[(
rmin

r
)12 − 2(

rmin

r
)6] (3.1)

where, rmin is the van der Waals radius (Å). When the two atoms are seperated by

rmin, VLJ = ε. Hence, ε, characterizes the depth of the potential well (kcal/mol). Here,

we vary the non-bonded interactions between atoms by varying ε and understand its

effect on buckling instability.

1. NMA: The bending stiffness curve is plotted by plugging in vibrational fre-

quencies of the first and second bending modes of chains of different lengths
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into Eqn. 2.1. Like α-helices and coiled coils, this curve tracing K
(n)
b for the

1-D chain is a horizontal line for a limited length scale, when ε of each atom

was set to that of a carbon atom(ε = 0.12). Increasing ε, resulted in bending

stiffness curves, where K
(n)
b dropped at much shorter length scales. Non-bonded

forces hence have a reciprocal relationship with L(n)
c . Importantly, when ε is

0 kcal/mol, bending stiffness curve stays a horizontal line, irrespective of the

length scale of the chain (Fig.5(a)). This is hence a strong evidence that shows

that indeed inherent non-bonded forces along the length of a rod introduce a

buckling instability.

2. TMA: The chain was subjected to thermal motion at 300K, and using the time

averaged distance between the two end atoms, Lp was calculated from Eqn. 2.4.

Since Lp = Kb

kT
, variation of Lp with L, is a representative of the bending stiffness

curve. For a non-zero ε, this curve tracing Lp at different lengths,L, recorded a

drop similar to that observed when K
(n)
b is calculated using NMA (about 75 Å

in each case)(Fig. 5(b)). When Lp, is calculated using the distance between the

first and middle atoms in the chain (instead of distance between the end atoms),

it still drops beyond L(1)
c , reiterating that increased non-bonded interactions

during bending introduces the buckling instability.

2. Critical buckling length

From the bending stiffness curves of α-helices, coiled coils and 1-D chains, L(n)
c is

identified as the point where K
(n)
b drops (end of the horizontal region). At a resolution

of about 10 Å, L(n)
c cannot be accurately determined from these bending stiffness

curves. Hence, using Eqn. 2.2, we plot a straight line with X = 1
L2 vs Y = ω2

nL
2.

K
(n)
b can be retrieved from the slope of this straight line (

K
(n)
b

(c(n))4

ρl
) and Fnb from
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Fig. 5. Critical buckling length has an inverse relationship with the non-bonded forces.

(a) 1-D chain with bond stretching force constant Kbond = 8000 kcal/molÅ2

and a bond angular force constant Kθ = 800 kcal/mol rad2. K
(1)
b dropped for

shorter chains on increasing ε. There is no drop in K
(n)
b for chains with atoms

having zero ε. (b) 1-D chain with Kbond = 4000 kcal/molÅ2 and Kθ = 400

kCal/mol. The persistence length (Lp) is calculated from the thermal fluctua-

tions of the WLC. A very high ε (440) is used since the time scale over which

the vector (R1−n for end to end distance and R1−n/2 for distance between an

end atom and an atom at the center of the chain) becomes zero, is extremely

high for long chains (For a chain of 120 Å, this was about 150 ns). TMA and

NMA results are comparable, with both recording a drop in K
(1)
b at about the

same length (∼ 75 Å).
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the abscissa (constant of the straight line would be Fnb(c
(n))2

ρl
). L(n)

c is then calculated

applying Fnb and K
(n)
b into Eqn. 2.3.

