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ABSTRACT 

Essays on Exponential Series Estimation and Applications of Copulas in Financial 

Econometrics. (August 2008) 

Chin Man Chui, B.A., City University of Hong Kong; 

M.S., University of Hong Kong; 

M.S., Chinese University of Hong Kong 

Chair of Advisory Committee: Dr. Ximing Wu 

 

This dissertation contains three essays. They are related to the exponential series 

estimation of copulas and the application of parametric copulas in financial 

econometrics. Chapter II proposes a multivariate exponential series estimator (ESE) to 

estimate copula density nonparametrically. The ESE attains the optimal rate of 

convergence for nonparametric density. More importantly, it overcomes the boundary 

bias of copula estimation. Extensive Monte Carlo studies show the proposed estimator 

outperforms kernel and log-spline estimators in copula estimation. Discussion is 

provided regarding application of the ESE copula to Asian stock returns during the 

Asian financial crisis. The ESE copula complements the existing nonparametric copula 

studies by providing an alternative dedicated to the tail dependence measure. 

Chapter III proposes a likelihood ratio statistic using a nonparametric exponential 

series approach. The order of the series is selected by Bayesian Information Criterion 

(BIC). I propose three further modifications on my test statistic: 1) instead of putting 

equal weight on the individual term of the exponential series, I consider geometric and 
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exponential BIC average weights; 2) rather than using a nested sequence, I consider all 

subsets to select the optimal terms in the exponential series; 3) I estimate the likelihood 

ratio statistic using the likelihood cross-validation. The extensive Monte Carlo 

simulations show that the proposed tests enjoy good finite sample performances 

compared to the traditional methods such as the Anderson-Darling test. In addition, this 

data-driven method improves upon Neyman’s score test. I conclude that the exponential 

series likelihood ratio test can complement the Neyman’s score test. 

Chapter IV models and forecasts S&P500 index returns using the Copula-VAR 

approach. I compare the forecast performance of the Copula-VAR model with a classical 

VAR model and a univariate time series model. I use this approach to forecast S&P500 

index returns. I apply a modified Diebold-Mariano test to test the equality of mean 

squared forecast errors and utilize a forecast encompassing test to evaluate forecasts. The 

findings suggest that allowing a more flexible specification in the error terms using 

copula tends improve the forecast accuracy. I also demonstrate combined forecasts 

improved forecasts accuracy over individual models.  
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CHAPTER I  
 

INTRODUCTION 

 

It is difficult to find a market practitioner or empirically orientated academic who 

still believes asset returns are well described by a normal distribution. Nonetheless, it 

would not be hard to find someone who still uses linear correlation as their sole measure 

of dependence between risky assets or exposures, even though linear correlation is 

unable, for instance, to capture the fact that equities exhibit a greater tendency to crash 

together than to boom together. What’s more, it is not a satisfactory measure of 

dependence between the payouts from different options, which are in general strongly 

non-normally distributed. 

Copulas are a powerful framework for modeling dependence between risky assets, 

and are applicable in both of the above problems. Copula theory has its roots in the 

arcane field of probabilistic metric spaces, and there they remained until the early 1990s, 

at which time they gained increasing attention from statisticians. From there it was a 

small jump to finance, and the last decade or so has witnessed an explosion in the 

number of papers on the application of copulas to financial problems.  

Loosely speaking, the copula generalizes linear correlation as a measure of 

dependence in the same way that the entire distribution of returns generalizes variance as 

a measure of risk. If returns are normally distributed, then variance completely describes 

                                                 
  This dissertation follows the style and format of Journal of Business and Economic Statistics. 
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risk, and linear correlation completely describes dependence. However, if returns are not 

normally distributed, then variance is not a complete description of risk, and alternative 

summary measures such as value-at-risk or expected shortfall may be more appropriate. 

Similarly, if returns are not normally distributed, then correlation no longer completely 

describes the dependence between the returns. 

Using copulas (otherwise known as dependence functions) to construct joint 

distributions allows us to specify the distributions of individual returns separate from 

each other and separate from the dependence structure. Clearly, this dramatically 

increases the flexibility in specifying multivariate distributions. More importantly, it 

provides a more flexible framework to consider dependence between risky assets. 

The commonly used parametric copulas, typically with one or two parameters, have 

the risk of over-simplification or misspecification bias. A d-dimensional copula is 

bounded in [0,1]d, hence, the popular nonparametric Gaussian kernel and log-spline 

estimators suffer from a boundary bias problem. 

In this dissertation, I apply nonparametric exponential series methods to estimate the 

copula function and perform copula forecasting. In particular, I focus on the correction 

of boundary bias using exponential series methods, present a goodness-of-fit test using 

exponential series methods and measure the forecasting performance of the parametric 

copula in financial returns. Chapter II proposes a multivariate exponential series 

estimator (ESE) to estimate the copula density nonparametrically. The ESE has an 

appealing information theoretic interpretation and attains the optimal rate of 

convergence for nonparametric density in Stone (1982). More importantly, it overcomes 
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the boundary bias of copula estimation. Extensive Monte Carlo studies show the 

proposed estimator outperforms kernel and log-spline estimators in copula estimation. It 

also demonstrates two-step density estimation through an ESE copula often outperforms 

direct estimation of the joint density. Discussion is provided regarding application of the 

ESE copula to Asian stock returns during the Asian financial crisis, as well as 

asymmetric tail dependence.  

Based on the principle of maximum entropy, Chapter III proposes a likelihood ratio 

statistic using a nonparametric exponential series approach. The order of the series is 

selected by BIC. I propose three further modifications on my test statistics: 1) instead of 

putting equal weight on the individual term of the exponential series, I consider 

geometric and exponential BIC average weights; and 2) rather than using nested 

sequence, I consider all subsets to select the optimal terms in the exponential series; 3) 

use the likelihood cross-validation to estimate the likelihood ratio statistic. My extensive 

Monte Carlo simulations show that the proposed tests enjoy good finite sample 

performances compared to the traditional methods such as the Anderson-Darling tests. In 

addition, this data-driven method improves upon Neyman’s score test.  

Chapter IV models and forecasts S&P500 index returns using Copula-VAR 

approach. By allowing for a rich dependence structure and more flexible marginal 

distributions that can better fit the features of empirical data, I compare the forecast 

performance of Copula-VAR model and traditional VAR and a univariate time series 

model. I use this approach to forecast S&P500 index returns. A modified Diebold-

Mariano test of equality of mean squared forecast errors and a forecast encompassing 
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test are applied in forecast evaluation. The findings suggest that allowing a more flexible 

specification in the error terms using the copula tends improve the forecast accuracy. I 

also demonstrate combined forecasts improved forecasts accuracy over individual 

models.  
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CHAPTER II 
 

EXPONENTIAL SERIES ESTIMATION OF EMPIRICAL 

COPULAS WITH APPLICATION TO FINANCIAL RETURNS 

 

2.1 Introduction 

 

The modeling of multivariate distributions from the multivariate outcomes is an 

essential task in economic model building. Assuming data comes from some well-known 

distribution, the parameters in the multivariate distribution can be estimated directly and 

statistical or economic hypothesis can be tested accordingly. One of the commonly used 

candidates is the elliptic distribution because of its nice statistical properties, but the 

elliptic distribution is often not adequate to capture the pattern of the empirical data. This 

is especially true when I estimate the multivariate returns distribution or try to account 

for the nonlinear dependence among several assets in financial economics, see, for 

example, Embrechts et al. (1999). One limitation of direct estimation of the multivariate 

distribution is the problem of the “curse of dimensionality”. As the number of random 

variables increases, the amount of data that I need for the multivariate density estimation 

to a desirable accuracy will grow exponentially. For these reasons, copulas have become 

popular in modeling financial and economic variables as well as actuarial risks. 

The concept of copulas is introduced by Sklar (1959) and has been recognized as an 

effective device for modeling dependence between random variables. It allows 
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researchers to model each marginal distribution that best fits the sample, and to estimate 

a copula density with some desirable features separately. All the dependence structures 

are summarized in the copula. In practice, the joint distribution is estimated by imposing 

restrictions on the specific margins and copula respectively. For example, the t-

distribution can capture the tail heaviness in the margin but the Gaussian copula only 

allows symmetric dependence. Extensive treatments and discussions in the properties of 

copulas can be found in Nelsen (1999) and Joe (1997). 

There is a growing literature on the estimation of multivariate densities using 

copulas. Three commonly used estimation methods of copulas are: parametric, 

semiparametric and nonparametric. Each method may be further sub-divided into two-

step and one-step approaches. In two-step approach, each margin is estimated first and 

the estimated values of the CDF are used to estimate copulas in the second step. The 

estimated parameters (in the parametric case) are typically inefficient. Theoretically, I 

can also estimate the copula in one-step. The margins and the copula are estimated 

jointly in this approach. Although the estimated parameters (in parametric case) are 

efficient in this case, the one-step approach is more computationally burdensome than 

the two-step approach. In empirical work, I may have prior knowledge on the margins 

but not on the structure of the joint dependence. Therefore, the two-step approach may 

have an advantage over the one-step approach in terms of the computational 

consideration, although the estimates may be inefficient. 

It is not straightforward to choose the best combination of the margins and the 

copula in parametric estimation. Therefore, semiparametric and nonparametric 



 7

estimations have become popular in the literature recently. The main advantage of these 

estimation methods is to let the data determines the copula without imposing any 

restriction on the copula. 

In semiparametric estimation, a parametric copula is specified but not the margins. 

The parameters in the copula function are estimated by maximum likelihood estimation. 

See the earlier application in Oakes (1986), Genest and Rivest (1993), Genest, Ghoudi 

and Rivest (1995) and more recently in Liebscher (2005) and Chen et al. (2006). 

Nonparametric estimation does not assume any parametric distribution in both the 

margins and the copula. In this way, nonparametric estimation provides a higher degree 

of flexibility, since the dependence structure of the copula is not directly observable. It 

also illustrates a rough picture helpful to researchers for subsequent parametric 

estimation of the copula. In addition, the problem of misspecification in the copula can 

be avoided in the context of nonparametric estimation. 

The earliest nonparametric estimation in copulas is due to Deheuvels (1979) who 

estimate the copula density based on the empirical distribution. Further work using 

kernel methods have been proposed by Gijbels and Mielnicnuk (1990), Fermanian and 

Scaillet (2003) in a time series framework and Chen and Huang (2007) with boundary 

correction. Recently, other nonparametric methods to estimate the copula have appeared 

in the literature. Sancetta and Satchell (2004) use the Bernstein polynomials to 

approximate the Kimeldorf and Sampson copula. Hall and Neumeyer (2006) use wavelet 

estimators to approximate the copula density. 
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The kernel is one of the popular methods in nonparametric estimations. Li and 

Racine (2007) present a comprehensive review of this method. In spite of its popularity, 

there are several drawbacks in kernel estimation. If one uses a higher order kernel 

estimator in order to achieve a faster rate of convergence, it can result in a negative 

density estimate. In addition, the support of data is often bounded with high 

concentration at or close to the boundary in application. The Gaussian kernel will 

underestimate the underlying density at the boundary. This boundary bias problem is 

well known in the univariate case. The problem may be even more significant in the case 

of multivariate bounded support variables, see Muller (1991) and Jones (1993). Many 

methods have been proposed to resolve this boundary bias problem of the Gaussian 

kernel in the literature. These methods either adopt different functional forms of kernel 

beyond the Gaussian kernel (for example, see Lejeune and Sarda (1992), Jones (1993) 

and Jones and Foster (1996)) or transform data before applying the Gaussian kernel 

(Marron and Ruppert 1994). Recent studies included Chen (1999), Bouezmarni and 

Rombouts (2007). These studies propose to use the gamma kernel and local linear kernel 

estimators. They found that these estimators work well under the boundary data. 

Log-spline estimators are also drawn considerable attention in the literature1 and 

have been studied extensively by Stone (1990). But log-spline estimators suffer from the 

saturation properties. If I denote s the order of the spline and the logarithm of the density 

defined on a bounded support has r square integrable derivatives, the fastest convergence 

                                                 
1 A closely related literature is the bivariate log-spline estimator studied by Stone (1994), Koo (1996) and 
Kooperberg (1998). 
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rate of can only be achieved with s > r. Moreover, there is a small probability that the 

MLE of the estimators does not exist for the log-spline estimator. 

In this paper, I employ a nonparametric estimation method for copula density, 

namely the exponential series estimator (ESE). This estimator is based on the method of 

maximum entropy density subject to a given set of moment conditions. Compared with 

the kernel estimator, the number of estimated parameters is largely reduced in the 

context of ESE for a typical copula that is a smooth function. Further, ESE does not 

suffer from the boundary bias problem even if the domain is restricted in [0,1] and the 

speed of computation can also be significantly increased. The use of ESE on copulas 

may also lead to the test statistics designed to measure independence between margins. 

Preliminary findings in this paper are: ESE provides better performance than log-spline 

and kernel estimator in copula density estimation. The two-step density estimation 

through ESE copula often outperforms direct estimation of the joint density. Although 

my analysis is restricted to the bivariate case, it is straightforward to generalize the result 

to the multivariate case. 

This paper is organized as follows. Section 2.2 presents the principle of maximum 

entropy and its statistical properties. Section 2.3 defines the copulas and the dependence 

measures to be used. Section 2.4 discusses the advantages of ESE for copula estimation. 

Monte Carlo results are presented in Section 2.5. Section 2.6 presents a financial 

application on the empirical copula estimation. Section 2.7 concludes. 
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2.2 Maximum Entropy Density 

 

Shannon’s information entropy is defined as 
 
     ∫−= ,),(log),()( dxxfxffW θθ        (2.1) 
 
W measures the randomness or uncertainty of a distribution. The maximum entropy 

principle suggests choosing the density that maximizes Shannon’s information entropy 

among all the distributions that satisfy certain moment conditions. The maximum 

entropy density then is obtained by maximizing (2.1) subject to moment conditions: 

 
    ∫ = ,1),( dxxf θ         (2.2) 
 
      ∫ )(xkφ f(x,θ) .....,,2,1),(ˆ mkxdx k == μ       (2.3) 
 
where ∑ =

=
n

i ikk xnx
1

)(1)(ˆ φμ  and )( ik xφ  is a sequence of linear independent 

polynomials and at least twice differentiable. The first moment condition ensures f(x) be 

a proper density function. 

The estimated density takes the form 
 

f(x,θ̂ ) ])(ˆˆexp[
1

0 ∑
=

−−=
K

k
kk xφθθ  

 
To ensure f(x,θ̂ ) is proper density function, 
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Therefore, 
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f(x,θ̂ )  

∫ ∑

∑
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−
=

dxx

x

m

k
kk

m

k
kk

])(ˆexp[

)](ˆexp[

1

1
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Where θ̂ = [ ]ˆ,,1̂ mθθ K . 
 

In general, analytical solutions for θ cannot be obtained and nonlinear optimization 

is employed (see, Zeller and Highfield (1988) and Wu (2003)). To solve θ, I use the 

Newton’s method by iteratively updating θ according to the following equation: 

1
)()1(

ˆˆ −
+ Η−= tt θθ b 

where for the (t + 1)th stage of the updating, ∫= dxxfxgb tkk )ˆ,()( )(θ - kμ̂  and the 

Hessian matrix Η takes the form  

∫= ,()()( xfxxH jiij φφ )(̂tθ )dx 

In fact, the maximum entropy problem and maximum likelihood approach for 

exponential families can be considered as a duality problem (Golan et al. 1996). The 

maximum entropy W multiplied by the sample size n is equivalent the negative of the 

maximized log-likelihood function. This implies the estimated parameters θ are 

asymptotically normal and efficient. Another concept related to the maximum entropy is 

relative entropy, or Kullback-Leibler distance. For two densities )(xf  and )(xg , the 

relative entropy is defined as: 

        ∫= dx
xg
xfxfgfD
)(
)(log)()||(        (2.4) 
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The relative entropy measures the closeness, or the probability distance, between two 

densities. The minimum relative entropy density is obtained by minimizing (2.4) subject 

to empirical constraints (2.2) and (2.3). Previous research has emphasized the use of 

minimum relative entropy to obtain smooth estimate of the density function. Barron and 

Sheu (1991) shows that if the logarithm of the density has r square-integrable 

derivatives, ∫ ∞<
2

)(log xfD r , then the sequences of density estimators )(ˆ xf  

converges to )(xf  in the sense of Kullback-Leibler distance ∫ dxfff )ˆlog(  at the rate 

)1( 2 nmmO r
p +  if ∞→m  and 03 →nm  as ∞→n  where m is the order of 

polynomial and n is the sample size. If there is no estimation error due to sampling 

variation of the empirical moments or inefficient estimators, the convergence rate will be 

)1( 2r
p mO . By setting )12(1 += rnm , the optimal convergence rate becomes 

)( )12(2 +− rr
p nO . Practically, the choice of m is equivalent to bandwidth selection in 

nonparametric density estimation. In a separate paper, under suitable conditions, Wu 

(2007) generalizes the results of Barron and Sheu to d dimensions and shows that the 

optimal convergence rate is )( )2(2 drr
p nO +−  if I set  )2(1 drnm += . 
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2.3 Copulas and Dependence Measures 

 

According to Sklar’s theorem (Sklar 1959), a d dimensional multivariate density can 

always written as 

       f (x) = ))(,),(),(()()()( 22112211 dddd xFxFxFcxfxfxf KK      (2.5) 

where x = (x1, . . . , xd), x is a random vector, )( ixf   and )( ixF  are the marginal density 

and the cumulative distribution of xi respectively for di ,,1K= . 

dd
d

d uuuuuuCuuuc ∂∂∂∂= KKK 212121 ),,,(),,,(  is the copula density function 

uniformly distributed in  d]1,0[ and C is the cumulative copula density function. In (2.5) 

I note that the decomposition of the joint density in two parts. One describes the 

dependence structure among the random variables in the copula function, and other 

describes the marginal behavior of each component. One nice property of copula is that 

it is invariant under increasing transformation of margins. This property is very useful in 

finance research. For example, the dependence structure of two asset returns does not 

change whether returns or logarithm of returns is used. This is not true for linear 

correlation, which is only invariant under the linear transformation of margins. 

There are various other measures of dependence, among which Kendall’s τ and 

Spearman’s ρ are two scale free measures of dependence in the context of copula. 

Starting with two independent realizations (X1, Y1) and (X2, Y2) of the same pair of 

random variables X and Y , Kendall’s τ gives the difference between the probability of 

concordance and the probability of discordance: 
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[ ] [ ]0))((0))((),( 21212121 <−−−>−−= YYXXPYYXXPYXτ      for ].1,1[−∈τ  

 
 
The relation between Kendall’s τ and the copula is as follows: 

1),(),(4)(
2]1,0[

−= ∫ vudCvuCCτ       (2.6) 

As a consequence, Kendall’s τ depends only on the copula of (X, Y). Comparisons 

between results using different copula functions should be based on a common Kendall’s 

τ.  

Another useful dependence measure defined by copulas is the tail dependence. In the 

bivariate case the concept of tail dependence measures the dependence existing in the 

upper quadrant tail, or in the lower quadrant tail. If there exists a positive association 

(Coles, Currie, and Tawn 1999; Tawn 1998) between extreme events of X and Y, then 

the conditional probability )](|)(Pr[ 11 uFYuFX YX
−− >>  is greater than 0 and decreases 

as u↑1. By definition, the upper and lower tail dependence coefficients are 

 

  [ ]
u

uuCuuFYuFX
uYXuU −

+−
=>>=

→

−−

→ 1
),(21lim)(|)(Prlim

1

11

1
λ      (2.7) 

  [ ]
u

uuCuFYuFX
uYXuL

),(lim)(|)(Prlim
0

11

1 →

−−

→
=<<=λ       (2.8) 

 
provided that these limits exist and Uλ  and ]1,0[∈Lλ . The upper (lower) tail 

dependence coefficient quantifies the probability to observe a large (small) X, given that 

Y is large (small). In other words, suppose, Y is very large (small) (at the upper quantile 

of the distribution), the probability that X is very large (small) at the same quantile 
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defines the tail dependence coefficient )( LU λλ . If )( LU λλ are positive, the two random 

variables exhibits upper (lower) tail dependent. Equation (2.7) and (2.8) suggest that the 

tail dependence coefficient can be derived from the copula density. Furthermore, the tail 

dependence between X and Y is also invariant under strictly increasing transformation of 

X and Y. 

A better interpretation of this concept in finance may be obtained if I rewrite the 

definition of Uλ  as 

[ ])(|)(Prlim
0

YVaRYXVaRX uu
u

U >>=
+→

λ  

where )1()( 1 uFXVaR Xu −= −  is the value at risk. This notation implies that I have 

previously multiplied the return by (-1). I treat the losses as positive values. Thus, 

Uλ captures the dependence related to stress periods. 

 

2.4 ESE for Empirical Copula 

 

In the context of entropy estimation, ESE empirical copula can be understood 

implicitly as a uniform prior in the relative entropy concept. Hence, I am most 

conservative in the sense that the estimated copula is as smooth as possible given the 

moment conditions. There are other ways to measure the dependence structure using the 

entropy concept. For instance, Miller and Liu (2002) use the mutual information which 

is defined as 
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to measure the degree of association among the variables. But ):( gfI  is not invariant 

under the increasing transformation of the marginal. 

Several features in ESE make it more appealing for the copula estimation compared 

to kernel and log-spline estimators. First, the number of estimated parameters is largely 

reduced in the context of ESE. Second, kernel and log-spline estimators suffer from the 

boundary bias problem even if the domain of the copula function is restricted to [0, 1]d. 

In addition, kernel estimator is more computationally intensive compared with the ESE 

as the dimension of copula increases, which makes it less attractive in practice. 

In this section, I focus on the estimation of copula density by ESE. To make the 

notation traceable, bivariate formulation for the ESE empirical copula is presented. 

Generalization to higher dimensional cases is straightforward. 

As in the univariate case, the problem is to maximize the bivariate exponential series 

of the copula density 

    ∫−=
2]1,0[

),(log),( dudvvucvucW       (2.9) 

Subject to 

     ∫ =
2]1,0[

1),( dudvvuc      (2.10) 

    ∫ =
2]1,0[

),(ˆ),(),( vududvvucvu ijij φφ     (2.11) 

where ;,,0;,,0 mjni KK ==  and i + j > 0, 
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u and v are uniform random variables and ),( vuijφ are a sequence of linearly independent 

polynomials. ∑ ∑= =
=

n

i

m

j ijNij vuvu
0 0

1 ),(),(ˆ φφ  where i + j > 0 and N is the sample size. 

This estimator does not depend on the specification of the polynomials. The estimated 

density will be in the form 

         ;,(ˆ vuc θ̂ ) = ∑ ∑= =
>+−−

n

i

m

j ijij jivu
0 00 0)],,(ˆˆexp[ φθθ . 

To ensure ;,(ˆ vuc θ̂ ) is a proper density function, 
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Therefore, 
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−
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)],(ˆexp[

)],(ˆexp[
n
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i

m

j ijij
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vu

φθ

φθ
   (2.12) 

where i + j > 0 and  θ = [θ01, θ10, θ11, . . ., θ1m, . . ., θn1, . . ., θnm]. 

As in the univariate case, I solve for θ using Newton’s method according to the 

following equation: 

     1
)()1(

ˆˆ −
+ Η−= tt θθ b,     (2.13) 

where H is a mn by mn matrix. b= [b01, b10, b11, . . ., b1n, . . ., θm1, . . ., θmn] and   

∫=
2]1,0[

;,()()( vucvub jiij φφ θ̂ (t))dudv. 

The Hessian H is calculated as  

∫=
2]1,0[

, ,,(),(),( vucvuvuH klijklij φφ θ̂ (t))dudv. 
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In this paper, I set ji
ij vuvu =),(φ . 

 
There is a problem associated with the choice of the order of polynomial m and n in 

the ESE. Wu (2007) suggests that m and n can be chosen automatically from the data. 

Two natural candidates are likelihood-based AIC and BIC. Preliminary experiments also 

suggest that both criterions provide reasonable performance in the selection of the order 

of polynomial.  

In practice, given a data set with two variables x1 and x2, I can estimate the copula 

density as follows: 

1. Estimate the marginal cumulative density functions )(ˆ
11 xF  and )(ˆ

22 xF  and denote 

)(ˆˆ 11 xFu = and )(ˆˆ 22 xFv = . 

2. Calculate ji
ij vuvu ˆˆ)ˆ,ˆ(ˆ =φ  for ;,,0;,,0 mjni KK ==  and i + j > 0. 

 
3. Solve θ̂  using (2.13). 
 
4. ;ˆ,ˆ(ˆ vuc θ̂ ) = ∑ ∑= =

−−
n

i

m

j ijij vu
0 00 )],ˆ,ˆ(ˆˆˆexp[ φθθ where 0>+ ji . 

 

2.5 Monte Carlo Simulations 

 

To investigate the finite sample performance of my proposed ESE copula estimator, I 

conduct an extensive Monte Carlo simulation study on estimation marginal densities, 

copula densities and bivariate densities. The t-distribution is commonly used in financial 

econometrics where the distribution of financial returns are usually fat tailed. To explore 

more on general densities, I also consider mixtures of univariate distribution studied by 
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Marron and Wand (1992). Specifically, I assume that the underlying margins are 

generated from the mixture of normal distributions: Gaussian, skewed-unimodal and 

bimodal (I assume both margins follow the same distribution). The bivariate copulas 

used in this study include the Gaussian copula, t-copula, Frank copula and Clayton 

copula. Each copula is able to capture a certain special dependence structure in the data. 

For various features of the copulas used in my study, see Chen et al. (2006). In my 

experiment, the dependence parameter for each type of copula is set to the corresponding 

Kendall’s τ values 0.2, 0.4 and 0.6 in Table 2.1. The higher the value of Kendall’s τ, the 

higher the association between two margins. 

Figure 2.1 displays shapes of various copulas with Kendall’s τ equal to 0.6. Note that 

all the copulas studied in this paper exhibited non-vanishing tails in either one or two 

tails which may cause the boundary bias problems (Bouezmarni and Rombouts 2007). In 

each experiment, the sample sizes I use are 50, 100 and 500 and each experiment is 

repeated 500 times. For comparison, I also estimate marginal and copula densities using 

the log-spline and kernel estimator. The cubic spline and product Gaussian kernel are 

used in this paper. The order of the polynomial is selected using the BIC in the ESE 

case; the smoothing parameter is chosen by the method of modified cross-validation and 

the number of knots is determined by max(30,10n(2/9)) for the log-spline estimator (Gu 

and Wang 2003), and the bandwidth of the kernel estimator is selected using the least 

square cross validation. 

Since any bivariate density can be decomposed into two parts: the margins and the 

copula, I opt to examine the performance of the ESE, log-spline and kernel estimator for 
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each component. Hence, I perform three sets of comparisons on the estimation of 

marginal density, copula density and joint density. In joint density estimation, I first 

estimate the margins by ESE, log-spline and kernel and estimate the copula in the second 

step by these three methods again. The product of the estimated margins and copula 

density is obtained as the estimated bivariate density. 

Table 2.2 reports the mean and standard deviation of the Mean Integrated Squared 

Error (MISE) of the margins estimation. A basic fact is that the performance of MISE 

improves with the sample size. In addition, the more complicated the shape of the 

margins, the larger the MISE values are observed. For the sample sizes considered in 

this paper, the ESE outperforms the log-spline and kernel estimator in the case of 

Gaussian distribution. In this case, the MISE of the ESE is between 23% and 50% of 

kernel estimator, and from 50% to 80% in the case of log-spline estimator. This is 

expected since under the Gaussian margin, ESE nests the true distribution. On the other 

hand, for the skewed-unimodal and bimodal distribution, the log-spline estimator 

provides the best performance, followed by the ESE estimator. In case of the Student’s t- 

distribution, ESE and log-spline estimators have comparable performance under small 

sample size but log-spline outperforms ESE estimator for the large sample. The 

simulation results suggest that: 1) log-spline estimator dominates kernel estimator in 

terms of MISE under the margins that I considered; 2) as long as the shape of the 

margins are relatively simple, ESE estimator provides better performance than the log-

spline estimator in small sample. Overall, log-spline estimator provides the best 
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performance. While for some cases, ESE estimator is comparable to or outperforms log-

spline estimator. Kernel estimator is dominated by either estimator. 

Table 2.3 reports the performance of the three estimators of various copula densities. 

Similar to the univariate case, the performance of estimators improve with the sample 

size. They are also positively related to the Kendall’s τ. The higher the value of 

Kendall’s τ, the higher the dependency between the margins. The copula has higher 

concentration close to the two tails for larger τ, and the shape of the copula become more 

acute near the tails in Figure 2.1. This made the boundary bias problem more significant. 

I also note that MISE decreases with sample size, but the decreasing rate is slower for a 

larger τ. For example, the MISE of Gaussian copula decreases by 60% from n = 50 to 

500 when τ  = 0.2; while its MISE decreases by 32% when τ = 0.6. Among the copulas I 

considered, Gaussian and Frank copulas show the smaller MISE values. For small τ, 

ESE shows slightly better performance than log-spline estimator in terms of the MISE in 

the copulas and sample size I considered. As the value of Kendall’s τ increases, ESE 

outperforms log-spline estimator significantly. Again, ESE and log-spline estimator 

always outperforms kernel estimators in almost all the cases. The better performance of 

ESE can be explained by the fact that kernel estimator allocates weight outside the 

boundary and underestimate the underlying copula density at the tails. I also note that 

log-spline estimator and kernel estimator have the largest standard deviation in terms of 

MISE in the small sample (n = 50 and 100) and large sample respectively. I do not 

observe significant sample size effect on the performance among the three estimators. 
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Therefore, with respect to the copulas and size sample sizes I considered, I prefer the 

ESE in terms of the mean and standard deviation of the MISE. 