The X − Y plots are significant, as apart from a more accurate characterization

of Lc(n), we also get a representative K
(n)
b (The bending stiffness curve can only give

a range from the approximately horizontal line tracing K
(n)
b for different sizes of the

structure). To retrieve the slope and abscissa, we did not use data points from the

initial rise phase of the bending stiffness curves. Results of these X−Y plots for each

of the structures are discussed below.

a. Alpha-helix

For a poly-alanine α-helix, from the slope of the X − Y plots, K
(1)
b = (2.985 ±

0.080) × 10−28 Nm2 and K
(2)
b = (3.180 ± 0.0078) × 10−28 Nm2. From the abscissa

of mode 1, Fnb = 50.239 ± 2.59 pN, while from mode 2, Fnb = 42.607 ± 6.9136 pN

(Fig. 6(a)). L(1)
c is then determined to be 115.321± 2.867 Å. From the second mode,

L(2)
c = 214.530 ± 15.542 Å. L(1)

c is about 93.910 ± 3.214 Å for a poly-glycine and

126.62 ± 4.318 Å for poly-leucine α-helices. These values of L(n)
c are comparable to

the point of drop in K
(n)
b in the bending stiffness curves (Fig. 3(a)).

b. Coiled coils

Despite not observing a drop in K
(n)
b in the length scales of coiled coils used, we

decided to plot the X − Y plots, which yielded L(1)
c = 695.073 ± 44.750 Å and a

L(2)
c = 1445.113 ± 750.321 Å. Such a high error region stems from the limitation in

the length scales that can be explored using VIBRA and hence the number of data

points that can be used in the analysis. Leucine zipper coiled coils of 700 Å have about

10,600 atoms and determining vibrational frequencies from VIBRA of CHARMM for

such a big system becomes unviable.
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c. 1-D chain model

From the X−Y plots of a 1-D linear chain in Fig. 6(c), K
(1)
b = (1.046±0.007)×10−27

Nm2 and K
(2)
b = (1.066± 0.0001)× 10−27 Nm2. From the abscissa of mode 1, Fnb =

2.756 ± 0.090 pN, while from the abscissa of mode 2, Fnb = 1.995 ± 0.091 pN. Non-

bonded force measured using CHARMM command SCALAR DX on this 1-D chain

in an energy minimized condition is about 3 pN. Similarly, for the 1-D linear chain

with a bending stiffness of about 4.163×10−27Nm2 (Ref. Fig. 5(b)), Fnb from X−Y
plots is about 7.3 pN, while that calculated using CHARMM is about 10 pN. Further,

when the non-bonded forces within the system are turned off, Fnb from the X − Y

plots is 0± 0.0065 pN.

For α-helices and coiled coils, L(1)
c < Lp (in a poly-alanine α-helix, L(1)

c =

115.321 ± 2.867 Å, while Lp ' 740.342 ± 19.239 Å). When 1-D chains were built to

have a stiffness such that L(1)
c is greater than Lp, then Fnb from the X − Y plots was

about 50-100 times lesser than the non-bonded forces measured using SCALAR DX

command. Since NMA assumes a harmonic behavior of the system, when determining

vibrational frequencies, the deviation between the natural vibrational frequency and

that measured using CHARMM becomes significant with higher non-bonded forces.

This introduces the error in the measurements.
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Fig. 6. Critical buckling length from X-Y plots. X = 1
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nL
2. (a) Poly-ala-

nine α-helix. (b)Coiled coils with leucine zipper peridicity. (c) 1-D chain with

Kbond = 8000 kcal/molÅ2 and Kθ = 800 kCal/mol rad2. Since X, Y vary over
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involving large L (small X) for the α-helices and coiled coils (like the inset for

the 1-D chains).
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CHAPTER IV

DISCUSSION AND CONCLUSION

Within the horizontal phase of the bending stiffness curve, K
(n)
b of α-helices calculated

using NMA is nearly independent of the amino-acid composition and varies between

2.985 × 10−28 − 3.356 × 10−28 Nm2. Sequence independence shows that hydrogen

bonding between the N-H of i-th and C=O of the (i+ 4)-th amino-acids controls the

stiffness of α-helices. In the absence of electrostatic force in the hydrogen bonding,

bending stiffness is about 1.441 × 10−28 Nm2. This shows that the van der Waals

interactions between the H and O atoms (of the N-H,C=O network) and non-bonded

interactions between other atoms contribute significantly towards the stiffness of the

helix. Contributions by non-bonded interactions between other atoms towards the

stiffness is reiterated by the fact that helices were softer in the water simulating RDIE

environment (K
(1)
b ' (3.107− 3.210)× 10−28 Nm2 Vs. ' (5.109− 5.606)× 10−28 Nm2

in vacuum for a poly-alanine helix).