So far I have assessed the relative performance of the three estimators for margins 

and copula estimation. In the case of margins estimation, the performance of log-spline 

and ESE are comparable; while ESE dominates the other two estimators in the case of 

copula estimation. Finally, kernel estimator is dominated by both of the estimators in 

both cases. Hence, I focus on the performance of ESE and log-spline estimators. Since a 

joint density is uniquely determined by its margins and copula, equation (2.5) 

immediately suggests two ways of estimating the joint density: estimate the joint density 

directly from the left hand side of equation (2.5) or estimate its margins and copula in 

two steps from the right hand side of equation (2.5). It is well known the direct 

estimation from the left hand side of equation (2.5) suffers from the “curse of 

dimensionality problem”. In addition, the performance of ESE margin plus ESE copula 

related to log-spline margins plus ESE copula has not been assessed. In the third 

experiment, I am going to address the following questions. 1) How serve is the “curse of 

dimensionality problem” in the direct estimation comparing with the two-step 

estimation? 2) How is the performance of ESE margin plus ESE copula estimator 

compare with log-spline margins plus ESE copula in two-step joint density estimation? 

Using the same setup of the margins in Table 2.2 and the copula densities in Table 

2.3, I generate 4×4 = 16 joint densities. In this experiment, I set the sample size equals 

50. The estimators that I consider for direct estimation are ESE, log-spline and kernel. In 

the two-step estimation, I first estimate the margins and then the copula. I examine two 
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estimators here. I denote MM as ESE margins plus ESE copula estimator and LM as log-

spline margins plus ESE copula estimator. In other words, I have five estimators in total 

to estimate each of the sixteen joint densities. 

The MISE of estimated joint densities of various estimators are displayed in Table 

2.4. In two step estimation, I focus on the performance of MM and LM estimators. Note 

that the MISE increases with Kendall’s τ. This observation is similar to what I obtained 

in copula estimation in Table 2.3. If I move across the table, I note that Clayton copula 

has recorded the largest MISE as τ increases and this is true for all the margins I 

consider. As shown in Figure 2.1, Clayton copula has a relatively sharp tails near the 

boundary which complicates the estimation. Another observation is Gaussian and t 

margins exhibit smaller MISE in all the copulas and τ values. Again, relatively simple 

shapes of the margins reduce the estimation errors. Under the Gaussian margin, MM 

dominates LM for all Kendall’s τ and the copulas that I considered. This is expected 

since under the Gaussian margin, the ESE nests the true margin. As the shape of the 

margins become more complicated or the value of τ increases, LM dominates MM in 

most of the cases. This illustrates the overall performance of LM is better than MM in 

the two-step estimation. 

In the case of direct estimation, the patterns of MISE are similar to two-step 

estimation in terms of the margins and copulas under consideration. Except for bimodal 

margin, kernel is always dominated by ESE and log-spline. The MISE of kernel is 

approximately two times of either ESE or log-spline. But the performance of ESE and 

log-spline somehow does not have a notable clear cut. Under the Gaussian margin, ESE 
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always outperforms log-spline and this is also what I observed in previous cases. The 

MISE under the ESE is 50% of the log-spline. In general, as the shapes of the margins 

become more complicated, log-spline dominates ESE. 

To address the curse of dimensionality problem, I make comparison of copula 

estimation and direct estimation to see the extent of improvement in MISE under the 

copula estimation. Except for Gaussian margins, LM outperforms the other three 

estimators in almost all Kendall’s τ and copulas I consider. Although a regular and 

consistent pattern cannot be observed for the difference of the MISE between LM and 

other three estimators, I average the MISE across the margins and calculate percentage 

of the MISE of LM to the MISE of the other estimators. The results of Table 2.5 indicate 

more than 50% of improvement is found for small τ using copula estimation, although 

the improvement decreases as the dependence between the variables increase. The 

improvements are in the order of Clayton > Frank > t > Gaussian in terms of copulas and 

K > M > L in terms of the direct estimation methods. 

One of the potential benefits of copula estimation, as discussed in Hall and 

Neumeyer’s paper (2006), is that if the margins are close to independent, the joint 

density can be estimated with a high degree of accuracy and the convergence rate can be 

improved from the two dimensional rate to that for single dimension. Their simulation 

results also reveal that for non-independent data, the copula still enhances the 

performance of estimation in finite sample compare with the direct estimation method. 

The simulation results based on the ESE copula estimation also shows there is 

substantial improvement in copula estimation in terms of the MISE as the dependence 
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between the variables decreases. The results are consistent with Hall and Neumeyer’s 

findings. 

 

2.6 Empirical Application 

 

An important question in risk management is whether the financial markets become 

more interdependent during financial crises. The fact that international equity markets 

move together more in downturns than in the upturns has been documented in the 

literatures, for example, see Longin and Solnik (2001), Forbes and Rigobon (2002). 

Hence, the concept of tail dependence plays an increasingly important role in measuring 

the financial contagion. If all stock prices tend to fall together as crisis occurs, the value 

of diversification might be overstated by ignoring the increase in downside dependence 

(Ang and Chen 2002). During the 1990s, several international financial crises occurred. 

Asian financial crisis is one of the crises that have been studied extensively in the 

literature. It started in Thailand with the financial collapse of Thai baht on July 2, 1997. 

News of the devaluation dropped the value of the baht by as much as 20%–a record low. 

As the crisis spread, most of Southeast Asia saw slumping currencies, devalued stock 

markets and asset prices.  

Early studies on the dependence structure between financial assets are based on their 

correlations, which ignore the nonlinear dependence structure. Recent literatures used 

copula that capture the nonlinear dependence by assuming a parametric form of copula. 

They derive the corresponding value of tail dependence based on the estimated copula. 
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Parametric approach may be lack of flexibility and the estimated dependence will be 

biased if the copula is mis-specified. In this section, I model the dependence structure of 

the Asian stock markets returns using the ESE copula. No assumption on the dependence 

structure in the data is imposed. I emphasis that the results in the section are presented as 

an illustration of the maximum entropy estimation on copula density, rather than a 

detailed study of financial contagion in Asian financial crisis. Following Kim (2005) and 

Rodriguez (2007), I analyze the dependent structure for the Asian stock index returns by 

pairing with Thailand, the originator of the Asian financial crisis. 

 

2.6.1 Data 

 

The data used in this study are daily returns consisting of the daily stock-market 

indices of six East Asian countries from the DATASTREAM. When the Asian countries 

experienced the Asian financial crisis in 1997, these data present interesting case for the 

study of tail dependence as all these countries in the sample experienced a crisis of some 

severity during this period. Specifically, the data include Hong Kong Hang Seng (HK), 

Singapore Strait Times (SG), Malaysia Kuala Lumpur Composite (ML), Philippines 

Stock Exchange Composite (PH), Taiwan Stock Exchange Weighted (TW) and Thailand 

Bangkok S.E.T. (TH). The dataset covers the sample period from January 1994 to 

December 1998. I have altogether 1305 daily observations. I take the log-difference of 

each stock index and multiply by 100 to calculate the stock index returns. Following the 
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standard practice, I assume each return series follows GARCH(1,1) model. The 

standardized residuals from the GARCH(1,1) models are used in the estimations. 

 

2.6.2 Results 

 

Table 2.6 gives summary statistics for the data. Standard deviation reveals that the 

most volatile market is Malaysia, followed by Thailand. All the series exhibits skewness 

and kurtosis relative to the Gaussian distribution. The Jarque-Bera test also demonstrates 

the non-normality of each series, which implies the violation of multivariate Gaussian 

distribution assumption. In fact, it is well known, according to Mandelbrot’s (1963) 

paper, that most financial time series are fat-tailed. Existing studies often replaces the 

assumption of normality with the t distribution, which exhibits fat tails. Notice that 

Malaysia has the highest risk in terms of volatility, skewness, kurtosis and non-

normality; while Taiwan ranks last in terms of volatility, kurtosis and non-normality. 

Figure 2.2 graphs the return data series for each market. Except for Taiwan, volatility 

increases substantially during the financial crisis in each market. 

To investigate the dependence between different markets, I calculate the linear 

correlation and Kendall’s τ. The linear correlation captures the linear dependence 

between two random variables. Kendall’s τ is a nonlinear measure of dependence. In 

particular, it measures the degree of correspondence between two rankings. The 

estimated correlation and Kendall’s τ are reported in Table 2.7. 
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The patterns revealed by two dependence measures are qualitatively similar. The 

linear correlations range from 0.19 (Taiwan and Thailand) to 0.65 (Singapore and Hong 

Kong) among the pairs I consider. Singapore has the highest average dependence with 

other countries, while Taiwan has the lowest average dependence. Although Thailand is 

suggested to play a trigger role in the Asian financial crisis, it only shows moderate 

dependence with other countries. On the other hand, the Kendall’s τ ranges from 0.07 

(Taiwan and Thailand) to 0.50 (Philippines and Singapore). All dependence measures 

rank the six markets consistently in decreasing order: Singapore, Hong Kong, Thailand, 

Malaysia, Philippines and Taiwan. 

In Figure 2.3, I give the scatter plots corresponding to the five markets pairing with 

Thailand. The observations in Hong Kong, Singapore and Malaysia seem to be more 

clustered in upper and lower tails than Philippines and Taiwan. If I consider the 

occurrence of an extreme return event of one index given the return of Thailand is also 

extreme, this yields crude empirical estimates of lower and upper tail-dependence in the 

bivariate equity index returns. Table 2.8 reveals the results. The first cell in the table is 

0.308, which means the probability of returns of Hong Kong being less than 5th 

percentile given that the returns of Thailand is less than 5th percentile equals 0.308. 

While Singapore has the strongest lower dependence, Hong Kong has the strongest 

upper dependence with Thailand. Philippines and Malaysia shows moderate tail 

dependence with Thailand and Taiwan seems to have the weakest tail dependence with 

Thailand. In general, the lower tail dependences are higher than the upper tail 
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dependences. This fact is consistent with the literature that markets move together more 

in downturns than in upturns, which exhibits asymmetric tail dependence. 

The next step is estimate the copula density. Frahm et al. (2005) show that using mis-

specified parametric margins instead of nonparametric margin may lead to the wrong 

interpretations of dependence structure. Instead of assuming parametric margins, I 

estimate the margins by log-spline method in the first step since the simulation results in 

Table 2.2 indicates overall performance of log-spline is the best. The copula density is 

estimated by maximum entropy method in the second step. 

Different dependence structures can be visualized by plotting their estimated copula 

densities along the diagonal u = v. Figure 2.4 shows the results. Notice that the scales in 

the graphs are different. Hong Kong, Singapore and Malaysia show stronger asymmetric 

shape with lower tail higher than upper tail; While Philippines and Taiwan have 

relatively symmetric shape. In the case of Hong Kong, most of the mass are concentrated 

in the two tails, which is suggested by the height of the estimated density with a small 

peak in the center of the density. Singapore and Malaysia also exhibit similar pattern 

with less mass concentrated on the two tails. On the other hand, Philippines and Taiwan 

shows a symmetric tail patterns and their densities are relatively flatter than the previous 

three markets. 

In general, it is very difficult to find a parametric copula which can adequately 

explain the dependence structure based on the shape of the density. It is known that the 

dependence between two variables is completely captured by their copula. However, the 

commonly used one-parameter or two-parameter parametric copula functions only allow 
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certain types of dependence structures. Thus the estimation of copula density by 

maximum entropy method provides more flexibility in modeling various dependence 

structures. 

The lower and upper tail dependence coefficient can also be derived from the ESE 

copula density. One advantage of ESE copula is that an analytical solution the copula 

pdf is obtained. Using the definition of tail dependence, I integrate the estimated copula 

pdf to obtain the corresponding cumulative function. The results in Table 2.9 shows that 

the estimated lower tail dependences increase and upper tail dependences decrease 

somehow linearly in all the markets. Asymmetric tail dependences are observed in Hong 

Kong, Singapore and Malaysia, not in Philippines and Taiwan. Comparing with 

empirical tail dependence, ESE copula tends to underestimate the tails dependence at the 

very near tail. Still, Hong Kong exhibits the strongest lower and upper tails dependence 

with Tailand. The fact that lower tails dependence is stronger than the upper tails 

dependence still can be found. 

 

2.7 Conclusions 

 

This paper proposes a nonparametric estimator for copula densities. The estimator is 

based on multivariate exponential series estimation (ESE). ESE has an appealing 

information-theoretic interpretation and attains the optimal rate of convergence for 

nonparametric density in Stone (1982). More importantly, it overcomes the boundary 

bias of copula estimation. I examine the finite sample performance of the estimator in 
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several simulations. The results show ESE outperforms the popular Gaussian kernel and 

log-spline estimator in copula estimation and provides superior estimates to empirical 

tail index in tail dependence estimation. I apply the ESE copula to estimate the 

dependence between Asian stock returns during the Asian financial crisis. Further 

research on this work can be done on different perspectives. One of the interesting 

directions is to derive the test for the tail asymmetries between the financial assets based 

on the ESE. 
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CHAPTER III 
 

GOODNESS-OF-FIT VIA EXPONENTIAL SERIES LIKELIHOOD 

RATIOS 

 

3.1 Introduction 

 

For a given set of observations from a distribution with a continuous distribution 

function F, one important task is directed at developing procedures that are useful for 

drawing statistical inferences about the underlying population. Namely, one wishes to 

test F(x) = F0(x), where F0(x) denotes the hypothetical distribution. For a simple null 

hypothesis where the form of F0(x) is completely specified, many existing tests could be 

employed in a straightforward manner. One could also carry out tests based on the 

transformed sample F0(X1), . . . , F0(Xn), leading to tests for uniformity on the interval [0, 

1].  

There is a long list of literature on goodness-of-fit tests. By far the most common 

formal statistical procedures for testing are those based upon the empirical distribution 

function, such as the Kolmogorov-Smirnov and the Cramér-von Mises tests, see for 

example Darling (1957). Both these tests are based upon distances of the empirical 

distribution function to the hypothesized distribution function. Refinements involve use 

of a weighting function, leading to a weighted measure of distance. Indeed for 50 years 

or so perhaps the preferred statistical procedure has been the weighted Cramér-von 
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Mises, or the Anderson-Darling statistic, of Anderson and Darling (1952). A fuller 

historical perspective and details of the many other procedures can be found, for 

example, in Conover (1999). Stephens (1974) provides a Monte Carlo comparison of the 

powers of those tests based upon the empirical distribution function. However, it is well-

known that the powers of these empirical distribution test statistics are rather low 

(Stephens 1974). 

The tests which based on the empirical distribution are sometimes referred to as 

omnibus tests, i.e. they are sensitive to almost all alternatives to the null. In the present 

context, this property implies that when an omnibus test fails to reject the null 

hypothesis, I can conclude that there is not enough evidence that the data is not 

generated from the null density. On the other hand, a rejection would not provide any 

information about the form of the density. Hence, Neyman’s smooth test (1937) provides 

an alternative over the omnibus tests. The test requires selecting the number of 

components, which acts as a smoothing parameter. It can be viewed as a compromise 

between omnibus tests and tests whose power is focused in the direction of a specific 

alternative. Successive components of the smooth test can be directly related to changes 

in mean, variance, skewness and kurtosis. Surveys of the works on Neyman’s smooth 

test are provided by Rayner & Best (1989) and Bera & Ghosh (2001). Further 

development along this line focuses on seeking the number of components in a data-

driven manner, which yields the adaptive Neyman’s tests for uniformity (Ledwina, 1994; 

Kallenberg and Ledwina, 1995; Fan, 1996). 
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Nonparametric kernel-based density estimation (KDE) introduced by Rosenblatt 

(1956) has also attracted several research efforts in tests for goodness-of-fit. As in the 

Neyman’s smooth test, it is assumed implicitly that F possesses a probability density f, 

and therefore the original testing problem becomes equivalent to checking 

H0: f = f0     against     Ha: f ≠ f0 

where f0 corresponds to the probability density of F0. Bickel and Rosenblatt (1973) 

proposed a test statistic based on the weighted L2 distance between the kernel density 

estimation of f and its expected value computed under the null hypothesis, in which f0 is 

fully specified. A test based on the derivative of a KDE was considered in Huang (1997). 

One drawback of these kernel-based tests arises from the “boundary bias” problem well-

known in kernel density estimation. To improve the performance of KDE, boundary 

kernel functions may be employed; however the resulting test procedure becomes 

complicated in both implementation and asymptotic analysis. 

The purpose of this paper is to introduce a nonparametric goodness of fit test based 

on the likelihood ratio test of Portnoy (1988). It is made nonparametric by utilizing the 

exponential series density estimator (ESE) of Crain (1974, 1976) and also Barron and 

Sheu (1991). This estimator is based on the method of maximum entropy density subject 

to a given set of moment conditions. Compare with the kernel estimator, the number of 

estimated parameters is largely reduced in the context of ESE. Furthermore, ESE does 

not suffer from boundary bias problem even the domain is restricted in [0, 1]. The test 

statistics are based on the ratio of an estimated ESE to that of the null hypothesis. It is 

motivated by the fact that Neyman’s smooth test or score test is only an asymptotic 
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approximation to the likelihood ratio test (Protnoy 1988). The order of the ESE is 

selected by BIC. I propose three further modifications on the test statistics: 1) instead of 

putting equal weight on the individual term of the exponential series, I consider 

geometric and exponential BIC average weights; and 2) rather than using nested 

sequence, I consider all subsets to select the optimal terms in the exponential series; 3) 

use the likelihood cross-validation to estimate the likelihood ratio statistic. My extensive 

Monte Carlo simulations show that the proposed tests enjoy good finite sample 

performances compared to the traditional methods such as Anderson-Darling tests. In 

addition, this data-driven method improves upon Neyman’s score test. I conclude that 

the exponential series likelihood ratio test can complement the Neyman’s type score test. 

The plan for the rest of the chapter is as follows. The next section reviews some 

commonly used goodness of fit tests. Section 3.3 introduces the idea of maximum 

entropy and the new proposed exponential series likelihood ratio statistics. Section 3.4 

shows the results of the power comparison among the tests and Section 3.5 concludes.  

 

3.2 Reviews of Goodness-of-fit Tests 

 

Suppose that a random sample of size n is given, I form the order statistic 

nXXX <<< K21 . I consider the empirical distribution function (EDF) 

10)( XxifxFn <=  

1)( +<<= iin XxXif
n
ixF  

xXifxF nn ≤= 1)(  
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)(xFn  is a step function which is to be compared to the distribution function )(xF  

corresponding to H0. EDF statistics are based on the discrepancy between distribution 

function and the empirical distribution function of the sample of x values. These 

statistics include two classes: the supremum and the quadratic. For the supremum class, I 

concentrate on the well-known Kolmoglov-Smirnov statistics D. For the quadratic class, 

I concentrate on the Anderson-Darling statistic A2 and the Cramer-Von Mises statistic 

W2. The EDF statistics are consistent and unbiased. The tests discussed in this section 

are invariant under transformation of the random variable. Because of this feature, I can 

transform the distribution to the uniform distribution and restrict my discussion to the 

latter. 

 

3.2.1 Probability Integral Transformation (PIT) 

 

Let the random variable X have cdf F(x). If F(x) is continuous, the random variable Z 

produced by the transformation Z = F(x) has the uniform probability distribution over the 

interval 0 ≤ z ≤ 1. i.e.  

101)( ≤≤= zifzg  
 

Therefore,   zzG =)(  
 
The underlying idea of this transformation is that the new EDF of Z, G(z) is extremely 

simple and that it conserves the distribution of the random variables discussed in this 

section. Any goodness of fit test for a completely specified alternative reduces, via the 

probability integral transformation, to testing for uniformity. 
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3.2.2 Supremum Statistic 

 

Kolmogorov proposed to use the maximum absolute difference as the test statistic. 

{ }|)(ˆ)(|sup xFxFD nx −=  

Let )(ˆ
ii xFz = , I have 

⎭
⎬
⎫

⎩
⎨
⎧ −=+

ii z
n
iD max  

⎭
⎬
⎫

⎩
⎨
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−=−

n
izD ii

)1(max  

( )−+= DDD ,max  

The Kolmoglov-Smirnov statistic is invariant under the PIT. 

 

3.2.3 Quadratic Statistic 

 

The Cramer-von Mises family of tests measures the integrated quadratic deviation of 

)(xFn  from )(xF  suitably weighted by a weighting function ψ: 

)(ˆ)()]()(ˆ[ 2 xFdxxFxFnQ n∫
∞

∞−
−= ψ  

With ψ(x) = 1, I get the Cramer-von Mises statistic W2 and  ψ(x) = 1)](ˆ1)((ˆ[ −− xFxF  

leads to the Anderson-Darling statistic A2. That is: 
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The Anderson-Darling statistic A2 weights strongly deviations near z = 0 and z = 1. This 

is justified because there the experimental deviation are small due to the constraints 

[ ])(zGz n−  = 0 at   z = 0 and z = 1. 

3.2.4 Neyman’s Smooth Test 

 

Neyman (1937) replaced testing uniformity on [0,1] via parametric testing problem 

0: )(
0 =kH θ  versus 0: )( ≠k

aH θ  in the exponential family of order k; That is, 
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where k ≥ 1, k is fixed, ]1,0[∈x  and .),,( 1
)( k

k
k R∈= θθθ K  The Neyman’s smooth test 

for testing uniformity on [0, 1] rejects null hypothesis H0 for large values of 
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where X1, X2,..., Xn are observed random variables and b1, b2,... are normalized Legendre 

polynomials on [0, 1]. Under the null hypothesis H0, Nk has, an as n→ ∞, the central 

chi-squared distribution with k degrees of freedom. The most difficult problem related to 

this statistic is the choice of k. Recommendations in statistical literature are sometimes 

confusing. Some authors advocate a small number of components, whereas others show 

that in some situation a larger number of components is profitable. All existing 

suggestions concerning how to select k exploit in fact some preliminary knowledge 

about a possible alternative. Recently, Ledwina (1994) introduced a new data-driven 

method for selecting k in Neyman’s smooth test of uniformity. Unlike earlier proposals, 

depending on alternatives of special interest, the new procedure provides an automatic 

choice of k, based on the data. Roughly speaking it works as follows. First, Schwarz’s 

(1978) selection rule is applied to find a suitable dimension k, say, of an exponential 

family model for the data. Then Neyman’s test is applied within the fitted model, 

resulting in the test statistics Nk. So, Schwarz’s rule serves as a kind of selection, 

followed by the more precise instrument, being Neyman’s test in the right dimension. 

This procedure relies on fitting the model to the data and verifying whether the 

difference between the model and he uniform distribution is significant. The author 

shows that simulated power of this data-driven version of Neyman’s test also performs 

well in comparison with that of other tests. 
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3.3 New Test 

 

3.3.1 Maximum Entropy Principle 

 

 
The information entropy, the central concept of the information theory, was 

introduced by Shannon (1949). Entropy is an index of disorder and uncertainty. The 

maximum entropy (ME) principle states that among all the distributions that satisfy 

certain information constraints, one should choose the one that maximizes Shannon's 

information entropy. According to Jaynes (1957), the ME distribution is “uniquely 

determined as the one which is maximally noncommittal with regard to missing 

information, and that it agrees with what is known, but expresses maximum uncertainty 

with respect to all other matters." 

The ME density is obtained by maximizing the entropy subject to some moment 

constraints. Let x be a random variable distributed with a probability density function 

)(xf , and X1, X2,..., Xn be an i.i.d. random sample of size n generated according to 

)(xf . The unknown density )(xf  is assumed to be continuously differentiable, positive 

on the interval of support (usually the real line if there is no prior information on the 

support of the density) and bounded. I maximize the entropy 

    ∫−= ,)(log)(:max dxxfxfW  

subject to 
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where )(xgk  is continuously differentiable and ∑ =
=

n

i ikk Xgn
1

)(1μ̂ . The solution takes 

the form 

     f(x,θ̂ ) ])(ˆˆexp[
1

0 ∑
=

−−=
K

k
kk xgθθ        (3.3) 

where kθ̂ is the Lagrangian multiplier associated with the kth moment constraint in the 

optimization problem. To ensure f(x,θ̂ ) integrates to one, I set 
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ˆˆ θθ kμ̂ . 

The ME density is of the generalized exponential family and can be completely 

characterized by the moments .,,2,1),( KkxEgk K=  I call these moments 

“characterizing moments”, whose sample counterparts are the sufficient statistics of the 

estimated ME density f(x,θ̂ ). A wide range of distributions belong to this family. For 

example, the Pearson family and its extensions described in Cobb et al. (1983), which 

nest the normal, beta, gamma and inverse gamma densities as special cases, are all ME 

densities with simple characterizing moments. 

In general, there is no analytical solution for the ME density problem, and nonlinear 

optimization methods are required (Zellner and Highfield (1988), Ornermite and White 



 42

(1999) and Wu (2003)). I use Lagrange's method to solve this problem by iteratively 

updating θ  

1
)()1(

ˆˆ −
+ Η−= tt θθ b 

where for the (t+1)th stage of the updating, ∫= dxxfxgb tkk )ˆ,()( )(θ - kμ̂  and the Hessian 

matrix Η takes the form  

.,0,)ˆ,()()( )(, Kjkdxxfxgxg tjkjk ≤≤=Η ∫ θ  

The positive-definitiveness of the Hessian ensures the existence and uniqueness of the 

solution. 

Given Equation (3.3), I can also estimate f(x,θ̂ ) using the MLE. The maximized log-

likelihood 
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0 μθθ . 

Therefore, when the distribution is of the generalized exponential family, MLE and ME 

are equivalent. Moreover, they are also equivalent to a method of moments (MM) 

estimator. This ME/MLE/MM estimator only uses the sample characterizing moments. 

Although the MLE and ME are equivalent in this case, there are some conceptual 

differences. For the MLE, the restricted estimates are obtained by imposing certain 

constraints on the parameters. In contrast, for the ME, the dimension of the parameter is 

determined by the number of moment restrictions imposed: the more moment 

restrictions, the more complex and at the same time the more flexible the distribution is. 
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To reconcile these two methods, I note that a ME estimate with the first m moment 

restrictions has a solution of the form 

f(x,θ̂ ) ])(exp[
1

0 ∑
=

−−=
m

k
kk xgθθ , 

 
which implicitly set ,,2,1, K++= mmjjθ  to be zero. When I impose more moment 

restrictions, say, ∫ =+ dxxfxgm ),()(1 θ 1ˆ +mμ , I let the data choose the appropriate value of 

1+mθ . In this sense, the estimate with more moment restrictions is in fact less restricted, 

or more flexible. The ME and MLE share the same objective function (up to a 

proportion) which is determined by the moment restrictions of the maximum entropy 

problem. Therefore, one can regard the ME approach as a method of model selection, 

which generates a MLE solution. 

 

3.3.2 The Test Statistic 

 

I can use the ME approach for distribution tests. Consider a M dimension parameter 

space .MΘ  Suppose I want to test the hypothesis that ∈θ mΘ , a subspace of MΘ , where 

Mm ≤ . For ,, Mmj =  let jθ  be the MLE estimates in jj l,Θ and Wj be their 

corresponding log-likelihood and maximized entropy, I have 

∫− dxxfxf mm ),(log),( θθ  

∫ ∑
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kkm xgθ dxxf m ),( θ  
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The forth equality follows because the first m moments of ),( mxf θ are identical to those 

of ),( Mxf θ . Consequently, the log-likelihood ratio 

      )(2 Mm llLR −−=  

)(2 Mm WWn −=  

]),(log),(),(log),([2 ∫∫ −−= dxxfxfdxxfxfn MMmm θθθθ  

]),(log),(),(log),([2 ∫ ∫−= dxxfxfdxxfxfn mmMM θθθθ  
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M
M θ

θ
θ  

which is the Kullback-Leibler distance between ),( Mxf θ  and ),( mxf θ multiplied by 

twice of the sample size. Consequently, if the true model ),( Mxf θ  nests ),( mxf θ , the 

quasi-MLE estimate ),( mxf θ  minimizes the Kullback-Leibler statistics between 

),( Mxf θ  and ),( mxf θ , as shown in White (1982). 

Under the null hypothesis of uniformity, the maximum entropy 0=mW . The test 

statistics of uniformity becomes  
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⎯→⎯−= d
MnWLR 2 )(2 Mχ        (3.4) 

My proposed test is implemented in two steps. First I fix the upper bound of m, 

denoted by M and determine the optimal dimension m of the polynomial by BIC 

criterion, where m ≤ M and BIC is calculated as 

MkwherelnkCIB kk ,,1log5.0 K=−=  

Select the model with index I defined by 

]min:1,[
1 kMkm BICBICMmmI

≤≤
=≤≤=  

The second step is to calculate the likelihood ratio statistic mnW2− , where m is the 

optimal dimension of the polynomial selected from BIC criterion in the first step. Reject 

H0 of uniformity if  nmm CnW ,,2 α>− , where nmC ,,α is the simulated critical value for the 

test statistic of dimension m at significance level α  with sample size n.  

 

3.3.3 Weighting Functionality 

 

The above specification assume that I place equal weight on kθ , where Mk ,,1K= . 