Since most of the previous computational and experimental studies that char-

acterized their mechanical properties considered α-helices with length less than this

critical buckling length limit, their assumption of linear elasticity stayed valid. Within

this limited length scale, bending stiffness retrieved using a triad system that fol-

lows its local curvature [8] will fail to capture the effect of non-bonded interactions

on the whole system. Filaments with hydrogen-bonding have been observed to be

anisotropic, being nearly inextensible in the longitudinal direction [17]. Hence, cal-

culating Youngs modulus from the stretching characteristics using an Atomic Force

Microscope [7], would make α-helices appear much stiffer. Despite having a persis-

tence length of about 760 Å (for a poly-Alanine α-helix fromK
(n)
b in RDIE, Lp is about

740.342±19.239 Å), isolated α-helices associated with mechanical roles have a length
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that is less than or about 115 Å [3] [33]. We believe that apart from their functional

significance, with L(1)
c in this range (for poly-Alanine α-helix, L(1)

c is 115.321± 2.867

Å), α-helices are designed to stay within this limit in order to avoid the predominance

of non-bonded forces seen at lengths greater than L(n)
c .

From NMA and SMD calculations, coiled coils with leucine zipper periodicity

have a K
(1)
b of about (2.231 ± 0.030) × 10−27 Nm2 and L(1)

c = 695.073 ± 44.750 Å.

K
(1)
b is higher than previously calculated values [9] [16] due to the stiffness offered by

tight knob into hole packing in a leucine zipper periodicity. Bending stiffness of an

S2 rod domain was estimated to be about 0.720 × 10−27 Nm2 [9]. However, S2 rod

domain is an unstable coiled coil, with absence of some of the interhelical salt bridge

formations [34]. Further, from the crystal structure (PDB:1NKN), the rod domain is

bent about the cylindrical axis. Estimating its length by considering them as straight

cylinders would result in a smaller K
(n)
b . To avoid these length associated errors, we

built a straight coiled coil using the sequence information from the crystal structure

(PDB:1NKN) and the K
(1)
b for such a structure is about 1.025× 10−27 Nm2.

Long coiled coils such as tropomyosin, with its alanine staggers, breaks in the

heptad periodicity and naturally bent shape [26] and Rad50 (a DNA repair protein)

cannot be considered as a single coiled coil when determining its bending stiffness [35].

Each region (N-terminal, C-terminal and central rod domain) are bound to have

different stiffnesses by virtue of their composition and it would be difficult to arrive

at a single representative stiffness constant for the whole molecule. Our estimate

of K
(1)
b for coiled coils using leucine zipper may be an upper limit (when trying to

arrive at bending stiffness of coiled coils in general), as naturally occurring coiled coils

usually have some breaks in the heptad periodicity along their length, and this would

affect the stiffness.

Since the drop in bending stiffness due to the intrinsic non-bonded forces is
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not restricted to only α-helices and coiles coils, but is seen even in the 1-D linear

chains, it would be relevant and important to characterize L(n)
c for naturally occurring

filamentous proteins. While their linear response to bending is characterized by K
(n)
b

and Lp, determining L(n)
c for α-helices, coiled coils and filaments in nature would give

a complete picture when modeling the mechanical behavior of such systems.



32

REFERENCES

[1] L. Pauling, R. Corey, and H. Branson, “The Structure of Proteins: Two

Hydrogen-Bonded Helical Configurations of the Polypeptide Chain,” Proceedings

of the National Academy of Sciences of the United States of America, vol. 37,

no. 4, pp. 205–211, 1951.

[2] F. Crick, “The packing of alpha helices: Simple coiled coils,” Acta Crystallo-

graphica, vol. 365, p. 110X, 1953.