I also propose to place different weighting schemes on kθ . The first one is geometric 

weighting. Denote *
kiθ  be the weighted value of kiθ  for ki ,,1K=  and Mk ,,1K= . *

kiθ  

is calculated as follows: 
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The larger the value of i, the less weight I place on kiθ .   

The second weighting scheme is BIC weighting. The weighted BIC is related to the 

Bayesian Model Averaging (BMA). There is a large literature on BMA; see the review 

by Hoeting et. al. (1999). The weighting of kiθ̂  is defined as: 
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3.3.4 BIC with All Subsets 

 

Section 3.3.2 considers nested sequence models { }M,,1K  where M is the maximum 

order of the polynomial. In fact, if I define S* to be a set with all the subset inside 

{ }MS ,,1K= , it may be considered as the other way to select the terms in the 

polynomials. Define analogously, select the model with index I defined by 

]min:,[
*

*
* kSkm BICBICmI

∈
==        (3.7) 

BIC is calculated based the m* as shown in section 3.3.2. 
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3.3.5 Maximum Likelihood Cross-Validation 

 

This approach yields a density estimate which has an entropy interpretation, being 

that the estimate will be close to the actual density in the Kullback-Leibler sense. 

Likelihood cross-validation uses the leave-one-out strategy and find the density estimate 

at each xi based on the other (n - 1) observations leaving out xi. Thus one can perform 

maximum likelihood cross-validation by maximizing 

l = ∑
=

−=
n

i
ii xfL

1
)(ˆloglog        (3.8) 

where )(ˆ
ii xf−  is the leave-one-out maximum entropy estimator of  )( ixf . Likelihood 

cross-validation method may work well for a range of standard distribution or thin tailed 

distribution. 

 

3.3.6 Relating LR Test to Neyman’s Smooth Test 

 

As Portnoy (1988) prove that the exponential series likelihood ratio statistics and 

Neyman’s smooth statistics are asymptotically equivalent, i.e.  
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That means, smooth statistic is only an approximation of likelihood ratio statistic under 

the small sample. In addition, Claeskens and Hjort (2004) prove that these two statistics 

do not have similar performances unless the alternative density is close to f0. Hence, I 
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suspect likelihood ratio statistic may outperform the Neyman’s smooth statistic in terms 

of the power comparison under small sample.   

 

3.4 A Simulation Study 

 

3.4.1 Critical Values of the Test Statistic 

 

To implement my test statistic proposed in Section 3, critical values of the test 

statistic should be determined from the null distribution. However, the test statistic 

employs the exponential series estimators only has the asymptotic distribution. Thus, 

critical values of the test statistic for the finite sample are determined by the means of 

Monte Carlo simulation. 

To estimate the percentiles of the null distribution, 10000 random samples were 

generated from the standard uniform distribution for various values of sample size. For 

each n ≤ 100, the critical value nmC ,,α  of the test statistic mnW2−  was calculated as 

follows. First fix n and α , and set the upper bound of m, denoted by M. Second, 

generate random numbers with size n from uniform distributed 10000 times. Third, 

choose the optimal value of m (m ≤ M) by BIC criterion and calculate the corresponding 

likelihood ratio statistic mnW2−  for each simulation. nmC ,,α  is the (1-α ) percentile of 

likelihood ratio statistics up to m. For example, if m = 2, the critical value is the (1-α ) 

percentile of likelihood ratio statistics which include the order m = 1 and m = 2.  
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Table 3.1 displays the simulated critical values of the test statistics for subsequent 

values of K for n = 20, 50 and 100 at 5% significance level. This table shows that the 

critical values various as the sample size increases. For n = 20, likelihood ratio statistic 

has less variability in terms of the critical values compare with the Neyman’s smooth 

statistic. Size distortion is more significant in Neyman’s smooth statistic at K = 1 for the 

all the sample sizes that I considered ( )1(2χ  = 3.841 at 5% significance level). As the 

sample size increases, both of the test statistics approach to )1(2χ  distribution and the 

critical values also become smaller for both test statistics. 

 

3.4.2 Power Analysis 

 

To compare the performance of the test statistics, I performed Monte Carlo 

simulations against the following 3 sets of alternatives: 

1. ))1((
4
1)( 2

1
2
1

1

−−
−+= xxxg             

2. )cos(1)(2 xfdxg π+=  

With the following parameters 

1. d = .5, f = 1           

2. d = .5, f = 2           

3. d = .7, f = 4           

4. d = .9, f = 5            
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With the following parameters 

1. s = 1, θ (1) = .4           

2. s = 2, θ (2) = (0, -.5)           

3. s = 2, θ (3) = (.2, -.3)           

4. s = 3, θ (3) = (0, 0, .6)           

5. s = 4, θ (4) = (0, -.5, 0, -.2)          

6. s = 4, θ (4) = (.1, .2, -.3, -.4)          

7. s = 5, θ (5) = (0, 0, 0, 0, .5)          

8. s = 8, θ (8) = (0, 0, 0, 0, 0, 0, 0, -.7)         

Alternative 1 (Figure 3.1) has the density mass cluster at the two tails. Alternatives 2 

(Figure 3.2) with different d and f parameters capture the height and the periodic patterns 

of the densities. Alternatives 3 provide a flexible way to characteristic more general 

shape of the density function from low to high frequency by alternating the order of the 

polynomials and θ (see page 1003, Ledwina 1994).  

Alternatives 1 to 3 have been considered in Ledwina (1994) which compared several 

tests of uniformity. In particular, she focused on the Neyman’s smooth test with BIC as 

criteria for order selection. This statistic performs well in comparison with other tests of 

uniformity. 

A total of 10,000 random samples of size n equal to 20 and 50 were generated from 

each of the 3 set of alternative distributions. In Table 3.2 and Table 3.3, I compared the 
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powers of my proposed test statistics for n = 20 and 50 and the number of added terms is 

allowed to grow to 10. I considered different versions of my test statistics: Uniform 

weighting, geometric weighting, BIC weighting and likelihood cross-validation, and 

compare with the corresponding Neyman’s counterpart. Respective power of Anderson- 

Darling test (AD) is also presented.  

From the results of Table 3.2 and Table 3.3, I observe that the performance of my 

proposed tests varied with the alternative distribution as well as the sample sizes. I am 

interested in the overall performance of my test statistics rather than the performance of 

the test statistics for a particular alternative distribution. For a small sample size (Table 

3.2), Neyman’s statistic loses power in comparison with the likelihood ratio statistic 

under all the weighting schemes and specification. In general, uniform weighting 

showed higher power compare with other specifications. In the first setting which 

density mass cluster at the two tails, geometric weighting performs worse than other 

tests in the experiment. In the second setting, BIC weighting and likelihood CV performs 

better in comparison with other specification consistently. In the third setting, geometric 

weighting and likelihood CV specification loses power under the high frequency 

alternative. Anderson-Darling statistic is powerful for some alternatives, for some others 

it has considerably smaller power than its competitors. 

Power increases as the sample size increases. Differences in power are not 

pronounced for large sample size (Table 3.3). Power of the likelihood ratio test and 

Neyman’s smooth test are comparable. In addition, the effects of weighting and 

specification have relatively smaller impact on the performance of my test statistics.    
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The main conclusion are the likelihood ratio test demonstrates higher power compare 

with the Neyman’s smooth test under small sample and that difference weighting 

schemes do not improve on the uniform weighting scheme for the alternatives densities 

that I consider in the sample.  

Table 3.4 compares the likelihood ratio test based on the nested sequence and all 

subset specification. When I consider both nested model sequence and all subset 

specification, the number of terms is allowed to grow to 6. The particular choices of 

where to cut off the series are not of much importance for power behavior (Ledwina, 

1994).   The results show that nested sequence specification has higher power than the 

all subset specification regardless of the sample size. The difference in terms of power is 

more pronounced as the sample size increases. 

    

3.5 Conclusions 

 

Score test is one of the most popular methods for goodness of fit test. Motivated by 

the fact that the score test is only the asymptotic approximation to the likelihood ratio 

test (Portnoy 1988), I introduced a nonparametric goodness of fit test which based on the 

exponential series estimator (Crain 1974, 1976) combined with the likelihood ratio test. 

My test statistic is based on the ratio of an estimated density to that of the null 

hypothesis. I cooperate with the BIC criterion for the order selection of the series 

estimator. The novelty of the test is that it has an appealing information theoretic 
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interpretation and it overcomes the boundary bias of the kernel estimation for the 

estimated density. 

I propose three further modifications on the test statistics: First, instead of putting 

equal weight on the individual term of the exponential series, I consider geometric and 

exponential BIC average weights; second, I consider all subsets to select the optimal 

terms in the exponential series; third, I also use the likelihood cross-validation method to 

estimate the likelihood ratio. 

The extensive Monte Carlo simulations show that my proposed test has good small 

sample performance compared to the traditional methods such as Anderson Darling test. 

Uniform weighting scheme dominates other specifications. All subset specification is 

dominated by the nested sequence model. Finally, this data-driven method improves 

upon Neyman’s score test. I conclude that the exponential series likelihood ratio test can 

complement the Neyman’s type score test. 
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CHAPTER IV 
 

FORECASTING EQUITY RETURNS: COPULAS, VARs AND 

COMPOSITES 

 

4.1 Introduction 

 

Modeling the joint distribution of financial asset is a very important issue in 

derivative pricing, risk management and portfolio allocations. In practice, models based 

on multivariate normal assumption (the so-called mean-variance approach) are widely 

used for their simplicity. However, several extreme events have made financial 

practitioners worried more about the nonlinear dependence of their portfolio returns and 

the joint normal specification fails to provide a good approximation for the dependence 

in general. Recently, a few works have devoted to the modeling of the joint distribution, 

while keeping the univariate distribution as flexible as possible, and to see how these 

models could be better for representing the nonlinear behavior, than the joint normal 

specification (Breymann et al. 2003). These works apply copula methodology, which 

allows for a decomposition of the joint distribution into marginal distributions and a 

copula function. 

Copula functions are well studied objects in the statistical literature. These functions 

have been introduced to model a joint distribution once the marginal distributions are 

known. In fact, the essential idea of the copula approach is that a joint distribution can be 
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factored into the marginals and a dependence function called copula. The dependence 

relationship is entirely determined by the copula, while scaling and shape (mean, 

standard deviation, skewness and kurtosis) are completely determined by the marginals. 

When multivariate normal distribution is rejected by the data, the copula may be used as 

an important alternative to represent the dependence in joint distributions. The evidence 

that copula based models fit financial data better than joint normality can be found in 

many recent works. However, research work dealing with financial asset forecasts which 

combines multivariate time series with copula are still in its starting. Patton (2007) 

provides a comprehensive review on the applications of copulas in modeling of financial 

time series.  

In this perspective, I apply here a copula-VAR approach for index returns 

forecasting. The first contribution of the paper is a joint empirical analysis, by means of 

a copula-VAR model on S&P500 index return, federal fund rate and Commodity 

Research Bureau’s (CRB) commodity spot index. The second contribution of the paper 

is the comparison between the copula-VAR model and the classical VAR model. In this 

perspective, I perform forecasting exercises considering 1-step-ahead forecasts to 4-

steps-ahead forecasts on S&P500 index return, showing that when the margins are not 

normally distributed the copula approach yields better forecasts than the classical VAR 

model.  

The rest of paper is organized as follows. Section 4.2 provides a brief literature 

review on forecasting. Section 4.3 describes the copula-VAR model, while an empirical 

application of the concerning the S&P500 index return is introduced in Section 4.4. An 



 56

extensive forecasting exercise with the comparison among the alternative models are 

presented in Section 4.5. Section 4.6 concludes. 

 

4.2 Literature Review on Forecasting 

 

In the last 40 years, primarily due to the work of Box and Jenkins (1970), univariate 

autogressive moving-average (ARMA) model has been quite successful in time-series 

forecasting. One of the main problems with this type of model is that it does not 

explicitly take into account the influence of other observable variables known or 

suspected to be related to the series of interest. Vector autoregression (VAR) model 

represent one approach toward incorporating additional information and accounts for the 

dynamic nature of the data. It has been profoundly used in economic and finance 

researches such as policy analysis and forecasting. However, researchers have typically 

found that unrestricted VAR models do not forecast well (Kling and Bessler 1985). 

Classical VAR models impose assumptions that the disturbance terms across the 

equations are independent, identically and normally distributed. But there is a widely 

accepted observation that many economic and financial data are non-normally 

distributed. They exhibit fat-tails, skewness, and recent work suggests that some also 

exhibit “asymmetric dependence”, where some pairs of variables are more highly 

correlated during negative movements than positive movements.  

This observation raises two important problems: the construction of alternative, more 

palatable, density specifications, and the description and analysis of dependence between 
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disturbance terms in a more general manner, as when the joint distribution of the 

variables of interest is non-elliptical the correlation coefficient is no longer sufficient to 

describe the dependence structure. More generally, the distribution of the asset returns 

will depend on the univariate distributions of the individual assets in the portfolio and on 

the dependence between each of the assets, which is captured by a function called 

copula. 

Actually, copula is popularly using in economics and finance in the last decade: see, 

for example in Embrechts et al. (2003), Patton (2004, 2005) and Granger et al. (2006). 

Nelsen (2006) and Joe (1997) provide detailed introductions to copulas and their 

statistical and mathematical foundations, while Cherubini et al. (2004) focus primarily 

on applications of copulas in mathematical finance and derivatives pricing. In the 

multivariate time series context, Patton (2006) allows for time allows for time variation 

in the conditional copula by allowing the parameter(s) of a given copula to vary through 

time. Jondeau and Rockinger (2006) employ a similar strategy. Rodriguez (2007), on the 

other hand, considers a regime switching model for conditional copulas, in the spirit of 

Hamilton (1989). Chollete (2005), Garcia and Tsafack (2007) and Okimoto (2006) 

employ a similar modeling approach, with later author finding that the copula of equity 

returns during the low mean-high variance state is significantly asymmetric while the 

high mean-low volatility state has a more symmetric copula. Lee and Long (2006) 

combine copulas with multivariate GARCH models in an innovative way: they use 

copulas to construct flexible distributions for residuals from a multivariate GARCH 

model, employing the GARCH model to capture the time-varying correlation, and the 
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copula to capture any dependence remaining between the conditionally uncorrelated 

standardized residuals.   