[3] X. Chen, D. Tomchick, E. Kovrigin, D. Arac, M. Machius, T. Sudhof, and J. Rizo,

“Three-dimensional structure of the complexin/snare complex,” Neuron, vol. 33,

pp. 397–409, 2002.

[4] J. Jaud, F. Bathe, M. Schliwa, M. Rief, and G. Woehlkey, “Flexibility of the neck

domain enhances kinesin-1 motility under load,” Biophysical Journal, vol. 91, pp.

1407–1412, August 2006.

[5] J. Brown and C. Cohen, “Regulation of muscle contraction by tropomyosin and

troponin: How structure illuminates function,” Advances in Protein Chemistry,

vol. 71, pp. 121–159, 2005.

[6] G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,”

Nature, vol. 2, pp. 715–725, NOV 2003.

[7] A. Idiris, M. T. Alam, and A. Ikai, “Spring mechanics of α-helical polypeptide,”

Protein Engineering, vol. 13, no. 11, pp. 763–770, 2000.

[8] S. Choe and S. X. Sun, “The elasticity of α-helices,” Journal of Chemical Physics,

vol. 122, no. 244912, pp. 244 912–1–9, 2005.



33

[9] I. Adamovic, S. Mijailovich, and M. Karplus, “The Elastic Properties of the

Structurally Characterized Myosin II S2 Sub-domain: A Molecular Dynamics

and Normal Mode Analysis,” Biophysical Journal, 2008.

[10] Y. Suezaki and N. Go, “Fluctuations and mechanical strength of α-helices of

polyglycine and poly(l-alanine),” Biopolymers, vol. 15, p. 2137, 1976.

[11] M. Lantz, S. Jarvis, H. Tokumoto, T. Martynski, T. Kusumi, C. Nakamura, and

J. Miyake, “Stretching the alpha-helix: a direct measure of the hydrogen-bond

energy of a single-peptide molecule,” Chemical Physics Letters, vol. 315, pp.

61–68, 1999.

[12] J. Ireta, J. Neugebauer, M. Scheffler, A. Rojo, and M. Galvan, “Density func-

tional theory study of the cooperativity of hydrogen bonds in finite and infinite

alpha-helices,” Journal of Physical Chemistry B, vol. 107, pp. 1432–1437, 2003.

[13] D. Lee, S. Ivaninskii, P. Burkhard, and R. Hodges, “Unique stabilizing interac-

tions identified in the two-stranded alpha-helical coiled-coil: Crystal structure

of a cortexillin i/gcn4 hybrid coiled-coil peptide,” Protein Science, vol. 12, pp.

1395–1405, 2003.

[14] A. Pineiro, A. Villa, T. Vagt, B. Koksch, and A. Mark, “A molecular dynamics

study of the formation, stability, and oligomerization state of two designed coiled

coils:possibilities and limitations,” Biophysical Journal, vol. 89, pp. 3701–3713,

December 2005.

[15] Y. Yu, O. Monera, R. Hodges, and P. L. Privalov, “Ion pairs significantly stabilize

coiled-coils in the absence of electrolyte,” Journal of Molecular Biology, vol. 255,

pp. 367–372, 1996.



34

[16] S. Hvidt, F. H. M. Nestler, M. L. Greaser, and J. D. Ferry, “Flexibility of myosin

rod determined from dilute solution viscoelastic measurements,” Biochemistry,

vol. 21, pp. 4064–4073, 1982.

[17] J. Park, B. Kahng, R. D. Kamm, and W. Hwang, “Atomistic simulation approach

to a continuum description of self-assembled β-sheet filaments,” Biophysics Jour-

nal, vol. 90, pp. 2510–2524, 2006.

[18] L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of

Elasticity. Nauka, Moscow, 1987.

[19] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton. Sunderland,

MA: Sinauer, 2001.

[20] W. Humphrey, A.Dalke, and K.Schulten, “Vmd:visual molecular dynamics,”

Journal of Molecular Graphics, vol. 14, no. 1, p. 33, 1996.

[21] I. Abbreviations, “Symbols for the description of the conformation of polypeptide

chains. Tentative rules (1969). IUPACIUB Commission on Biochemical Nomen-

clature,” Biochemistry, vol. 9, pp. 3471–3479, 1970.

[22] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and

M. Karplus, “CHARMM: A program for macromolecular energy, minimization,

and dynamics calculations,” Journal of Computational. Chemistry, vol. 4, pp.

187–217, 1983.

[23] K. Itoh and T. Shimanouchi, “Vibrational frequencies and modes of α-helix,”

Biopolymers, vol. 9, p. 383, 1970.

[24] E. K. O’Shea, J. D. Klemm, P. S. Kim, and T. Alber, “X-ray structure of the

gcn4 leucine zipper, a two-stranded, parallel coiled coil,” Science, vol. 254, no.



35

5031, p. 539, 1991.

[25] G. Offer and R. Sessions, “Computer modelling of the alpha-helical coiled

coil:packing of side-chains in the inner core,” Journal of Molecular Biology, vol.

249, pp. 967–987, 1995.

[26] J. Brown, K. Kim, G. Jun, N. Greenfield, R. Dominguez, N. Volkmann,

S. Hitchcock-DeGregori, and C. Cohen, “Deciphering the design of the

tropomyosin molecule,” Proceedings of the National Academy of Sciences, p.

131219198, 2001.

[27] P. Burkhard, R. A. Kammerer, M. O. Steinmetz, G. P. Bourenkov, and U. Aebi,

“The coiled-coil trigger site of the rod domain of cortexillin i unveils a distinct

network of interhelical and intrahelical salt bridges,” Structure, vol. 8, pp. 223–

230, 2000.

[28] M. Schaefer and M. Karplus, “A comprehensive analytical treatment of contin-

uum electrostatics,” J Phys Chem, vol. 100, pp. 1578–1599, 1996.

[29] R. D. Jr, “Comparative modeling of casp3 targets using psi-blast and scwrl,”

Proteins: Structure, Function, Genetics, vol. 3, pp. 81–87, 1999.

[30] T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide.

Springer-Verlag, New York, 2002.

[31] A. Matsumoto and N. Go, “Dynamic properties of double-stranded dna by nor-

mal mode analysis,” Journal of Chemical Physics, vol. 110, pp. 11 070–11 075,

1999.

[32] R. Hawkins and T. McLeish, “Dynamic allostery of protein alpha helical coiled

coils,” Journal of Royal Society Interface, vol. 3, no. 6, pp. 125–138, 2006.



36

[33] B. Kuhlman, H. Yang, J. Boice, R. Fairman, and D. Raleigh, “An exceptionally

stable helix from the ribosomal protein L9: implications for protein folding and

stability,” Journal of Molecular Biology, vol. 270, no. 5, pp. 640–647, 1997.

[34] Y. Li, J. Brown, L. Reshetnikova, A. Blazsek, L. Farkas, L. Nyitray, and C. Co-

hen, “Visualization of an unstable coiled coil from the scallop myosin rod,” Na-

ture, vol. 424, pp. 341–345, JULY 2003.

[35] J. van Noort, T. van der Heijden, M. de Jager, C. Wyman, R. Kanaar, and

C. Dekker, “The coiled-coil of the human Rad50 DNA repair protein contains

specific segments of increased flexibility,” Proceedings of the National Academy

of Sciences, vol. 100, no. 13, p. 7581, 2003.



37

VITA

Sirish Kaushik Lakkaraju received his Bachelor of Engineering degree in Elec-

tronics and Instrumentation from the University of Madras at Chennai, India in 2003.

He entered the Master of Science program in Biomedical Engineering at Texas A&M

University in September 2005. His research interests include molecular biomechanics,

focusing on α helices, coiled coils and filamentous proteins.

Mr.Lakkaraju maybe reached at the Department of Biomedical Engineering, 337

Zachry Engineering Center, 3120 TAMU, College Station, TX 77843-3120. His email

is kaushik.lakkaraju@gmail.com