Besides using individual model to forecast, Bates and Granger (1969) introduced the 

concept and methodology of forecast combination. It is well known that a linear 

combination of forecasts can outperform individual forecasts. Surveys and discussions of 

some subsequent developments and applications by Clemen (1989), Granger (1989), and 

Diebold and Lopez (1996) testify to the widespread interest that has developed this 

topic. The combination methods proposed by Bates and Granger require very simple 

calculations to determine appropriate weights, and moreover many studies have found 

that such straightforward methods generate high-quality forecasts. One would expect 

combination to be most effective when composites are formed from forecasts generated 

by widely divergent methodologies. For example, Montgomery et al. (1998) combine 

unemployment rate forecasts from nonlinear time-series models with median forecasts 

from a survey of professional economic forecasters. However, gains have also been 

reported from the combination of forecasts from apparently quite similar sources. For 

example, Newbold and Granger (1974), Bessler and Brandy (1981), Winkler and 

Makridakis (1983) and Granger and Ramanathan (1984) demonstrated benefits from 

combining alternative forecasts obtained through different univariate time-series 

methods. Many studies analysing practical applications of combination are briefly 

summarized in Clemen (1989). 

   

 



 59

4.3 Copula-VAR Model 

 

To describe the interactions of returns and conditional variances in VAR model, I 

consider a general Copula Vector Autoregressive model, I define a VAR(p) model with 

dimension M and an error term tltlh ,, η as follows: 

∑∑
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where  Ml ,,1K= . 

tl ,μ  is the standardized innovations, 0)( , =tlE μ  and 1)var( , =tlμ . tlh , can be constant 

or time-varying like in GARCH (1,1) models:  
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where  Ml ,,1K= . 

From the Sklar’s theorem (1959), I can express the conditional joint distribution 

;,,( ,,1 tnttG μμ K θ) with parameters vector θ can be expressed as follows: 

         ;,,(~),,( ,,1,,1 tntttnt G μμμμ KK θ)= );;(,),;(( ,,1,1,1 ntntnttt FFC αμαμ K ρ)          (4.3)   

The joint distribution Gt of a vector of innovations tl ,μ  is the copula );(. ρtC  of the 

cumulative distribution functions of the copula from the innovations marginals 

,),;( 1,1,1 Kαμ ttF );( ,, ntntnF αμ , where ρ, nαα ,,1 K  are the copula and marginals 

parameters, respectively. 
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4.4 Examples of Copula 

 

Many copula families have been applied in financial literature to model the joint 

distributions of financial data. Their properties are well studied and their usefulness in 

representing the distribution tails is widely documented (see e.g. Embrechts et al. 2003 

and Jondeau and Rockinger 2006). In the rest of this section, I consider a few examples 

of copulas which are popular in these types of application. 

 

4.4.1 Elliptical Copulas 

 

The class of elliptical distributions provides useful examples of multivariate 

distributions because they share many of the tractable properties of the multivariate 

normal distribution. Furthermore, they allow to model multivariate extreme events and 

forms of non-normal dependencies. Elliptical copulas are simply the copulas of elliptical 

distributions (see Fang et al. (1990) for a detailed treatment of elliptical distributions). 

I present two copulas belonging to the elliptical family that are commonly used in 

empirical applications: the Gaussian and Student’s t-copula. By applying Sklar’s 

theorem and using the relationship between the distribution and the density function, I 

can derive their density functions. The copula of the multivariate Gaussian distribution is 

the Gaussian copula, and its probability density function is: 
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where '1

1
1 ))(,),(( nuu −− ΦΦ= Kς  is the vector of univariate Gaussian inverse 

distribution functions, )( ii xu Φ= , while ∑  is the correlation matrix. 

The main properties of Gaussian copula are i) the symmetry, since the same 

correlation coefficient matrix ∑  determines the dependence of both lower and upper 

tails; ii) a weak tail dependence. Gaussian copula may be used to define random 

variables with a Gaussian dependence structure, and nonnormal marginal distributions, 

featuring for instance fat tails. 

The copula of the multivariate Student’s t distribution is the Student’s t copula, and 

its density function is: 
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where '1
1

1 ))(,),(( nvv utut
cc

−−= Kς  is the vector of univariate Student’s t inverse distribution 

function, vc are the degrees of freedom, )( ivi xtu
c

= , and ∑  is the correlation matrix. 

The t copula dependence structure introduces an additional parameter compared with the 

Gaussian copula, namely the degrees of freedom vc. Increasing the value of vc decreases 
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the tendency to exhibit extreme co-movements. It allows for joint fat tails and an 

increased probability of joint extreme events compared with the Gaussian copula. Unlike 

Gaussian copula, the closed form expression for t-copula is not available and it can only 

be calculated numerically. 

Both Gaussian copula and t-copula are important examples of elliptical copula 

family and their dependence features are characterized by the correlation matrix ∑ . 

 

4.4.2 Archimedean Copulas 

 

A drawback of elliptical copulas described above is that they feature symmetric 

dependence only. In many finance and insurance applications, however, it is reasonable 

to believe that big losses are more likely to take place together than big gains. Such 

asymmetries cannot be well represented by elliptical copulas. Another important class of 

copulas is the Archimedean copulas. Contrary to elliptical copulas, they allow for a great 

variety of dependence structures. An Archimedean copula is defined by Joe (1997) 
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i
in uuuC K  

where Ψ is a convex, decreasing and positive function on [0,1], with 1)0( =Ψ ; 

0)1( =Ψ . 

Among the different Archimedean copulas, Clayton and Gumbel copula are most 

commonly used. The Clayton copula corresponds to 1)( −=Ψ − cxx α  and is given by: 



 63

c

c

n

i
in nuuuC

α
α

/1

1
1 1),,(

−

=

− ⎟
⎠

⎞
⎜
⎝

⎛
+−= ∑K  

where cα is the copula parameter and ∞<< cα0 , whereas the density is given by 

nn

i
i

n

i
i

n
cn

c
cc

c

c nuu
n

uuC
−−

=

−

=

−− ⎟
⎠

⎞
⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γ

+Γ
= ∑∏

α
αα

α

αα
1

11

1
1

1

1 1
)(

)(
),,( K     (4.6) 

t-copula allows for joint extreme events, but not for asymmetries. If one believes in the 

asymmetries in equity return dependence structures reported by for instance Longin and 

Solnik (2001) and Ang and Chen (2002), the t-copula may also be too restrictive to 

provide a reasonable fit. Then, the Clayton copula, which is an asymmetric copula, 

exhibiting greater dependence in the negative tail than in the positive, might be a better 

choice. 

Gumbel copula corresponds to Gxx α))ln(()( −=Ψ  and is defined as:  
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The Gumbel copula is also an asymmetric copula, as opposite to the Clayton copula, 

exhibits greater dependence in the positive tail than in the negative. 
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4.5 Two Stage Estimations for Margins and Copula 

 

Pure parametric models may impose too strong restrictions with a risk of 

misspecification, while pure non-parametric models are more flexible, but can require 

too many observations to get a reasonable fit. In this section, instead, I consider a semi-

parametric specification of the joint distribution, in which the marginal distributions are 

left unspecified, whereas the copula is parameterized. Such a semiparametric model can 

be estimated by using a two stage procedure. In a first step the marginal distributions are 

estimated by their sample counterparts. Then, these first step estimations are used to 

approximate the ranks corresponding to the observed returns. Finally, the copula 

parameters are estimated by maximizing the log-likelihood function applied on the 

estimated ranks. This procedure initially suggested by Genest et al. (1995) is detailed 

below. 

For each variable nXX ,,1 K with T observations, I estimate the corresponding 

marginal cdfs  by nonparametric kernel method, which is given by: 
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where h is the bandwidth parameter and K is the second order Gaussian kernel function. 

In practice, h is selected optimally based on the least square cross-validation method. 

These estimated )(ˆ
ii xF , where ni ,,1 K= are approximately uniformly distributed on 

[0,1] (when T is large). Computing the multivariate transformed observations 

)](ˆ,),(ˆ[ 11 nn xFxF K  is the first step for the copula fitting. Then, several copula families 
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can be estimated from these multivariate series of estimated cdf. For this purpose I can 

maximize the log-likelihood function of the transformed data: 

);)(ˆ,),(ˆ(log);( 11
1

θθ nini

T

i

xFxFcXL K∑
=

=       (4.8) 

The log-likelihood estimator θ̂  that maximizes the above likelihood is consistent and 

asymptotically normal, when T tends to infinity. However, it is not semi-parametrically 

efficient (see e.g., Genest et al., 1995). 

 

4.6 Empirical Application 

 

The data used in this empirical study are the S&P500 index return obtained from 

EconStats and the effective federal funds rate obtained from the Federal Reserve Bank of 

St. Louis. In order to control for the effects of inflation on the monetary policy 

innovation by including the Commodity Research Bureau’s (CRB) commodity spot 

index. The sample data is daily from May 26, 1981 to December 31, 2007, with number 

of observations equal 6940. Note that, I use the first 6910 observations for model 

estimation and leave the last 30 observations for forecasts comparison. The same data 

was used by Crowder (2006) to examine the role of stock market in the Federal Reserve 

policy rule using VAR model. The stock returns are calculated as the annualized log 

change in the daily closing price of the S&P500 index. The data are plotted in Figure 

4.1. 
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Table 4.1 gives summary statistics for the data. Standard deviation reveals that the 

volatility of the series is in the order of Federal funds rates, S&P500 index returns and 

CRB. All the series exhibits skewness and kurtosis relative to the Gaussian distribution. 

The Jarque-Bera test also demonstrates the non-normality of each series, which implies 

the violation of multivariate Gaussian distribution assumption. Notice that S&P500 has 

the highest risk in terms of skewness, kurtosis and non-normality.  

To investigate the dependence between different markets, I calculate the linear 

correlation and Kendall’s τ. The linear correlation captures the linear dependence 

between two random variables. Kendall’s τ is a nonlinear measure of dependence. In 

particular, it measures the degree of correspondence between two rankings. The 

estimated correlation and Kendall’s τ are reported in Table 4.2. 

The patterns revealed by two dependence measures are qualitatively similar. 

Although the magnitude of all the pairs of correlations are very small, they are 

significant at 1% level since the sample size is large. The linear correlation range from -

0.0373 (Federal rate and CRB) to 0.0024 (S&P500 and CRB) among the pairs I 

consider. On the other hand, the Kendall’s τ ranges from -0.0298 (Federal rate and CRB) 

to 0.0019 (S&P500 and CRB). In addition, S&P500 and Federal fund rate shows an 

inverse relationship which is consistent with the monetary theory: A tighter monetary 

policy raises the federal fund rate, which increases the discount rate, in turn causing 

stock prices to decline. 

To start with the copula-VAR model, I examine the time series property of the data. 

A careful analysis of the levels and of the first log-differences of the three series shows 



 67

that S&P500 returns is I(0), while federal funds rate and CRB price index are both I(1) 

variables in the sample period. The first step is to filter the original data using VAR for 

linear correlation and GARCH (1,1) model for the volatility in each series. I used the 

Bayesian information criterion (BIC) to select the most appropriate lag order of the VAR 

model. The optimal choice resulted to be a model with four lags.  

The next step is to use the filtered series to estimate the cdf of the three variables 

using kernel methods. Here I adopt a second-order Gaussian kernel density function and 

the optimal bandwidth is obtained by least square cross-validation. The Gaussian copula, 

the t-copula, the Clayton copula and Gumbel copula are then estimated by the two-step 

procedure for the three transformed series.  

Comparisons between a set of competing copula-based models can be done via 

statistical criteria. Likelihood ratio tests are often used, see Vuong (1989) and Rivers and 

Vuong (2002) for example. But these tests are often criticized by their low power against 

the alternative (Malevergne and Sornette 2006). Alternatively, information criteria, such 

as Schwarz’s Bayesian Information (BIC) is used to penalize models with more 

parameters. 

Table 4.3 provides the loglikelihood and the BIC values using the maximum 

likelihood approach on (4.8). The smaller the BIC value or the larger the likelihood 

value is, the better is the goodness-of-fit. For the four models considered, the Clayton 

copula model provides the best fit according to the BIC and the log-likelihood criterion. 

Note that the BIC criteria put a heavy penalty on the normal and t-copula. One of the 

reasons why Clayton copula dominates other copula is that I am dealing with the 
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financial data and most of the financial data are found to exhibits greater dependence in 

the negative tail than in the positive, as reported by Longin and Solnik (2001) and Ang 

and Chen (2002). This is exactly one of the important features for Clayton copula. 

 

4.7. Forecasts and Forecast Evaluation 

 

Based upon the model specifications determined earlier, I re-cursively generate 30 

one-step-ahead forecasts, 29 two-steps-ahead, 28 three-steps-ahead, and 27 four-steps-

ahead forecasts for the models that I consider in this paper.  

First, one-step-ahead forecast 1ˆ +tx  is derived from the model (4.1) from the actual 

value of x using information available up to time t. This forecast value is then used to 

forecast two-steps-ahead 2ˆ +tx , and so on. 

The forecast errors are calculated as the difference between the forecast and the 

actual index returns. While criticisms exist over the use of MSE-type criteria in forecast 

comparison (e.g. Clements and Hendry 1993), I choose mean squared forecast error 

(MSFE) as the criterion for its simplicity and popularity. A summary of forecast 

performance of the three models is given in Table 4.4. 

The MSFEs of the copula-VAR model are 0.287, 0.381, 0.498 and 0.457 for one up 

to four-steps-ahead forecasts, respectively. They are all less than the MSFEs of the 

classical VAR and ARIMA models. The allowance of more flexibility on the 

dependence structure also seems to increase the accuracy of index returns forecasts in all 

four forecasting horizon's. If I compare VAR and ARIMA models, the gain in forecasts 
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is not that much for VAR model. The other two variables in the VAR model do not help 

much in terms of the forecasting accuracy.  

Of course, forecasts can also be formally compared in a number of other ways. It is 

possible that two sets of forecasts are visually different from each other, but they may 

not be so statistically. One way is to test the equality of forecast mean squared errors or 

some other measure of economic loss. In an important contribution to the literature on 

forecast evaluation, Diebold and Mariano (1995) proposed a formal, yet rather intuitive, 

test procedure. For a pair of h-steps-ahead forecast error ),,1,2,1,( Ttieit K== , the 

quality of forecast is to be judged on some specific function g{e) of the forecast error e 

(MSFE is often used). Following Harvey et al. (1997), the null hypothesis of equality of 

expected forecast performance is: 

0)]()([ 21 =− tt egegE  

Defining a new series by 

)()( 21 ttt egegd −=  

The Diebold-Mariano test statistic is then 

ddVDM 2/1)](ˆ[ −=  

where d is the sample mean of dt, )(ˆ dV is the sample variance of d which 

asymptotically can be estimated by ∑ −

=
− +
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kt t −− −+=
− ∑ . Under the 

null hypothesis, this statistic has an asymptotic standard normal distribution. The 

simulation evidence shows, however, that this test statistic could be seriously oversized 
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in the case of multi-steps-ahead forecasts (h ≥ 2). Harvey et al. (1997) suggested two 

modifications: One is to adjust the degree of freedom, 
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      (4.9) 

And the second adjustment is to compare the statistic with critical values for the 

Student’s t-distribution with (T-1) degrees of freedom, rather than from the standard 

normal distribution. 

The modified Diebold-Mariano test results are given in Table 4.5. Noticeably, the 

hypothesis of equality of forecast errors from the pairwise comparison of the models 

cannot be rejected at 0.10 significance level in all cases except in one-steps-ahead 

forecasts for the copula-VAR model vs VAR and ARIMA models. This, together with 

relatively low p-values in the higher horizons means to point to the different 

performance between copula-VAR model and other two models. In addition, The p-

values associated with VAR-ARIMA pair are high, implying that these two models 

statistically perform similarly well in the horizons that I consider. 

To move beyond the equality tests, a more stringent requirement would be that the 

competing forecasts embody no useful information absent in the preferred forecasts. 

This is the basic idea of forecast encompassing. Encompassing is closely related to 

composite forecasting and is essentially a type of conditional misspecification analysis 

(Hendry, 1995, chapter 4). Denote two forecast error series by 2,1, =ieit  as before, and 

the composite forecast error by εt, a white noise term, and write 

tttt eee ελ +−= )( 211       (4.10) 
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The null hypothesis is .0=λ  When the null is true, according to Chong and Hendry 

(1986), the first forecast encompasses the second. The actual test involves an ordinary 

least squares regression of ite  on ).( 21 tt ee −  A t-test of λ̂  is used as my test for 

encompassing. 

Table 4.6 shows the encompassing test results in probability form. The null 

hypothesis is that the forecasts of generated from a model (in a column) encompass the 

forecasts of a model in the row. For example, the first entry in the second row is 0.04, 

and VAR model encompasses the copula-VAR model at 0.1 significance level is 

rejected. Both of the VAR and ARIMA models does not encompass copula-VAR model 

in one and two-steps-ahead forecast. Starting at three-steps-ahead forecast, no 

encompassing evidence is found. That means, the copula-VAR model has some 

advantage over the VAR and ARIMA model in one- and two-steps-ahead forecasts. In 

general, these encompassing test results are consistent with the findings of the equality 

tests. 

Follows Granger and Ramanathan (1984), Table 4.7 considers three alternative 

approaches to obtaining linear combinations of forecasts. Method A minimizes the sum 

of squared errors of forecasts to obtain the weights; Method B is the case in which 

weights are constrained to sum to unity; Method C has no restrictions on the weights, but 

a constant term is added. Combination of three forecasts is better than any combination 

of pair. The results also demonstrate that Method C is consistently better, in terms of 

mean square error, than either Methods A or B. It is interesting to note that Method A 
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which is unconstrained, has weights adding nearly to one, but this is not true for Method 

C, where the weights on the forecasts add to substantially less than one. 

 

4.8 Conclusions 

 

In this paper I analyzed data on S&P500 index returns in an effort to provide 

evidence of whether allowing a more flexible dependence structure on the disturbance 

terms can improve the forecasting ability of classical VAR model. I consider a trivariate 

copula-VAR model with four lag on the VAR model and Clayton copula. While in many 

cases, the copula-VAR improves the model’s forecasting performance. I also 

demonstrate that the combined forecasts outperform individual forecasts. 

Future research may explore this subject in the following ways. First, use more 

general formulation of the copula in terms of the number of parameters; second, 

experiment with data with different frequency; third, examine the longer forecasting 

horizons if necessary. 
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CHAPTER V 
 

SUMMARY 

 

This dissertation has attempted to apply the nonparametric exponential series 

estimation (ESE) to model the copula function and performing the goodness-of-fit test. 

In addition, I apply the copula-VAR model to make forecast on the stock index returns.  

In the first essay I propose a multivariate exponential series estimator (ESE) to 

estimate the copula density nonparametrically. Extensive Monte Carlo studies show the 

proposed estimator outperforms the popular Gaussian kernel and log-spline estimator in 

copula estimation and provides superior estimates to empirical tail index in tail 

dependence estimation. It also demonstrates two-step density estimation through an ESE 

copula often outperforms direct estimation of the joint density. I apply the ESE copula to 

estimate the dependence between Asian stock returns during the Asian financial crisis. 

The results show that there exist asymmetric higher lower tail dependences among some 

of the Asian countries during the Asian financial crisis which is consistent with the 

literatures that the financial assets show stronger dependency during the financial crisis. 

Based on this work, further researches can be done on the derivation for the test of the 

tail asymmetries between the financial assets based on the ESE. 

In the second essay I propose a likelihood ratio statistic using a nonparametric 

exponential series approach. The order of the series is selected by BIC. I propose three 

further modifications on my test statistics based on the weighting, sub-setting and 
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likelihood cross-validation estimation method on the proposed test statistic. My 

extensive Monte Carlo simulations show that the proposed tests enjoy good finite sample 

performances compared to the traditional methods such as the Anderson-Darling tests. 

Uniform weighting scheme dominates other specifications. All subset specification is 

dominated by the nested sequence model. In addition, this data-driven method improves 

upon Neyman’s score test under small sample. I conclude that the exponential series 

likelihood ratio test can complement the Neyman’s type score test. 

In the last essay, I analyzed data on S&P500 index returns in an effort to provide 

evidence of whether allowing a more flexible dependence structure on the disturbance 

terms can improve the forecasting ability of classical VAR model. I consider a trivariate 

copula-VAR model with four lag on the VAR model and Clayton copula. In addition, I 

compare the forecast performance of Copula-VAR model, a classical VAR model and a 

univariate time series model. In many cases, the copula-VAR improves the model’s 

forecasting performance based on the mean forecast square error. The findings suggest 

that allowing a more flexible specification in the error terms using the copula tends 

improve the forecast accuracy. I also demonstrate that the combined forecasts 

outperform individual forecasts. Future researches may explore this subject in three 

directions. First, use more general formulation of the copula in terms of the number of 

parameters; second, experiment with data with different frequency; third, examine the 

longer forecasting horizons if necessary. 
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APPENDIX A 

 

Table 2.1 Parameter Values of Copulas Corresponding to Kendall's Tau 
Kendall's Tau Gaussian t Frank Clayton 

0.2 0.309 0.309 1.86 0.50 
0.4 0.588 0.588 4.16 1.33 
0.6 0.809 0.809 7.93 3.00 

 

 

Table 2.2 MISE of Univariate Distribution (the Values Are Multiplied by 100) 
    Gaussian Skewed-Unimodal Bimodal t 
n=50 ESE 0.637 (1.018) 1.494 (1.961) 2.337 (1.265) 0.690 (0.621) 
  Log-spline 0.772 (0.749) 1.238 (1.514) 1.509 (3.819) 0.756 (0.494) 
  Kernel 1.542 (3.776) 1.982 (4.352) 1.804 (3.866) 1.382 (2.210) 
          
n=100 ESE 0.284 (0.131) 0.751 (0.517) 1.328 (0.823) 0.381 (0.122) 
  Log-spline 0.359 (0.107) 0.594 (0.324) 0.860 (0.362) 0.387 (0.123) 
  Kernel 0.715 (0.394) 1.015 (0.885) 1.047 (0.652) 0.815 (0.670) 
          
n=500 ESE 0.056 (0.003) 0.186 (0.017) 0.437 (0.019) 0.161 (0.011) 
  Log-spline 0.111 (0.010) 0.138 (0.014) 0.212 (0.016) 0.089 (0.007) 
  Kernel 0.231 (0.034) 0.295 (0.063) 0.305 (0.039) 0.218 (0.033) 
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Table 2.3 MISE of Copula Density Estimation 
Kendall's Tau Copula n ESE Log-spline Kernel 

0.2 Gaussian 50 0.164  (0.0071) 0.170  (0.0112) 0.233  (0.0135)
   100 0.107  (0.0014) 0.120  (0.0041) 0.171  (0.0024)
   500 0.065  (0.0001) 0.076  (0.0002) 0.099  (0.0002)
 t 50 0.210  (0.0194) 0.244  (0.0420) 0.270  (0.0165)
   100 0.139  (0.0014) 0.160  (0.0051) 0.201  (0.0032)
   500 0.098  (0.0001) 0.104  (0.0005) 0.127  (0.0006)
 Frank 50 0.172  (0.0117) 0.168  (0.0161) 0.221  (0.0114)
   100 0.103  (0.0020) 0.105  (0.0019) 0.170  (0.0046)
   500 0.058  (0.0001) 0.069  (0.0001) 0.104  (0.0001)
 Clayton 50 0.217  (0.0061) 0.236  (0.0194) 0.274  (0.0115)
   100 0.160  (0.0025) 0.188  (0.0189) 0.214  (0.0052)
   500 0.113  (0.0001) 0.118  (0.0008) 0.146  (0.0095)

0.4 Gaussian 50 0.240  (0.0080) 0.350  (0.0397) 0.381  (0.0223)
   100 0.180  (0.0024) 0.270  (0.0150) 0.293  (0.0070)
   500 0.131  (0.0001) 0.174  (0.0027) 0.199  (0.0059)
 t 50 0.345  (0.0139) 0.455  (0.0829) 0.480  (0.0415)
   100 0.263  (0.0024) 0.349  (0.0200) 0.371  (0.0059)
   500 0.217  (0.0005) 0.251  (0.0047) 0.288  (0.0007)
 Frank 50 0.215  (0.0164) 0.292  (0.0267) 0.329  (0.0187)
   100 0.142  (0.0031) 0.215  (0.0101) 0.235  (0.0048)
   500 0.090  (0.0002) 0.125  (0.0009) 0.157  (0.0009)
 Clayton 50 0.574  (0.0190) 0.664  (0.1138) 0.683  (0.0369)
   100 0.498  (0.0039) 0.555  (0.0669) 0.577  (0.0509)
   500 0.364  (0.0012) 0.410  (0.0130) 0.453  (0.0154)

0.6 Gaussian 50 0.484  (0.0155) 0.780  (0.0489) 0.805  (0.0545)
   100 0.401  (0.0047) 0.654  (0.0087) 0.645  (0.0166)
   500 0.328  (0.0014) 0.518  (0.0012) 0.532  (0.0005)
 t 50 0.721  (0.0315) 1.014  (0.0897) 1.072  (0.0812)
   100 0.629  (0.0087) 0.859  (0.0230) 0.865  (0.0209)
   500 0.451  (0.0039) 0.692  (0.0087) 0.721  (0.0070)
 Frank 50 0.302  (0.0202) 0.551  (0.0547) 0.585  (0.0648)
   100 0.212  (0.0051) 0.400  (0.0084) 0.408  (0.0123)
   500 0.142  (0.0003) 0.237  (0.0034) 0.281  (0.0004)
 Clayton 50 1.632  (0.0331) 1.917  (0.0872) 2.004  (0.0955)
   100 1.493  (0.0169) 1.695  (0.0543) 1.750  (0.0619)
   500 1.105  (0.0043) 1.409  (0.0040) 1.619  (0.0075)
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Table 2.4 MISE of the Joint Density Estimation 

         Copula  
  Kendall's Tau    Gaussian t Frank Clayton 
  0.2 Gaussian MM 0.377 0.364 0.300 0.365 
     LM 0.464 0.518 0.544 0.635 
     M 0.389 0.403 0.359 1.075 
     L 0.556 0.726 0.603 1.437 
     K 1.211 1.136 1.156 2.070 
   Skewed MM 0.993 0.983 0.890 1.029 
   Unimodal LM 0.513 0.468 0.481 0.483 
     M 1.059 1.021 1.157 1.247 
     L 0.891 1.003 1.009 1.486 
     K 1.593 1.815 1.713 2.415 
   Bimodal MM 1.040 1.055 0.960 1.334 
     LM 0.435 0.473 0.457 1.153 
     M 1.409 1.421 1.327 2.610 
     L 0.850 0.925 0.871 1.204 
     K 1.083 1.218 1.099 2.419 
   T MM 0.362 0.291 0.332 0.325 
     LM 0.268 0.244 0.245 0.278 
     M 0.392 0.429 0.387 0.388 
     L 0.465 0.599 0.574 0.567 
      K 1.030 1.290 1.100 1.424 
   0.4 Gaussian MM 0.616 0.752 0.637 0.972 
     LM 0.836 0.784 0.704 1.070 
     M 0.415 0.467 1.174 1.535 
     L 0.823 0.798 1.297 1.739 
     K 1.492 1.517 1.522 2.659 
   Skewed MM 1.269 1.175 1.152 1.348 
   Unimodal LM 1.028 1.090 1.071 1.213 
     M 1.677 1.469 1.578 1.520 
 Marginal    L 1.086 1.173 1.335 1.844 
 Distribution    K 1.821 1.957 2.108 2.865 
   Bimodal MM 1.239 1.358 1.152 1.657 
     LM 1.081 1.066 1.034 1.533 
     M 1.648 1.656 1.686 2.844 
     L 1.140 1.149 1.089 1.607 
     K 1.448 1.432 1.594 2.893 
   T MM 0.626 0.704 0.563 0.807 
     LM 0.626 0.712 0.571 0.872 
     M 0.972 1.064 1.229 1.116 
     L 0.703 0.900 0.866 0.846 
     K 1.342 1.410 1.612 1.828 
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Table 2.4 (Continued) 
        Copula   
 Kendall's Tau    Gaussian t Frank Clayton 
  0.6 Gaussian MM 1.202 1.126 1.050 2.409 
     LM 1.201 1.302 1.080 2.662 
     M 0.563 0.694 2.039 2.088 
     L 1.351 1.449 2.359 2.743 
     K 2.700 2.520 3.057 3.373 
   Skewed MM 1.832 1.874 1.924 2.252 
   Unimodal LM 1.786 1.880 1.428 2.205 
     M 2.056 2.288 2.539 2.236 
     L 1.849 2.087 3.643 2.462 
     K 2.818 3.219 4.185 3.718 
   Bimodal MM 2.002 2.169 1.784 3.465 
     LM 1.703 1.901 1.569 3.183 
     M 2.343 2.584 2.161 3.566 
     L 1.558 1.981 1.638 3.319 
     K 2.044 2.592 2.228 3.687 
   T MM 1.341 1.287 1.588 2.217 
     LM 0.841 1.080 0.906 1.934 
     M 1.520 1.645 1.644 2.361 
     L 1.168 1.344 1.426 2.251 
     K 2.094 2.367 2.782 3.022 



 

Table 2.5 Average MISE for Different Copula and Kendall's Tau 
Copula 

Tau   Gaussian t Frank Clayton 
   MISE Proportion MISE Proportion MISE Proportion MISE Proportion

0.2 LM 0.420   0.426   0.432   0.637  
  M 0.812 52% 0.819 52% 0.808 53% 1.330 48% 
  L 0.691 61% 0.813 52% 0.764 57% 1.173 54% 
  K 1.229 34% 1.365 31% 1.267 34% 2.082 31% 

0.4 LM 0.892   0.913   0.845   1.172  
  M 1.178 76% 1.164 77% 1.417 63% 1.754 51% 
  L 0.938 95% 1.005 89% 1.147 78% 1.509 59% 
  K 1.526 58% 1.579 57% 1.709 52% 2.561 35% 

0.6 LM 1.383   1.541   1.246   2.496  
  M 1.621 85% 1.803 77% 2.096 66% 2.563 54% 
  L 1.481 93% 1.715 81% 2.266 61% 2.694 51% 
  K 2.414 57% 2.674 52% 3.063 45% 3.450 40% 
NOTE: 
1. Proportion means the ratio of MISE of LM to the ratio of MISE of the other direct estimation methods.  
2. MISE is the average across the marginal distributions. 

 
 

Table 2.6 Descriptive Statistics for the Stock Indices Returns 
   Hongkong Singapore Malaysia Philippines Taiwan Thailand 
Mean          -0.0131  -0.0329  -0.1127  -0.0574  -0.0103  -0.1118  
Median      0.0046  -0.0139  -0.0280  0.0000  0.0000  -0.0533  
Maximum    17.2702  15.3587 23.2840  13.3087  6.3538  16.3520  
Minimum    -14.7132 -10.6621 -37.0310  -11.0001  -11.3456  -15.8925  
Std. Dev.      1.9668  1.6484  2.7410  1.9546  1.5864  2.5656  
Skewness      0.2615  0.6875  -1.2933  -0.0172  -0.4601  0.5974  
Kurtosis      13.8503  16.1685 42.0452  8.1313  7.2913  9.4746  
        
Jarque-Bera 6411.5 9524.6 83196.3 1430.7 1046.6 2355.2 
P-value <1.00e-04 <1.00e-04 <1.00e-04 <1.00e-04 <1.00e-04 <1.00e-04 
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         Table 2.7 Correlation Matrix of the Stock Indices Returns 
   Hongkong Singapore Malaysia Philippines Taiwan Thailand 

Hongkong   0.6526  0.3797  0.3816  0.2488  0.3867  
Singapore  0.3597   0.4104  0.2581  0.2797  0.5126  
Malaysia  0.2816  0.4783   0.3020  0.1993  0.3862  
Philippines  0.1954  0.5080  0.2069   0.1999  0.4133  
Taiwan  0.1214  0.1312  0.0992  0.0979   0.1886  
Thailand  0.2205  0.2900  0.2726  0.2069  0.0669    
      
Average Dependence      
Linear  0.4099 0.4863 0.3491 0.3609 0.2233 0.3775 
Kendall  0.2357 0.2899 0.2541 0.1930 0.1033 0.2114 
NOTE: Upper triangle is the linear correlation and the lower triangle is the Kendall's Tau. 

 

 

 

Table 2.8 Empirical Tail Dependence for Bivariate Standardized Returns 
 Hong Kong Singapore Malaysia Philippines Taiwan 

Percentile Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 
5% 0.308  0.242  0.354  0.167  0.262  0.242  0.231  0.182  0.169  0.106  
4% 0.288  0.283  0.346  0.132  0.269  0.151  0.250  0.170  0.154  0.113  
3% 0.282  0.225  0.359  0.125  0.179  0.100  0.179  0.150  0.128  0.150  
2% 0.346  0.185  0.346  0.148  0.077  0.000  0.192  0.074  0.115  0.111  
1% 0.231  0.143  0.231  0.214  0.000  0.000  0.000  0.000  0.000  0.143  

NOTE: 
1. Upper = empirical conditional upper tail probability.    
2. Lower = empirical conditional lower tail probability.    
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Table 2.9 Estimated Tail Dependence for Bivariate Standardized Returns 
 Hong Kong Singapore Malaysia Philippines Taiwan 
Percentile Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 

5% 0.314  0.257  0.296  0.209  0.205  0.198  0.181  0.187  0.143  0.145  
4% 0.259  0.211  0.237  0.167  0.162  0.156  0.159  0.162  0.121  0.119  
3% 0.198  0.167  0.168  0.123  0.134  0.129  0.126  0.121  0.097  0.092  
2% 0.135  0.121  0.119  0.087  0.089  0.081  0.087  0.089  0.078  0.076  
1% 0.075  0.061  0.062  0.048  0.065  0.057  0.056  0.058  0.046  0.048  

NOTE: 
1. Lower = Estimated upper tail dependence.    
2. Upper = Estimated lower tail dependence.    
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Table 3.1 5% Critical Values of Test Statistics for Subsequent Values of K (Uniform Weighted) 

n=20   1 2 3 4 5 6 7 8 9 10 
  LR 3.721 5.287 6.428 7.156 7.548 7.687     
  Neyman 3.705 5.367 6.537 7.213 7.617 7.854     
              
n=50   1 2 3 4 5 6 7 8 9 10 
  LR 3.817 5.460 6.114 6.121 6.123 6.405 6.406 6.411 6.411 6.411
  Neyman 3.788 5.317 5.869 6.016 6.090 6.168 6.172 6.182 6.182 6.182
              
n=100   1 2 3 4 5 6 7 8 9 10 
  LR 3.827 5.213 5.347 5.420 5.420 5.420 5.420 5.420 5.420 5.420
  Neyman 3.812 5.047 5.231 5.367 5.341 5.342 5.342 5.342 5.342 5.342

NOTE: 
1. LR statistic is calculated from equation (3.4). 
2. Neyman statistic is calculated from equation (3.2). 
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Table 3.2 Monte Carlo Power Estimate x 100, Tests of Size 0.05 with Sample Size Equal to 20 

 (1) (2) (3) (4) (5) 

n=20 

Geometric 
Weighted 
Neyman 

Geometric 
Weighted 

LR 

Uniform 
Weighted 
Neyman 

Uniform  
Weighted  

LR 

BIC  
Weighted 
Neyman 

BIC  
Weighted 

LR 

Likelihood 
 CV  

Neyman 

Likelihood 
 CV  
LR 

Anderson- 
Darling 

         

g1 30 39 44 49 43 44 43 43 45 

          

g2_1 38 38 16 18 37 37 34 37 42 

g2_2  20 22 27 30 31 33 25 26 17 

g2_3 15 18 22 25 23 26 23 23 10 

g2_4 29 31 32 32 33 35 31 32 8 

          

g3_1 41 43 42 46 41 43 35 39 45 

g3_2 39 43 45 50 39 41 34 38 25 
g3_3 26 31 43 49 41 45 31 37 15 
g3_4 39 45 48 52 38 41 39 40 30 
g3_5 36 41 43 47 37 39 36 37 10 
g3_6 39 43 47 51 39 42 36 39 20 
g3_7 16 22 38 41 37 40 20 24 9 
g3_8 12 16 29 31 26 28 14 17 12 

NOTE: 
1. Anderson-Darling statistic is defined in equation (3.1). 
2. Geometric weighting is defined in equation (3.5). 
3. BIC weighting is defined in equation (3.6). 
4. Likelihood CV is defined in equation (3.8). 
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Table 3.3 Monte Carlo Power Estimate x 100, Tests of Size 0.05 with Sample Size Equal to 50 

 (1) (2) (3) (4) (5) 

n=50 

Geometric 
Weighted 
Neyman 

Geometric 
Weighted 

LR 

Uniform 
Weighted 
Neyman 

Uniform  
Weighted  

LR 

BIC  
Weighted 
Neyman 

BIC  
Weighted 

LR 

Likelihood 
 CV  

Neyman 

Likelihood 
 CV  
LR 

Anderson- 
Darling 

         

g1 79 78 84 85 86 87 85 86 68 

          

g2_1 75 76 73 73 73 74 73 74 70 

g2_2 51 52 55 56 62 61 41 40 35 

g2_3 40 39 46 47 46 47 31 32 18 

g2_4 62 64 65 65 65 66 62 64 15 

          

g3_1 81 81 80 80 81 80 81 81 79 

g3_2 84 85 86 84 85 86 84 85 50 
g3_3 60 61 60 58 62 61 83 83 30 
g3_4 88 89 90 90 90 91 84 85 60 
g3_5 77 75 73 71 74 75 71 70 18 
g3_6 78 81 75 75 76 76 72 70 43 
g3_7 38 39 49 49 51 50 40 41 20 
g3_8 29 28 44 44 47 46 28 30 25 

NOTE: 
1. Anderson-Darling statistic is defined in equation (3.1). 
2. Geometric weighting is defined in equation (3.5). 
3. BIC weighting is defined in equation (3.6). 
4. Likelihood CV is defined in equation (3.8). 
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Table 3.4 Likelihood Ratio Test Based on the Nested Sequence and All 
                Subset Specifications 

 n=20 n=50 

 

Uniform 
Weighted 

Likelihood Ratio 

All 
Subset 

Likelihood Ratio 

Uniform 
Weighted 

Likelihood Ratio 

All 
Subset 

Likelihood Ratio 
    

g1 28 20 39 29 
     

g2_1 25 18 39 27 
g2_2 21 19 37 31 
g2_3 17 14 38 30 
g2_4 19 15 43 40 

     
g3_1 20 17 41 28 
g3_2 19 16 44 37 
g3_3 14 12 31 24 
g3_4 28 24 56 48 
g3_5 19 15 40 35 
g3_6 20 16 48 41 
g3_7 15 11 33 35 
g3_8  13 9 26 15 

 NOTE: All subsets specification is defined in equation (3.7). 
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Table 4.1 Descriptive Statistics for the Data 
   S&P500 Fund rate CRB 
Mean          0.0549 5.9756 5.5748 
Median      0.0307 5.5200 5.5526 
Maximum    13.8051 22.3600 6.0633 
Minimum    -36.3001 0.8600 5.3260 
Std. Dev.      1.6159 3.1822 0.1386 
Skewness      -1.7835 1.0879 1.0791 
Kurtosis      44.3913 5.3916 4.7264 
     
Jarque-Bera 499020.3 3022.527 2209.015 
p-value <1.00e-04 <1.00e-04 <1.00e-04 

 
 
 
 
 

Table 4.2 Correlation Matrix of the Stock Indices Returns 
 S&P500 Federal Fund CRB 

S&P500   -0.0025 0.0019 
Federal Fund -0.0037  -0.0298 

CRB  0.0024 -0.0373   
NOTE: Lower triangle is the linear correlation and the upper triangle  
             is the Kendall's Tau. 
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Table 4.3 The BIC and Log Likelihood of the Four Copulas 

Model Log 
Likelihood 

Number of 
Parameters 

BIC 

Symmetric copulas    
Normal 7.7853 4 -0.20516 
Student’s t 8.2347 5 2.737397 
    
Asymmetric copulas    
Clayton 10.4398 1 -17.0386 
Gumbel 5.3803 1 -6.91955 

NOTE: 
1. Normal copula is defined in equation (4.4). 
2. Student’s t copula is defined in equation (4.5). 
3. Clayton copula is defined in equation (4.6). 
4. Gumbel copula is defined in equation (4.7). 

 
 
 
 

Table 4.4 Mean Squared Forecast Errors by Horizon 
 One Step Two Steps Three Steps Four Steps 

ARIMA 0.343 0.421 0.587 0.479 
VAR 0.351 0.409 0.508 0.515 
Copula-VAR 0.287 0.381 0.498 0.457 

 
 
 
 
 
 

Table 4.5 Test Results for the Equality of Forecast MSFE  

 
One 
 Step 

Two  
Steps 

Three 
 Steps 

Four  
Steps 

ARIMA vs VAR 0.21 0.38 0.37 0.41 
VAR vs Copula-VAR 0.08 0.13 0.16 0.19 
Copula-VAR vs ARIMA 0.09 0.14 0.12 0.24 

NOTE: Each entry is the p-value of modified Diebold-Mariano test (equation 4.9) on 
   the quality of mean squared forecast errors (MSFE). 



 99

 
Table 4.6 Forecast Encompassing Tests 

One Step 
  Copula-VAR VAR ARIMA 
Copula-VAR 1 0.31 0.21 
VAR  0.04 1 0.31 
ARIMA  0.07 0.23 1 
     

Two Steps 
  Copula-VAR VAR ARIMA 
Copula-VAR 1 0.26 0.27 
VAR  0.12 1 0.38 
ARIMA  0.09 0.41 1 
     

Three Steps 
 Copula-VAR VAR ARIMA 
Copula-VAR 1 0.48 0.34 
VAR  0.14 1 0.27 
ARIMA  0.16 0.21 1 
     

Four Steps 
 Copula-VAR VAR ARIMA 
Copula-VAR 1 0.28 0.26 
VAR  0.12 1 0.34 
ARIMA  015 0.25 1 

                NOTE: 
                Each entry is the p-value of the null hypothesis that a model (in a column) 
                encompasses another model (in a row) from Equation 4.10. For example,  
                the first entry in the second row is 0.08, and VAR model encompasses  
                the copula-VAR model at 0.05 signficance level. All diagonal entries  
                have values 1 for obvious reasons. 
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Table 4.7 Combined Forecasts for the One-Step Ahead Forecasts 

Forecast  
Sum of 

Squared Errors    Weights for  
     Constant VAR Copula-VAR ARIMA
Original     -- 1.00 -- -- 
VAR   10.53  -- -- 1.00 -- 
Copula-VAR  8.61  -- -- -- 1.00 
ARIMA   10.29      
         
Combined Method A (Unconstrained,  No Constant Term)  
All Three   5.51  0.00 0.32 0.48 0.20 
VAR & Copula-VAR 7.20  0.00 0.32 0.68 0.00 
Copula-VAR & ARIMA 6.80  0.00 0.00 0.73 0.27 
ARIMA & VAR  7.95  0.00 0.53 0.00 0.47 
         
Combined Method B (No Constant, Weight Sum to 1)  
All Three   5.84  0.00 0.34 0.45 0.21 
VAR & Copula-VAR 7.51  0.00 0.29 0.71 0.00 
Copula-VAR & ARIMA 6.23  0.00 0.00 0.69 0.31 
ARIMA & VAR  8.09  0.00 0.48 0.00 0.52 
         
Combined Method C (Unconstrained,  With Constant)  
All Three   5.12  11.67 0.30 0.42 0.19 
VAR & Copula-VAR 6.58  12.34 0.30 0.64 0.00 
Copula-VAR & ARIMA 5.34  6.84 0.00 0.72 0.11 
ARIMA & VAR  7.01  5.47 0.52 0.00 0.38 
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APPENDIX B 

 

 

Figure 2.1 Parametric Copulas with Dependence Parameters Corresponding to 
                  Kendall’s Tau Equal to 0.6
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Figure 2.3 Scatter Plots of the Standardized Stock Indices Returns in Various 
                   Asian Countries 
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Figure 2.4 The Estimated Copula Density on the Diagonal for Various Asian 
                  Countries Pairing with Thailand 
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Figure 3.2 Graphs of g2 
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Figure 4.1 Data from S&P 500 Daily Returns, Effective Federal Funds Rate and 
                 CRB Spot Index: May 26, 1981 to December 31, 2007  
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